Response to Greg's and Paul's proposal

There's lots of good stuff there. I see we're converging on a syntax for types, that's good. I like these things (realizing these were mostly inherited from Tim Peters' proposal):

· The decl statement to declare names of variables and instance attributes:
decl name: type

· The various notations for container and callable types:
[type], (type, ...), {type: type}, def(type, ...)->type

· The syntax for adding types to function definitions:
def func(name: type = default, ...) -> type: ...

· I'm assuming that both proposals are buying into my idea of tightening the semantics of module global variables so as to remove (or at least declare undefined or illegal) interference from outside a module that would affect the module's correctness (e.g. insertion of a bogus built-in function or changing of a function defined in the module).

Trivial stuff:

· I like 'any'. It's better than 'object' for the usual reason -- not every type is seen as an object by typical programmers, even though technically they are. This reserves 'object' for possible use as a future base class of all classes. It also skirts the question whether None is an object (although I think it is).

· I'd like to use '|' instead of 'or' for alternatives (BTW shouldn't we name these unions?).

· I think parentheses should be allowable for grouping in type expressions, so that (t) is the same as t; for singleton tuples we use (t,).

· I'm still looking for a way to spell "tuple of any length of type t". Perhaps (t,...) or (t*)?

· Greg notes somewhere that lambda has a syntactic ambiguity with the colon used for types in the argument list. He suggests that lambda should not allow argument types. That's one solution. Another solution could be to change the syntax so that the argument list is enclosed in parentheses (this would be clearer anyway). This is backward incompatible because currently "lambda (x, y): ..." defines a function of one argument that is a tuple, while with the new interpretation it is a function of two arguments. I don't care much about this incompatibility; I expect this is extremely rare in practice. (For backward compatibility, "lambda x, y: ..." should of course still be allowed.)

· If we use a "minimal changes" approach and want to add *all* new syntax inside decl statements, we can choose to declare functions with "decl def foo(name: type, ...) -> type" or with "decl foo: def(name: type, ...) -> type". Which is better? On the other hand, if we don't mind changing the parser, we could lose the decl keyword altogether; "a: int" is just as easy to parse as "decl a: int". Haven't made up my mind whether I want the decl keyword in that case, or whether I want everything to be in decl statements; just suggesting some options.

Taking sides on trivial issues:

· I agree with Greg that the type declaring syntax should use ':', not 'as'. (On the other hand, I'm beginning to believe that "import module as localname" would be good syntax to add to import, as would be "from module import name as localname". In any case that's a better use for 'as'.)

· I definitely value being able to specify types for local variables. I think this is necessary to allow compile type verification that a function returns the declared type, for example, which I think is essential.

· I agree with Paul that the order should be "name: type = value", not "name = value: type". This is like Modula-3. I'm not sure I like the cutesy "name := value", but M-3 has this, the type of the name defaults to the type of the expression.

· I think that typedef should be a form of statement processed by the type checker, not a run time expression. "typedef name = type" is a good way to introduce new type names (aliases). Use '=', not ':' or 'as', because the semantics are different; each of the latter would suggest that the name lives in the run time space.(See remarks below on run time vs. compile time.) If we use a "minimal changes" approach, this could become "decl typedef name = type".

· Warnings or not (Paul's "quickie")? I tend to agree with Paul as far as the static type checker is concerned. However I have some plans for using type inference that might issue warnings, lint-style, about questionable constructs.

Missing stuff:

· Neither proposal addresses exception propagation. I think this is important to add to the specs of method and function definitions. Note that some exceptions can be generated almost anywhere (e.g. MemoryError and KeyboardInterrupt) and should be excluded, like Java's errors. Others, however, should be declared if they are expected.

· Neither proposal has enough examples. More annotated case studies are necessary.

· I'm missing a concrete proposal to spell all the standard types. Will we write "decl x: int" or "decl x: types.IntType" or "decl x: Integer"? I realize this is trivial stuff but it makes a huge difference.

· Slightly less trivial is the difference between "integer" and "int". For me, "integer" is an abstract type which is the shared supertype of int and long and any other user-defined integer-like types. These are the types for which division truncates, roughly. Another useful abstract type might be "exact", in case we get to add rational numbers and/or fixed-point numbers. And then "inexact" to lump float, complex, and perhaps others together. (Hmm, maybe we should look at Scheme's numerical tower again for the abstract numerical types.)

· Ditto for the difference between abstract sequences and lists. Does [foo] mean a list of foo items or any sequence of foo items? Ditto for {key: value}; is it a dictionary (concrete type) or a mapping (the abstract type)? I tend to lean towards using the concrete types here, since there are still plenty of situations where user-defined substitutes (even UserList or UserDict) are not acceptable. This leaves some kind of notation like sequence(type) or mapping(keytype, valuetype) to refer to the abstract types. I guess this touches upon interfaces after all.

