The Python Library Reference
Release 3.6.5

Guido van Rossum
and the Python development team

March 28, 2018

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Built-in Constants 27
3.1 Constants added by the site module L oL 28
Built-in Types 29
4.1 Truth Value Testing o o e 29
4.2 Boolean Operations — and, or, DOt v v v v v v e e e e e 29
4.3 CompariSOnS v v v vt e e e e e e e e e e e e e e 30
4.4 Numeric Types — int, float, complex o 30
4.5 Tterator Types o o o e e e e 36
4.6 Sequence Types — list, tuple, Tange« .« v v v vt e e e 37
4.7 Text Sequence Type — Str« . . . L e e 43
4.8 Binary Sequence Types — bytes, bytearray, memoryview 53
4.9 Set Types — set, frozenset o L 74
4.10 Mapping Types — dict o . o o e e e 77
4.11 Context Manager Types o o it e 80
4.12 Other Built-in Types o e 81
4.13 Special Attributes L e 83
Built-in Exceptions 85
5.1 Base classes e e e e e e e e e 86
5.2 Concrete eXCeptions i e e e e e e e e e e e 86
5.3 Warnings e 92
5.4 Exception hierarchy L e 93
Text Processing Services 95
6.1 string — Common string operations L L o 95
6.2 re — Regular expression operations Lo Lo oo 105
6.3 difflib — Helpers for computing deltaso 126
6.4 textwrap — Text wrapping and filling L oL oL 136
6.5 unicodedata — Unicode Database 140
6.6 stringprep — Internet String Preparation L o oL 142
6.7 readline — GNU readline interface e 143
6.8 rlcompleter — Completion function for GNU readline 147
Binary Data Services 149
7.1 struct — Interpret bytes as packed binary data L. 149
7.2 codecs — Codec registry and base classes o e 154

8 Data Types

8.1 datetime — Basic date and time types L oL oL
8.2 calendar — General calendar-related functions
8.3 collections — Container datatypes Lo o
8.4 collections.abc — Abstract Base Classes for Containers
8.5 heapq — Heap queue algorithm L o
8.6 bisect — Array bisection algorithm oL oL
8.7 array — Efficient arrays of numeric values oL o oL
8.8 weakref — Weak references L
8.9 types — Dynamic type creation and names for built-in types.
8.10 copy — Shallow and deep copy operations
8.11 pprint — Data pretty printer oL
8.12 reprlib — Alternate repr () implementation
8.13 enum — Support for enumerations Lo

Numeric and Mathematical Modules

9.1 numbers — Numeric abstract base classes e
9.2 math — Mathematical functions e
9.3 cmath — Mathematical functions for complex numbers
9.4 decimal — Decimal fixed point and floating point arithmetic
9.5 fractions — Rational numbers e
9.6 random — Generate pseudo-random numbers L.
9.7 statistics — Mathematical statistics functions

10 Functional Programming Modules

10.1 itertools — Functions creating iterators for efficient looping
10.2 functools — Higher-order functions and operations on callable objects
10.3 operator — Standard operators as functionso L oo

11 File and Directory Access

11.1 pathlib — Object-oriented filesystem paths
11.2 os.path — Common pathname manipulations
11.3 fileinput — Iterate over lines from multiple input streams
11.4 stat — Interpreting stat() results L L
11.5 filecmp — File and Directory Comparisons,
11.6 tempfile — Generate temporary files and directories oL ..
11.7 glob — Unix style pathname pattern expansion
11.8 fnmatch — Unix filename pattern matching L 0L
11.9 1linecache — Random access to text lines
11.10 shutil — High-level file operations L
11.11 macpath — Mac OS 9 path manipulation functions

12 Data Persistence

12.1 pickle — Python object serialization L L oo
12.2 copyreg — Register pickle support functions Lo oL
12.3 shelve — Python object persistence. L Lo
12.4 marshal — Internal Python object serialization
12.5 dbm — Interfaces to Unix “databases”
12.6 sqlite3 — DB-API 2.0 interface for SQLite databases

13 Data Compression and Archiving

13.1 zlib — Compression compatible with gzip L oL
13.2 gzip — Support for gzip files oo
13.3 Dbz2 — Support for bzip2 compression Lo
13.4 1zma — Compression using the LZMA algorithm

173
173
203
206
222
226
230
232
235
243
247
248
253
255

273
273
276
281
285
312
315
321

329
329
343
350

357
357
373
378
380
385
387
392
393
394
395
403

405
405
418
419
422
423
427

13.5

zipfile — Work with ZIP archives .

13.6 tarfile — Read and write tar archive files o L

14 File Formats

14.1
14.2
14.3
14.4
14.5

csv — CSV File Reading and Writing

configparser — Configuration file parser L L oL

netrc — netre file processing

xdrlib — Encode and decode XDR data oo
plistlib — Generate and parse Mac OS X .plistfiles

15 Cryptographic Services
15.1 hashlib — Secure hashes and message digests L.
15.2 hmac — Keyed-Hashing for Message Authentication
15.3 secrets — Generate secure random numbers for managing secrets

16 Generic Operating System Services
os — Miscellaneous operating system interfaces
io — Core tools for working with streams

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

time — Time access and conversions

argparse — Parser for command-line options, arguments and sub-commands

getopt — C-style parser for command
logging — Logging facility for Python
logging.config — Logging configurat

line options o

170 8

logging.handlers — Logging handlers L L oL

getpass — Portable password input .

16.10 curses — Terminal handling for character-cell displays
16.11 curses.textpad — Text input widget for curses programs
16.12 curses.ascii — Utilities for ASCII characters
16.13 curses.panel — A panel stack extension for curseso oL
16.14 platform — Access to underlying platform’s identifying data
16.15 errno — Standard errno system symbols L 0oL
16.16 ctypes — A foreign function library for Python

17 Concurrent Execution
threading — Thread-based parallelism 0.
multiprocessing — Process-based parallelism 0L

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

The concurrent package

concurrent.futures — Launching parallel tasks Lo
subprocess — Subprocess Management e e e e e

sched — Event scheduler
queue — A synchronized queue class

dummy_threading — Drop-in replacement for the threading module

_thread — Low-level threading APT .

17.10 _dummy_thread — Drop-in replacement for the _thread module

18 Interprocess Communication and Networking
socket — Low-level networking interface
ssl — TLS/SSL wrapper for socket objects

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

select — Waiting for I/O completion

selectors — High-level I/O multiplexing
asyncio — Asynchronous I/O, event loop, coroutines and tasks
asyncore — Asynchronous socket handler L oL oL
asynchat — Asynchronous socket command/response handler
signal — Set handlers for asynchronous events

mmap — Memory-mapped file support

483
483
490
507
508
ol1

515
515
925
527

531
531
S7T7
590
598
629
632
648
659
671
672
690
691
694
695
698
704

739
739
751
795
795
801
816
818
820
821
823

825
825
846
877
884
888
949
953
955
961

19 Internet Data Handling 965

19.1 email — An email and MIME handling package 965
19.2 json — JSON encoder and decoder e 1025
19.3 mailcap — Mailcap file handling L Lo 1034
19.4 mailbox — Manipulate mailboxes in various formats00 L. 1035
19.5 mimetypes — Map filenames to MIME types o oo 1053
19.6 base64 — Basel6, Base32, Base64, Base85 Data Encodings 1056
19.7 binhex — Encode and decode binhex4 fileso 1059
19.8 binascii — Convert between binary and ASCIT 1060
19.9 quopri — Encode and decode MIME quoted-printable data 1062
19.10 uu — Encode and decode uuencode fileso oL oL 1062
20 Structured Markup Processing Tools 1065
20.1 html — HyperText Markup Language support 1065
20.2 html.parser — Simple HTML and XHTML parser 1065
20.3 html.entities — Definitions of HTML general entities 1070
20.4 XML Processing Modules L e 1070
20.5 xml.etree.ElementTree — The ElementTree XML APT 1072
20.6 xml.dom — The Document Object Model APT 1088
20.7 xml.dom.minidom — Minimal DOM implementation 1098
20.8 xml.dom.pulldom — Support for building partial DOM trees 1103
20.9 xml.sax — Support for SAX2 parserso e e e e e 1105
20.10 xml.sax.handler — Base classes for SAX handlers 1106
20.11 xml.sax.saxutils — SAX Utilities L 1111
20.12 xml.sax.xmlreader — Interface for XML parsers 1112
20.13 xml.parsers.expat — Fast XML parsing using Expat 1116
21 Internet Protocols and Support 1127
21.1 webbrowser — Convenient Web-browser controller 1127
21.2 cgi — Common Gateway Interface support L oL 1129
21.3 cgitb — Traceback manager for CGLscripts oL 1136
21.4 wsgiref — WSGI Utilities and Reference Implementation 1137
21.5 urllib — URL handling modules L 1146
21.6 urllib.request — Extensible library for opening URLs 1147
21.7 urllib.response — Response classes used by urllib. 1165
21.8 wurllib.parse — Parse URLs into components 1165
21.9 urllib.error — Exception classes raised by urllib.request 1172
21.10 urllib.robotparser — Parser for robots.txt Lo oL 1173
21.11 http — HTTP modules o e 1174
21.12 http.client — HTTP protocol client 1176
21.13 ftplib — FTP protocol client Lo 1182
21.14 poplib — POP3 protocol cliento 1188
21.15 imaplib — IMAP4 protocol client 1190
21.16 nntplib — NNTP protocol client 1197
21.17 smtplib — SMTP protocol client 1204
21.18 smtpd — SMTDP Server o e 1210
21.19 telnetlib — Telnet client o L L 1214
21.20 wuid — UUID objects according to RFC 4122 1217
21.21 socketserver — A framework for network servers oL L. 1220
21.22 http.server — HTTP servers o e 1228
21.23 http.cookies — HTTP state management 1233
21.24 http.cookiejar — Cookie handling for HTTP clients 1237
21.25 xmlrpc — XMLRPC server and client modules oL 1246
21.26 xmlrpc.client — XML-RPC client access 1246

