[SciPy-User] Logistic regression using SciPy

Fg Nu fgnu32 at yahoo.com
Mon Dec 10 01:26:12 EST 2012



For any one interested, here is the final code, where everything works. Basically, I reparametrized the likelihood function. Also, added a call to the check_grad function.

#=====================================================
# purpose: logistic regression 
import numpy as np
import scipy as sp
import scipy.optimize

import matplotlib as mpl
import os

# prepare the data
data = np.loadtxt('data.csv', delimiter=',', skiprows=1)
vY = data[:, 0]
mX = data[:, 1:]
# mX = (mX - np.mean(mX))/np.std(mX)  # standardize the data; if required

intercept = np.ones(mX.shape[0]).reshape(mX.shape[0], 1)
mX = np.concatenate((intercept, mX), axis = 1)
iK = mX.shape[1]
iN = mX.shape[0]
 
# logistic transformation
def logit(mX, vBeta):
    return((np.exp(np.dot(mX, vBeta))/(1.0 + np.exp(np.dot(mX, vBeta)))))

# test function call
vBeta0 = np.array([-.10296645, -.0332327, -.01209484, .44626211, .92554137, .53973828, 
    1.7993371, .7148045  ])
logit(mX, vBeta0)

# cost function
def logLikelihoodLogit(vBeta, mX, vY):
    return(-(np.sum(vY*np.log(logit(mX, vBeta)) + (1-vY)*(np.log(1-logit(mX, vBeta))))))
logLikelihoodLogit(vBeta0, mX, vY) # test function call

# different parametrization of the cost function
def logLikelihoodLogitVerbose(vBeta, mX, vY):
    return(-(np.sum(vY*(np.dot(mX, vBeta) - np.log((1.0 + np.exp(np.dot(mX, vBeta))))) +
                    (1-vY)*(-np.log((1.0 + np.exp(np.dot(mX, vBeta))))))))
logLikelihoodLogitVerbose(vBeta0, mX, vY)  # test function call

# gradient function
def likelihoodScore(vBeta, mX, vY):
    return(np.dot(mX.T, 
                  (logit(mX, vBeta) - vY)))
likelihoodScore(vBeta0, mX, vY).shape # test function call
sp.optimize.check_grad(logLikelihoodLogitVerbose, likelihoodScore, 
                       vBeta0, mX, vY)  # check that the analytical gradient is close to 
                                                # numerical gradient

# optimize the function (without gradient)
optimLogit = scipy.optimize.fmin_bfgs(logLikelihoodLogitVerbose, 
                                  x0 = np.array([-.1, -.03, -.01, .44, .92, .53,
                                            1.8, .71]), 
                                  args = (mX, vY), gtol = 1e-3)

# optimize the function (with gradient)
optimLogit = scipy.optimize.fmin_bfgs(logLikelihoodLogitVerbose, 
                                  x0 = np.array([-.1, -.03, -.01, .44, .92, .53,
                                            1.8, .71]), fprime = likelihoodScore, 
                                  args = (mX, vY), gtol = 1e-3)
#=====================================================


Thanks for the helpful suggestions from everyone on- and off-list.


----- Original Message -----
From: Fg Nu <fgnu32 at yahoo.com>
To: "scipy-user at scipy.org" <scipy-user at scipy.org>
Cc: 
Sent: Monday, December 10, 2012 9:31 AM
Subject: Logistic regression using SciPy



I am trying to code up logistic regression in Python using the SciPy "fmin_bfgs" function, but am running into some issues. I wrote functions for the logistic (sigmoid) transformation  function, and the cost function, and those work fine (I have used the optimized values of the parameter vector found via canned software to test the functions, and those match up). I am not that sure of my implementation of the gradient function, but it looks reasonable. 

Here is the code:

#==================================================

    # purpose: logistic regression 
    import numpy as np
    import scipy as sp
    import scipy.optimize
    
    import matplotlib as mpl
    import os
    
    # prepare the data
    data = np.loadtxt('data.csv', delimiter=',', skiprows=1)
    vY = data[:, 0]
    mX = data[:, 1:]
    intercept = np.ones(mX.shape[0]).reshape(mX.shape[0], 1)
    mX = np.concatenate((intercept, mX), axis = 1)
    iK = mX.shape[1]
    iN = mX.shape[0]
     
    # logistic transformation
    def logit(mX, vBeta):
        return((1/(1.0 + np.exp(-np.dot(mX, vBeta)))))
    
    # test function call
    vBeta0 = np.array([-.10296645, -.0332327, -.01209484, .44626211, .92554137, .53973828, 
        1.7993371, .7148045  ])
    logit(mX, vBeta0)
    
    # cost function
    def logLikelihoodLogit(vBeta, mX, vY):
        return(-(np.sum(vY*np.log(logit(mX, vBeta)) + (1-vY)*(np.log(1-logit(mX, vBeta))))))
    logLikelihoodLogit(vBeta0, mX, vY) # test function call
    
