The Python Library Reference
Release 3.6.8rcl

Guido van Rossum
and the Python development team

December 11, 2018

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Built-in Constants 27
3.1 Constants added by the site module L oL 28
Built-in Types 29
4.1 Truth Value Testing o o e 29
4.2 Boolean Operations — and, or, DOt v v v v v v e e e e e 29
4.3 CompariSOnS v v v vt e e e e e e e e e e e e e e 30
4.4 Numeric Types — int, float, complex o 30
4.5 Tterator Types o o o e e e e 36
4.6 Sequence Types — list, tuple, Tange« .« v v v vt e e e 37
4.7 Text Sequence Type — Str« . . . L e e 43
4.8 Binary Sequence Types — bytes, bytearray, memoryview 53
4.9 Set Types — set, frozenset o L 75
4.10 Mapping Types — dict o . o o e e e 77
4.11 Context Manager Types o o it e 81
4.12 Other Built-in Types o e 82
4.13 Special Attributes L e 84
Built-in Exceptions 85
5.1 Base classes e e e e e e e e e 85
5.2 Concrete eXCeptions i e e e e e e e e e e e 86
5.3 Warnings e 92
5.4 Exception hierarchy L e 92
Text Processing Services 95
6.1 string — Common string operations L L o 95
6.2 re — Regular expression operations Lo Lo oo 106
6.3 difflib — Helpers for computing deltaso 126
6.4 textwrap — Text wrapping and filling L oL oL 137
6.5 unicodedata — Unicode Database 140
6.6 stringprep — Internet String Preparation L o oL 142
6.7 readline — GNU readline interface e 144
6.8 rlcompleter — Completion function for GNU readline 148
Binary Data Services 149
7.1 struct — Interpret bytes as packed binary data L. 149
7.2 codecs — Codec registry and base classes o e 154

8 Data Types

8.1 datetime — Basic date and time types L oL oL
8.2 calendar — General calendar-related functions
8.3 collections — Container datatypes Lo o
8.4 collections.abc — Abstract Base Classes for Containers
8.5 heapq — Heap queue algorithm L o
8.6 bisect — Array bisection algorithm oL oL
8.7 array — Efficient arrays of numeric values oL o oL
8.8 weakref — Weak references L
8.9 types — Dynamic type creation and names for built-in types.
8.10 copy — Shallow and deep copy operations
8.11 pprint — Data pretty printer oL
8.12 reprlib — Alternate repr () implementation
8.13 enum — Support for enumerations Lo

Numeric and Mathematical Modules

9.1 numbers — Numeric abstract base classes e
9.2 math — Mathematical functions e
9.3 cmath — Mathematical functions for complex numbers
9.4 decimal — Decimal fixed point and floating point arithmetic
9.5 fractions — Rational numbers e
9.6 random — Generate pseudo-random numbers L.
9.7 statistics — Mathematical statistics functions

10 Functional Programming Modules

10.1 itertools — Functions creating iterators for efficient looping
10.2 functools — Higher-order functions and operations on callable objects
10.3 operator — Standard operators as functionso L oo

11 File and Directory Access

11.1 pathlib — Object-oriented filesystem paths
11.2 os.path — Common pathname manipulations
11.3 fileinput — Iterate over lines from multiple input streams
11.4 stat — Interpreting stat() results L L
11.5 filecmp — File and Directory Comparisons,
11.6 tempfile — Generate temporary files and directories oL ..
11.7 glob — Unix style pathname pattern expansion
11.8 fnmatch — Unix filename pattern matching L 0L
11.9 1linecache — Random access to text lines
11.10 shutil — High-level file operations L
11.11 macpath — Mac OS 9 path manipulation functions

12 Data Persistence

12.1 pickle — Python object serialization L L oo
12.2 copyreg — Register pickle support functions Lo oL
12.3 shelve — Python object persistence. L Lo
12.4 marshal — Internal Python object serialization
12.5 dbm — Interfaces to Unix “databases”
12.6 sqlite3 — DB-API 2.0 interface for SQLite databases

13 Data Compression and Archiving

13.1 zlib — Compression compatible with gzip L oL
13.2 gzip — Support for gzip files oo
13.3 Dbz2 — Support for bzip2 compression Lo
13.4 1zma — Compression using the LZMA algorithm

173
173
204
207
224
228
232
234
237
245
249
250
255
257

275
275
278
283
287
315
317
323

331
331
346
353

361
361
377
382
385
390
392
396
397
398
399
407

409
409
422
423
426
427
431

13.5

zipfile — Work with ZIP archives .

13.6 tarfile — Read and write tar archive files o L

14 File Formats

14.1
14.2
14.3
14.4
14.5

csv — CSV File Reading and Writing

configparser — Configuration file parser L L oL

netrc — netre file processing

xdrlib — Encode and decode XDR data oo
plistlib — Generate and parse Mac OS X .plistfiles

15 Cryptographic Services
15.1 hashlib — Secure hashes and message digests L.
15.2 hmac — Keyed-Hashing for Message Authentication
15.3 secrets — Generate secure random numbers for managing secrets

16 Generic Operating System Services
os — Miscellaneous operating system interfaces
io — Core tools for working with streams

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

time — Time access and conversions

argparse — Parser for command-line options, arguments and sub-commands

getopt — C-style parser for command
logging — Logging facility for Python
logging.config — Logging configurat

line options o

170 8

logging.handlers — Logging handlers L L oL

getpass — Portable password input .

16.10 curses — Terminal handling for character-cell displays
16.11 curses.textpad — Text input widget for curses programs
16.12 curses.ascii — Utilities for ASCII characters
16.13 curses.panel — A panel stack extension for curseso oL
16.14 platform — Access to underlying platform’s identifying data
16.15 errno — Standard errno system symbols L 0oL
16.16 ctypes — A foreign function library for Python

17 Concurrent Execution
threading — Thread-based parallelism 0.
multiprocessing — Process-based parallelism 0L

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

The concurrent package

concurrent.futures — Launching parallel tasks Lo
subprocess — Subprocess Management e e e e e

sched — Event scheduler
queue — A synchronized queue class

dummy_threading — Drop-in replacement for the threading module

_thread — Low-level threading APT .

17.10 _dummy_thread — Drop-in replacement for the _thread module

18 Interprocess Communication and Networking
socket — Low-level networking interface
ssl — TLS/SSL wrapper for socket objects

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

select — Waiting for I/O completion

selectors — High-level I/O multiplexing
asyncio — Asynchronous I/O, event loop, coroutines and tasks
asyncore — Asynchronous socket handler L oL oL
asynchat — Asynchronous socket command/response handler
signal — Set handlers for asynchronous events

mmap — Memory-mapped file support

487
487
494
512
513
516

521
521
931
5933

537
537
583
596
604
636
638
654
665
677
677
695
697
699
700
703
709

743
743
755
799
799
805
821
823
825
826
828

829
829
851
883
890
894
955
959
961
967

19 Internet Data Handling 971

19.1 email — An email and MIME handling package 971
19.2 json — JSON encoder and decoder e 1031
19.3 mailcap — Mailcap file handling L Lo 1040
19.4 mailbox — Manipulate mailboxes in various formats00 L. 1041
19.5 mimetypes — Map filenames to MIME types o oo 1059
19.6 base64 — Basel6, Base32, Base64, Base85 Data Encodings 1062
19.7 binhex — Encode and decode binhex4 fileso 1065
19.8 binascii — Convert between binary and ASCIT 1066
19.9 quopri — Encode and decode MIME quoted-printable data 1068
19.10 uu — Encode and decode uuencode fileso oL oL 1069
20 Structured Markup Processing Tools 1071
20.1 html — HyperText Markup Language support 1071
20.2 html.parser — Simple HTML and XHTML parser 1071
20.3 html.entities — Definitions of HTML general entities 1076
20.4 XML Processing Modules L e 1077
20.5 xml.etree.ElementTree — The ElementTree XML APT 1078
20.6 xml.dom — The Document Object Model APT 1094
20.7 xml.dom.minidom — Minimal DOM implementation 1104
20.8 xml.dom.pulldom — Support for building partial DOM trees 1109
20.9 xml.sax — Support for SAX2 parsers 1111
20.10 xml.sax.handler — Base classes for SAX handlers 1112
20.11 xml.sax.saxutils — SAX Utilities L 1117
20.12 xml.sax.xmlreader — Interface for XML parsers 1118
20.13 xml.parsers.expat — Fast XML parsing using Expat 1122
21 Internet Protocols and Support 1133
21.1 webbrowser — Convenient Web-browser controller 1133
21.2 cgi — Common Gateway Interface support L oL 1135
21.3 cgitb — Traceback manager for CGLscripts oL 1142
21.4 wsgiref — WSGI Utilities and Reference Implementation 1143
21.5 urllib — URL handling modules L 1152
21.6 urllib.request — Extensible library for opening URLs 1152
21.7 urllib.response — Response classes used by urllib. 1170
21.8 wurllib.parse — Parse URLs into components 1170
21.9 urllib.error — Exception classes raised by urllib.request 1178
21.10 urllib.robotparser — Parser for robots.txt Lo oL 1178
21.11 http — HTTP modules o e 1179
21.12 http.client — HTTP protocol client 1182
21.13 ftplib — FTP protocol client o 1188
21.14 poplib — POP3 protocol cliento 1193
21.15 imaplib — IMAP4 protocol client 1196
21.16 nntplib — NNTP protocol client 1203
21.17 smtplib — SMTP protocol client 1210
21.18 smtpd — SMTDP Server o e 1216
21.19 telnetlib — Telnet client o L L 1220
21.20 wuid — UUID objects according to RFC 4122 1223
21.21 socketserver — A framework for network servers oL L. 1226
21.22 http.server — HTTP servers o e 1234
21.23 http.cookies — HTTP state management 1240
21.24 http.cookiejar — Cookie handling for HTTP clients 1243
21.25 xmlrpc — XMLRPC server and client modules oL 1252
21.26 xmlrpc.client — XML-RPC client access 1252

