The Python Library Reference
Release 3.7.5

Guido van Rossum
and the Python development team

October 14, 2019

Python Software Foundation
Email: docs@python.org

Introduction

1.1

Notes on availability

Built-in Functions

Built-in Constants

3.1 Constants added by the site module

Built-in Types

4.1 Truth Value Testing

4.2 Boolean Operations — and, or, not

43 CompariSons v v i e
4.4 Numeric Types — int, float, complex

45 Tterator Types oo oL
4.6 Sequence Types — list, tuple, range

47 Text Sequence Type — str

4.8

4.9 Set Types — set, frozenset

4.10 Mapping Types — dict

4.11 Context Manager Types

4.12 Other Built-in Types

4.13 Special Attributeso

Binary Sequence Types — bytes, bytearray, memoryview

Built-in Exceptions

5.1
52
53
54

Baseclasses,

Concrete exceptions

Exception hierarchy

Text Processing Services

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

string — Common string operations
re — Regular expression operations
difflib — Helpers for computing deltas
textwrap — Text wrapping and filling
unicodedata — Unicode Database
stringprep — Internet String Preparation
readline — GNU readline interface
rlcompleter — Completion function for GNU readline

Binary Data Services

7.1
7.2

struct — Interpret bytes as packed binary data
codecs — Codec registry and base classes

Data Types

8.1

datetime — Basic date and time types

Warnings oo o

CONTENTS

8.2 calendar — General calendar-related functions oL 190
83 collections— Container datatypes v v v v v it e e e e e e e e e 194
84 collections.abc — Abstract Base Classes for Containers 209
8.5 heapg—Heapqueuealgorithm L 213
8.6 Dbisect — Arraybisectionalgorithm oL 217
8.7 array — Efficient arrays of numericvalues oo o o L. 219
8.8 weakref —Weakreferences e 221
8.9 types — Dynamic type creation and names for built-in types 228
8.10 copy — Shallow and deep copy operations 232
8.11 pprint — Datapretty printer e 233
8.12 reprlib — Alternate repr () implementation L 238
8.13 enum— Support for enuMerations e e e e e 240
9 Numeric and Mathematical Modules 257
9.1 numbers — Numeric abstractbase classes 257
9.2 math— Mathematical functions 260
9.3 cmath — Mathematical functions for complex numbers 265
9.4 decimal — Decimal fixed point and floating point arithmetic 268
9.5 fractions—Rationalnumbers L L L 293
9.6 random— Generate pseudo-random numbers oo oL L 296
9.7 statistics — Mathematical statistics functionso 301
10 Functional Programming Modules 309
10.1 itertools — Functions creating iterators for efficient looping 309
10.2 functools — Higher-order functions and operations on callable objects 322
10.3 operator — Standard operators as functions L. Lo 329
11 File and Directory Access 337
11.1 pathlib — Object-oriented filesystem paths 337
11.2 os.path — Common pathname manipulations, 352
11.3 fileinput — Iterate over lines from multiple input streams 356
11.4 stat — Interpreting stat () results o . L e 358
11.5 filecmp — File and Directory Comparisons oo v v v v i v v i e o 363
11.6 tempfile — Generate temporary files and directories 365
11.7 glob — Unix style pathname pattern eXpansion v v v v v v v v v v v v e e 369
11.8 fnmatch — Unix filename pattern matching 370
119 linecache —Randomaccesstotextlines 371
11.10 shutil — High-level file operations 372
11.11 macpath — Mac OS 9 path manipulation functions 379
12 Data Persistence 381
12.1 pickle — Python object serializationo 381
12.2 copyreg— Register pickle supportfunctions Lo 393
12.3 shelve — Python object persistence v v v v v i i v i e e e 394
12.4 marshal — Internal Python object serialization 396
12.5 dbm — Interfaces to Unix “databases” e 397
12.6 sglite3 — DB-API 2.0 interface for SQLite databases 401
13 Data Compression and Archiving 423
13.1 zlib — Compression compatible withgzip 0. 423
13.2 gzip—Supportforgzipfiles 426
13.3 bz2 — Support for bzip2 compression oo e e e e 429
13.4 1zma — Compression using the LZMA algorithm 432
13.5 zipfile— WorkwithZIParchives e 438
13.6 tarfile — Read and write tar archivefiles 445
14 File Formats 455
14.1 csv— CSV File Reading and Writing 455
142 configparser — Configuration fileparser 461

143 netrc—netrcfile processingo e e e e 4717

144 xdrlib —Encodeand decode XDRdata 478
145 plistlib — Generate and parse Mac OS X .plistfiles 481
Cryptographic Services 485
15.1 hashlib — Secure hashes and message digests o v i e 485
15.2 hmac — Keyed-Hashing for Message Authentication 494
15.3 secrets — Generate secure random numbers for managing secrets 496
Generic Operating System Services 499
16.1 os — Miscellaneous operating system interfaces 0oL, 499
16.2 io— Core tools for working with streams oL 0oL, 543
16.3 time — Time access and CONVEISIONS v v v v v v v v it e e e e e et e e e e 555
16.4 argparse — Parser for command-line options, arguments and sub-commands 564
16.5 getopt — C-style parser for command line options, 593
16.6 logging — Logging facility for Python 0. 595
16.7 logging.config—Logging configuration 609
16.8 logging.handlers —Logginghandlers 619
16.9 getpass — Portable password input Lo 631
16.10 curses — Terminal handling for character-cell displays 632
16.11 curses.textpad — Text input widget for curses programs 648
16.12 curses.ascii — Utilities for ASCII characters 649
16.13 curses.panel — A panel stack extension forcurses 651
16.14 plat form — Access to underlying platform’s identifyingdata 653
16.15 errno — Standard errno system symbols L e 656
16.16 ctypes — A foreign function library for Python 0., 661
Concurrent Execution 693
17.1 threading— Thread-based parallelism 693
172 multiprocessing— Process-based parallelism. 704
17.3 The concurrent package e e 744
17.4 concurrent.futures — Launching parallel tasks 744
17.5 subprocess — Subprocess managementol 750
17.6 sched—Eventscheduler e 766
177 queue — A synchronized queue class L e 768
17.8 _thread — Low-level threading APT 771
17.9 _dummy_thread — Drop-in replacement for the _threadmodule 772
17.10 dummy_threading — Drop-in replacement for the threadingmodule 773
contextvars — Context Variables 775
18.1 Context Variables o e e e e e 775
18.2 Manual Context Managementt vttt e e e e e 776
183 aSynCio SUPPOIt v v i i i et e e e e e e e e e e e e e e e e 777
Networking and Interprocess Communication 779
19.1 asyncio—AsynchronousI/O 779
19.2 socket — Low-level networking interface, 857
19.3 ss1 — TLS/SSL wrapper for socketobjects e 878
19.4 select — Waitingfor /O completion 911
19.5 selectors — High-level /O multiplexing 918
19.6 asyncore — Asynchronous socket handler 921
19.7 asynchat — Asynchronous socket command/response handler 925
19.8 signal — Set handlers for asynchronous events e 927
19.9 mmap — Memory-mapped file support e 933
Internet Data Handling 937
20.1 email — Anemail and MIME handling package 937
20.2 json—IJSONencoder anddecoder i 991

20.3 mailcap —Mailcapfilehandling o o 1000

21

22

23

20.4 mailbox — Manipulate mailboxes in various formats oL
20.5 mimetypes — Map filenamesto MIME types o
20.6 base64 — Basel6, Base32, Base64, Base85 Data Encodings
20.7 binhex — Encode and decode binhex4 files o oL
20.8 binascii — Convert between binaryand ASCIT
20.9 quopri — Encode and decode MIME quoted-printabledata
20.10 uu — Encode and decode uuencode files oL oL

Structured Markup Processing Tools

21.1 html — HyperText Markup Language support
21.2 html.parser — Simple HTML and XHTML parser
21.3 html.entities — Definitions of HTML general entities
21.4 XML Processing Moduleso e
21.5 xml.etree.ElementTree — The ElementTree XML API
21.6 xml.dom — The Document Object Model APT.
21.7 xml.dom.minidom— Minimal DOM implementation
21.8 xml.dom.pulldom— Support for building partial DOM trees
21.9 xml.sax —Supportfor SAX2 parsers oo
21.10 xml.sax.handler — Base classes for SAX handlers
21.11 xml.sax.saxutils —SAXUtilities i i it
21.12 xml.sax.xmlreader — Interface for XML parsers
21.13 xml .parsers.expat — Fast XML parsingusing Expat