21.27 xmlrpc.server — Basic XML-RPC servers 1254

21.28 ipaddress — IPv4/IPv6 manipulation library Lo oL 1259
22 Multimedia Services 1273
22.1 audioop — Manipulate raw audiodatao L oo 1273
22.2 aifc — Read and write AIFF and ATFC files. 1276
22.3 sunau — Read and write Sun AU files 1279
22.4 wave — Read and write WAV files L 1281
22.5 chunk — Read IFF chunked data 1284
22.6 colorsys — Conversions between color systems 1285
22.7 imghdr — Determine the type of an image L. 1286
22.8 sndhdr — Determine type of sound file oo 1287
22.9 ossaudiodev — Access to OSS-compatible audio devices oL 1287
23 Internationalization 1293
23.1 gettext — Multilingual internationalization services 1293
23.2 locale — Internationalization serviceso oL 1301
24 Program Frameworks 1309
24.1 turtle — Turtle graphics L L 1309
24.2 cmd — Support for line-oriented command interpreters Lo 1343
24.3 shlex — Simple lexical analysis L L 1348
25 Graphical User Interfaces with Tk 1355
25.1 tkinter — Python interface to Tcl/Tk o o 1355
25.2 tkinter.ttk — Tk themed widgets Lo 1366
25.3 tkinter.tix — Extension widgets for Tk 1384
25.4 tkinter.scrolledtext — Scrolled Text Widget 1389
25.5 IDLE . . . o e e 1389
25.6 Other Graphical User Interface Packages 1398
26 Development Tools 1399
26.1 typing — Support for type hints oL oo 1399
26.2 pydoc — Documentation generator and online help system 1414
26.3 doctest — Test interactive Python exampleso 0. 1415
26.4 unittest — Unit testing framework L L 1440
26.5 wunittest.mock — mock object library oL oL 1468
26.6 unittest.mock — getting started Lo oL 1503
26.7 2to3 - Automated Python 2 to 3 code translation Lo 1523
26.8 test — Regression tests package for Python 0oL 1528
26.9 test.support — Utilities for the Python test suite 1531
27 Debugging and Profiling 1537
27.1 bdb — Debugger framework L L 1537
27.2 faulthandler — Dump the Python traceback, 1541
27.3 pdb — The Python Debugger e 1544
27.4 The Python Profilers 1550
27.5 timeit — Measure execution time of small code snippets oL 1558
27.6 trace — Trace or track Python statement execution 1563
27.7 tracemalloc — Trace memory allocations 1565
28 Software Packaging and Distribution 1575
28.1 distutils — Building and installing Python modules, 1575
28.2 ensurepip — Bootstrapping the pip installero 1575
28.3 venv — Creation of virtual environments L. 1577

28.4 zipapp — Manage executable python zip archives 0o 0L 1586

29 Python Runtime Services 1591
29.1 sys — System-specific parameters and functions oL oL 0oL 1591
29.2 sysconfig — Provide access to Python’s configuration information 1607
29.3 builtins — Built-in objects L 1610
29.4 __main__ — Top-level script environment L o 1611
29.5 warnings — Warning control L. L L 1611
29.6 contextlib — Utilities for with-statement contexts 1616
29.7 abc — Abstract Base Classes L 1628
29.8 atexit — Exit handlers L 1633
29.9 traceback — Print or retrieve a stack tracebacko 1634
29.10 __future__ — Future statement definitions 1640
29.11 gc — Garbage Collector interface o e 1642
29.12 inspect — Inspect live objects L oo 1645
29.13 site — Site-specific configuration hook L oL 1660
29.14 fpectl — Floating point exception control L Lo L 1663

30 Custom Python Interpreters 1665
30.1 code — Interpreter base classes L Lo 1665
30.2 codeop — Compile Pythoncode L 1667

31 Importing Modules 1669
31.1 zipimport — Import modules from Zip archives 0L 1669
31.2 pkgutil — Package extension utility o o 1671
31.3 modulefinder — Find modules used by ascript 0oL 1674
31.4 runpy — Locating and executing Python modules, 1675
31.5 importlib — The implementation of import 1677

32 Python Language Services 1697
32.1 parser — Access Python parse treeso 1697
32.2 ast — Abstract Syntax Trees e 1701
32.3 symtable — Access to the compiler’s symbol tables L0000 1707
32.4 symbol — Constants used with Python parse trees. 1709
32.5 token — Constants used with Python parse trees 1709
32.6 keyword — Testing for Python keywords L. 1711
32.7 tokenize — Tokenizer for Python source L oL 1711
32.8 tabnanny — Detection of ambiguous indentationo 1715
32.9 pyclbr — Python class browser support L o 1716
32.10 py_compile — Compile Python source files 1717
32.11 compileall — Byte-compile Python libraries, 1718
32.12 dis — Disassembler for Python bytecode L Lo 1721
32.13 pickletools — Tools for pickle developers L 1734

33 Miscellaneous Services 1737
33.1 formatter — Generic output formatting oL o L 1737

34 MS Windows Specific Services 1743
34.1 msilib — Read and write Microsoft Installer files 1743
34.2 msvcrt — Useful routines from the MS VC++ runtime 1748
34.3 winreg — Windows registry access L Lo oo 1750
34.4 winsound — Sound-playing interface for Windows Lo oo 1758

35 Unix Specific Services 1761
35.1 posix — The most common POSIX system calls 1761

Vi

35.2 pwd — The password database oL L 1762
35.3 spwd — The shadow password database 00 L. 1763
35.4 grp — The group database L e 1764
35.5 crypt — Function to check Unix passwords 1764
35.6 termios — POSIX style tty control L 1766
35.7 tty — Terminal control functions o oL 1767
35.8 pty — Pseudo-terminal utilities L o oL 1768
35.9 fecntl — The fentl and ioctl system calls . . . o o 0o oo oo 1769
35.10 pipes — Interface to shell pipelines L o o 1771
35.11 resource — Resource usage information o oo 1772
35.12 nis — Interface to Sun’s NIS (Yellow Pages) 1776
35.13 syslog — Unix syslog library routines L o L. 1777
36 Superseded Modules 1779
36.1 optparse — Parser for command line options Lo 1779
36.2 imp — Access the import internalso 0oL 1806
37 Undocumented Modules 1811
37.1 Platform specific modules 1811
A Glossary 1813
Bibliography 1825
B About these documents 1827
B.1 Contributors to the Python Documentation 1827
C History and License 1829
C.1 History of the software 1829
C.2 Terms and conditions for accessing or otherwise using Python 1830
C.3 Licenses and Acknowledgements for Incorporated Software 1833
D Copyright 1847
Python Module Index 1849
Index 1853

vii

viii

The Python Library Reference, Release 3.6.5

While reference-index describes the exact syntax and semantics of the Python language, this library reference
manual describes the standard library that is distributed with Python. It also describes some of the optional
components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long
table of contents listed below. The library contains built-in modules (written in C) that provide access to
system functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well
as modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability of
Python programs by abstracting away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also
include many additional components. For Unix-like operating systems Python is normally provided as a
collection of packages, so it may be necessary to use the packaging tools provided with the operating system
to obtain some or all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from
individual programs and modules to packages and entire application development frameworks), available
from the Python Package Index.

CONTENTS 1

https://pypi.python.org/pypi

The Python Library Reference, Release 3.6.5

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers
and lists. For these types, the Python language core defines the form of literals and places some constraints
on their semantics, but does not fully define the semantics. (On the other hand, the language core does
define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code
without the need of an import statement. Some of these are defined by the core language, but many are not
essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this
collection. Some modules are written in C and built in to the Python interpreter; others are written in
Python and imported in source form. Some modules provide interfaces that are highly specific to Python,
like printing a stack trace; some provide interfaces that are specific to particular operating systems, such as
access to specific hardware; others provide interfaces that are specific to a particular application domain,
like the World Wide Web. Some modules are available in all versions and ports of Python; others are
only available when the underlying system supports or requires them; yet others are available only when a
particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and
exceptions, and finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get
bored, you will get a reasonable overview of the available modules and application areas that are supported
by the Python library. Of course, you don’t have to read it like a novel — you can also browse the table of
contents (in front of the manual), or look for a specific function, module or term in the index (in the back).
And finally, if you enjoy learning about random subjects, you choose a random page number (see module
random) and read a section or two. Regardless of the order in which you read the sections of this manual, it
helps to start with chapter Built-in Functions, as the remainder of the manual assumes familiarity with this
material.

Let the show begin!

The Python Library Reference, Release 3.6.5

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They
are listed here in alphabetical order.