21.27 xmlrpc.server — Basic XML-RPC servers 1260

21.28 ipaddress — IPv4/IPv6 manipulation library Lo oL 1265
22 Multimedia Services 1279
22.1 audioop — Manipulate raw audiodatao L oo 1279
22.2 aifc — Read and write AIFF and ATFC files. 1282
22.3 sunau — Read and write Sun AU files 1284
22.4 wave — Read and write WAV files L 1287
22.5 chunk — Read IFF chunked data 1290
22.6 colorsys — Conversions between color systems 1291
22.7 imghdr — Determine the type of an image L. 1292
22.8 sndhdr — Determine type of sound file oo 1293
22.9 ossaudiodev — Access to OSS-compatible audio devices oL 1293
23 Internationalization 1299
23.1 gettext — Multilingual internationalization services 1299
23.2 locale — Internationalization serviceso oL 1307
24 Program Frameworks 1315
24.1 turtle — Turtle graphics L L 1315
24.2 cmd — Support for line-oriented command interpreters Lo 1350
24.3 shlex — Simple lexical analysis L L 1355
25 Graphical User Interfaces with Tk 1361
25.1 tkinter — Python interface to Tcl/Tk o o 1361
25.2 tkinter.ttk — Tk themed widgets Lo 1372
25.3 tkinter.tix — Extension widgets for Tk 1389
25.4 tkinter.scrolledtext — Scrolled Text Widget 1394
25.5 IDLE . . . o e e 1394
25.6 Other Graphical User Interface Packages 1404
26 Development Tools 1405
26.1 typing — Support for type hints oL oo 1405
26.2 pydoc — Documentation generator and online help system 1421
26.3 doctest — Test interactive Python exampleso 0. 1422
26.4 unittest — Unit testing framework L L 1446
26.5 wunittest.mock — mock object library oL oL 1475
26.6 unittest.mock — getting started Lo oL 1511
26.7 2to3 - Automated Python 2 to 3 code translation Lo 1531
26.8 test — Regression tests package for Python 0oL 1536
26.9 test.support — Utilities for the Python test suite 1539
27 Debugging and Profiling 1547
27.1 bdb — Debugger framework L L 1547
27.2 faulthandler — Dump the Python traceback, 1551
27.3 pdb — The Python Debugger e 1553
27.4 The Python Profilers e 1560
27.5 timeit — Measure execution time of small code snippets oL 1568
27.6 trace — Trace or track Python statement execution 1573
27.7 tracemalloc — Trace memory allocations 1575
28 Software Packaging and Distribution 1587
28.1 distutils — Building and installing Python modules, 1587
28.2 ensurepip — Bootstrapping the pip installero 1587
28.3 venv — Creation of virtual environments L. 1589

28.4 zipapp — Manage executable python zip archives 0o 0L 1598

29 Python Runtime Services 1605
29.1 sys — System-specific parameters and functions oL oL 0oL 1605
29.2 sysconfig — Provide access to Python’s configuration information 1621
29.3 builtins — Built-in objects L 1624
29.4 __main__ — Top-level script environment L o 1625
29.5 warnings — Warning control L. L L 1625
29.6 contextlib — Utilities for with-statement contexts 1630
29.7 abc — Abstract Base Classes L 1642
29.8 atexit — Exit handlers L 1647
29.9 traceback — Print or retrieve a stack tracebacko 1648
29.10 __future__ — Future statement definitions 1655
29.11 gc — Garbage Collector interface o e 1656
29.12 inspect — Inspect live objects L oo 1659
29.13 site — Site-specific configuration hook L oL 1674
29.14 fpectl — Floating point exception control L Lo L 1677

30 Custom Python Interpreters 1679
30.1 code — Interpreter base classes L Lo 1679
30.2 codeop — Compile Pythoncode L 1681

31 Importing Modules 1683
31.1 zipimport — Import modules from Zip archives 0L 1683
31.2 pkgutil — Package extension utility o o 1685
31.3 modulefinder — Find modules used by ascript 0oL 1688
31.4 runpy — Locating and executing Python modules, 1689
31.5 importlib — The implementation of import 1691

32 Python Language Services 1711
32.1 parser — Access Python parse treeso 1711
32.2 ast — Abstract Syntax Trees e 1715
32.3 symtable — Access to the compiler’s symbol tables 0000, 1721
32.4 symbol — Constants used with Python parse trees. 1723
32.5 token — Constants used with Python parse trees 1723
32.6 keyword — Testing for Python keywords L. 1725
32.7 tokenize — Tokenizer for Python source L oL 1725
32.8 tabnanny — Detection of ambiguous indentationo 1729
32.9 pyclbr — Python class browser support L o 1730
32.10 py_compile — Compile Python source files 1731
32.11 compileall — Byte-compile Python libraries, 1732
32.12 dis — Disassembler for Python bytecode L Lo 1735
32.13 pickletools — Tools for pickle developers L 1748

33 Miscellaneous Services 1751
33.1 formatter — Generic output formatting oL o L 1751

34 MS Windows Specific Services 1755
34.1 msilib — Read and write Microsoft Installer files 1755
34.2 msvcrt — Useful routines from the MS VC++ runtime 1760
34.3 winreg — Windows registry access L Lo oo 1762
34.4 winsound — Sound-playing interface for Windows Lo oo 1770

35 Unix Specific Services 1773
35.1 posix — The most common POSIX system calls 1773

Vi

35.2 pwd — The password database oL L 1774
35.3 spwd — The shadow password database 00 L. 1775
35.4 grp — The group database L e 1776
35.5 crypt — Function to check Unix passwords 1776
35.6 termios — POSIX style tty control L 1778
35.7 tty — Terminal control functions o oL 1779
35.8 pty — Pseudo-terminal utilities L o oL 1780
35.9 fecntl — The fentl and ioctl system calls . . . o o 0o oo oo 1781
35.10 pipes — Interface to shell pipelines L o o 1783
35.11 resource — Resource usage information o oo 1784
35.12 nis — Interface to Sun’s NIS (Yellow Pages) 1788
35.13 syslog — Unix syslog library routines L o L. 1789
36 Superseded Modules 1791
36.1 optparse — Parser for command line options Lo 1791
36.2 imp — Access the import internalso 0oL 1818
37 Undocumented Modules 1823
37.1 Platform specific modules 1823
A Glossary 1825
B About these documents 1839
B.1 Contributors to the Python Documentation, 1839
C History and License 1841
C.1 History of the software 1841
C.2 Terms and conditions for accessing or otherwise using Python 1842
C.3 Licenses and Acknowledgements for Incorporated Software 1845
D Copyright 1859
Bibliography 1861
Python Module Index 1863
Index 1867

vii

viii

The Python Library Reference, Release 3.6.8rcl

While reference-index describes the exact syntax and semantics of the Python language, this library reference
manual describes the standard library that is distributed with Python. It also describes some of the optional
components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long
table of contents listed below. The library contains built-in modules (written in C) that provide access to
system functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well
as modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability of
Python programs by abstracting away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also
include many additional components. For Unix-like operating systems Python is normally provided as a
collection of packages, so it may be necessary to use the packaging tools provided with the operating system
to obtain some or all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from
individual programs and modules to packages and entire application development frameworks), available
from the Python Package Index.

CONTENTS 1

https://pypi.org

The Python Library Reference, Release 3.6.8rcl

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers
and lists. For these types, the Python language core defines the form of literals and places some constraints
on their semantics, but does not fully define the semantics. (On the other hand, the language core does
define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code
without the need of an import statement. Some of these are defined by the core language, but many are not
essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this
collection. Some modules are written in C and built in to the Python interpreter; others are written in
Python and imported in source form. Some modules provide interfaces that are highly specific to Python,
like printing a stack trace; some provide interfaces that are specific to particular operating systems, such as
access to specific hardware; others provide interfaces that are specific to a particular application domain,
like the World Wide Web. Some modules are available in all versions and ports of Python; others are
only available when the underlying system supports or requires them; yet others are available only when a
particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and
exceptions, and finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get
bored, you will get a reasonable overview of the available modules and application areas that are supported
by the Python library. Of course, you don’t have to read it like a novel — you can also browse the table of
contents (in front of the manual), or look for a specific function, module or term in the index (in the back).
And finally, if you enjoy learning about random subjects, you choose a random page number (see module
random) and read a section or two. Regardless of the order in which you read the sections of this manual, it
helps to start with chapter Built-in Functions, as the remainder of the manual assumes familiarity with this
material.

Let the show begin!

The Python Library Reference, Release 3.6.8rcl

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They
are listed here in alphabetical order.

Built-in Functions
abs () dict () help () min () setattr()
all() dir() hez () next () slice()
any () diumod () id() object () sorted()
ascti () enumerate() | input () oct() staticmethod ()
bin() eval () int () open () str()
bool () ezec () isinstance () ord() sum()
bytearray () filter() issubclass () pow() super()
bytes() float () iter() print () tuple()
callable() format () len() property() | type()
chr() frozenset() | list() range () vars ()
classmethod() | getattr() locals() repr () zip ()
compile() globals() map () reversed() | __import__()
complex () hasattr() maz () round ()
delattr() hash () memoryview() set()

abs ()
Return the absolute value of a number. The argument may be an integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:
if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent
to:

def any(iterable):
for element in iterable:
if element:
return True
return False

The Python Library Reference, Release 3.6.8rcl

ascii(object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar
to that returned by repr () in Python 2.

bin(x)
Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python expression.
If z is not a Python int object, it has to define an __index__() method that returns an integer. Some
examples:

>>> bin(3)
'Ob11"

>>> bin(-10)
'-0b1010"'

If prefix “Ob” is desired or not, you can use either of the following ways.

