Plot/Graph

Muhammad Ali muhammadaliaskari at gmail.com
Sun Apr 3 20:04:51 EDT 2016


On Sunday, April 3, 2016 at 2:35:58 PM UTC-7, Oscar Benjamin wrote:
> On 3 Apr 2016 22:21, "Muhammad Ali" <muhammadaliaskari at gmail.com> wrote:
> >
> >  How do I convert/change/modify python script so that my data could be
> extracted according to python script and at the end it generates another
> single extracted data file instead of displaying/showing some graph? So
> that, I can manually plot the newly generated file (after data extraction)
> by some other software like origin.
> 
> It depends what you're computing and what format origin expects the data to
> be in. Presumably it can use CSV files so take a look at the CSV module
> which can write these.
> 
> (You'll get better answers to a question like this if you show us some code
> and ask a specific question about how to change it.)
> 
> --
> Oscar

How could the python script be modified to generate data file rather than display a plot by using matplotlib?


def make_plot(plot):
    indent = plot.plot_options.indent
    args = plot.plot_options.args
    # Creating the plot
    print ('Generating the plot...')
    fig = plt.figure(figsize=(plot.fig_width_inches,plot.fig_height_inches))
    ax = fig.add_subplot(111)
    # Defining the color schemes.
    print (indent + '>>> Using the "' + plot.cmap_name + '" colormap.')
    if(plot.plot_options.using_default_cmap and not args.running_from_GUI):
        print (2 * indent + 'Tip: You can try different colormaps by either:')
        print (2 * indent + '     * Running the plot tool with the option -icmap n, ' \
               'with n in the range from 0 to', len(plot.plot_options.cmaps) - 1)
        print (2 * indent + '     * Running the plot tool with the option "-cmap cmap_name".')
        print (2 * indent + '> Take a look at')
        print (4 * indent + '<http://matplotlib.org/examples/color/colormaps_reference.html>')
        print (2 * indent + '  for a list of colormaps, or run')
        print (4 * indent + '"./plot_unfolded_EBS_BandUP.py --help".')

    # Building the countour plot from the read data
    # Defining the (ki,Ej) grid.
    if(args.interpolation is not None):
        ki = np.linspace(plot.kmin, plot.kmax, 2 * len(set(plot.KptsCoords)) + 1, endpoint=True)
        Ei = np.arange(plot.emin, plot.emax + plot.dE_for_hist2d, plot.dE_for_hist2d)
        # Interpolating
        grid_freq = griddata((plot.KptsCoords, plot.energies), plot.delta_Ns, (ki[None,:], Ei[:,None]), 
                             method=args.interpolation, fill_value=0.0)
    else:
        ki = np.unique(np.clip(plot.KptsCoords, plot.kmin, plot.kmax))
        Ei = np.unique(np.clip(plot.energies, plot.emin,  plot.emax))
        grid_freq = griddata((plot.KptsCoords, plot.energies), plot.delta_Ns, (ki[None,:], Ei[:,None]), 
                             method='nearest', fill_value=0.0)

    if(not args.skip_grid_freq_clip):
        grid_freq = grid_freq.clip(0.0) # Values smaller than zero are just noise.
    # Normalizing and building the countour plot
    manually_normalize_colorbar_min_and_maxval = False
    if((args.maxval_for_colorbar is not None) or (args.minval_for_colorbar is not None)):
        manually_normalize_colorbar_min_and_maxval = True
        args.disable_auto_round_vmin_and_vmax = True
        maxval_for_colorbar = args.maxval_for_colorbar
        minval_for_colorbar = args.minval_for_colorbar
    else:
        if not args.disable_auto_round_vmin_and_vmax:
            minval_for_colorbar = float(round(np.min(grid_freq)))
            maxval_for_colorbar = float(round(np.max(grid_freq)))
            args.round_cb = 0
    if(manually_normalize_colorbar_min_and_maxval or not args.disable_auto_round_vmin_and_vmax):
        modified_vmin_or_vmax = False
        if not args.disable_auto_round_vmin_and_vmax and not args.running_from_GUI:
            print (plot.indent + '* Automatically renormalizing color scale '\
                   '(you can disable this with the option --disable_auto_round_vmin_and_vmax):')
        if manually_normalize_colorbar_min_and_maxval:
            print (plot.indent + '* Manually renormalizing color scale')
        if(minval_for_colorbar is not None):
            previous_vmin = np.min(grid_freq)
            if(abs(previous_vmin - minval_for_colorbar) >= 0.1):
                modified_vmin_or_vmax = True
                print (2 * indent + 'Previous vmin = %.1f, new vmin = %.1f' % (previous_vmin, 
                                                                               minval_for_colorbar))
        else:
            minval_for_colorbar = np.min(grid_freq)
        if(maxval_for_colorbar is not None):
            previous_vmax = np.max(grid_freq)
            if(abs(previous_vmax - maxval_for_colorbar) >= 0.1):
                modified_vmin_or_vmax = True
                print (2 * indent + 'Previous vmax = %.1f, new vmax = %.1f' % (previous_vmax, 
                                                                               maxval_for_colorbar))
        else:
            maxval_for_colorbar = np.max(grid_freq)
        if(modified_vmin_or_vmax):
            print (2 * indent + 'The previous vmin and vmax might be slightly different from '
                                'the min and max delta_Ns '
                                'due to the interpolation scheme used for the plot.')
        # values > vmax will be set to vmax, and #<vmin will be set to vmin 
        grid_freq = grid_freq.clip(minval_for_colorbar, maxval_for_colorbar)
        v = np.linspace(minval_for_colorbar, maxval_for_colorbar, args.n_levels, endpoint=True)
    else: 
        v = np.linspace(np.min(grid_freq), np.max(grid_freq), args.n_levels, endpoint=True)
    print (indent + '* Drawing contour plot...')
    print (2 * indent + '> Using %i color levels. Use the option "--n_levels" to choose a different number.' %args.n_levels)
    image = ax.contourf(ki, Ei, grid_freq, levels=v, cmap=plot.cmap)