Built-in Functions
abs () dict () help () min () setattr()
all() dir() hez () next () slice()
any () diumod () id() object () sorted()
ascti () enumerate() | input () oct() staticmethod ()
bin() eval () int () open () str()
bool () ezec () isinstance () ord() sum()
bytearray () filter() issubclass () pow() super()
bytes() float () iter() print () tuple()
callable() format () len() property() | type()
chr() frozenset() | list() range () vars ()
classmethod() | getattr() locals() repr () zip ()
compile() globals() map () reversed() | __import__()
complex () hasattr() maz () round ()
delattr() hash () memoryview() set()

abs (z)
Return the absolute value of a number. The argument may be an integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:
if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent
to:

def any(iterable):
for element in iterable:
if element:
return True
return False

The Python Library Reference, Release 3.6.5

ascii(object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar
to that returned by repr () in Python 2.

bin(x)

Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python
expression. If z is not a Python Znt object, it has to define an __index__() method that
returns an integer. Some examples:

>>> bin(3)
'Ob11’

>>> bin(-10)
'-0b1010"'

If prefix “Ob” is desired or not, you can use either of the following ways.

>>> format(14, '#b'), format(14, 'b')
('0b1110', '1110")

>>> f! v,Of! '

('Ob1110', '1110")

See also format () for more information.

class bool([x])
Return a Boolean value, i.e. one of True or False. z is converted using the standard truth testing
procedure. If z is false or omitted, this returns False; otherwise it returns True. The bool class is a
subclass of int (see Numeric Types — int, float, complex). It cannot be subclassed further. Its only
instances are False and True (see Boolean Values).

class bytearray([source[, encodz’ng[, ermrs]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0
<= x < 256. It has most of the usual methods of mutable sequences, described in Mutable Sequence
Types, as well as most methods that the bytes type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

o Ifit is a string, you must also give the encoding (and optionally, errors) parameters; bytearray ()
then converts the string to bytes using str. encode ().

o If it is an integer, the array will have that size and will be initialized with null bytes.

o If it is an object conforming to the buffer interface, a read-only buffer of the object will be used
to initialize the bytes array.

o If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used
as the initial contents of the array.

Without an argument, an array of size 0 is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes([source[7 encodz’ng[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256.
bytes is an immutable version of bytearray — it has the same non-mutating methods and the same
indexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().

Bytes objects can also be created with literals, see strings.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.5

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytear-
ray Operations.

callable(object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible
that a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling
a class returns a new instance); instances are callable if their class has a __call__() method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python
3.2

chr (¥)
Return the string representing a character whose Unicode code point is the integer ¢. For example,
chr (97) returns the string 'a', while chr(8364) returns the string '€'. This is the inverse of ord ().

The valid range for the argument is from 0 through 1,114,111 (0x10FFFF in base 16). ValueError
will be raised if 7 is outside that range.

@classmethod
Transform a method into a class method.

A class method receives the class as implicit first argument, just like an instance method receives the
instance. To declare a class method, use this idiom:

class C:
Qclassmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in function
for details.

It can be called either on the class (such as C.£()) or on an instance (such as C() .£()). The instance
is ignored except for its class. If a class method is called for a derived class, the derived class object is
passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod ()
in this section.

For more information on class methods, consult the documentation on the standard type hierarchy in
types.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by ezec() or eval ().
source can either be a normal string, a byte string, or an AST object. Refer to the ast module
documentation for information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value
if it wasn’t read from a file ('<string>' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists
of a sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a
single interactive statement (in the latter case, expression statements that evaluate to something other
than None will be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect
the compilation of source. If neither is present (or both are zero) the code is compiled with those future
statements that are in effect in the code that is calling compile (). If the flags argument is given and
dont__inherit is not (or is zero) then the future statements specified by the flags argument are used
in addition to those that would be used anyway. If dont inherit is a non-zero integer then the flags
argument is it — the future statements in effect around the call to compile are ignored.

https://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 3.6.5

Future statements are specified by bits which can be bitwise ORed together to specify multiple state-
ments. The bitfield required to specify a given feature can be found as the compiler_flag attribute
on the _Feature instance in the __ future__ module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects
the optimization level of the interpreter as given by -0 options. Explicit levels are 0 (no optimization;
__debug__ is true), 1 (asserts are removed, __debug__ is false) or 2 (docstrings are removed t00).

) ——

This function raises SyntazError if the compiled source is invalid, and ValueError if the source
contains null bytes.

If you want to parse Python code into its AST representation, see ast.parse().

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be
terminated by at least one newline character. This is to facilitate detection of incomplete and complete
statements in the code module.

Warning: It is possible to crash the Python interpreter with a sufficiently large/complex string
when compiling to an AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does
not have to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

class complex([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex
number. If the first parameter is a string, it will be interpreted as a complex number and the function
must be called without a second parameter. The second parameter can never be a string. Each
argument may be any numeric type (including complex). If imag is omitted, it defaults to zero and the
constructor serves as a numeric conversion like 7nt and float. If both arguments are omitted, returns
0j.

Note: When converting from a string, the string must not contain whitespace around the central +
or - operator. For example, complex('1+2j"') is fine, but complex('1l + 2j') raises ValueError.

The complex type is described in Numeric Types int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

delattr (object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be the
name of one of the object’s attributes. The function deletes the named attribute, provided the object
allows it. For example, delattr(x, 'foobar') is equivalent to del x.foobar.

class dict(**kwarg)

class dict(mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict
for documentation about this class.

For other containers see the built-in list, set, and tuple classes, as well as the collections module.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.5

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt
to return a list of valid attributes for that object.

If the object has a method named __dir__(), this method will be called and must return the list
of attributes. This allows objects that implement a custom __getattr__() or __getattribute__Q)
function to customize the way dir () reports their attributes.

If the object does not provide __dir__(), the function tries its best to gather information from the
object’s __dict__ attribute, if defined, and from its type object. The resulting list is not necessarily
complete, and may be inaccurate when the object has a custom __getattr__Q).

The default dir() mechanism behaves differently with different types of objects, as it attempts to
produce the most relevant, rather than complete, information:

o If the object is a module object, the list contains the names of the module’s attributes.

o If the object is a type or class object, the list contains the names of its attributes, and recursively
of the attributes of its bases.

¢ Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and
recursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir() # show the mames in the module namespace

['"_ _builtins__', '__name__', 'struct']

>>> dir(struct) # show the names in the struct module

['Struct', '__all__', '__builtins__', '__cached__', '__doc__', '__file__"',
' __initializing_ _', '__loader__', '__name__', '__package__',
'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',
'unpack', 'unpack_from']

>>> class Shape:

def __dir__(self):
L. return ['area', 'perimeter', 'location']
>>> s = Shape()
>>> dir(s)
['area', 'location', 'perimeter']

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it tries
to supply an interesting set of names more than it tries to supply a rigorously or consistently defined
set of names, and its detailed behavior may change across releases. For example, metaclass attributes
are not in the result list when the argument is a class.

divmod(a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient
and remainder when using integer division. With mixed operand types, the rules for binary arithmetic
operators apply. For integers, the result is the same as (a // b, a % b). For floating point numbers
the result is (q, a % b), where ¢ is usually math.floor(a / b) but may be 1 less than that. In any
case ¢ * b + a % b is very close to a, if a % b is non-zero it has the same sign as b, and 0 <= abs(a
% b) < abs(b).

enumerate (iterable, start=0)
Return an enumerate object. iterable must be a sequence, an iterator, or some other object which
supports iteration. The __nezt__ () method of the iterator returned by enumerate() returns a tuple
containing a count (from start which defaults to 0) and the values obtained from iterating over iterable.

The Python Library Reference, Release 3.6.5

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list(enumerate(seasons))

[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list(enumerate(seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate(sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n +=1

eval (expression, globals=None, locals=None)
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary.
If provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a
condition list) using the globals and locals dictionaries as global and local namespace. If the globals
dictionary is present and lacks ¢ builtins__ ’, the current globals are copied into globals before ex-
pression is parsed. This means that expression normally has full access to the standard builtins
module and restricted environments are propagated. If the locals dictionary is omitted it defaults to
the globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval () is called. The return value is the result of the evaluated expression. Syntax errors are
reported as exceptions. Example:

>>>x =1
>>> eval('x+1')
2

This function can also be used to execute arbitrary code objects (such as those created by compile()).
In this case pass a code object instead of a string. If the code object has been compiled with 'exec'
as the mode argument, eval ()’s return value will be None.

Hints: dynamic execution of statements is supported by the ezec() function. The globals() and
locals () functions returns the current global and local dictionary, respectively, which may be useful
to pass around for use by eval () or ezec().

See ast.literal_eval () for a function that can safely evaluate strings with expressions containing
only literals.

exec(object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code
object. If it is a string, the string is parsed as a suite of Python statements which is then executed
(unless a syntax error occurs).! If it is a code object, it is simply executed. In all cases, the code that’s
executed is expected to be valid as file input (see the section “File input” in the Reference Manual).
Be aware that the return and yield statements may not be used outside of function definitions even
within the context of code passed to the ezec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals
is provided, it must be a dictionary, which will be used for both the global and the local variables. If
globals and locals are given, they are used for the global and local variables, respectively. If provided,
locals can be any mapping object. Remember that at module level, globals and locals are the same

1 Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure
to use newline conversion mode to convert Windows or Mac-style newlines.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.5

dictionary. If exec gets two separate objects as globals and locals, the code will be executed as if it were
embedded in a class definition.

