
Python Setup and Usage
Release 3.6.7rc1

Guido van Rossum
and the Python development team

September 26, 2018

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Command line and environment 3
1.1 Command line . 3
1.2 Environment variables . 8

2 Using Python on Unix platforms 13
2.1 Getting and installing the latest version of Python . 13
2.2 Building Python . 14
2.3 Python-related paths and files . 14
2.4 Miscellaneous . 14
2.5 Editors and IDEs . 15

3 Using Python on Windows 17
3.1 Installing Python . 17
3.2 Alternative bundles . 22
3.3 Configuring Python . 22
3.4 Python Launcher for Windows . 24
3.5 Finding modules . 27
3.6 Additional modules . 29
3.7 Compiling Python on Windows . 30
3.8 Embedded Distribution . 30
3.9 Other resources . 31

4 Using Python on a Macintosh 33
4.1 Getting and Installing MacPython . 33
4.2 The IDE . 34
4.3 Installing Additional Python Packages . 34
4.4 GUI Programming on the Mac . 35
4.5 Distributing Python Applications on the Mac . 35
4.6 Other Resources . 35

A Glossary 37

B About these documents 51
B.1 Contributors to the Python Documentation . 51

C History and License 53
C.1 History of the software . 53
C.2 Terms and conditions for accessing or otherwise using Python 54
C.3 Licenses and Acknowledgements for Incorporated Software 57

D Copyright 71

i

Index 73

ii

Python Setup and Usage, Release 3.6.7rc1

This part of the documentation is devoted to general information on the setup of the Python environment
on different platforms, the invocation of the interpreter and things that make working with Python easier.

CONTENTS 1

Python Setup and Usage, Release 3.6.7rc1

2 CONTENTS

CHAPTER

ONE

COMMAND LINE AND ENVIRONMENT

The CPython interpreter scans the command line and the environment for various settings.

CPython implementation detail: Other implementations’ command line schemes may differ. See imple-
mentations for further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

python [-bBdEhiIOqsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invo-
cation:

• When called with standard input connected to a tty device, it prompts for commands and executes
them until an EOF (an end-of-file character, you can produce that with Ctrl-D on UNIX or Ctrl-Z,
Enter on Windows) is read.

• When called with a file name argument or with a file as standard input, it reads and executes a script
from that file.

• When called with a directory name argument, it reads and executes an appropriately named script
from that directory.

• When called with -c command, it executes the Python statement(s) given as command. Here command
may contain multiple statements separated by newlines. Leading whitespace is significant in Python
statements!

• When called with -m module-name, the given module is located on the Python module path and
executed as a script.

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments
will end up in sys.argv – note that the first element, subscript zero (sys.argv[0]), is a string reflecting
the program’s source.

3

Python Setup and Usage, Release 3.6.7rc1

-c <command>
Execute the Python code in command. command can be one or more statements separated by newlines,
with significant leading whitespace as in normal module code.

If this option is given, the first element of sys.argv will be "-c" and the current directory will be added
to the start of sys.path (allowing modules in that directory to be imported as top level modules).

-m <module-name>
Search sys.path for the named module and execute its contents as the __main__ module.

Since the argument is a module name, you must not give a file extension (.py). The module name
should be a valid absolute Python module name, but the implementation may not always enforce this
(e.g. it may allow you to use a name that includes a hyphen).

Package names (including namespace packages) are also permitted. When a package name is supplied
instead of a normal module, the interpreter will execute <pkg>.__main__ as the main module. This
behaviour is deliberately similar to the handling of directories and zipfiles that are passed to the
interpreter as the script argument.

Note: This option cannot be used with built-in modules and extension modules written in C, since
they do not have Python module files. However, it can still be used for precompiled modules, even if
the original source file is not available.

If this option is given, the first element of sys.argv will be the full path to the module file (while the
module file is being located, the first element will be set to "-m"). As with the -c option, the current
directory will be added to the start of sys.path.

Many standard library modules contain code that is invoked on their execution as a script. An example
is the timeit module:

python -mtimeit -s 'setup here' 'benchmarked code here'
python -mtimeit -h # for details

See also:

runpy.run_module() Equivalent functionality directly available to Python code

PEP 338 – Executing modules as scripts

Changed in version 3.1: Supply the package name to run a __main__ submodule.

Changed in version 3.4: namespace packages are also supported

-
Read commands from standard input (sys.stdin). If standard input is a terminal, -i is implied.

If this option is given, the first element of sys.argv will be "-" and the current directory will be added
to the start of sys.path.

<script>
Execute the Python code contained in script, which must be a filesystem path (absolute or relative)
referring to either a Python file, a directory containing a __main__.py file, or a zipfile containing a
__main__.py file.

If this option is given, the first element of sys.argv will be the script name as given on the command
line.

If the script name refers directly to a Python file, the directory containing that file is added to the
start of sys.path, and the file is executed as the __main__ module.

4 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0338

Python Setup and Usage, Release 3.6.7rc1

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path
and the __main__.py file in that location is executed as the __main__ module.

See also:

runpy.run_path() Equivalent functionality directly available to Python code

If no interface option is given, -i is implied, sys.argv[0] is an empty string ("") and the current directory
will be added to the start of sys.path. Also, tab-completion and history editing is automatically enabled,
if available on your platform (see rlcompleter-config).

See also:

tut-invoking

Changed in version 3.4: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-?
-h
--help

Print a short description of all command line options.

-V
--version

Print the Python version number and exit. Example output could be:

Python 3.6.0b2+

When given twice, print more information about the build, like:

Python 3.6.0b2+ (3.6:84a3c5003510+, Oct 26 2016, 02:33:55)
[GCC 6.2.0 20161005]

New in version 3.6: The -VV option.

1.1.3 Miscellaneous options

-b
Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error when
the option is given twice (-bb).

Changed in version 3.5: Affects comparisons of bytes with int.

-B
If given, Python won’t try to write .pyc files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE .

-d
Turn on parser debugging output (for wizards only, depending on compilation options). See also
PYTHONDEBUG.

-E
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME , that might be set.

1.1. Command line 5

Python Setup and Usage, Release 3.6.7rc1

-i
When a script is passed as first argument or the -c option is used, enter interactive mode after
executing the script or the command, even when sys.stdin does not appear to be a terminal. The
PYTHONSTARTUP file is not read.

This can be useful to inspect global variables or a stack trace when a script raises an exception. See
also PYTHONINSPECT .

-I
Run Python in isolated mode. This also implies -E and -s. In isolated mode sys.path contains neither
the script’s directory nor the user’s site-packages directory. All PYTHON* environment variables are
ignored, too. Further restrictions may be imposed to prevent the user from injecting malicious code.

New in version 3.4.

-O
Remove assert statements and any code conditional on the value of __debug__. Augment the filename
for compiled (bytecode) files by adding .opt-1 before the .pyc extension (see PEP 488). See also
PYTHONOPTIMIZE .

Changed in version 3.5: Modify .pyc filenames according to PEP 488.

-OO
Do -O and also discard docstrings. Augment the filename for compiled (bytecode) files by adding
.opt-2 before the .pyc extension (see PEP 488).

Changed in version 3.5: Modify .pyc filenames according to PEP 488.

-q
Don’t display the copyright and version messages even in interactive mode.

New in version 3.2.

-R
Kept for compatibility. On Python 3.3 and greater, hash randomization is turned on by default.

On previous versions of Python, this option turns on hash randomization, so that the __hash__() values
of str, bytes and datetime are “salted” with an unpredictable random value. Although they remain
constant within an individual Python process, they are not predictable between repeated invocations
of Python.

Hash randomization is intended to provide protection against a denial-of-service caused by carefully-
chosen inputs that exploit the worst case performance of a dict construction, O(n^2) complexity. See
http://www.ocert.org/advisories/ocert-2011-003.html for details.

PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.

New in version 3.2.3.

-s
Don’t add the user site-packages directory to sys.path.

See also:

PEP 370 – Per user site-packages directory

-S
Disable the import of the module site and the site-dependent manipulations of sys.path that it
entails. Also disable these manipulations if site is explicitly imported later (call site.main() if you
want them to be triggered).

-u
Force the binary layer of the stdout and stderr streams (which is available as their buffer attribute) to

6 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
http://www.ocert.org/advisories/ocert-2011-003.html
https://www.python.org/dev/peps/pep-0370

Python Setup and Usage, Release 3.6.7rc1

be unbuffered. The text I/O layer will still be line-buffered if writing to the console, or block-buffered
if redirected to a non-interactive file.

See also PYTHONUNBUFFERED.

-v
Print a message each time a module is initialized, showing the place (filename or built-in module)
from which it is loaded. When given twice (-vv), print a message for each file that is checked for when
searching for a module. Also provides information on module cleanup at exit. See also PYTHONVERBOSE .

-W arg
Warning control. Python’s warning machinery by default prints warning messages to sys.stderr. A
typical warning message has the following form:

file:line: category: message

By default, each warning is printed once for each source line where it occurs. This option controls how
often warnings are printed.

Multiple -W options may be given; when a warning matches more than one option, the action for
the last matching option is performed. Invalid -W options are ignored (though, a warning message is
printed about invalid options when the first warning is issued).

Warnings can also be controlled from within a Python program using the warnings module.

The simplest form of argument is one of the following action strings (or a unique abbreviation):

ignore Ignore all warnings.

default Explicitly request the default behavior (printing each warning once per source line).

all Print a warning each time it occurs (this may generate many messages if a warning is triggered
repeatedly for the same source line, such as inside a loop).

module Print each warning only the first time it occurs in each module.

once Print each warning only the first time it occurs in the program.

error Raise an exception instead of printing a warning message.

The full form of argument is:

action:message:category:module:line

Here, action is as explained above but only applies to messages that match the remaining fields. Empty
fields match all values; trailing empty fields may be omitted. The message field matches the start of
the warning message printed; this match is case-insensitive. The category field matches the warning
category. This must be a class name; the match tests whether the actual warning category of the
message is a subclass of the specified warning category. The full class name must be given. The module
field matches the (fully-qualified) module name; this match is case-sensitive. The line field matches the
line number, where zero matches all line numbers and is thus equivalent to an omitted line number.

See also:

warnings – the warnings module

PEP 230 – Warning framework

PYTHONWARNINGS

-x
Skip the first line of the source, allowing use of non-Unix forms of #!cmd. This is intended for a DOS
specific hack only.

1.1. Command line 7

https://www.python.org/dev/peps/pep-0230

Python Setup and Usage, Release 3.6.7rc1

-X
Reserved for various implementation-specific options. CPython currently defines the following possible
values:

• -X faulthandler to enable faulthandler;

• -X showrefcount to output the total reference count and number of used memory blocks when
the program finishes or after each statement in the interactive interpreter. This only works on
debug builds.

• -X tracemalloc to start tracing Python memory allocations using the tracemalloc mod-
ule. By default, only the most recent frame is stored in a traceback of a trace. Use -X
tracemalloc=NFRAME to start tracing with a traceback limit of NFRAME frames. See the
tracemalloc.start() for more information.

