[Python-checkins] r86919 - python/branches/py3k/Doc/library/itertools.rst

raymond.hettinger python-checkins at python.org
Wed Dec 1 23:50:36 CET 2010


Author: raymond.hettinger
Date: Wed Dec  1 23:50:36 2010
New Revision: 86919

Log:
Add itertools.accumulate().

Modified:
   python/branches/py3k/Doc/library/itertools.rst

Modified: python/branches/py3k/Doc/library/itertools.rst
==============================================================================
--- python/branches/py3k/Doc/library/itertools.rst	(original)
+++ python/branches/py3k/Doc/library/itertools.rst	Wed Dec  1 23:50:36 2010
@@ -2,14 +2,14 @@
 =======================================================================
 
 .. module:: itertools
-   :synopsis: Functions creating iterators for efficient looping.
+    :synopsis: Functions creating iterators for efficient looping.
 .. moduleauthor:: Raymond Hettinger <python at rcn.com>
 .. sectionauthor:: Raymond Hettinger <python at rcn.com>
 
 
 .. testsetup::
 
-   from itertools import *
+    from itertools import *
 
 
 This module implements a number of :term:`iterator` building blocks inspired
@@ -46,6 +46,7 @@
 ====================    ============================    =================================================   =============================================================
 Iterator                Arguments                       Results                                             Example
 ====================    ============================    =================================================   =============================================================
+:func:`accumulate`      p[, start=0]                    p0, p0+p1, p0+p1+p2 ...                       `     ``accumulate([1,2,3,4,5]) --> 1 3 6 10 15``
 :func:`chain`           p, q, ...                       p0, p1, ... plast, q0, q1, ...                      ``chain('ABC', 'DEF') --> A B C D E F``
 :func:`compress`        data, selectors                 (d[0] if s[0]), (d[1] if s[1]), ...                 ``compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F``
 :func:`dropwhile`       pred, seq                       seq[n], seq[n+1], starting when pred fails          ``dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1``
@@ -83,47 +84,62 @@
 streams of infinite length, so they should only be accessed by functions or
 loops that truncate the stream.
 
+.. function:: accumulate(iterable, start=0)
+
+    Make an iterator that returns accumulated sums plus the value of the *start*
+    parameter (which defaults to :const:`0`). Elements may be any addable type
+    including :class:`Decimal` or :class:`Fraction`.  Equivalent to::
+
+        def accumulate(iterable, start=0):
+            'Return running totals'
+                # accumulate([1,2,3,4,5]) --> 1 3 6 10 15
+                total = start
+                for element in iterable:
+                    total += element
+                    yield total
+
+    .. versionadded:: 3.2
 
 .. function:: chain(*iterables)
 
-   Make an iterator that returns elements from the first iterable until it is
-   exhausted, then proceeds to the next iterable, until all of the iterables are
-   exhausted.  Used for treating consecutive sequences as a single sequence.
-   Equivalent to::
-
-      def chain(*iterables):
-          # chain('ABC', 'DEF') --> A B C D E F
-          for it in iterables:
-              for element in it:
-                  yield element
+    Make an iterator that returns elements from the first iterable until it is
+    exhausted, then proceeds to the next iterable, until all of the iterables are
+    exhausted.  Used for treating consecutive sequences as a single sequence.
+    Equivalent to::
+
+        def chain(*iterables):
+            # chain('ABC', 'DEF') --> A B C D E F
+            for it in iterables:
+                for element in it:
+                    yield element
 
 
 .. classmethod:: chain.from_iterable(iterable)
 
-   Alternate constructor for :func:`chain`.  Gets chained inputs from a
-   single iterable argument that is evaluated lazily.  Equivalent to::
+    Alternate constructor for :func:`chain`.  Gets chained inputs from a
+    single iterable argument that is evaluated lazily.  Equivalent to::
 
-      @classmethod
-      def from_iterable(iterables):
-          # chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
-          for it in iterables:
-              for element in it:
-                  yield element
+        @classmethod
+        def from_iterable(iterables):
+            # chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
+            for it in iterables:
+                for element in it:
+                    yield element
 
 
 .. function:: combinations(iterable, r)
 
-   Return *r* length subsequences of elements from the input *iterable*.
+    Return *r* length subsequences of elements from the input *iterable*.
 
-   Combinations are emitted in lexicographic sort order.  So, if the
-   input *iterable* is sorted, the combination tuples will be produced
-   in sorted order.
+    Combinations are emitted in lexicographic sort order.  So, if the
+    input *iterable* is sorted, the combination tuples will be produced
+    in sorted order.
 
-   Elements are treated as unique based on their position, not on their
-   value.  So if the input elements are unique, there will be no repeat
-   values in each combination.
+    Elements are treated as unique based on their position, not on their
+    value.  So if the input elements are unique, there will be no repeat
+    values in each combination.
 