Internet Protocols and Support

22.1 webbrowser — Convenient Web-browser controller
22.2 cgi — Common Gateway Interface support e
22.3 cgitb — Traceback manager for CGIscripts. v i i it
22.4 wsgiref — WSGI Utilities and Reference Implementation,
225 urllib—URLhandlingmodules
22.6 urllib.request — Extensible library foropening URLs
2277 urllib.response — Response classesusedbyurllib
22.8 urllib.parse — Parse URLs into componentso v v v v v ...
229 urllib.error — Exception classes raised by urllib.request
22.10 urllib.robotparser — Parser forrobots.txt
2211 http—HTTP modules e e e e
22.12 http.client — HTTP protocolclient
22.13 ftplib —FTP protocol client o e
22.14 poplib —POP3 protocol client
22.15 imaplib —IMAP4 protocol client
22.16 nntplib — NNTP protocol client
2217 smtplib — SMTP protocol client e
2218 smtpd — SMTP Server e e
22.19 telnetlib—Telnetclient e
22.20 uuid — UUID objects accordingto RFC 4122
22.21 socketserver — A framework for network servers oL
2222 http.server — HTTPservers i i e i e e e
22.23 http.cookies — HTTP state management v v v v v v v v v v v v v
22.24 http.cookiejar — Cookie handling for HTTP clients
22.25 xmlrpc — XMLRPC server and client modules
22.26 xmlrpc.client — XML-RPCclientaccess i v v i i it i
2227 xmlrpc.server — Basic XML-RPCservers
22.28 ipaddress — IPv4/IPv6 manipulation library,

Multimedia Services

23.1 audioop — Manipulate raw audiodata.o
23.2 aifc—Read and write AIFFand AIFCfiles
23.3 sunau—Read and write Sun AUfiles
234 wave —Read and write WAV fileso
23,5 chunk —ReadIFFchunkeddata

24

25

26

27

28

29

30

23.6 colorsys — Conversions between color systemso
237 imghdr — Determine the type of animage e
23.8 sndhdr — Determine type of soundfile
23.9 ossaudiodev — Access to OSS-compatible audiodevices

Internationalization
24.1 gettext — Multilingual internationalization services
242 locale — Internationalization SEIVICES v v v v v v v e e e e e e e e e e e e e

Program Frameworks

25.1 turtle —Turtlegraphics L e
25.2 cmd — Support for line-oriented command interpreterso L.
253 shlex — Simple lexical analysis e

Graphical User Interfaces with Tk

26.1 tkinter — Pythoninterfaceto Tcl/Tk
26.2 tkinter.ttk —Tkthemedwidgets
26.3 tkinter.tix —Extensionwidgetsfor Tk
264 tkinter.scrolledtext — Scrolled Text Widget
26,5 IDLE
26.6 Other Graphical User Interface Packages

Development Tools

27.1 typing—Supportfortypehints L. o
27.2 pydoc — Documentation generator and online help system
27.3 doctest — Test interactive Python examples
274 unittest — Unittesting framework L
27.5 unittest.mock —mockobjectlibrary
27.6 unittest.mock —gettingstarted oL e
27.7 2to3 - Automated Python 2 to 3 code translation 0oL,
27.8 test — Regression tests package for Python oL o oL
279 test.support — Utilities for the Python testsuite
27.10 test.support.script_helper — Utilities for the Python execution tests

Debugging and Profiling

28.1 bdb — Debugger framework
28.2 faulthandler — Dump the Python traceback
28.3 pdb —The Python Debugger e
28.4 The Python Profilers
28.5 timeit — Measure execution time of small code snippets
28.6 trace — Trace or track Python statement execution
287 tracemalloc — Trace memory allocations v i i i i it

Software Packaging and Distribution

29.1 distutils — Building and installing Python modules
29.2 ensurepip — Bootstrapping the pipinstaller
29.3 venv — Creation of virtual environments L. o o
29.4 zipapp — Manage executable Python ziparchives oo

Python Runtime Services

30.1 sys — System-specific parameters and functions o oL
30.2 sysconfig— Provide access to Python’s configuration information
303 builtins—Built-inobjects e
304 _ _main__ —Top-level scriptenvironment L e
30.5 warnings — Warningcontrol L. L e e e e
30.6 dataclasses—DataClasses. e
30.7 contextlib — Utilities for with-statement contexts
30.8 abc —Abstract Base Classes i e e e e
309 atexit —Exithandlers

31

32

33

34

35

36

37

30.10 traceback — Print or retrieve a stack traceback oo
30.11 _ future_ — Future statement definitions e
30.12 gc — Garbage Collector interface o o i e e e e e
30.13 inspect — Inspectliveobjects L e
30.14 site — Site-specific configurationhook oL Lo

Custom Python Interpreters
31.1 code —Interpreterbaseclasses L. L e
31.2 codeop — Compile Pythoncode

Importing Modules

32.1 zipimport — Import modules from Zip archives oL
32.2 pkgutil —Package extension utility
32.3 modulefinder —Find modulesused by ascript L.
32.4 runpy — Locating and executing Pythonmodules,
32,5 importlib — The implementation of import L.

Python Language Services

33.1 parser — Access Pythonparsetrees o o . e e e
332 ast — Abstract Syntax Trees L e
33.3 symtable — Access to the compiler’s symbol tables,
33.4 symbol — Constants used with Python parse trees
33.5 token — Constants used with Python parse trees,
33.6 keyword — Testing for Python keywords
337 tokenize — Tokenizer for Pythonsource, .
33.8 tabnanny — Detection of ambiguous indentation 0oL
33.9 pyclbr — Python class browser support oL oo
33.10 py_compile — Compile Python source files
33.11 compileall — Byte-compile Python libraries
33.12 dis — Disassembler for Pythonbytecode oL oo
33.13 pickletools — Tools for pickle developers

Miscellaneous Services
34.1 formatter — Generic output formattingo

MS Windows Specific Services

35.1 msilib — Read and write Microsoft Installerfiles
35.2 msvcrt — Useful routines from the MS VC++runtime
353 winreg— Windows registry acCesst . e e e e e e
35.4 winsound — Sound-playing interface for Windows L. oL

Unix Specific Services

36.1 posix — The most common POSIX systemcalls.
36.2 pwd—The password database
36.3 spwd — The shadow password database
364 grp—Thegroupdatabase o . i e e e e e e e
36.5 crypt — Function to check Unix passwords
36.6 termios —POSIXstylettycontrol L e
36.7 tty — Terminal control functions e e e
36.8 pty — Pseudo-terminal utilities L.
369 fcntl —The fentlandioctlsystemcalls. oo 0oL
36.10 pipes — Interface to shell pipelines e
36.11 resource — Resource usage information o oL
36.12 nis — Interface to Sun’s NIS (Yellow Pages)
36.13 syslog— Unix syslog library routines o i i

Superseded Modules
37.1 optparse — Parser for command lineoptions
37.2 imp — Access the importinternals Lo

vi

38 Undocumented Modules
38.1 Platform specific modules

A Glossary

B About these documents
B.1 Contributors to the Python Documentation

C History and License
C.1 History of the software

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright
Bibliography
Python Module Index

Index

1749
1749

1751

1763
1763

1765
1765
1766
1769

1781

1783

1785

1789

vii

viii

The Python Library Reference, Release 3.7.5

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so
it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

https://pypi.org
https://pypi.org

The Python Library Reference, Release 3.7.5

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like
the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the
core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see module random) and read a section or two. Regardless
of the order in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the
remainder of the manual assumes familiarity with this material.

Let the show begin!

1.1 Notes on availability

¢ An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make
any claims about its existence on a specific operating system.

* If not separately noted, all functions that claim “Availability: Unix” are supported on Mac OS X, which builds
on a Unix core.

The Python Library Reference, Release 3.7.5

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here

in alphabetical order.

Built-in Functions
abs () delattr() hash () memoryview () set ()
all() dict () help() min () setattr ()
any () dir () hex () next () slice()
ascii() divmod () id() object () sorted()
bin () enumerate () input () oct () staticmethod ()
bool () eval () int () open () str()
breakpoint () exec () isinstance() ord() sum ()
bytearray () filter() issubclass () pow () super ()
bytes () float () iter() print () tuple ()
callable () format () len() property () type ()
chr () frozenset () 1list () range () vars ()
classmethod() getattr () locals () repr () zip ()
compile () globals () map () reversed() __import__ ()
complex () hasattr () max () round ()

abs (x)
Return the absolute value of a number. The argument may be an integer or a floating point number. If the
argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:
if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to
that returned by repr () in Python 2.

The Python Library Reference, Release 3.7.5

bin (x)
Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python expression. If x is
not a Python int object, it has to define an __index__ () method that returns an integer. Some examples:

>>> bin(3)
'Ob11"

>>> bin (-10)
'-0b1010"

If prefix “Ob” is desired or not, you can use either of the following ways.

>>> format (14, '#b'), format (14, 'b')
('Ob1110", '1110")

>>> f! v, f£! !

('0Ob1110', '"1110")

See also format () for more information.

class bool ([x])
Return a Boolean value, i.e. one of True or False. x is converted using the standard rruth testing procedure.
If x is false or omitted, this returns False; otherwise it returns True. The bool class is a subclass of int
(see Numeric Types — int, float, complex). It cannot be subclassed further. Its only instances are False and
True (see Boolean Values).

Changed in version 3.7: x is now a positional-only parameter.

breakpoint (*args, **kws)
This function drops you into the debugger at the call site. Specifically, it calls sys.breakpointhook (),
passing args and kws straight through. By default, sys.breakpointhook () calls pdb.
set_trace () expecting no arguments. In this case, it is purely a convenience function so you don’t have to
explicitly import pdb or type as much code to enter the debugger. However, sys.breakpointhook ()
can be set to some other function and breakpoint () will automatically call that, allowing you to drop into
the debugger of choice.