    plot_spin_proj_requested = args.plot_spin_perp or args.plot_spin_para or args.plot_sigma_x or args.plot_sigma_y or args.plot_sigma_z
    if(plot_spin_proj_requested and plot.spin_projections is not None):
        print (indent + '* Drawing spin projection info')
        cmap_for_spin_plot = [plt.cm.bwr, plt.cm.RdBu, plt.cm.seismic_r][0]

        if(args.clip_spin is None):
            vmin_spin = np.min(plot.spin_projections)
            vmax_spin = np.max(plot.spin_projections)
        else:
            vmax_spin = abs(args.clip_spin)
            vmin_spin = -1.0 * abs(args.clip_spin)
            print (2 * indent + '* New maxval for spin: %.2f' % vmax_spin)
            print (2 * indent + '* New minval for spin: %.2f' % vmin_spin)
 
        spin_projections = np.clip(plot.spin_projections, vmin_spin, vmax_spin)
        grid_freq_spin = griddata((plot.KptsCoords, plot.energies), spin_projections, (ki[None,:], Ei[:,None]), 
                                  method='nearest', fill_value=0.0)

        k_for_scatter = [] 
        E_for_scatter = [] 
        spin_projections_for_scatter = [] 
        for iener in range(len(Ei)):
            for ikpt in range(len(ki)):
                if(abs(grid_freq_spin[iener, ikpt]) > 1E-3):
                    k_for_scatter.append(ki[ikpt])
                    E_for_scatter.append(Ei[iener])
                    spin_projections_for_scatter.append(grid_freq_spin[iener, ikpt])

        if(spin_projections_for_scatter):
            if(args.spin_marker=='o'):
                image2 = ax.scatter(k_for_scatter, E_for_scatter, marker='o', 
                                    s=[10.0 * abs(item) for item in spin_projections_for_scatter], 
                                    c=spin_projections_for_scatter, cmap=cmap_for_spin_plot)
            else:
                image2 = ax.scatter(k_for_scatter, E_for_scatter, marker='_', 
                                    s=[500.0 * (ki[1] - ki[0]) for item in spin_projections_for_scatter], 
                                    linewidth=[100.0 * plot.dE_for_hist2d * (item ** 2) for item in spin_projections_for_scatter], 
                                    c=spin_projections_for_scatter, cmap=cmap_for_spin_plot)
        else:
            print (2 * indent + '* The abs values of the spin projections were all < 1E-3.')

    #Preparing the plot
    ax.set_xlim(plot.kmin, plot.kmax)
    ax.set_ylim(plot.emin, plot.emax)
    ax.set_title(plot.title, fontsize=plot.title_size)
    ax.set_ylabel(plot.y_axis_label, fontsize=plot.yaxis_labels_size)
    plt.yticks(fontsize=plot.tick_marks_size)

    # Fermi energy line
    show_E_f = not args.no_ef
    if(show_E_f and plot.E_f >= plot.emin and plot.E_f <= plot.emax):
        E_f_line = plt.axhline(y=plot.E_f, c=plot.color_E_f_line(image), linestyle=plot.line_style_E_f, lw=plot.line_width_E_f)
    # High symmetry points lines
    if(plot.pos_high_symm_points):
        x_tiks_positions = [kx for kx in plot.pos_high_symm_points if kx - plot.kmax <= 1E-2 and kx >= plot.kmin]
    if(args.no_symm_labels):
        x_tiks_labels = []
    else:
        x_tiks_labels = [plot.labels_high_symm_lines[i] for i in range(len(plot.labels_high_symm_lines)) if 
                         plot.pos_high_symm_points[i] in x_tiks_positions]
        x_tiks_labels = [xlabel for xlabel in x_tiks_labels if xlabel]
    if x_tiks_labels:
        print (indent + '* K-point labels read from the "' + args.kpoints_file + '" file:')
        for ilabel in range(len(x_tiks_labels)):
            print(2 * indent + "k = {:9.5f}".format(x_tiks_positions[ilabel]) + ', label =',\
                   x_tiks_labels[ilabel])
        plt.xticks(x_tiks_positions, x_tiks_labels, fontsize=plot.tick_marks_size)
    else:
        plot.x_axis_label = '$k \hspace{0.25} (\AA^{-1})$'
        plt.locator_params(axis = 'x', nbins = 5)
        ax.set_xlabel(plot.x_axis_label, fontsize=plot.xaxis_labels_size)
        plt.xticks(fontsize=plot.tick_marks_size)
    ax.tick_params(axis='x', pad=10)