-   Equivalent to::
+    Equivalent to::
 
         def combinations(iterable, r):
             # combinations('ABCD', 2) --> AB AC AD BC BD CD
@@ -145,9 +161,9 @@
                     indices[j] = indices[j-1] + 1
                 yield tuple(pool[i] for i in indices)
 
-   The code for :func:`combinations` can be also expressed as a subsequence
-   of :func:`permutations` after filtering entries where the elements are not
-   in sorted order (according to their position in the input pool)::
+    The code for :func:`combinations` can be also expressed as a subsequence
+    of :func:`permutations` after filtering entries where the elements are not
+    in sorted order (according to their position in the input pool)::
 
         def combinations(iterable, r):
             pool = tuple(iterable)
@@ -156,23 +172,23 @@
                 if sorted(indices) == list(indices):
                     yield tuple(pool[i] for i in indices)
 
-   The number of items returned is ``n! / r! / (n-r)!`` when ``0 <= r <= n``
-   or zero when ``r > n``.
+    The number of items returned is ``n! / r! / (n-r)!`` when ``0 <= r <= n``
+    or zero when ``r > n``.
 
 .. function:: combinations_with_replacement(iterable, r)
 
-   Return *r* length subsequences of elements from the input *iterable*
-   allowing individual elements to be repeated more than once.
+    Return *r* length subsequences of elements from the input *iterable*
+    allowing individual elements to be repeated more than once.
 
-   Combinations are emitted in lexicographic sort order.  So, if the
-   input *iterable* is sorted, the combination tuples will be produced
-   in sorted order.
-
-   Elements are treated as unique based on their position, not on their
-   value.  So if the input elements are unique, the generated combinations
-   will also be unique.
+    Combinations are emitted in lexicographic sort order.  So, if the
+    input *iterable* is sorted, the combination tuples will be produced
+    in sorted order.
+
+    Elements are treated as unique based on their position, not on their
+    value.  So if the input elements are unique, the generated combinations
+    will also be unique.
 
-   Equivalent to::
+    Equivalent to::
 
         def combinations_with_replacement(iterable, r):
             # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
@@ -191,9 +207,9 @@
                 indices[i:] = [indices[i] + 1] * (r - i)
                 yield tuple(pool[i] for i in indices)
 
-   The code for :func:`combinations_with_replacement` can be also expressed as
-   a subsequence of :func:`product` after filtering entries where the elements
-   are not in sorted order (according to their position in the input pool)::
+    The code for :func:`combinations_with_replacement` can be also expressed as
+    a subsequence of :func:`product` after filtering entries where the elements
+    are not in sorted order (according to their position in the input pool)::
 
         def combinations_with_replacement(iterable, r):
             pool = tuple(iterable)
@@ -202,196 +218,196 @@
                 if sorted(indices) == list(indices):
                     yield tuple(pool[i] for i in indices)
 
-   The number of items returned is ``(n+r-1)! / r! / (n-1)!`` when ``n > 0``.
+    The number of items returned is ``(n+r-1)! / r! / (n-1)!`` when ``n > 0``.
 
-   .. versionadded:: 3.1
+    .. versionadded:: 3.1
 
 
 .. function:: compress(data, selectors)
 
-   Make an iterator that filters elements from *data* returning only those that
-   have a corresponding element in *selectors* that evaluates to ``True``.
-   Stops when either the *data* or *selectors* iterables has been exhausted.
-   Equivalent to::
-
-       def compress(data, selectors):
-           # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
-           return (d for d, s in zip(data, selectors) if s)
+    Make an iterator that filters elements from *data* returning only those that
+    have a corresponding element in *selectors* that evaluates to ``True``.
+    Stops when either the *data* or *selectors* iterables has been exhausted.
+    Equivalent to::
+
+        def compress(data, selectors):
+                # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
+            return (d for d, s in zip(data, selectors) if s)
 
-   .. versionadded:: 3.1
+    .. versionadded:: 3.1
 
 
 .. function:: count(start=0, step=1)
 
-   Make an iterator that returns evenly spaced values starting with *n*. Often
-   used as an argument to :func:`map` to generate consecutive data points.
-   Also, used with :func:`zip` to add sequence numbers.  Equivalent to::
-
-      def count(start=0, step=1):
-          # count(10) --> 10 11 12 13 14 ...
-          # count(2.5, 0.5) -> 3.5 3.0 4.5 ...
-          n = start
-          while True:
-              yield n
-              n += step
-
-   When counting with floating point numbers, better accuracy can sometimes be
-   achieved by substituting multiplicative code such as: ``(start + step * i
-   for i in count())``.
+    Make an iterator that returns evenly spaced values starting with *n*. Often
+    used as an argument to :func:`map` to generate consecutive data points.
+    Also, used with :func:`zip` to add sequence numbers.  Equivalent to::
+
+        def count(start=0, step=1):
+            # count(10) --> 10 11 12 13 14 ...
+            # count(2.5, 0.5) -> 3.5 3.0 4.5 ...
+            n = start
+            while True:
+                yield n
+                n += step
+
+    When counting with floating point numbers, better accuracy can sometimes be
+    achieved by substituting multiplicative code such as: ``(start + step * i
+    for i in count())``.
 
-   .. versionchanged:: 3.1
-      Added *step* argument and allowed non-integer arguments.
+    .. versionchanged:: 3.1
+        Added *step* argument and allowed non-integer arguments.
 