New in version 3.7.

class bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as
most methods that the byt es type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

« If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

« If it is an integer, the array will have that size and will be initialized with null bytes.

« If itis an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

« If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size O is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes ([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256.
bytes is an immutable version of bytearray — it has the same non-mutating methods and the same in-
dexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().

Bytes objects can also be created with literals, see strings.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.5

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytearray Op-
erations.

callable (object)
Return True if the object argument appears callable, F'a 1 se if not. If this returns true, it is still possible that
a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class
returns a new instance); instances are callable if their classhasa _ call__ () method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a ', while chr (8364) returns the string '€ '. This is the inverse of ord ().

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). ValueError will be
raised if i is outside that range.

@classmethod
Transform a method into a class method.

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @Rclassmethod form is a function decorator — see function for details.

A class method can be called either on the class (such as C. £ ()) or on an instance (suchas C () . £ ()). The
instance is ignored except for its class. If a class method is called for a derived class, the derived class object
is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod ().
For more information on class methods, see types.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source
can either be a normal string, a byte string, or an AST object. Refer to the ast module documentation for
information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which future statements affect the compilation of source.
If neither is present (or both are zero) the code is compiled with those future statements that are in effect in
the code that is calling compile (). If the flags argument is given and dont_inherit is not (or is zero) then
the future statements specified by the flags argument are used in addition to those that would be used anyway.
If dont_inherit is a non-zero integer then the flags argument is it — the future statements in effect around the
call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_flag attribute onthe _Feature
instance inthe future module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the op-
timization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; ___debug___
is true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source con-
tains null bytes.

The Python Library Reference, Release 3.7.5

If you want to parse Python code into its AST representation, see ast . parse ().

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be termi-
nated by at least one newline character. This is to facilitate detection of incomplete and complete statements
in the code module.

Warning: It is possible to crash the Python interpreter with a sufficiently large/complex string when
compiling to an AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does not
have to end in a newline anymore. Added the opfimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

class complex ([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion
like int and f1oat. If both arguments are omitted, returns 0 7.

Note: When converting from a string, the string must not contain whitespace around the central + or —
operator. For example, complex ('1+27") isfine, but complex ('l + 23j') raises ValueError.

The complex type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr (x, 'foobar') isequivalenttodel x.foobar.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 1ist, set, and tuple classes, as well as the colIections module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a
list of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or __getattribute__ () function to
customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
___dict___ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

« If the object is a module object, the list contains the names of the module’s attributes.

« If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.5

» Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recur-
sively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace # doctest: +SKIP
['__builtins__ ', '__name__', 'struct']

>>> dir (struct) # show the names in the struct module # doctest: +SKIP
['Struct', '__all_ ', '_ builtins__ ', '__cached__ ', '__doc__"', '_ file_ ',
'__initializing__ ', '__loader__', '__name__', '__package__ ',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',

'unpack', 'unpack_from']
>>> class Shape:

def _ dir_ (self):

c return ['area', 'perimeter', 'location']
>>> s = Shape ()
>>> dir (s)
["area', 'location', 'perimeter']

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of names,
and its detailed behavior may change across releases. For example, metaclass attributes are not in the result list
when the argument is a class.

divmod (a, b)

Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating point numbers the result is
(g, a % b),wheregisusuallymath.floor (a / b) butmay be 1 less than that. Inanycase g * b
+ a % bisveryclosetoa, if a $ b is non-zero it has the same sign as b, and 0 <= abs(a % b) <
abs (b).

enumerate (iterable, start=0)

Return an enumerate object. iferable must be a sequence, an iferator, or some other object which supports
iteration. The ___next__ () method of the iterator returned by enumerate () returns a tuple containing a
count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list (enumerate (seasons))

[(O, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list (enumerate (seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression[, globals[, locals]])

The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present and
does not contain a value for the key __builtins__, a reference to the dictionary of the built-in module
builtinsisinserted under that key before expression is parsed. This means that expression normally has full
access to the standard bui It ins module and restricted environments are propagated. If the locals dictionary

The Python Library Reference, Release 3.7.5

is omitted it defaults to the globals dictionary. If both dictionaries are omitted, the expression is executed in
the environment where eval () is called. The return value is the result of the evaluated expression. Syntax
errors are reported as exceptions. Example:

>>> x =1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with 'exec' as the mode
argument, eval ()’s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and
locals () functions returns the current global and local dictionary, respectively, which may be useful to
pass around for use by eval () or exec ().

See ast.literal eval () for afunction that can safely evaluate strings with expressions containing only
literals.

exec (object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object.
If it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax
error occurs).! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to
be valid as file input (see the section “File input” in the Reference Manual). Be aware that the return and
yield statements may not be used outside of function definitions even within the context of code passed to
the exec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary, which will be used for both the global and the local variables. If globals and
locals are given, they are used for the global and local variables, respectively. If provided, locals can be any
mapping object. Remember that at module level, globals and locals are the same dictionary. If exec gets two
separate objects as globals and locals, the code will be executed as if it were embedded in a class definition.

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins are
available to the executed code by inserting your own ___builtins__ dictionary into globals before passing
itto exec ().

Note: The built-in functions globals () and Iocals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function 1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on
locals after function exec () returns.

filter (function, iterable)
Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iferable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function (item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

I Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.5

clas

s float ([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional sign may be '+' or '—"'; a '+' sign has no effect on the value
produced. The argument may also be a string representing a NaN (not-a-number), or a positive or negative
infinity. More precisely, the input must conform to the following grammar after leading and trailing whitespace
characters are removed:

Slgl’l L "+" | n_mn

infinity = "Infinity" | "inf"

nan = "nan"

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here £ loatnumber is the form of a Python floating-point literal, described in floating. Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value
(within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an
OverflowError will be raised.

For a general Python object x, float (x) delegatesto x.___float__ ().
If no argument is given, O . O is returned.

Examples:

>>> float ('+1.23")

1.23

>>> float (' -12345\n")
-12345.0

>>> float ('1e-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity'")
—-inf

The float type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.7: x is now a positional-only parameter.

format (value[, format_spec])

clas

Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument, however there is a standard formatting syntax that is
used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st r (value).

A call to format (value, format_spec) istranslated to type (value) ._ format__ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s ___format__ ()
method. A TypeError exception is raised if the method search reaches object and the format_spec is
non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec
is not an empty string.

s frozenset ([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

11

The Python Library Reference, Release 3.7.5

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar')
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError israised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current

module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether
it raises an Att ributeError or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

Note: For objects with custom __hash___ () methods, note that hash () truncates the return value based
on the bit width of the host machine. See __hash__ () for details.

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function, when invoking help (), it means that
the parameters prior to the slash are positional-only. For more info, see the FAQ entry on positional-only
parameters.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are
now more comprehensive and consistent.

hex (x)
Convert an integer number to a lowercase hexadecimal string prefixed with “Ox”. If x is not a Python int
object, it has to define an __index__ () method that returns an integer. Some examples:

>>> hex (255)
'Oxff!
>>> hex (-42)
'-0x2a'

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you
can use either of the following ways:

>>> ! ' % 255, ! ''% 255, ! ' % 255

('oxff', 'ff', 'FEF'")

>>> format (255, '#x'), format (255, 'x'), format (255, 'X")
('oxff', '"f£f', 'FEF')

>>> f! . L !

('oxff', 'ff', 'FEF')

See also format () for more information.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.5

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is
read, EOFError is raised. Example:

>>> s = input('-—> ")
—-—> Monty Python's Flying Circus
>>> s

"Monty Python's Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

class int ([x])

class int (x, base=10)
Return an integer object constructed from a number or string x, or return 0 if no arguments are given.
If x defines __int__ (), int (x) returns x.__int__ (). If x defines _ trunc__ (), it returns x.
__trunc__ (). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing
an integer literal in radix base. Optionally, the literal can be preceded by + or — (with no space in between)
and surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with a to z (or A to Z) having
values 10 to 35. The default base is 10. The allowed values are 0 and 2—-36. Base-2, -8, and -16 literals can be
optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base 0 means to interpret
exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int ('010"', 0) is not legal,
while int ('010") is,aswellas int ('010', 8).

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index_
method, that method is called to obtain an integer for the base. Previous versions used base.__int_
instead of base.__index_ .

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virfual)
subclass thereof. If object is not an object of the given type, the function always returns false. If classinfo is a
tuple of type objects (or recursively, other such tuples), return true if object is an instance of any of the types.
If classinfo is not a type or tuple of types and such tuples, a TypeError exception is raised.

issubclass (class, classinfo)
Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any
other case, a TypeError exception is raised.

iter (object[, sentinel])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the itera-
tion protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ ()
method with integer arguments starting at 0). If it does not support either of those protocols, TypeError is

13

The Python Library Reference, Release 3.7.5

raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator created in
this case will call object with no arguments for each call toits ___next__ () method; if the value returned is
equal to sentinel, St opIterat ion will be raised, otherwise the value will be returned.

See also Ilterator Types.

One useful application of the second form of iter () is to build a block-reader. For example, reading fixed-
width blocks from a binary database file until the end of file is reached:

from functools import partial
with open ('mydata.db', 'rb') as f:
for block in iter (partial(f.read, 64), b''"):
process_block (block)

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

class list ([itemble])
Rather than being a function, 11 st is actually a mutable sequence type, as documented in Lists and Sequence
Types — list, tuple, range.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks. Note that at the module level,
locals () and globals () are the same dictionary.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables in
parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the
function inputs are already arranged into argument tuples, see itertools.starmap ().

max (iterable, *[, key, default])
max (argl, arg2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If
two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist . sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0]
and heapg.nlargest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

memoryview (obj)
Return a “memory view” object created from the given argument. See Memory Views for more information.

min (iterable, *[, key, default])
min (argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned. If
two or more positional arguments are provided, the smallest of the positional arguments is returned.

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.5

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted (iterable, key=keyfunc) [0] and heapq.
nsmallest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

next (iterator[, default])
Retrieve the next item from the iferator by calling its ___next__ () method. If default is given, it is returned
if the iterator is exhausted, otherwise StopTteration is raised.

class object
Return a new featureless object. object is a base for all classes. It has the methods that are common to all
instances of Python classes. This function does not accept any arguments.

Note: object does not have a ___dict__, so you can’t assign arbitrary attributes to an instance of the
object class.

oct (x)
Convert an integer number to an octal string prefixed with “0o”. The result is a valid Python expression. If x
is not a Python int object, it has to define an __index___ () method that returns an integer. For example:

>>> oct (8)
'0010"

>>> oct (-56)
'-0070"

If you want to convert an integer number to octal string either with prefix “0o” or not, you can use either of the
following ways.

>>> ! ''% 10, 7 ''% 10

("0012', '12")

>>> format (10, '#o0'), format (10, 'o')
("Ool1l2', "12")

>>> f! Y, £ !

("Ool1l2', "12")

See also format () for more information.

open (file, mode='r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True,
opener=None)
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of the file to
be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed when
the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ' r' which means
open for reading in text mode. Other common values are 'w ' for writing (truncating the file if it already exists),
'x ' for exclusive creation and 'a ' for appending (which on some Unix systems, means that all writes append
to the end of the file regardless of the current seek position). In text mode, if encoding is not specified the
encoding used is platform dependent: locale.getpreferredencoding (False) is called to get the
current locale encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.)
The available modes are:

15

The Python Library Reference, Release 3.7.5

Character | Meaning

'r!' open for reading (default)

'w' open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of the file if it exists
'b' binary mode

"t text mode (default)

T+ open a disk file for updating (reading and writing)

The default mode is 'r' (open for reading text, synonym of 'rt '). For binary read-write access, the mode
'w+b ' opens and truncates the file to O bytes. ' r+b' opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b"' in the mode argument) return contents as byt es objects without any decoding. In text mode
(the default, or when 't ' is included in the mode argument), the contents of the file are returned as st r, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

There is an additional mode character permitted, 'U', which no longer has any effect, and is considered
deprecated. It previously enabled universal newlines in text mode, which became the default behaviour in
Python 3.0. Refer to the documentation of the newline parameter for further details.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is
done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in
binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size in
bytes of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as
follows:

 Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on i 0. DEFAULT BUFFER_SIZE.On
many systems, the buffer will typically be 4096 or 8192 bytes long.

» “Interactive” text files (files for which isatty () returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent (whatever 1ocale.getpreferredencoding () returns),
but any fext encoding supported by Python can be used. See the codecs module for the list of supported
encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. A variety of standard error handlers are available (listed under Error Handlers), though
any error handling name that has been registered with codecs.register _error () is also valid. The
standard names include:

e 'strict' toraisea ValueError exception if there is an encoding error. The default value of None
has the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
e 'replace' causes a replacement marker (such as ' ? ') to be inserted where there is malformed data.

* 'surrogateescape' will represent any incorrect bytes as code points in the Unicode Private Use
Area ranging from U+DC80 to U+DCFF. These private code points will then be turned back into the
same bytes when the surrogateescape error handler is used when writing data. This is useful for
processing files in an unknown encoding.

e 'xmlcharrefreplace' is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference &#nnn; .

* 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.5

* 'namereplace' (also only supported when writing) replaces unsupported characters with \N{ . . . }
escape sequences.

newline controls how universal newlines mode works (it only applies to text mode). It can be None, ' ', '\n"',
"\r',and '\r\n"'. It works as follows:

* When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in
the inputcanendin '\n"', "\r',or '\r\n', and these are translated into ' \n' before being returned
to the caller. If itis ' ', universal newlines mode is enabled, but line endings are returned to the caller
untranslated. If it has any of the other legal values, input lines are only terminated by the given string,
and the line ending is returned to the caller untranslated.

* When writing output to the stream, if newline is None, any ' \n' characters written are translated to
the system default line separator, os. 1inesep. If newlineis ' ' or '\n', no translation takes place.
If newline is any of the other legal values, any ' \n' characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be
kept open when the file is closed. If a filename is given closefd must be True (the default) otherwise an error
will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os . open
as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os. open () function to open a file relative to a given
directory:

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open(path, flags, dir_fd=dir_f£fd)

>>> with open('spamspam.txt', 'w', opener=opener) as f:
print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close (dir_fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of io. Text IOBase
(specifically io. Text TOWrapper). When used to open a file in a binary mode with buffering, the returned
class is a subclass of i0.BufferedIOBase. The exact class varies: in read binary mode, it returns an
io.BufferedReaders;in write binary and append binary modes, it returns an io. Bufferediiriter,
and in read/write mode, it returns an io.BufferedRandom. When buffering is disabled, the raw stream,
a subclass of 10.RawIOBase, 10.FileI0,isreturned.

See also the file handling modules, such as, i leinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

Changed in version 3.3:
¢ The opener parameter was added.
e The 'x' mode was added.
e TOError used to be raised, it is now an alias of OSError.
e FileExistsError is now raised if the file opened in exclusive creation mode ('x ") al-
ready exists.
Changed in version 3.4:

¢ The file is now non-inheritable.

Deprecated since version 3.4, will be removed in version 4.0: The 'U' mode.

17

The Python Library Reference, Release 3.7.5

Changed in version 3.5:

* If the system call is interrupted and the signal handler does not raise an exception, the function
now retries the system call instead of raising an InterruptedError exception (see PEP
475 for the rationale).

¢ The 'namereplace’ error handler was added.

Changed in version 3.6:
* Support added to accept objects implementing os . PathLike.

¢ On Windows, opening a console buffer may return a subclass of i 0. RawIOBase other than
io.FilelIO.

ord (c)

Given a string representing one Unicode character, return an integer representing the Unicode code point of
that character. For example, ord ('a"') returns the integer 97 and ord ('€"') (Euro sign) returns 8364.
This is the inverse of chr ().

pow (x, y[, z])

Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than

[o)

pow (x, y) % z). The two-argument form pow (x, y) is equivalent to using the power operator: x**y.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, 10**2 returns 100, but 10** -2 returns 0. 01. If the second argument is negative, the third
argument must be omitted. If z is present, x and y must be of integer types, and y must be non-negative.

print (*objects, sep="", end="\n’, file=sys.stdout, flush="False)

Print objects to the text stream file, separated by sep and followed by end. sep, end, file and flush, if present,
must be given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no objects are given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None, sys.
stdout will be used. Since printed arguments are converted to text strings, print () cannot be used with
binary mode file objects. For these, use file.write (...) instead.

Whether output is buffered is usually determined by file, but if the flush keyword argument is true, the stream
is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

class property (fget=None, fset=None, fdel=None, doc=None)

Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function
for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def _ init_ (self):
self._x = None

def getx(self):
return self._x

def setx(self, wvalue):
self. x = value

(continues on next page)

18

Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.7.5

(continued from previous page)

def delx (self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If c is an instance of C, c . x will invoke the getter, c.x = value will invoke the setter and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fger’s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def _ init__ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage.'"""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the
same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained with
an example:

class C:
def _ init_ (self):
self._x = None

@property

def x(self):
"""I'm the 'x' property."""
return self._x

@x.setter
def x(self, wvalue):

self. _x = value
@x.deleter
def x(self):

del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property object also has the attributes fget, fset, and £del corresponding to the constructor
arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

range (stop)

range (start, stop[, step])
Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and
Sequence Types — list, tuple, range.

repr (object)
Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval (), otherwise
the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what this
function returns for its instances by defininga __repr__ () method.

19

The Python Library Reference, Release 3.7.5

reversed (seq)
Return a reverse iferator. seq must be an object which has a __reversed__ () method or supports the se-
quence protocol (the __len__ () methodandthe __getitem__ () method with integer arguments starting
at 0).

round (number[, ndigits])
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns
the nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example,
both round (0.5) and round (-0.5) are 0, and round (1.5) is 2). Any integer value is valid for
ndigits (positive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise the
return value has the same type as number.

For a general Python object number, round delegates to number.__ round__ .

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives
2. 67 instead of the expected 2 . 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t
be represented exactly as a float. See tut-fp-issues for more information.

class set ([itemble])
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set and
Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, l1ist, tuple, and dict classes, as well as the
collections module.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided
the object allows it. For example, setattr (x, 'foobar', 123) isequivalenttox.foobar = 123.

class slice (stop)

class slice (start, stop[, step])
Return a slice object representing the set of indices specified by range (start, stop, step). Thestart
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For example: a [start:stop:step] ora[start:stop, 1i]. See
itertools.islice () for an alternate version that returns an iterator.

sorted (iterable, *, key=None, reverse=False)
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element in iterable
(for example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

@staticmethod
Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.7.5

class C:
@staticmethod
def f (argl, arg2, ...):

The @staticmethod form is a function decorator — see function for details.
A static method can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()).

Static methods in Python are similar to those found in Java or C++. Also see classmethod () for a variant
that is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want
to avoid the automatic transformation to instance method. For these cases, use this idiom:

class C:
builtin_open = staticmethod (open)

For more information on static methods, see types.

class str (object=")
class str (object=b", encoding=utf-8’, errors=strict’)
Return a st r version of object. See st r () for details.

str is the built-in string class. For general information about strings, see 7ext Sequence Type — str.

sum (iterable[, start])
Sums start and the items of an iferable from left to right and returns the total. start defaults to 0. The iterable’s
items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence
of strings is by calling ' ' . join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using i tertools.chain ().

super ([type[, object—or—type]])
Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for accessing
inherited methods that have been overridden in a class. The search order is same as that used by getattr ()
except that the fype itself is skipped.

The __mro___ attribute of the type lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This
use case is unique to Python and is not found in statically compiled languages or languages that only support
single inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes im-
plement the same method. Good design dictates that this method have the same calling signature in every case
(because the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy,
and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, argqg):
super () .method (arg) # This does the same thing as:
super (C, self).method(arg)

21

The Python Library Reference, Release 3.7.5

In addition to method lookups, super () also works for attribute lookups. One possible use case for this is
calling descriptors in a parent or sibling class.

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such
as super () .__getitem__ (name). It does so by implementing its own __getattribute__ ()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class
being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

tuple ([iterable])

Rather than being a function, t uple is actually an immutable sequence type, as documented in 7uples and
Sequence Types — list, tuple, range.

class type (object)
class type (name, bases, dict)

With one argument, return the type of an object. The return value is a type object and generally the same object
as returned by object.__class__ .

The isinstance () built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class statement.
The name string is the class name and becomes the __name___ attribute; the bases tuple itemizes the base
classes and becomes the __bases___ attribute; and the dict dictionary is the namespace containing definitions
for class body and is copied to a standard dictionary to become the __dict___ attribute. For example, the
following two statements create identical t ype objects:

>>> class X:
a

1

>>> X = type('X', (object,), dict(a=1))

See also Type Objects.

Changed in version 3.6: Subclasses of type which don’t override type.__new__ may no longer use the
one-argument form to get the type of an object.

vars ([object])

Returnthe ___dict___ attribute for a module, class, instance, or any other object witha___dict___ attribute.

Objects such as modules and instances have an updateable _ dict__ attribute; however, other ob-
jects may have write restrictions on their _ dict__ attributes (for example, classes use a types.
MappingProxyType to prevent direct dictionary updates).

Without an argument, vars () acts like Jocals (). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

zip (*iterables)

Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences
or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable argument,
it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(*iterables):
zip('ABCD', 'xy') —--> Ax By
sentinel = object ()
iterators = [iter(it) for it in iterables]
while iterators:

(continues on next page)

22

Chapter 2. Built-in Functions

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.7.5

(continued from previous page)

result = []
for it in iterators:
elem = next (it, sentinel)
if elem is sentinel:
return
result.append(elem)
yield tuple(result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups using zip (* [iter (s)] *n). This repeats the same iterator n times so that
each output tuple has the result of n calls to the iterator. This has the effect of dividing the input into n-length
chunks.

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched values
from the longer iterables. If those values are important, use itertools.zip_longest () instead.

zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]
>>> vy = [4, 5, 6]
>>> zipped = zip(x, y)

>>> list (zipped)

[(1, 4), (2, 5), (3, 6)]

>>> x2, y2 = zip(*zip(x, Vy))

>>> x == list(x2) and y == list (y2)
True

__import__ (name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike import1ib.
import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui 1t ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but
doing so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same
goals and does not cause issues with code which assumes the default import implementation is in use. Direct
useof ___import__ () is also discouraged in favor of importlib. import_module ().

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at
all, and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the
module calling __import__ () (see PEP 328 for the details).

When the name variable is of the form package .module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

’spam = __import__ ('spam', globals (), locals(), []1, 0)

The statement import spam.ham results in this call:

’spam = __import__ ('spam.ham', globals(), locals(), [], 0)

23

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0328

The Python Library Reference, Release 3.7.5

Note how ___import__ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage']l, 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from ___import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value
to 0).

24

Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of the type NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which should be returned by the binary special methods (e.g. __eq_ (), __1t_ (),
__add__ (), rsub__ (), etc.) to indicate that the operation is not implemented with respect to the

other type; may be returned by the in-place binary special methods (e.g. __imul__ (),
for the same purpose. Its truth value is true.

iand__ (),etc.)

Note: When a binary (or in-place) method returns Not Implemented the interpreter will try the
reflected operation on the other type (or some other fallback, depending on the operator). If all at-
tempts return Not Implemented, the interpreter will raise an appropriate exception. Incorrectly return-
ing Not Implemented will result in a misleading error message or the Not Implemented value being
returned to Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and Not Implemented are not interchangeable, even though they have
similar names and purposes. See Not ImplementedError for details on when to use it.

Ellipsis
The same as the ellipsis literal “. . .”. Special value used mostly in conjunction with extended slicing syntax
for user-defined container data types.

__debug__
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and ___debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

25

The Python Library Reference, Release 3.7.5

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not
be used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemEx1it with the specified exit code.

copyright
credits
Objects that when printed or called, print the text of copyright or credits, respectively.

license
Object that when printed, prints the message “Type license() to see the full license text”, and when called,
displays the full license text in a pager-like fashion (one screen at a time).

26 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested
for truth value, and converted to a string (with the repr () function or the slightly different st r () function). The
latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i £ or while condition or as operand of the Boolean operations
below.

By default, an object is considered true unless its class defines either a __bool__ () method that returns False
ora___len__ () method that returns zero, when called with the object.' Here are most of the built-in objects
considered false:

¢ constants defined to be false: None and False.
e zero of any numeric type: 0, 0.0, 0J, Decimal (0),Fraction (0, 1)
e empty sequences and collections: ' ', (), [], {}, set (), range (0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X Or y if x is false, then y, else x (€))
x and y | if x1is false, then x, else y 2)
not x if x is false, then True, else False | (3)

Notes:

(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.

! Additional information on these special methods may be found in the Python Reference Manual (customization).

27

The Python Library Reference, Release 3.7.5

(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

(3) not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b),
and a == not b is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= zisequivalentto x < y
and y <= z,except that yis evaluated only once (but in both cases z is not evaluated at all when x < y is found
to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

1= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types (for ex-
ample, function objects) support only a degenerate notion of comparison where any two objects of that type are
unequal. The <, <=, > and >= operators will raise a TypeError exception when comparing a complex number
with another built-in numeric type, when the objects are of different types that cannot be compared, or in other cases
where there is no defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (),__le_ (),__gt__ (),and __ge__ () (in general,
__1t__ () and __eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects
and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported by types that are iterable or
implement the __contains__ () method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: infegers, floating point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using
double in C; information about the precision and internal representation of floating point numbers for the machine
on which your program is running is available in sys. f1oat_ info. Complex numbers have a real and imaginary
part, which are each a floating point number. To extract these parts from a complex number z, use z.real and
z . imag. (The standard library includes additional numeric types, fract ions that hold rationals, and decimal
that hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appending ' j ' or ' J' to a numeric literal yields an imaginary number (a complex
number with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary
parts.

28 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.5

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,
which is narrower than complex. Comparisons between numbers of mixed type use the same rule.” The constructors
int (), float (),and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations (for priorities of the operations, see operator-
summary):

Operation Result Notes| Full documen-
tation
X +y sum of x and y
X -y difference of x and y
x * y product of x and y
x /y quotient of x and y
x //y floored quotient of x and y)
X %y remainder of x / y 2)
-X X negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)©6) | int ()
float (x) x converted to floating point @) (6) | float ()
complex (re, a complex number with real part re, imaginary part im. im | (6) complex ()
im) defaults to zero.
c. conjugate of the complex number ¢
conjugate ()
divmod (x, V) the pair (x // vy, x % vy) 2) divmod ()
pow (x, V) X to the power y (5) pow ()
X ** oy X to the power y)
Notes:

(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//2is 0, (-1) //21is-1,1// (-2)
is-1,and (-1)// (-2) is 0.

(2) Not for complex numbers. Instead convert to floats using abs () if appropriate.

(3) Conversion from floating point to integer may round or truncate as in C; see functions math. f1oor () and
math.ceil () for well-defined conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

(5) Python defines pow (0, 0) and O ** 0 to be 1, as is common for programming languages.

(6) The numeric literals accepted include the digits O to 9 or any Unicode equivalent (code points with the Nd
property).