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins
are available to the executed code by inserting your own __builtins__ dictionary into globals before
passing it to ezec().

Note: The built-in functions globals () and locals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to ezec ().

Note: The default locals act as described for function locals () below: modifications to the default
locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects
of the code on locals after function ezec () returns.

filter (function, iterable)

Construct an iterator from those elements of iterable for which function returns true. iterable may be
either a sequence, a container which supports iteration, or an iterator. If function is None, the identity
function is assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) isequivalent to the generator expression (item for item in
iterable if function(item)) if function is not None and (item for item in iterable if item)
if function is None.

See ittertools. filterfalse() for the complementary function that returns elements of iterable for
which function returns false.

class float([x])

Return a floating point number constructed from a number or string z.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and
optionally embedded in whitespace. The optional sign may be '+' or '-'; a '+' sign has no effect
on the value produced. The argument may also be a string representing a NaN (not-a-number), or a
positive or negative infinity. More precisely, the input must conform to the following grammar after
leading and trailing whitespace characters are removed:

Slgn e ||+Il | n_n

infinity = "Infinity" | "inf"

nan u "nan"

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here floatnumber is the form of a Python floating-point literal, described in floating. Case is not
significant, so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for
positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the
same value (within Python’s floating point precision) is returned. If the argument is outside the range
of a Python float, an OverflowError will be raised.

For a general Python object x, float (x) delegates to x.__float__Q).
If no argument is given, 0.0 is returned.

Examples:

11

The Python Library Reference, Release 3.6.5

>>> float('+1.23")

1.23

>>> float (' -12345\n"')
-12345.0

>>> float('1e-003"')
0.001

>>> float('+1E6')
1000000.0

>>> float('-Infinity')
-inf

The float type is described in Numeric Types — int, float, complex.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

format (value[, formatfspec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of
format__spec will depend on the type of the value argument, however there is a standard formatting
syntax that is used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling str(value).

A call to format(value, format_spec) is translated to type(value).__format__(value,
format_spec) which bypasses the instance dictionary when searching for the value’s __format__(Q)
method. A TypeError exception is raised if the method search reaches object and the format spec
is non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__(format_spec) raises TypeError if format__spec is not
an empty string.

class frozenset([itemble])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, list, tuple, and dict classes, as well as the collections
module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name
of one of the object’s attributes, the result is the value of that attribute. For example, getattr(x,
'foobar') is equivalent to x.foobar. If the named attribute does not exist, default is returned if
provided, otherwise AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of the
current module (inside a function or method, this is the module where it is defined, not the module
from which it is called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the
object’s attributes, False if not. (This is implemented by calling getattr(object, name) and seeing
whether it raises an AttributeError or not.)

hash (object)

Return the hash value of the object (if it has one). Hash values are integers. They are used
to quickly compare dictionary keys during a dictionary lookup. Numeric values that compare
equal have the same hash value (even if they are of different types, as is the case for 1 and
1.0).

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.5

Note: For objects with custom __hash__() methods, note that hash() truncates the return value
based on the bit width of the host machine. See __hash__() for details.

help([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is
given, the interactive help system starts on the interpreter console. If the argument is a string, then
the string is looked up as the name of a module, function, class, method, keyword, or documentation
topic, and a help page is printed on the console. If the argument is any other kind of object, a help
page on the object is generated.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables
are now more comprehensive and consistent.
hex(z)

Convert an integer number to a lowercase hexadecimal string prefixed with “0x”. If x is not a Python
int object, it has to define an ___index__ () method that returns an integer. Some examples:

>>> hex(255)
'Oxff!
>>> hex(-42)
'-0x2a'

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or
not, you can use either of the following ways:

>>> ! "% 255, 'Jz' Y 255, 'JX' % 255

('oxff', 'ff', 'FF')

>>> format (255, '#x'), format(255, 'x'), format(255, 'X')
('oxff', 'ff', 'FF')

>>> f! v,Of! Y,Of! '

('oxff', 'ff', 'FF')

See also format () for more information.

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the float.hez () method.

id(object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant

for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same id ()
value.

CPython implementation detail: This is the address of the object in memory.

input([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and returns
that. When EOF is read, EOFError is raised. Example:

>>> s = input('--> ')
--> Monty Python's Flying Circus
>>> g

"Monty Python's Flying Circus"

13

The Python Library Reference, Release 3.6.5

If the readline module was loaded, then input () will use it to provide elaborate line editing and
history features.

class int(z=0)

class int(x, base=10)
Return an integer object constructed from a number or string z, or return 0 if no arguments are given.
If z is a number, return x. __int__(). If z defines x. __trunc__() but not x.__int__(), then return
if x.__trunc__(Q). For floating point numbers, this truncates towards zero.

If z is not a number or if base is given, then z must be a string, bytes, or bytearray instance
representing an integer literal in radix base. Optionally, the literal can be preceded by + or - (with no
space in between) and surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with
a to z (or A to Z) having values 10 to 35. The default base is 10. The allowed values are 0 and 2-36.
Base-2, -8, and -16 literals can be optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer
literals in code. Base 0 means to interpret exactly as a code literal, so that the actual base is 2, 8, 10,
or 16, and so that int('010', 0) is not legal, while int('010"') is, as well as int('010', 8).

The integer type is described in Numeric Types — int, float, complez.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index__
method, that method is called to obtain an integer for the base. Previous versions used base.__int
instead of base.__index__.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect
or virtual) subclass thereof. If object is not an object of the given type, the function always returns
false. If classinfo is a tuple of type objects (or recursively, other such tuples), return true if object is an
instance of any of the types. If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised.

issubclass(class, classinfo)
Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a subclass
of itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked.
In any other case, a TypeError exception is raised.

iter(object[, sentmel])

Return an iterator object. The first argument is interpreted very differently depending on the pres-
ence of the second argument. Without a second argument, object must be a collection object which
supports the iteration protocol (the __iter__() method), or it must support the sequence protocol
(the __getitem__() method with integer arguments starting at 0). If it does not support either of
those protocols, TypeError is raised. If the second argument, sentinel, is given, then object must be a
callable object. The iterator created in this case will call object with no arguments for each call to its
__nezt__ () method; if the value returned is equal to sentinel, StopIteration will be raised, otherwise
the value will be returned.

See also Iterator Types.

One useful application of the second form of iter() is to read lines of a file until a certain line is
reached. The following example reads a file until the readline () method returns an empty string:

with open('mydata.txt') as fp:
for line in iter(fp.readline, ''):
process_line(line)

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a
string, bytes, tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.5

class list([itemble])
Rather than being a function, 17st is actually a mutable sequence type, as documented in Lists and
Sequence Types — list, tuple, range.

locals()
Update and return a dictionary representing the current local symbol table. Free variables are returned
by locals() when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of
local and free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional
iterable arguments are passed, function must take that many arguments and is applied to the items
from all iterables in parallel. With multiple iterables, the iterator stops when the shortest iterable
is exhausted. For cases where the function inputs are already arranged into argument tuples, see
itertools.starmap ().

max (iterable, *[, key, default])

max (argl, arg?2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is
returned. If two or more positional arguments are provided, the largest of the positional arguments is
returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering
function like that used for list.sort(). The default argument specifies an object to return if the
provided iterable is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted(iterable, key=keyfunc, reverse=True) [0]
and heapq.nlargest(l, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

memoryview(obj)
Return a “memory view” object created from the given argument. See Memory Views for more infor-
mation.

min (iterable, *[, key, default])

min(argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is
returned. If two or more positional arguments are provided, the smallest of the positional arguments
is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering
function like that used for list.sort(). The default argument specifies an object to return if the
provided iterable is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent
with other sort-stability preserving tools such as sorted(iterable, key=keyfunc) [0] and heapq.
nsmallest(1l, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

15

The Python Library Reference, Release 3.6.5

next (itemtor[, default])

Retrieve the next item from the iterator by calling its __nezt__ () method. If default is given, it is
returned if the iterator is exhausted, otherwise StopIteration is raised.

class object

Return a new featureless object. object is a base for all classes. It has the methods that are common
to all instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of
the object class.

oct(z)

Convert an integer number to an octal string prefixed with “0o”. The result is a valid Python expression.
If z is not a Python int object, it has to define an __index__() method that returns an integer. For
example:

>>> oct(8)
'0010"'

>>> oct(-56)
'-0070"

If you want to convert an integer number to octal string either with prefix “0o” or not, you can use
either of the following ways.