 .. function:: cycle(iterable)
 
-   Make an iterator returning elements from the iterable and saving a copy of each.
-   When the iterable is exhausted, return elements from the saved copy.  Repeats
-   indefinitely.  Equivalent to::
-
-      def cycle(iterable):
-          # cycle('ABCD') --> A B C D A B C D A B C D ...
-          saved = []
-          for element in iterable:
-              yield element
-              saved.append(element)
-          while saved:
-              for element in saved:
+    Make an iterator returning elements from the iterable and saving a copy of each.
+    When the iterable is exhausted, return elements from the saved copy.  Repeats
+    indefinitely.  Equivalent to::
+
+        def cycle(iterable):
+            # cycle('ABCD') --> A B C D A B C D A B C D ...
+            saved = []
+            for element in iterable:
+                yield element
+                saved.append(element)
+            while saved:
+                for element in saved:
                     yield element
 
-   Note, this member of the toolkit may require significant auxiliary storage
-   (depending on the length of the iterable).
+    Note, this member of the toolkit may require significant auxiliary storage
+    (depending on the length of the iterable).
 
 
 .. function:: dropwhile(predicate, iterable)
 
-   Make an iterator that drops elements from the iterable as long as the predicate
-   is true; afterwards, returns every element.  Note, the iterator does not produce
-   *any* output until the predicate first becomes false, so it may have a lengthy
-   start-up time.  Equivalent to::
-
-      def dropwhile(predicate, iterable):
-          # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
-          iterable = iter(iterable)
-          for x in iterable:
-              if not predicate(x):
-                  yield x
-                  break
-          for x in iterable:
-              yield x
+    Make an iterator that drops elements from the iterable as long as the predicate
+    is true; afterwards, returns every element.  Note, the iterator does not produce
+    *any* output until the predicate first becomes false, so it may have a lengthy
+    start-up time.  Equivalent to::
+
+        def dropwhile(predicate, iterable):
+            # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
+            iterable = iter(iterable)
+            for x in iterable:
+                if not predicate(x):
+                    yield x
+                    break
+            for x in iterable:
+                yield x
 
 .. function:: filterfalse(predicate, iterable)
 
-   Make an iterator that filters elements from iterable returning only those for
-   which the predicate is ``False``. If *predicate* is ``None``, return the items
-   that are false. Equivalent to::
-
-      def filterfalse(predicate, iterable):
-          # filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
-          if predicate is None:
-              predicate = bool
-          for x in iterable:
-              if not predicate(x):
-                  yield x
+    Make an iterator that filters elements from iterable returning only those for
+    which the predicate is ``False``. If *predicate* is ``None``, return the items
+    that are false. Equivalent to::
+
+        def filterfalse(predicate, iterable):
+            # filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
+            if predicate is None:
+                predicate = bool
+            for x in iterable:
+                if not predicate(x):
+                    yield x
 
 
 .. function:: groupby(iterable, key=None)
 
-   Make an iterator that returns consecutive keys and groups from the *iterable*.
-   The *key* is a function computing a key value for each element.  If not
-   specified or is ``None``, *key* defaults to an identity function and returns
-   the element unchanged.  Generally, the iterable needs to already be sorted on
-   the same key function.
-
-   The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix.  It
-   generates a break or new group every time the value of the key function changes
-   (which is why it is usually necessary to have sorted the data using the same key
-   function).  That behavior differs from SQL's GROUP BY which aggregates common
-   elements regardless of their input order.
-
-   The returned group is itself an iterator that shares the underlying iterable
-   with :func:`groupby`.  Because the source is shared, when the :func:`groupby`
-   object is advanced, the previous group is no longer visible.  So, if that data
-   is needed later, it should be stored as a list::
-
-      groups = []
-      uniquekeys = []
-      data = sorted(data, key=keyfunc)
-      for k, g in groupby(data, keyfunc):
-          groups.append(list(g))      # Store group iterator as a list
-          uniquekeys.append(k)
-
-   :func:`groupby` is equivalent to::
-
-      class groupby:
-          # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
-          # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
-          def __init__(self, iterable, key=None):
-              if key is None:
-                  key = lambda x: x
-              self.keyfunc = key
-              self.it = iter(iterable)
-              self.tgtkey = self.currkey = self.currvalue = object()
-          def __iter__(self):
-              return self
-          def __next__(self):
-              while self.currkey == self.tgtkey:
-                  self.currvalue = next(self.it)    # Exit on StopIteration
-                  self.currkey = self.keyfunc(self.currvalue)
-              self.tgtkey = self.currkey
-              return (self.currkey, self._grouper(self.tgtkey))
-          def _grouper(self, tgtkey):
-              while self.currkey == tgtkey:
-                  yield self.currvalue
-                  self.currvalue = next(self.it)    # Exit on StopIteration
-                  self.currkey = self.keyfunc(self.currvalue)
+    Make an iterator that returns consecutive keys and groups from the *iterable*.
+    The *key* is a function computing a key value for each element.  If not
+    specified or is ``None``, *key* defaults to an identity function and returns
+    the element unchanged.  Generally, the iterable needs to already be sorted on
+    the same key function.
+
+    The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix.  It
+    generates a break or new group every time the value of the key function changes
+    (which is why it is usually necessary to have sorted the data using the same key
+    function).  That behavior differs from SQL's GROUP BY which aggregates common
+    elements regardless of their input order.
+
+    The returned group is itself an iterator that shares the underlying iterable
+    with :func:`groupby`.  Because the source is shared, when the :func:`groupby`
+    object is advanced, the previous group is no longer visible.  So, if that data
+    is needed later, it should be stored as a list::
+
+        groups = []
+        uniquekeys = []
+        data = sorted(data, key=keyfunc)
+        for k, g in groupby(data, keyfunc):
+            groups.append(list(g))      # Store group iterator as a list
+            uniquekeys.append(k)
+
+    :func:`groupby` is equivalent to::
+
+        class groupby:
+            # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
+            # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
+            def __init__(self, iterable, key=None):
+                if key is None:
+                    key = lambda x: x
+                self.keyfunc = key
+                self.it = iter(iterable)
+                self.tgtkey = self.currkey = self.currvalue = object()
+            def __iter__(self):
+                return self
+            def __next__(self):
+                while self.currkey == self.tgtkey:
+                    self.currvalue = next(self.it)    # Exit on StopIteration
+                    self.currkey = self.keyfunc(self.currvalue)
+                self.tgtkey = self.currkey
+                return (self.currkey, self._grouper(self.tgtkey))
+            def _grouper(self, tgtkey):
+                while self.currkey == tgtkey:
+                    yield self.currvalue
+                    self.currvalue = next(self.it)    # Exit on StopIteration
+                    self.currkey = self.keyfunc(self.currvalue)
 