See http://www.unicode.org/Public/10.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

All numbers.Real types (int and f1oat) also include the following operations:

Operation Result

math.trunc (x) | xtruncated to Tntegral

round (x[, n]) | xrounded to n digits, rounding half to even. If # is omitted, it defaults to O.
math.floor (x) | the greatest Tntegral <=x

math.ceil (x) the least Tntegral >=x

For additional numeric operations see the math and cmath modules.

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 29

http://www.unicode.org/Public/10.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.7.5

4.4.1 Bitwise Operations on Integer Types
Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out
in two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bitwise operations sorted in ascending priority:

Operation | Result Notes
X |y bitwise or of x and y 4

x Ny bitwise exclusive or of x and y | (4)

X & Yy bitwise and of x and y @)

x << n x shifted left by n bits (DH(2)
X >> n x shifted right by » bits (HA3)
~X the bits of x inverted

Notes:
(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow (2, n) without overflow check.
(3) A right shift by n bits is equivalent to division by pow (2, n) without overflow check.

(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement representa-
tion (a working bit-width of 1 + max (x.bit_length(), y.bit_length()) or more) is sufficient
to get the same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types
The int type implements the numbers. Integral abstract base class. In addition, it provides a few more methods:

int.bit_length ()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin (n)
'-0b100101"

>>> n.bit_length()
6

More precisely, if x is nonzero, then x .bit_length () isthe unique positive integer k such that 2* * (k-1)
<= abs (x) < 2**k. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm,
thenk = 1 + int (log(abs(x), 2)).If xiszero,then x.bit_length () returns O.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) > '-0b100101"
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len (s) # len('100101') —-—> 6

New in version 3.1.

int .to_bytes (length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.5

>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"

>>> (1024) .to_bytes (10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)
b'\XfA\XEE\XEA\XEA\XEF\XEE\XEE\xEf\xfc\x00"

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"'

The integer is represented using length bytes. An OverflowError israised if the integer is not representable
with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byfeorder is "big", the
most significant byte is at the beginning of the byte array. If byteorderis "1ittle", the most significant byte
is at the end of the byte array. To request the native byte order of the host system, use sys.byteorder as
the byte order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed isFalse
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

New in version 3.2.

classmethod int.from_bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes (b'\x00\x10', byteorder='big'")

16

>>> int.from_bytes (b'\x00\x10', byteorder='little")

4096

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes ([255, 0, 0], byteorder='big')

16711680

The argument byfes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer. If byfeorder is "big", the
most significant byte is at the beginning of the byte array. If byteorderis "1itt1le™", the most significant byte
is at the end of the byte array. To request the native byte order of the host system, use sys.byteorder as
the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

New in version 3.2.

4.4.3 Additional Methods on Float

The float type implements the numbers. Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0) .is_integer()
True

(continues on next page)

4.4. Numeric Types — int, float, complex 31

The Python Library Reference, Release 3.7.5

(continued from previous page)

>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

float.hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.

classmethod float.fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.

Note that f1oat .hex () is an instance method, while f1oat . fromhex () is a class method.

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of f1oat.hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by f1oat . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3 . a7p 10 represents the floating-point number (3
+ 10./16 + 7./16**2) * 2.0**10,0r 3740.0:

>>> float.fromhex ('0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex(3740.0)
'0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== vy (see the __hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number,
and hence applies to all instances of int and fractions.Fraction, and all finite instances of fl1oat and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P
is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedisP = 2**31 - 1 on machines with 32-bit C longs
andP = 2**61 — 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n is a nonnegative rational number and n is not divisible by P, define hash (x) as m *
invmod (n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.5

If x = m / nisanonnegative rational number and n is divisible by P (but m is not) then n has no inverse
modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value sys.
hash_info.inf.

If x = m / nisanegative rational number define hash (x) as —hash (-x) . If the resulting hash is -1,
replace it with —2.

The particular values sys.hash_info.inf, —sys.hash_info.inf and sys.hash_info.nan
are used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have
the same hash value.)

For a complex number z, the hash values of the real and imaginary parts are combined by com-
puting hash (z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.
hash_info.width so that it lies in range (-2** (sys.hash_info.width - 1), 2**(sys.
hash_info.width - 1)). Again, if the result is -1, it’s replaced with -2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash
of a rational number, f1oat, or complex:

import sys, math

def hash_fraction(m, n):

def

def

"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mn

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)

whilem $ P == n % P ==
m, n=m// P, n//P

if n $ P ==
hash_value = sys.hash_info.inf

else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < O:

hash_value = —-hash_value
if hash_value == -1:

hash_value = -2

return hash_value

hash_float (x) :
"""Compute the hash of a float x."""

if math.isnan (x):

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

hash_complex (z) :
"""Compute the hash of a complex number z."""

hash_value = hash_float (z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2**sys.hash_info.width

M = 2**(sys.hash_info.width - 1)

hash_value = (hash_value & (M - 1)) - (hash_value & M)

if hash_value == -1:

(continues on next page)

4.4.

Numeric Types — int, float, complex 33

The Python Library Reference, Release 3.7.5

(continued from previous page)

hash_value = -2
return hash_value

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration support:

container.__iter__ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for
those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure
which supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of
the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter__ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APIL.

iterator.__next__ ()
Return the next item from the container. If there are no further items, raise the St opITterat ion exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
APL

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s ___next___ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (technically,
a generator object) supplying the __iter__ () and _ _next__ () methods. More information about generators
can be found in the documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for processing
of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on
custom sequence types.

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.5

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the same
type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not 1in operations have the same priorities as the comparison operations. The + (concatenation) and

* (repetition) operations have the same priority as the corresponding numeric operations.

3

Operation Result Notes
X in s True if an item of s is equal to x, else False @))]

x not in s False if an item of s is equal to x, else True H

s + t the concatenation of s and ¢ 6)(7)
S * norn * s equivalent to adding s to itself n times)7
s[i] ith item of s, origin 0 3)
s[i:7] slice of s from i to j 3)@)
s[i:j:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index(x[, 1il, index of the first occurrence of x in s (at or after index i and before index | (8)
J11) J))

s.count (x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically
by comparing corresponding elements. This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Notes:

(D

While the in and not 1in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> llgg" in Hqusﬂ
True

2

Values of n less than O are treated as 0 (which yields an empty sequence of the same type as s). Note that
items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python
programmers; consider:

>>> lists = [[]] * 3
>>> lists

(1, 1, [11

>>> lists[0].append(3)
>>> lists

(31, 31, [31]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
* 3 are references to this single empty list. Modifying any of the elements of 11 st s modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for 1 in range(3)]
>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

[e31, 51, [711]

3)

Further explanation is available in the FAQ entry fag-multidimensional-list.

If i or j is negative, the index is relative to the end of sequence s: len (s) + iorlen(s) + j issubsti-
tuted. But note that —0 is still 0.

3 They must have since the parser can’t tell the type of the operands.

4.6. Sequence Types — list, tuple, range 35

The Python Library Reference, Release 3.7.5

4)

®)

(6)

(7

®)

The slice of s from i to j is defined as the sequence of items with index k such that 1 <= k < j.Ifiorjis
greater than len (s),use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If
i is greater than or equal to j, the slice is empty.

The slice of s from i to j with step k is defined as the sequence of items with index x = i + n*k such that
0 <= n < (j-1i) /k. In other words, the indices are i, i+k, 1+2*k, i+3*k and so on, stopping when
Jj is reached (but never including j). When & is positive, i and j are reduced to len (s) if they are greater.
When k is negative, i and j are reduced to 1en (s) — 1 if they are greater. If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is
treated like 1.

Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime
cost, you must switch to one of the alternatives below:

* if concatenating st r objects, you can build a list and use str. join () at the end or else write to an
io.StringIO instance and retrieve its value when complete

* if concatenating bytes objects, you can similarly use bytes. join () or io.BytesIO,or you can
do in-place concatenation with a bytearray object. bytearray objects are mutable and have an
efficient overallocation mechanism

« if concatenating t uple objects, extend a 1 i st instead
« for other types, investigate the relevant class documentation

Some sequence types (such as range) only support item sequences that follow specific patterns, and hence
don’t support sequence concatenation or repetition.

index raises ValueError when x is not found in s. Not all implementations support passing the additional
arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra
arguments is roughly equivalent to using s [i: 3] .index (x), only without copying any data and with the
returned index being relative to the start of the sequence rather than the start of the slice.

4.6.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by mutable
sequence types is support for the hash () built-in.

This support allows immutable sequences, such as t up 1 e instances, to be used as di ct keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.
MutableSequence ABCis provided to make it easier to correctly implement these operations on custom sequence

types.
In the

table s is an instance of a mutable sequence type, 7 is any iterable object and x is an arbitrary object that meets

any type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the value
restriction 0 <= x <= 255).