>>> format (14, '#b'), format(14, 'b')
('Ob1110', '1110")
>>> f! 1 f! 1

B

('Ob1110', '1110")

See also format () for more information.

class bool([w])
Return a Boolean value, i.e. one of True or False. z is converted using the standard truth testing
procedure. If x is false or omitted, this returns False; otherwise it returns True. The bool class is a
subclass of int (see Numeric Types int, float, complex). Tt cannot be subclassed further. Its only
instances are False and True (see Boolean Values).

class bytearray([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0
<= x < 256. It has most of the usual methods of mutable sequences, described in Mutable Sequence
Types, as well as most methods that the bytes type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

o Ifit is a string, you must also give the encoding (and optionally, errors) parameters; bytearray ()
then converts the string to bytes using str. encode ().

o If it is an integer, the array will have that size and will be initialized with null bytes.

o If it is an object conforming to the buffer interface, a read-only buffer of the object will be used
to initialize the bytes array.

o If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used
as the initial contents of the array.

Without an argument, an array of size 0 is created.
See also Binary Sequence Types bytes, bytearray, memoryview and Bytearray Objects.

class bytes([source[7 encoding[, ermrs]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256.
bytes is an immutable version of bytearray — it has the same non-mutating methods and the same
indexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().

Bytes objects can also be created with literals, see strings.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.8rcl

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytear-
ray Operations.

callable(object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible
that a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling
a class returns a new instance); instances are callable if their class has a __call__() method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python
3.2

chr (¥)
Return the string representing a character whose Unicode code point is the integer ¢. For example,
chr (97) returns the string 'a', while chr(8364) returns the string '€'. This is the inverse of ord ().

The valid range for the argument is from 0 through 1,114,111 (0x10FFFF in base 16). ValueError
will be raised if 7 is outside that range.

@classmethod
Transform a method into a class method.

A class method receives the class as implicit first argument, just like an instance method receives the
instance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in function
for details.

It can be called either on the class (such as C.£()) or on an instance (such as C() .£()). The instance
is ignored except for its class. If a class method is called for a derived class, the derived class object is
passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod ()
in this section.

For more information on class methods, consult the documentation on the standard type hierarchy in
types.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by ezec() or eval().
source can either be a normal string, a byte string, or an AST object. Refer to the ast module
documentation for information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value
if it wasn’t read from a file ('<string>' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists
of a sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a
single interactive statement (in the latter case, expression statements that evaluate to something other
than None will be printed).

The optional arguments flags and dont__inherit control which future statements affect the compilation
of source. If neither is present (or both are zero) the code is compiled with those future statements
that are in effect in the code that is calling compile (). If the flags argument is given and dont_inherit
is not (or is zero) then the future statements specified by the flags argument are used in addition to
those that would be used anyway. If dont inherit is a non-zero integer then the flags argument is it —
the future statements in effect around the call to compile are ignored.

The Python Library Reference, Release 3.6.8rcl

Future statements are specified by bits which can be bitwise ORed together to specify multiple state-
ments. The bitfield required to specify a given feature can be found as the compiler_flag attribute
on the _Feature instance in the __ future__ module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects
the optimization level of the interpreter as given by -0 options. Explicit levels are 0 (no optimization;
__debug__ is true), 1 (asserts are removed, __debug__ is false) or 2 (docstrings are removed t00).

) ——

This function raises SyntazError if the compiled source is invalid, and ValueError if the source
contains null bytes.

If you want to parse Python code into its AST representation, see ast.parse().

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be
terminated by at least one newline character. This is to facilitate detection of incomplete and complete
statements in the code module.

Warning: It is possible to crash the Python interpreter with a sufficiently large/complex string
when compiling to an AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does
not have to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

class complex([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex
number. If the first parameter is a string, it will be interpreted as a complex number and the function
must be called without a second parameter. The second parameter can never be a string. Each
argument may be any numeric type (including complex). If imag is omitted, it defaults to zero and the
constructor serves as a numeric conversion like 7nt and float. If both arguments are omitted, returns
0j.

Note: When converting from a string, the string must not contain whitespace around the central +
or - operator. For example, complex('1+2j"') is fine, but complex('1l + 2j') raises ValueError.

The complex type is described in Numeric Types int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

delattr (object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be the
name of one of the object’s attributes. The function deletes the named attribute, provided the object
allows it. For example, delattr(x, 'foobar') is equivalent to del x.foobar.

class dict(**kwarg)

class dict(mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict
for documentation about this class.

For other containers see the built-in list, set, and tuple classes, as well as the collections module.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.8rcl

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt
to return a list of valid attributes for that object.

If the object has a method named __dir__(), this method will be called and must return the list
of attributes. This allows objects that implement a custom __getattr__() or __getattribute__Q)
function to customize the way dir () reports their attributes.

If the object does not provide __dir__(), the function tries its best to gather information from the
object’s __dict__ attribute, if defined, and from its type object. The resulting list is not necessarily
complete, and may be inaccurate when the object has a custom __getattr__Q).

The default dir() mechanism behaves differently with different types of objects, as it attempts to
produce the most relevant, rather than complete, information:

o If the object is a module object, the list contains the names of the module’s attributes.

o If the object is a type or class object, the list contains the names of its attributes, and recursively
of the attributes of its bases.

¢ Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and
recursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct
>>> dir() # show the nmames in the module namespace

['" builtins__', '__name__', 'struct']

>>> dir(struct) # show the names in the struct module # doctest: +SKIP
['Struct', '__all__', '__builtins__', '__cached__', '__doc__', '__file_ _',
'__initializing _', '__loader__', '__mname__', '__package__"',
'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',
'unpack', 'unpack_from']

>>> class Shape:

def __dir__(self):
S return ['area', 'perimeter', 'location']
>>> s = Shape()
>>> dir(s)
['area', 'location', 'perimeter']

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it tries
to supply an interesting set of names more than it tries to supply a rigorously or consistently defined
set of names, and its detailed behavior may change across releases. For example, metaclass attributes
are not in the result list when the argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient
and remainder when using integer division. With mixed operand types, the rules for binary arithmetic
operators apply. For integers, the result is the same as (a // b, a % b). For floating point numbers
the result is (q, a % b), where ¢ is usually math.floor(a / b) but may be 1 less than that. In any
caseq * b + a ¥ bis very close to a, if a % b is non-zero it has the same sign as b, and 0 <= abs(a
% b) < abs(b).

enumerate (iterable, start=0)
Return an enumerate object. iterable must be a sequence, an iterator, or some other object which
supports iteration. The __nezt__ () method of the iterator returned by enumerate() returns a tuple
containing a count (from start which defaults to 0) and the values obtained from iterating over iterable.

The Python Library Reference, Release 3.6.8rcl

>>> gseasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list(enumerate(seasons))

[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list(enumerate(seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate(sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n+=1

eval (ezxpression, globals=None, locals=None)
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary.
If provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a
condition list) using the globals and locals dictionaries as global and local namespace. If the globals
dictionary is present and does not contain a value for the key __builtins__, a reference to the
dictionary of the built-in module buzltins is inserted under that key before expression is parsed.
This means that expression normally has full access to the standard bultins module and restricted
environments are propagated. If the locals dictionary is omitted it defaults to the globals dictionary.
If both dictionaries are omitted, the expression is executed in the environment where eval () is called.
The return value is the result of the evaluated expression. Syntax errors are reported as exceptions.
Example:

>>> x =1
>>> eval('x+1"')
2

This function can also be used to execute arbitrary code objects (such as those created by compile()).
In this case pass a code object instead of a string. If the code object has been compiled with 'exec'
as the mode argument, eval ()’s return value will be None.

Hints: dynamic execution of statements is supported by the ezec() function. The globals() and
locals () functions returns the current global and local dictionary, respectively, which may be useful
to pass around for use by eval () or ezec().

See ast.literal_eval () for a function that can safely evaluate strings with expressions containing
only literals.

exec(object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code
object. If it is a string, the string is parsed as a suite of Python statements which is then executed
(unless a syntax error occurs).! If it is a code object, it is simply executed. In all cases, the code that’s
executed is expected to be valid as file input (see the section “File input” in the Reference Manual).
Be aware that the return and yield statements may not be used outside of function definitions even
within the context of code passed to the ezec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals
is provided, it must be a dictionary, which will be used for both the global and the local variables. If
globals and locals are given, they are used for the global and local variables, respectively. If provided,

1 Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure
to use newline conversion mode to convert Windows or Mac-style newlines.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.8rcl

locals can be any mapping object. Remember that at module level, globals and locals are the same
dictionary. If exec gets two separate objects as globals and locals, the code will be executed as if it were
embedded in a class definition.

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins
are available to the executed code by inserting your own __builtins__ dictionary into globals before
passing it to ezec().

Note: The built-in functions globals () and locals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to ezec ().

Note: The default locals act as described for function locals () below: modifications to the default
locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects
of the code on locals after function ezec () returns.

filter (function, iterable)

Construct an iterator from those elements of iterable for which function returns true. iterable may be
either a sequence, a container which supports iteration, or an iterator. If function is None, the identity
function is assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) isequivalent to the generator expression (item for item in
iterable if function(item)) if function is not None and (item for item in iterable if item)
if function is None.

See itertools. filterfalse() for the complementary function that returns elements of iterable for
which function returns false.

class float([:c])

Return a floating point number constructed from a number or string z.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and
optionally embedded in whitespace. The optional sign may be '+' or '-'; a '+' sign has no effect
on the value produced. The argument may also be a string representing a NaN (not-a-number), or a
positive or negative infinity. More precisely, the input must conform to the following grammar after
leading and trailing whitespace characters are removed:

sign - nyn | n_n

infinity n= "Infinity" | "inf"

nan = "nan"

numeric_value == floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here floatnumber is the form of a Python floating-point literal, described in floating. Case is not
significant, so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for
positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the
same value (within Python’s floating point precision) is returned. If the argument is outside the range
of a Python float, an OverflowError will be raised.

For a general Python object x, float (x) delegates to x.__float__Q).

If no argument is given, 0.0 is returned.

11

The Python Library Reference, Release 3.6.8rcl

Examples:

>>> float('+1.23")

1.23

>>> float(' -12345\n')
-12345.0

>>> float('1e-003"')
0.001

>>> float('+1E6"')
1000000.0

>>> float('-Infinity')
—-inf

The float type is described in Numeric Types int, float, complez.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

format (value[, formatfspec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of
format__spec will depend on the type of the value argument, however there is a standard formatting
syntax that is used by most built-in types: Format Specification Mini-Language.

The default format _spec is an empty string which usually gives the same effect as calling str (value).

A call to format(value, format_spec) is translated to type(value).__format__(value,
format_spec) which bypasses the instance dictionary when searching for the value’s __format__()
method. A TypeError exception is raised if the method search reaches object and the format_spec
is non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__(format_spec) raises TypeError if format__spec is not
an empty string.

class frozenset([itemble])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, list, tuple, and dict classes, as well as the collections
module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name
of one of the object’s attributes, the result is the value of that attribute. For example, getattr (x,
'foobar') is equivalent to x.foobar. If the named attribute does not exist, default is returned if
provided, otherwise AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of the
current module (inside a function or method, this is the module where it is defined, not the module
from which it is called).

hasattr(object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the
object’s attributes, False if not. (This is implemented by calling getattr(object, name) and seeing
whether it raises an AttributeError or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.8rcl

Note: For objects with custom __hash__() methods, note that hash() truncates the return value
based on the bit width of the host machine. See __hash__() for details.

help([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is
given, the interactive help system starts on the interpreter console. If the argument is a string, then
the string is looked up as the name of a module, function, class, method, keyword, or documentation
topic, and a help page is printed on the console. If the argument is any other kind of object, a help
page on the object is generated.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables
are now more comprehensive and consistent.

hex(x)
Convert an integer number to a lowercase hexadecimal string prefixed with “0x”. If z is not a Python
int object, it has to define an __index__() method that returns an integer. Some examples:

>>> hex(255)
'Oxff!
>>> hex(-42)
'-0x2a'

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or
not, you can use either of the following ways:

>>> ! "% 255, 'Jz' %, 255, 'JXx' % 255

(roxff', 'ff', 'FF')

>>> format (255, '#x'), format(255, 'x'), format(255, 'X')
('oxff', 'ff', 'FF")

>>> f! vOf! Y '

('"oxff', 'ff', 'FF')

See also format () for more information.

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the float.hez () method.

id(object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant
for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same id ()
value.

CPython implementation detail: This is the address of the object in memory.

input([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and returns
that. When EOF is read, EOFError is raised. Example:

>>> g = input('--> ')
--> Monty Python's Flying Circus

(continues on next page)

13

The Python Library Reference, Release 3.6.8rcl

(continued from previous page)

>>> s
"Monty Python's Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and
history features.

class int(z=0)
class int(x, base=10)

Return an integer object constructed from a number or string z, or return O if no arguments are
given. If z defines __int__(Q), int(x) returns x.__int__(). If z defines __trunc__(Q), it returns
X.__trunc__(). For floating point numbers, this truncates towards zero.

If z is not a number or if base is given, then z must be a string, bytes, or bytearray instance
representing an integer literal in radix base. Optionally, the literal can be preceded by + or - (with no
space in between) and surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with
a to z (or A to Z) having values 10 to 35. The default base is 10. The allowed values are 0 and 2-36.
Base-2, -8, and -16 literals can be optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer
literals in code. Base 0 means to interpret exactly as a code literal, so that the actual base is 2, 8, 10,
or 16, and so that int('010', 0) is not legal, while int('010"') is, as well as int('010', 8).

The integer type is described in Numeric Types — int, float, complez.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index__
method, that method is called to obtain an integer for the base. Previous versions used base.__int
instead of base.__index__.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

isinstance (object, classinfo)

Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect
or virtual) subclass thereof. If object is not an object of the given type, the function always returns
false. If classinfo is a tuple of type objects (or recursively, other such tuples), return true if object is an
instance of any of the types. If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised.

issubclass(class, classinfo)

Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a subclass
of itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked.
In any other case, a TypeError exception is raised.

iter(object[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the pres-
ence of the second argument. Without a second argument, object must be a collection object which
supports the iteration protocol (the __iter__() method), or it must support the sequence protocol
(the __getitem__() method with integer arguments starting at 0). If it does not support either of
those protocols, TypeError is raised. If the second argument, sentinel, is given, then object must be a
callable object. The iterator created in this case will call object with no arguments for each call to its
__nezt__ () method; if the value returned is equal to sentinel, StopIteration will be raised, otherwise
the value will be returned.

See also Iterator Types.

One useful application of the second form of iter() is to read lines of a file until a certain line is
reached. The following example reads a file until the readline () method returns an empty string:

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.8rcl

with open('mydata.txt') as fp:
for line in iter(fp.readline, ''):
process_line(line)

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a
string, bytes, tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

class list([itemble])
Rather than being a function, list is actually a mutable sequence type, as documented in Lists and
Sequence Types — list, tuple, range.

locals()
Update and return a dictionary representing the current local symbol table. Free variables are returned
by locals() when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of
local and free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional
iterable arguments are passed, function must take that many arguments and is applied to the items
from all iterables in parallel. With multiple iterables, the iterator stops when the shortest iterable
is exhausted. For cases where the function inputs are already arranged into argument tuples, see
itertools.starmap ().

max (iterable, *[, key, default])

max (argl, arg?2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is
returned. If two or more positional arguments are provided, the largest of the positional arguments is
returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering
function like that used for list.sort(). The default argument specifies an object to return if the
provided iterable is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted(iterable, key=keyfunc, reverse=True) [0]
and heapq.nlargest(l, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

memoryview(obj)
Return a “memory view” object created from the given argument. See Memory Views for more infor-
mation.

min (iterable, *[, key, default])
min(argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is
returned. If two or more positional arguments are provided, the smallest of the positional arguments
is returned.

15

The Python Library Reference, Release 3.6.8rcl

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering
function like that used for list.sort(). The default argument specifies an object to return if the
provided iterable is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent
with other sort-stability preserving tools such as sorted(iterable, key=keyfunc) [0] and heapq.
nsmallest(1l, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

next (itemtor[, default])

Retrieve the next item from the dterator by calling its __nezt__ () method. If default is given, it is
returned if the iterator is exhausted, otherwise StopIteration is raised.

class object

Return a new featureless object. object is a base for all classes. It has the methods that are common
to all instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of
the object class.

oct(x)

Convert an integer number to an octal string prefixed with “0o”. The result is a valid Python expression.
If z is not a Python int object, it has to define an __index__() method that returns an integer. For
example:

>>> oct(8)
'0010'

>>> oct (-56)
'-0070"

If you want to convert an integer number to octal string either with prefix “0o” or not, you can use
either of the following ways.

>>> ! "% 10, 'Jo' % 10

('0o012', '12")

>>> format (10, '#o0'), format(10, 'o')
('0012', '12")

>>> f! ', £ '

B

('0o012', '12")

See also format () for more information.

open(file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True,

opener=None))
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of
the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given,
it is closed when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to 'r'
which means open for reading in text mode. Other common values are 'w' for writing (truncat-
ing the file if it already exists), 'x' for exclusive creation and 'a' for appending (which on some
Unix systems, means that all writes append to the end of the file regardless of the current seek

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.8rcl

position). In text mode, if encoding is not specified the encoding used is platform dependent: locale.
getpreferredencoding(False) is called to get the current locale encoding. (For reading and writing
raw bytes use binary mode and leave encoding unspecified.) The available modes are:

Character | Meaning

'r! open for reading (default)

w! open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of the file if it exists
'b! binary mode

't text mode (default)

T+t open a disk file for updating (reading and writing)

U universal newlines mode (deprecated)

The default mode is 'r' (open for reading text, synonym of 'rt'). For binary read-write access, the
mode 'w+b' opens and truncates the file to 0 bytes. 'r+b' opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in
binary mode (including 'b' in the mode argument) return contents as bytes objects without any
decoding. In text mode (the default, or when 't' is included in the mode argument), the contents of
the file are returned as str, the bytes having been first decoded using a platform-dependent encoding
or using the specified encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the
processing is done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only
allowed in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to
indicate the size in bytes of a fixed-size chunk buffer. When no buffering argument is given, the default
buffering policy works as follows:

o Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying
to determine the underlying device’s “block size” and falling back on 20.DEFAULT BUFFER_SIZE.
On many systems, the buffer will typically be 4096 or 8192 bytes long.

o “Interactive” text files (files for which isatty () returns True) use line buffering. Other text files
use the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in
text mode. The default encoding is platform dependent (whatever locale.getpreferredencoding ()
returns), but any text encoding supported by Python can be used. See the codecs module for the list
of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this
cannot be used in binary mode. A variety of standard error handlers are available (listed under Error
Handlers), though any error handling name that has been registered with codecs.register_error()
is also valid. The standard names include:

e 'strict' to raise a ValueError exception if there is an encoding error. The default value of
None has the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.

e 'replace' causes a replacement marker (such as '?') to be inserted where there is malformed
data.