>>> ! "% 10, 'Jo"' % 10

('0012', '12')

>>> format(10, '#0'), format(10, 'o')
('0o012', '12")

>>> f! v,Of! '

('0012', '12")

See also format () for more information.

open(file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True,

opener=None)
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of
the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given,
it is closed when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to 'r'
which means open for reading in text mode. Other common values are 'w' for writing (truncat-
ing the file if it already exists), 'x' for exclusive creation and 'a' for appending (which on some
Unix systems, means that all writes append to the end of the file regardless of the current seek
position). In text mode, if encoding is not specified the encoding used is platform dependent: locale.
getpreferredencoding (False) is called to get the current locale encoding. (For reading and writing
raw bytes use binary mode and leave encoding unspecified.) The available modes are:

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.5

Character | Meaning

'r! open for reading (default)

'w! open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of the file if it exists
'b! binary mode

't text mode (default)

4! open a disk file for updating (reading and writing)

' universal newlines mode (deprecated)

The default mode is 'r' (open for reading text, synonym of 'rt'). For binary read-write access, the
mode 'w+b' opens and truncates the file to 0 bytes. 'r+b' opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in
binary mode (including 'b' in the mode argument) return contents as bytes objects without any
decoding. In text mode (the default, or when 't' is included in the mode argument), the contents of
the file are returned as str, the bytes having been first decoded using a platform-dependent encoding
or using the specified encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the
processing is done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only
allowed in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to
indicate the size in bytes of a fixed-size chunk buffer. When no buffering argument is given, the default
buffering policy works as follows:

o Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying
to determine the underlying device’s “block size” and falling back on i0.DEFAULT BUFFER_SIZE.
On many systems, the buffer will typically be 4096 or 8192 bytes long.

o “Interactive” text files (files for which isatty () returns True) use line buffering. Other text files
use the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in
text mode. The default encoding is platform dependent (whatever locale.getpreferredencoding ()
returns), but any text encoding supported by Python can be used. See the codecs module for the list
of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this
cannot be used in binary mode. A variety of standard error handlers are available (listed under Error
Handlers), though any error handling name that has been registered with codecs.register_error()
is also valid. The standard names include:

e 'strict' to raise a ValueError exception if there is an encoding error. The default value of
None has the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.

e 'replace' causes a replacement marker (such as '?') to be inserted where there is malformed
data.

e 'surrogateescape' will represent any incorrect bytes as code points in the Unicode Private Use
Area ranging from U+DC80 to U+DCFF. These private code points will then be turned back
into the same bytes when the surrogateescape error handler is used when writing data. This is
useful for processing files in an unknown encoding.

17

The Python Library Reference, Release 3.6.5

e 'zmlcharrefreplace' is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference &#nnn;.

e 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

e 'namereplace' (also only supported when writing) replaces unsupported characters with \N{. ..}
escape sequences.

newline controls how wuniversal newlines mode works (it only applies to text mode). It can be None,
"' "\n', '\r', and '\r\n'. It works as follows:

e When reading input from the stream, if newline is None, universal newlines mode is enabled.
Lines in the input can end in '\n', '\r', or '\r\n', and these are translated into '\n' before
being returned to the caller. If it is '', universal newlines mode is enabled, but line endings are
returned to the caller untranslated. If it has any of the other legal values, input lines are only
terminated by the given string, and the line ending is returned to the caller untranslated.

e When writing output to the stream, if newline is None, any '\n' characters written are translated
to the system default line separator, os. linesep. If newline is '' or '\n', no translation takes
place. If newline is any of the other legal values, any '\n' characters written are translated to
the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor
will be kept open when the file is closed. If a filename is given closefd must be True (the default)
otherwise an error will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file
object is then obtained by calling opener with (file, flags). opener must return an open file descriptor
(passing os.open as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir _fd parameter of the os.open () function to open a file relative to
a given directory:

>>> import os
>>> dir_fd = os.open('somedir', os.0_RDONLY)
>>> def opener(path, flags):
return os.open(path, flags, dir_fd=dir_£d)

>>> with open('spamspam.txt', 'w', opener=opener) as f:
print('This will be written to somedir/spamspam.txt', file=f)

>>> os.close(dir_fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used to
open a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of 0. TeztIOBase (specif-
ically ©o.TeztIOWrapper). When used to open a file in a binary mode with buffering, the returned
class is a subclass of 20.BufferedI0Base. The exact class varies: in read binary mode, it returns an
10.BufferedReader; in write binary and append binary modes, it returns an io.Bufferediriter, and
in read/write mode, it returns an io0.BufferedRandom. When buffering is disabled, the raw stream, a
subclass of 70.RawI0OBase, i0.Filell, is returned.

See also the file handling modules, such as, fileinput, io (where open() is declared), os, os.path,
tempfile, and shutil.

Changed in version 3.3:
e The opener parameter was added.

e The 'x' mode was added.

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.5

e TOError used to be raised, it is now an alias of OSError.

o FileEzistsError is now raised if the file opened in exclusive creation mode ('x') al-
ready exists.

Changed in version 3.4:

o The file is now non-inheritable.

Deprecated since version 3.4, will be removed in version 4.0: The 'U' mode.
Changed in version 3.5:

e If the system call is interrupted and the signal handler does not raise an exception, the
function now retries the system call instead of raising an InterruptedError exception
(see PEP 475 for the rationale).

e The 'namereplace' error handler was added.

Changed in version 3.6:
e Support added to accept objects implementing os.PathLike.

e On Windows, opening a console buffer may return a subclass of i0.RawI0OBase other
than 70.FilelIl.

ord(c)
Given a string representing one Unicode character, return an integer representing the Unicode code
point of that character. For example, ord('a') returns the integer 97 and ord('€') (Euro sign)
returns 8364. This is the inverse of chr().

pow (s, y[, 2])
Return z to the power y; if z is present, return z to the power y, modulo z (computed more efficiently
than pow(x, y) % z). The two-argument form pow(x, y) is equivalent to using the power operator:
XHKY,

The arguments must have numeric types. With mixed operand types, the coercion rules for binary
arithmetic operators apply. For int operands, the result has the same type as the operands (after
coercion) unless the second argument is negative; in that case, all arguments are converted to float and
a float result is delivered. For example, 10**2 returns 100, but 10**-2 returns 0.01. If the second
argument is negative, the third argument must be omitted. If z is present, z and y must be of integer
types, and y must be non-negative.

print (*objects, sep="" end="\n’, file=sys.stdout, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file and flush, if
present, must be given as keyword arguments.

All non-keyword arguments are converted to strings like str() does and written to the stream, sep-
arated by sep and followed by end. Both sep and end must be strings; they can also be None, which
means to use the default values. If no objects are given, print () will just write end.

The file argument must be an object with a write(string) method; if it is not present or None,
sys.stdout will be used. Since printed arguments are converted to text strings, print () cannot be
used with binary mode file objects. For these, use file.write(...) instead.

Whether output is buffered is usually determined by file, but if the flush keyword argument is true,
the stream is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

19

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.6.5

class property(fget=None, fset=None, fdel=None, doc=None)

Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is
a function for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def __init__(self):
self._x = None

def getx(self):
return self._x

def setx(self, value):
self._x = value

def delx(self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If ¢ is an instance of C; c.x will invoke the getter, c.x = value will invoke the setter and del c.x
the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget’s
docstring (if it exists). This makes it possible to create read-only properties easily using property ()
as a decorator:

class Parrot:
def __init__(self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with
the same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy
of the property with the corresponding accessor function set to the decorated function. This is best
explained with an example:

class C:
def __init__(self):
self._x = None

@property

def x(self):
"""T'm the 'z' property."""
return self._x

0x.setter
def x(self, value):
self._x = value

(continues on next page)

20

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.5

(continued from previous page)

0x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same
name as the original property (x in this case.)

The returned property object also has the attributes fget, fset, and fdel corresponding to the
constructor arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

range (stop)

range (start, stop[, step])
Rather than being a function, range is actually an immutable sequence type, as documented in Ranges
and Sequence Types — list, tuple, range.

repr (object)
Return a string containing a printable representation of an object. For many types, this function makes
an attempt to return a string that would yield an object with the same value when passed to eval (),
otherwise the representation is a string enclosed in angle brackets that contains the name of the type
of the object together with additional information often including the name and address of the object.
A class can control what this function returns for its instances by defining a __repr__() method.

reversed(seq)
Return a reverse iterator. seq must be an object which has a __reversed__() method or supports
the sequence protocol (the __len__() method and the __getitem__() method with integer arguments
starting at 0).

round(number[, ndigits])
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it
returns the nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the
power minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for
example, both round(0.5) and round(-0.5) are 0, and round(1.5) is 2). Any integer value is valid
for ndigits (positive, zero, or negative). The return value is an integer if called with one argument,
otherwise of the same type as number.

For a general Python object number, round(number, ndigits) delegates to number.
__round__(ndigits).

Note: The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives
2.67 instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal
fractions can’t be represented exactly as a float. See tut-fp-issues for more information.

class set([z’temble])
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set
and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the
collections module.

setattr (object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary value.
The string may name an existing attribute or a new attribute. The function assigns the value to the

21

The Python Library Reference, Release 3.6.5

attribute, provided the object allows it. For example, setattr(x, 'foobar', 123) is equivalent to
x.foobar = 123.

class slice(stop)

class slice(start, stop[, step])
Return a slice object representing the set of indices specified by range(start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop
and step which merely return the argument values (or their default). They have no other explicit
functionality; however they are used by Numerical Python and other third party extensions. Slice
objects are also generated when extended indexing syntax is used. For example: a[start:stop:step]
or a[start:stop, i]. See itertools.islice() for an alternate version that returns an iterator.

sorted (iterable, *, key=None, reverse=False)
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

Use functools.cmp_to_key() to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change
the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

@staticmethod
Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in function
for details.

It can be called either on the class (such as C.£()) or on an instance (such as C() .£()). The instance
is ignored except for its class.

Static methods in Python are similar to those found in Java or C++4. Also see classmethod() for a
variant that is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something
with its result. This is needed in some cases where you need a reference to a function from a class
body and you want to avoid the automatic transformation to instance method. For these cases, use
this idiom:

class C:
builtin_open = staticmethod(open)

For more information on static methods, consult the documentation on the standard type hierarchy in
types.

class str(object=")

22 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.5

class str(object=b", encoding="utf-8’, errors=’strict’)
Return a str version of object. See str () for details.

str is the built-in string class. For general information about strings, see Text Sequence Type — str.

sum(z’temble[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to O.
The iterable’s items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate
a sequence of strings is by calling ''.join(sequence). To add floating point values with extended
precision, see math. fsum(). To concatenate a series of iterables, consider using itertools.chain().

super ([type[, object—or—type]])
Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful
for accessing inherited methods that have been overridden in a class. The search order is same as that
used by getattr() except that the type itself is skipped.

The __mro__ attribute of the type lists the method resolution search order used by both getattr()
and super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an
object, isinstance(obj, type) must be true. If the second argument is a type, issubclass(type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used
to refer to parent classes without naming them explicitly, thus making the code more maintainable.
This use closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages that
only support single inheritance. This makes it possible to implement “diamond diagrams” where
multiple base classes implement the same method. Good design dictates that this method have the
same calling signature in every case (because the order of calls is determined at runtime, because that
order adapts to changes in the class hierarchy, and because that order can include sibling classes that
are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arg) # This does the same thing as:
super(C, self).method(arg)

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups
such as super().__getitem__(name). It does so by implementing its own __getattribute__()
method for searching classes in a predictable order that supports cooperative multiple inheri-
tance. Accordingly, super() is undefined for implicit lookups using statements or operators such
as super () [name].

Also note that, aside from the zero argument form, super() is not limited to use inside methods.
The two argument form specifies the arguments exactly and makes the appropriate references. The
zero argument form only works inside a class definition, as the compiler fills in the necessary details to
correctly retrieve the class being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

tuple([itemble])
Rather than being a function, tuple is actually an immutable sequence type, as documented in Tuples
and Sequence Types — list, tuple, range.

23

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.6.5

class type (object)

class type(name, bases, dict)
With one argument, return the type of an object. The return value is a type object and generally the
same object as returned by object.__class__.

The isinstance () built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class
statement. The name string is the class name and becomes the __name__ attribute; the bases tuple
itemizes the base classes and becomes the __bases__ attribute; and the dict dictionary is the namespace
containing definitions for class body and is copied to a standard dictionary to become the __dict__
attribute. For example, the following two statements create identical type objects:

>>> class X:
a=1

>>> X = type('X', (object,), dict(a=1))

See also Type Objects.

Changed in version 3.6: Subclasses of type which don’t override type.__new__ may no longer use the
one-argument form to get the type of an object.

vars ([object])
Return the __dict__ attribute for a module, class, instance, or any other object with a __dict__
attribute.

Objects such as modules and instances have an updateable __dict__ attribute; however, other ob-
jects may have write restrictions on their __dict__ attributes (for example, classes use a types.
MappingProzyType to prevent direct dictionary updates).

Without an argument, vars () acts like locals (). Note, the locals dictionary is only useful for reads
since updates to the locals dictionary are ignored.

zip (*iterables)
Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument
sequences or iterables. The iterator stops when the shortest input iterable is exhausted. With a single
iterable argument, it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator.
Equivalent to:

def zip(*iterables):
zip('ABCD', 'my') --> Az By
sentinel = object()
iterators = [iter(it) for it in iterables]
while iterators:
result = []
for it in iterators:
elem = next(it, sentinel)
if elem is sentinel:
return
result.append(elem)
yield tuple(result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for
clustering a data series into n-length groups using zip (* [iter(s)]*n). This repeats the same iterator
n times so that each output tuple has the result of n calls to the iterator. This has the effect of dividing
the input into n-length chunks.

24 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.5

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched
values from the longer iterables. If those values are important, use itertools.zip_longest () instead.

zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> y = [4, 5, 6]

>>> zipped = zip(x, y)

>>> list(zipped)

[, 4, (2, 5, (3, 6)]

>>> x2, y2 = zip(*zip(x, y))

>>> x == list(x2) and y == list(y2)
True

__import__(name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike
wmportlib. import_module().

This function is invoked by the import statement. It can be replaced (by importing the builtins mod-
ule and assigning to builtins.__import__) in order to change semantics of the import statement, but
doing so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain
the same goals and does not cause issues with code which assumes the default import implementation
is in use. Direct use of __import__ () is also discouraged in favor of importlib. import_module().

The function imports the module name, potentially using the given globals and locals to determine how
to interpret the name in a package context. The fromlist gives the names of objects or submodules
that should be imported from the module given by name. The standard implementation does not use
its locals argument at all, and uses its globals only to determine the package context of the import
statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute
imports. Positive values for level indicate the number of parent directories to search relative to the
directory of the module calling __import__ () (see PEP 328 for the details).

When the name variable is of the form package.module, normally, the top-level package (the name
up till the first dot) is returned, not the module named by name. However, when a non-empty fromlist
argument is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

’spam = __import__('spam', globals(), locals(), [1, 0)

The statement import spam.ham results in this call:

’spam = __import__('spam.ham', globals(), locals(), [1, 0)

Note how __import__ () returns the toplevel module here because this is the object that is bound to
a name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus results in

_temp = __import__('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0)
eggs = _temp.eggs
saus = _temp.sausage

25

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0328

The Python Library Reference, Release 3.6.5

Here, the spam.ham module is returned from __import__ (). From this object, the names to import
are retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the
default value to 0).

26 Chapter 2. Built-in Functions

CHAPTER

THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntazError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntazError.

None
The sole value of the type NoneType. None is frequently used to represent the absence of a value, as
when default arguments are not passed to a function. Assignments to None are illegal and raise a
SyntazError.

NotImplemented
Special value which should be returned by the binary special methods (e.g. __eq__0, __1t__Q),
__add__Q), __rsub__(), etc.) to indicate that the operation is not implemented with respect to the
other type; may be returned by the in-place binary special methods (e.g. __imul__(), __iand__Q),
etc.) for the same purpose. Its truth value is true.

Note: When a binary (or in-place) method returns NotImplemented the interpreter will try the
reflected operation on the other type (or some other fallback, depending on the operator). If all
attempts return NotImplemented, the interpreter will raise an appropriate exception. Incorrectly
returning NotImplemented will result in a misleading error message or the NotImplemented value
being returned to Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and NotImplemented are not interchangeable, even though they have
similar names and purposes. See NotImplementedError for details on when to use it.

Ellipsis
The same as Special value used mostly in conjunction with extended slicing syntax for user-defined
container data types.

__debug__
This constant is true if Python was not started with an -0 option. See also the assert statement.

Note: The names None, False, True and __debug__ cannot be reassigned (assignments to them, even as
an attribute name, raise SyntazError), so they can be considered “true” constants.

27

The Python Library Reference, Release 3.6.5

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the =S command-line option is
given) adds several constants to the built-in namespace. They are useful for the interactive interpreter shell
and should not be used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when
called, raise SystemEzit with the specified exit code.

copyright
credits
Objects that when printed or called, print the text of copyright or credits, respectively.

license
Object that when printed, prints the message “Type license() to see the full license text”, and when
called, displays the full license text in a pager-like fashion (one screen at a time).

28 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place,
and don’t return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared,
tested for truth value, and converted to a string (with the repr () function or the slightly different str()
function). The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below.

By default, an object is considered true unless its class defines either a __bool__() method that returns
False or a __len__() method that returns zero, when called with the object.! Here are most of the built-in
objects considered false:

o constants defined to be false: None and False.
e zero of any numeric type: 0, 0.0, 0j, Decimal (0), Fraction(0, 1)
e empty sequences and collections: '',), [1, {3}, set(), range(0)

Operations and built-in functions that have a Boolean result always return O or False for false and 1 or
True for true, unless otherwise stated. (Important exception: the Boolean operations or and and always
return one of their operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X ory if z is false, then y, else = (1)
x and y | if z is false, then z, else y (2)
not x if z is false, then True, else False | (3)

1 Additional information on these special methods may be found in the Python Reference Manual (customization).

29

The Python Library Reference, Release 3.6.5

Notes:
1. This is a short-circuit operator, so it only evaluates the second argument if the first one is false.
2. This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

3. not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b),
and a == not b is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that
of the Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent
tox < y and y <= z, except that y is evaluated only once (but in both cases z is not evaluated at all when
x < y is found to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

1= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types
(for example, function objects) support only a degenerate notion of comparison where any two objects of
that type are unequal. The <, <=, > and >= operators will raise a TypeError exception when comparing a
complex number with another built-in numeric type, when the objects are of different types that cannot be
compared, or in other cases where there is no defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq__()
method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of
object, unless the class defines enough of the methods __1t__(), __le__O, __gt__O, and __ge__O (in
general, __1t__() and __eq__() are sufficient, if you want the conventional meanings of the comparison
operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two
objects and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported only by sequence types
(below).