• -X showalloccount to output the total count of allocated objects for each type when the program
finishes. This only works when Python was built with COUNT_ALLOCS defined.

It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.

Changed in version 3.2: The -X option was added.

New in version 3.3: The -X faulthandler option.

New in version 3.4: The -X showrefcount and -X tracemalloc options.

New in version 3.6: The -X showalloccount option.

1.1.4 Options you shouldn’t use

-J
Reserved for use by Jython.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line
switches other than -E or -I. It is customary that command-line switches override environmental variables
where there is a conflict.

PYTHONHOME
Change the location of the standard Python libraries. By default, the libraries are searched in
prefix/lib/pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix
are installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefix and exec_prefix. To
specify different values for these, set PYTHONHOME to prefix:exec_prefix.

PYTHONPATH
Augment the default search path for module files. The format is the same as the shell’s PATH: one or
more directory pathnames separated by os.pathsep (e.g. colons on Unix or semicolons on Windows).
Non-existent directories are silently ignored.

In addition to normal directories, individual PYTHONPATH entries may refer to zipfiles containing pure
Python modules (in either source or compiled form). Extension modules cannot be imported from
zipfiles.

The default search path is installation dependent, but generally begins with prefix/lib/
pythonversion (see PYTHONHOME above). It is always appended to PYTHONPATH .

8 Chapter 1. Command line and environment

http://www.jython.org/

Python Setup and Usage, Release 3.6.7rc1

An additional directory will be inserted in the search path in front of PYTHONPATH as described above
under Interface options. The search path can be manipulated from within a Python program as the
variable sys.path.

PYTHONSTARTUP
If this is the name of a readable file, the Python commands in that file are executed before the first
prompt is displayed in interactive mode. The file is executed in the same namespace where interactive
commands are executed so that objects defined or imported in it can be used without qualification
in the interactive session. You can also change the prompts sys.ps1 and sys.ps2 and the hook
sys.__interactivehook__ in this file.

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the -O option. If set to an integer, it
is equivalent to specifying -O multiple times.

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the -d option. If set to an integer, it
is equivalent to specifying -d multiple times.

PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the -i option.

This variable can also be modified by Python code using os.environ to force inspect mode on program
termination.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the -u option.

PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the -v option. If set to an integer, it
is equivalent to specifying -v multiple times.

PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows and OS X.

PYTHONDONTWRITEBYTECODE
If this is set to a non-empty string, Python won’t try to write .pyc files on the import of source
modules. This is equivalent to specifying the -B option.

PYTHONHASHSEED
If this variable is not set or set to random, a random value is used to seed the hashes of str, bytes and
datetime objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the
types covered by the hash randomization.

Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a
cluster of python processes to share hash values.

The integer must be a decimal number in the range [0,4294967295]. Specifying the value 0 will disable
hash randomization.

New in version 3.2.3.

PYTHONIOENCODING
If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in
the syntax encodingname:errorhandler. Both the encodingname and the :errorhandler parts are
optional and have the same meaning as in str.encode().

For stderr, the :errorhandler part is ignored; the handler will always be 'backslashreplace'.

Changed in version 3.4: The encodingname part is now optional.

1.2. Environment variables 9

Python Setup and Usage, Release 3.6.7rc1

Changed in version 3.6: On Windows, the encoding specified by this variable is ignored for interactive
console buffers unless PYTHONLEGACYWINDOWSSTDIO is also specified. Files and pipes redirected through
the standard streams are not affected.

PYTHONNOUSERSITE
If this is set, Python won’t add the user site-packages directory to sys.path.

See also:

PEP 370 – Per user site-packages directory

PYTHONUSERBASE
Defines the user base directory, which is used to compute the path of the user site-packages
directory and Distutils installation paths for python setup.py install --user.

See also:

PEP 370 – Per user site-packages directory

PYTHONEXECUTABLE
If this environment variable is set, sys.argv[0] will be set to its value instead of the value got through
the C runtime. Only works on Mac OS X.

PYTHONWARNINGS
This is equivalent to the -W option. If set to a comma separated string, it is equivalent to specifying
-W multiple times.

PYTHONFAULTHANDLER
If this environment variable is set to a non-empty string, faulthandler.enable() is called at startup:
install a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python
traceback. This is equivalent to -X faulthandler option.

New in version 3.3.

PYTHONTRACEMALLOC
If this environment variable is set to a non-empty string, start tracing Python memory allocations
using the tracemalloc module. The value of the variable is the maximum number of frames stored
in a traceback of a trace. For example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See
the tracemalloc.start() for more information.

New in version 3.4.

PYTHONASYNCIODEBUG
If this environment variable is set to a non-empty string, enable the debug mode of the asynciomodule.

New in version 3.4.

PYTHONMALLOC
Set the Python memory allocators and/or install debug hooks.

Set the family of memory allocators used by Python:

• malloc: use the malloc() function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

• pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_OBJ domains
and use the malloc() function for the PYMEM_DOMAIN_RAW domain.

Install debug hooks:

• debug: install debug hooks on top of the default memory allocator

• malloc_debug: same as malloc but also install debug hooks

• pymalloc_debug: same as pymalloc but also install debug hooks

10 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0370
https://www.python.org/dev/peps/pep-0370

Python Setup and Usage, Release 3.6.7rc1

When Python is compiled in release mode, the default is pymalloc. When compiled in debug mode,
the default is pymalloc_debug and the debug hooks are used automatically.

If Python is configured without pymalloc support, pymalloc and pymalloc_debug are not available,
the default is malloc in release mode and malloc_debug in debug mode.

See the PyMem_SetupDebugHooks() function for debug hooks on Python memory allocators.

New in version 3.6.

PYTHONMALLOCSTATS
If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time
a new pymalloc object arena is created, and on shutdown.

This variable is ignored if the PYTHONMALLOC environment variable is used to force the malloc()
allocator of the C library, or if Python is configured without pymalloc support.

Changed in version 3.6: This variable can now also be used on Python compiled in release mode. It
now has no effect if set to an empty string.

PYTHONLEGACYWINDOWSFSENCODING
If set to a non-empty string, the default filesystem encoding and errors mode will revert to their pre-3.6
values of ‘mbcs’ and ‘replace’, respectively. Otherwise, the new defaults ‘utf-8’ and ‘surrogatepass’ are
used.

This may also be enabled at runtime with sys._enablelegacywindowsfsencoding().

Availability: Windows

New in version 3.6: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO
If set to a non-empty string, does not use the new console reader and writer. This means that Unicode
characters will be encoded according to the active console code page, rather than using utf-8.

This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring
to console buffers.

Availability: Windows

New in version 3.6.

1.2.1 Debug-mode variables

Setting these variables only has an effect in a debug build of Python, that is, if Python was configured with
the --with-pydebug build option.

PYTHONTHREADDEBUG
If set, Python will print threading debug info.

PYTHONDUMPREFS
If set, Python will dump objects and reference counts still alive after shutting down the interpreter.

1.2. Environment variables 11

https://www.python.org/dev/peps/pep-0529

Python Setup and Usage, Release 3.6.7rc1

12 Chapter 1. Command line and environment

CHAPTER

TWO

USING PYTHON ON UNIX PLATFORMS

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However
there are certain features you might want to use that are not available on your distro’s package. You can
easily compile the latest version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make
packages for your own distro. Have a look at the following links:

See also:

https://www.debian.org/doc/manuals/maint-guide/first.en.html for Debian users

https://en.opensuse.org/Portal:Packaging for OpenSuse users

https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
for Fedora users

http://www.slackbook.org/html/package-management-making-packages.html for Slackware
users

2.1.2 On FreeBSD and OpenBSD

• FreeBSD users, to add the package use:

pkg install python3

• OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your architecture here>/python-
↪→<version>.tgz

For example i386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

13

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
http://www.slackbook.org/html/package-management-making-packages.html

Python Setup and Usage, Release 3.6.7rc1

2.1.3 On OpenSolaris

You can get Python from OpenCSW. Various versions of Python are available and can be installed with e.g.
pkgutil -i python27.

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download
either the latest release’s source or just grab a fresh clone. (If you want to contribute patches, you will need
a clone.)

The build process consists in the usual

./configure
make
make install

invocations. Configuration options and caveats for specific Unix platforms are extensively documented in
the README.rst file in the root of the Python source tree.

Warning: make install can overwrite or masquerade the python3 binary. make altinstall is
therefore recommended instead of make install since it only installs exec_prefix/bin/pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix (${prefix}) and
exec_prefix (${exec_prefix}) are installation-dependent and should be interpreted as for GNU software;
they may be the same.

For example, on most Linux systems, the default for both is /usr.

File/directory Meaning
exec_prefix/bin/python3 Recommended location of the interpreter.
prefix/lib/pythonversion,
exec_prefix/lib/pythonversion

Recommended locations of the directories containing the standard
modules.

prefix/include/pythonversion,
exec_prefix/include/
pythonversion

Recommended locations of the directories containing the include
files needed for developing Python extensions and embedding the
interpreter.

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is usually

#!/usr/bin/env python3

14 Chapter 2. Using Python on Unix platforms

https://www.opencsw.org/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#getting-the-source-code
https://github.com/python/cpython/tree/3.6/README.rst

Python Setup and Usage, Release 3.6.7rc1

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env
command, so you may need to hardcode /usr/bin/python3 as the interpreter path.

To use shell commands in your Python scripts, look at the subprocess module.

2.5 Editors and IDEs

There are a number of IDEs that support Python programming language. Many editors and IDEs provide
syntax highlighting, debugging tools, and PEP-8 checks.

Please go to Python Editors and Integrated Development Environments for a comprehensive list.

2.5. Editors and IDEs 15

https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Python Setup and Usage, Release 3.6.7rc1

16 Chapter 2. Using Python on Unix platforms

CHAPTER

THREE

USING PYTHON ON WINDOWS

This document aims to give an overview of Windows-specific behaviour you should know about when using
Python on Microsoft Windows.

3.1 Installing Python

Unlike most Unix systems and services, Windows does not include a system supported installation of Python.
To make Python available, the CPython team has compiled Windows installers (MSI packages) with every
release for many years. These installers are primarily intended to add a per-user installation of Python, with
the core interpreter and library being used by a single user. The installer is also able to install for all users
of a single machine, and a separate ZIP file is available for application-local distributions.

3.1.1 Supported Versions

As specified in PEP 11, a Python release only supports a Windows platform while Microsoft considers the
platform under extended support. This means that Python 3.6 supports Windows Vista and newer. If you
require Windows XP support then please install Python 3.4.

3.1.2 Installation Steps

Four Python 3.6 installers are available for download - two each for the 32-bit and 64-bit versions of the
interpreter. The web installer is a small initial download, and it will automatically download the required
components as necessary. The offline installer includes the components necessary for a default installation
and only requires an internet connection for optional features. See Installing Without Downloading for other
ways to avoid downloading during installation.