Other comments and disagreements:

· I want to consider import, def and class even when they occur at indented positions; however their types must be consistent across branches and they must always end up being defined. It is possible in these cases that one branch sets the name to None; then all uses must be guarded (there are some flow control issues that I don't want to go into here that may affect safety). If some path through the code may leave them undefined, it is an error to use them in code that is reachable from that branch.

· I don't care much for Paul's 'Undefined' object; the only thing it makes easier is testing whether a variable is defined, and that has little to do with type checking (and is very uncommon).

· [Obviously I disagree with myself here; pls. disregard this bullet.] The more I look at the proposals for parameterized types the less I like them. I apologize for having earlier expressed the opinion that these would be easy. One thing that is missing is a way to have a class that implements a stack of Python objects, view it as a parameterized type stack(_T), and then instantiate a specific stack type (e.g. a stack of ints). This seems to require run time expansions a la C++ but the proposals don't add this. Rather than resolving this particular issue (there are more) I propose to drop parameterized types altogether for version 1.0 and revisit them when we have enough experience with it to start type specs 2.0.

· I think that in the long run, separate interface declaration files aren't very valuable, except for extension modules. I do like the idea of experimenting with string-based syntax to generate .gpydl files, although I don't see why it must be "decl", "name: type" -- why can't it be "decl name: type"?

· I would have to think more about whether I like the idea of adding an 'interface' keyword; I tend to think we can do without it. In any case we explicitly excluded interfaces from the SIG's new charter, since this was already Jim Fulton's proposal. This is one of the things I worry about with Paul's proposal: it is written in terms of interfaces.

· I don't like Greg's '!' operator at all. I think it is ugly and I don't see how it helps either (ERR) or (OPT) since it is required to generate a run time test. For me, (ERR) requires compile time diagnostics and (OPT) precludes (most) run time tests. Greg himself is confused about its priority (in some of his remarks about its ambiguity, where the very low priority he assigns it elsewhere would remove the ambiguity as far as I can tell).

· I don't see a need for addressing forward references through incomplete type definitions. The proposed syntax (a class or function definition without a colon and a body) is error prone, but that's not my main reason.

The last two bullets are because I don't want the type checker to propagate each and every detail if Python's super-dynamic run time semantics. An analogy for this is C vs. assembly. C imposes restrictions on what you can do that aren't imposed by the CPU. I see current, dynamic Python (the Python Virtual Machine) as the equivalent of assembly, and "typesafe" Python as the equivalent of C. In addition, I expect we will add some things to the PVM that allow more aggressive optimizations (like new bytecodes for built-in functions). (In other words, I'm 100% on Paul's side here.)

In general I think that both proposals are weak on semantics. Things like how to spell most standard types (integer, string etc.) are not clear. Greg only seems to give run time semantics (see above for why I don't like this). Paul addresses some semantics but the definition seems convoluted (I got lost in the distinction between a type interpreter and a type checker).

I like to distinguish between checked and unchecked modules (rather than Paul's "typesafe" which has undesired connotations for this discussion). When an unchecked module uses a checked module, run time tests are carried out to verify the arguments; this is much like what happens for extension modules. When a checked module uses an unchecked module, the unchecked module's objects are assumed to be of type 'any'.

When a checked module uses another checked module, type checks are made at compile time, and errors reported. In this case, run time checks are typically not inserted except in cases specified explicitly by the programmer. So, if a has the type 'integer | string' and b has the type 'integer', then the statement "b = a" is a compile time error. It is possible that an implementation interested in (OPT) generates shortcuts to avoid the cross-module type checking, etc.

Certain forms of outside intervention are illegal when applied to checked modules. Some of these can be disallowed by adding tests to the module object setattr spec (like it is already done for the dictionary returned by the locals() function). An implementation may also insert safeguard tests.

I would have to think real hard about what should happen when a checked module is reloaded -- probably all other checked modules that use it will have to be rechecked! Maybe it should be disallowed (just like it is undefined for extension modules).

In a checked module, not all classes and functions need to be fully specified. Unspecified argument and return types are 'any'. Unspecified global and local variables are 'any'. However imported modules, and defined classes, functions and methods have types restricted by their apparent definition and their redefinition is illegal.

Flow analysis. The type checker is required to do basic flow analysis on simple variables. In particular, if x has a known type and y has no declared type, the type checker knows that after "y = x", y has the same type of x (until reassigned). This is important because it limits the propagation of 'any' resulting from undeclared variables. Note that x could be an expression too; for example, if L is declared as a list of integers, after "x = L[...]" the type checker must assume that x is an integer. This is also needed to allow simple aliasing of classes, functions and modules (and even bound methods). The flow analysis should make very conservative assumptions, e.g. if an assignment occurs in a branch it should be assumed invalid outside the branch.