36

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.5

Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:j] =t slice of s from i to j is replaced by the contents of the iterable ¢
del s[i:7j] sameas s[i:3] = []
s[i:j:k] =t the elements of s [1:7:k] are replaced by those of ¢ @))
del s[i:j:k] removes the elements of s [1:7j:k] from the list
s.append (x) appends x to the end of the sequence (same as s[len (s) :len(s)] =

[x])
s.clear () removes all items from s (same as del s[:]) (@)
s.copy () creates a shallow copy of s (same as s[:]) 5)
s.extend (t) or extends s with the contents of ¢ (for the most part the same as
+= t s[len(s):len(s)] = t)
S *=n updates s with its contents repeated n times 6)
s.insert (i, x) inserts x into s at the index given by i (same as s[1:1] = [x])
s.pop ([i]) retrieves the item at { and also removes it from s 2)
s.remove (X) remove the first item from s where s [1] is equal to x 3)
s.reverse () reverses the items of s in place 4

Notes:

(D
2
3)
“4)

(&)

(6)

¢ must have the same length as the slice it is replacing.
The optional argument i defaults to —1, so that by default the last item is removed and returned.
remove raises ValueError when x is not found in s.

The reverse () method modifies the sequence in place for economy of space when reversing a large se-
quence. To remind users that it operates by side effect, it does not return the reversed sequence.

clear () and copy () are included for consistency with the interfaces of mutable containers that don’t sup-
port slicing operations (such as dict and set)

New in version 3.3: clear () and copy () methods.

The value 7 is an integer, or an object implementing ___index__ (). Zero and negative values of n clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n
under Common Sequence Operations.

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of
similarity will vary by application).

clas

s list ([iterable])
Lists may be constructed in several ways:

 Using a pair of square brackets to denote the empty list: []
» Using square brackets, separating items with commas: [a], [a, b, c]
* Using a list comprehension: [x for x in iterable]

» Using the type constructor: 1ist () or 1ist (iterable)

The constructor builds a list whose items are the same and in the same order as iterable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a
copy is made and returned, similar to iterable[:]. Forexample, 1ist ('abc') returns ['a', 'b',
'c'Jand list ((1, 2, 3)) returns [1, 2, 3].If noargument is given, the constructor creates a
new empty list, [].

Many other operations also produce lists, including the sorted () built-in.

4.6. Sequence Types — list, tuple, range

37

The Python Library Reference, Release 3.7.5

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (*, key=None, reverse=False)
This method sorts the list in place, using only < comparisons between items. Exceptions are not sup-
pressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be
left in a partially modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element
(for example, key=str.lower). The key corresponding to each item in the list is calculated once
and then used for the entire sorting process. The default value of None means that list items are sorted
directly without calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key
function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted () to
explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or
even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the
duration, and raises ValueError if it can detect that the list has been mutated during a sort.

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples pro-
duced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous
data is needed (such as allowing storage in a set or dict instance).

class tuple ([iterable])
Tuples may be constructed in a number of ways:

» Using a pair of parentheses to denote the empty tuple: ()

 Using a trailing comma for a singleton tuple: a, or (a,)

¢ Separating items with commas: a, b, cor (a, b, c)

e Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iferable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is
returned unchanged. For example, tuple ('abc') returns ('a', 'b', 'c') andtuple([1, 2,
3]) returns (1, 2, 3).If noargument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional,
except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, £ (a, b,
c) is a function call with three arguments, while £ ((a, b, c)) isafunction call with a 3-tuple as the sole
argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.5

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number
of times in for loops.

class range (stop)

class range (start, stop[, step])
The arguments to the range constructor must be integers (either built-in int or any object that implements
the ___index___ special method). If the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r [1] = start + step*i
where i >= Oandr[i] < stop.

For a negative step, the contents of the range are still determined by the formula r[i] = start +
step*1i, but the constraintsare 1 >= Oandr[i] > stop.

A range object will be empty if r [0] does not meet the value constraint. Ranges do support negative indices,
but these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as
len ()) may raise OverflowError.

Range examples:

>>> list (range (10))

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range(l, 11))

1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list (range (0))

>>> list (range (1, 0))

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact
that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will
usually violate that pattern).

start
The value of the start parameter (or 0 if the parameter was not supplied)

stop
The value of the sfop parameter

step
The value of the step parameter (or 1 if the parameter was not supplied)

The advantage of the range type over aregular 1 ist or tuple is that a range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and
step values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)

>>> 11 in r

False

(continues on next page)

4.6. Sequence Types — list, tuple, range 39

The Python Library Reference, Release 3.7.5

(continued from previous page)

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]
range (0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare equal
might have different start, stop and step attributes, for example range (0) == range (2, 1, 3) or
range (0, 3, 2) == range (0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test i nt objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘=="and ‘!=" to compare range objects based on the sequence of values they define
(instead of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.
See also:

* The linspace recipe shows how to implement a lazy version of range suitable for floating point applications.

4.7 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code
points. String literals are written in a variety of ways:

* Single quotes: 'allows embedded "double" quotes'
* Double quotes: "allows embedded 'single' quotes".
e Triple quoted: ' ' 'Three single quotes''',"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted
to a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty
string s, s [0] == s[0:1].

There is also no mutable string type, but str. join () or io.StringIO can be used to efficiently construct
strings from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted
on string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str (object=")

class str (object=b", encoding=utf-8’, errors=strict’)
Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior
of str () depends on whether encoding or errors is given, as follows.

40 Chapter 4. Built-in Types

http://code.activestate.com/recipes/579000/

The Python Library Reference, Release 3.7.5

If neither encoding nor errors is given, str (object) returns object.__str__ (), which is the “infor-
mal” or nicely printable string representation of object. For string objects, this is the string itself. If object does
nothavea ___str__ () method, then str () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a byfes-like object (e.g. bytesor bytearray).
In this case, if objectisa bytes (or bytearray) object, then str (bytes, encoding, errors) is
equivalentto bytes. decode (encoding, errors). Otherwise, the bytes object underlying the buffer
object is obtained before calling bytes. decode (). See Binary Sequence Types — bytes, bytearray, mem-
oryview and bufferobjects for information on buffer objects.

Passing a bytes object to str () without the encoding or errors arguments falls under the first case of
returning the informal string representation (see also the —b command-line option to Python). For example:

>>> str(b'Zoot!")
"Khizoot TN

For more information on the st r class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition,
see the Text Processing Services section.

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see
str.format (), Format String Syntax and Custom String Formatting) and the other based on C printf style
formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the
cases it can handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various
text related utilities (including regular expression support in the re module).

str.capitalize ()
Return a copy of the string with its first character capitalized and the rest lowercased.

str.casefold ()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions
in a string. For example, the German lowercase letter ' B ' is equivalent to "ss". Since it is already lowercase,
lower () would do nothing to 'B"'; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.
New in version 3.3.

str.center (width[, ﬁllchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII
space). The original string is returned if width is less than or equal to 1en (s).

str.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional argu-
ments start and end are interpreted as in slice notation.

str.encode (encoding="utf-8”, errors="strict”)
Return an encoded version of the string as a bytes object. Default encodingis 'ut £-8"'. errors may be given to
set a different error handling scheme. The default for errorsis ' strict ', meaning that encoding errors raise
a UnicodeError. Other possible values are 'ignore', 'replace', 'xmlcharrefreplace’,
'backslashreplace' and any other name registered via codecs.register_error (), see sec-
tion Error Handlers. For a list of possible encodings, see section Standard Encodings.

Changed in version 3.1: Support for keyword arguments added.

4.7. Text Sequence Type — str 41

The Python Library Reference, Release 3.7.5

str.endswith (suﬁx[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

str.expandtabs (fabsize=8)
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. Tab positions occur every fabsize characters (default is 8, giving tab
positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string
is examined character by character. If the character is a tab (\t), one or more space characters are inserted in
the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the character is a newline (\n) or return (\ r), it is copied and the current column is reset to zero. Any other
character is copied unchanged and the current column is incremented by one regardless of how the character
is represented when printed.
>>> '01\t012\t0123\t01234"' .expandtabs ()
'01 012 0123 01234"
>>> '01\t012\t0123\t01234"' .expandtabs (4)
'01 012 0123 01234"

str.find (sub[, start[, end]])
Return the lowest index in the string where substring sub is found within the slice s [start : end]. Optional
arguments start and end are interpreted as in slice notation. Return —1 if sub is not found.
Note: The find () method should be used only if you need to know the position of sub. To check if sub is
a substring or not, use the in operator:
>>> 'Py' in 'Python'
True

str.format (*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a
positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement
field is replaced with the string value of the corresponding argument.
>>> "The sum of 1 + 2 is " format (1+2)
'The sum of 1 + 2 is 3'
See Format String Syntax for a description of the various formatting options that can be specified in format
strings.
Note: When formatting a number (int, float, complex, decimal.Decimal and subclasses) with
the n type (ex: '{:n}'.format (1234)), the function temporarily sets the LC_CTYPE locale to the
LC_NUMERIC locale to decode decimal_point and thousands_sep fields of localeconv () if
they are non-ASCII or longer than 1 byte, and the LC_NUMERIC locale is different than the LC_CTYPE
locale. This temporary change affects other threads.
Changed in version 3.7: When formatting a number with the n type, the function sets temporarily the
LC_CTYPE locale to the LC_NUMERIC locale in some cases.

str.format_map (mapping)
Similar to str.format (**mapping), except that mapping is used directly and not copied to a dict.
This is useful if for example mapping is a dict subclass:
>>> class Default (dict):

def _ missing__ (self, key):
(continues on next page)
42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.5

str

str

str.

str.

str.

str.

str.

str.

str.

str.