    # gradient function
    def likelihoodScore(vBeta, mX, vY):
        return(np.dot(mX.T, 
                      ((np.dot(mX, vBeta) - vY)/
                       np.dot(mX, vBeta)).reshape(iN, 1)).reshape(iK, 1))
    
    likelihoodScore(vBeta0, mX, vY).shape # test function call
     
    # optimize the function (without gradient)
    optimLogit = scipy.optimize.fmin_bfgs(logLikelihoodLogit, 
                                      x0 = np.array([-.1, -.03, -.01, .44, .92, .53,
                                                1.8, .71]), 
                                      args = (mX, vY), gtol = 1e-3)
    
    # optimize the function (with gradient)
    optimLogit = scipy.optimize.fmin_bfgs(logLikelihoodLogit, 
                                      x0 = np.array([-.1, -.03, -.01, .44, .92, .53,
                                                1.8, .71]), fprime = likelihoodScore, 
                                      args = (mX, vY), gtol = 1e-3)
#=====================================================

* The first optimization (without gradient)  ends with a whole lot of stuff about division by zero.

* The second optimization (with gradient) ends with a matrices not aligned error, which probably means I have got the way the gradient is to be returned wrong.

Any help with this is appreciated. If anyone wants to try this, the data is included below.

    low,age,lwt,race,smoke,ptl,ht,ui
    0,19,182,2,0,0,0,1
    0,33,155,3,0,0,0,0
    0,20,105,1,1,0,0,0
    0,21,108,1,1,0,0,1
    0,18,107,1,1,0,0,1
    0,21,124,3,0,0,0,0
    0,22,118,1,0,0,0,0
    0,17,103,3,0,0,0,0
    0,29,123,1,1,0,0,0
    0,26,113,1,1,0,0,0
    0,19,95,3,0,0,0,0
    0,19,150,3,0,0,0,0
    0,22,95,3,0,0,1,0
    0,30,107,3,0,1,0,1
    0,18,100,1,1,0,0,0
    0,18,100,1,1,0,0,0
    0,15,98,2,0,0,0,0
    0,25,118,1,1,0,0,0
    0,20,120,3,0,0,0,1
    0,28,120,1,1,0,0,0
    0,32,121,3,0,0,0,0
    0,31,100,1,0,0,0,1
    0,36,202,1,0,0,0,0
    0,28,120,3,0,0,0,0
    0,25,120,3,0,0,0,1
    0,28,167,1,0,0,0,0
    0,17,122,1,1,0,0,0
    0,29,150,1,0,0,0,0
    0,26,168,2,1,0,0,0
    0,17,113,2,0,0,0,0
    0,17,113,2,0,0,0,0
    0,24,90,1,1,1,0,0
    0,35,121,2,1,1,0,0
    0,25,155,1,0,0,0,0
    0,25,125,2,0,0,0,0
    0,29,140,1,1,0,0,0
    0,19,138,1,1,0,0,0
    0,27,124,1,1,0,0,0
    0,31,215,1,1,0,0,0
    0,33,109,1,1,0,0,0
    0,21,185,2,1,0,0,0
    0,19,189,1,0,0,0,0
    0,23,130,2,0,0,0,0
    0,21,160,1,0,0,0,0
    0,18,90,1,1,0,0,1
    0,18,90,1,1,0,0,1
    0,32,132,1,0,0,0,0
    0,19,132,3,0,0,0,0
    0,24,115,1,0,0,0,0
    0,22,85,3,1,0,0,0
    0,22,120,1,0,0,1,0
    0,23,128,3,0,0,0,0
    0,22,130,1,1,0,0,0
    0,30,95,1,1,0,0,0
    0,19,115,3,0,0,0,0
    0,16,110,3,0,0,0,0
    0,21,110,3,1,0,0,1
    0,30,153,3,0,0,0,0
    0,20,103,3,0,0,0,0
    0,17,119,3,0,0,0,0
    0,17,119,3,0,0,0,0
    0,23,119,3,0,0,0,0
    0,24,110,3,0,0,0,0
    0,28,140,1,0,0,0,0
    0,26,133,3,1,2,0,0