Thread-safety. Global variables that may be assigned to from within functions should be considered volatile (since there may be another thread that modifies the variable at any time). This can affect the flow analysis required above. If the only assignments to a global variable occur at the module level, flow analysis is safe. Such thread-safe global variables (this includes by far the majority of classes, functions and imported modules) can be cached aggressively within functions, e.g. considered as loop invariants, by optimizers.

Parameterized types

Hmm, I may have to accept some form of these. Consider a piece of code using a dictionary:

def special_get(d: {string: string}) -> string:

 return d.keys()[0]

I believe this should be considered typesafe. (There's a possibility that it will raise an IndexError exception when the dictionary is empty, but that's a separate issue.) In order to deduce that this is typesafe, the type checker must know that d.keys() returns a string. Now, we could special-case the type checker's knowledge of dictionaries, but it makes more sense to see this as an example of a parameterized type: consider {K: V} as a shortcut for 'dictionary<K, V>' where dictionary is a parameterized type whose spec is something like this:

interface dictionary<K, V>:

 def keys() -> list<K>

 def values() -> list<V>

 def items() -> list<(K, V)>

 def has_key(K) -> boolean

 def get(K, (V|None)=None) -> (V|None)

 def clear()

 def copy() -> dictionary<K, V>

 def update(dictionary<K, V>)

 def __getitem__(K) -> V

 def __setitem__(K, V)

 def __delitem__(K)

Of course the dictionary *implementation* always implements dictionary<any, any>, but that doesn't stop us from declaring certain variables to be of a more specific type. (Hmm... Does this mean that the specific type of the dictionary has to be checked when a function taking a dictionary<K, V> argument is called from unchecked code? That would be expensive, since the only way to do this is to check each (key, value) pair separately. It seems better to perform the checks lazily, i.e., only when elements are extracted from the dictionary.

The general question is how this relates to run time types. Consider a user-defined stack type:

class Stack:

 def __init__(self): self._stack = []

 def push(self, x): self._stack.append(x)

 def pop(self): x = self._stack[-1]; del self._stack[-1]; return x

We could have a parameterized stack interface:

interface TypedStack<V>:

 def push(V)

 def pop() -> V

How do we link this to the given Stack implementation? I suppose we could do something like this (syntax made up on the fly):

class Stack:

 decl param <V>

 decl implements TypedStack<V>

 decl private member _stack: [V]

 def __init__(self): self._stack = []

 def push(self, x:V): self._stack.append(x)

 def pop(self)->V: x = self._stack[-1]; del self._stack[-1]; return x

The type annotations on the methods aren't strictly necessary, I think; the type checker can figure out by itself that the push() and pop() methods correspond to the methods listed in the interface. Also note that basic type inference must be used for the variable 'x' in the pop() method to prove that pop() returns a V. The member declaration for _stack as a list of Vs is necessary: I don't expect the average type checker to be able to deduce that _stack is a list of Vs all by itself, even though I do believe that I can build a type inferencer that *will* deduce this from the fact that the only change to it is the append() call in push() -- certainly when the argument type for push(x) is known.

Now when we use this, we want to do things like:

decl s: TypedStack<int> # stack of integers

s = Stack() # ??? see below

s.push(1)

decl x: int

x = s.pop() # typesafe

And these things are illegal:

s.push("hello")

decl y: string

y = s.pop()

But how does the typechecker know that when we assign Stack() to s, we mean Stack<int>()? Is the declaration of s as a TypedStack<int> sufficient?

Or maybe we should be able to use Stack<int> as the type for s:

decl s: Stack<int>

s = Stack()

Greg's Questions and Open Issues

· Compile time vs. run time: my position should be clear by now: I'm all for compile time.

· New namespace: I'm all for a new, separate namespace for compile time naming.

· Interfaces: I don't care for __interfaces__. I agree the type checker should make its deductions available to the run time, but I don't want to commit to a mechanism before we've figured out how the compile time type checker should work.

· 'as' vs. ':' -- see above; I strongly prefer ':'.

· 'any' -- see above; yes.

· 'typedef' operator vs. 'or' priority: I don't like the 'typedef' operator; but if this were to be introduced, the best solution would be to require parentheses.

· Nested brackets are allowed by the grammar tools, so no problem.

· varargslist vs. lambda -- see my comment above.

· def foo(name:type=value) vs. (name=value:type) -- see comments above, I prefer the first.

· Doc string for the decl statement: good idea!

· Always requiring one of class, param or member in the decl statement: making the most common form of declaration more verbose seems a bad idea -- we want to encourage declarations and we boast Python's readable conciseness, don't we? This doesn't preclude future expansion; the decl statement can have its own set of semi-reserved words that isn't as hard to augment as the set of Python language keywords.

· Parameterized types:

