
Python Frequently Asked Questions
Release 3.7.5rc1

Guido van Rossum
and the Python development team

October 01, 2019

Python Software Foundation
Email: docs@python.org

CONTENTS

1 General Python FAQ 1

2 Programming FAQ 7

3 Design and History FAQ 35

4 Library and Extension FAQ 47

5 Extending/Embedding FAQ 59

6 Python on Windows FAQ 67

7 Graphic User Interface FAQ 71

8 “Why is Python Installed on my Computer?” FAQ 75

A Glossary 77

B About these documents 91

C History and License 93

D Copyright 109

Index 111

i

ii

CHAPTER

ONE

GENERAL PYTHON FAQ

1.1 General Information

1.1.1 What is Python?

Python is an interpreted, interactive, object-oriented programming language. It incorporates modules, exceptions, dy-
namic typing, very high level dynamic data types, and classes. Python combines remarkable power with very clear syntax.
It has interfaces to many system calls and libraries, as well as to various window systems, and is extensible in C or C++.
It is also usable as an extension language for applications that need a programmable interface. Finally, Python is portable:
it runs on many Unix variants, on the Mac, and on Windows 2000 and later.
To find out more, start with tutorial-index. The Beginner’s Guide to Python links to other introductory tutorials and
resources for learning Python.

1.1.2 What is the Python Software Foundation?

The Python Software Foundation is an independent non-profit organization that holds the copyright on Python versions
2.1 and newer. The PSF’s mission is to advance open source technology related to the Python programming language and
to publicize the use of Python. The PSF’s home page is at https://www.python.org/psf/.
Donations to the PSF are tax-exempt in the US. If you use Python and find it helpful, please contribute via the PSF
donation page.

1.1.3 Are there copyright restrictions on the use of Python?

You can do anything you want with the source, as long as you leave the copyrights in and display those copyrights in any
documentation about Python that you produce. If you honor the copyright rules, it’s OK to use Python for commercial
use, to sell copies of Python in source or binary form (modified or unmodified), or to sell products that incorporate Python
in some form. We would still like to know about all commercial use of Python, of course.
See the PSF license page to find further explanations and a link to the full text of the license.
The Python logo is trademarked, and in certain cases permission is required to use it. Consult the Trademark Usage
Policy for more information.

1.1.4 Why was Python created in the first place?

Here’s a very brief summary of what started it all, written by Guido van Rossum:

1

https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/donations/
https://www.python.org/psf/donations/
https://www.python.org/psf/license/
https://www.python.org/psf/trademarks/
https://www.python.org/psf/trademarks/

Python Frequently Asked Questions, Release 3.7.5rc1

I had extensive experience with implementing an interpreted language in the ABC group at CWI, and from
working with this group I had learned a lot about language design. This is the origin of many Python fea-
tures, including the use of indentation for statement grouping and the inclusion of very-high-level data types
(although the details are all different in Python).
I had a number of gripes about the ABC language, but also liked many of its features. It was impossible to
extend the ABC language (or its implementation) to remedy my complaints – in fact its lack of extensibility
was one of its biggest problems. I had some experience with using Modula-2+ and talked with the designers
of Modula-3 and read the Modula-3 report. Modula-3 is the origin of the syntax and semantics used for
exceptions, and some other Python features.
I was working in the Amoeba distributed operating system group at CWI. We needed a better way to do
system administration than by writing either C programs or Bourne shell scripts, since Amoeba had its own
system call interface which wasn’t easily accessible from the Bourne shell. My experience with error handling
in Amoeba made me acutely aware of the importance of exceptions as a programming language feature.
It occurred to me that a scripting language with a syntax like ABC but with access to the Amoeba system
calls would fill the need. I realized that it would be foolish to write an Amoeba-specific language, so I decided
that I needed a language that was generally extensible.
During the 1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try. During
the next year, while still mostly working on it in my own time, Python was used in the Amoeba project with
increasing success, and the feedback from colleagues made me add many early improvements.
In February 1991, after just over a year of development, I decided to post to USENET. The rest is in the
Misc/HISTORY file.

1.1.5 What is Python good for?

Python is a high-level general-purpose programming language that can be applied to many different classes of problems.
The language comes with a large standard library that covers areas such as string processing (regular expressions, Uni-
code, calculating differences between files), Internet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP, CGI pro-
gramming), software engineering (unit testing, logging, profiling, parsing Python code), and operating system interfaces
(system calls, filesystems, TCP/IP sockets). Look at the table of contents for library-index to get an idea of what’s avail-
able. A wide variety of third-party extensions are also available. Consult the Python Package Index to find packages of
interest to you.

1.1.6 How does the Python version numbering scheme work?

Python versions are numbered A.B.C or A.B. A is the major version number – it is only incremented for really major
changes in the language. B is theminor version number, incremented for less earth-shattering changes. C is themicro-level
– it is incremented for each bugfix release. See PEP 6 for more information about bugfix releases.
Not all releases are bugfix releases. In the run-up to a new major release, a series of development releases are made,
denoted as alpha, beta, or release candidate. Alphas are early releases in which interfaces aren’t yet finalized; it’s not
unexpected to see an interface change between two alpha releases. Betas are more stable, preserving existing interfaces
but possibly adding new modules, and release candidates are frozen, making no changes except as needed to fix critical
bugs.
Alpha, beta and release candidate versions have an additional suffix. The suffix for an alpha version is “aN” for some small
number N, the suffix for a beta version is “bN” for some small number N, and the suffix for a release candidate version
is “cN” for some small number N. In other words, all versions labeled 2.0aN precede the versions labeled 2.0bN, which
precede versions labeled 2.0cN, and those precede 2.0.

2 Chapter 1. General Python FAQ

https://pypi.org
https://www.python.org/dev/peps/pep-0006

Python Frequently Asked Questions, Release 3.7.5rc1

You may also find version numbers with a “+” suffix, e.g. “2.2+”. These are unreleased versions, built directly from the
CPython development repository. In practice, after a final minor release is made, the version is incremented to the next
minor version, which becomes the “a0” version, e.g. “2.4a0”.
See also the documentation for sys.version, sys.hexversion, and sys.version_info.

1.1.7 How do I obtain a copy of the Python source?

The latest Python source distribution is always available from python.org, at https://www.python.org/downloads/. The
latest development sources can be obtained at https://github.com/python/cpython/.
The source distribution is a gzipped tar file containing the complete C source, Sphinx-formatted documentation, Python
library modules, example programs, and several useful pieces of freely distributable software. The source will compile
and run out of the box on most UNIX platforms.
Consult the Getting Started section of the Python Developer’s Guide for more information on getting the source code and
compiling it.

1.1.8 How do I get documentation on Python?

The standard documentation for the current stable version of Python is available at https://docs.python.org/3/. PDF, plain
text, and downloadable HTML versions are also available at https://docs.python.org/3/download.html.
The documentation is written in reStructuredText and processed by the Sphinx documentation tool. The reStructuredText
source for the documentation is part of the Python source distribution.

1.1.9 I’ve never programmed before. Is there a Python tutorial?

There are numerous tutorials and books available. The standard documentation includes tutorial-index.
Consult the Beginner’s Guide to find information for beginning Python programmers, including lists of tutorials.

1.1.10 Is there a newsgroup or mailing list devoted to Python?

There is a newsgroup, comp.lang.python, and a mailing list, python-list. The newsgroup and mailing list are gate-
wayed into each other – if you can read news it’s unnecessary to subscribe to the mailing list. comp.lang.python is
high-traffic, receiving hundreds of postings every day, and Usenet readers are often more able to cope with this volume.
Announcements of new software releases and events can be found in comp.lang.python.announce, a low-traffic moderated
list that receives about five postings per day. It’s available as the python-announce mailing list.
More info about other mailing lists and newsgroups can be found at https://www.python.org/community/lists/.

1.1.11 How do I get a beta test version of Python?

Alpha and beta releases are available from https://www.python.org/downloads/. All releases are announced on the
comp.lang.python and comp.lang.python.announce newsgroups and on the Python home page at https://www.python.org/;
an RSS feed of news is available.
You can also access the development version of Python through Git. See The Python Developer’s Guide for details.

1.1. General Information 3

https://www.python.org/downloads/
https://github.com/python/cpython/
https://devguide.python.org/setup/
https://docs.python.org/3/
https://docs.python.org/3/download.html
http://sphinx-doc.org/
https://wiki.python.org/moin/BeginnersGuide
https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman/listinfo/python-announce-list
https://www.python.org/community/lists/
https://www.python.org/downloads/
https://www.python.org/
https://devguide.python.org/

Python Frequently Asked Questions, Release 3.7.5rc1

1.1.12 How do I submit bug reports and patches for Python?

To report a bug or submit a patch, please use the Roundup installation at https://bugs.python.org/.
You must have a Roundup account to report bugs; this makes it possible for us to contact you if we have follow-up
questions. It will also enable Roundup to send you updates as we act on your bug. If you had previously used SourceForge
to report bugs to Python, you can obtain your Roundup password through Roundup’s password reset procedure.
For more information on how Python is developed, consult the Python Developer’s Guide.

1.1.13 Are there any published articles about Python that I can reference?

It’s probably best to cite your favorite book about Python.
The very first article about Python was written in 1991 and is now quite outdated.

Guido van Rossum and Jelke de Boer, “Interactively Testing Remote Servers Using the Python Programming
Language”, CWI Quarterly, Volume 4, Issue 4 (December 1991), Amsterdam, pp 283–303.

1.1.14 Are there any books on Python?

Yes, there aremany, andmore are being published. See the python.org wiki at https://wiki.python.org/moin/PythonBooks
for a list.
You can also search online bookstores for “Python” and filter out the Monty Python references; or perhaps search for
“Python” and “language”.

1.1.15 Where in the world is www.python.org located?

The Python project’s infrastructure is located all over the world and is managed by the Python Infrastructure Team. Details
here.

1.1.16 Why is it called Python?

When he began implementing Python, Guido van Rossum was also reading the published scripts from “Monty Python’s
Flying Circus”, a BBC comedy series from the 1970s. Van Rossum thought he needed a name that was short, unique, and
slightly mysterious, so he decided to call the language Python.

1.1.17 Do I have to like “Monty Python’s Flying Circus”?

No, but it helps. :)

1.2 Python in the real world

1.2.1 How stable is Python?

Very stable. New, stable releases have been coming out roughly every 6 to 18 months since 1991, and this seems likely
to continue. Currently there are usually around 18 months between major releases.

4 Chapter 1. General Python FAQ

https://bugs.python.org/
https://bugs.python.org/user?@template=forgotten
https://devguide.python.org/
https://wiki.python.org/moin/PythonBooks
http://infra.psf.io
https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Monty_Python

Python Frequently Asked Questions, Release 3.7.5rc1

The developers issue “bugfix” releases of older versions, so the stability of existing releases gradually improves. Bugfix
releases, indicated by a third component of the version number (e.g. 3.5.3, 3.6.2), are managed for stability; only fixes
for known problems are included in a bugfix release, and it’s guaranteed that interfaces will remain the same throughout
a series of bugfix releases.
The latest stable releases can always be found on the Python download page. There are two production-ready versions of
Python: 2.x and 3.x. The recommended version is 3.x, which is supported by most widely used libraries. Although 2.x is
still widely used, it will not be maintained after January 1, 2020.

1.2.2 How many people are using Python?

There are probably tens of thousands of users, though it’s difficult to obtain an exact count.
Python is available for free download, so there are no sales figures, and it’s available frommany different sites and packaged
with many Linux distributions, so download statistics don’t tell the whole story either.
The comp.lang.python newsgroup is very active, but not all Python users post to the group or even read it.

1.2.3 Have any significant projects been done in Python?

See https://www.python.org/about/success for a list of projects that use Python. Consulting the proceedings for past
Python conferences will reveal contributions from many different companies and organizations.
High-profile Python projects include the Mailman mailing list manager and the Zope application server. Several Linux
distributions, most notably RedHat, have written part or all of their installer and system administration software in Python.
Companies that use Python internally include Google, Yahoo, and Lucasfilm Ltd.

1.2.4 What new developments are expected for Python in the future?

See https://www.python.org/dev/peps/ for the Python Enhancement Proposals (PEPs). PEPs are design documents de-
scribing a suggested new feature for Python, providing a concise technical specification and a rationale. Look for a PEP
titled “Python X.Y Release Schedule”, where X.Y is a version that hasn’t been publicly released yet.
New development is discussed on the python-dev mailing list.

1.2.5 Is it reasonable to propose incompatible changes to Python?

In general, no. There are already millions of lines of Python code around the world, so any change in the language that
invalidates more than a very small fraction of existing programs has to be frowned upon. Even if you can provide a
conversion program, there’s still the problem of updating all documentation; many books have been written about Python,
and we don’t want to invalidate them all at a single stroke.
Providing a gradual upgrade path is necessary if a feature has to be changed. PEP 5 describes the procedure followed
for introducing backward-incompatible changes while minimizing disruption for users.

1.2.6 Is Python a good language for beginning programmers?

Yes.
It is still common to start students with a procedural and statically typed language such as Pascal, C, or a subset of C++
or Java. Students may be better served by learning Python as their first language. Python has a very simple and consistent
syntax and a large standard library and, most importantly, using Python in a beginning programming course lets students
concentrate on important programming skills such as problem decomposition and data type design. With Python, students

1.2. Python in the real world 5

https://www.python.org/downloads/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/about/success
https://www.python.org/community/workshops/
https://www.python.org/community/workshops/
http://www.list.org
http://www.zope.org
https://www.redhat.com
https://www.python.org/dev/peps/
https://mail.python.org/mailman/listinfo/python-dev/
https://www.python.org/dev/peps/pep-0005

Python Frequently Asked Questions, Release 3.7.5rc1

can be quickly introduced to basic concepts such as loops and procedures. They can probably even work with user-defined
objects in their very first course.
For a student who has never programmed before, using a statically typed language seems unnatural. It presents additional
complexity that the student must master and slows the pace of the course. The students are trying to learn to think like
a computer, decompose problems, design consistent interfaces, and encapsulate data. While learning to use a statically
typed language is important in the long term, it is not necessarily the best topic to address in the students’ first programming
course.
Many other aspects of Python make it a good first language. Like Java, Python has a large standard library so that
students can be assigned programming projects very early in the course that do something. Assignments aren’t restricted
to the standard four-function calculator and check balancing programs. By using the standard library, students can gain
the satisfaction of working on realistic applications as they learn the fundamentals of programming. Using the standard
library also teaches students about code reuse. Third-party modules such as PyGame are also helpful in extending the
students’ reach.
Python’s interactive interpreter enables students to test language features while they’re programming. They can keep a
window with the interpreter running while they enter their program’s source in another window. If they can’t remember
the methods for a list, they can do something like this:

>>> L = []
>>> dir(L)
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__',
'__dir__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__',
'__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__',
'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__',
'__sizeof__', '__str__', '__subclasshook__', 'append', 'clear',
'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
'reverse', 'sort']
>>> [d for d in dir(L) if '__' not in d]
['append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
↪→'reverse', 'sort']

>>> help(L.append)
Help on built-in function append:

append(...)
L.append(object) -> None -- append object to end

>>> L.append(1)
>>> L
[1]

With the interpreter, documentation is never far from the student as they are programming.
There are also good IDEs for Python. IDLE is a cross-platform IDE for Python that is written in Python using Tkinter.
PythonWin is a Windows-specific IDE. Emacs users will be happy to know that there is a very good Python mode for
Emacs. All of these programming environments provide syntax highlighting, auto-indenting, and access to the interactive
interpreter while coding. Consult the Python wiki for a full list of Python editing environments.
If you want to discuss Python’s use in education, you may be interested in joining the edu-sig mailing list.

6 Chapter 1. General Python FAQ

https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig

CHAPTER

TWO

PROGRAMMING FAQ

2.1 General Questions

2.1.1 Is there a source code level debuggerwith breakpoints, single-stepping, etc.?

Yes.
Several debuggers for Python are described below, and the built-in function breakpoint() allows you to drop into
any of them.
The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard Python library,
and is documented in the Library Reference Manual. You can also write your own debugger by using
the code for pdb as an example.
The IDLE interactive development environment, which is part of the standard Python distribution (normally available as
Tools/scripts/idle), includes a graphical debugger.
PythonWin is a Python IDE that includes a GUI debugger based on pdb. The Pythonwin debugger colors breakpoints
and has quite a few cool features such as debugging non-Pythonwin programs. Pythonwin is available as part of the
Python for Windows Extensions project and as a part of the ActivePython distribution (see https://www.activestate.com/
activepython).
Boa Constructor is an IDE and GUI builder that uses wxWidgets. It offers visual frame creation and manipulation,
an object inspector, many views on the source like object browsers, inheritance hierarchies, doc string generated html
documentation, an advanced debugger, integrated help, and Zope support.
Eric is an IDE built on PyQt and the Scintilla editing component.
Pydb is a version of the standard Python debugger pdb, modified for use with DDD (Data Display Debugger), a popular
graphical debugger front end. Pydb can be found at http://bashdb.sourceforge.net/pydb/ and DDD can be found at
https://www.gnu.org/software/ddd.
There are a number of commercial Python IDEs that include graphical debuggers. They include:

• Wing IDE (https://wingware.com/)
• Komodo IDE (https://komodoide.com/)
• PyCharm (https://www.jetbrains.com/pycharm/)

2.1.2 Is there a tool to help find bugs or perform static analysis?

Yes.
PyChecker is a static analysis tool that finds bugs in Python source code and warns about code complexity and style. You
can get PyChecker from http://pychecker.sourceforge.net/.

7

https://sourceforge.net/projects/pywin32/
https://www.activestate.com/activepython
https://www.activestate.com/activepython
http://boa-constructor.sourceforge.net/
http://eric-ide.python-projects.org/
http://bashdb.sourceforge.net/pydb/
https://www.gnu.org/software/ddd
https://wingware.com/
https://komodoide.com/
https://www.jetbrains.com/pycharm/
http://pychecker.sourceforge.net/

Python Frequently Asked Questions, Release 3.7.5rc1

Pylint is another tool that checks if a module satisfies a coding standard, and also makes it possible to write plug-ins to add
a custom feature. In addition to the bug checking that PyChecker performs, Pylint offers some additional features such
as checking line length, whether variable names are well-formed according to your coding standard, whether declared
interfaces are fully implemented, and more. https://docs.pylint.org/ provides a full list of Pylint’s features.
Static type checkers such as Mypy, Pyre, and Pytype can check type hints in Python source code.

2.1.3 How can I create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users can download
and run without having to install the Python distribution first. There are a number of tools that determine the set of
modules required by a program and bind these modules together with a Python binary to produce a single executable.
One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts Python byte
code to C arrays; a C compiler you can embed all your modules into a new program, which is then linked with the standard
Python modules.
It works by scanning your source recursively for import statements (in both forms) and looking for the modules in the
standard Python path as well as in the source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code objects using the marshal module) and
creates a custom-made config file that only contains those built-in modules which are actually used in the program. It then
compiles the generated C code and links it with the rest of the Python interpreter to form a self-contained binary which
acts exactly like your script.
Obviously, freeze requires a C compiler. There are several other utilities which don’t. One is Thomas Heller’s py2exe
(Windows only) at

http://www.py2exe.org/
Another tool is Anthony Tuininga’s cx_Freeze.

2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.2 Core Language

2.2.1 Why am I getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding an assignment
statement somewhere in the body of a function.
This code:

>>> x = 10
>>> def bar():
... print(x)
>>> bar()
10

works, but this code:

8 Chapter 2. Programming FAQ

https://www.pylint.org/
https://docs.pylint.org/
http://mypy-lang.org/
https://pyre-check.org/
https://github.com/google/pytype
http://www.py2exe.org/
https://anthony-tuininga.github.io/cx_Freeze/
https://www.python.org/dev/peps/pep-0008

Python Frequently Asked Questions, Release 3.7.5rc1

>>> x = 10
>>> def foo():
... print(x)
... x += 1

results in an UnboundLocalError:

>>> foo()
Traceback (most recent call last):

...
UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope and
shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value to x, the
compiler recognizes it as a local variable. Consequently when the earlier print(x) attempts to print the uninitialized
local variable and an error results.
In the example above you can access the outer scope variable by declaring it global:

>>> x = 10
>>> def foobar():
... global x
... print(x)
... x += 1
>>> foobar()
10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation with class and
instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print(x)
11

You can do a similar thing in a nested scope using the nonlocal keyword:

>>> def foo():
... x = 10
... def bar():
... nonlocal x
... print(x)
... x += 1
... bar()
... print(x)
>>> foo()
10
11

2.2.2 What are the rules for local and global variables in Python?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a value
anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.
Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for assigned
variables provides a bar against unintended side-effects. On the other hand, if global was required for all global
references, you’d be using global all the time. You’d have to declare as global every reference to a built-in function

2.2. Core Language 9

Python Frequently Asked Questions, Release 3.7.5rc1

or to a component of an imported module. This clutter would defeat the usefulness of the global declaration for
identifying side-effects.

2.2.3 Why do lambdas defined in a loop with different values all return the same
result?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []
>>> for x in range(5):
... squares.append(lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x**2. You might expect that, when called, they would return,
respectively, 0, 1, 4, 9, and 16. However, when you actually try you will see that they all return 16:

>>> squares[2]()
16
>>> squares[4]()
16

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when the lambda
is called — not when it is defined. At the end of the loop, the value of x is 4, so all the functions now return 4**2, i.e.
16. You can also verify this by changing the value of x and see how the results of the lambdas change:

>>> x = 8
>>> squares[2]()
64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely on the value of
the global x:

>>> squares = []
>>> for x in range(5):
... squares.append(lambda n=x: n**2)

Here, n=x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the same
value that x had at that point in the loop. This means that the value of n will be 0 in the first lambda, 1 in the second, 2
in the third, and so on. Therefore each lambda will now return the correct result:

>>> squares[2]()
4
>>> squares[4]()
16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

2.2.4 How do I share global variables across modules?

The canonical way to share information across modules within a single program is to create a special module (often called
config or cfg). Just import the config module in all modules of your application; the module then becomes available as
a global name. Because there is only one instance of each module, any changes made to the module object get reflected
everywhere. For example:
config.py:

10 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

x = 0 # Default value of the 'x' configuration setting

mod.py:

import config
config.x = 1

main.py:

import config
import mod
print(config.x)

Note that using a module is also the basis for implementing the Singleton design pattern, for the same reason.

2.2.5 What are the “best practices” for using import in a module?

In general, don’t use from modulename import *. Doing so clutters the importer’s namespace, and makes it
much harder for linters to detect undefined names.
Import modules at the top of a file. Doing so makes it clear what other modules your code requires and avoids questions
of whether the module name is in scope. Using one import per line makes it easy to add and delete module imports, but
using multiple imports per line uses less screen space.
It’s good practice if you import modules in the following order:

1. standard library modules – e.g. sys, os, getopt, re
2. third-party library modules (anything installed in Python’s site-packages directory) – e.g. mx.DateTime, ZODB,

PIL.Image, etc.
3. locally-developed modules

It is sometimes necessary tomove imports to a function or class to avoid problemswith circular imports. GordonMcMillan
says:

Circular imports are fine where both modules use the “import <module>” form of import. They fail when
the 2nd module wants to grab a name out of the first (“from module import name”) and the import is at the
top level. That’s because names in the 1st are not yet available, because the first module is busy importing
the 2nd.

In this case, if the second module is only used in one function, then the import can easily be moved into that function. By
the time the import is called, the first module will have finished initializing, and the second module can do its import.
It may also be necessary to move imports out of the top level of code if some of the modules are platform-specific. In
that case, it may not even be possible to import all of the modules at the top of the file. In this case, importing the correct
modules in the corresponding platform-specific code is a good option.
Only move imports into a local scope, such as inside a function definition, if it’s necessary to solve a problem such as
avoiding a circular import or are trying to reduce the initialization time of a module. This technique is especially helpful
if many of the imports are unnecessary depending on how the program executes. You may also want to move imports into
a function if the modules are only ever used in that function. Note that loading a module the first time may be expensive
because of the one time initialization of the module, but loading a module multiple times is virtually free, costing only
a couple of dictionary lookups. Even if the module name has gone out of scope, the module is probably available in
sys.modules.

2.2. Core Language 11

Python Frequently Asked Questions, Release 3.7.5rc1

2.2.6 Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo(mydict={}): # Danger: shared reference to one dict for all calls
... compute something ...
mydict[key] = value
return mydict

The first time you call this function, mydict contains a single item. The second time, mydict contains two items
because when foo() begins executing, mydict starts out with an item already in it.
It is often expected that a function call creates new objects for default values. This is not what happens. Default values
are created exactly once, when the function is defined. If that object is changed, like the dictionary in this example,
subsequent calls to the function will refer to this changed object.
By definition, immutable objects such as numbers, strings, tuples, and None, are safe from change. Changes to mutable
objects such as dictionaries, lists, and class instances can lead to confusion.
Because of this feature, it is good programming practice to not use mutable objects as default values. Instead, use None
as the default value and inside the function, check if the parameter is None and create a new list/dictionary/whatever if
it is. For example, don’t write:

def foo(mydict={}):
...

but:

def foo(mydict=None):
if mydict is None:

mydict = {} # create a new dict for local namespace

This feature can be useful. When you have a function that’s time-consuming to compute, a common technique is to
cache the parameters and the resulting value of each call to the function, and return the cached value if the same value is
requested again. This is called “memoizing”, and can be implemented like this:

Callers can only provide two parameters and optionally pass _cache by keyword
def expensive(arg1, arg2, *, _cache={}):

if (arg1, arg2) in _cache:
return _cache[(arg1, arg2)]

Calculate the value
result = ... expensive computation ...
_cache[(arg1, arg2)] = result # Store result in the cache
return result

You could use a global variable containing a dictionary instead of the default value; it’s a matter of taste.

2.2.7 How can I pass optional or keyword parameters from one function to an-
other?

Collect the arguments using the * and ** specifiers in the function’s parameter list; this gives you the positional arguments
as a tuple and the keyword arguments as a dictionary. You can then pass these arguments when calling another function
by using * and **:

12 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

def f(x, *args, **kwargs):
...
kwargs['width'] = '14.3c'
...
g(x, *args, **kwargs)

2.2.8 What is the difference between arguments and parameters?

Parameters are defined by the names that appear in a function definition, whereas arguments are the values actually passed
to a function when calling it. Parameters define what types of arguments a function can accept. For example, given the
function definition:

def func(foo, bar=None, **kwargs):
pass

foo, bar and kwargs are parameters of func. However, when calling func, for example:

func(42, bar=314, extra=somevar)

the values 42, 314, and somevar are arguments.

2.2.9 Why did changing list ‘y’ also change list ‘x’?

If you wrote code like:

>>> x = []
>>> y = x
>>> y.append(10)
>>> y
[10]
>>> x
[10]

you might be wondering why appending an element to y changed x too.
There are two factors that produce this result:

1) Variables are simply names that refer to objects. Doing y = x doesn’t create a copy of the list – it creates a new
variable y that refers to the same object x refers to. This means that there is only one object (the list), and both x
and y refer to it.

2) Lists are mutable, which means that you can change their content.
After the call to append(), the content of the mutable object has changed from [] to [10]. Since both the variables
refer to the same object, using either name accesses the modified value [10].
If we instead assign an immutable object to x:

>>> x = 5 # ints are immutable
>>> y = x
>>> x = x + 1 # 5 can't be mutated, we are creating a new object here
>>> x
6
>>> y
5

2.2. Core Language 13

Python Frequently Asked Questions, Release 3.7.5rc1

we can see that in this case x and y are not equal anymore. This is because integers are immutable, and when we do x
= x + 1 we are not mutating the int 5 by incrementing its value; instead, we are creating a new object (the int 6) and
assigning it to x (that is, changing which object x refers to). After this assignment we have two objects (the ints 6 and 5)
and two variables that refer to them (x now refers to 6 but y still refers to 5).
Some operations (for example y.append(10) and y.sort()) mutate the object, whereas superficially similar op-
erations (for example y = y + [10] and sorted(y)) create a new object. In general in Python (and in all cases in
the standard library) a method that mutates an object will return None to help avoid getting the two types of operations
confused. So if you mistakenly write y.sort() thinking it will give you a sorted copy of y, you’ll instead end up with
None, which will likely cause your program to generate an easily diagnosed error.
However, there is one class of operations where the same operation sometimes has different behaviors with different types:
the augmented assignment operators. For example, += mutates lists but not tuples or ints (a_list += [1, 2, 3]
is equivalent to a_list.extend([1, 2, 3]) and mutates a_list, whereas some_tuple += (1, 2, 3)
and some_int += 1 create new objects).
In other words:

• If we have a mutable object (list, dict, set, etc.), we can use some specific operations to mutate it and all the
variables that refer to it will see the change.

• If we have an immutable object (str, int, tuple, etc.), all the variables that refer to it will always see the same
value, but operations that transform that value into a new value always return a new object.

If you want to know if two variables refer to the same object or not, you can use the is operator, or the built-in function
id().

2.2.10 How do I write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment just creates references to objects, there’s
no alias between an argument name in the caller and callee, and so no call-by-reference per se. You can achieve the desired
effect in a number of ways.

1) By returning a tuple of the results:

def func2(a, b):
a = 'new-value' # a and b are local names
b = b + 1 # assigned to new objects
return a, b # return new values

x, y = 'old-value', 99
x, y = func2(x, y)
print(x, y) # output: new-value 100

This is almost always the clearest solution.
2) By using global variables. This isn’t thread-safe, and is not recommended.
3) By passing a mutable (changeable in-place) object:

def func1(a):
a[0] = 'new-value' # 'a' references a mutable list
a[1] = a[1] + 1 # changes a shared object

args = ['old-value', 99]
func1(args)
print(args[0], args[1]) # output: new-value 100

4) By passing in a dictionary that gets mutated:

14 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

def func3(args):
args['a'] = 'new-value' # args is a mutable dictionary
args['b'] = args['b'] + 1 # change it in-place

args = {'a': 'old-value', 'b': 99}
func3(args)
print(args['a'], args['b'])

5) Or bundle up values in a class instance:

class callByRef:
def __init__(self, **args):

for (key, value) in args.items():
setattr(self, key, value)

def func4(args):
args.a = 'new-value' # args is a mutable callByRef
args.b = args.b + 1 # change object in-place

args = callByRef(a='old-value', b=99)
func4(args)
print(args.a, args.b)

There’s almost never a good reason to get this complicated.
Your best choice is to return a tuple containing the multiple results.

2.2.11 How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects. For example, suppose you wanted to
define linear(a,b) which returns a function f(x) that computes the value a*x+b. Using nested scopes:

def linear(a, b):
def result(x):

return a * x + b
return result

Or using a callable object:

class linear:

def __init__(self, a, b):
self.a, self.b = a, b

def __call__(self, x):
return self.a * x + self.b

In both cases,

taxes = linear(0.3, 2)

gives a callable object where taxes(10e6) == 0.3 * 10e6 + 2.
The callable object approach has the disadvantage that it is a bit slower and results in slightly longer code. However, note
that a collection of callables can share their signature via inheritance:

2.2. Core Language 15

Python Frequently Asked Questions, Release 3.7.5rc1

class exponential(linear):
__init__ inherited
def __call__(self, x):

return self.a * (x ** self.b)

Object can encapsulate state for several methods:

class counter:

value = 0

def set(self, x):
self.value = x

def up(self):
self.value = self.value + 1

def down(self):
self.value = self.value - 1

count = counter()
inc, dec, reset = count.up, count.down, count.set

Here inc(), dec() and reset() act like functions which share the same counting variable.

2.2.12 How do I copy an object in Python?

In general, try copy.copy() or copy.deepcopy() for the general case. Not all objects can be copied, but most
can.
Some objects can be copied more easily. Dictionaries have a copy() method:

newdict = olddict.copy()

Sequences can be copied by slicing:

new_l = l[:]

2.2.13 How can I find the methods or attributes of an object?

For an instance x of a user-defined class, dir(x) returns an alphabetized list of the names containing the instance
attributes and methods and attributes defined by its class.

2.2.14 How can my code discover the name of an object?

Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds a name to a
value; the same is true of def and class statements, but in that case the value is a callable. Consider the following
code:

>>> class A:
... pass
...
>>> B = A

(continues on next page)

16 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
>>> a = B()
>>> b = a
>>> print(b)
<__main__.A object at 0x16D07CC>
>>> print(a)
<__main__.A object at 0x16D07CC>

Arguably the class has a name: even though it is bound to two names and invoked through the name B the created instance
is still reported as an instance of class A. However, it is impossible to say whether the instance’s name is a or b, since both
names are bound to the same value.
Generally speaking it should not be necessary for your code to “know the names” of particular values. Unless you are
deliberately writing introspective programs, this is usually an indication that a change of approach might be beneficial.
In comp.lang.python, Fredrik Lundh once gave an excellent analogy in answer to this question:

The same way as you get the name of that cat you found on your porch: the cat (object) itself cannot tell you
its name, and it doesn’t really care – so the only way to find out what it’s called is to ask all your neighbours
(namespaces) if it’s their cat (object)…
….and don’t be surprised if you’ll find that it’s known by many names, or no name at all!

2.2.15 What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> "a" in "b", "a"
(False, 'a')

Since the comma is not an operator, but a separator between expressions the above is evaluated as if you had entered:

("a" in "b"), "a"

not:

"a" in ("b", "a")

The same is true of the various assignment operators (=, += etc). They are not truly operators but syntactic delimiters in
assignment statements.

2.2.16 Is there an equivalent of C’s “?:” ternary operator?

Yes, there is. The syntax is as follows:

[on_true] if [expression] else [on_false]

x, y = 50, 25
small = x if x < y else y

Before this syntax was introduced in Python 2.5, a common idiom was to use logical operators:

[expression] and [on_true] or [on_false]

However, this idiom is unsafe, as it can give wrong results when on_true has a false boolean value. Therefore, it is always
better to use the ... if ... else ... form.

2.2. Core Language 17

Python Frequently Asked Questions, Release 3.7.5rc1

2.2.17 Is it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting lambda within lambda. See the following three examples, due to Ulf Bartelt:

from functools import reduce

Primes < 1000
print(list(filter(None,map(lambda y:y*reduce(lambda x,y:x*y!=0,
map(lambda x,y=y:y%x,range(2,int(pow(y,0.5)+1))),1),range(2,1000)))))

First 10 Fibonacci numbers
print(list(map(lambda x,f=lambda x,f:(f(x-1,f)+f(x-2,f)) if x>1 else 1:
f(x,f), range(10))))

Mandelbrot set
print((lambda Ru,Ro,Iu,Io,IM,Sx,Sy:reduce(lambda x,y:x+y,map(lambda y,
Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc,Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx,Sy=Sy:reduce(lambda x,y:x+y,map(lambda x,xc=Ru,yc=yc,Ru=Ru,Ro=Ro,
i=i,Sx=Sx,F=lambda xc,yc,x,y,k,f=lambda xc,yc,x,y,k,f:(k<=0)or (x*x+y*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc,yc,x,y,k,f):chr(
64+F(Ru+x*(Ro-Ru)/Sx,yc,0,0,i)),range(Sx))):L(Iu+y*(Io-Iu)/Sy),range(Sy
))))(-2.1, 0.7, -1.2, 1.2, 30, 80, 24))
___ ___/ ___ ___/ | | |__ lines on screen
V V | |______ columns on screen
| | |__________ maximum of "iterations"
| |_________________ range on y axis
|____________________________ range on x axis

Don’t try this at home, kids!

2.2.18 What does the slash(/) in the parameter list of a function mean?

A slash in the argument list of a function denotes that the parameters prior to it are positional-only. Positional-only
parameters are the ones without an externally-usable name. Upon calling a function that accepts positional-only parame-
ters, arguments are mapped to parameters based solely on their position. For example, pow() is a function that accepts
positional-only parameters. Its documentation looks like this:

>>> help(pow)
Help on built-in function pow in module builtins:

pow(x, y, z=None, /)
Equivalent to x**y (with two arguments) or x**y % z (with three arguments)

Some types, such as ints, are able to use a more efficient algorithm when
invoked using the three argument form.

The slash at the end of the parameter list means that all three parameters are positional-only. Thus, calling pow() with
keyword aguments would lead to an error:

>>> pow(x=3, y=4)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: pow() takes no keyword arguments

Note that as of this writing this is only documentational and no valid syntax in Python, although there is PEP 570, which
proposes a syntax for position-only parameters in Python.

18 Chapter 2. Programming FAQ

https://www.python.org/dev/peps/pep-0570

Python Frequently Asked Questions, Release 3.7.5rc1

2.3 Numbers and strings

2.3.1 How do I specify hexadecimal and octal integers?

To specify an octal digit, precede the octal value with a zero, and then a lower or uppercase “o”. For example, to set the
variable “a” to the octal value “10” (8 in decimal), type:

>>> a = 0o10
>>> a
8

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero, and then a lower or uppercase “x”.
Hexadecimal digits can be specified in lower or uppercase. For example, in the Python interpreter:

>>> a = 0xa5
>>> a
165
>>> b = 0XB2
>>> b
178

2.3.2 Why does -22 // 10 return -3?

It’s primarily driven by the desire that i % j have the same sign as j. If you want that, and also want:

i == (i // j) * j + (i % j)

then integer division has to return the floor. C also requires that identity to hold, and then compilers that truncate i //
j need to make i % j have the same sign as i.
There are few real use cases for i % j when j is negative. When j is positive, there are many, and in virtually all of
them it’s more useful for i % j to be >= 0. If the clock says 10 now, what did it say 200 hours ago? -190 % 12
== 2 is useful; -190 % 12 == -10 is a bug waiting to bite.

2.3.3 How do I convert a string to a number?

For integers, use the built-in int() type constructor, e.g. int('144') == 144. Similarly, float() converts to
floating-point, e.g. float('144') == 144.0.
By default, these interpret the number as decimal, so that int('0144') == 144 and int('0x144') raises
ValueError. int(string, base) takes the base to convert from as a second optional argument, so
int('0x144', 16) == 324. If the base is specified as 0, the number is interpreted using Python’s rules: a leading
‘0o’ indicates octal, and ‘0x’ indicates a hex number.
Do not use the built-in function eval() if all you need is to convert strings to numbers. eval() will be significantly
slower and it presents a security risk: someone could pass you a Python expression that might have unwanted side effects.
For example, someone could pass __import__('os').system("rm -rf $HOME") which would erase your
home directory.
eval() also has the effect of interpreting numbers as Python expressions, so that e.g. eval('09') gives a syntax
error because Python does not allow leading ‘0’ in a decimal number (except ‘0’).

2.3. Numbers and strings 19

Python Frequently Asked Questions, Release 3.7.5rc1

2.3.4 How do I convert a number to a string?

To convert, e.g., the number 144 to the string ‘144’, use the built-in type constructor str(). If you want a hexadecimal or
octal representation, use the built-in functions hex() or oct(). For fancy formatting, see the f-strings and formatstrings
sections, e.g. "{:04d}".format(144) yields '0144' and "{:.3f}".format(1.0/3.0) yields '0.333'.

2.3.5 How do I modify a string in place?

You can’t, because strings are immutable. In most situations, you should simply construct a new string from the various
parts you want to assemble it from. However, if you need an object with the ability to modify in-place unicode data, try
using an io.StringIO object or the array module:

>>> import io
>>> s = "Hello, world"
>>> sio = io.StringIO(s)
>>> sio.getvalue()
'Hello, world'
>>> sio.seek(7)
7
>>> sio.write("there!")
6
>>> sio.getvalue()
'Hello, there!'

>>> import array
>>> a = array.array('u', s)
>>> print(a)
array('u', 'Hello, world')
>>> a[0] = 'y'
>>> print(a)
array('u', 'yello, world')
>>> a.tounicode()
'yello, world'

2.3.6 How do I use strings to call functions/methods?

There are various techniques.
• The best is to use a dictionary that maps strings to functions. The primary advantage of this technique is that the
strings do not need to match the names of the functions. This is also the primary technique used to emulate a case
construct:

def a():
pass

def b():
pass

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch[get_input()]() # Note trailing parens to call function

• Use the built-in function getattr():

20 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

import foo
getattr(foo, 'bar')()

Note that getattr() works on any object, including classes, class instances, modules, and so on.
This is used in several places in the standard library, like this:

class Foo:
def do_foo(self):

...

def do_bar(self):
...

f = getattr(foo_instance, 'do_' + opname)
f()

• Use locals() or eval() to resolve the function name:

def myFunc():
print("hello")

fname = "myFunc"

f = locals()[fname]
f()

f = eval(fname)
f()

Note: Using eval() is slow and dangerous. If you don’t have absolute control over the contents of the string,
someone could pass a string that resulted in an arbitrary function being executed.

2.3.7 Is there an equivalent to Perl’s chomp() for removing trailing newlines from
strings?

You can use S.rstrip("\r\n") to remove all occurrences of any line terminator from the end of the string Swithout
removing other trailing whitespace. If the string S represents more than one line, with several empty lines at the end, the
line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"
... "\r\n"
... "\r\n")
>>> lines.rstrip("\n\r")
'line 1 '

Since this is typically only desired when reading text one line at a time, using S.rstrip() this way works well.

2.3.8 Is there a scanf() or sscanf() equivalent?

Not as such.
For simple input parsing, the easiest approach is usually to split the line into whitespace-delimited words using the
split() method of string objects and then convert decimal strings to numeric values using int() or float().

2.3. Numbers and strings 21

Python Frequently Asked Questions, Release 3.7.5rc1

split() supports an optional “sep” parameter which is useful if the line uses something other than whitespace as a
separator.
For more complicated input parsing, regular expressions are more powerful than C’s sscanf() and better suited for the
task.

2.3.9 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?

See the unicode-howto.

2.4 Performance

2.4.1 My program is too slow. How do I speed it up?

That’s a tough one, in general. First, here are a list of things to remember before diving further:
• Performance characteristics vary across Python implementations. This FAQ focusses on CPython.
• Behaviour can vary across operating systems, especially when talking about I/O or multi-threading.
• You should always find the hot spots in your program before attempting to optimize any code (see the profile
module).

• Writing benchmark scripts will allow you to iterate quickly when searching for improvements (see the timeit
module).

• It is highly recommended to have good code coverage (through unit testing or any other technique) before potentially
introducing regressions hidden in sophisticated optimizations.

That being said, there are many tricks to speed up Python code. Here are some general principles which go a long way
towards reaching acceptable performance levels:

• Making your algorithms faster (or changing to faster ones) can yield much larger benefits than trying to sprinkle
micro-optimization tricks all over your code.

• Use the right data structures. Study documentation for the bltin-types and the collections module.
• When the standard library provides a primitive for doing something, it is likely (although not guaranteed) to be
faster than any alternative you may come up with. This is doubly true for primitives written in C, such as builtins
and some extension types. For example, be sure to use either the list.sort() built-in method or the related
sorted() function to do sorting (and see the sortinghowto for examples of moderately advanced usage).

• Abstractions tend to create indirections and force the interpreter to work more. If the levels of indirection outweigh
the amount of useful work done, your program will be slower. You should avoid excessive abstraction, especially
under the form of tiny functions or methods (which are also often detrimental to readability).

If you have reached the limit of what pure Python can allow, there are tools to take you further away. For example,
Cython can compile a slightly modified version of Python code into a C extension, and can be used on many different
platforms. Cython can take advantage of compilation (and optional type annotations) to make your code significantly
faster than when interpreted. If you are confident in your C programming skills, you can also write a C extension module
yourself.
See also:
The wiki page devoted to performance tips.

22 Chapter 2. Programming FAQ

http://cython.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Python Frequently Asked Questions, Release 3.7.5rc1

2.4.2 What is the most efficient way to concatenate many strings together?

str and bytes objects are immutable, therefore concatenating many strings together is inefficient as each concatenation
creates a new object. In the general case, the total runtime cost is quadratic in the total string length.
To accumulate many str objects, the recommended idiom is to place them into a list and call str.join() at the end:

chunks = []
for s in my_strings:

chunks.append(s)
result = ''.join(chunks)

(another reasonably efficient idiom is to use io.StringIO)
To accumulate many bytes objects, the recommended idiom is to extend a bytearray object using in-place con-
catenation (the += operator):

result = bytearray()
for b in my_bytes_objects:

result += b

2.5 Sequences (Tuples/Lists)

2.5.1 How do I convert between tuples and lists?

The type constructor tuple(seq) converts any sequence (actually, any iterable) into a tuple with the same items in the
same order.
For example, tuple([1, 2, 3]) yields (1, 2, 3) and tuple('abc') yields ('a', 'b', 'c'). If the
argument is a tuple, it does not make a copy but returns the same object, so it is cheap to call tuple() when you aren’t
sure that an object is already a tuple.
The type constructor list(seq) converts any sequence or iterable into a list with the same items in the same order.
For example, list((1, 2, 3)) yields [1, 2, 3] and list('abc') yields ['a', 'b', 'c']. If the
argument is a list, it makes a copy just like seq[:] would.

2.5.2 What’s a negative index?

Python sequences are indexed with positive numbers and negative numbers. For positive numbers 0 is the first index 1 is
the second index and so forth. For negative indices -1 is the last index and -2 is the penultimate (next to last) index and
so forth. Think of seq[-n] as the same as seq[len(seq)-n].
Using negative indices can be very convenient. For example S[:-1] is all of the string except for its last character,
which is useful for removing the trailing newline from a string.

2.5.3 How do I iterate over a sequence in reverse order?

Use the reversed() built-in function, which is new in Python 2.4:

for x in reversed(sequence):
... # do something with x ...

2.5. Sequences (Tuples/Lists) 23

Python Frequently Asked Questions, Release 3.7.5rc1

This won’t touch your original sequence, but build a new copy with reversed order to iterate over.
With Python 2.3, you can use an extended slice syntax:

for x in sequence[::-1]:
... # do something with x ...

2.5.4 How do you remove duplicates from a list?

See the Python Cookbook for a long discussion of many ways to do this:
https://code.activestate.com/recipes/52560/

If you don’t mind reordering the list, sort it and then scan from the end of the list, deleting duplicates as you go:

if mylist:
mylist.sort()
last = mylist[-1]
for i in range(len(mylist)-2, -1, -1):

if last == mylist[i]:
del mylist[i]

else:
last = mylist[i]

If all elements of the list may be used as set keys (i.e. they are all hashable) this is often faster

mylist = list(set(mylist))

This converts the list into a set, thereby removing duplicates, and then back into a list.

2.5.5 How do you make an array in Python?

Use a list:

["this", 1, "is", "an", "array"]

Lists are equivalent to C or Pascal arrays in their time complexity; the primary difference is that a Python list can contain
objects of many different types.
The array module also provides methods for creating arrays of fixed types with compact representations, but they are
slower to index than lists. Also note that the Numeric extensions and others define array-like structures with various
characteristics as well.
To get Lisp-style linked lists, you can emulate cons cells using tuples:

lisp_list = ("like", ("this", ("example", None)))

If mutability is desired, you could use lists instead of tuples. Here the analogue of lisp car is lisp_list[0] and the
analogue of cdr is lisp_list[1]. Only do this if you’re sure you really need to, because it’s usually a lot slower than
using Python lists.

2.5.6 How do I create a multidimensional list?

You probably tried to make a multidimensional array like this:

24 Chapter 2. Programming FAQ

https://code.activestate.com/recipes/52560/

Python Frequently Asked Questions, Release 3.7.5rc1

>>> A = [[None] * 2] * 3

This looks correct if you print it:

>>> A
[[None, None], [None, None], [None, None]]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] = 5
>>> A
[[5, None], [5, None], [5, None]]

The reason is that replicating a list with * doesn’t create copies, it only creates references to the existing objects. The *3
creates a list containing 3 references to the same list of length two. Changes to one row will show in all rows, which is
almost certainly not what you want.
The suggested approach is to create a list of the desired length first and then fill in each element with a newly created list:

A = [None] * 3
for i in range(3):

A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also use a list comprehension:

w, h = 2, 3
A = [[None] * w for i in range(h)]

Or, you can use an extension that provides a matrix datatype; NumPy is the best known.

2.5.7 How do I apply a method to a sequence of objects?

Use a list comprehension:

result = [obj.method() for obj in mylist]

2.5.8 Why does a_tuple[i] += [‘item’] raise an exception when the addition works?

This is because of a combination of the fact that augmented assignment operators are assignment operators, and the
difference between mutable and immutable objects in Python.
This discussion applies in general when augmented assignment operators are applied to elements of a tuple that point to
mutable objects, but we’ll use a list and += as our exemplar.
If you wrote:

>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):

...
TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple[0] points to (1), producing
the result object, 2, but when we attempt to assign the result of the computation, 2, to element 0 of the tuple, we get an
error because we can’t change what an element of a tuple points to.

2.5. Sequences (Tuples/Lists) 25

http://www.numpy.org/

Python Frequently Asked Questions, Release 3.7.5rc1

Under the covers, what this augmented assignment statement is doing is approximately this:

>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):

...
TypeError: 'tuple' object does not support item assignment

It is the assignment part of the operation that produces the error, since a tuple is immutable.
When you write something like:

>>> a_tuple = (['foo'], 'bar')
>>> a_tuple[0] += ['item']
Traceback (most recent call last):

...
TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an error, the append
worked:

>>> a_tuple[0]
['foo', 'item']

To see why this happens, you need to know that (a) if an object implements an __iadd__ magic method, it gets called
when the += augmented assignment is executed, and its return value is what gets used in the assignment statement; and
(b) for lists, __iadd__ is equivalent to calling extend on the list and returning the list. That’s why we say that for
lists, += is a “shorthand” for list.extend:

>>> a_list = []
>>> a_list += [1]
>>> a_list
[1]

This is equivalent to:

>>> result = a_list.__iadd__([1])
>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back to a_list. The
end result of the assignment is a no-op, since it is a pointer to the same object that a_list was previously pointing to,
but the assignment still happens.
Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__(['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):

...
TypeError: 'tuple' object does not support item assignment

The __iadd__ succeeds, and thus the list is extended, but even though result points to the same object that
a_tuple[0] already points to, that final assignment still results in an error, because tuples are immutable.

26 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

2.5.9 I want to do a complicated sort: can you do a Schwartzian Transform in
Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which maps
each element to its “sort value”. In Python, use the key argument for the list.sort() method:

Isorted = L[:]
Isorted.sort(key=lambda s: int(s[10:15]))

2.5.10 How can I sort one list by values from another list?

Merge them into an iterator of tuples, sort the resulting list, and then pick out the element you want.

>>> list1 = ["what", "I'm", "sorting", "by"]
>>> list2 = ["something", "else", "to", "sort"]
>>> pairs = zip(list1, list2)
>>> pairs = sorted(pairs)
>>> pairs
[("I'm", 'else'), ('by', 'sort'), ('sorting', 'to'), ('what', 'something')]
>>> result = [x[1] for x in pairs]
>>> result
['else', 'sort', 'to', 'something']

An alternative for the last step is:

>>> result = []
>>> for p in pairs: result.append(p[1])

If you find this more legible, you might prefer to use this instead of the final list comprehension. However, it is almost
twice as slow for long lists. Why? First, the append() operation has to reallocate memory, and while it uses some
tricks to avoid doing that each time, it still has to do it occasionally, and that costs quite a bit. Second, the expression
“result.append” requires an extra attribute lookup, and third, there’s a speed reduction from having to make all those
function calls.

2.6 Objects

2.6.1 What is a class?

A class is the particular object type created by executing a class statement. Class objects are used as templates to create
instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.
A class can be based on one or more other classes, called its base class(es). It then inherits the attributes and methods of its
base classes. This allows an object model to be successively refined by inheritance. You might have a generic Mailbox
class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox, MaildirMailbox,
OutlookMailbox that handle various specific mailbox formats.

2.6.2 What is a method?

A method is a function on some object x that you normally call as x.name(arguments...). Methods are defined
as functions inside the class definition:

2.6. Objects 27

Python Frequently Asked Questions, Release 3.7.5rc1

class C:
def meth(self, arg):

return arg * 2 + self.attribute

2.6.3 What is self?

Self is merely a conventional name for the first argument of a method. A method defined as meth(self, a, b,
c) should be called as x.meth(a, b, c) for some instance x of the class in which the definition occurs; the called
method will think it is called as meth(x, a, b, c).
See alsoWhy must ‘self’ be used explicitly in method definitions and calls?.

2.6.4 How do I check if an object is an instance of a given class or of a subclass of
it?

Use the built-in function isinstance(obj, cls). You can check if an object is an instance of any of a num-
ber of classes by providing a tuple instead of a single class, e.g. isinstance(obj, (class1, class2, .
..)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance(obj, str) or
isinstance(obj, (int, float, complex)).
Note that most programs do not use isinstance() on user-defined classes very often. If you are developing the classes
yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular behaviour,
instead of checking the object’s class and doing a different thing based on what class it is. For example, if you have a
function that does something:

def search(obj):
if isinstance(obj, Mailbox):

... # code to search a mailbox
elif isinstance(obj, Document):

... # code to search a document
elif ...

A better approach is to define a search() method on all the classes and just call it:

class Mailbox:
def search(self):

... # code to search a mailbox

class Document:
def search(self):

... # code to search a document

obj.search()

2.6.5 What is delegation?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to change
the behaviour of just one of its methods. You can create a new class that provides a new implementation of the method
you’re interested in changing and delegates all other methods to the corresponding method of x.
Python programmers can easily implement delegation. For example, the following class implements a class that behaves
like a file but converts all written data to uppercase:

28 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

class UpperOut:

def __init__(self, outfile):
self._outfile = outfile

def write(self, s):
self._outfile.write(s.upper())

def __getattr__(self, name):
return getattr(self._outfile, name)

Here the UpperOut class redefines the write() method to convert the argument string to uppercase before calling
the underlying self.__outfile.write() method. All other methods are delegated to the underlying self.
__outfile object. The delegation is accomplished via the __getattr__ method; consult the language reference
for more information about controlling attribute access.
Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved, the class must
define a __setattr__() method too, and it must do so carefully. The basic implementation of __setattr__()
is roughly equivalent to the following:

class X:
...
def __setattr__(self, name, value):

self.__dict__[name] = value
...

Most __setattr__() implementations must modify self.__dict__ to store local state for self without causing
an infinite recursion.

2.6.6 How do I call a method defined in a base class from a derived class that
overrides it?

Use the built-in super() function:

class Derived(Base):
def meth(self):

super(Derived, self).meth()

For version prior to 3.0, you may be using classic classes: For a class definition such as class Derived(Base):
... you can call method meth() defined in Base (or one of Base’s base classes) as Base.meth(self,
arguments...). Here, Base.meth is an unbound method, so you need to provide the self argument.

2.6.7 How can I organize my code to make it easier to change the base class?

You could define an alias for the base class, assign the real base class to it before your class definition, and use the alias
throughout your class. Then all you have to change is the value assigned to the alias. Incidentally, this trick is also handy
if you want to decide dynamically (e.g. depending on availability of resources) which base class to use. Example:

BaseAlias = <real base class>

class Derived(BaseAlias):
def meth(self):

BaseAlias.meth(self)
...

2.6. Objects 29

Python Frequently Asked Questions, Release 3.7.5rc1

2.6.8 How do I create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.
For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the class
name in the assignment:

class C:
count = 0 # number of times C.__init__ called

def __init__(self):
C.count = C.count + 1

def getcount(self):
return C.count # or return self.count

c.count also refers to C.count for any c such that isinstance(c, C) holds, unless overridden by c itself or
by some class on the base-class search path from c.__class__ back to C.
Caution: within a method of C, an assignment like self.count = 42 creates a new and unrelated instance named
“count” in self’s own dict. Rebinding of a class-static data name must always specify the class whether inside a method
or not:

C.count = 314

Static methods are possible:

class C:
@staticmethod
def static(arg1, arg2, arg3):

No 'self' parameter!
...

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount():
return C.count

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the desired
encapsulation.

2.6.9 How can I overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of constructors.
In C++ you’d write

class C {
C() { cout << "No arguments\n"; }
C(int i) { cout << "Argument is " << i << "\n"; }

}

In Python you have to write a single constructor that catches all cases using default arguments. For example:

class C:
def __init__(self, i=None):

if i is None:

(continues on next page)

30 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
print("No arguments")

else:
print("Argument is", i)

This is not entirely equivalent, but close enough in practice.
You could also try a variable-length argument list, e.g.

def __init__(self, *args):
...

The same approach works for all method definitions.

2.6.10 I try to use __spam and I get an error about _SomeClassName__spam.

Variable names with double leading underscores are “mangled” to provide a simple but effective way to define class private
variables. Any identifier of the form __spam (at least two leading underscores, at most one trailing underscore) is textu-
ally replaced with _classname__spam, where classname is the current class name with any leading underscores
stripped.
This doesn’t guarantee privacy: an outside user can still deliberately access the “_classname__spam” attribute, and private
values are visible in the object’s __dict__. Many Python programmers never bother to use private variable names at
all.

2.6.11 My class defines __del__ but it is not called when I delete the object.

There are several possible reasons for this.
The del statement does not necessarily call __del__() – it simply decrements the object’s reference count, and if this
reaches zero __del__() is called.
If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has
a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect
such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so
your __del__() method may be called at an inconvenient and random time. This is inconvenient if you’re trying to
reproduce a problem. Worse, the order in which object’s __del__() methods are executed is arbitrary. You can run
gc.collect() to force a collection, but there are pathological cases where objects will never be collected.
Despite the cycle collector, it’s still a good idea to define an explicit close() method on objects to be called when-
ever you’re done with them. The close() method can then remove attributes that refer to subobjects. Don’t call
__del__() directly – __del__() should call close() and close() should make sure that it can be called more
than once for the same object.
Another way to avoid cyclical references is to use the weakref module, which allows you to point to objects without
incrementing their reference count. Tree data structures, for instance, should use weak references for their parent and
sibling references (if they need them!).
Finally, if your __del__() method raises an exception, a warning message is printed to sys.stderr.

2.6.12 How do I get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s constructor to
keep track of all instances by keeping a list of weak references to each instance.

2.6. Objects 31

Python Frequently Asked Questions, Release 3.7.5rc1

2.6.13 Why does the result of id() appear to be not unique?

The id() builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since in CPython,
this is the object’s memory address, it happens frequently that after an object is deleted from memory, the next freshly
created object is allocated at the same position in memory. This is illustrated by this example:

>>> id(1000) # doctest: +SKIP
13901272
>>> id(2000) # doctest: +SKIP
13901272

The two ids belong to different integer objects that are created before, and deleted immediately after execution of the
id() call. To be sure that objects whose id you want to examine are still alive, create another reference to the object:

>>> a = 1000; b = 2000
>>> id(a) # doctest: +SKIP
13901272
>>> id(b) # doctest: +SKIP
13891296

2.7 Modules

2.7.1 How do I create a .pyc file?

When a module is imported for the first time (or when the source file has changed since the current compiled file was
created) a .pyc file containing the compiled code should be created in a __pycache__ subdirectory of the directory
containing the .py file. The .pyc file will have a filename that starts with the same name as the .py file, and ends
with .pyc, with a middle component that depends on the particular python binary that created it. (See PEP 3147 for
details.)
One reason that a .pyc file may not be created is a permissions problem with the directory containing the source file,
meaning that the __pycache__ subdirectory cannot be created. This can happen, for example, if you develop as one
user but run as another, such as if you are testing with a web server.
Unless the PYTHONDONTWRITEBYTECODE environment variable is set, creation of a .pyc file is automatic if you’re
importing a module and Python has the ability (permissions, free space, etc…) to create a __pycache__ subdirectory
and write the compiled module to that subdirectory.
Running Python on a top level script is not considered an import and no .pyc will be created. For example, if you have
a top-level module foo.py that imports another module xyz.py, when you run foo (by typing python foo.py
as a shell command), a .pyc will be created for xyz because xyz is imported, but no .pyc file will be created for foo
since foo.py isn’t being imported.
If you need to create a .pyc file for foo – that is, to create a .pyc file for a module that is not imported – you can,
using the py_compile and compileall modules.
The py_compile module can manually compile any module. One way is to use the compile() function in that
module interactively:

>>> import py_compile
>>> py_compile.compile('foo.py')

This will write the .pyc to a __pycache__ subdirectory in the same location as foo.py (or you can override that
with the optional parameter cfile).

32 Chapter 2. Programming FAQ

https://www.python.org/dev/peps/pep-3147

Python Frequently Asked Questions, Release 3.7.5rc1

You can also automatically compile all files in a directory or directories using the compileall module. You can do
it from the shell prompt by running compileall.py and providing the path of a directory containing Python files to
compile:

python -m compileall .

2.7.2 How do I find the current module name?

Amodule can find out its own module name by looking at the predefined global variable __name__. If this has the value
'__main__', the program is running as a script. Many modules that are usually used by importing them also provide
a command-line interface or a self-test, and only execute this code after checking __name__:

def main():
print('Running test...')
...

if __name__ == '__main__':
main()

2.7.3 How can I have modules that mutually import each other?

Suppose you have the following modules:
foo.py:

from bar import bar_var
foo_var = 1

bar.py:

from foo import foo_var
bar_var = 2

The problem is that the interpreter will perform the following steps:
• main imports foo
• Empty globals for foo are created
• foo is compiled and starts executing
• foo imports bar
• Empty globals for bar are created
• bar is compiled and starts executing
• bar imports foo (which is a no-op since there already is a module named foo)
• bar.foo_var = foo.foo_var

The last step fails, because Python isn’t done with interpreting foo yet and the global symbol dictionary for foo is still
empty.
The same thing happens when you use import foo, and then try to access foo.foo_var in global code.
There are (at least) three possible workarounds for this problem.

2.7. Modules 33

Python Frequently Asked Questions, Release 3.7.5rc1

Guido van Rossum recommends avoiding all uses of from <module> import ..., and placing all code inside
functions. Initializations of global variables and class variables should use constants or built-in functions only. This means
everything from an imported module is referenced as <module>.<name>.
Jim Roskind suggests performing steps in the following order in each module:

• exports (globals, functions, and classes that don’t need imported base classes)
• import statements
• active code (including globals that are initialized from imported values).

van Rossum doesn’t like this approach much because the imports appear in a strange place, but it does work.
Matthias Urlichs recommends restructuring your code so that the recursive import is not necessary in the first place.
These solutions are not mutually exclusive.

2.7.4 __import__(‘x.y.z’) returns <module ‘x’>; how do I get z?

Consider using the convenience function import_module() from importlib instead:

z = importlib.import_module('x.y.z')

2.7.5 When I edit an imported module and reimport it, the changes don’t show up.
Why does this happen?

For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module is imported.
If it didn’t, in a program consisting of many modules where each one imports the same basic module, the basic module
would be parsed and re-parsed many times. To force re-reading of a changed module, do this:

import importlib
import modname
importlib.reload(modname)

Warning: this technique is not 100% fool-proof. In particular, modules containing statements like

from modname import some_objects

will continue to work with the old version of the imported objects. If the module contains class definitions, existing class
instances will not be updated to use the new class definition. This can result in the following paradoxical behaviour:

>>> import importlib
>>> import cls
>>> c = cls.C() # Create an instance of C
>>> importlib.reload(cls)
<module 'cls' from 'cls.py'>
>>> isinstance(c, cls.C) # isinstance is false?!?
False

The nature of the problem is made clear if you print out the “identity” of the class objects:

>>> hex(id(c.__class__))
'0x7352a0'
>>> hex(id(cls.C))
'0x4198d0'

34 Chapter 2. Programming FAQ

CHAPTER

THREE

DESIGN AND HISTORY FAQ

3.1 Why does Python use indentation for grouping of statements?

Guido van Rossum believes that using indentation for grouping is extremely elegant and contributes a lot to the clarity of
the average Python program. Most people learn to love this feature after a while.
Since there are no begin/end brackets there cannot be a disagreement between grouping perceived by the parser and the
human reader. Occasionally C programmers will encounter a fragment of code like this:

if (x <= y)
x++;
y--;

z++;

Only the x++ statement is executed if the condition is true, but the indentation leads you to believe otherwise. Even
experienced C programmers will sometimes stare at it a long time wondering why y is being decremented even for x >
y.
Because there are no begin/end brackets, Python is much less prone to coding-style conflicts. In C there are many different
ways to place the braces. If you’re used to reading and writing code that uses one style, you will feel at least slightly uneasy
when reading (or being required to write) another style.
Many coding styles place begin/end brackets on a line by themselves. This makes programs considerably longer and wastes
valuable screen space, making it harder to get a good overview of a program. Ideally, a function should fit on one screen
(say, 20–30 lines). 20 lines of Python can do a lot more work than 20 lines of C. This is not solely due to the lack of
begin/end brackets – the lack of declarations and the high-level data types are also responsible – but the indentation-based
syntax certainly helps.

3.2 Why am I getting strange results with simple arithmetic opera-
tions?

See the next question.

3.3 Why are floating-point calculations so inaccurate?

Users are often surprised by results like this:

>>> 1.2 - 1.0
0.19999999999999996

35

Python Frequently Asked Questions, Release 3.7.5rc1

and think it is a bug in Python. It’s not. This has little to do with Python, and much more to do with how the underlying
platform handles floating-point numbers.
The float type in CPython uses a C double for storage. A float object’s value is stored in binary floating-point
with a fixed precision (typically 53 bits) and Python uses C operations, which in turn rely on the hardware implementation
in the processor, to perform floating-point operations. This means that as far as floating-point operations are concerned,
Python behaves like many popular languages including C and Java.
Many numbers that can be written easily in decimal notation cannot be expressed exactly in binary floating-point. For
example, after:

>>> x = 1.2

the value stored for x is a (very good) approximation to the decimal value 1.2, but is not exactly equal to it. On a typical
machine, the actual stored value is:

1.0011001100110011001100110011001100110011001100110011 (binary)

which is exactly:

1.1999999999999999555910790149937383830547332763671875 (decimal)

The typical precision of 53 bits provides Python floats with 15–16 decimal digits of accuracy.
For a fuller explanation, please see the floating point arithmetic chapter in the Python tutorial.

3.4 Why are Python strings immutable?

There are several advantages.
One is performance: knowing that a string is immutable means we can allocate space for it at creation time, and the
storage requirements are fixed and unchanging. This is also one of the reasons for the distinction between tuples and lists.
Another advantage is that strings in Python are considered as “elemental” as numbers. No amount of activity will change
the value 8 to anything else, and in Python, no amount of activity will change the string “eight” to anything else.

3.5 Whymust ‘self’ be used explicitly inmethod definitions and calls?

The idea was borrowed from Modula-3. It turns out to be very useful, for a variety of reasons.
First, it’s more obvious that you are using a method or instance attribute instead of a local variable. Reading self.x
or self.meth() makes it absolutely clear that an instance variable or method is used even if you don’t know the class
definition by heart. In C++, you can sort of tell by the lack of a local variable declaration (assuming globals are rare or
easily recognizable) – but in Python, there are no local variable declarations, so you’d have to look up the class definition
to be sure. Some C++ and Java coding standards call for instance attributes to have an m_ prefix, so this explicitness is
still useful in those languages, too.
Second, it means that no special syntax is necessary if you want to explicitly reference or call the method from a particular
class. In C++, if you want to use a method from a base class which is overridden in a derived class, you have to use
the :: operator – in Python you can write baseclass.methodname(self, <argument list>). This is
particularly useful for __init__() methods, and in general in cases where a derived class method wants to extend the
base class method of the same name and thus has to call the base class method somehow.
Finally, for instance variables it solves a syntactic problem with assignment: since local variables in Python are (by def-
inition!) those variables to which a value is assigned in a function body (and that aren’t explicitly declared global), there

36 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

has to be some way to tell the interpreter that an assignment was meant to assign to an instance variable instead of to
a local variable, and it should preferably be syntactic (for efficiency reasons). C++ does this through declarations, but
Python doesn’t have declarations and it would be a pity having to introduce them just for this purpose. Using the explicit
self.var solves this nicely. Similarly, for using instance variables, having to write self.var means that references
to unqualified names inside a method don’t have to search the instance’s directories. To put it another way, local variables
and instance variables live in two different namespaces, and you need to tell Python which namespace to use.

3.6 Why can’t I use an assignment in an expression?

Many people used to C or Perl complain that they want to use this C idiom:

while (line = readline(f)) {
// do something with line

}

where in Python you’re forced to write this:

while True:
line = f.readline()
if not line:

break
... # do something with line

The reason for not allowing assignment in Python expressions is a common, hard-to-find bug in those other languages,
caused by this construct:

if (x = 0) {
// error handling

}
else {

// code that only works for nonzero x
}

The error is a simple typo: x = 0, which assigns 0 to the variable x, was written while the comparison x == 0 is
certainly what was intended.
Many alternatives have been proposed. Most are hacks that save some typing but use arbitrary or cryptic syntax or
keywords, and fail the simple criterion for language change proposals: it should intuitively suggest the proper meaning to
a human reader who has not yet been introduced to the construct.
An interesting phenomenon is that most experienced Python programmers recognize the while True idiom and don’t
seem to be missing the assignment in expression construct much; it’s only newcomers who express a strong desire to add
this to the language.
There’s an alternative way of spelling this that seems attractive but is generally less robust than the “while True” solution:

line = f.readline()
while line:

... # do something with line...
line = f.readline()

The problem with this is that if you change your mind about exactly how you get the next line (e.g. you want to change it
into sys.stdin.readline()) you have to remember to change two places in your program – the second occurrence
is hidden at the bottom of the loop.
The best approach is to use iterators, making it possible to loop through objects using the for statement. For example,
file objects support the iterator protocol, so you can write simply:

3.6. Why can’t I use an assignment in an expression? 37

Python Frequently Asked Questions, Release 3.7.5rc1

for line in f:
... # do something with line...

3.7 Why does Python use methods for some functionality (e.g.
list.index()) but functions for other (e.g. len(list))?

As Guido said:
(a) For some operations, prefix notation just reads better than postfix – prefix (and infix!) operations have a
long tradition in mathematics which likes notations where the visuals help the mathematician thinking about
a problem. Compare the easy with which we rewrite a formula like x*(a+b) into x*a + x*b to the clumsiness
of doing the same thing using a raw OO notation.
(b) When I read code that says len(x) I know that it is asking for the length of something. This tells me
two things: the result is an integer, and the argument is some kind of container. To the contrary, when I
read x.len(), I have to already know that x is some kind of container implementing an interface or inheriting
from a class that has a standard len(). Witness the confusion we occasionally have when a class that is not
implementing a mapping has a get() or keys() method, or something that isn’t a file has a write() method.

—https://mail.python.org/pipermail/python-3000/2006-November/004643.html

3.8 Why is join() a string method instead of a list or tuple method?

Strings became much more like other standard types starting in Python 1.6, when methods were added which give the
same functionality that has always been available using the functions of the string module. Most of these new methods
have been widely accepted, but the one which appears to make some programmers feel uncomfortable is:

", ".join(['1', '2', '4', '8', '16'])

which gives the result:

"1, 2, 4, 8, 16"

There are two common arguments against this usage.
The first runs along the lines of: “It looks really ugly using a method of a string literal (string constant)”, to which the
answer is that it might, but a string literal is just a fixed value. If the methods are to be allowed on names bound to strings
there is no logical reason to make them unavailable on literals.
The second objection is typically cast as: “I am really telling a sequence to join its members together with a string constant”.
Sadly, you aren’t. For some reason there seems to be much less difficulty with having split() as a string method, since
in that case it is easy to see that

"1, 2, 4, 8, 16".split(", ")

is an instruction to a string literal to return the substrings delimited by the given separator (or, by default, arbitrary runs
of white space).
join() is a string method because in using it you are telling the separator string to iterate over a sequence of strings and
insert itself between adjacent elements. This method can be used with any argument which obeys the rules for sequence
objects, including any new classes you might define yourself. Similar methods exist for bytes and bytearray objects.

38 Chapter 3. Design and History FAQ

https://mail.python.org/pipermail/python-3000/2006-November/004643.html

Python Frequently Asked Questions, Release 3.7.5rc1

3.9 How fast are exceptions?

A try/except block is extremely efficient if no exceptions are raised. Actually catching an exception is expensive. In
versions of Python prior to 2.0 it was common to use this idiom:

try:
value = mydict[key]

except KeyError:
mydict[key] = getvalue(key)
value = mydict[key]

This only made sense when you expected the dict to have the key almost all the time. If that wasn’t the case, you coded
it like this:

if key in mydict:
value = mydict[key]

else:
value = mydict[key] = getvalue(key)

For this specific case, you could also use value = dict.setdefault(key, getvalue(key)), but only if
the getvalue() call is cheap enough because it is evaluated in all cases.

3.10 Why isn’t there a switch or case statement in Python?

You can do this easily enough with a sequence of if... elif... elif... else. There have been some pro-
posals for switch statement syntax, but there is no consensus (yet) on whether and how to do range tests. See PEP 275
for complete details and the current status.
For cases where you need to choose from a very large number of possibilities, you can create a dictionary mapping case
values to functions to call. For example:

def function_1(...):
...

functions = {'a': function_1,
'b': function_2,
'c': self.method_1, ...}

func = functions[value]
func()

For calling methods on objects, you can simplify yet further by using the getattr() built-in to retrieve methods with
a particular name:

def visit_a(self, ...):
...

...

def dispatch(self, value):
method_name = 'visit_' + str(value)
method = getattr(self, method_name)
method()

It’s suggested that you use a prefix for the method names, such as visit_ in this example. Without such a prefix, if
values are coming from an untrusted source, an attacker would be able to call any method on your object.

3.9. How fast are exceptions? 39

https://www.python.org/dev/peps/pep-0275

Python Frequently Asked Questions, Release 3.7.5rc1

3.11 Can’t you emulate threads in the interpreter instead of relying
on an OS-specific thread implementation?

Answer 1: Unfortunately, the interpreter pushes at least one C stack frame for each Python stack frame. Also, extensions
can call back into Python at almost random moments. Therefore, a complete threads implementation requires thread
support for C.
Answer 2: Fortunately, there is Stackless Python, which has a completely redesigned interpreter loop that avoids the C
stack.

3.12 Why can’t lambda expressions contain statements?

Python lambda expressions cannot contain statements because Python’s syntactic framework can’t handle statements
nested inside expressions. However, in Python, this is not a serious problem. Unlike lambda forms in other languages,
where they add functionality, Python lambdas are only a shorthand notation if you’re too lazy to define a function.
Functions are already first class objects in Python, and can be declared in a local scope. Therefore the only advantage of
using a lambda instead of a locally-defined function is that you don’t need to invent a name for the function – but that’s
just a local variable to which the function object (which is exactly the same type of object that a lambda expression yields)
is assigned!

3.13 Can Python be compiled to machine code, C or some other lan-
guage?

Cython compiles a modified version of Python with optional annotations into C extensions. Nuitka is an up-and-coming
compiler of Python into C++ code, aiming to support the full Python language. For compiling to Java you can consider
VOC.

3.14 How does Python manage memory?

The details of Python memory management depend on the implementation. The standard implementation of Python,
CPython, uses reference counting to detect inaccessible objects, and another mechanism to collect reference cycles, pe-
riodically executing a cycle detection algorithm which looks for inaccessible cycles and deletes the objects involved.
The gc module provides functions to perform a garbage collection, obtain debugging statistics, and tune the collector’s
parameters.
Other implementations (such as Jython or PyPy), however, can rely on a different mechanism such as a full-blown garbage
collector. This difference can cause some subtle porting problems if your Python code depends on the behavior of the
reference counting implementation.
In some Python implementations, the following code (which is fine in CPython) will probably run out of file descriptors:

for file in very_long_list_of_files:
f = open(file)
c = f.read(1)

Indeed, using CPython’s reference counting and destructor scheme, each new assignment to f closes the previous file. With
a traditional GC, however, those file objects will only get collected (and closed) at varying and possibly long intervals.

40 Chapter 3. Design and History FAQ

https://github.com/stackless-dev/stackless/wiki
http://cython.org/
http://www.nuitka.net/
https://voc.readthedocs.io
http://www.jython.org
http://www.pypy.org

Python Frequently Asked Questions, Release 3.7.5rc1

If you want to write code that will work with any Python implementation, you should explicitly close the file or use the
with statement; this will work regardless of memory management scheme:

for file in very_long_list_of_files:
with open(file) as f:

c = f.read(1)

3.15 Why doesn’t CPython use a more traditional garbage collection
scheme?

For one thing, this is not a C standard feature and hence it’s not portable. (Yes, we know about the Boehm GC library. It
has bits of assembler code for most common platforms, not for all of them, and although it is mostly transparent, it isn’t
completely transparent; patches are required to get Python to work with it.)
Traditional GC also becomes a problem when Python is embedded into other applications. While in a standalone Python
it’s fine to replace the standard malloc() and free() with versions provided by the GC library, an application embedding
Python may want to have its own substitute for malloc() and free(), and may not want Python’s. Right now, CPython
works with anything that implements malloc() and free() properly.

3.16 Why isn’t all memory freed when CPython exits?

Objects referenced from the global namespaces of Python modules are not always deallocated when Python exits. This
may happen if there are circular references. There are also certain bits of memory that are allocated by the C library that
are impossible to free (e.g. a tool like Purify will complain about these). Python is, however, aggressive about cleaning
up memory on exit and does try to destroy every single object.
If you want to force Python to delete certain things on deallocation use the atexit module to run a function that will
force those deletions.

3.17 Why are there separate tuple and list data types?

Lists and tuples, while similar in many respects, are generally used in fundamentally different ways. Tuples can be thought
of as being similar to Pascal records or C structs; they’re small collections of related data which may be of different types
which are operated on as a group. For example, a Cartesian coordinate is appropriately represented as a tuple of two or
three numbers.
Lists, on the other hand, are more like arrays in other languages. They tend to hold a varying number of objects all of
which have the same type and which are operated on one-by-one. For example, os.listdir('.') returns a list of
strings representing the files in the current directory. Functions which operate on this output would generally not break if
you added another file or two to the directory.
Tuples are immutable, meaning that once a tuple has been created, you can’t replace any of its elements with a new
value. Lists are mutable, meaning that you can always change a list’s elements. Only immutable elements can be used as
dictionary keys, and hence only tuples and not lists can be used as keys.

3.18 How are lists implemented in CPython?

CPython’s lists are really variable-length arrays, not Lisp-style linked lists. The implementation uses a contiguous array
of references to other objects, and keeps a pointer to this array and the array’s length in a list head structure.

3.15. Why doesn’t CPython use a more traditional garbage collection scheme? 41

Python Frequently Asked Questions, Release 3.7.5rc1

This makes indexing a list a[i] an operation whose cost is independent of the size of the list or the value of the index.
When items are appended or inserted, the array of references is resized. Some cleverness is applied to improve the
performance of appending items repeatedly; when the array must be grown, some extra space is allocated so the next few
times don’t require an actual resize.

3.19 How are dictionaries implemented in CPython?

CPython’s dictionaries are implemented as resizable hash tables. Compared to B-trees, this gives better performance for
lookup (the most common operation by far) under most circumstances, and the implementation is simpler.
Dictionaries work by computing a hash code for each key stored in the dictionary using the hash() built-in function. The
hash code varies widely depending on the key and a per-process seed; for example, “Python” could hash to -539294296
while “python”, a string that differs by a single bit, could hash to 1142331976. The hash code is then used to calculate a
location in an internal array where the value will be stored. Assuming that you’re storing keys that all have different hash
values, this means that dictionaries take constant time – O(1), in Big-O notation – to retrieve a key.

3.20 Why must dictionary keys be immutable?

The hash table implementation of dictionaries uses a hash value calculated from the key value to find the key. If the key
were a mutable object, its value could change, and thus its hash could also change. But since whoever changes the key
object can’t tell that it was being used as a dictionary key, it can’t move the entry around in the dictionary. Then, when
you try to look up the same object in the dictionary it won’t be found because its hash value is different. If you tried to
look up the old value it wouldn’t be found either, because the value of the object found in that hash bin would be different.
If you want a dictionary indexed with a list, simply convert the list to a tuple first; the function tuple(L) creates a tuple
with the same entries as the list L. Tuples are immutable and can therefore be used as dictionary keys.
Some unacceptable solutions that have been proposed:

• Hash lists by their address (object ID). This doesn’t work because if you construct a new list with the same value it
won’t be found; e.g.:

mydict = {[1, 2]: '12'}
print(mydict[[1, 2]])

would raise a KeyError exception because the id of the [1, 2] used in the second line differs from that in the
first line. In other words, dictionary keys should be compared using ==, not using is.

• Make a copy when using a list as a key. This doesn’t work because the list, being a mutable object, could contain a
reference to itself, and then the copying code would run into an infinite loop.

• Allow lists as keys but tell the user not to modify them. This would allow a class of hard-to-track bugs in programs
when you forgot or modified a list by accident. It also invalidates an important invariant of dictionaries: every value
in d.keys() is usable as a key of the dictionary.

• Mark lists as read-only once they are used as a dictionary key. The problem is that it’s not just the top-level object
that could change its value; you could use a tuple containing a list as a key. Entering anything as a key into a
dictionary would require marking all objects reachable from there as read-only – and again, self-referential objects
could cause an infinite loop.

There is a trick to get around this if you need to, but use it at your own risk: You can wrap a mutable structure inside a
class instance which has both a __eq__() and a __hash__() method. You must then make sure that the hash value
for all such wrapper objects that reside in a dictionary (or other hash based structure), remain fixed while the object is in
the dictionary (or other structure).

42 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

class ListWrapper:
def __init__(self, the_list):

self.the_list = the_list

def __eq__(self, other):
return self.the_list == other.the_list

def __hash__(self):
l = self.the_list
result = 98767 - len(l)*555
for i, el in enumerate(l):

try:
result = result + (hash(el) % 9999999) * 1001 + i

except Exception:
result = (result % 7777777) + i * 333

return result

Note that the hash computation is complicated by the possibility that some members of the list may be unhashable and
also by the possibility of arithmetic overflow.
Furthermore it must always be the case that if o1 == o2 (ie o1.__eq__(o2) is True) then hash(o1) ==
hash(o2) (ie, o1.__hash__() == o2.__hash__()), regardless of whether the object is in a dictionary or not.
If you fail to meet these restrictions dictionaries and other hash based structures will misbehave.
In the case of ListWrapper, whenever the wrapper object is in a dictionary the wrapped list must not change to avoid
anomalies. Don’t do this unless you are prepared to think hard about the requirements and the consequences of not
meeting them correctly. Consider yourself warned.

3.21 Why doesn’t list.sort() return the sorted list?

In situations where performance matters, making a copy of the list just to sort it would be wasteful. Therefore, list.
sort() sorts the list in place. In order to remind you of that fact, it does not return the sorted list. This way, you won’t
be fooled into accidentally overwriting a list when you need a sorted copy but also need to keep the unsorted version
around.
If you want to return a new list, use the built-in sorted() function instead. This function creates a new list from a
provided iterable, sorts it and returns it. For example, here’s how to iterate over the keys of a dictionary in sorted order:

for key in sorted(mydict):
... # do whatever with mydict[key]...

3.22 How do you specify and enforce an interface spec in Python?

An interface specification for a module as provided by languages such as C++ and Java describes the prototypes for the
methods and functions of the module. Many feel that compile-time enforcement of interface specifications helps in the
construction of large programs.
Python 2.6 adds an abc module that lets you define Abstract Base Classes (ABCs). You can then use isinstance()
and issubclass() to check whether an instance or a class implements a particular ABC. The collections.abc
module defines a set of useful ABCs such as Iterable, Container, and MutableMapping.
For Python, many of the advantages of interface specifications can be obtained by an appropriate test discipline for
components. There is also a tool, PyChecker, which can be used to find problems due to subclassing.

3.21. Why doesn’t list.sort() return the sorted list? 43

Python Frequently Asked Questions, Release 3.7.5rc1

A good test suite for a module can both provide a regression test and serve as a module interface specification and a set of
examples. Many Python modules can be run as a script to provide a simple “self test.” Even modules which use complex
external interfaces can often be tested in isolation using trivial “stub” emulations of the external interface. The doctest
and unittestmodules or third-party test frameworks can be used to construct exhaustive test suites that exercise every
line of code in a module.
An appropriate testing discipline can help build large complex applications in Python as well as having interface specifi-
cations would. In fact, it can be better because an interface specification cannot test certain properties of a program. For
example, the append()method is expected to add new elements to the end of some internal list; an interface specifica-
tion cannot test that your append() implementation will actually do this correctly, but it’s trivial to check this property
in a test suite.
Writing test suites is very helpful, and you might want to design your code with an eye to making it easily tested. One
increasingly popular technique, test-directed development, calls for writing parts of the test suite first, before you write
any of the actual code. Of course Python allows you to be sloppy and not write test cases at all.

3.23 Why is there no goto?

You can use exceptions to provide a “structured goto” that even works across function calls. Many feel that exceptions
can conveniently emulate all reasonable uses of the “go” or “goto” constructs of C, Fortran, and other languages. For
example:

class label(Exception): pass # declare a label

try:
...
if condition: raise label() # goto label
...

except label: # where to goto
pass

...

This doesn’t allow you to jump into the middle of a loop, but that’s usually considered an abuse of goto anyway. Use
sparingly.

3.24 Why can’t raw strings (r-strings) end with a backslash?

More precisely, they can’t end with an odd number of backslashes: the unpaired backslash at the end escapes the closing
quote character, leaving an unterminated string.
Raw strings were designed to ease creating input for processors (chiefly regular expression engines) that want to do their
own backslash escape processing. Such processors consider an unmatched trailing backslash to be an error anyway, so
raw strings disallow that. In return, they allow you to pass on the string quote character by escaping it with a backslash.
These rules work well when r-strings are used for their intended purpose.
If you’re trying to build Windows pathnames, note that all Windows system calls accept forward slashes too:

f = open("/mydir/file.txt") # works fine!

If you’re trying to build a pathname for a DOS command, try e.g. one of

dir = r"\this\is\my\dos\dir" "\\"
dir = r"\this\is\my\dos\dir\ "[:-1]
dir = "\\this\\is\\my\\dos\\dir\\"

44 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

3.25 Why doesn’t Python have a “with” statement for attribute as-
signments?

Python has a ‘with’ statement that wraps the execution of a block, calling code on the entrance and exit from the block.
Some language have a construct that looks like this:

with obj:
a = 1 # equivalent to obj.a = 1
total = total + 1 # obj.total = obj.total + 1

In Python, such a construct would be ambiguous.
Other languages, such as Object Pascal, Delphi, and C++, use static types, so it’s possible to know, in an unambiguous
way, what member is being assigned to. This is the main point of static typing – the compiler always knows the scope of
every variable at compile time.
Python uses dynamic types. It is impossible to know in advance which attribute will be referenced at runtime. Member
attributes may be added or removed from objects on the fly. This makes it impossible to know, from a simple reading,
what attribute is being referenced: a local one, a global one, or a member attribute?
For instance, take the following incomplete snippet:

def foo(a):
with a:

print(x)

The snippet assumes that “a” must have a member attribute called “x”. However, there is nothing in Python that tells the
interpreter this. What should happen if “a” is, let us say, an integer? If there is a global variable named “x”, will it be
used inside the with block? As you see, the dynamic nature of Python makes such choices much harder.
The primary benefit of “with” and similar language features (reduction of code volume) can, however, easily be achieved
in Python by assignment. Instead of:

function(args).mydict[index][index].a = 21
function(args).mydict[index][index].b = 42
function(args).mydict[index][index].c = 63

write this:

ref = function(args).mydict[index][index]
ref.a = 21
ref.b = 42
ref.c = 63

This also has the side-effect of increasing execution speed because name bindings are resolved at run-time in Python, and
the second version only needs to perform the resolution once.

3.26 Why are colons required for the if/while/def/class statements?

The colon is required primarily to enhance readability (one of the results of the experimental ABC language). Consider
this:

if a == b
print(a)

3.25. Why doesn’t Python have a “with” statement for attribute assignments? 45

Python Frequently Asked Questions, Release 3.7.5rc1

versus

if a == b:
print(a)

Notice how the second one is slightly easier to read. Notice further how a colon sets off the example in this FAQ answer;
it’s a standard usage in English.
Another minor reason is that the colon makes it easier for editors with syntax highlighting; they can look for colons to
decide when indentation needs to be increased instead of having to do a more elaborate parsing of the program text.

3.27 Why does Python allow commas at the end of lists and tuples?

Python lets you add a trailing comma at the end of lists, tuples, and dictionaries:

[1, 2, 3,]
('a', 'b', 'c',)
d = {

"A": [1, 5],
"B": [6, 7], # last trailing comma is optional but good style

}

There are several reasons to allow this.
When you have a literal value for a list, tuple, or dictionary spread across multiple lines, it’s easier to add more elements
because you don’t have to remember to add a comma to the previous line. The lines can also be reordered without creating
a syntax error.
Accidentally omitting the comma can lead to errors that are hard to diagnose. For example:

x = [
"fee",
"fie"
"foo",
"fum"

]

This list looks like it has four elements, but it actually contains three: “fee”, “fiefoo” and “fum”. Always adding the comma
avoids this source of error.
Allowing the trailing comma may also make programmatic code generation easier.

46 Chapter 3. Design and History FAQ

CHAPTER

FOUR

LIBRARY AND EXTENSION FAQ

4.1 General Library Questions

4.1.1 How do I find a module or application to perform task X?

Check the Library Reference to see if there’s a relevant standard library module. (Eventually you’ll learn what’s in the
standard library and will be able to skip this step.)
For third-party packages, search the Python Package Index or try Google or another Web search engine. Searching for
“Python” plus a keyword or two for your topic of interest will usually find something helpful.

4.1.2 Where is the math.py (socket.py, regex.py, etc.) source file?

If you can’t find a source file for a module it may be a built-in or dynamically loaded module implemented in C, C++ or
other compiled language. In this case you may not have the source file or it may be something like mathmodule.c,
somewhere in a C source directory (not on the Python Path).
There are (at least) three kinds of modules in Python:

1) modules written in Python (.py);
2) modules written in C and dynamically loaded (.dll, .pyd, .so, .sl, etc);
3) modules written in C and linked with the interpreter; to get a list of these, type:

import sys
print(sys.builtin_module_names)

4.1.3 How do I make a Python script executable on Unix?

You need to do two things: the script file’s mode must be executable and the first line must begin with #! followed by the
path of the Python interpreter.
The first is done by executing chmod +x scriptfile or perhaps chmod 755 scriptfile.
The second can be done in a number of ways. The most straightforward way is to write

#!/usr/local/bin/python

as the very first line of your file, using the pathname for where the Python interpreter is installed on your platform.
If you would like the script to be independent of where the Python interpreter lives, you can use the env program. Almost
all Unix variants support the following, assuming the Python interpreter is in a directory on the user’s PATH:

47

https://pypi.org
https://www.google.com

Python Frequently Asked Questions, Release 3.7.5rc1

#!/usr/bin/env python

Don’t do this for CGI scripts. The PATH variable for CGI scripts is often very minimal, so you need to use the actual
absolute pathname of the interpreter.
Occasionally, a user’s environment is so full that the /usr/bin/env program fails; or there’s no env program at all. In
that case, you can try the following hack (due to Alex Rezinsky):

#! /bin/sh
""":"
exec python $0 ${1+"$@"}
"""

The minor disadvantage is that this defines the script’s __doc__ string. However, you can fix that by adding

__doc__ = """...Whatever..."""

4.1.4 Is there a curses/termcap package for Python?

For Unix variants: The standard Python source distribution comes with a curses module in the Modules subdirectory,
though it’s not compiled by default. (Note that this is not available in the Windows distribution – there is no curses
module for Windows.)
The curses module supports basic curses features as well as many additional functions from ncurses and SYSV curses
such as colour, alternative character set support, pads, and mouse support. This means the module isn’t compatible with
operating systems that only have BSD curses, but there don’t seem to be any currently maintained OSes that fall into this
category.
For Windows: use the consolelib module.

4.1.5 Is there an equivalent to C’s onexit() in Python?

The atexit module provides a register function that is similar to C’s onexit().

4.1.6 Why don’t my signal handlers work?

The most common problem is that the signal handler is declared with the wrong argument list. It is called as

handler(signum, frame)

so it should be declared with two arguments:

def handler(signum, frame):
...

4.2 Common tasks

4.2.1 How do I test a Python program or component?

Python comes with two testing frameworks. The doctest module finds examples in the docstrings for a module and
runs them, comparing the output with the expected output given in the docstring.

48 Chapter 4. Library and Extension FAQ

https://github.com/python/cpython/tree/3.7/Modules
http://effbot.org/zone/console-index.htm

Python Frequently Asked Questions, Release 3.7.5rc1

The unittest module is a fancier testing framework modelled on Java and Smalltalk testing frameworks.
To make testing easier, you should use good modular design in your program. Your program should have almost all
functionality encapsulated in either functions or class methods – and this sometimes has the surprising and delightful
effect of making the program run faster (because local variable accesses are faster than global accesses). Furthermore the
program should avoid depending on mutating global variables, since this makes testing much more difficult to do.
The “global main logic” of your program may be as simple as

if __name__ == "__main__":
main_logic()

at the bottom of the main module of your program.
Once your program is organized as a tractable collection of functions and class behaviours you should write test functions
that exercise the behaviours. A test suite that automates a sequence of tests can be associated with each module. This
sounds like a lot of work, but since Python is so terse and flexible it’s surprisingly easy. You can make coding much more
pleasant and fun by writing your test functions in parallel with the “production code”, since this makes it easy to find bugs
and even design flaws earlier.
“Support modules” that are not intended to be the main module of a program may include a self-test of the module.

if __name__ == "__main__":
self_test()

Even programs that interact with complex external interfaces may be tested when the external interfaces are unavailable
by using “fake” interfaces implemented in Python.

4.2.2 How do I create documentation from doc strings?

The pydoc module can create HTML from the doc strings in your Python source code. An alternative for creating API
documentation purely from docstrings is epydoc. Sphinx can also include docstring content.

4.2.3 How do I get a single keypress at a time?

For Unix variants there are several solutions. It’s straightforward to do this using curses, but curses is a fairly large module
to learn.

4.3 Threads

4.3.1 How do I program using threads?

Be sure to use the threading module and not the _thread module. The threading module builds convenient
abstractions on top of the low-level primitives provided by the _thread module.
Aahz has a set of slides from his threading tutorial that are helpful; see http://www.pythoncraft.com/OSCON2001/.

4.3.2 None of my threads seem to run: why?

As soon as the main thread exits, all threads are killed. Your main thread is running too quickly, giving the threads no
time to do any work.
A simple fix is to add a sleep to the end of the program that’s long enough for all the threads to finish:

4.3. Threads 49

http://epydoc.sourceforge.net/
http://sphinx-doc.org
http://www.pythoncraft.com/OSCON2001/

Python Frequently Asked Questions, Release 3.7.5rc1

import threading, time

def thread_task(name, n):
for i in range(n):

print(name, i)

for i in range(10):
T = threading.Thread(target=thread_task, args=(str(i), i))
T.start()

time.sleep(10) # <---------------------------!

But now (on many platforms) the threads don’t run in parallel, but appear to run sequentially, one at a time! The reason
is that the OS thread scheduler doesn’t start a new thread until the previous thread is blocked.
A simple fix is to add a tiny sleep to the start of the run function:

def thread_task(name, n):
time.sleep(0.001) # <--------------------!
for i in range(n):

print(name, i)

for i in range(10):
T = threading.Thread(target=thread_task, args=(str(i), i))
T.start()

time.sleep(10)

Instead of trying to guess a good delay value for time.sleep(), it’s better to use some kind of semaphore mechanism.
One idea is to use the queuemodule to create a queue object, let each thread append a token to the queue when it finishes,
and let the main thread read as many tokens from the queue as there are threads.

4.3.3 How do I parcel out work among a bunch of worker threads?

The easiest way is to use the new concurrent.futures module, especially the ThreadPoolExecutor class.
Or, if you want fine control over the dispatching algorithm, you can write your own logic manually. Use the queue
module to create a queue containing a list of jobs. The Queue class maintains a list of objects and has a .put(obj)
method that adds items to the queue and a .get() method to return them. The class will take care of the locking
necessary to ensure that each job is handed out exactly once.
Here’s a trivial example:

import threading, queue, time

The worker thread gets jobs off the queue. When the queue is empty, it
assumes there will be no more work and exits.
(Realistically workers will run until terminated.)
def worker():

print('Running worker')
time.sleep(0.1)
while True:

try:
arg = q.get(block=False)

except queue.Empty:
print('Worker', threading.currentThread(), end=' ')

(continues on next page)

50 Chapter 4. Library and Extension FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
print('queue empty')
break

else:
print('Worker', threading.currentThread(), end=' ')
print('running with argument', arg)
time.sleep(0.5)

Create queue
q = queue.Queue()

Start a pool of 5 workers
for i in range(5):

t = threading.Thread(target=worker, name='worker %i' % (i+1))
t.start()

Begin adding work to the queue
for i in range(50):

q.put(i)

Give threads time to run
print('Main thread sleeping')
time.sleep(5)

When run, this will produce the following output:

Running worker
Running worker
Running worker
Running worker
Running worker
Main thread sleeping
Worker <Thread(worker 1, started 130283832797456)> running with argument 0
Worker <Thread(worker 2, started 130283824404752)> running with argument 1
Worker <Thread(worker 3, started 130283816012048)> running with argument 2
Worker <Thread(worker 4, started 130283807619344)> running with argument 3
Worker <Thread(worker 5, started 130283799226640)> running with argument 4
Worker <Thread(worker 1, started 130283832797456)> running with argument 5
...

Consult the module’s documentation for more details; the Queue class provides a featureful interface.

4.3.4 What kinds of global value mutation are thread-safe?

A global interpreter lock (GIL) is used internally to ensure that only one thread runs in the Python VM at a time. In
general, Python offers to switch among threads only between bytecode instructions; how frequently it switches can be set
via sys.setswitchinterval(). Each bytecode instruction and therefore all the C implementation code reached
from each instruction is therefore atomic from the point of view of a Python program.
In theory, this means an exact accounting requires an exact understanding of the PVM bytecode implementation. In
practice, it means that operations on shared variables of built-in data types (ints, lists, dicts, etc) that “look atomic” really
are.
For example, the following operations are all atomic (L, L1, L2 are lists, D, D1, D2 are dicts, x, y are objects, i, j are
ints):

4.3. Threads 51

Python Frequently Asked Questions, Release 3.7.5rc1

L.append(x)
L1.extend(L2)
x = L[i]
x = L.pop()
L1[i:j] = L2
L.sort()
x = y
x.field = y
D[x] = y
D1.update(D2)
D.keys()

These aren’t:

i = i+1
L.append(L[-1])
L[i] = L[j]
D[x] = D[x] + 1

Operations that replace other objects may invoke those other objects’ __del__() method when their reference count
reaches zero, and that can affect things. This is especially true for the mass updates to dictionaries and lists. When in
doubt, use a mutex!

4.3.5 Can’t we get rid of the Global Interpreter Lock?

The global interpreter lock (GIL) is often seen as a hindrance to Python’s deployment on high-end multiprocessor server
machines, because a multi-threaded Python program effectively only uses one CPU, due to the insistence that (almost) all
Python code can only run while the GIL is held.
Back in the days of Python 1.5, Greg Stein actually implemented a comprehensive patch set (the “free threading” patches)
that removed the GIL and replaced it with fine-grained locking. Adam Olsen recently did a similar experiment in his
python-safethread project. Unfortunately, both experiments exhibited a sharp drop in single-thread performance (at least
30% slower), due to the amount of fine-grained locking necessary to compensate for the removal of the GIL.
This doesn’t mean that you can’t make good use of Python on multi-CPU machines! You just have to be creative with
dividing the work up between multiple processes rather than multiple threads. The ProcessPoolExecutor class
in the new concurrent.futures module provides an easy way of doing so; the multiprocessing module
provides a lower-level API in case you want more control over dispatching of tasks.
Judicious use of C extensions will also help; if you use a C extension to perform a time-consuming task, the extension
can release the GIL while the thread of execution is in the C code and allow other threads to get some work done. Some
standard library modules such as zlib and hashlib already do this.
It has been suggested that the GIL should be a per-interpreter-state lock rather than truly global; interpreters then wouldn’t
be able to share objects. Unfortunately, this isn’t likely to happen either. It would be a tremendous amount of work, because
many object implementations currently have global state. For example, small integers and short strings are cached; these
caches would have to be moved to the interpreter state. Other object types have their own free list; these free lists would
have to be moved to the interpreter state. And so on.
And I doubt that it can even be done in finite time, because the same problem exists for 3rd party extensions. It is likely
that 3rd party extensions are being written at a faster rate than you can convert them to store all their global state in the
interpreter state.
And finally, once you have multiple interpreters not sharing any state, what have you gained over running each interpreter
in a separate process?

52 Chapter 4. Library and Extension FAQ

https://code.google.com/archive/p/python-safethread

Python Frequently Asked Questions, Release 3.7.5rc1

4.4 Input and Output

4.4.1 How do I delete a file? (And other file questions…)

Use os.remove(filename) or os.unlink(filename); for documentation, see the osmodule. The two func-
tions are identical; unlink() is simply the name of the Unix system call for this function.
To remove a directory, use os.rmdir(); use os.mkdir() to create one. os.makedirs(path) will create any
intermediate directories in path that don’t exist. os.removedirs(path) will remove intermediate directories as
long as they’re empty; if you want to delete an entire directory tree and its contents, use shutil.rmtree().
To rename a file, use os.rename(old_path, new_path).
To truncate a file, open it usingf = open(filename, "rb+"), and usef.truncate(offset); offset defaults
to the current seek position. There’s also os.ftruncate(fd, offset) for files opened with os.open(), where
fd is the file descriptor (a small integer).
The shutilmodule also contains a number of functions to work on files including copyfile(), copytree(), and
rmtree().

4.4.2 How do I copy a file?

The shutil module contains a copyfile() function. Note that on MacOS 9 it doesn’t copy the resource fork and
Finder info.

4.4.3 How do I read (or write) binary data?

To read or write complex binary data formats, it’s best to use the structmodule. It allows you to take a string containing
binary data (usually numbers) and convert it to Python objects; and vice versa.
For example, the following code reads two 2-byte integers and one 4-byte integer in big-endian format from a file:

import struct

with open(filename, "rb") as f:
s = f.read(8)
x, y, z = struct.unpack(">hhl", s)

The ‘>’ in the format string forces big-endian data; the letter ‘h’ reads one “short integer” (2 bytes), and ‘l’ reads one “long
integer” (4 bytes) from the string.
For data that is more regular (e.g. a homogeneous list of ints or floats), you can also use the array module.

Note: To read and write binary data, it is mandatory to open the file in binary mode (here, passing "rb" to open()).
If you use "r" instead (the default), the file will be open in text mode and f.read() will return str objects rather
than bytes objects.

4.4.4 I can’t seem to use os.read() on a pipe created with os.popen(); why?

os.read() is a low-level function which takes a file descriptor, a small integer representing the opened file. os.
popen() creates a high-level file object, the same type returned by the built-in open() function. Thus, to read n bytes
from a pipe p created with os.popen(), you need to use p.read(n).

4.4. Input and Output 53

Python Frequently Asked Questions, Release 3.7.5rc1

4.4.5 How do I access the serial (RS232) port?

For Win32, POSIX (Linux, BSD, etc.), Jython:
http://pyserial.sourceforge.net

For Unix, see a Usenet post by Mitch Chapman:
https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com

4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it?

Python file objects are a high-level layer of abstraction on low-level C file descriptors.
For most file objects you create in Python via the built-in open() function, f.close() marks the Python file object
as being closed from Python’s point of view, and also arranges to close the underlying C file descriptor. This also happens
automatically in f’s destructor, when f becomes garbage.
But stdin, stdout and stderr are treated specially by Python, because of the special status also given to them by C. Running
sys.stdout.close() marks the Python-level file object as being closed, but does not close the associated C file
descriptor.
To close the underlying C file descriptor for one of these three, you should first be sure that’s what you really want to do
(e.g., you may confuse extension modules trying to do I/O). If it is, use os.close():

os.close(stdin.fileno())
os.close(stdout.fileno())
os.close(stderr.fileno())

Or you can use the numeric constants 0, 1 and 2, respectively.

4.5 Network/Internet Programming

4.5.1 What WWW tools are there for Python?

See the chapters titled internet and netdata in the Library Reference Manual. Python has many modules that will help
you build server-side and client-side web systems.
A summary of available frameworks is maintained by Paul Boddie at https://wiki.python.org/moin/WebProgramming.
Cameron Laird maintains a useful set of pages about Python web technologies at http://phaseit.net/claird/comp.lang.
python/web_python.

4.5.2 How can I mimic CGI form submission (METHOD=POST)?

I would like to retrieve web pages that are the result of POSTing a form. Is there existing code that would let me do this
easily?
Yes. Here’s a simple example that uses urllib.request:

#!/usr/local/bin/python

import urllib.request

build the query string

(continues on next page)

54 Chapter 4. Library and Extension FAQ

http://pyserial.sourceforge.net
https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com
https://wiki.python.org/moin/WebProgramming
http://phaseit.net/claird/comp.lang.python/web_python
http://phaseit.net/claird/comp.lang.python/web_python

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
qs = "First=Josephine&MI=Q&Last=Public"

connect and send the server a path
req = urllib.request.urlopen('http://www.some-server.out-there'

'/cgi-bin/some-cgi-script', data=qs)
with req:

msg, hdrs = req.read(), req.info()

Note that in general for percent-encoded POST operations, query strings must be quoted using urllib.parse.
urlencode(). For example, to send name=Guy Steele, Jr.:

>>> import urllib.parse
>>> urllib.parse.urlencode({'name': 'Guy Steele, Jr.'})
'name=Guy+Steele%2C+Jr.'

See also:
urllib-howto for extensive examples.

4.5.3 What module should I use to help with generating HTML?

You can find a collection of useful links on the Web Programming wiki page.

4.5.4 How do I send mail from a Python script?

Use the standard library module smtplib.
Here’s a very simple interactive mail sender that uses it. This method will work on any host that supports an SMTP
listener.

import sys, smtplib

fromaddr = input("From: ")
toaddrs = input("To: ").split(',')
print("Enter message, end with ^D:")
msg = ''
while True:

line = sys.stdin.readline()
if not line:

break
msg += line

The actual mail send
server = smtplib.SMTP('localhost')
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

A Unix-only alternative uses sendmail. The location of the sendmail program varies between systems; sometimes it is
/usr/lib/sendmail, sometimes /usr/sbin/sendmail. The sendmail manual page will help you out. Here’s
some sample code:

import os

SENDMAIL = "/usr/sbin/sendmail" # sendmail location

(continues on next page)

4.5. Network/Internet Programming 55

https://wiki.python.org/moin/WebProgramming

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
p = os.popen("%s -t -i" % SENDMAIL, "w")
p.write("To: receiver@example.com\n")
p.write("Subject: test\n")
p.write("\n") # blank line separating headers from body
p.write("Some text\n")
p.write("some more text\n")
sts = p.close()
if sts != 0:

print("Sendmail exit status", sts)

4.5.5 How do I avoid blocking in the connect() method of a socket?

The select module is commonly used to help with asynchronous I/O on sockets.
To prevent the TCP connect from blocking, you can set the socket to non-blocking mode. Then when you do the
connect(), you will either connect immediately (unlikely) or get an exception that contains the error number as .
errno. errno.EINPROGRESS indicates that the connection is in progress, but hasn’t finished yet. Different OSes
will return different values, so you’re going to have to check what’s returned on your system.
You can use the connect_ex()method to avoid creating an exception. It will just return the errno value. To poll, you
can call connect_ex() again later – 0 or errno.EISCONN indicate that you’re connected – or you can pass this
socket to select to check if it’s writable.

Note: The asyncoremodule presents a framework-like approach to the problem of writing non-blocking networking
code. The third-party Twisted library is a popular and feature-rich alternative.

4.6 Databases

4.6.1 Are there any interfaces to database packages in Python?

Yes.
Interfaces to disk-based hashes such asDBM andGDBM are also includedwith standard Python. There is also thesqlite3
module, which provides a lightweight disk-based relational database.
Support for most relational databases is available. See the DatabaseProgramming wiki page for details.

4.6.2 How do you implement persistent objects in Python?

The pickle library module solves this in a very general way (though you still can’t store things like open files, sockets
or windows), and the shelve library module uses pickle and (g)dbm to create persistent mappings containing arbitrary
Python objects.

4.7 Mathematics and Numerics

4.7.1 How do I generate random numbers in Python?

The standard module random implements a random number generator. Usage is simple:

56 Chapter 4. Library and Extension FAQ

https://twistedmatrix.com/trac/
https://wiki.python.org/moin/DatabaseProgramming

Python Frequently Asked Questions, Release 3.7.5rc1

import random
random.random()

This returns a random floating point number in the range [0, 1).
There are also many other specialized generators in this module, such as:

• randrange(a, b) chooses an integer in the range [a, b).
• uniform(a, b) chooses a floating point number in the range [a, b).
• normalvariate(mean, sdev) samples the normal (Gaussian) distribution.

Some higher-level functions operate on sequences directly, such as:
• choice(S) chooses random element from a given sequence
• shuffle(L) shuffles a list in-place, i.e. permutes it randomly

There’s also a Random class you can instantiate to create independent multiple random number generators.

4.7. Mathematics and Numerics 57

Python Frequently Asked Questions, Release 3.7.5rc1

58 Chapter 4. Library and Extension FAQ

CHAPTER

FIVE

EXTENDING/EMBEDDING FAQ

5.1 Can I create my own functions in C?

Yes, you can create built-in modules containing functions, variables, exceptions and even new types in C. This is explained
in the document extending-index.
Most intermediate or advanced Python books will also cover this topic.

5.2 Can I create my own functions in C++?

Yes, using the C compatibility features found in C++. Place extern "C" { ... } around the Python include files
and put extern "C" before each function that is going to be called by the Python interpreter. Global or static C++
objects with constructors are probably not a good idea.

5.3 Writing C is hard; are there any alternatives?

There are a number of alternatives to writing your own C extensions, depending on what you’re trying to do.
Cython and its relative Pyrex are compilers that accept a slightly modified form of Python and generate the corresponding
C code. Cython and Pyrex make it possible to write an extension without having to learn Python’s C API.
If you need to interface to some C or C++ library for which no Python extension currently exists, you can try wrapping the
library’s data types and functions with a tool such as SWIG. SIP, CXX Boost, or Weave are also alternatives for wrapping
C++ libraries.

5.4 How can I execute arbitrary Python statements from C?

The highest-level function to do this is PyRun_SimpleString() which takes a single string argument to be exe-
cuted in the context of the module __main__ and returns 0 for success and -1 when an exception occurred (including
SyntaxError). If you want more control, use PyRun_String(); see the source for PyRun_SimpleString()
in Python/pythonrun.c.

5.5 How can I evaluate an arbitrary Python expression from C?

Call the function PyRun_String() from the previous question with the start symbol Py_eval_input; it parses an
expression, evaluates it and returns its value.

59

http://cython.org
https://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.swig.org
https://riverbankcomputing.com/software/sip/intro
http://cxx.sourceforge.net/
http://www.boost.org/libs/python/doc/index.html
https://github.com/scipy/weave

Python Frequently Asked Questions, Release 3.7.5rc1

5.6 How do I extract C values from a Python object?

That depends on the object’s type. If it’s a tuple, PyTuple_Size() returns its length and PyTuple_GetItem()
returns the item at a specified index. Lists have similar functions, PyListSize() and PyList_GetItem().
For bytes, PyBytes_Size() returns its length and PyBytes_AsStringAndSize() provides a pointer to its
value and its length. Note that Python bytes objects may contain null bytes so C’s strlen() should not be used.
To test the type of an object, first make sure it isn’t NULL, and then use PyBytes_Check(), PyTuple_Check(),
PyList_Check(), etc.
There is also a high-level API to Python objects which is provided by the so-called ‘abstract’ interface – read
Include/abstract.h for further details. It allows interfacing with any kind of Python sequence using calls like
PySequence_Length(), PySequence_GetItem(), etc. as well as many other useful protocols such as num-
bers (PyNumber_Index() et al.) and mappings in the PyMapping APIs.

5.7 Howdo I usePy_BuildValue() to create a tuple of arbitrary length?

You can’t. Use PyTuple_Pack() instead.

5.8 How do I call an object’s method from C?

The PyObject_CallMethod() function can be used to call an arbitrary method of an object. The parameters are
the object, the name of the method to call, a format string like that used with Py_BuildValue(), and the argument
values:

PyObject *
PyObject_CallMethod(PyObject *object, const char *method_name,

const char *arg_format, ...);

This works for any object that has methods – whether built-in or user-defined. You are responsible for eventually
Py_DECREF()’ing the return value.
To call, e.g., a file object’s “seek” method with arguments 10, 0 (assuming the file object pointer is “f”):

res = PyObject_CallMethod(f, "seek", "(ii)", 10, 0);
if (res == NULL) {

... an exception occurred ...
}
else {

Py_DECREF(res);
}

Note that since PyObject_CallObject() always wants a tuple for the argument list, to call a function without
arguments, pass “()” for the format, and to call a function with one argument, surround the argument in parentheses, e.g.
“(i)”.

60 Chapter 5. Extending/Embedding FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

5.9 How do I catch the output from PyErr_Print() (or anything that
prints to stdout/stderr)?

In Python code, define an object that supports the write() method. Assign this object to sys.stdout and sys.
stderr. Call print_error, or just allow the standard traceback mechanism to work. Then, the output will go wherever
your write() method sends it.
The easiest way to do this is to use the io.StringIO class:

>>> import io, sys
>>> sys.stdout = io.StringIO()
>>> print('foo')
>>> print('hello world!')
>>> sys.stderr.write(sys.stdout.getvalue())
foo
hello world!

A custom object to do the same would look like this:

>>> import io, sys
>>> class StdoutCatcher(io.TextIOBase):
... def __init__(self):
... self.data = []
... def write(self, stuff):
... self.data.append(stuff)
...
>>> import sys
>>> sys.stdout = StdoutCatcher()
>>> print('foo')
>>> print('hello world!')
>>> sys.stderr.write(''.join(sys.stdout.data))
foo
hello world!

5.10 How do I access a module written in Python from C?

You can get a pointer to the module object as follows:

module = PyImport_ImportModule("<modulename>");

If the module hasn’t been imported yet (i.e. it is not yet present in sys.modules), this initializes the module; otherwise
it simply returns the value of sys.modules["<modulename>"]. Note that it doesn’t enter the module into any
namespace – it only ensures it has been initialized and is stored in sys.modules.
You can then access the module’s attributes (i.e. any name defined in the module) as follows:

attr = PyObject_GetAttrString(module, "<attrname>");

Calling PyObject_SetAttrString() to assign to variables in the module also works.

5.9. How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)? 61

Python Frequently Asked Questions, Release 3.7.5rc1

5.11 How do I interface to C++ objects from Python?

Depending on your requirements, there are many approaches. To do this manually, begin by reading the “Extending and
Embedding” document. Realize that for the Python run-time system, there isn’t a whole lot of difference between C and
C++ – so the strategy of building a new Python type around a C structure (pointer) type will also work for C++ objects.
For C++ libraries, seeWriting C is hard; are there any alternatives?.

5.12 I added a module using the Setup file and the make fails; why?

Setup must end in a newline, if there is no newline there, the build process fails. (Fixing this requires some ugly shell
script hackery, and this bug is so minor that it doesn’t seem worth the effort.)

5.13 How do I debug an extension?

When using GDB with dynamically loaded extensions, you can’t set a breakpoint in your extension until your extension
is loaded.
In your .gdbinit file (or interactively), add the command:

br _PyImport_LoadDynamicModule

Then, when you run GDB:

$ gdb /local/bin/python
gdb) run myscript.py
gdb) continue # repeat until your extension is loaded
gdb) finish # so that your extension is loaded
gdb) br myfunction.c:50
gdb) continue

5.14 I want to compile a Python module on my Linux system, but
some files are missing. Why?

Most packaged versions of Python don’t include the /usr/lib/python2.x/config/ directory, which contains
various files required for compiling Python extensions.
For Red Hat, install the python-devel RPM to get the necessary files.
For Debian, run apt-get install python-dev.

5.15 How do I tell “incomplete input” from “invalid input”?

Sometimes you want to emulate the Python interactive interpreter’s behavior, where it gives you a continuation prompt
when the input is incomplete (e.g. you typed the start of an “if” statement or you didn’t close your parentheses or triple
string quotes), but it gives you a syntax error message immediately when the input is invalid.
In Python you can use the codeop module, which approximates the parser’s behavior sufficiently. IDLE uses this, for
example.

62 Chapter 5. Extending/Embedding FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

The easiest way to do it in C is to call PyRun_InteractiveLoop() (perhaps in a separate thread) and let the Python
interpreter handle the input for you. You can also set the PyOS_ReadlineFunctionPointer() to point at your
custom input function. See Modules/readline.c and Parser/myreadline.c for more hints.
However sometimes you have to run the embedded Python interpreter in the same thread as your rest application and you
can’t allow the PyRun_InteractiveLoop() to stop while waiting for user input. The one solution then is to call
PyParser_ParseString() and test for e.error equal to E_EOF, which means the input is incomplete. Here’s
a sample code fragment, untested, inspired by code from Alex Farber:

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include <node.h>
#include <errcode.h>
#include <grammar.h>
#include <parsetok.h>
#include <compile.h>

int testcomplete(char *code)
/* code should end in \n */
/* return -1 for error, 0 for incomplete, 1 for complete */

{
node *n;
perrdetail e;

n = PyParser_ParseString(code, &_PyParser_Grammar,
Py_file_input, &e);

if (n == NULL) {
if (e.error == E_EOF)

return 0;
return -1;

}

PyNode_Free(n);
return 1;

}

Another solution is trying to compile the received string with Py_CompileString(). If it compiles without errors,
try to execute the returned code object by calling PyEval_EvalCode(). Otherwise save the input for later. If the
compilation fails, find out if it’s an error or just more input is required - by extracting the message string from the exception
tuple and comparing it to the string “unexpected EOF while parsing”. Here is a complete example using the GNU readline
library (you may want to ignore SIGINT while calling readline()):

#include <stdio.h>
#include <readline.h>

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include <object.h>
#include <compile.h>
#include <eval.h>

int main (int argc, char* argv[])
{

int i, j, done = 0; /* lengths of line, code */
char ps1[] = ">>> ";
char ps2[] = "... ";
char *prompt = ps1;
char *msg, *line, *code = NULL;

(continues on next page)

5.15. How do I tell “incomplete input” from “invalid input”? 63

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
PyObject *src, *glb, *loc;
PyObject *exc, *val, *trb, *obj, *dum;

Py_Initialize ();
loc = PyDict_New ();
glb = PyDict_New ();
PyDict_SetItemString (glb, "__builtins__", PyEval_GetBuiltins ());

while (!done)
{
line = readline (prompt);

if (NULL == line) /* Ctrl-D pressed */
{

done = 1;
}
else
{

i = strlen (line);

if (i > 0)
add_history (line); /* save non-empty lines */

if (NULL == code) /* nothing in code yet */
j = 0;

else
j = strlen (code);

code = realloc (code, i + j + 2);
if (NULL == code) /* out of memory */

exit (1);

if (0 == j) /* code was empty, so */
code[0] = '\0'; /* keep strncat happy */

strncat (code, line, i); /* append line to code */
code[i + j] = '\n'; /* append '\n' to code */
code[i + j + 1] = '\0';

src = Py_CompileString (code, "<stdin>", Py_single_input);

if (NULL != src) /* compiled just fine - */
{

if (ps1 == prompt || /* ">>> " or */
'\n' == code[i + j - 1]) /* "... " and double '\n' */

{ /* so execute it */
dum = PyEval_EvalCode (src, glb, loc);
Py_XDECREF (dum);
Py_XDECREF (src);
free (code);
code = NULL;
if (PyErr_Occurred ())

PyErr_Print ();
prompt = ps1;

}
} /* syntax error or E_EOF? */
else if (PyErr_ExceptionMatches (PyExc_SyntaxError))

(continues on next page)

64 Chapter 5. Extending/Embedding FAQ

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
{

PyErr_Fetch (&exc, &val, &trb); /* clears exception! */

if (PyArg_ParseTuple (val, "sO", &msg, &obj) &&
!strcmp (msg, "unexpected EOF while parsing")) /* E_EOF */

{
Py_XDECREF (exc);
Py_XDECREF (val);
Py_XDECREF (trb);
prompt = ps2;

}
else /* some other syntax error */
{
PyErr_Restore (exc, val, trb);
PyErr_Print ();
free (code);
code = NULL;
prompt = ps1;

}
}
else /* some non-syntax error */
{

PyErr_Print ();
free (code);
code = NULL;
prompt = ps1;

}

free (line);
}

}

Py_XDECREF(glb);
Py_XDECREF(loc);
Py_Finalize();
exit(0);

}

5.16 How do I find undefined g++ symbols __builtin_new or
__pure_virtual?

To dynamically load g++ extension modules, you must recompile Python, relink it using g++ (change LINKCC in the
Python Modules Makefile), and link your extension module using g++ (e.g., g++ -shared -o mymodule.so
mymodule.o).

5.17 Can I create an object class with some methods implemented
in C and others in Python (e.g. through inheritance)?

Yes, you can inherit from built-in classes such as int, list, dict, etc.

5.16. How do I find undefined g++ symbols __builtin_new or __pure_virtual? 65

Python Frequently Asked Questions, Release 3.7.5rc1

The Boost Python Library (BPL, http://www.boost.org/libs/python/doc/index.html) provides a way of doing this from
C++ (i.e. you can inherit from an extension class written in C++ using the BPL).

66 Chapter 5. Extending/Embedding FAQ

http://www.boost.org/libs/python/doc/index.html

CHAPTER

SIX

PYTHON ON WINDOWS FAQ

6.1 How do I run a Python program under Windows?

This is not necessarily a straightforward question. If you are already familiar with running programs from the Windows
command line then everything will seem obvious; otherwise, you might need a little more guidance.
Unless you use some sort of integrated development environment, you will end up typingWindows commands into what
is variously referred to as a “DOS window” or “Command prompt window”. Usually you can create such a window from
your search bar by searching for cmd. You should be able to recognize when you have started such a window because
you will see a Windows “command prompt”, which usually looks like this:

C:\>

The letter may be different, and there might be other things after it, so you might just as easily see something like:

D:\YourName\Projects\Python>

depending on how your computer has been set up and what else you have recently done with it. Once you have started
such a window, you are well on the way to running Python programs.
You need to realize that your Python scripts have to be processed by another program called the Python interpreter. The
interpreter reads your script, compiles it into bytecodes, and then executes the bytecodes to run your program. So, how
do you arrange for the interpreter to handle your Python?
First, you need to make sure that your command window recognises the word “py” as an instruction to start the interpreter.
If you have opened a command window, you should try entering the command py and hitting return:

C:\Users\YourName> py

You should then see something like:

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] on␣
↪→win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

You have started the interpreter in “interactive mode”. That means you can enter Python statements or expressions
interactively and have them executed or evaluated while you wait. This is one of Python’s strongest features. Check it by
entering a few expressions of your choice and seeing the results:

>>> print("Hello")
Hello
>>> "Hello" * 3
'HelloHelloHello'

67

Python Frequently Asked Questions, Release 3.7.5rc1

Many people use the interactive mode as a convenient yet highly programmable calculator. When you want to end your
interactive Python session, call the exit() function or hold the Ctrl key down while you enter a Z, then hit the
“Enter” key to get back to your Windows command prompt.
You may also find that you have a Start-menu entry such as Start → Programs → Python 3.x → Python (command line)
that results in you seeing the >>> prompt in a new window. If so, the window will disappear after you call the exit()
function or enter the Ctrl-Z character; Windows is running a single “python” command in the window, and closes it
when you terminate the interpreter.
Now that we know the py command is recognized, you can give your Python script to it. You’ll have to give either an
absolute or a relative path to the Python script. Let’s say your Python script is located in your desktop and is named
hello.py, and your command prompt is nicely opened in your home directory so you’re seeing something similar to:

C:\Users\YourName>

So now you’ll ask the py command to give your script to Python by typing py followed by your script path:

C:\Users\YourName> py Desktop\hello.py
hello

6.2 How do I make Python scripts executable?

OnWindows, the standard Python installer already associates the .py extension with a file type (Python.File) and gives that
file type an open command that runs the interpreter (D:\Program Files\Python\python.exe "%1" %*).
This is enough to make scripts executable from the command prompt as ‘foo.py’. If you’d rather be able to execute the
script by simple typing ‘foo’ with no extension you need to add .py to the PATHEXT environment variable.

6.3 Why does Python sometimes take so long to start?

Usually Python starts very quickly on Windows, but occasionally there are bug reports that Python suddenly begins to
take a long time to start up. This is made even more puzzling because Python will work fine on other Windows systems
which appear to be configured identically.
The problem may be caused by a misconfiguration of virus checking software on the problem machine. Some virus
scanners have been known to introduce startup overhead of two orders of magnitude when the scanner is configured to
monitor all reads from the filesystem. Try checking the configuration of virus scanning software on your systems to ensure
that they are indeed configured identically. McAfee, when configured to scan all file system read activity, is a particular
offender.

6.4 How do I make an executable from a Python script?

See cx_Freeze for a distutils extension that allows you to create console and GUI executables from Python code. py2exe,
the most popular extension for building Python 2.x-based executables, does not yet support Python 3 but a version that
does is in development.

6.5 Is a *.pyd file the same as a DLL?

Yes, .pyd files are dll’s, but there are a few differences. If you have a DLL named foo.pyd, then it must have a function
PyInit_foo(). You can then write Python “import foo”, and Python will search for foo.pyd (as well as foo.py,

68 Chapter 6. Python on Windows FAQ

https://anthony-tuininga.github.io/cx_Freeze/
http://www.py2exe.org/

Python Frequently Asked Questions, Release 3.7.5rc1

foo.pyc) and if it finds it, will attempt to call PyInit_foo() to initialize it. You do not link your .exe with foo.lib, as
that would cause Windows to require the DLL to be present.
Note that the search path for foo.pyd is PYTHONPATH, not the same as the path that Windows uses to search for foo.dll.
Also, foo.pyd need not be present to run your program, whereas if you linked your program with a dll, the dll is required.
Of course, foo.pyd is required if you want to say import foo. In a DLL, linkage is declared in the source code with
__declspec(dllexport). In a .pyd, linkage is defined in a list of available functions.

6.6 How can I embed Python into a Windows application?

Embedding the Python interpreter in a Windows app can be summarized as follows:
1. Do _not_ build Python into your .exe file directly. On Windows, Python must be a DLL to handle importing

modules that are themselves DLL’s. (This is the first key undocumented fact.) Instead, link to pythonNN.dll;
it is typically installed in C:\Windows\System. NN is the Python version, a number such as “33” for Python
3.3.
You can link to Python in two different ways. Load-time linking means linking against pythonNN.lib, while
run-time linking means linking against pythonNN.dll. (General note: pythonNN.lib is the so-called “im-
port lib” corresponding to pythonNN.dll. It merely defines symbols for the linker.)
Run-time linking greatly simplifies link options; everything happens at run time. Your codemust loadpythonNN.
dll using the Windows LoadLibraryEx() routine. The code must also use access routines and data in
pythonNN.dll (that is, Python’s C API’s) using pointers obtained by the Windows GetProcAddress()
routine. Macros can make using these pointers transparent to any C code that calls routines in Python’s C API.
Borland note: convert pythonNN.lib to OMF format using Coff2Omf.exe first.

2. If you use SWIG, it is easy to create a Python “extension module” that will make the app’s data and methods
available to Python. SWIG will handle just about all the grungy details for you. The result is C code that you link
into your .exe file (!) You do _not_ have to create a DLL file, and this also simplifies linking.

3. SWIG will create an init function (a C function) whose name depends on the name of the extension module. For
example, if the name of the module is leo, the init function will be called initleo(). If you use SWIG shadow classes,
as you should, the init function will be called initleoc(). This initializes a mostly hidden helper class used by the
shadow class.
The reason you can link the C code in step 2 into your .exe file is that calling the initialization function is equivalent
to importing the module into Python! (This is the second key undocumented fact.)

4. In short, you can use the following code to initialize the Python interpreter with your extension module.

#include "python.h"
...
Py_Initialize(); // Initialize Python.
initmyAppc(); // Initialize (import) the helper class.
PyRun_SimpleString("import myApp"); // Import the shadow class.

5. There are two problems with Python’s C API which will become apparent if you use a compiler other than MSVC,
the compiler used to build pythonNN.dll.
Problem 1: The so-called “Very High Level” functions that take FILE * arguments will not work in a multi-compiler
environment because each compiler’s notion of a struct FILE will be different. From an implementation standpoint
these are very _low_ level functions.
Problem 2: SWIG generates the following code when generating wrappers to void functions:

6.6. How can I embed Python into a Windows application? 69

Python Frequently Asked Questions, Release 3.7.5rc1

Py_INCREF(Py_None);
_resultobj = Py_None;
return _resultobj;

Alas, Py_None is a macro that expands to a reference to a complex data structure called _Py_NoneStruct inside
pythonNN.dll. Again, this code will fail in a mult-compiler environment. Replace such code by:

return Py_BuildValue("");

It may be possible to use SWIG’s %typemap command to make the change automatically, though I have not been
able to get this to work (I’m a complete SWIG newbie).

6. Using a Python shell script to put up a Python interpreter window from inside your Windows app is not a good idea;
the resulting window will be independent of your app’s windowing system. Rather, you (or the wxPythonWindow
class) should create a “native” interpreter window. It is easy to connect that window to the Python interpreter. You
can redirect Python’s i/o to _any_ object that supports read and write, so all you need is a Python object (defined
in your extension module) that contains read() and write() methods.

6.7 Howdo I keep editors from inserting tabs intomyPython source?

The FAQ does not recommend using tabs, and the Python style guide, PEP 8, recommends 4 spaces for distributed
Python code; this is also the Emacs python-mode default.
Under any editor, mixing tabs and spaces is a bad idea. MSVC is no different in this respect, and is easily configured to
use spaces: Take Tools→ Options→ Tabs, and for file type “Default” set “Tab size” and “Indent size” to 4, and select the
“Insert spaces” radio button.
Python raises IndentationError or TabError if mixed tabs and spaces are causing problems in leading whites-
pace. You may also run the tabnanny module to check a directory tree in batch mode.

6.8 How do I check for a keypress without blocking?

Use the msvcrt module. This is a standard Windows-specific extension module. It defines a function kbhit() which
checks whether a keyboard hit is present, and getch() which gets one character without echoing it.

70 Chapter 6. Python on Windows FAQ

https://www.python.org/dev/peps/pep-0008

CHAPTER

SEVEN

GRAPHIC USER INTERFACE FAQ

7.1 General GUI Questions

7.2 What platform-independent GUI toolkits exist for Python?

Depending on what platform(s) you are aiming at, there are several. Some of them haven’t been ported to Python 3 yet.
At least Tkinter and Qt are known to be Python 3-compatible.

7.2.1 Tkinter

Standard builds of Python include an object-oriented interface to the Tcl/Tk widget set, called tkinter. This is probably
the easiest to install (since it comes included with most binary distributions of Python) and use. For more info about Tk,
including pointers to the source, see the Tcl/Tk home page. Tcl/Tk is fully portable to the Mac OS X, Windows, and
Unix platforms.

7.2.2 wxWidgets

wxWidgets (https://www.wxwidgets.org) is a free, portable GUI class library written in C++ that provides a native look
and feel on a number of platforms, with Windows, Mac OS X, GTK, X11, all listed as current stable targets. Language
bindings are available for a number of languages including Python, Perl, Ruby, etc.
wxPython is the Python binding for wxwidgets. While it often lags slightly behind the official wxWidgets releases, it also
offers a number of features via pure Python extensions that are not available in other language bindings. There is an active
wxPython user and developer community.
Both wxWidgets and wxPython are free, open source, software with permissive licences that allow their use in commercial
products as well as in freeware or shareware.

7.2.3 Qt

There are bindings available for the Qt toolkit (using either PyQt or PySide) and for KDE (PyKDE4). PyQt is currently
more mature than PySide, but you must buy a PyQt license from Riverbank Computing if you want to write proprietary
applications. PySide is free for all applications.
Qt 4.5 upwards is licensed under the LGPL license; also, commercial licenses are available from The Qt Company.

71

https://www.python.org/downloads/
https://www.tcl.tk
https://www.wxwidgets.org
https://www.wxpython.org
https://riverbankcomputing.com/software/pyqt/intro
https://wiki.qt.io/PySide
https://techbase.kde.org/Languages/Python/Using_PyKDE_4
https://www.riverbankcomputing.com/commercial/license-faq
https://www.qt.io/licensing/

Python Frequently Asked Questions, Release 3.7.5rc1

7.2.4 Gtk+

The GObject introspection bindings for Python allow you to write GTK+ 3 applications. There is also a Python GTK+ 3
Tutorial.
The older PyGtk bindings for the Gtk+ 2 toolkit have been implemented by James Henstridge; see <http://www.pygtk.
org>.

7.2.5 Kivy

Kivy is a cross-platform GUI library supporting both desktop operating systems (Windows, macOS, Linux) and mobile
devices (Android, iOS). It is written in Python and Cython, and can use a range of windowing backends.
Kivy is free and open source software distributed under the MIT license.

7.2.6 FLTK

Python bindings for the FLTK toolkit, a simple yet powerful and mature cross-platform windowing system, are available
from the PyFLTK project.

7.2.7 OpenGL

For OpenGL bindings, see PyOpenGL.

7.3 What platform-specific GUI toolkits exist for Python?

By installing the PyObjc Objective-C bridge, Python programs can use Mac OS X’s Cocoa libraries.
Pythonwin by Mark Hammond includes an interface to the Microsoft Foundation Classes and a Python programming
environment that’s written mostly in Python using the MFC classes.

7.4 Tkinter questions

7.4.1 How do I freeze Tkinter applications?

Freeze is a tool to create stand-alone applications. When freezing Tkinter applications, the applications will not be truly
stand-alone, as the application will still need the Tcl and Tk libraries.
One solution is to ship the application with the Tcl and Tk libraries, and point to them at run-time using the
TCL_LIBRARY and TK_LIBRARY environment variables.
To get truly stand-alone applications, the Tcl scripts that form the library have to be integrated into the application as well.
One tool supporting that is SAM (stand-alone modules), which is part of the Tix distribution (http://tix.sourceforge.net/).
Build Tix with SAM enabled, perform the appropriate call to Tclsam_init(), etc. inside Python’s Modules/
tkappinit.c, and link with libtclsam and libtksam (you might include the Tix libraries as well).

72 Chapter 7. Graphic User Interface FAQ

https://wiki.gnome.org/Projects/PyGObject
https://python-gtk-3-tutorial.readthedocs.io
https://python-gtk-3-tutorial.readthedocs.io
https://www.gtk.org
http://www.pygtk.org
http://www.pygtk.org
https://kivy.org/
http://www.fltk.org
http://pyfltk.sourceforge.net
http://pyopengl.sourceforge.net
https://pypi.org/project/pyobjc/
http://tix.sourceforge.net/

Python Frequently Asked Questions, Release 3.7.5rc1

7.4.2 Can I have Tk events handled while waiting for I/O?

On platforms other than Windows, yes, and you don’t even need threads! But you’ll have to restructure your I/O code a
bit. Tk has the equivalent of Xt’s XtAddInput() call, which allows you to register a callback function which will be
called from the Tk mainloop when I/O is possible on a file descriptor. See tkinter-file-handlers.

7.4.3 I can’t get key bindings to work in Tkinter: why?

An often-heard complaint is that event handlers bound to events with the bind() method don’t get handled even when
the appropriate key is pressed.
The most common cause is that the widget to which the binding applies doesn’t have “keyboard focus”. Check out the Tk
documentation for the focus command. Usually a widget is given the keyboard focus by clicking in it (but not for labels;
see the takefocus option).

7.4. Tkinter questions 73

Python Frequently Asked Questions, Release 3.7.5rc1

74 Chapter 7. Graphic User Interface FAQ

CHAPTER

EIGHT

“WHY IS PYTHON INSTALLED ON MY COMPUTER?” FAQ

8.1 What is Python?

Python is a programming language. It’s used for many different applications. It’s used in some high schools and colleges
as an introductory programming language because Python is easy to learn, but it’s also used by professional software
developers at places such as Google, NASA, and Lucasfilm Ltd.
If you wish to learn more about Python, start with the Beginner’s Guide to Python.

8.2 Why is Python installed on my machine?

If you find Python installed on your system but don’t remember installing it, there are several possible ways it could have
gotten there.

• Perhaps another user on the computer wanted to learn programming and installed it; you’ll have to figure out who’s
been using the machine and might have installed it.

• A third-party application installed on the machine might have been written in Python and included a Python instal-
lation. There are many such applications, from GUI programs to network servers and administrative scripts.

• Some Windows machines also have Python installed. At this writing we’re aware of computers from Hewlett-
Packard and Compaq that include Python. Apparently some of HP/Compaq’s administrative tools are written in
Python.

• Many Unix-compatible operating systems, such as Mac OS X and some Linux distributions, have Python installed
by default; it’s included in the base installation.

8.3 Can I delete Python?

That depends on where Python came from.
If someone installed it deliberately, you can remove it without hurting anything. On Windows, use the Add/Remove
Programs icon in the Control Panel.
If Python was installed by a third-party application, you can also remove it, but that application will no longer work. You
should use that application’s uninstaller rather than removing Python directly.
If Python came with your operating system, removing it is not recommended. If you remove it, whatever tools were
written in Python will no longer run, and some of them might be important to you. Reinstalling the whole system would
then be required to fix things again.

75

https://wiki.python.org/moin/BeginnersGuide

Python Frequently Asked Questions, Release 3.7.5rc1

76 Chapter 8. “Why is Python Installed on my Computer?” FAQ

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed interactively
in the interpreter.

... The default Python prompt of the interactive shell when entering the code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.
2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/scripts/
2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr()would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abcmodule documentation. Python comes with many built-in ABCs for data structures
(in the collections.abc module), numbers (in the numbers module), streams (in the io module), import
finders and loaders (in the importlib.abc module). You can create your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.
Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes,
and functions are stored in the __annotations__ special attribute of modules, classes, and functions, respec-
tively.
See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:
• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following calls to
complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

77

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Frequently Asked Questions, Release 3.7.5rc1

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.
See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters, and
PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter__() and __aexit__() methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a coroutine function
defined with async def except that it contains yield expressions for producing a series of values usable in an
async for loop.
Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some
contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.
An asynchronous generator function may contain await expressions as well as async for, and async with
statements.

asynchronous generator iterator An object created by a asynchronous generator function.
This is an asynchronous iterator which when called using the __anext__() method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.
Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
from its __aiter__() method. Introduced by PEP 492.

asynchronous iterator An object that implements the __aiter__() and __anext__() methods. __anext__
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__() method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.
binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode

('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO
and gzip.GzipFile.
See also text file for a file object able to read and write str objects.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all
bytes, bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like
objects can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.
Some operations need the binary data to be mutable. The documentation often refers to these as “read-write bytes-
like objects”. Examplemutable buffer objects includebytearray and amemoryview of abytearray. Other
operations require the binary data to be stored in immutable objects (“read-only bytes-like objects”); examples of
these include bytes and a memoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a virtual

78 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

Python Frequently Asked Questions, Release 3.7.5rc1

machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not expected
to work between different Python virtual machines, nor to be stable between Python releases.
A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

coercion The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int(3.15) converts the floating point number to the integer 3, but in 3+4.5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Without coercion, all arguments of even compatible types would have
to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of a real
part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-Local
Storage in which each execution thread may have a different value for a variable. However, with context variables,
there may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each
other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index
varies the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first
index varies the fastest.

coroutine Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the async
def statement, and may contain await, async for, and async with keywords. These were introduced by
PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().
The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

79

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Python Frequently Asked Questions, Release 3.7.5rc1

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the
respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.
For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

dictionary view The objects returned from dict.keys(), dict.values(), and dict.items() are called
dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary
changes, the view reflects these changes. To force the dictionary view to become a full list uselist(dictview).
See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must
be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by
allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note, however,
that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr() tests
or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.
f-string String literals prefixed with 'f' or 'F' are commonly called “f-strings” which is short for formatted string

literals. See also PEP 498.
file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying re-

source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.
There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the io module. The canonical way to create a file object is by using the open() function.

file-like object A synonym for file object.
finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path entry
finders for use with sys.path_hooks.
See PEP 302, PEP 420 and PEP 451 for much more detail.

80 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451

Python Frequently Asked Questions, Release 3.7.5rc1

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An annotation of a function parameter or return value.
Function annotations are usually used for type hints: for example, this function is expected to take two int argu-
ments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter.
By importing the __future__ module and evaluating its variables, you can see when a new feature was first
added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage
collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function.
Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where the
intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.
Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for clause
defining a loop variable, range, and an optional if clause. The combined expression generates values for an en-
closing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed ofmultiple functions implementing the same operation for different types. Which
implementation should be used during a call is determined by the dispatch algorithm.
See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP 443.

GIL See global interpreter lock.
global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes Python

bytecode at a time. This simplifies the CPython implementation by making the object model (including critical

81

https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0443

Python Frequently Asked Questions, Release 3.7.5rc1

built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it
easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded bymulti-processor
machines.
However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.
Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source
file to determine its validity. See pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__()method). Hashable objects which compare
equal must have the same hash value.
Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash
value internally.
Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not;
immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable. Objects which
are instances of user-defined classes are hashable by default. They all compare unequal (except with themselves),
and their hash value is derived from their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the parent
package’s __path__ attribute.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.
interactive Python has an interactive interpreter which means you can enter statements and expressions at the interpreter

prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly creating
an executable which is then run. Interpreted languages typically have a shorter development/debug cycle than
compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually releases
all allocated resources, such as modules and various critical internal structures. It also makes several calls to the
garbage collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code
executed during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).
The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

82 Appendix A. Glossary

Python Frequently Asked Questions, Release 3.7.5rc1

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define with an __iter__() method or with a __getitem__() method that implements Sequence semantics.
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), …).
When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
to its __next__()method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a list) produces a fresh new iterator each time you pass it to the iter() function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.
More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.
A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such
as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors:
attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument See argument.
lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.

The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.
In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the looking”
and “the leaping”. For example, the code, if key in mapping: return mapping[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list
of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted,
all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method An informal synonym for special method.

83

https://www.python.org/dev/peps/pep-0302

Python Frequently Asked Questions, Release 3.7.5rc1

mapping A container object that supports arbitrary key lookups and implements the methods specified in the Mapping
or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but different
from path entry finders.
See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented program-
ming languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.
More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.
See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their id(). See also immutable.
named tuple The term “named tuple” applies to any type or class that inherits from tuple and whose indexable elements

are also accessible using named attributes. The type or class may have other features as well.
Several built-in types are named tuples, including the values returned by time.localtime() and os.
stat(). Another example is sys.float_info:

>>> sys.float_info[1] # indexed access
1024
>>> sys.float_info.max_exp # named field access
1024
>>> isinstance(sys.float_info, tuple) # kind of tuple
True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple(). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity by
preventing naming conflicts. For instance, the functions builtins.open and os.open() are distinguished
by their namespaces. Namespaces also aid readability and maintainability by making it clear which module im-
plements a function. For instance, writing random.seed() or itertools.islice() makes it clear that
those functions are implemented by the random and itertools modules, respectively.

84 Appendix A. Glossary

https://www.python.org/download/releases/2.3/mro/

Python Frequently Asked Questions, Release 3.7.5rc1

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they have no __init__.
py file.
See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference and
not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables read and
write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package APythonmodulewhich can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path__ attribute.
See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no syntax for defining
positional-only parameters. However, some built-in functions have positional-only parameters (e.g. abs()).

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can be
defined by including a single var-positional parameter or bare * in the parameter list of the function definition
before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.
See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, the
inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.
path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to

locate modules given a path entry.
See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

85

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0362

Python Frequently Asked Questions, Release 3.7.5rc1

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.
path-like object An object representing a file system path. A path-like object is either a str or bytes object represent-

ing a path, or an object implementing the os.PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os.fspath() function; os.
fsdecode() and os.fsencode() can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.
PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible
for building consensus within the community and documenting dissenting opinions.
See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as defined
in PEP 420.

positional argument See argument.
provisional API A provisional API is one which has been deliberately excluded from the standard library’s backwards

compatibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if deemed
necessary by core developers. Such changes will not be made gratuitously – they will occur only if serious funda-
mental flaws are uncovered that were missed prior to the inclusion of the API.
Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every attempt
will still be made to find a backwards compatible resolution to any identified problems.
This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.
Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in

the distant future.) This is also abbreviated “Py3k”.
Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than

implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

qualified name A dotted name showing the “path” from a module’s global scope to a class, function or method defined
in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

86 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Python Frequently Asked Questions, Release 3.7.5rc1

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including any
parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return the
reference count for a particular object.

regular package A traditional package, such as a directory containing an __init__.py file.
See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a __len__() method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(), but is
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.
The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__() and __len__(), adding count(), index(), __contains__(), and
__reversed__(). Types that implement this expanded interface can be registered explicitly using
register().

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a single
argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (subscript)
notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

text encoding A codec which encodes Unicode strings to bytes.
text file A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream

and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),

87

Python Frequently Asked Questions, Release 3.7.5rc1

sys.stdin, sys.stdout, and instances of io.StringIO.
See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe (‘).
While they don’t provide any functionality not available with single-quoted strings, they are useful for a number of
reasons. They allow you to include unescaped single and double quotes within a string and they can span multiple
lines without the use of the continuation character, making them especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias A synonym for a type, created by assigning the type to an identifier.
Type aliases are useful for simplifying type hints. For example:

from typing import List, Tuple

def remove_gray_shades(
colors: List[Tuple[int, int, int]]) -> List[Tuple[int, int, int]]:

pass

could be made more readable like this:

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades(colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.
type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return

value.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs
with code completion and refactoring.
Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().
See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention
'\r'. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

variable annotation An annotation of a variable or a class attribute.
When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

88 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Frequently Asked Questions, Release 3.7.5rc1

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to install
and upgrade Python distribution packages without interfering with the behaviour of other Python applications
running on the same system.
See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by
the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

89

Python Frequently Asked Questions, Release 3.7.5rc1

90 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.
Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!
Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
• the Docutils project for creating reStructuredText and the Docutils suite;
• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation. See
Misc/ACKS in the Python source distribution for a partial list of contributors.
It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

91

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.7/Misc/ACKS

Python Frequently Asked Questions, Release 3.7.5rc1

92 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see http:
//www.zope.com/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a
non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.
All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the GPL,
let you distribute a modified version without making your changes open source. The GPL-compatible licenses make it
possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

93

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
http://www.zope.com/
http://www.zope.com/
https://www.python.org/psf/
https://opensource.org/

Python Frequently Asked Questions, Release 3.7.5rc1

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.7.5rc1

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

3.7.5rc1 software in source or binary form and its associated␣
↪→documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.7.5rc1 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2019 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.7.5rc1 alone or in any derivative␣

↪→version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.7.5rc1 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
3.7.5rc1.

4. PSF is making Python 3.7.5rc1 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 3.7.5rc1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.5rc1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.5rc1, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

94 Appendix C. History and License

Python Frequently Asked Questions, Release 3.7.5rc1

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 3.7.5rc1, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2. Terms and conditions for accessing or otherwise using Python 95

Python Frequently Asked Questions, Release 3.7.5rc1

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

(continues on next page)

96 Appendix C. History and License

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
8. By clicking on the "ACCEPT" button where indicated, or by copying, installing

or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 97

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(continues on next page)

98 Appendix C. History and License

http://www.wide.ad.jp/

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 99

Python Frequently Asked Questions, Release 3.7.5rc1

C.3.5 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

(continues on next page)

100 Appendix C. History and License

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 101

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash.c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algorithm. It
contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(continues on next page)

102 Appendix C. History and License

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
Original location:

https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 103

http://www.netlib.org/fp/

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.

(continues on next page)

104 Appendix C. History and License

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3. Licenses and Acknowledgements for Incorporated Software 105

Python Frequently Asked Questions, Release 3.7.5rc1

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

106 Appendix C. History and License

Python Frequently Asked Questions, Release 3.7.5rc1

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 107

Python Frequently Asked Questions, Release 3.7.5rc1

(continued from previous page)
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

108 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:
Copyright © 2001-2019 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.
Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

109

Python Frequently Asked Questions, Release 3.7.5rc1

110 Appendix D. Copyright

INDEX

Non-alphabetical
..., 77
2to3, 77
>>>, 77
__future__, 81
__slots__, 87

A
abstract base class, 77
annotation, 77
argument, 77

difference from parameter, 13
asynchronous context manager, 78
asynchronous generator, 78
asynchronous generator iterator, 78
asynchronous iterable, 78
asynchronous iterator, 78
attribute, 78
awaitable, 78

B
BDFL, 78
binary file, 78
bytecode, 78
bytes-like object, 78

C
C-contiguous, 79
class, 79
class variable, 79
coercion, 79
complex number, 79
context manager, 79
context variable, 79
contiguous, 79
coroutine, 79
coroutine function, 79
CPython, 79

D
decorator, 79
descriptor, 80

dictionary, 80
dictionary view, 80
docstring, 80
duck-typing, 80

E
EAFP, 80
environment variable

PATH, 47, 48
PYTHONDONTWRITEBYTECODE, 32
TCL_LIBRARY, 72
TK_LIBRARY, 72

expression, 80
extension module, 80

F
file object, 80
file-like object, 80
finder, 80
floor division, 81
Fortran contiguous, 79
f-string, 80
function, 81
function annotation, 81

G
garbage collection, 81
generator, 81
generator expression, 81
generator iterator, 81
generic function, 81
GIL, 81
global interpreter lock, 81

H
hashable, 82
hash-based pyc, 82

I
IDLE, 82
immutable, 82
import path, 82

111

Python Frequently Asked Questions, Release 3.7.5rc1

importer, 82
importing, 82
interactive, 82
interpreted, 82
interpreter shutdown, 82
iterable, 83
iterator, 83

K
key function, 83
keyword argument, 83

L
lambda, 83
LBYL, 83
list, 83
list comprehension, 83
loader, 83

M
magic

method, 83
magic method, 83
mapping, 84
meta path finder, 84
metaclass, 84
method, 84

magic, 83
special, 87

method resolution order, 84
module, 84
module spec, 84
MRO, 84
mutable, 84

N
named tuple, 84
namespace, 84
namespace package, 85
nested scope, 85
new-style class, 85

O
object, 85

P
package, 85
parameter, 85

difference from argument, 13
PATH, 47, 48
path based finder, 86
path entry, 85
path entry finder, 85

path entry hook, 86
path-like object, 86
PEP, 86
portion, 86
positional argument, 86
provisional API, 86
provisional package, 86
Python 3000, 86
Python Enhancement Proposals

PEP 1, 86
PEP 5, 5
PEP 6, 2
PEP 8, 8, 70
PEP 238, 81
PEP 275, 39
PEP 278, 88
PEP 302, 80, 83
PEP 343, 79
PEP 362, 78, 85
PEP 411, 86
PEP 420, 80, 85, 86
PEP 443, 81
PEP 451, 80
PEP 484, 77, 81, 88
PEP 492, 78, 79
PEP 498, 80
PEP 519, 86
PEP 525, 78
PEP 526, 77, 88
PEP 570, 18
PEP 3116, 88
PEP 3147, 32
PEP 3155, 86

PYTHONDONTWRITEBYTECODE, 32
Pythonic, 86

Q
qualified name, 86

R
reference count, 87
regular package, 87

S
sequence, 87
single dispatch, 87
slice, 87
special

method, 87
special method, 87
statement, 87

T
TCL_LIBRARY, 72

112 Index

Python Frequently Asked Questions, Release 3.7.5rc1

text encoding, 87
text file, 87
TK_LIBRARY, 72
triple-quoted string, 88
type, 88
type alias, 88
type hint, 88

U
universal newlines, 88

V
variable annotation, 88
virtual environment, 89
virtual machine, 89

Z
Zen of Python, 89

Index 113

	General Python FAQ
	Programming FAQ
	Design and History FAQ
	Library and Extension FAQ
	Extending/Embedding FAQ
	Python on Windows FAQ
	Graphic User Interface FAQ
	“Why is Python Installed on my Computer?” FAQ
	Glossary
	About these documents
	History and License
	Copyright
	Index