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complexr numbers. In addition,
Booleans are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually
implemented using double in C; information about the precision and internal representation of floating
point numbers for the machine on which your program is running is available in sys. float_info. Complex

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

numbers have a real and imaginary part, which are each a floating point number. To extract these parts
from a complex number z, use z.real and z.imag. (The standard library includes additional numeric types,
fractions that hold rationals, and decimal that hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned
integer literals (including hex, octal and binary numbers) yield integers. Numeric literals containing a
decimal point or an exponent sign yield floating point numbers. Appending 'j' or 'J' to a numeric literal
yields an imaginary number (a complex number with a zero real part) which you can add to an integer or
float to get a complex number with real and imaginary parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where integer is narrower than
floating point, which is narrower than complex. Comparisons between numbers of mixed type use the same
rule.? The constructors int (), float (), and complez () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (all nu-
meric operations have a higher priority than comparison operations):

Operation Result Notes| Full documen-
tation

X +y sum of z and y

X -y difference of z and y

X *y product of z and y

x/y quotient of z and y

x//y floored quotient of z and y (1)

xhy remainder of x / y (2)

-X z negated

+x z unchanged

abs (x) absolute value or magnitude of z abs ()

int (%) x converted to integer (3)(6)| intO

float (x) x converted to floating point (4)(6)| float()

complex(re, a complex number with real part re, imaginary part ém. im | (6) complez ()

im) defaults to zero.

c. conjugate of the complex number ¢

conjugate ()

divmod(x, y) | the pair (x // y, x % y) (2) divmod ()

pow(x, y) x to the power y (5) pow()

X kk y x to the power y (5)

Notes:

1. Also referred to as integer division. The resultant value is a whole integer, though the result’s type
is not necessarily int. The result is always rounded towards minus infinity: 1//2 is 0, (-1)//2 is -1,
1//(-2) is -1, and (-1)//(-2) is 0.

2. Not for complex numbers. Instead convert to floats using abs () if appropriate.

3. Conversion from floating point to integer may round or truncate as in C; see functions math. floor()
and math.ceil () for well-defined conversions.

4. float also accepts the strings “nan” and “inf” with an optional prefix “4” or “-” for Not a Number
(NaN) and positive or negative infinity.

5. Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for programming languages.

2 As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 31

The Python Library Reference, Release 3.6.5

6. The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with

the Nd property).

See http://www.unicode.org/Public/9.0.0/ucd/extracted /DerivedNumericType.txt for a complete list
of code points with the Nd property.

All numbers.Real types (int and float) also include the following operations:

Operation

Result

math. trunc(z)

x truncated to Integral

round (z[, nJj)

z rounded to n digits, rounding half to even. If n is omitted, it defaults to 0.

math. floor(x)

the greatest Integral <=z

math.ceil (z)

the least Integral >= =z

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. Negative numbers are treated as their 2’s complement value
(this assumes that there are enough bits so that no overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation ~ has the same priority as the other unary numeric operations (+ and -).

This table lists the bitwise operations sorted in ascending priority:

Notes:

Operation | Result Notes
x|y bitwise or of z and y

x "y bitwise exclusive or of z and y

x&y bitwise and of z and y

X << n z shifted left by n bits (1)(2)
x >> n z shifted right by n bits (1)(3)
~X the bits of x inverted

1. Negative shift counts are illegal and cause a ValueError to be raised.

2. A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.

3. A right shift by n bits is equivalent to division by pow(2, n) without overflow check.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers.Integral abstract base class. In addition, it provides a few more

methods:

int.bit_length()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading

Zeros:

>>> n = -37
>>> bin(n)
'-0b100101"

(continues on next page)

32

Chapter 4. Built-in Types

http://www.unicode.org/Public/9.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> n.bit_length()
6

More precisely, if x is nonzero, then x.bit_length() is the unique positive integer k such that 2** (k-1)
<= abs(x) < 2x*xk. Equivalently, when abs(x) is small enough to have a correctly rounded logarithm,
thenk = 1 + int(log(abs(x), 2)). If x is zero, then x.bit_length() returns 0.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-Ob') # remove leading zeros and minus sign
return len(s) # len('100101') --> 6

New in version 3.1.

int.to_bytes (length, byteorder, *, signed=False)

Return an array of bytes representing an integer.

>>> (1024) .to_bytes(2, byteorder='big')

b'\x04\x00'

>>> (1024) .to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes(10, byteorder='big', signed=True)

b \xff\xfE\xfF\xff\xf£\xff\xff\xff\xfc\x00'

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"'

The integer is represented using length bytes. An OverflowError is raised if the integer is not repre-
sentable with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "little", the most
significant byte is at the end of the byte array. To request the native byte order of the host system,
use sys.byteorder as the byte order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed
is False and a negative integer is given, an OverflowError is raised. The default value for signed is
False.
New in version 3.2.
classmethod int.from_bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes(b'\x00\x10', byteorder='big')

16

>>> int.from_bytes(b'\x00\x10', byteorder='little')

4096

>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes([255, 0, 0], byteorder='big')

16711680

The argument bytes must either be a bytes-like object or an iterable producing bytes.

4.4. Numeric Types — int, float, complex 33

The Python Library Reference, Release 3.6.5

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "little", the most
significant byte is at the end of the byte array. To request the native byte order of the host system,
use sys.byteorder as the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

New in version 3.2.

4.4.3 Additional Methods on Float

The float type implements the numbers.Real abstract base class. float also has the following additional
methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denomi-
nator. Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0) .is_integer()
True

>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally
as binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In
contrast, hexadecimal strings allow exact representation and specification of floating-point numbers. This
can be useful when debugging, and in numerical work.

float.hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point
numbers, this representation will always include a leading Ox and a trailing p and exponent.

classmethod float.fromhex(s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading
and trailing whitespace.

Note that float.hez() is an instance method, while float. fromhexz () is a class method.

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or -, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least
one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in
section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output
of float.hez () is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings
produced by C’s %a format character or Java’s Double.toHexString are accepted by float. fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by
which to multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-
point number (3 + 10./16 + 7./16%%2) * 2.0%%10, or 3740.0:

>>> float.fromhex('0x3.a7p10"')
3740.0

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

Applying the reverse conversion to 3740.0 gives a different hexadecimal string representing the same number:

>>> float.hex(3740.0)
'0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash(x) == hash(y) whenever x
== y (see the __hash__() method documentation for more details). For ease of implementation and effi-
ciency across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational
number, and hence applies to all instances of int and fractions.Fraction, and all finite instances of float
and decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The
value of P is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime used is P = 2%*31 - 1 on machines with 32-bit
C longs and P = 2x*61 - 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n is a nonnegative rational number and n is not divisible by P, define hash(x) as m *
invmod(n, P) % P, where invmod(n, P) gives the inverse of n modulo P.

e If x = m / nis a nonnegative rational number and n is divisible by P (but m is not) then n has no
inverse modulo P and the rule above doesn’t apply; in this case define hash(x) to be the constant value
sys.hash_info.inf.

e If x = m / nis a negative rational number define hash(x) as -hash(-x). If the resulting hash is -1,
replace it with -2.

o The particular values sys.hash_info.inf, -sys.hash_info.inf and sys.hash_info.nan are used
as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have
the same hash value.)

e For a complez number z, the hash values of the real and imaginary parts are combined by comput-
ing hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2#*sys.hash_info.
width so that it lies in range(-2**(sys.hash_info.width - 1), 2%*(sys.hash_info.width -
1)). Again, if the result is -1, it’s replaced with -2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing
the hash of a rational number, float, or complez:

import sys, math

def hash_fraction(m, n):
"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mwmn

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
whilem % P ==n % P == O:

m,n=m//P,n//P

if n % P == 0:
hash_value = sys.hash_info.inf

(continues on next page)

4.4. Numeric Types — int, float, complex 35

The Python Library Reference, Release 3.6.5

(continued from previous page)

def

def

else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of m modulo P.
hash_value = (abs(m) % P) * pow(n, P - 2, P) 7, P

if m < O:
hash_value = -hash_value
if hash_value == -1:
hash_value = -2

return hash_value

hash_float(x):
"""Compute the hash of a float z."""

if math.isnan(x):

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > O else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

hash_complex(z):
"""Compute the hash of a complex number z."""
hash_value = hash_float(z.real) + sys.hash_info.imag * hash_float(z.imag)
do a signed reduction modulo 2%*sys.hash_info.width
M = 2**(sys.hash_info.width - 1)
hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:
hash_value = -2
return hash_value

4.5 lterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods;
these are used to allow user-defined classes to support iteration. Sequences, described below in more detail,
always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

container.__iter__(Q)

Return an iterator object. The object is required to support the iterator protocol described below. If
a container supports different types of iteration, additional methods can be provided to specifically
request iterators for those iteration types. (An example of an object supporting multiple forms of
iteration would be a tree structure which supports both breadth-first and depth-first traversal.) This
method corresponds to the tp_iter slot of the type structure for Python objects in the Python/C
API.

The iterator objects themselves are required to support the following two methods, which together form the
iterator protocol:

iterator.__iter__Q)

Return the iterator object itself. This is required to allow both containers and iterators to be used
with the for and in statements. This method corresponds to the tp_iter slot of the type structure
for Python objects in the Python/C APIL

36

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

iterator.__next__(Q)
Return the next item from the container. If there are no further items, raise the StopIteration
exception. This method corresponds to the tp_iternext slot of the type structure for Python objects
in the Python/C APL

Python defines several iterator objects to support iteration over general and specific sequence types, dictio-
naries, and other more specialized forms. The specific types are not important beyond their implementation
of the iterator protocol.