(continued from previous page)

return key

>>> ! was born in '.format_map (Default (name="'Guido"))
'Guido was born in country'

New in version 3.2.

.index (sub[, start[, end]])

Like find (), butraise ValueError when the substring is not found.

.isalnum()

Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha (), c.isdecimal (),
c.isdigit (),orc.isnumeric().

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note that this is different from
the “Alphabetic” property defined in the Unicode Standard.

isascii ()

Return true if the string is empty or all characters in the string are ASCII, false otherwise. ASCII characters
have code points in the range U+0000-U+007F.

New in version 3.7.

isdecimal ()

Return true if all characters in the string are decimal characters and there is at least one character, false oth-
erwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.
isdigit ()

Return true if all characters in the string are digits and there is at least one character, false otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits.
This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a
digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

isidentifier ()
Return true if the string is a valid identifier according to the language definition, section identifiers.

Use keyword. iskeyword () to test for reserved identifiers such as def and class.

islower ()
Return true if all cased characters* in the string are lowercase and there is at least one cased character, false
otherwise.

isnumeric ()

Return true if all characters in the string are numeric characters, and there is at least one character, false
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

isprintable ()

Return true if all characters in the string are printable or the string is empty, false otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repzr () is invoked on a string. It has no bearing on the handling of strings
written to sys. stdout or sys.stderr.)

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “LI” (Letter, lowercase), or “Lt” (Letter,
titlecase).

4.7. Text Sequence Type — str 43

The Python Library Reference, Release 3.7.5

str

str.

str.

str.

str

str.

str

.isspace ()

Return true if there are only whitespace characters in the string and there is at least one character, false other-
wise.

A character is whitespace if in the Unicode character database (see unicodedat a), either its general category
is Zs (“Separator, space”), or its bidirectional class is one of WS, B, or S.

istitle ()
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

isupper ()
Return true if all cased characters* in the string are uppercase and there is at least one cased character, false
otherwise.

join (iterable)

Return a string which is the concatenation of the strings in iterable. A TypeError will be raised if there
are any non-string values in iterable, including byt es objects. The separator between elements is the string
providing this method.

.1ljust (width[,ﬁllchar])

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1en (s) .

lower ()
Return a copy of the string with all the cased characters* converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

.1strip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious '.lstrip()
'spacious !

>>> 'www.example.com'.lstrip('cmowz.")
'example.com'

static str.maketrans (x[, y[, z]])

str.

This static method returns a translation table usable for st r. translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted
to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

partition (sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

str.replace (old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.
str.rfind (sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s [start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.
str.rindex (sub[, start[, end]])
Like rfind () but raises ValueError when the substring sub is not found.
44 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.5

str.rjust (width[, ﬁllchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to len (s).

str.rpartition (sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

str.rsplit (sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaves like split () which is described in detail below.

str.rstrip([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.rstrip()

! spacious'

>>> 'mississippi'.rstrip('ipz')
'mississ’

str.split (sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1,
then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, '1,,2"'.split (', ") returns ['1', "', '2']). The sep argument may consist of multiple
characters (for example, ' 1<>2<>3" . split ('<>") returns ['1"', '2', '3']). Splitting an empty
string with a specified separator returns [' '].

For example:

>>> '1,2,3".split (', ")

['1', '2|, '3'1

>>> '1,2,3".split (', "', maxsplit=1)
['1|’ '2,3'}

>>> '1,2,,3,".split (', ")

['1', '2', 'Y’ |3|, IV]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [] .

For example:

>>> '1 2 3'.split ()
['1', '2" V3'j|
>>> '1 2 3'.split (maxsplit=1)

[lll’ 12 3!}
>>> ! 1 2 3 '.split ()
[lll, '2!, '3':|

str.splitlines ([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal
newlines.

4.7. Text Sequence Type — str 45

The Python Library Reference, Release 3.7.5

Representation | Description

\n Line Feed

\r Carriage Return

\r\n Carriage Return + Line Feed
\vor \x0b Line Tabulation

\for\x0c Form Feed

\x1lc File Separator

\x1ld Group Separator

\xle Record Separator

\x85 Next Line (C1 Control Code)
\u2028 Line Separator

\u2029 Paragraph Separator

Changed in version 3.2: \v and \ £ added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()

['ab ¢', "', 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '"\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> "" _gplitlines/()

[]

>>> "One line\n".splitlines|()
['One line']

For comparison, split ('\n"') gives:

>>> "' .split('\n")

['']

>>> 'Two lines\n'.split('\n")
["Two lines', '']

str.startswith (preﬁx[, start[, end]])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string
at that position.

str.strip([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.strip()
'spacious’

>>> 'www.example.com'.strip('cmowz.")
'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

>>> comment_string = "#....... Section 3.2.1 Issue #32 !
>>> comment_string.strip('.#! ")
'Section 3.2.1 Issue #32°'

46

Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.5

str.swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not
necessarily true that s . swapcase () . swapcase () == s.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

For example:

>>> 'Hello world'.title()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r" [A-Za-z]+ (' [A-Za—-z]+
lambda mo: mo.group (0)
mo.group (0)

n

)
[
[

2y
0] .upper () +
1:1.1lower (),
s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (table)
Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via ___getitem__ (), typically a mapping or sequence.
When indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode
ordinal or a string, to map the character to one or more other characters; return None, to delete the character
from the return string; or raise a LookupError exception, to map the character to itself.

You can use str.maketrans () to create a translation map from character-to-character mappings in dif-
ferent formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper ()
Return a copy of the string with all the cased characters* converted to uppercase. Note that s . upper () .
isupper () might be False if s contains uncased characters or if the Unicode category of the resulting
character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.z£ill (width)
Return a copy of the string left filled with ASCII ' 0 ' digits to make a string of length width. A leading sign
prefix (' +'/'—") is handled by inserting the padding after the sign character rather than before. The original
string is returned if width is less than or equal to len (s) .

For example:

>>> "42" zfi1ll(5)
'00042"
>>> "—-42" z£i11(5)
'-0042"

4.7. Text Sequence Type — str 47

The Python Library Reference, Release 3.7.5

4.7.2 printf-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). Using the newer formatted string literals, the st r.
format () interface, or template strings may help avoid these errors. Each of these alternatives provides their own
trade-offs and benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting

Q

or interpolation operator. Given format % values (where format is a string), $ conversion specifications in
format are replaced with zero or more elements of values. The effect is similar to using the sprintf () in the C
language.

If format requires a single argument, values may be a single non-tuple object.” Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified asan ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as '*' (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the '%' character. The mapping key
selects the value to be formatted from the mapping. For example:

)

>>> print (' has quote types.' %
. {'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning
'4#' | The value conversion will use the “alternate form” (where defined below).
'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

'+' | Asigncharacter ('+"' or '—-") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python —so e.g. $1d is identical
to 5d.

The conversion types are:

3 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.7.5

Con- Meaning Notes

version

'd’ Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. (€))]

'u! Obsolete type — it is identical to 'd'. (6)

'x! Signed hexadecimal (lowercase). 2)

'X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'c! Single character (accepts integer or single character string).

'r' String (converts any Python object using repr ()). (@)

's! String (converts any Python object using stz ()). 5)

'a' String (converts any Python object using ascii ()). ®)

'y No argument is converted, results ina ' %' character in the result.

Notes:
(1) The alternate form causes a leading octal specifier (' 00 ") to be inserted before the first digit.

(2) The alternate form causes a leading ' Ox ' or ' 0X' (depending on whether the 'x ' or 'X' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
(5) If precision is N, the output is truncated to N characters.
(6) See PEP 237.
Since Python strings have an explicit length, $s conversions do not assume that '\ 0" is the end of the string.

Changed in version 3.1: % £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g
conversions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by
memoryview which uses the buffer protocol to access the memory of other binary objects without needing to
make a copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.8.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII
text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and

4.8. Binary Sequence Types — bytes, bytearray, memoryview 49

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.7.5

are closely related to string objects in a variety of other ways.

class bytes ([source[, encoding[, errors]]])
Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:

e Single quotes: b'still allows embedded "double" quotes'
e Double quotes: b"still allows embedded 'single' quotes".
e Triple quoted: b' ' '3 single quotes''',b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any
binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See
strings for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to vio-
late this restriction will trigger ValueError). This is done deliberately to emphasise that while many binary
formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms,
this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary
data formats that are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
A zero-filled bytes object of a specified length: bytes (10)
* From an iterable of integers: bytes (range (20))
» Copying existing binary data via the buffer protocol: bytes (ob7j)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytes type has an additional class method to read data in
that format:

classmethod fromhex (string)
This byt es class method returns a bytes object, decoding the given string object. The string must contain
two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex ('2Ef0 F1£f2 ")
b' A\xfO\xfl\xf2'

Changed in version 3.7: bytes. fromhex () now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

hex ()
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\xf0\x£f1\x£f2' .hex ()
'fO0f1£2"

New in version 3.5.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, while
b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytes objects uses the literal format (b'..."') since it is often more useful than e.g.
bytes ([46, 46, 46]). You can always convert a bytes object into a list of integers using 1ist (b).

Note: For Python 2.x users: In the Python 2.x series, a variety of implicit conversions between 8-bit strings (the