 
 .. function:: islice(iterable, [start,] stop [, step])
 
-   Make an iterator that returns selected elements from the iterable. If *start* is
-   non-zero, then elements from the iterable are skipped until start is reached.
-   Afterward, elements are returned consecutively unless *step* is set higher than
-   one which results in items being skipped.  If *stop* is ``None``, then iteration
-   continues until the iterator is exhausted, if at all; otherwise, it stops at the
-   specified position.  Unlike regular slicing, :func:`islice` does not support
-   negative values for *start*, *stop*, or *step*.  Can be used to extract related
-   fields from data where the internal structure has been flattened (for example, a
-   multi-line report may list a name field on every third line).  Equivalent to::
-
-      def islice(iterable, *args):
-          # islice('ABCDEFG', 2) --> A B
-          # islice('ABCDEFG', 2, 4) --> C D
-          # islice('ABCDEFG', 2, None) --> C D E F G
-          # islice('ABCDEFG', 0, None, 2) --> A C E G
-          s = slice(*args)
-          it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
-          nexti = next(it)
-          for i, element in enumerate(iterable):
-              if i == nexti:
-                  yield element
-                  nexti = next(it)
+    Make an iterator that returns selected elements from the iterable. If *start* is
+    non-zero, then elements from the iterable are skipped until start is reached.
+    Afterward, elements are returned consecutively unless *step* is set higher than
+    one which results in items being skipped.  If *stop* is ``None``, then iteration
+    continues until the iterator is exhausted, if at all; otherwise, it stops at the
+    specified position.  Unlike regular slicing, :func:`islice` does not support
+    negative values for *start*, *stop*, or *step*.  Can be used to extract related
+    fields from data where the internal structure has been flattened (for example, a
+    multi-line report may list a name field on every third line).  Equivalent to::
+
+        def islice(iterable, *args):
+            # islice('ABCDEFG', 2) --> A B
+            # islice('ABCDEFG', 2, 4) --> C D
+            # islice('ABCDEFG', 2, None) --> C D E F G
+            # islice('ABCDEFG', 0, None, 2) --> A C E G
+            s = slice(*args)
+            it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
+            nexti = next(it)
+            for i, element in enumerate(iterable):
+                if i == nexti:
+                    yield element
+                    nexti = next(it)
 
-   If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
-   then the step defaults to one.
+    If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
+    then the step defaults to one.
 
 
 .. function:: permutations(iterable, r=None)
 
-   Return successive *r* length permutations of elements in the *iterable*.
+    Return successive *r* length permutations of elements in the *iterable*.
 
-   If *r* is not specified or is ``None``, then *r* defaults to the length
-   of the *iterable* and all possible full-length permutations
-   are generated.
+    If *r* is not specified or is ``None``, then *r* defaults to the length
+    of the *iterable* and all possible full-length permutations
+    are generated.
 
-   Permutations are emitted in lexicographic sort order.  So, if the
-   input *iterable* is sorted, the permutation tuples will be produced
-   in sorted order.
+    Permutations are emitted in lexicographic sort order.  So, if the
+    input *iterable* is sorted, the permutation tuples will be produced
+    in sorted order.
 
-   Elements are treated as unique based on their position, not on their
-   value.  So if the input elements are unique, there will be no repeat
-   values in each permutation.
+    Elements are treated as unique based on their position, not on their
+    value.  So if the input elements are unique, there will be no repeat
+    values in each permutation.
 
-   Equivalent to::
+    Equivalent to::
 
         def permutations(iterable, r=None):
             # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
@@ -418,9 +434,9 @@
                 else:
                     return
 
-   The code for :func:`permutations` can be also expressed as a subsequence of
-   :func:`product`, filtered to exclude entries with repeated elements (those
-   from the same position in the input pool)::
+    The code for :func:`permutations` can be also expressed as a subsequence of
+    :func:`product`, filtered to exclude entries with repeated elements (those
+    from the same position in the input pool)::
 
         def permutations(iterable, r=None):
             pool = tuple(iterable)
@@ -430,87 +446,87 @@
                 if len(set(indices)) == r:
                     yield tuple(pool[i] for i in indices)
 
-   The number of items returned is ``n! / (n-r)!`` when ``0 <= r <= n``
-   or zero when ``r > n``.
+    The number of items returned is ``n! / (n-r)!`` when ``0 <= r <= n``
+    or zero when ``r > n``.
 
 .. function:: product(*iterables, repeat=1)
 
-   Cartesian product of input iterables.
+    Cartesian product of input iterables.
 
-   Equivalent to nested for-loops in a generator expression. For example,
-   ``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.
+    Equivalent to nested for-loops in a generator expression. For example,
+    ``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.
 
-   The nested loops cycle like an odometer with the rightmost element advancing
-   on every iteration.  This pattern creates a lexicographic ordering so that if
-   the input's iterables are sorted, the product tuples are emitted in sorted
-   order.
-
-   To compute the product of an iterable with itself, specify the number of
-   repetitions with the optional *repeat* keyword argument.  For example,
-   ``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.
-
-   This function is equivalent to the following code, except that the
-   actual implementation does not build up intermediate results in memory::
-
-       def product(*args, repeat=1):
-           # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
-           # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
-           pools = [tuple(pool) for pool in args] * repeat
-           result = [[]]
-           for pool in pools:
-               result = [x+[y] for x in result for y in pool]
-           for prod in result:
-               yield tuple(prod)
+    The nested loops cycle like an odometer with the rightmost element advancing
+    on every iteration.  This pattern creates a lexicographic ordering so that if
+    the input's iterables are sorted, the product tuples are emitted in sorted
+    order.
+
+    To compute the product of an iterable with itself, specify the number of
+    repetitions with the optional *repeat* keyword argument.  For example,
+    ``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.
+
+    This function is equivalent to the following code, except that the
+    actual implementation does not build up intermediate results in memory::
+
+        def product(*args, repeat=1):
+            # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
+            # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
+            pools = [tuple(pool) for pool in args] * repeat
+            result = [[]]
+            for pool in pools:
+                result = [x+[y] for x in result for y in pool]
+            for prod in result:
+                yield tuple(prod)
 
 
 .. function:: repeat(object[, times])
 
-   Make an iterator that returns *object* over and over again. Runs indefinitely
-   unless the *times* argument is specified. Used as argument to :func:`map` for
-   invariant parameters to the called function.  Also used with :func:`zip` to
-   create an invariant part of a tuple record.  Equivalent to::
-
-      def repeat(object, times=None):
-          # repeat(10, 3) --> 10 10 10
-          if times is None:
-              while True:
-                  yield object
-          else:
-              for i in range(times):
-                  yield object
+    Make an iterator that returns *object* over and over again. Runs indefinitely
+    unless the *times* argument is specified. Used as argument to :func:`map` for
+    invariant parameters to the called function.  Also used with :func:`zip` to
+    create an invariant part of a tuple record.  Equivalent to::
+
+        def repeat(object, times=None):
+            # repeat(10, 3) --> 10 10 10
+            if times is None:
+                while True:
+                    yield object
+            else:
+                for i in range(times):
+                    yield object
 
 
 .. function:: starmap(function, iterable)
 
-   Make an iterator that computes the function using arguments obtained from
-   the iterable.  Used instead of :func:`map` when argument parameters are already
-   grouped in tuples from a single iterable (the data has been "pre-zipped").  The
-   difference between :func:`map` and :func:`starmap` parallels the distinction
-   between ``function(a,b)`` and ``function(*c)``. Equivalent to::
-
-      def starmap(function, iterable):
-          # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
-          for args in iterable:
-              yield function(*args)
+    Make an iterator that computes the function using arguments obtained from
+    the iterable.  Used instead of :func:`map` when argument parameters are already
+    grouped in tuples from a single iterable (the data has been "pre-zipped").  The
+    difference between :func:`map` and :func:`starmap` parallels the distinction
+    between ``function(a,b)`` and ``function(*c)``. Equivalent to::
+
+        def starmap(function, iterable):
+            # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
+            for args in iterable:
+                yield function(*args)
 
 
 .. function:: takewhile(predicate, iterable)
 
-   Make an iterator that returns elements from the iterable as long as the
-   predicate is true.  Equivalent to::
+    Make an iterator that returns elements from the iterable as long as the
+    predicate is true.  Equivalent to::
 
-      def takewhile(predicate, iterable):
-          # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
-          for x in iterable:
-              if predicate(x):
-                  yield x
-              else:
-                  break
+        def takewhile(predicate, iterable):
+            # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
+            for x in iterable:
+                if predicate(x):
+                    yield x
+                else:
+                    break
 
 
 .. function:: tee(iterable, n=2)
 
-   Return *n* independent iterators from a single iterable.  Equivalent to::
+    Return *n* independent iterators from a single iterable.  Equivalent to::
 
         def tee(iterable, n=2):
             it = iter(iterable)
@@ -524,38 +540,38 @@
                     yield mydeque.popleft()
             return tuple(gen(d) for d in deques)
 
-   Once :func:`tee` has made a split, the original *iterable* should not be
-   used anywhere else; otherwise, the *iterable* could get advanced without
-   the tee objects being informed.
-
-   This itertool may require significant auxiliary storage (depending on how
-   much temporary data needs to be stored). In general, if one iterator uses
-   most or all of the data before another iterator starts, it is faster to use
-   :func:`list` instead of :func:`tee`.
+    Once :func:`tee` has made a split, the original *iterable* should not be
+    used anywhere else; otherwise, the *iterable* could get advanced without
+    the tee objects being informed.
+
+    This itertool may require significant auxiliary storage (depending on how
+    much temporary data needs to be stored). In general, if one iterator uses
+    most or all of the data before another iterator starts, it is faster to use
+    :func:`list` instead of :func:`tee`.
 
 
 .. function:: zip_longest(*iterables, fillvalue=None)
 
-   Make an iterator that aggregates elements from each of the iterables. If the
-   iterables are of uneven length, missing values are filled-in with *fillvalue*.
-   Iteration continues until the longest iterable is exhausted.  Equivalent to::
-
-      def zip_longest(*args, fillvalue=None):
-          # zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
-          def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
-              yield counter()         # yields the fillvalue, or raises IndexError
-          fillers = repeat(fillvalue)
-          iters = [chain(it, sentinel(), fillers) for it in args]
-          try:
-              for tup in zip(*iters):
-                  yield tup
-          except IndexError:
-              pass
-
-   If one of the iterables is potentially infinite, then the :func:`zip_longest`
-   function should be wrapped with something that limits the number of calls
-   (for example :func:`islice` or :func:`takewhile`).  If not specified,
-   *fillvalue* defaults to ``None``.
+    Make an iterator that aggregates elements from each of the iterables. If the
+    iterables are of uneven length, missing values are filled-in with *fillvalue*.
+    Iteration continues until the longest iterable is exhausted.  Equivalent to::
+
+        def zip_longest(*args, fillvalue=None):
+            # zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
+            def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
+                yield counter()         # yields the fillvalue, or raises IndexError
+            fillers = repeat(fillvalue)
+            iters = [chain(it, sentinel(), fillers) for it in args]
+            try:
+                for tup in zip(*iters):
+                    yield tup
+            except IndexError:
+                pass
+
+    If one of the iterables is potentially infinite, then the :func:`zip_longest`
+    function should be wrapped with something that limits the number of calls
+    (for example :func:`islice` or :func:`takewhile`).  If not specified,
+    *fillvalue* defaults to ``None``.
 
 
 .. _itertools-recipes:
@@ -576,176 +592,168 @@
 
 .. testcode::
 