    # Drawing vertical lines at the positions of the high-symmetry points
    if(not args.no_symm_lines):
        for line_position in [pos for pos in plot.pos_high_symm_points if float(round(pos, 3)) > float(round(plot.kmin, 3)) and 
                                                                          float(round(pos, 3)) < float(round(plot.kmax, 3))]:
            hs_lines = plt.axvline(x=line_position, c=plot.color_high_symm_lines(image), linestyle=plot.line_style_high_symm_points, 
                                   lw=plot.line_width_high_symm_points)

    # Color bar
    show_colorbar = not args.no_cb
    if show_colorbar:
        if plot.cb_orientation=='vertical':
            cb_pad=0.005
        else:
            cb_pad=0.06
        if(not x_tiks_labels):
            cb_pad += 0.08 # To prevent the cb from overlapping with the numbers.

        cb_yticks = np.arange(int(image.norm.vmin), int(image.norm.vmax) + 1, 1)

        cb_ytick_labels = [round(item,abs(args.round_cb)) for item in cb_yticks]
        cb = plt.colorbar(image, ax=ax, ticks=cb_yticks, orientation=plot.cb_orientation, pad=cb_pad)
        cb.set_ticklabels(cb_ytick_labels)
        cb.ax.tick_params(labelsize=plot.colorbar_tick_marks_size)
       
        color_bar_label = None
        if args.cb_label: 
            color_bar_label = ('$Color scale: \hspace{0.5} \delta N(\\vec{k}; ' + 
                               '\hspace{0.25} \epsilon)$ ') 
        if args.cb_label_full: 
            color_bar_label = ('$Colors cale: \hspace{0.5} \delta N(\\vec{k}; ' +
                               '\hspace{0.25} \epsilon);$ '+ 
                               '$\delta\epsilon=' + round(1000.0*plot.dE_for_hist2d,0) +
                               '\\hspace{0.25} meV.$')

        if plot.cb_orientation=='vertical':
            cb_label_rotation = 90
        else:
            cb_label_rotation = 0
        if color_bar_label:
            cb.ax.text(plot.offset_x_text_colorbar, plot.offset_y_text_colorbar,
                       color_bar_label, rotation=cb_label_rotation, ha='center',
                       va='center', fontsize=plot.colorbar_label_size)

    # Saving/showing the results
    plt.tick_params(which='both', bottom='off', top='off', left='off', right='off', 
                    labelbottom='on')


    default_out_basename = "_".join([splitext(basename(args.input_file))[0], 'E_from', str(plot.emin), 'to',
                                    str(plot.emax), 'eV_dE', 
                                    str(plot.dE_for_hist2d), 'eV'])
    if(args.save):
        if(args.output_file is None):
            args.output_file = abspath(default_out_basename + '.' + args.file_format)

        print ('Savig figure to file "%s" ...' % args.output_file)
        if(args.fig_resolution[0].upper() == 'H'):
            print (indent + '* High-resolution figure (600 dpi).')
            fig_resolution_in_dpi = 600
        elif (args.fig_resolution[0].upper() == 'M'):
            print (indent + '* Medium-resolution figure (300 dpi).')
            fig_resolution_in_dpi = 300
        elif (args.fig_resolution[0].upper() == 'L'):
            print (indent + '* Low-resolution figure (100 dpi).')
            fig_resolution_in_dpi = 100
        else:
            print (indent + 'Assuming medium-resolution (300 dpi) for the figure.')
            fig_resolution_in_dpi = 300
        plt.savefig(args.output_file, dpi=fig_resolution_in_dpi, bbox_inches='tight')
        print (indent + '* Done saving figure (%s).' % args.output_file)

    if args.saveshow:
        print ('Opening saved figure (%s)...' % default_out_basename)
        # 'xdg-open' might fail to find the defualt program in some systems
        # For such cases, one can try to use other alternatives (just add more to the list below)
        image_viewer_list = ['xdg-open', 'eog']
        for image_viewer in image_viewer_list:
            open_saved_fig = Popen([image_viewer, args.output_file], stdout=PIPE, stderr=PIPE)
            std_out, std_err = open_saved_fig.communicate()
            success_opening_file = std_err.strip() == ''
            if(success_opening_file):
                break
        if(not success_opening_file):
            print (indent + '* Failed (%s): no image viewer detected.' % default_out_basename)

    if args.show:
        print ('Showing figure (%s)...' % default_out_basename)
        plt.show()
        print (indent + '* Done showing figure (%s).' % default_out_basename)


if __name__ == '__main__':
    print_opening_message()
    plot_options = BandUpPlotOptions()
    plot = BandUpPlot(plot_options)
    make_plot(plot)
    sys.exit(0)



More information about the Python-list mailing list