After starting the installer, one of two options may be selected:

17

https://www.python.org/download/releases/
https://www.python.org/dev/peps/pep-0011

Python Setup and Usage, Release 3.6.7rc1

If you select “Install Now”:

• You will not need to be an administrator (unless a system update for the C Runtime Library is required
or you install the Python Launcher for Windows for all users)

• Python will be installed into your user directory

• The Python Launcher for Windows will be installed according to the option at the bottom of the first
page

• The standard library, test suite, launcher and pip will be installed

• If selected, the install directory will be added to your PATH

• Shortcuts will only be visible for the current user

Selecting “Customize installation” will allow you to select the features to install, the installation location
and other options or post-install actions. To install debugging symbols or binaries, you will need to use this
option.

To perform an all-users installation, you should select “Customize installation”. In this case:

• You may be required to provide administrative credentials or approval

• Python will be installed into the Program Files directory

• The Python Launcher for Windows will be installed into the Windows directory

• Optional features may be selected during installation

• The standard library can be pre-compiled to bytecode

• If selected, the install directory will be added to the system PATH

• Shortcuts are available for all users

18 Chapter 3. Using Python on Windows

Python Setup and Usage, Release 3.6.7rc1

3.1.3 Removing the MAX_PATH Limitation

Windows historically has limited path lengths to 260 characters. This meant that paths longer than this
would not resolve and errors would result.

In the latest versions of Windows, this limitation can be expanded to approximately 32,000 characters. Your
administrator will need to activate the “Enable Win32 long paths” group policy, or set the registry value
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem@LongPathsEnabled to 1.

This allows the open() function, the os module and most other path functionality to accept and return
paths longer than 260 characters when using strings. (Use of bytes as paths is deprecated on Windows, and
this feature is not available when using bytes.)

After changing the above option, no further configuration is required.

Changed in version 3.6: Support for long paths was enabled in Python.

3.1.4 Installing Without UI

All of the options available in the installer UI can also be specified from the command line, allowing scripted
installers to replicate an installation on many machines without user interaction. These options may also be
set without suppressing the UI in order to change some of the defaults.

To completely hide the installer UI and install Python silently, pass the /quiet option. To skip past the user
interaction but still display progress and errors, pass the /passive option. The /uninstall option may be
passed to immediately begin removing Python - no prompt will be displayed.

All other options are passed as name=value, where the value is usually 0 to disable a feature, 1 to enable a
feature, or a path. The full list of available options is shown below.

3.1. Installing Python 19

Python Setup and Usage, Release 3.6.7rc1

Name Description Default
InstallAllUsers Perform a system-wide installation. 0
TargetDir The installation directory Selected based on InstallAllUsers
DefaultAl-
lUsersTarget-
Dir

The default installation directory for
all-user installs

%ProgramFiles%\Python X.Y or
%ProgramFiles(x86)%\Python X.Y

DefaultJust-
ForMeTarget-
Dir

The default install directory for just-for-
me installs

%LocalAppData%\Programs\PythonXY or
%LocalAppData%\Programs\PythonXY-32

DefaultCus-
tomTargetDir

The default custom install directory dis-
played in the UI

(empty)

AssociateFiles Create file associations if the launcher is
also installed.

1

CompileAll Compile all .py files to .pyc. 0
PrependPath Add install and Scripts directories to

PATH and .PY to PATHEXT
0

Shortcuts Create shortcuts for the interpreter,
documentation and IDLE if installed.

1

Include_doc Install Python manual 1
In-
clude_debug

Install debug binaries 0

Include_dev Install developer headers and libraries 1
Include_exe Install python.exe and related files 1
In-
clude_launcher

Install Python Launcher for Windows. 1

Install-
Launcher-
AllUsers

Installs Python Launcher for Windows
for all users.

1

Include_lib Install standard library and extension
modules

1

Include_pip Install bundled pip and setuptools 1
In-
clude_symbols

Install debugging symbols (*.pdb) 0

Include_tcltk Install Tcl/Tk support and IDLE 1
Include_test Install standard library test suite 1
Include_tools Install utility scripts 1
LauncherOnly Only installs the launcher. This will

override most other options.
0

SimpleInstall Disable most install UI 0
SimpleIn-
stallDescrip-
tion

A custom message to display when the
simplified install UI is used.

(empty)

For example, to silently install a default, system-wide Python installation, you could use the following
command (from an elevated command prompt):

python-3.6.0.exe /quiet InstallAllUsers=1 PrependPath=1 Include_test=0

To allow users to easily install a personal copy of Python without the test suite, you could provide a shortcut
with the following command. This will display a simplified initial page and disallow customization:

20 Chapter 3. Using Python on Windows

Python Setup and Usage, Release 3.6.7rc1

python-3.6.0.exe InstallAllUsers=0 Include_launcher=0 Include_test=0
SimpleInstall=1 SimpleInstallDescription="Just for me, no test suite."

(Note that omitting the launcher also omits file associations, and is only recommended for per-user installs
when there is also a system-wide installation that included the launcher.)

The options listed above can also be provided in a file named unattend.xml alongside the executable. This
file specifies a list of options and values. When a value is provided as an attribute, it will be converted to
a number if possible. Values provided as element text are always left as strings. This example file sets the
same options as the previous example:

<Options>
<Option Name="InstallAllUsers" Value="no" />
<Option Name="Include_launcher" Value="0" />
<Option Name="Include_test" Value="no" />
<Option Name="SimpleInstall" Value="yes" />
<Option Name="SimpleInstallDescription">Just for me, no test suite</Option>

</Options>

3.1.5 Installing Without Downloading

As some features of Python are not included in the initial installer download, selecting those features may
require an internet connection. To avoid this need, all possible components may be downloaded on-demand
to create a complete layout that will no longer require an internet connection regardless of the selected
features. Note that this download may be bigger than required, but where a large number of installations
are going to be performed it is very useful to have a locally cached copy.

Execute the following command from Command Prompt to download all possible required files. Remember
to substitute python-3.6.0.exe for the actual name of your installer, and to create layouts in their own
directories to avoid collisions between files with the same name.

python-3.6.0.exe /layout [optional target directory]

You may also specify the /quiet option to hide the progress display.

3.1.6 Modifying an install

Once Python has been installed, you can add or remove features through the Programs and Features tool
that is part of Windows. Select the Python entry and choose “Uninstall/Change” to open the installer in
maintenance mode.

“Modify” allows you to add or remove features by modifying the checkboxes - unchanged checkboxes will
not install or remove anything. Some options cannot be changed in this mode, such as the install directory;
to modify these, you will need to remove and then reinstall Python completely.

“Repair” will verify all the files that should be installed using the current settings and replace any that have
been removed or modified.

“Uninstall” will remove Python entirely, with the exception of the Python Launcher for Windows, which has
its own entry in Programs and Features.

3.1. Installing Python 21

Python Setup and Usage, Release 3.6.7rc1

3.1.7 Other Platforms

With ongoing development of Python, some platforms that used to be supported earlier are no longer
supported (due to the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

• Windows CE is still supported.

• The Cygwin installer offers to install the Python interpreter as well (cf. Cygwin package source,
Maintainer releases)

See Python for Windows for detailed information about platforms with pre-compiled installers.

See also:

Python on XP “7 Minutes to “Hello World!”” by Richard Dooling, 2006

Installing on Windows in “Dive into Python: Python from novice to pro” by Mark Pilgrim, 2004, ISBN
1-59059-356-1

For Windows users in “Installing Python” in “A Byte of Python” by Swaroop C H, 2003

3.2 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality.
The following is a list of popular versions and their key features:

ActivePython Installer with multi-platform compatibility, documentation, PyWin32

Anaconda Popular scientific modules (such as numpy, scipy and pandas) and the conda package manager.

Canopy A “comprehensive Python analysis environment” with editors and other development tools.

WinPython Windows-specific distribution with prebuilt scientific packages and tools for building packages.

Note that these packages may not include the latest versions of Python or other libraries, and are not
maintained or supported by the core Python team.

3.3 Configuring Python

To run Python conveniently from a command prompt, you might consider changing some default environment
variables in Windows. While the installer provides an option to configure the PATH and PATHEXT variables
for you, this is only reliable for a single, system-wide installation. If you regularly use multiple versions of
Python, consider using the Python Launcher for Windows.

3.3.1 Excursus: Setting environment variables

Windows allows environment variables to be configured permanently at both the User level and the System
level, or temporarily in a command prompt.

To temporarily set environment variables, open Command Prompt and use the set command:

C:\>set PATH=C:\Program Files\Python 3.6;%PATH%
C:\>set PYTHONPATH=%PYTHONPATH%;C:\My_python_lib
C:\>python

22 Chapter 3. Using Python on Windows

https://www.python.org/dev/peps/pep-0011
http://pythonce.sourceforge.net/
https://cygwin.com/
ftp://ftp.uni-erlangen.de/pub/pc/gnuwin32/cygwin/mirrors/cygnus/release/python
http://www.tishler.net/jason/software/python/
https://www.python.org/downloads/windows/
http://dooling.com/index.php/2006/03/14/python-on-xp-7-minutes-to-hello-world/
http://www.diveintopython.net/installing_python/windows.html
http://www.diveintopython.net/
http://python.swaroopch.com/installation.html#installation-on-windows
http://python.swaroopch.com/
https://www.activestate.com/activepython/
https://www.continuum.io/downloads/
https://www.enthought.com/products/canopy/
https://winpython.github.io/

Python Setup and Usage, Release 3.6.7rc1

These changes will apply to any further commands executed in that console, and will be inherited by any
applications started from the console.

Including the variable name within percent signs will expand to the existing value, allowing you to add your
new value at either the start or the end. Modifying PATH by adding the directory containing python.exe to
the start is a common way to ensure the correct version of Python is launched.

To permanently modify the default environment variables, click Start and search for ‘edit environment
variables’, or open System properties, Advanced system settings and click the Environment Variables button.
In this dialog, you can add or modify User and System variables. To change System variables, you need
non-restricted access to your machine (i.e. Administrator rights).

Note: Windows will concatenate User variables after System variables, which may cause unexpected results
when modifying PATH.

The PYTHONPATH variable is used by all versions of Python 2 and Python 3, so you should not permanently
configure this variable unless it only includes code that is compatible with all of your installed Python
versions.

See also:

https://support.microsoft.com/kb/100843 Environment variables in Windows NT

https://technet.microsoft.com/en-us/library/cc754250.aspx The SET command, for temporarily
modifying environment variables

https://technet.microsoft.com/en-us/library/cc755104.aspx The SETX command, for perma-
nently modifying environment variables

https://support.microsoft.com/kb/310519 How To Manage Environment Variables in Windows XP

https://www.chem.gla.ac.uk/~louis/software/faq/q1.html Setting Environment variables, Louis J.
Farrugia

3.3.2 Finding the Python executable

Changed in version 3.5.

Besides using the automatically created start menu entry for the Python interpreter, you might want to start
Python in the command prompt. The installer has an option to set that up for you.

On the first page of the installer, an option labelled “Add Python to PATH” may be selected to have the
installer add the install location into the PATH. The location of the Scripts\ folder is also added. This allows
you to type python to run the interpreter, and pip for the package installer. Thus, you can also execute
your scripts with command line options, see Command line documentation.

If you don’t enable this option at install time, you can always re-run the installer, select Modify, and
enable it. Alternatively, you can manually modify the PATH using the directions in Excursus: Setting
environment variables. You need to set your PATH environment variable to include the directory of your
Python installation, delimited by a semicolon from other entries. An example variable could look like this
(assuming the first two entries already existed):

C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Python 3.6

3.3. Configuring Python 23

https://support.microsoft.com/kb/100843
https://technet.microsoft.com/en-us/library/cc754250.aspx
https://technet.microsoft.com/en-us/library/cc755104.aspx
https://support.microsoft.com/kb/310519
https://www.chem.gla.ac.uk/~louis/software/faq/q1.html

Python Setup and Usage, Release 3.6.7rc1

3.4 Python Launcher for Windows

New in version 3.3.

The Python launcher for Windows is a utility which aids in locating and executing of different Python
versions. It allows scripts (or the command-line) to indicate a preference for a specific Python version, and
will locate and execute that version.

Unlike the PATH variable, the launcher will correctly select the most appropriate version of Python. It will
prefer per-user installations over system-wide ones, and orders by language version rather than using the
most recently installed version.

3.4.1 Getting started

From the command-line

Changed in version 3.6.

System-wide installations of Python 3.3 and later will put the launcher on your PATH. The launcher is
compatible with all available versions of Python, so it does not matter which version is installed. To check
that the launcher is available, execute the following command in Command Prompt:

py

You should find that the latest version of Python you have installed is started - it can be exited as normal,
and any additional command-line arguments specified will be sent directly to Python.

If you have multiple versions of Python installed (e.g., 2.7 and 3.6) you will have noticed that Python 3.6
was started - to launch Python 2.7, try the command:

py -2.7

If you want the latest version of Python 2.x you have installed, try the command:

py -2

You should find the latest version of Python 2.x starts.

If you see the following error, you do not have the launcher installed:

'py' is not recognized as an internal or external command,
operable program or batch file.

Per-user installations of Python do not add the launcher to PATH unless the option was selected on installation.

Virtual environments

New in version 3.5.

If the launcher is run with no explicit Python version specification, and a virtual environment (created with
the standard library venv module or the external virtualenv tool) active, the launcher will run the virtual
environment’s interpreter rather than the global one. To run the global interpreter, either deactivate the
virtual environment, or explicitly specify the global Python version.

24 Chapter 3. Using Python on Windows

Python Setup and Usage, Release 3.6.7rc1

From a script

Let’s create a test Python script - create a file called hello.py with the following contents

#! python
import sys
sys.stdout.write("hello from Python %s\n" % (sys.version,))

From the directory in which hello.py lives, execute the command:

py hello.py

You should notice the version number of your latest Python 2.x installation is printed. Now try changing
the first line to be:

#! python3

Re-executing the command should now print the latest Python 3.x information. As with the above command-
line examples, you can specify a more explicit version qualifier. Assuming you have Python 2.6 installed, try
changing the first line to #! python2.6 and you should find the 2.6 version information printed.

Note that unlike interactive use, a bare “python” will use the latest version of Python 2.x that you have
installed. This is for backward compatibility and for compatibility with Unix, where the command python
typically refers to Python 2.

From file associations

The launcher should have been associated with Python files (i.e. .py, .pyw, .pyc files) when it was installed.
This means that when you double-click on one of these files from Windows explorer the launcher will be
used, and therefore you can use the same facilities described above to have the script specify the version
which should be used.

The key benefit of this is that a single launcher can support multiple Python versions at the same time
depending on the contents of the first line.

3.4.2 Shebang Lines

If the first line of a script file starts with #!, it is known as a “shebang” line. Linux and other Unix like
operating systems have native support for such lines and they are commonly used on such systems to indicate
how a script should be executed. This launcher allows the same facilities to be used with Python scripts on
Windows and the examples above demonstrate their use.

To allow shebang lines in Python scripts to be portable between Unix and Windows, this launcher supports
a number of ‘virtual’ commands to specify which interpreter to use. The supported virtual commands are:

• /usr/bin/env python

• /usr/bin/python

• /usr/local/bin/python

• python

For example, if the first line of your script starts with

#! /usr/bin/python

3.4. Python Launcher for Windows 25

Python Setup and Usage, Release 3.6.7rc1

The default Python will be located and used. As many Python scripts written to work on Unix will already
have this line, you should find these scripts can be used by the launcher without modification. If you are
writing a new script on Windows which you hope will be useful on Unix, you should use one of the shebang
lines starting with /usr.

Any of the above virtual commands can be suffixed with an explicit version (either just the major version,
or the major and minor version) - for example /usr/bin/python2.7 - which will cause that specific version
to be located and used.

The /usr/bin/env form of shebang line has one further special property. Before looking for installed Python
interpreters, this form will search the executable PATH for a Python executable. This corresponds to the
behaviour of the Unix env program, which performs a PATH search.

3.4.3 Arguments in shebang lines

The shebang lines can also specify additional options to be passed to the Python interpreter. For example,
if you have a shebang line:

#! /usr/bin/python -v

Then Python will be started with the -v option

3.4.4 Customization

Customization via INI files

Two .ini files will be searched by the launcher - py.ini in the current user’s “application data” directory (i.e.
the directory returned by calling the Windows function SHGetFolderPath with CSIDL_LOCAL_APPDATA) and
py.ini in the same directory as the launcher. The same .ini files are used for both the ‘console’ version of
the launcher (i.e. py.exe) and for the ‘windows’ version (i.e. pyw.exe)

Customization specified in the “application directory” will have precedence over the one next to the exe-
cutable, so a user, who may not have write access to the .ini file next to the launcher, can override commands
in that global .ini file)

Customizing default Python versions

In some cases, a version qualifier can be included in a command to dictate which version of Python will
be used by the command. A version qualifier starts with a major version number and can optionally be
followed by a period (‘.’) and a minor version specifier. If the minor qualifier is specified, it may optionally
be followed by “-32” to indicate the 32-bit implementation of that version be used.

For example, a shebang line of #!python has no version qualifier, while #!python3 has a version qualifier
which specifies only a major version.

If no version qualifiers are found in a command, the environment variable PY_PYTHON can be set to specify
the default version qualifier - the default value is “2”. Note this value could specify just a major version (e.g.
“2”) or a major.minor qualifier (e.g. “2.6”), or even major.minor-32.

If no minor version qualifiers are found, the environment variable PY_PYTHON{major} (where {major} is the
current major version qualifier as determined above) can be set to specify the full version. If no such option
is found, the launcher will enumerate the installed Python versions and use the latest minor release found
for the major version, which is likely, although not guaranteed, to be the most recently installed version in
that family.

26 Chapter 3. Using Python on Windows

Python Setup and Usage, Release 3.6.7rc1

On 64-bit Windows with both 32-bit and 64-bit implementations of the same (major.minor) Python version
installed, the 64-bit version will always be preferred. This will be true for both 32-bit and 64-bit implemen-
tations of the launcher - a 32-bit launcher will prefer to execute a 64-bit Python installation of the specified
version if available. This is so the behavior of the launcher can be predicted knowing only what versions
are installed on the PC and without regard to the order in which they were installed (i.e., without knowing
whether a 32 or 64-bit version of Python and corresponding launcher was installed last). As noted above,
an optional “-32” suffix can be used on a version specifier to change this behaviour.

Examples:

• If no relevant options are set, the commands python and python2 will use the latest Python 2.x version
installed and the command python3 will use the latest Python 3.x installed.

• The commands python3.1 and python2.7 will not consult any options at all as the versions are fully
specified.

• If PY_PYTHON=3, the commands python and python3 will both use the latest installed Python 3 version.

• If PY_PYTHON=3.1-32, the command python will use the 32-bit implementation of 3.1 whereas the
command python3 will use the latest installed Python (PY_PYTHON was not considered at all as a
major version was specified.)

• If PY_PYTHON=3 and PY_PYTHON3=3.1, the commands python and python3 will both use specifically
3.1

In addition to environment variables, the same settings can be configured in the .INI file used by the launcher.
The section in the INI file is called [defaults] and the key name will be the same as the environment
variables without the leading PY_ prefix (and note that the key names in the INI file are case insensitive.)
The contents of an environment variable will override things specified in the INI file.

For example:

• Setting PY_PYTHON=3.1 is equivalent to the INI file containing:

[defaults]
python=3.1

• Setting PY_PYTHON=3 and PY_PYTHON3=3.1 is equivalent to the INI file containing:

[defaults]
python=3
python3=3.1

3.4.5 Diagnostics

If an environment variable PYLAUNCH_DEBUG is set (to any value), the launcher will print diagnostic informa-
tion to stderr (i.e. to the console). While this information manages to be simultaneously verbose and terse,
it should allow you to see what versions of Python were located, why a particular version was chosen and
the exact command-line used to execute the target Python.

3.5 Finding modules

Python usually stores its library (and thereby your site-packages folder) in the installation directory. So, if
you had installed Python to C:\Python\, the default library would reside in C:\Python\Lib\ and third-party
modules should be stored in C:\Python\Lib\site-packages\.

3.5. Finding modules 27

Python Setup and Usage, Release 3.6.7rc1

To completely override sys.path, create a ._pth file with the same name as the DLL (python36._pth) or
the executable (python._pth) and specify one line for each path to add to sys.path. The file based on the
DLL name overrides the one based on the executable, which allows paths to be restricted for any program
loading the runtime if desired.

When the file exists, all registry and environment variables are ignored, isolated mode is enabled, and site
is not imported unless one line in the file specifies import site. Blank paths and lines starting with # are
ignored. Each path may be absolute or relative to the location of the file. Import statements other than to
site are not permitted, and arbitrary code cannot be specified.

Note that .pth files (without leading underscore) will be processed normally by the site module.

When no ._pth file is found, this is how sys.path is populated on Windows:

• An empty entry is added at the start, which corresponds to the current directory.

• If the environment variable PYTHONPATH exists, as described in Environment variables, its entries
are added next. Note that on Windows, paths in this variable must be separated by semicolons, to
distinguish them from the colon used in drive identifiers (C:\ etc.).

• Additional “application paths” can be added in the registry as subkeys of
\SOFTWARE\Python\PythonCore\version\PythonPath under both the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE hives. Subkeys which have semicolon-delimited path strings as their default
value will cause each path to be added to sys.path. (Note that all known installers only use HKLM,
so HKCU is typically empty.)

• If the environment variable PYTHONHOME is set, it is assumed as “Python Home”. Otherwise, the path of
the main Python executable is used to locate a “landmark file” (either Lib\os.py or pythonXY.zip) to
deduce the “Python Home”. If a Python home is found, the relevant sub-directories added to sys.path
(Lib, plat-win, etc) are based on that folder. Otherwise, the core Python path is constructed from
the PythonPath stored in the registry.

• If the Python Home cannot be located, no PYTHONPATH is specified in the environment, and no registry
entries can be found, a default path with relative entries is used (e.g. .\Lib;.\plat-win, etc).

If a pyvenv.cfg file is found alongside the main executable or in the directory one level above the executable,
the following variations apply:

• If home is an absolute path and PYTHONHOME is not set, this path is used instead of the path to the
main executable when deducing the home location.

The end result of all this is:

• When running python.exe, or any other .exe in the main Python directory (either an installed version,
or directly from the PCbuild directory), the core path is deduced, and the core paths in the registry
are ignored. Other “application paths” in the registry are always read.

• When Python is hosted in another .exe (different directory, embedded via COM, etc), the “Python
Home” will not be deduced, so the core path from the registry is used. Other “application paths” in
the registry are always read.

• If Python can’t find its home and there are no registry value (frozen .exe, some very strange installation
setup) you get a path with some default, but relative, paths.

For those who want to bundle Python into their application or distribution, the following advice will prevent
conflicts with other installations:

• Include a ._pth file alongside your executable containing the directories to include. This will ignore
paths listed in the registry and environment variables, and also ignore site unless import site is
listed.

28 Chapter 3. Using Python on Windows

Python Setup and Usage, Release 3.6.7rc1

• If you are loading python3.dll or python36.dll in your own executable, explicitly call Py_SetPath()
or (at least) Py_SetProgramName() before Py_Initialize().

• Clear and/or overwrite PYTHONPATH and set PYTHONHOME before launching python.exe from your
application.

• If you cannot use the previous suggestions (for example, you are a distribution that allows people to
run python.exe directly), ensure that the landmark file (Lib\os.py) exists in your install directory.
(Note that it will not be detected inside a ZIP file, but a correctly named ZIP file will be detected
instead.)

These will ensure that the files in a system-wide installation will not take precedence over the copy of the
standard library bundled with your application. Otherwise, your users may experience problems using your
application. Note that the first suggestion is the best, as the others may still be susceptible to non-standard
paths in the registry and user site-packages.

Changed in version 3.6:

• Adds ._pth file support and removes applocal option from pyvenv.cfg.

• Adds pythonXX.zip as a potential landmark when directly adjacent to the executable.

Deprecated since version 3.6: Modules specified in the registry under Modules (not PythonPath)
may be imported by importlib.machinery.WindowsRegistryFinder. This finder is enabled on
Windows in 3.6.0 and earlier, but may need to be explicitly added to sys.meta_path in the
future.

3.6 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique to Windows.
A couple of modules, both in the standard library and external, and snippets exist to use these features.

The Windows-specific standard modules are documented in mswin-specific-services.

3.6.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support.
This includes utilities for:

• Component Object Model (COM)

• Win32 API calls

• Registry

• Event log

• Microsoft Foundation Classes (MFC) user interfaces

PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in
debugger.

See also:

Win32 How Do I…? by Tim Golden

Python and COM by David and Paul Boddie

3.6. Additional modules 29

https://pypi.org/project/pywin32
https://www.microsoft.com/com/
https://msdn.microsoft.com/en-us/library/fe1cf721%28VS.80%29.aspx
https://web.archive.org/web/20060524042422/https://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
http://www.boddie.org.uk/python/COM.html

Python Setup and Usage, Release 3.6.7rc1

3.6.2 cx_Freeze

cx_Freeze is a distutils extension (see extending-distutils) which wraps Python scripts into executable
Windows programs (*.exe files). When you have done this, you can distribute your application without
requiring your users to install Python.

3.6.3 WConio

Since Python’s advanced terminal handling layer, curses, is restricted to Unix-like systems, there is a library
exclusive to Windows as well: Windows Console I/O for Python.

WConio is a wrapper for Turbo-C’s CONIO.H, used to create text user interfaces.

3.7 Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download
either the latest release’s source or just grab a fresh checkout.

The source tree contains a build solution and project files for Microsoft Visual Studio 2015, which is the
compiler used to build the official Python releases. These files are in the PCbuild directory.

Check PCbuild/readme.txt for general information on the build process.

For extension modules, consult building-on-windows.

See also:

Python + Windows + distutils + SWIG + gcc MinGW or “Creating Python extensions in
C/C++ with SWIG and compiling them with MinGW gcc under Windows” or “Installing Python
extension with distutils and without Microsoft Visual C++” by Sébastien Sauvage, 2003

MingW – Python extensions by Trent Apted et al, 2007

3.8 Embedded Distribution

New in version 3.5.

The embedded distribution is a ZIP file containing a minimal Python environment. It is intended for acting
as part of another application, rather than being directly accessed by end-users.

When extracted, the embedded distribution is (almost) fully isolated from the user’s system, including
environment variables, system registry settings, and installed packages. The standard library is included as
pre-compiled and optimized .pyc files in a ZIP, and python3.dll, python36.dll, python.exe and pythonw.
exe are all provided. Tcl/tk (including all dependants, such as Idle), pip and the Python documentation are
not included.

Note: The embedded distribution does not include the Microsoft C Runtime and it is the responsibility
of the application installer to provide this. The runtime may have already been installed on a user’s system
previously or automatically via Windows Update, and can be detected by finding ucrtbase.dll in the
system directory.

Third-party packages should be installed by the application installer alongside the embedded distribution.
Using pip to manage dependencies as for a regular Python installation is not supported with this distribution,

30 Chapter 3. Using Python on Windows

http://cx-freeze.sourceforge.net/
http://newcenturycomputers.net/projects/wconio.html
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#getting-the-source-code
http://sebsauvage.net/python/mingw.html
http://oldwiki.mingw.org/index.php/Python%20extensions
https://www.microsoft.com/en-us/download/details.aspx?id=48145

Python Setup and Usage, Release 3.6.7rc1

though with some care it may be possible to include and use pip for automatic updates. In general, third-
party packages should be treated as part of the application (“vendoring”) so that the developer can ensure
compatibility with newer versions before providing updates to users.

The two recommended use cases for this distribution are described below.

3.8.1 Python Application

An application written in Python does not necessarily require users to be aware of that fact. The embedded
distribution may be used in this case to include a private version of Python in an install package. Depending
on how transparent it should be (or conversely, how professional it should appear), there are two options.

Using a specialized executable as a launcher requires some coding, but provides the most transparent expe-
rience for users. With a customized launcher, there are no obvious indications that the program is running
on Python: icons can be customized, company and version information can be specified, and file associations
behave properly. In most cases, a custom launcher should simply be able to call Py_Main with a hard-coded
command line.

The simpler approach is to provide a batch file or generated shortcut that directly calls the python.exe or
pythonw.exe with the required command-line arguments. In this case, the application will appear to be
Python and not its actual name, and users may have trouble distinguishing it from other running Python
processes or file associations.

With the latter approach, packages should be installed as directories alongside the Python executable to
ensure they are available on the path. With the specialized launcher, packages can be located in other
locations as there is an opportunity to specify the search path before launching the application.

3.8.2 Embedding Python

Applications written in native code often require some form of scripting language, and the embedded Python
distribution can be used for this purpose. In general, the majority of the application is in native code, and
some part will either invoke python.exe or directly use python3.dll. For either case, extracting the
embedded distribution to a subdirectory of the application installation is sufficient to provide a loadable
Python interpreter.

As with the application use, packages can be installed to any location as there is an opportunity to specify
search paths before initializing the interpreter. Otherwise, there is no fundamental differences between using
the embedded distribution and a regular installation.

3.9 Other resources

See also:

Python Programming On Win32 “Help for Windows Programmers” by Mark Hammond and Andy
Robinson, O’Reilly Media, 2000, ISBN 1-56592-621-8

A Python for Windows Tutorial by Amanda Birmingham, 2004

PEP 397 - Python launcher for Windows The proposal for the launcher to be included in the Python
distribution.

3.9. Other resources 31

http://shop.oreilly.com/product/9781565926219.do
http://www.imladris.com/Scripts/PythonForWindows.html
https://www.python.org/dev/peps/pep-0397

Python Setup and Usage, Release 3.6.7rc1

32 Chapter 3. Using Python on Windows

CHAPTER

FOUR

USING PYTHON ON A MACINTOSH

Author Bob Savage <bobsavage@mac.com>

Python on a Macintosh running Mac OS X is in principle very similar to Python on any other Unix platform,
but there are a number of additional features such as the IDE and the Package Manager that are worth
pointing out.

4.1 Getting and Installing MacPython

Mac OS X 10.8 comes with Python 2.7 pre-installed by Apple. If you wish, you are invited to install the
most recent version of Python 3 from the Python website (https://www.python.org). A current “universal
binary” build of Python, which runs natively on the Mac’s new Intel and legacy PPC CPU’s, is available
there.

What you get after installing is a number of things:

• A MacPython 3.6 folder in your Applications folder. In here you find IDLE, the development en-
vironment that is a standard part of official Python distributions; PythonLauncher, which handles
double-clicking Python scripts from the Finder; and the “Build Applet” tool, which allows you to
package Python scripts as standalone applications on your system.

• A framework /Library/Frameworks/Python.framework, which includes the Python executable and
libraries. The installer adds this location to your shell path. To uninstall MacPython, you can simply
remove these three things. A symlink to the Python executable is placed in /usr/local/bin/.

The Apple-provided build of Python is installed in /System/Library/Frameworks/Python.framework and
/usr/bin/python, respectively. You should never modify or delete these, as they are Apple-controlled and
are used by Apple- or third-party software. Remember that if you choose to install a newer Python version
from python.org, you will have two different but functional Python installations on your computer, so it will
be important that your paths and usages are consistent with what you want to do.

IDLE includes a help menu that allows you to access Python documentation. If you are completely new to
Python you should start reading the tutorial introduction in that document.

If you are familiar with Python on other Unix platforms you should read the section on running Python
scripts from the Unix shell.

4.1.1 How to run a Python script

Your best way to get started with Python on Mac OS X is through the IDLE integrated development
environment, see section The IDE and use the Help menu when the IDE is running.

33

mailto:bobsavage@mac.com
https://www.python.org

Python Setup and Usage, Release 3.6.7rc1

If you want to run Python scripts from the Terminal window command line or from the Finder you first
need an editor to create your script. Mac OS X comes with a number of standard Unix command line
editors, vim and emacs among them. If you want a more Mac-like editor, BBEdit or TextWrangler from
Bare Bones Software (see http://www.barebones.com/products/bbedit/index.html) are good choices, as is
TextMate (see https://macromates.com/). Other editors include Gvim (http://macvim.org) and Aquamacs
(http://aquamacs.org/).

To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell
search path.

To run your script from the Finder you have two options:

• Drag it to PythonLauncher

• Select PythonLauncher as the default application to open your script (or any .py script) through the
finder Info window and double-click it. PythonLauncher has various preferences to control how your
script is launched. Option-dragging allows you to change these for one invocation, or use its Preferences
menu to change things globally.

4.1.2 Running scripts with a GUI

With older versions of Python, there is one Mac OS X quirk that you need to be aware of: programs that
talk to the Aqua window manager (in other words, anything that has a GUI) need to be run in a special
way. Use pythonw instead of python to start such scripts.

With Python 3.6, you can use either python or pythonw.

4.1.3 Configuration

Python on OS X honors all standard Unix environment variables such as PYTHONPATH , but setting these
variables for programs started from the Finder is non-standard as the Finder does not read your .profile
or .cshrc at startup. You need to create a file ~/.MacOSX/environment.plist. See Apple’s Technical
Document QA1067 for details.

For more information on installation Python packages in MacPython, see section Installing Additional Python
Packages.

4.2 The IDE

MacPython ships with the standard IDLE development environment. A good introduction to using IDLE
can be found at https://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html.

4.3 Installing Additional Python Packages

There are several methods to install additional Python packages:

• Packages can be installed via the standard Python distutils mode (python setup.py install).

• Many packages can also be installed via the setuptools extension or pip wrapper, see https://pip.
pypa.io/.

34 Chapter 4. Using Python on a Macintosh

http://www.barebones.com/products/bbedit/index.html
https://macromates.com/
http://macvim.org
http://aquamacs.org/
https://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html
https://pip.pypa.io/
https://pip.pypa.io/

Python Setup and Usage, Release 3.6.7rc1

4.4 GUI Programming on the Mac

There are several options for building GUI applications on the Mac with Python.

PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is the foundation of most
modern Mac development. Information on PyObjC is available from https://pythonhosted.org/pyobjc/.

The standard Python GUI toolkit is tkinter, based on the cross-platform Tk toolkit (https://www.tcl.tk).
An Aqua-native version of Tk is bundled with OS X by Apple, and the latest version can be downloaded
and installed from https://www.activestate.com; it can also be built from source.

wxPython is another popular cross-platform GUI toolkit that runs natively on Mac OS X. Packages and
documentation are available from http://www.wxpython.org.

PyQt is another popular cross-platform GUI toolkit that runs natively on Mac OS X. More information can
be found at https://riverbankcomputing.com/software/pyqt/intro.

4.5 Distributing Python Applications on the Mac

The “Build Applet” tool that is placed in the MacPython 3.6 folder is fine for packaging small Python scripts
on your own machine to run as a standard Mac application. This tool, however, is not robust enough to
distribute Python applications to other users.

The standard tool for deploying standalone Python applications on the Mac is py2app. More information
on installing and using py2app can be found at http://undefined.org/python/#py2app.

4.6 Other Resources

The MacPython mailing list is an excellent support resource for Python users and developers on the Mac:

https://www.python.org/community/sigs/current/pythonmac-sig/

Another useful resource is the MacPython wiki:

https://wiki.python.org/moin/MacPython

4.4. GUI Programming on the Mac 35

https://pythonhosted.org/pyobjc/
https://www.tcl.tk
https://www.activestate.com
http://www.wxpython.org
https://riverbankcomputing.com/software/pyqt/intro
http://undefined.org/python/#py2app
https://www.python.org/community/sigs/current/pythonmac-sig/
https://wiki.python.org/moin/MacPython

Python Setup and Usage, Release 3.6.7rc1

36 Chapter 4. Using Python on a Macintosh

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block,
when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompati-
bilities which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/
scripts/2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces
when other techniques like hasattr() would be clumsy or subtly wrong (for example with magic
methods). ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but
are still recognized by isinstance() and issubclass(); see the abc module documentation. Python
comes with many built-in ABCs for data structures (in the collections.abc module), numbers (in
the numbers module), streams (in the io module), import finders and loaders (in the importlib.abc
module). You can create your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value,
used by convention as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class
attributes, and functions are stored in the __annotations__ special attribute of modules, classes, and
functions, respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this function-
ality.

argument A value passed to a function (or method) when calling the function. There are two kinds of
argument:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed
as a value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in
the following calls to complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can
appear at the beginning of an argument list and/or be passed as elements of an iterable preceded
by *. For example, 3 and 5 are both positional arguments in the following calls:

37

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Setup and Usage, Release 3.6.7rc1

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the
rules governing this assignment. Syntactically, any expression can be used to represent an argument;
the evaluated value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and
parameters, and PEP 362.

asynchronous context manager An object which controls the environment seen in an async with state-
ment by defining __aenter__() and __aexit__() methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a
coroutine function defined with async def except that it contains yield expressions for producing a
series of values usable in an async for loop.

Usually refers to a asynchronous generator function, but may refer to an asynchronous generator
iterator in some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids
ambiguity.

An asynchronous generator function may contain await expressions as well as async for, and async
with statements.

asynchronous generator iterator An object created by a asynchronous generator function.

This is an asynchronous iterator which when called using the __anext__()method returns an awaitable
object which will execute that the body of the asynchronous generator function until the next yield
expression.

Each yield temporarily suspends processing, remembering the location execution state (including local
variables and pending try-statements). When the asynchronous generator iterator effectively resumes
with another awaitable returned by __anext__(), it picks up where it left off. See PEP 492 and PEP
525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asyn-
chronous iterator from its __aiter__() method. Introduced by PEP 492.

asynchronous iterator An object that implements the __aiter__() and __anext__() methods.
__anext__ must return an awaitable object. async for resolves the awaitables returned by an asyn-
chronous iterator’s __anext__() method until it raises a StopAsyncIteration exception. Introduced
by PEP 492.

attribute A value associated with an object which is referenced by name using dotted expressions. For
example, if an object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an
__await__() method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened
in binary mode ('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of
io.BytesIO and gzip.GzipFile.

See also text file for a file object able to read and write str objects.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous buffer. This
includes all bytes, bytearray, and array.array objects, as well as many common memoryview ob-
jects. Bytes-like objects can be used for various operations that work with binary data; these include
compression, saving to a binary file, and sending over a socket.

38 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/~guido/

Python Setup and Usage, Release 3.6.7rc1

Some operations need the binary data to be mutable. The documentation often refers to these as “read-
write bytes-like objects”. Example mutable buffer objects include bytearray and a memoryview of a
bytearray. Other operations require the binary data to be stored in immutable objects (“read-only
bytes-like objects”); examples of these include bytes and a memoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program
in the CPython interpreter. The bytecode is also cached in .pyc files so that executing the same file
is faster the second time (recompilation from source to bytecode can be avoided). This “intermediate
language” is said to run on a virtual machine that executes the machine code corresponding to each
bytecode. Do note that bytecodes are not expected to work between different Python virtual machines,
nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions
which operate on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an
instance of the class).

coercion The implicit conversion of an instance of one type to another during an operation which involves
two arguments of the same type. For example, int(3.15) converts the floating point number to the
integer 3, but in 3+4.5, each argument is of a different type (one int, one float), and both must be
converted to the same type before they can be added or it will raise a TypeError. Without coercion, all
arguments of even compatible types would have to be normalized to the same value by the programmer,
e.g., float(3)+4.5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as
a sum of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary
unit (the square root of -1), often written i in mathematics or j in engineering. Python has built-in
support for complex numbers, which are written with this latter notation; the imaginary part is written
with a j suffix, e.g., 3+1j. To get access to complex equivalents of the math module, use cmath. Use
of complex numbers is a fairly advanced mathematical feature. If you’re not aware of a need for them,
it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining
__enter__() and __exit__() methods. See PEP 343.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous.
Zero-dimensional buffers are C and Fortran contiguous. In one-dimensional arrays, the items must
be laid out in memory next to each other, in order of increasing indexes starting from zero. In
multidimensional C-contiguous arrays, the last index varies the fastest when visiting items in order of
memory address. However, in Fortran contiguous arrays, the first index varies the fastest.

coroutine Coroutines is a more generalized form of subroutines. Subroutines are entered at one point and
exited at another point. Coroutines can be entered, exited, and resumed at many different points.
They can be implemented with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined
with the async def statement, and may contain await, async for, and async with keywords. These
were introduced by PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on
python.org. The term “CPython” is used when necessary to distinguish this implementation from
others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decorators are classmethod() and staticmethod().

39

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Python Setup and Usage, Release 3.6.7rc1

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for
function definitions and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally,
using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but
if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key
to a deep understanding of Python because they are the basis for many features including functions,
methods, properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object
with __hash__() and __eq__() methods. Called a hash in Perl.

dictionary view The objects returned from dict.keys(), dict.values(), and dict.items() are called
dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when
the dictionary changes, the view reflects these changes. To force the dictionary view to become a full
list use list(dictview). See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While
ignored when the suite is executed, it is recognized by the compiler and put into the __doc__ attribute
of the enclosing class, function or module. Since it is available via introspection, it is the canonical
place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right
interface; instead, the method or attribute is simply called or used (“If it looks like a duck and quacks
like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed
code improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests using
type() or isinstance(). (Note, however, that duck-typing can be complemented with abstract base
classes.) Instead, it typically employs hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the
existence of valid keys or attributes and catches exceptions if the assumption proves false. This clean
and fast style is characterized by the presence of many try and except statements. The technique
contrasts with the LBYL style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is
an accumulation of expression elements like literals, names, attribute access, operators or function
calls which all return a value. In contrast to many other languages, not all language constructs are
expressions. There are also statements which cannot be used as expressions, such as if. Assignments
are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and
with user code.

f-string String literals prefixed with 'f' or 'F' are commonly called “f-strings” which is short for formatted
string literals. See also PEP 498.

40 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0498

Python Setup and Usage, Release 3.6.7rc1

file object An object exposing a file-oriented API (with methods such as read() or write()) to an
underlying resource. Depending on the way it was created, a file object can mediate access to a real
on-disk file or to another type of storage or communication device (for example standard input/output,
in-memory buffers, sockets, pipes, etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files.
Their interfaces are defined in the io module. The canonical way to create a file object is by using the
open() function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and
path entry finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is
//. For example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true
division. Note that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more
arguments which may be used in the execution of the body. See also parameter, method, and the
function section.

function annotation An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example this function is expected to take two
int arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.

See variable annotation and PEP 484, which describe this functionality.

__future__ A pseudo-module which programmers can use to enable new language features which are
not compatible with the current interpreter.

By importing the __future__ module and evaluating its variables, you can see when a new feature
was first added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference
cycles. The garbage collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it
contains yield expressions for producing a series of values usable in a for-loop or that can be retrieved
one at a time with the next() function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases
where the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.

41

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Python Setup and Usage, Release 3.6.7rc1

Each yield temporarily suspends processing, remembering the location execution state (including local
variables and pending try-statements). When the generator iterator resumes, it picks up where it left
off (in contrast to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed
by a for expression defining a loop variable, range, and an optional if expression. The combined
expression generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed of multiple functions implementing the same operation for different
types. Which implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP
443.

GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread
executes Python bytecode at a time. This simplifies the CPython implementation by making the object
model (including critical built-in types such as dict) implicitly safe against concurrent access. Locking
the entire interpreter makes it easier for the interpreter to be multi-threaded, at the expense of much
of the parallelism afforded by multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL
when doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always
released when doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer
granularity) have not been successful because performance suffered in the common single-processor
case. It is believed that overcoming this performance issue would make the implementation much more
complicated and therefore costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an __eq__() method). Hashable
objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures
use the hash value internally.

All of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictio-
naries) are not. Objects which are instances of user-defined classes are hashable by default. They all
compare unequal (except with themselves), and their hash value is derived from their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter envi-
ronment which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such
an object cannot be altered. A new object has to be created if a different value has to be stored. They
play an important role in places where a constant hash value is needed, for example as a key in a
dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules
to import. During import, this list of locations usually comes from sys.path, but for subpackages it
may also come from the parent package’s __path__ attribute.

importing The process by which Python code in one module is made available to Python code in another
module.

importer An object that both finds and loads a module; both a finder and loader object.

42 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0443

Python Setup and Usage, Release 3.6.7rc1

interactive Python has an interactive interpreter which means you can enter statements and expressions
at the interpreter prompt, immediately execute them and see their results. Just launch python with
no arguments (possibly by selecting it from your computer’s main menu). It is a very powerful way to
test out new ideas or inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can
be blurry because of the presence of the bytecode compiler. This means that source files can be run
directly without explicitly creating an executable which is then run. Interpreted languages typically
have a shorter development/debug cycle than compiled ones, though their programs generally also run
more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it
gradually releases all allocated resources, such as modules and various critical internal structures. It
also makes several calls to the garbage collector. This can trigger the execution of code in user-defined
destructors or weakref callbacks. Code executed during the shutdown phase can encounter various
exceptions as the resources it relies on may not function anymore (common examples are library
modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main__ module or the script being run has
finished executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all
sequence types (such as list, str, and tuple) and some non-sequence types like dict, file objects,
and objects of any classes you define with an __iter__() method or with a __getitem__() method
that implements Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(),
…). When an iterable object is passed as an argument to the built-in function iter(), it returns an
iterator for the object. This iterator is good for one pass over the set of values. When using iterables,
it is usually not necessary to call iter() or deal with iterator objects yourself. The for statement
does that automatically for you, creating a temporary unnamed variable to hold the iterator for the
duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method
(or passing it to the built-in function next()) return successive items in the stream. When no more
data are available a StopIteration exception is raised instead. At this point, the iterator object is
exhausted and any further calls to its __next__() method just raise StopIteration again. Iterators
are required to have an __iter__() method that returns the iterator object itself so every iterator is
also iterable and may be used in most places where other iterables are accepted. One notable exception
is code which attempts multiple iteration passes. A container object (such as a list) produces a fresh
new iterator each time you pass it to the iter() function or use it in a for loop. Attempting this
with an iterator will just return the same exhausted iterator object used in the previous iteration pass,
making it appear like an empty container.

More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or
ordering. For example, locale.strxfrm() is used to produce a sort key that is aware of locale specific
sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped.
They include min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().

There are several ways to create a key function. For example. the str.lower() method can serve
as a key function for case insensitive sorts. Alternatively, a key function can be built from a lambda
expression such as lambda r: (r[0], r[2]). Also, the operator module provides three key function
constructors: attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for
examples of how to create and use key functions.

43

Python Setup and Usage, Release 3.6.7rc1

keyword argument See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function
is called. The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or
lookups. This style contrasts with the EAFP approach and is characterized by the presence of many
if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between
“the looking” and “the leaping”. For example, the code, if key in mapping: return mapping[key]
can fail if another thread removes key from mapping after the test, but before the lookup. This issue
can be solved with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a
linked list since access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return
a list with the results. result = ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0]
generates a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause
is optional. If omitted, all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is
typically returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract
base class.

mapping A container object that supports arbitrary key lookups and implements the methods specified
in the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but
different from path entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base
classes. The metaclass is responsible for taking those three arguments and creating the class. Most
object oriented programming languages provide a default implementation. What makes Python special
is that it is possible to create custom metaclasses. Most users never need this tool, but when the need
arises, metaclasses can provide powerful, elegant solutions. They have been used for logging attribute
access, adding thread-safety, tracking object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that
class, the method will get the instance object as its first argument (which is usually called self). See
function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for
a member during lookup. See The Python 2.3 Method Resolution Order for details of the algorithm
used by the Python interpreter since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace
containing arbitrary Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec A namespace containing the import-related information used to load a module. An instance
of importlib.machinery.ModuleSpec.

MRO See method resolution order.

mutable Mutable objects can change their value but keep their id(). See also immutable.

44 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Python Setup and Usage, Release 3.6.7rc1

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes
(for example, time.localtime() returns a tuple-like object where the year is accessible either with an
index such as t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple(). The latter approach automatically provides extra features such as a self-documenting
representation like Employee(name='jones', title='programmer').

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There
are the local, global and built-in namespaces as well as nested namespaces in objects (in methods).
Namespaces support modularity by preventing naming conflicts. For instance, the functions builtins.
open and os.open() are distinguished by their namespaces. Namespaces also aid readability and
maintainability by making it clear which module implements a function. For instance, writing random.
seed() or itertools.islice() makes it clear that those functions are implemented by the random
and itertools modules, respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace
packages may have no physical representation, and specifically are not like a regular package because
they have no __init__.py file.

See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined
inside another function can refer to variables in the outer function. Note that nested scopes by default
work only for reference and not for assignment. Local variables both read and write in the innermost
scope. Likewise, global variables read and write to the global namespace. The nonlocal allows writing
to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python
versions, only new-style classes could use Python’s newer, versatile features like __slots__, descriptors,
properties, __getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base
class of any new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a
package is a Python module with an __path__ attribute.

See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some
cases, arguments) that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword
argument. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no
syntax for defining positional-only parameters. However, some built-in functions have positional-
only parameters (e.g. abs()).

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only pa-
rameters can be defined by including a single var-positional parameter or bare * in the parameter
list of the function definition before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

45

https://www.python.org/dev/peps/pep-0420

Python Setup and Usage, Release 3.6.7rc1

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in
addition to any positional arguments already accepted by other parameters). Such a parameter
can be defined by prepending the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to
any keyword arguments already accepted by other parameters). Such a parameter can be defined
by prepending the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some
optional arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and
parameters, the inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for
importing.

path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which
knows how to locate modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how
to find modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.

path-like object An object representing a file system path. A path-like object is either a str or bytes
object representing a path, or an object implementing the os.PathLike protocol. An object that
supports the os.PathLike protocol can be converted to a str or bytes file system path by calling the
os.fspath() function; os.fsdecode() and os.fsencode() can be used to guarantee a str or bytes
result instead, respectively. Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python
community, or describing a new feature for Python or its processes or environment. PEPs should
provide a concise technical specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting com-
munity input on an issue, and for documenting the design decisions that have gone into Python. The
PEP author is responsible for building consensus within the community and documenting dissenting
opinions.

See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace
package, as defined in PEP 420.

positional argument See argument.

provisional API A provisional API is one which has been deliberately excluded from the standard library’s
backwards compatibility guarantees. While major changes to such interfaces are not expected, as long
as they are marked provisional, backwards incompatible changes (up to and including removal of
the interface) may occur if deemed necessary by core developers. Such changes will not be made
gratuitously – they will occur only if serious fundamental flaws are uncovered that were missed prior
to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” -
every attempt will still be made to find a backwards compatible resolution to any identified problems.

46 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420

Python Setup and Usage, Release 3.6.7rc1

This process allows the standard library to continue to evolve over time, without locking in problematic
design errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API .

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common
idiom in Python is to loop over all elements of an iterable using a for statement. Many other languages
don’t have this type of construct, so people unfamiliar with Python sometimes use a numerical counter
instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

qualified name A dotted name showing the “path” from a module’s global scope to a class, function or
method defined in that module, as defined in PEP 3155. For top-level functions and classes, the
qualified name is the same as the object’s name:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module,
including any parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops
to zero, it is deallocated. Reference counting is generally not visible to Python code, but it is a key
element of the CPython implementation. The sys module defines a getrefcount() function that
programmers can call to return the reference count for a particular object.

regular package A traditional package, such as a directory containing an __init__.py file.

See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right
and is best reserved for rare cases where there are large numbers of instances in a memory-critical
application.

47

https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Python Setup and Usage, Release 3.6.7rc1

sequence An iterable which supports efficient element access using integer indices via the __getitem__()
special method and defines a __len__() method that returns the length of the sequence. Some built-in
sequence types are list, str, tuple, and bytes. Note that dict also supports __getitem__() and
__len__(), but is considered a mapping rather than a sequence because the lookups use arbitrary
immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes
beyond just __getitem__() and __len__(), adding count(), index(), __contains__(), and
__reversed__(). Types that implement this expanded interface can be registered explicitly using
register().

single dispatch A form of generic function dispatch where the implementation is chosen based on the
type of a single argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation,
[] with colons between numbers when several are given, such as in variable_name[1:3:5]. The
bracket (subscript) notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type,
such as addition. Such methods have names starting and ending with double underscores. Special
methods are documented in specialnames.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one
of several constructs with a keyword, such as if, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similar to named
tuple in that elements can be accessed either by index or as an attribute. However, they do not have
any of the named tuple methods like _make() or _asdict(). Examples of struct sequences include
sys.float_info and the return value of os.stat().

text encoding A codec which encodes Unicode strings to bytes.

text file A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented
datastream and handles the text encoding automatically. Examples of text files are files opened in text
mode ('r' or 'w'), sys.stdin, sys.stdout, and instances of io.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an
apostrophe (‘). While they don’t provide any functionality not available with single-quoted strings,
they are useful for a number of reasons. They allow you to include unescaped single and double quotes
within a string and they can span multiple lines without the use of the continuation character, making
them especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s
type is accessible as its __class__ attribute or can be retrieved with type(obj).

type alias A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying type hints. For example:

from typing import List, Tuple

def remove_gray_shades(
colors: List[Tuple[int, int, int]]) -> List[Tuple[int, int, int]]:

pass

could be made more readable like this:

48 Appendix A. Glossary

Python Setup and Usage, Release 3.6.7rc1

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades(colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.

type hint An annotation that specifies the expected type for a variable, a class attribute, or a function
parameter or return value.

Type hints are optional and are not enforced by Python but they are useful to static type analysis
tools, and aid IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed
using typing.get_type_hints().

See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized
as ending a line: the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old
Macintosh convention '\r'. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an
additional use.

variable annotation An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int
values:

count: int = 0

Variable annotation syntax is explained in section annassign.

See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment A cooperatively isolated runtime environment that allows Python users and appli-
cations to install and upgrade Python distribution packages without interfering with the behaviour of
other Python applications running on the same system.

See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode
emitted by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and
using the language. The listing can be found by typing “import this” at the interactive prompt.

49

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Setup and Usage, Release 3.6.7rc1

50 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically
written for the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If
you want to contribute, please take a look at the reporting-bugs page for information on how to do so. New
volunteers are always welcome!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python docu-
mentation. See Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful
documentation – Thank You!

51

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.6/Misc/ACKS

Python Setup and Usage, Release 3.6.7rc1

52 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
https://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s
principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI,
see https://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen
PythonLabs team. In October of the same year, the PythonLabs team moved to Digital Creations (now
Zope Corporation; see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see https:
//www.python.org/psf/) was formed, a non-profit organization created specifically to own Python-related
Intellectual Property. Zope Corporation is a sponsoring member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Histor-
ically, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the
various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses,
unlike the GPL, let you distribute a modified version without making your changes open source. The GPL-
compatible licenses make it possible to combine Python with other software that is released under the GPL;
the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases
possible.

53

https://www.cwi.nl/
https://www.cnri.reston.va.us/
http://www.zope.com/
https://www.python.org/psf/
https://www.python.org/psf/
https://opensource.org/

Python Setup and Usage, Release 3.6.7rc1

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.6.7rc1

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and
the Individual or Organization ("Licensee") accessing and otherwise using Python
3.6.7rc1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.6.7rc1 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice of
copyright, i.e., "Copyright © 2001-2018 Python Software Foundation; All Rights
Reserved" are retained in Python 3.6.7rc1 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.6.7rc1 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python
3.6.7rc1.

4. PSF is making Python 3.6.7rc1 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF PYTHON 3.6.7rc1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.6.7rc1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.6.7rc1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between PSF and Licensee. This License
Agreement does not grant permission to use PSF trademarks or trade name in a
trademark sense to endorse or promote products or services of Licensee, or any
third party.

8. By copying, installing or otherwise using Python 3.6.7rc1, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization

(continues on next page)

54 Appendix C. History and License

Python Setup and Usage, Release 3.6.7rc1

(continued from previous page)
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 55

Python Setup and Usage, Release 3.6.7rc1

(continued from previous page)
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or

(continues on next page)

56 Appendix C. History and License

Python Setup and Usage, Release 3.6.7rc1

(continued from previous page)
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software
incorporated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/
~m-mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 57

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Setup and Usage, Release 3.6.7rc1

(continued from previous page)
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \
| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |

(continues on next page)

58 Appendix C. History and License

http://www.wide.ad.jp/

Python Setup and Usage, Release 3.6.7rc1

(continued from previous page)
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 59

Python Setup and Usage, Release 3.6.7rc1

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.6 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

60 Appendix C. History and License

Python Setup and Usage, Release 3.6.7rc1

C.3.7 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.8 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 61

Python Setup and Usage, Release 3.6.7rc1

(continued from previous page)
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.10 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(continues on next page)

62 Appendix C. History and License

Python Setup and Usage, Release 3.6.7rc1

(continued from previous page)
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 SipHash24

The file Python/pyhash.c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algo-
rithm. The contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and
from strings, is derived from the file of the same name by David M. Gay, currently available from http:
//www.netlib.org/fp/. The original file, as retrieved on March 16, 2009, contains the following copyright
and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 63

http://www.netlib.org/fp/
http://www.netlib.org/fp/

Python Setup and Usage, Release 3.6.7rc1

(continued from previous page)
*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and Mac OS X installers for Python may include a
copy of the OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*

(continues on next page)

64 Appendix C. History and License

Python Setup and Usage, Release 3.6.7rc1

(continued from previous page)
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 65

Python Setup and Usage, Release 3.6.7rc1

(continued from previous page)
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

66 Appendix C. History and License

Python Setup and Usage, Release 3.6.7rc1

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system
is too old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenses and Acknowledgements for Incorporated Software 67

Python Setup and Usage, Release 3.6.7rc1

C.3.17 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.18 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(continues on next page)

68 Appendix C. History and License

Python Setup and Usage, Release 3.6.7rc1

(continued from previous page)
THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 69

Python Setup and Usage, Release 3.6.7rc1

70 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2018 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

71

Python Setup and Usage, Release 3.6.7rc1

72 Appendix D. Copyright

INDEX

Symbols
–help

command line option, 5
–version

command line option, 5
-?

command line option, 5
-B

command line option, 5
-E

command line option, 5
-I

command line option, 6
-J

command line option, 8
-O

command line option, 6
-OO

command line option, 6
-R

command line option, 6
-S

command line option, 6
-V

command line option, 5
-W arg

command line option, 7
-X

command line option, 7
-b

command line option, 5
-c <command>

command line option, 3
-d

command line option, 5
-h

command line option, 5
-i

command line option, 5
-m <module-name>

command line option, 4
-q

command line option, 6
-s

command line option, 6
-u

command line option, 6
-v

command line option, 7
-x

command line option, 7
..., 37
__future__, 41
__slots__, 47
>>>, 37
2to3, 37

A
abstract base class, 37
annotation, 37
argument, 37
asynchronous context manager, 38
asynchronous generator, 38
asynchronous generator iterator, 38
asynchronous iterable, 38
asynchronous iterator, 38
attribute, 38
awaitable, 38

B
BDFL, 38
binary file, 38
bytecode, 39
bytes-like object, 38

C
C-contiguous, 39
class, 39
class variable, 39
coercion, 39
command line option

–help, 5
–version, 5
-?, 5

73

Python Setup and Usage, Release 3.6.7rc1

-B, 5
-E, 5
-I, 6
-J, 8
-O, 6
-OO, 6
-R, 6
-S, 6
-V, 5
-W arg, 7
-X, 7
-b, 5
-c <command>, 3
-d, 5
-h, 5
-i, 5
-m <module-name>, 4
-q, 6
-s, 6
-u, 6
-v, 7
-x, 7

complex number, 39
context manager, 39
contiguous, 39
coroutine, 39
coroutine function, 39
CPython, 39

D
decorator, 39
descriptor, 40
dictionary, 40
dictionary view, 40
docstring, 40
duck-typing, 40

E
EAFP, 40
environment variable

exec_prefix, 14
PATH, 8, 15, 18, 20, 23, 24, 26
PATHEXT, 20
prefix, 14
PYTHON*, 5, 6
PYTHONASYNCIODEBUG, 10
PYTHONCASEOK, 9
PYTHONDEBUG, 5, 9
PYTHONDONTWRITEBYTECODE, 5, 9
PYTHONDUMPREFS, 11
PYTHONEXECUTABLE, 10
PYTHONFAULTHANDLER, 10
PYTHONHASHSEED, 6, 9
PYTHONHOME, 5, 8, 28, 29

PYTHONINSPECT, 6, 9
PYTHONIOENCODING, 9
PYTHONLEGACYWINDOWSFSENCOD-

ING, 11
PYTHONLEGACYWINDOWSSTDIO, 10, 11
PYTHONMALLOC, 10, 11
PYTHONMALLOCSTATS, 11
PYTHONNOUSERSITE, 10
PYTHONOPTIMIZE, 6, 9
PYTHONPATH, 5, 8, 9, 23, 28, 29, 34
PYTHONSTARTUP, 6, 9
PYTHONTHREADDEBUG, 11
PYTHONTRACEMALLOC, 10
PYTHONUNBUFFERED, 7, 9
PYTHONUSERBASE, 10
PYTHONVERBOSE, 7, 9
PYTHONWARNINGS, 7, 10

exec_prefix, 14
expression, 40
extension module, 40

F
f-string, 40
file object, 41
file-like object, 41
finder, 41
floor division, 41
Fortran contiguous, 39
function, 41
function annotation, 41

G
garbage collection, 41
generator, 41, 41
generator expression, 42, 42
generator iterator, 41
generic function, 42
GIL, 42
global interpreter lock, 42

H
hashable, 42

I
IDLE, 42
immutable, 42
import path, 42
importer, 42
importing, 42
interactive, 43
interpreted, 43
interpreter shutdown, 43
iterable, 43
iterator, 43

74 Index

Python Setup and Usage, Release 3.6.7rc1

K
key function, 43
keyword argument, 44

L
lambda, 44
LBYL, 44
list, 44
list comprehension, 44
loader, 44

M
mapping, 44
meta path finder, 44
metaclass, 44
method, 44
method resolution order, 44
module, 44
module spec, 44
MRO, 44
mutable, 44

N
named tuple, 45
namespace, 45
namespace package, 45
nested scope, 45
new-style class, 45

O
object, 45

P
package, 45
parameter, 45
PATH, 8, 15, 18, 20, 23, 24, 26
path based finder, 46
path entry, 46
path entry finder, 46
path entry hook, 46
path-like object, 46
PATHEXT, 20
PEP, 46
portion, 46
positional argument, 46
prefix, 14
provisional API, 46
provisional package, 47
Python 3000, 47
Python Enhancement Proposals

PEP 1, 46
PEP 11, 17, 22
PEP 230, 7

PEP 238, 41
PEP 278, 49
PEP 302, 41, 44
PEP 3116, 49
PEP 3155, 47
PEP 338, 4
PEP 343, 39
PEP 362, 38, 46
PEP 370, 6, 10
PEP 397, 31
PEP 411, 47
PEP 420, 41, 45, 46
PEP 443, 42
PEP 451, 41
PEP 484, 37, 41, 49
PEP 488, 6
PEP 492, 38, 39
PEP 498, 40
PEP 519, 46
PEP 525, 38
PEP 526, 37, 49
PEP 529, 11

PYTHON*, 5, 6
PYTHONDEBUG, 5
PYTHONDONTWRITEBYTECODE, 5
PYTHONHASHSEED, 6, 9
PYTHONHOME, 5, 8, 28, 29
Pythonic, 47
PYTHONINSPECT, 6
PYTHONLEGACYWINDOWSSTDIO, 10
PYTHONMALLOC, 11
PYTHONOPTIMIZE, 6
PYTHONPATH, 5, 8, 9, 23, 28, 29, 34
PYTHONSTARTUP, 6
PYTHONUNBUFFERED, 7
PYTHONVERBOSE, 7
PYTHONWARNINGS, 7

Q
qualified name, 47

R
reference count, 47
regular package, 47

S
sequence, 48
single dispatch, 48
slice, 48
special method, 48
statement, 48
struct sequence, 48

Index 75

Python Setup and Usage, Release 3.6.7rc1

T
text encoding, 48
text file, 48
triple-quoted string, 48
type, 48
type alias, 48
type hint, 49

U
universal newlines, 49

V
variable annotation, 49
virtual environment, 49
virtual machine, 49

Z
Zen of Python, 49

76 Index

	Command line and environment
	Command line
	Environment variables

	Using Python on Unix platforms
	Getting and installing the latest version of Python
	Building Python
	Python-related paths and files
	Miscellaneous
	Editors and IDEs

	Using Python on Windows
	Installing Python
	Alternative bundles
	Configuring Python
	Python Launcher for Windows
	Finding modules
	Additional modules
	Compiling Python on Windows
	Embedded Distribution
	Other resources

	Using Python on a Macintosh
	Getting and Installing MacPython
	The IDE
	Installing Additional Python Packages
	GUI Programming on the Mac
	Distributing Python Applications on the Mac
	Other Resources

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