-   def take(n, iterable):
-       "Return first n items of the iterable as a list"
-       return list(islice(iterable, n))
-
-   def tabulate(function, start=0):
-       "Return function(0), function(1), ..."
-       return map(function, count(start))
-
-   def consume(iterator, n):
-       "Advance the iterator n-steps ahead. If n is none, consume entirely."
-       # Use functions that consume iterators at C speed.
-       if n is None:
-           # feed the entire iterator into a zero-length deque
-           collections.deque(iterator, maxlen=0)
-       else:
-           # advance to the empty slice starting at position n
-           next(islice(iterator, n, n), None)
-
-   def nth(iterable, n, default=None):
-       "Returns the nth item or a default value"
-       return next(islice(iterable, n, None), default)
-
-   def quantify(iterable, pred=bool):
-       "Count how many times the predicate is true"
-       return sum(map(pred, iterable))
-
-   def padnone(iterable):
-       """Returns the sequence elements and then returns None indefinitely.
-
-       Useful for emulating the behavior of the built-in map() function.
-       """
-       return chain(iterable, repeat(None))
-
-   def ncycles(iterable, n):
-       "Returns the sequence elements n times"
-       return chain.from_iterable(repeat(tuple(iterable), n))
-
-   def dotproduct(vec1, vec2):
-       return sum(map(operator.mul, vec1, vec2))
-
-   def flatten(listOfLists):
-       "Flatten one level of nesting"
-       return chain.from_iterable(listOfLists)
-
-   def repeatfunc(func, times=None, *args):
-       """Repeat calls to func with specified arguments.
-
-       Example:  repeatfunc(random.random)
-       """
-       if times is None:
-           return starmap(func, repeat(args))
-       return starmap(func, repeat(args, times))
-
-   def pairwise(iterable):
-       "s -> (s0,s1), (s1,s2), (s2, s3), ..."
-       a, b = tee(iterable)
-       next(b, None)
-       return zip(a, b)
-
-   def grouper(n, iterable, fillvalue=None):
-       "grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
-       args = [iter(iterable)] * n
-       return zip_longest(*args, fillvalue=fillvalue)
-
-   def roundrobin(*iterables):
-       "roundrobin('ABC', 'D', 'EF') --> A D E B F C"
-       # Recipe credited to George Sakkis
-       pending = len(iterables)
-       nexts = cycle(iter(it).__next__ for it in iterables)
-       while pending:
-           try:
-               for next in nexts:
-                   yield next()
-           except StopIteration:
-               pending -= 1
-               nexts = cycle(islice(nexts, pending))
-
-   def accumulate(iterable):
-       'Emit a running total'
-       # accumulate([1,2,3,4,5]) --> 1 3 6 10 15
-       total = 0
-       for element in iterable:
-           total += element
-           yield total
-
-   def partition(pred, iterable):
-       'Use a predicate to partition entries into false entries and true entries'
-       # partition(is_odd, range(10)) --> 0 2 4 6 8   and  1 3 5 7 9
-       t1, t2 = tee(iterable)
-       return filterfalse(pred, t1), filter(pred, t2)
-
-   def powerset(iterable):
-       "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
-       s = list(iterable)
-       return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
-
-   def unique_everseen(iterable, key=None):
-       "List unique elements, preserving order. Remember all elements ever seen."
-       # unique_everseen('AAAABBBCCDAABBB') --> A B C D
-       # unique_everseen('ABBCcAD', str.lower) --> A B C D
-       seen = set()
-       seen_add = seen.add
-       if key is None:
-           for element in filterfalse(seen.__contains__, iterable):
-               seen_add(element)
-               yield element
-       else:
-           for element in iterable:
-               k = key(element)
-               if k not in seen:
-                   seen_add(k)
-                   yield element
-
-   def unique_justseen(iterable, key=None):
-       "List unique elements, preserving order. Remember only the element just seen."
-       # unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
-       # unique_justseen('ABBCcAD', str.lower) --> A B C A D
-       return map(next, map(itemgetter(1), groupby(iterable, key)))
-
-   def iter_except(func, exception, first=None):
-       """ Call a function repeatedly until an exception is raised.
-
-       Converts a call-until-exception interface to an iterator interface.
-       Like __builtin__.iter(func, sentinel) but uses an exception instead
-       of a sentinel to end the loop.
-
-       Examples:
-           iter_except(functools.partial(heappop, h), IndexError)   # priority queue iterator
-           iter_except(d.popitem, KeyError)                         # non-blocking dict iterator
-           iter_except(d.popleft, IndexError)                       # non-blocking deque iterator
-           iter_except(q.get_nowait, Queue.Empty)                   # loop over a producer Queue
-           iter_except(s.pop, KeyError)                             # non-blocking set iterator
-
-       """
-       try:
-           if first is not None:
-               yield first()            # For database APIs needing an initial cast to db.first()
-           while 1:
-               yield func()
-       except exception:
-           pass
-
-   def random_product(*args, repeat=1):
-       "Random selection from itertools.product(*args, **kwds)"
-       pools = [tuple(pool) for pool in args] * repeat
-       return tuple(random.choice(pool) for pool in pools)
-
-   def random_permutation(iterable, r=None):
-       "Random selection from itertools.permutations(iterable, r)"
-       pool = tuple(iterable)
-       r = len(pool) if r is None else r
-       return tuple(random.sample(pool, r))
-
-   def random_combination(iterable, r):
-       "Random selection from itertools.combinations(iterable, r)"
-       pool = tuple(iterable)
-       n = len(pool)
-       indices = sorted(random.sample(range(n), r))
-       return tuple(pool[i] for i in indices)
-
-   def random_combination_with_replacement(iterable, r):
-       "Random selection from itertools.combinations_with_replacement(iterable, r)"
-       pool = tuple(iterable)
-       n = len(pool)
-       indices = sorted(random.randrange(n) for i in range(r))
-       return tuple(pool[i] for i in indices)
+    def take(n, iterable):
+        "Return first n items of the iterable as a list"
+        return list(islice(iterable, n))
+
+    def tabulate(function, start=0):
+        "Return function(0), function(1), ..."
+        return map(function, count(start))
+
+    def consume(iterator, n):
+        "Advance the iterator n-steps ahead. If n is none, consume entirely."
+        # Use functions that consume iterators at C speed.
+        if n is None:
+            # feed the entire iterator into a zero-length deque
+            collections.deque(iterator, maxlen=0)
+        else:
+            # advance to the empty slice starting at position n
+            next(islice(iterator, n, n), None)
+
+    def nth(iterable, n, default=None):
+        "Returns the nth item or a default value"
+        return next(islice(iterable, n, None), default)
+
+    def quantify(iterable, pred=bool):
+        "Count how many times the predicate is true"
+        return sum(map(pred, iterable))
+
+    def padnone(iterable):
+        """Returns the sequence elements and then returns None indefinitely.
+
+        Useful for emulating the behavior of the built-in map() function.
+        """
+        return chain(iterable, repeat(None))
+
+    def ncycles(iterable, n):
+        "Returns the sequence elements n times"
+        return chain.from_iterable(repeat(tuple(iterable), n))
+
+    def dotproduct(vec1, vec2):
+        return sum(map(operator.mul, vec1, vec2))
+
+    def flatten(listOfLists):
+        "Flatten one level of nesting"
+        return chain.from_iterable(listOfLists)
+
+    def repeatfunc(func, times=None, *args):
+        """Repeat calls to func with specified arguments.
+
+        Example:  repeatfunc(random.random)
+        """
+        if times is None:
+            return starmap(func, repeat(args))
+        return starmap(func, repeat(args, times))
+
+    def pairwise(iterable):
+        "s -> (s0,s1), (s1,s2), (s2, s3), ..."
+        a, b = tee(iterable)
+        next(b, None)
+        return zip(a, b)
+
+    def grouper(n, iterable, fillvalue=None):
+        "grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
+        args = [iter(iterable)] * n
+        return zip_longest(*args, fillvalue=fillvalue)
+
+    def roundrobin(*iterables):
+        "roundrobin('ABC', 'D', 'EF') --> A D E B F C"
+        # Recipe credited to George Sakkis
+        pending = len(iterables)
+        nexts = cycle(iter(it).__next__ for it in iterables)
+        while pending:
+            try:
+                for next in nexts:
+                    yield next()
+            except StopIteration:
+                pending -= 1
+                nexts = cycle(islice(nexts, pending))
+
+    def partition(pred, iterable):
+        'Use a predicate to partition entries into false entries and true entries'
+        # partition(is_odd, range(10)) --> 0 2 4 6 8   and  1 3 5 7 9
+        t1, t2 = tee(iterable)
+        return filterfalse(pred, t1), filter(pred, t2)
+
+    def powerset(iterable):
+        "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
+        s = list(iterable)
+        return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
+
+    def unique_everseen(iterable, key=None):
+        "List unique elements, preserving order. Remember all elements ever seen."
+        # unique_everseen('AAAABBBCCDAABBB') --> A B C D
+        # unique_everseen('ABBCcAD', str.lower) --> A B C D
+        seen = set()
+        seen_add = seen.add
+        if key is None:
+            for element in filterfalse(seen.__contains__, iterable):
+                seen_add(element)
+                yield element
+        else:
+            for element in iterable:
+                k = key(element)
+                if k not in seen:
+                    seen_add(k)
+                    yield element
+
+    def unique_justseen(iterable, key=None):
+        "List unique elements, preserving order. Remember only the element just seen."
+        # unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
+        # unique_justseen('ABBCcAD', str.lower) --> A B C A D
+        return map(next, map(itemgetter(1), groupby(iterable, key)))
+
+    def iter_except(func, exception, first=None):
+        """ Call a function repeatedly until an exception is raised.
+
+        Converts a call-until-exception interface to an iterator interface.
+        Like __builtin__.iter(func, sentinel) but uses an exception instead
+        of a sentinel to end the loop.
+
+        Examples:
+            iter_except(functools.partial(heappop, h), IndexError)   # priority queue iterator
+            iter_except(d.popitem, KeyError)                         # non-blocking dict iterator
+            iter_except(d.popleft, IndexError)                       # non-blocking deque iterator
+            iter_except(q.get_nowait, Queue.Empty)                   # loop over a producer Queue
+            iter_except(s.pop, KeyError)                             # non-blocking set iterator
+
+        """
+        try:
+            if first is not None:
+                yield first()            # For database APIs needing an initial cast to db.first()
+            while 1:
+                yield func()
+        except exception:
+            pass
+
+    def random_product(*args, repeat=1):
+        "Random selection from itertools.product(*args, **kwds)"
+        pools = [tuple(pool) for pool in args] * repeat
+        return tuple(random.choice(pool) for pool in pools)
+
+    def random_permutation(iterable, r=None):
+        "Random selection from itertools.permutations(iterable, r)"
+        pool = tuple(iterable)
+        r = len(pool) if r is None else r
+        return tuple(random.sample(pool, r))
+
+    def random_combination(iterable, r):
+        "Random selection from itertools.combinations(iterable, r)"
+        pool = tuple(iterable)
+        n = len(pool)
+        indices = sorted(random.sample(range(n), r))
+        return tuple(pool[i] for i in indices)
+
+    def random_combination_with_replacement(iterable, r):
+        "Random selection from itertools.combinations_with_replacement(iterable, r)"
+        pool = tuple(iterable)
+        n = len(pool)
+        indices = sorted(random.randrange(n) for i in range(r))
+        return tuple(pool[i] for i in indices)
 
 Note, many of the above recipes can be optimized by replacing global lookups
 with local variables defined as default values.  For example, the
 *dotproduct* recipe can be written as::
 
-   def dotproduct(vec1, vec2, sum=sum, map=map, mul=operator.mul):
-       return sum(map(mul, vec1, vec2))
+    def dotproduct(vec1, vec2, sum=sum, map=map, mul=operator.mul):
+        return sum(map(mul, vec1, vec2))


More information about the Python-checkins mailing list