    0,20,169,3,0,1,0,1
    0,24,115,3,0,0,0,0
    0,28,250,3,1,0,0,0
    0,20,141,1,0,2,0,1
    0,22,158,2,0,1,0,0
    0,22,112,1,1,2,0,0
    0,31,150,3,1,0,0,0
    0,23,115,3,1,0,0,0
    0,16,112,2,0,0,0,0
    0,16,135,1,1,0,0,0
    0,18,229,2,0,0,0,0
    0,25,140,1,0,0,0,0
    0,32,134,1,1,1,0,0
    0,20,121,2,1,0,0,0
    0,23,190,1,0,0,0,0
    0,22,131,1,0,0,0,0
    0,32,170,1,0,0,0,0
    0,30,110,3,0,0,0,0
    0,20,127,3,0,0,0,0
    0,23,123,3,0,0,0,0
    0,17,120,3,1,0,0,0
    0,19,105,3,0,0,0,0
    0,23,130,1,0,0,0,0
    0,36,175,1,0,0,0,0
    0,22,125,1,0,0,0,0
    0,24,133,1,0,0,0,0
    0,21,134,3,0,0,0,0
    0,19,235,1,1,0,1,0
    0,25,95,1,1,3,0,1
    0,16,135,1,1,0,0,0
    0,29,135,1,0,0,0,0
    0,29,154,1,0,0,0,0
    0,19,147,1,1,0,0,0
    0,19,147,1,1,0,0,0
    0,30,137,1,0,0,0,0
    0,24,110,1,0,0,0,0
    0,19,184,1,1,0,1,0
    0,24,110,3,0,1,0,0
    0,23,110,1,0,0,0,0
    0,20,120,3,0,0,0,0
    0,25,241,2,0,0,1,0
    0,30,112,1,0,0,0,0
    0,22,169,1,0,0,0,0
    0,18,120,1,1,0,0,0
    0,16,170,2,0,0,0,0
    0,32,186,1,0,0,0,0
    0,18,120,3,0,0,0,0
    0,29,130,1,1,0,0,0
    0,33,117,1,0,0,0,1
    0,20,170,1,1,0,0,0
    0,28,134,3,0,0,0,0
    0,14,135,1,0,0,0,0
    0,28,130,3,0,0,0,0
    0,25,120,1,0,0,0,0
    0,16,95,3,0,0,0,0
    0,20,158,1,0,0,0,0
    0,26,160,3,0,0,0,0
    0,21,115,1,0,0,0,0
    0,22,129,1,0,0,0,0
    0,25,130,1,0,0,0,0
    0,31,120,1,0,0,0,0
    0,35,170,1,0,1,0,0
    0,19,120,1,1,0,0,0
    0,24,116,1,0,0,0,0
    0,45,123,1,0,0,0,0
    1,28,120,3,1,1,0,1
    1,29,130,1,0,0,0,1
    1,34,187,2,1,0,1,0
    1,25,105,3,0,1,1,0
    1,25,85,3,0,0,0,1
    1,27,150,3,0,0,0,0
    1,23,97,3,0,0,0,1
    1,24,128,2,0,1,0,0
    1,24,132,3,0,0,1,0
    1,21,165,1,1,0,1,0
    1,32,105,1,1,0,0,0
    1,19,91,1,1,2,0,1
    1,25,115,3,0,0,0,0
    1,16,130,3,0,0,0,0
    1,25,92,1,1,0,0,0
    1,20,150,1,1,0,0,0
    1,21,200,2,0,0,0,1
    1,24,155,1,1,1,0,0
    1,21,103,3,0,0,0,0
    1,20,125,3,0,0,0,1
    1,25,89,3,0,2,0,0
    1,19,102,1,0,0,0,0
    1,19,112,1,1,0,0,1
    1,26,117,1,1,1,0,0
    1,24,138,1,0,0,0,0
    1,17,130,3,1,1,0,1
    1,20,120,2,1,0,0,0
    1,22,130,1,1,1,0,1
    1,27,130,2,0,0,0,1
    1,20,80,3,1,0,0,1
    1,17,110,1,1,0,0,0
    1,25,105,3,0,1,0,0
    1,20,109,3,0,0,0,0
    1,18,148,3,0,0,0,0
    1,18,110,2,1,1,0,0
    1,20,121,1,1,1,0,1
    1,21,100,3,0,1,0,0
    1,26,96,3,0,0,0,0
    1,31,102,1,1,1,0,0
    1,15,110,1,0,0,0,0
    1,23,187,2,1,0,0,0
    1,20,122,2,1,0,0,0
    1,24,105,2,1,0,0,0
    1,15,115,3,0,0,0,1
    1,23,120,3,0,0,0,0
    1,30,142,1,1,1,0,0
    1,22,130,1,1,0,0,0
    1,17,120,1,1,0,0,0
    1,23,110,1,1,1,0,0
    1,17,120,2,0,0,0,0
    1,26,154,3,0,1,1,0
    1,20,106,3,0,0,0,0
    1,26,190,1,1,0,0,0
    1,14,101,3,1,1,0,0
    1,28,95,1,1,0,0,0
    1,14,100,3,0,0,0,0
    1,23,94,3,1,0,0,0
    1,17,142,2,0,0,1,0
    1,21,130,1,1,0,1,0

Thanks.



More information about the SciPy-User mailing list