17

The Python Library Reference, Release 3.6.8rcl

e 'surrogateescape' will represent any incorrect bytes as code points in the Unicode Private Use
Area ranging from U+DC80 to U+DCFF. These private code points will then be turned back
into the same bytes when the surrogateescape error handler is used when writing data. This is
useful for processing files in an unknown encoding.

e 'zmlcharrefreplace' is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference &#nnn;.

e 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

e 'namereplace' (also only supported when writing) replaces unsupported characters with \N{. ..}
escape sequences.

newline controls how universal newlines mode works (it only applies to text mode). It can be None,
“'o\n', '\r', and '\r\n'. It works as follows:

e When reading input from the stream, if newline is None, universal newlines mode is enabled.
Lines in the input can end in '\n', '\r', or '\r\n’', and these are translated into '\n' before
being returned to the caller. If it is '', universal newlines mode is enabled, but line endings are
returned to the caller untranslated. If it has any of the other legal values, input lines are only
terminated by the given string, and the line ending is returned to the caller untranslated.

e When writing output to the stream, if newline is None, any '\n' characters written are translated
to the system default line separator, os. linesep. If newline is '' or '\n', no translation takes
place. If newline is any of the other legal values, any '\n' characters written are translated to
the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor
will be kept open when the file is closed. If a filename is given closefd must be True (the default)
otherwise an error will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file
object is then obtained by calling opener with (file, flags). opener must return an open file descriptor
(passing os.open as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os.open () function to open a file relative to
a given directory:

>>> import os
>>> dir_fd = os.open('somedir', os.0_RDONLY)
>>> def opener(path, flags):
return os.open(path, flags, dir_fd=dir_£fd)

1 1

>>> with open('spamspam.txt', , opener=opener) as f:
print('This will be written to somedir/spamspam.txt', file=f)

W

>>> os.close(dir_fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used to
open a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of 0. TeztI0Base (specif-
ically ©o.TextIOWrapper). When used to open a file in a binary mode with buffering, the returned
class is a subclass of 70.BufferedIOBase. The exact class varies: in read binary mode, it returns an
10.BufferedReader; in write binary and append binary modes, it returns an io0.BufferediWriter, and
in read/write mode, it returns an io.BufferedRandom. When buffering is disabled, the raw stream, a
subclass of 40.RawIOBase, 10.Filell, is returned.

See also the file handling modules, such as, fileinput, io (where open() is declared), os, os.path,
tempfile, and shutil.

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.8rcl

Changed in version 3.3:
e The opener parameter was added.
e The 'x' mode was added.
e IOError used to be raised, it is now an alias of OSError.

o FileEzistsError is now raised if the file opened in exclusive creation mode ('x') al-
ready exists.

Changed in version 3.4:

e The file is now non-inheritable.

Deprecated since version 3.4, will be removed in version 4.0: The 'U' mode.
Changed in version 3.5:

o If the system call is interrupted and the signal handler does not raise an exception, the
function now retries the system call instead of raising an InterruptedError exception
(see PEP 475 for the rationale).

e The 'namereplace' error handler was added.

Changed in version 3.6:
e Support added to accept objects implementing os.PathLike.

e On Windows, opening a console buffer may return a subclass of i0.RawI0OBase other
than 4i0.Filell.

ord(c)
Given a string representing one Unicode character, return an integer representing the Unicode code
point of that character. For example, ord('a') returns the integer 97 and ord('€') (Euro sign)
returns 8364. This is the inverse of chr().

pow(z, yl, z])
Return z to the power y; if z is present, return z to the power y, modulo z (computed more efficiently
than pow(x, y) % z). The two-argument form pow(x, y) is equivalent to using the power operator:
X**y,

The arguments must have numeric types. With mixed operand types, the coercion rules for binary
arithmetic operators apply. For int operands, the result has the same type as the operands (after
coercion) unless the second argument is negative; in that case, all arguments are converted to float and
a float result is delivered. For example, 10**2 returns 100, but 10**-2 returns 0.01. If the second
argument is negative, the third argument must be omitted. If z is present, « and y must be of integer
types, and y must be non-negative.

print (*objects, sep="" end="\n’, file=sys.stdout, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file and flush, if
present, must be given as keyword arguments.

All non-keyword arguments are converted to strings like str() does and written to the stream, sep-
arated by sep and followed by end. Both sep and end must be strings; they can also be None, which
means to use the default values. If no objects are given, print () will just write end.

The file argument must be an object with a write(string) method; if it is not present or None,
sys.stdout will be used. Since printed arguments are converted to text strings, print () cannot be
used with binary mode file objects. For these, use file.write(...) instead.

19

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.6.8rcl

Whether output is buffered is usually determined by file, but if the flush keyword argument is true,
the stream is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

class property(fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is
a function for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def __init__(self):
self._x = None

def getx(self):
return self._x

def setx(self, value):
self._x = value

def delx(self):
del self. x

x = property(getx, setx, delx, "I'm the 'x' property.")

If ¢ is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x
the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget’s
docstring (if it exists). This makes it possible to create read-only properties easily using property ()
as a decorator:

class Parrot:
def __init__(self):
self._voltage = 100000

Q@property

def voltage(self):
"""Get the current wvoltage."""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with
the same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy
of the property with the corresponding accessor function set to the decorated function. This is best
explained with an example:

class C:
def __init__(self):
self._x = None

Q@property
def x(self):

(continues on next page)

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.8rcl

(continued from previous page)

nmnn

"""T'm the 'z' property.
return self._x

0x.setter
def x(self, value):
self. _x = value

0x.deleter
def x(self):
del self. x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same
name as the original property (x in this case.)

The returned property object also has the attributes fget, fset, and fdel corresponding to the
constructor arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

range (stop)

range (start, stop[, step])
Rather than being a function, range is actually an immutable sequence type, as documented in Ranges
and Sequence Types — list, tuple, range.

repr (object)
Return a string containing a printable representation of an object. For many types, this function makes
an attempt to return a string that would yield an object with the same value when passed to eval (),
otherwise the representation is a string enclosed in angle brackets that contains the name of the type
of the object together with additional information often including the name and address of the object.
A class can control what this function returns for its instances by defining a __repr__() method.

reversed(seq)
Return a reverse iterator. seq must be an object which has a __reversed__() method or supports
the sequence protocol (the __len__() method and the __getitem__() method with integer arguments
starting at 0).

round(number[, ndigits])
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it
returns the nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the
power minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for
example, both round(0.5) and round(-0.5) are 0, and round(1.5) is 2). Any integer value is valid
for ndigits (positive, zero, or negative). The return value is an integer if ndigits is omitted or None.
Otherwise the return value has the same type as number.

For a general Python object number, round delegates to number.__round__.

Note: The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives
2.67 instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal
fractions can’t be represented exactly as a float. See tut-fp-issues for more information.

class set([z’temble])
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set
and Set Types — set, frozenset for documentation about this class.

21

The Python Library Reference, Release 3.6.8rcl

For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the
collections module.

setattr (object, name, value)

This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value.
The string may name an existing attribute or a new attribute. The function assigns the value to the
attribute, provided the object allows it. For example, setattr(x, 'foobar', 123) is equivalent to
x.foobar = 123.

class slice(stop)

class slice(start, stop[, step])

Return a slice object representing the set of indices specified by range(start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop
and step which merely return the argument values (or their default). They have no other explicit
functionality; however they are used by Numerical Python and other third party extensions. Slice
objects are also generated when extended indexing syntax is used. For example: a[start:stop:step]
or a[start:stop, i]. See itertools.islice() for an alternate version that returns an iterator.

sorted (iterable, *, key=None, reverse=False)

Return a new sorted list from the items in iterable.
Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element
in dterable (for example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

Use functools.cmp_to_key() to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change
the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

@staticmethod

Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in function
for details.

It can be called either on the class (such as C.£()) or on an instance (such as C() .£()). The instance
is ignored except for its class.

Static methods in Python are similar to those found in Java or C+4. Also see classmethod() for a
variant that is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something
with its result. This is needed in some cases where you need a reference to a function from a class
body and you want to avoid the automatic transformation to instance method. For these cases, use
this idiom:

22

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.8rcl

class C:
builtin_open = staticmethod(open)

For more information on static methods, consult the documentation on the standard type hierarchy in
types.

class str(object=")
class str(object=b", encoding="utf-8’, errors=’strict’)

Return a str version of object. See str() for details.

str is the built-in string class. For general information about strings, see Text Sequence Type — str.

sum (7terable [, start])

Sums start and the items of an iterable from left to right and returns the total. start defaults to O.
The iterable’s items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate
a sequence of strings is by calling ''.join(sequence). To add floating point values with extended
precision, see math. fsum(). To concatenate a series of iterables, consider using itertools.chain().

super ([type[, object—or—type]])

Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful
for accessing inherited methods that have been overridden in a class. The search order is same as that
used by getattr() except that the type itself is skipped.

The __mro__ attribute of the type lists the method resolution search order used by both getattr()
and super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an
object, isinstance(obj, type) must be true. If the second argument is a type, issubclass(type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used
to refer to parent classes without naming them explicitly, thus making the code more maintainable.
This use closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages that
only support single inheritance. This makes it possible to implement “diamond diagrams” where
multiple base classes implement the same method. Good design dictates that this method have the
same calling signature in every case (because the order of calls is determined at runtime, because that
order adapts to changes in the class hierarchy, and because that order can include sibling classes that
are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arg) # This does the same thing as:
super(C, self).method(arg)

Note that super() is implemented as part of the binding process for explicit dotted attribute lookups
such as super().__getitem__(name). It does so by implementing its own __getattribute__Q)
method for searching classes in a predictable order that supports cooperative multiple inheri-
tance. Accordingly, super() is undefined for implicit lookups using statements or operators such
as super () [name].

Also note that, aside from the zero argument form, super() is not limited to use inside methods.
The two argument form specifies the arguments exactly and makes the appropriate references. The

23

The Python Library Reference, Release 3.6.8rcl

zero argument form only works inside a class definition, as the compiler fills in the necessary details to
correctly retrieve the class being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

tuple ([itemble])

Rather than being a function, tuple is actually an immutable sequence type, as documented in Tuples
and Sequence Types list, tuple, range.

class type (object)
class type(name, bases, dict)

With one argument, return the type of an object. The return value is a type object and generally the
same object as returned by object.__class__.

The isinstance () built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class
statement. The name string is the class name and becomes the __name__ attribute; the bases tuple
itemizes the base classes and becomes the __bases__ attribute; and the dict dictionary is the namespace
containing definitions for class body and is copied to a standard dictionary to become the __dict__
attribute. For example, the following two statements create identical type objects:

>>> class X:
a=1

>>> X = type('X', (object,), dict(a=1))

See also Type Objects.

Changed in version 3.6: Subclasses of type which don’t override type.__new__ may no longer use the
one-argument form to get the type of an object.

vars([object])

Return the __dict__ attribute for a module, class, instance, or any other object with a __dict__
attribute.

Objects such as modules and instances have an updateable __dict__ attribute; however, other ob-
jects may have write restrictions on their __dict__ attributes (for example, classes use a types.
MappingProzyType to prevent direct dictionary updates).

Without an argument, vars () acts like locals (). Note, the locals dictionary is only useful for reads
since updates to the locals dictionary are ignored.

zip (*iterables)

Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the ¢-th element from each of the argument
sequences or iterables. The iterator stops when the shortest input iterable is exhausted. With a single
iterable argument, it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator.
Equivalent to:

def zip(xiterables):
zip('ABCD', 'zy') --> Az By
sentinel = object()
iterators = [iter(it) for it in iterables]
while iterators:
result = []
for it in iterators:

(continues on next page)

24

Chapter 2. Built-in Functions

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.6.8rcl

(continued from previous page)

elem = next(it, sentinel)
if elem is sentinel:
return
result.append(elem)
yield tuple(result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for
clustering a data series into n-length groups using zip (*[iter(s)]*n). This repeats the same iterator
n times so that each output tuple has the result of n calls to the iterator. This has the effect of dividing
the input into n-length chunks.

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched
values from the longer iterables. If those values are important, use itertools.zip_longest () instead.

zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> y [4, 5, 6]

>>> zipped = zip(x, y)

>>> list(zipped)

(1, 4, (2, 5), (3, 6)]

>>> x2, y2 = zip(*zip(x, y))

>>> x == list(x2) and y == list(y2)
True

__import__(name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike
wmportlib. import_module ().

This function is invoked by the import statement. It can be replaced (by importing the builtins mod-
ule and assigning to builtins.__import__) in order to change semantics of the import statement, but
doing so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain
the same goals and does not cause issues with code which assumes the default import implementation

is in use. Direct use of __import__ () is also discouraged in favor of importlib. import_module().

The function imports the module name, potentially using the given globals and locals to determine how
to interpret the name in a package context. The fromlist gives the names of objects or submodules
that should be imported from the module given by name. The standard implementation does not use
its locals argument at all, and uses its globals only to determine the package context of the import
statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute
imports. Positive values for level indicate the number of parent directories to search relative to the
directory of the module calling __import__ () (see PEP 328 for the details).

When the name variable is of the form package.module, normally, the top-level package (the name
up till the first dot) is returned, not the module named by name. However, when a non-empty fromlist
argument is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __import__('spam', globals(), locals(), [1, 0)

25

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0328

The Python Library Reference, Release 3.6.8rcl

The statement import spam.ham results in this call:

spam = __import__('spam.ham', globals(), locals(), [1, 0)

Note how __import__ () returns the toplevel module here because this is the object that is bound to
a name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus results in

_temp = __import__('spam.ham', globals(), locals(), ['eggs', 'sausage'l, 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from __<mport__ (). From this object, the names to import
are retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
wmport_module().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the
default value to 0).

26

Chapter 2. Built-in Functions

CHAPTER

THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntazError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntazError.

None
The sole value of the type NoneType. None is frequently used to represent the absence of a value, as
when default arguments are not passed to a function. Assignments to None are illegal and raise a
SyntazError.

NotImplemented
Special value which should be returned by the binary special methods (e.g. __eq__0, __1t__Q),
__add__Q), __rsub__(), etc.) to indicate that the operation is not implemented with respect to the
other type; may be returned by the in-place binary special methods (e.g. __imul__(), __iand__Q),
etc.) for the same purpose. Its truth value is true.

Note: When a binary (or in-place) method returns NotImplemented the interpreter will try the
reflected operation on the other type (or some other fallback, depending on the operator). If all
attempts return NotImplemented, the interpreter will raise an appropriate exception. Incorrectly
returning NotImplemented will result in a misleading error message or the NotImplemented value
being returned to Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and NotImplemented are not interchangeable, even though they have
similar names and purposes. See NotImplementedError for details on when to use it.

Ellipsis
The same as the ellipsis literal “...”. Special value used mostly in conjunction with extended slicing
syntax for user-defined container data types.

__debug__
This constant is true if Python was not started with an -0 option. See also the assert statement.

Note: The names None, False, True and __debug__ cannot be reassigned (assignments to them, even as
an attribute name, raise SyntazError), so they can be considered “true” constants.

27

The Python Library Reference, Release 3.6.8rcl

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the =S command-line option is
given) adds several constants to the built-in namespace. They are useful for the interactive interpreter shell
and should not be used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when
called, raise SystemEzit with the specified exit code.

copyright
credits
Objects that when printed or called, print the text of copyright or credits, respectively.

license
Object that when printed, prints the message “Type license() to see the full license text”, and when
called, displays the full license text in a pager-like fashion (one screen at a time).

28 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place,
and don’t return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared,
tested for truth value, and converted to a string (with the repr () function or the slightly different str()
function). The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below.

By default, an object is considered true unless its class defines either a __bool__() method that returns
False or a __len__() method that returns zero, when called with the object.! Here are most of the built-in
objects considered false:

e constants defined to be false: None and False.
e zero of any numeric type: 0, 0.0, 0j, Decimal (0), Fraction(0, 1)
e empty sequences and collections: '',), [1, {3}, set(), range(0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or
True for true, unless otherwise stated. (Important exception: the Boolean operations or and and always
return one of their operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X ory if z is false, then y, else (1)
x and y | if z is false, then z, else y (2)
not x if x is false, then True, else False | (3)

Notes:

1 Additional information on these special methods may be found in the Python Reference Manual (customization).

29

The Python Library Reference, Release 3.6.8rcl

(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.
(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

(3) not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b),
and a == not b is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that
of the Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent
tox < y and y <= z, except that y is evaluated only once (but in both cases z is not evaluated at all when
x < y is found to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

1= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types
(for example, function objects) support only a degenerate notion of comparison where any two objects of
that type are unequal. The <, <=, > and >= operators will raise a TypeError exception when comparing a
complex number with another built-in numeric type, when the objects are of different types that cannot be
compared, or in other cases where there is no defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq__()
method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of
object, unless the class defines enough of the methods __1t__(), __le__O, __gt__O, and __ge__O (in
general, __1t__() and __eq__() are sufficient, if you want the conventional meanings of the comparison
operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two
objects and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported by types that are
iterable or implement the __contains__() method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition,
Booleans are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually
implemented using double in C; information about the precision and internal representation of floating
point numbers for the machine on which your program is running is available in sys. float_info. Complex
numbers have a real and imaginary part, which are each a floating point number. To extract these parts
from a complex number z, use z.real and z.imag. (The standard library includes additional numeric types,
fractions that hold rationals, and decimal that hold floating-point numbers with user-definable precision.)

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.8rcl

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned
integer literals (including hex, octal and binary numbers) yield integers. Numeric literals containing a
decimal point or an exponent sign yield floating point numbers. Appending 'j' or 'J' to a numeric literal
yields an imaginary number (a complex number with a zero real part) which you can add to an integer or
float to get a complex number with real and imaginary parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where integer is narrower than
floating point, which is narrower than complex. Comparisons between numbers of mixed type use the same
rule.? The constructors int (), float (), and complez() can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (all nu-
meric operations have a higher priority than comparison operations):

Operation Result Notes| Full documen-
tation

X +y sum of z and y

X -y difference of x and y

X %y product of z and y

x/y quotient of xz and y

x//y floored quotient of z and y (1)

xhy remainder of x / y (2)

-x z negated

+x 2 unchanged

abs (x) absolute value or magnitude of z abs()

int (x) x converted to integer (3)(6)| int()

float (x) x converted to floating point (4)(6)| float()

complex(re, a complex number with real part re, imaginary part im. im | (6) complex ()

im) defaults to zero.

c. conjugate of the complex number ¢

conjugate ()

divmod(x, y) | the pair (x // y, x % y) (2) divmod ()

pow(x, y) z to the power y (5) pow()

X k% y x to the power y (5)

Notes:

(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type
is not necessarily int. The result is always rounded towards minus infinity: 1//2 is 0, (-1)//2 is -1,
1//(-2) is -1, and (-1)//(-2) is 0.

(2) Not for complex numbers. Instead convert to floats using abs () if appropriate.

(3) Conversion from floating point to integer may round or truncate as in C; see functions math. floor()
and math.ceil () for well-defined conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “4” or “-” for Not a Number
(NaN) and positive or negative infinity.

(5) Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for programming languages.

(6) The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with
the Nd property).

See http://www.unicode.org/Public/9.0.0/ucd/extracted /DerivedNumericType.txt for a complete list
of code points with the Nd property.

2 As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 31

http://www.unicode.org/Public/9.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.6.8rcl

All numbers.Real types (int and float) also include the following operations:

Operation Result

math.trunc(z) | x truncated to Integral

round(z[, n]) | z rounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math. floor(z) | the greatest Integral <= x

math.ceil (z) the least Integral >=z

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though
carried out in two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation ~ has the same priority as the other unary numeric operations (+ and -).

This table lists the bitwise operations sorted in ascending priority:

Operation | Result Notes
x|y bitwise or of z and y (4)

x "y bitwise exclusive or of z and y | (4)
x&y bitwise and of = and y 4)

X << n z shifted left by n bits (1)(2)
x >>n z shifted right by n bits (1)(3)
~X the bits of z inverted

Notes:
(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.
(3) A right shift by n bits is equivalent to division by pow(2, n) without overflow check.
(4)

4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement

representation (a working bit-width of 1 + max(x.bit_length(), y.bit_length()) or more) is suf-
ficient to get the same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers.Integral abstract base class. In addition, it provides a few more
methods:

int.bit_length()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading
Zeros:

>>> n = -37

>>> bin(n)
'-0b100101"

>>> n.bit_length()
6

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.8rcl

More precisely, if x is nonzero, then x.bit_length() is the unique positive integer k such that 2** (k-1)
<= abs(x) < 2x*xk. Equivalently, when abs(x) is small enough to have a correctly rounded logarithm,
then k = 1 + int(log(abs(x), 2)). If x is zero, then x.bit_length() returns O.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sSign
return len(s) # len('100101') --> 6

New in version 3.1.

int.to_bytes (length, byteorder, *, signed=False)

Return an array of bytes representing an integer.

>>> (1024) .to_bytes(2, byteorder='big')

b'\x04\x00"

>>> (1024) .to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes(10, byteorder='big', signed=True)

D' \xfF\xFE\XFF\xfE\XEf\xfEf\xff\xff\xfc\x00"'

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"'

The integer is represented using length bytes. An OverflowError is raised if the integer is not repre-
sentable with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "little", the most
significant byte is at the end of the byte array. To request the native byte order of the host system,
use sys.byteorder as the byte order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed
is False and a negative integer is given, an OverflowError is raised. The default value for signed is
False.
New in version 3.2.

classmethod int.from_bytes(bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes(b'\x00\x10', byteorder='big')

16

>>> int.from_bytes(b'\x00\x10', byteorder='little')

4096

>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes([255, 0, 0], byteorder='big')

16711680

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "little", the most

4.4. Numeric Types — int, float, complex 33

The Python Library Reference, Release 3.6.8rcl

significant byte is at the end of the byte array. To request the native byte order of the host system,
use sys.byteorder as the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

New in version 3.2.

4.4.3 Additional Methods on Float

The float type implements the numbers.Real abstract base class. float also has the following additional
methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denomi-
nator. Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally
as binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In
contrast, hexadecimal strings allow exact representation and specification of floating-point numbers. This
can be useful when debugging, and in numerical work.

float.hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point
numbers, this representation will always include a leading Ox and a trailing p and exponent.

classmethod float.fromhex(s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading
and trailing whitespace.

Note that float.hez () is an instance method, while float. fromhexz () is a class method.

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or -, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least
one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in
section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output
of float.hex () is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings
produced by C’s %a format character or Java’s Double.toHexString are accepted by float. fromhez().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by
which to multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-
point number (3 + 10./16 + 7./16%x2) * 2.0%*10, or 3740.0:

>>> float.fromhex('0x3.a7p10"')
3740.0

Applying the reverse conversion to 3740.0 gives a different hexadecimal string representing the same number:

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.8rcl

>>> float.hex(3740.0)
'0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash(x) == hash(y) whenever x
== y (see the __hash__() method documentation for more details). For ease of implementation and effi-
ciency across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational
number, and hence applies to all instances of int and fractions.Fraction, and all finite instances of float
and decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The
value of P is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime used is P = 2**31 - 1 on machines with 32-bit
C longs and P = 2x*61 - 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n is a nonnegative rational number and n is not divisible by P, define hash(x) as m *
invmod(n, P) % P, where invmod(n, P) gives the inverse of n modulo P.

e If x = m / n is a nonnegative rational number and n is divisible by P (but m is not) then n has no
inverse modulo P and the rule above doesn’t apply; in this case define hash(x) to be the constant value
sys.hash_info.inf.

e If x = m / nis a negative rational number define hash(x) as -hash(-x). If the resulting hash is -1,
replace it with -2.

e The particular values sys.hash_info.inf, -sys.hash_info.inf and sys.hash_info.nan are used
as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have
the same hash value.)

e For a complez number z, the hash values of the real and imaginary parts are combined by comput-
ing hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.hash_info.
width so that it lies in range(-2#x(sys.hash_info.width - 1), 2**(sys.hash_info.width -
1)). Again, if the result is -1, it’s replaced with -2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing
the hash of a rational number, float, or complex:

import sys, math

def hash_fraction(m, n):
"thCompute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mnmnn

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
whilem , P ==n), P ==

m,n=mn//P,n//P

if n) P ==
hash_value = sys.hash_info.inf

(continues on next page)

4.4. Numeric Types — int, float, complex 35

The Python Library Reference, Release 3.6.8rcl

(continued from previous page)

def

def

else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of m modulo P.
hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < O:
hash_value -hash_value
if hash_value == -1:
hash_value = -2
return hash_value

hash_float(x):
"""Compute the hash of a float z."""

if math.isnan(x):

return sys.hash_info.nan
elif math.isinf(x):

return sys.hash_info.inf if x > O else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

hash_complex(z):
"""Compute the hash of a complex number z."""

hash_value = hash_float(z.real) + sys.hash_info.imag * hash_float(z.imag)
do a signed reduction modulo 2**sys.hash_info.width
M = 2*x(sys.hash_info.width - 1)
hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:
hash_value = -2
return hash_value

4.5 lterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods;
these are used to allow user-defined classes to support iteration. Sequences, described below in more detail,
always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

container.__iter__()

Return an iterator object. The object is required to support the iterator protocol described below. If
a container supports different types of iteration, additional methods can be provided to specifically
request iterators for those iteration types. (An example of an object supporting multiple forms of
iteration would be a tree structure which supports both breadth-first and depth-first traversal.) This
method corresponds to the tp_iter slot of the type structure for Python objects in the Python/C
API.

The iterator objects themselves are required to support the following two methods, which together form the
iterator protocol:

iterator.__iter__()

Return the iterator object itself. This is required to allow both containers and iterators to be used
with the for and in statements. This method corresponds to the tp_iter slot of the type structure

36

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.8rcl

for Python objects in the Python/C API.

iterator.__next__()
Return the next item from the container. If there are no further items, raise the StopIteration
exception. This method corresponds to the tp_iternext slot of the type structure for Python objects
in the Python/C APL

Python defines several iterator objects to support iteration over general and specific sequence types, dictio-
naries, and other more specialized forms. The specific types are not important beyond their implementation
of the iterator protocol.

Once an iterator’s __nezt__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__(method is implemented as a generator, it will automatically return an iterator object (technically,
a generator object) supplying the __iter__() and __next__() methods. More information about generators
can be found in the documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for
processing of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable.
The collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations
on custom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the
same type, n, %, j and k are integers and x is an arbitrary object that meets any type and value restrictions
imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation)
and * (repetition) operations have the same priority as the corresponding numeric operations.®

Operation Result Notes
x in s True if an item of s is equal to z, else False (1)

X not in s False if an item of s is equal to z, else True (1)
s+t the concatenation of s and ¢ (6)(7)
S *norn * s equivalent to adding s to itself n times (2)(7)
s[i] ith item of s, origin 0 (3)
s[i:j] slice of s from 4 to j (3)(4)
sli:j:k] slice of s from ¢ to j with step k (3)(5)
len(s) length of s

min(s) smallest item of s

max (s) largest item of s

s.index(x[, il, index of the first occurrence of z in s (at or after index ¢ and before | (8)
j11) index j)

s.count (x) total number of occurrences of z in s

3 They must have since the parser can’t tell the type of the operands.

4.6. Sequence Types — list, tuple, range

37

The Python Library Reference, Release 3.6.8rcl

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexico-
graphically by comparing corresponding elements. This means that to compare equal, every element must
compare equal and the two sequences must be of the same type and have the same length. (For full details
see comparisons in the language reference.)

Notes:

(1)

(2)

While the in and not in operations are used only for simple containment testing in the general case,
some specialised sequences (such as str, bytes and bytearray) also use them for subsequence testing:

>>> ”gg” ln I|eggsl|
True

Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note
that items in the sequence s are not copied; they are referenced multiple times. This often haunts new
Python programmers; consider:

>>> lists = [[]] * 3
>>> lists

o, 0, il

>>> 1lists[0] .append(3)
>>> lists

(es1, (31, [31]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements
of [[1] * 3 are references to this single empty list. Modifying any of the elements of 1ists modifies
this single list. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> 1lists[0] .append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

(31, [s61, [71]

Further explanation is available in the FAQ entry fag-multidimensional-list.

If 7 or j is negative, the index is relative to the end of sequence s: len(s) + i or len(s) + j is
substituted. But note that -0 is still 0.

The slice of s from 4 to j is defined as the sequence of items with index k such that i <= k < j. If ¢
or j is greater than len(s), use len(s). If 7 is omitted or None, use 0. If j is omitted or None, use
len(s). If 7 is greater than or equal to j, the slice is empty.

The slice of s from ¢ to j with step k is defined as the sequence of items with index x = i + n¥k such
that 0 <= n < (j-i)/k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping
when j is reached (but never including j). When k is positive, 7 and j are reduced to len(s) if they
are greater. When £k is negative, ¢ and j are reduced to len(s) - 1 if they are greater. If i or j are
omitted or None, they become “end” values (which end depends on the sign of k). Note, k cannot be
zero. If k is None, it is treated like 1.

Concatenating immutable sequences always results in a new object. This means that building up a
sequence by repeated concatenation will have a quadratic runtime cost in the total sequence length.
To get a linear runtime cost, you must switch to one of the alternatives below:

« if concatenating str objects, you can build a list and use str. join() at the end or else write to
an zo.StringI0 instance and retrieve its value when complete

38

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.8rcl

« if concatenating bytes objects, you can similarly use bytes. join() or i0.BytesIO, or you can
do in-place concatenation with a bytearray object. bytearray objects are mutable and have an
efficient overallocation mechanism

o if concatenating tuple objects, extend a list instead
o for other types, investigate the relevant class documentation

(7) Some sequence types (such as range) only support item sequences that follow specific patterns, and
hence don’t support sequence concatenation or repetition.

(8) index raises ValueError when z is not found in s. Not all implementations support passing the
additional arguments 7 and j. These arguments allow efficient searching of subsections of the sequence.
Passing the extra arguments is roughly equivalent to using s[i:j].index(x), only without copying
any data and with the returned index being relative to the start of the sequence rather than the start
of the slice.

4.6.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by
mutable sequence types is support for the hash () built-in.

This support allows immutable sequences, such as tuple instances, to be used as dict keys and stored in
set and frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.
MutableSequence ABC is provided to make it easier to correctly implement these operations on custom
sequence types.

In the table s is an instance of a mutable sequence type, t is any iterable object and z is an arbitrary object
that meets any type and value restrictions imposed by s (for example, bytearray only accepts integers that
meet the value restriction 0 <= x <= 255).

Operation Result Notes

s[i] = x item 7 of s is replaced by x

sfi:j]l = ¢ slice of s from 7 to j is replaced by the contents of the iterable ¢

del s[i:j] same as s[i:j] = []

sli:j:k] =t the elements of s[i:j:k] are replaced by those of ¢ (1)

del s[i:j:k] removes the elements of s[i:j:k] from the list

s.append (x) appends z to the end of the sequence (same as s[len(s) :len(s)] = [x])

s.clear() removes all items from s (same as del s[:]) (5)

s.copy() creates a shallow copy of s (same as s[:]) (5)

s.extend(t) or s | extends s with the contents of ¢ (for the most part the same as

+=t s[len(s):1len(s)] = t)

s *=n updates s with its contents repeated n times (6)

s.insert(i, x) inserts z into s at the index given by ¢ (same as s[i:i] = [x])

s.pop([il) retrieves the item at ¢ and also removes it from s (2)

s.remove (x) remove the first item from s where s[i] == x (3)

s.reverse() reverses the items of s in place (4)
Notes:

(1) ¢t must have the same length as the slice it is replacing.

4.6. Sequence Types — list, tuple, range 39

The Python Library Reference, Release 3.6.8rcl

The optional argument 7 defaults to -1, so that by default the last item is removed and returned.
remove raises ValueError when z is not found in s.

The reverse() method modifies the sequence in place for economy of space when reversing a large
sequence. To remind users that it operates by side effect, it does not return the reversed sequence.

clear () and copy() are included for consistency with the interfaces of mutable containers that don’t
support slicing operations (such as dict and set)

New in version 3.3: clear() and copy() methods.

The value n is an integer, or an object implementing __index__(). Zero and negative values of n clear
the sequence. Items in the sequence are not copied; they are referenced multiple times, as explained
for s * n under Common Sequence Operations.

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise
degree of similarity will vary by application).

class list([itemble])

Lists may be constructed in several ways:
o Using a pair of square brackets to denote the empty list: []
o Using square brackets, separating items with commas: [a], [a, b, c]
o Using a list comprehension: [x for x in iterable]
o Using the type constructor: 1ist() or list(iterable)

The constructor builds a list whose items are the same and in the same order as iterable’s items.
iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable
is already a list, a copy is made and returned, similar to iterable[:]. For example, list('abc')
returns ['a', 'b', 'c'] and list((1, 2, 3)) returns [1, 2, 3]. If no argument is given, the
constructor creates a new empty list, [].

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following
additional method:

sort (¥, key=None, reverse=False)
This method sorts the list in place, using only < comparisons between items. Exceptions are not
suppressed - if any comparison operations fail, the entire sort operation will fail (and the list will
likely be left in a partially modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each
list element (for example, key=str.lower). The key corresponding to each item in the list is
calculated once and then used for the entire sorting process. The default value of None means
that list items are sorted directly without calculating a separate key value.

The functools.cmp_to_key() utility is available to convert a 2.x style cmp function to a key
function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison
were reversed.

40

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.8rcl

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted ()
to explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to
mutate, or even inspect, the list is undefined. The C implementation of Python makes the list
appear empty for the duration, and raises ValueError if it can detect that the list has been
mutated during a sort.

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-
tuples produced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence
of homogeneous data is needed (such as allowing storage in a set or dict instance).

class tuple([itemble])
Tuples may be constructed in a number of ways:

o Using a pair of parentheses to denote the empty tuple: ()
¢ Using a trailing comma for a singleton tuple: a, or (a,)

e Separating items with commas: a, b, cor (a, b, c)

e Using the tuple () built-in: tuple() or tuple(iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable’s items.
iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable
is already a tuple, it is returned unchanged. For example, tuple('abc') returns ('a', 'b', 'c')
and tuple([1, 2, 3]) returns (1, 2, 3). If no argument is given, the constructor creates a new
empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are
optional, except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For
example, f(a, b, c) is a function call with three arguments, while £((a, b, c)) is a function call
with a 3-tuple as the sole argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific
number of times in for loops.

class range (stop)

class range (start, stop[, step])
The arguments to the range constructor must be integers (either built-in int or any object that
implements the __index__ special method). If the step argument is omitted, it defaults to 1. If the
start argument is omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r[i] = start + step*i
where i >= 0 and r[i] < stop.

4.6. Sequence Types — list, tuple, range 41

The Python Library Reference, Release 3.6.8rcl

For a negative step, the contents of the range are still determined by the formula r[i] = start +

stepx*i, but the constraints are i >= 0 and r[i] > stop.

A range object will be empty if r[0] does not meet the value constraint. Ranges do support negative
indices, but these are interpreted as indexing from the end of the sequence determined by the positive

indices.

Ranges containing absolute values larger than sys.mazsize are permitted but some features (such as

len()) may raise JverflowError.

Range examples:

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(1l, 11))

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list(range(0, 30, 5))

(0o, 5, 10, 15, 20, 25]

>>> list(range(0, 10, 3))

[0, 3, 6, 9]

>>> list(range(0, -10, -1))

(o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list(range(0))

(1

>>> list(range(1, 0))

(]

Ranges implement all of the common sequence operations except concatenation and repetition (due to
the fact that range objects can only represent sequences that follow a strict pattern and repetition and

concatenation will usually violate that pattern).

start

The value of the start parameter (or 0 if the parameter was not supplied)

stop
The value of the stop parameter

step
The value of the step parameter (or 1 if the parameter was not supplied)

The advantage of the range type over a regular list or tuple is that a range object will always take the
same (small) amount of memory, no matter the size of the range it represents (as it only stores the start,

stop and step values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range(0, 20, 2)
>>> r

range(0, 20, 2)

>>> 11 in r

False

>>> 10 in r
True

>>> r.index(10)
5

>>> r[5]

(continues on next page)

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.8rcl

(continued from previous page)

10

>>> r[:5]
range(0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare
equal might have different start, stop and step attributes, for example range(0) == range(2, 1, 3) or
range(0, 3, 2) == range(0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int
objects for membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘== and ‘!="to compare range objects based on the sequence of values they
define (instead of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.
See also:

e The linspace recipe shows how to implement a lazy version of range suitable for floating point appli-
cations.

4.7 Text Sequence Type — str
Textual data in Python is handled with str objects, or strings. Strings are immutable sequences of Unicode
code points. String literals are written in a variety of ways:
e Single quotes: 'allows embedded "double" quotes'
e Double quotes: "allows embedded 'single' quotes".
o Triple quoted: '''Three single quotes''', """Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly
converted to a single string literal. That is, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the
r (“raw”) prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st~ constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a
non-empty string s, s[0] == s[0:1].

There is also no mutable string type, but str. join() or i0.StringI0 can be used to efficiently construct
strings from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again
permitted on string literals. It has no effect on the meaning of string literals and cannot be combined with
the r prefix.

class str(object=")

class str(object=b", encoding="utf-8’, errors=’strict’)
Return a string version of object. If object is not provided, returns the empty string. Otherwise, the
behavior of str() depends on whether encoding or errors is given, as follows.

4.7. Text Sequence Type — str 43

http://code.activestate.com/recipes/579000/

The Python Library Reference, Release 3.6.8rcl

If neither encoding nor errorsis given, str(object) returns object.__str__(), which is the “informal”
or nicely printable string representation of object. For string objects, this is the string itself. If object
does not have a __str__() method, then str() falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytes or
bytearray). In this case, if object is a bytes (or bytearray) object, then str(bytes, encoding,
errors) is equivalent to bytes.decode(encoding, errors). Otherwise, the bytes object underlying
the buffer object is obtained before calling bytes.decode(). See Binary Sequence Types — bytes,
bytearray, memoryview and bufferobjects for information on buffer objects.

Passing a bytes object to str() without the encoding or errors arguments falls under the first case
of returning the informal string representation (see also the -b command-line option to Python). For
example:

>>> str(b'Zoot!"')
llb 1 ZOOt |]

For more information on the str class and its methods, see Text Sequence Type — str and the String
Methods section below. To output formatted strings, see the f-strings and Format String Syntax
sections. In addition, see the Text Processing Services section.

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described
below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customiza-
tion (see str. format (), Format String Syntax and Custom String Formatting) and the other based on C
printf style formatting that handles a narrower range of types and is slightly harder to use correctly, but
is often faster for the cases it can handle