Once an iterator’s __nezt__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__(method is implemented as a generator, it will automatically return an iterator object (technically,
a generator object) supplying the __iter__() and __next__() methods. More information about generators
can be found in the documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for
processing of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable.
The collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations
on custom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the
same type, n, %, j and k are integers and x is an arbitrary object that meets any type and value restrictions
imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation)
and * (repetition) operations have the same priority as the corresponding numeric operations.®

Operation Result Notes
x in s True if an item of s is equal to z, else False (1)

X not in s False if an item of s is equal to z, else True (1)
s+t the concatenation of s and ¢ (6)(7)
S*norn * s equivalent to adding s to itself n times (2)(7)
s[i] ith item of s, origin 0 (3)
s[i:j] slice of s from 4 to j (3)(4)
sli:j:k] slice of s from ¢ to j with step k (3)(5)
len(s) length of s

min(s) smallest item of s

max (s) largest item of s

s.index(x[, il, index of the first occurrence of z in s (at or after index 7 and before | (8)
i1 index j)

s.count (x) total number of occurrences of z in s

3 They must have since the parser can’t tell the type of the operands.

4.6. Sequence Types — list, tuple, range 37

The Python Library Reference, Release 3.6.5

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexico-
graphically by comparing corresponding elements. This means that to compare equal, every element must
compare equal and the two sequences must be of the same type and have the same length. (For full details
see comparisons in the language reference.)

Notes:

1.

While the in and not in operations are used only for simple containment testing in the general case,
some specialised sequences (such as str, bytes and bytearray) also use them for subsequence testing:

>>> |lggll in lleggsﬂ
True

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note
that items in the sequence s are not copied; they are referenced multiple times. This often haunts new
Python programmers; consider:
>>> lists = [[1] * 3
>>> lists
(o, o, i
>>> lists[0] .append(3)
>>> lists
[[31, [31, [31]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements
of [[1] * 3 are references to this single empty list. Modifying any of the elements of 1ists modifies
this single list. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]

>>> lists[0] .append(3)

>>> lists[1] .append(5)

>>> lists[2].append(7)

>>> lists

(€31, 81, 711

Further explanation is available in the FAQ entry fag-multidimensional-list.

3. If ¢ or j is negative, the index is relative to the end of sequence s: len(s) + i or len(s) + j is
substituted. But note that -0 is still 0.

4. The slice of s from 7 to j is defined as the sequence of items with index k£ such that i <= k < j. If ¢
or j is greater than len(s), use len(s). If ¢ is omitted or None, use 0. If j is omitted or None, use
len(s). If 7 is greater than or equal to j, the slice is empty.

5. The slice of s from 7 to j with step k is defined as the sequence of items with index x = i + nxk such
that 0 <= n < (j-i)/k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping
when j is reached (but never including j). When % is positive, ¢ and j are reduced to len(s) if they
are greater. When £ is negative, ¢ and j are reduced to len(s) - 1 if they are greater. If ¢ or j are
omitted or None, they become “end” values (which end depends on the sign of k). Note, k cannot be
zero. If k is None, it is treated like 1.

6. Concatenating immutable sequences always results in a new object. This means that building up a
sequence by repeated concatenation will have a quadratic runtime cost in the total sequence length.
To get a linear runtime cost, you must switch to one of the alternatives below:

« if concatenating str objects, you can build a list and use str. join () at the end or else write to
an 2o0.StringI0 instance and retrieve its value when complete
o if concatenating bytes objects, you can similarly use bytes. join() or io0.BytesIO, or you can
do in-place concatenation with a bytearray object. bytearray objects are mutable and have an
38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

efficient overallocation mechanism

« if concatenating tuple objects, extend a list instead

o for other types, investigate the relevant class documentation

7. Some sequence types (such as range) only support item sequences that follow specific patterns, and
hence don’t support sequence concatenation or repetition.

8. index raises ValueError when z is not found in s.

Not all implementations support passing the

additional arguments 7 and j. These arguments allow efficient searching of subsections of the sequence.
Passing the extra arguments is roughly equivalent to using s[i:j].index(x), only without copying
any data and with the returned index being relative to the start of the sequence rather than the start

of the slice.

4.6.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by
mutable sequence types is support for the hash () built-in.

This support allows immutable sequences, such as tuple instances, to be used as dict keys and stored in
set and frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types.

The collections.abc.

MutableSequence ABC is provided to make it easier to correctly implement these operations on custom

sequence types.

In the table s is an instance of a mutable sequence type, t is any iterable object and z is an arbitrary object
that meets any type and value restrictions imposed by s (for example, bytearray only accepts integers that
meet the value restriction 0 <= x <= 255).

Operation Result Notes
s[i] = x item 7 of s is replaced by x

sfi:j]l = ¢ slice of s from 7 to j is replaced by the contents of the iterable ¢

del s[i:j] same as s[i:j] = []

sli:j:k] = ¢ the elements of s[i:j:k] are replaced by those of ¢ (1)
del s[i:j:k] removes the elements of s[i:j:k] from the list

s.append (x) appends z to the end of the sequence (same as s[len(s) :len(s)] = [x])
s.clear() removes all items from s (same as del s[:]) (5)
s.copy Q) creates a shallow copy of s (same as s[:]) (5)

s.extend(t) or s
+= ¢

extends s with the contents of ¢ (for the most part the same as
s[len(s):1len(s)] = t)

s *=n updates s with its contents repeated n times (6)
s.insert(i, x) inserts z into s at the index given by ¢ (same as s[i:i] = [x])
s.pop([il) retrieves the item at ¢ and also removes it from s (2)

s.remove (x)

remove the first item from s where s[i] == x

s.reverse()

reverses the items of s in place

Notes:

1. ¢t must have the same length as the slice it is replacing.

4.6. Sequence Types — list, tuple, range

39

The Python Library Reference, Release 3.6.5

. The optional argument 7 defaults to -1, so that by default the last item is removed and returned.
. remove raises ValueError when z is not found in s.

. The reverse() method modifies the sequence in place for economy of space when reversing a large

sequence. To remind users that it operates by side effect, it does not return the reversed sequence.

. clear () and copy() are included for consistency with the interfaces of mutable containers that don’t

support slicing operations (such as dict and set)

New in version 3.3: clear() and copy() methods.

. The value n is an integer, or an object implementing __index__ (). Zero and negative values of n clear

the sequence. Items in the sequence are not copied; they are referenced multiple times, as explained
for s * n under Common Sequence Operations.

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise
degree of similarity will vary by application).

class list([itemble])

Lists may be constructed in several ways:
« Using a pair of square brackets to denote the empty list: []
o Using square brackets, separating items with commas: [al, [a, b, c]
o Using a list comprehension: [x for x in iterable]
o Using the type constructor: 1ist() or list(iterable)

The constructor builds a list whose items are the same and in the same order as iterable’s items.
iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable
is already a list, a copy is made and returned, similar to iterable[:]. For example, 1ist('abc')
returns ['a', 'b', 'c'] and list((1, 2, 3)) returns [1, 2, 3]. If no argument is given, the
constructor creates a new empty list, [].

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following
additional method:

sort (¥, key=None, reverse=False)
This method sorts the list in place, using only < comparisons between items. Exceptions are not
suppressed - if any comparison operations fail, the entire sort operation will fail (and the list will
likely be left in a partially modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each
list element (for example, key=str.lower). The key corresponding to each item in the list is
calculated once and then used for the entire sorting process. The default value of None means
that list items are sorted directly without calculating a separate key value.

The functools.cmp_to_key() utility is available to convert a 2.x style c¢mp function to a key
function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison
were reversed.

40

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted ()
to explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to
mutate, or even inspect, the list is undefined. The C implementation of Python makes the list
appear empty for the duration, and raises ValueError if it can detect that the list has been
mutated during a sort.

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-
tuples produced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence
of homogeneous data is needed (such as allowing storage in a set or dict instance).

class tuple([itemble])
Tuples may be constructed in a number of ways:

o Using a pair of parentheses to denote the empty tuple: ()
o Using a trailing comma for a singleton tuple: a, or (a,)

e Separating items with commas: a, b, cor (a, b, c)

o Using the tuple() built-in: tuple() or tuple(iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable’s items.
iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable
is already a tuple, it is returned unchanged. For example, tuple('abc') returns ('a', 'b', 'c')
and tuple([1, 2, 3]) returns (1, 2, 3). If no argument is given, the constructor creates a new
empty tuple, .

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are
optional, except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For
example, f(a, b, c) is a function call with three arguments, while £((a, b, c)) is a function call
with a 3-tuple as the sole argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific
number of times in for loops.

class range(stop)

class range(start, stop[, step])
The arguments to the range constructor must be integers (either built-in <nt or any object that
implements the __index__ special method). If the step argument is omitted, it defaults to 1. If the
start argument is omitted, it defaults to 0. If step is zero, ValueError is raised.

4.6. Sequence Types — list, tuple, range 41

The Python Library Reference, Release 3.6.5

For a positive step, the contents of a range r are determined by the formula r[i] = start + step*i
where i >= 0 and r[i] < stop.

For a negative step, the contents of the range are still determined by the formula r[i] = start +
step*i, but the constraints are 1 >= 0 and r[i] > stop.

A range object will be empty if r[0] does not meet the value constraint. Ranges do support negative
indices, but these are interpreted as indexing from the end of the sequence determined by the positive
indices.

Ranges containing absolute values larger than sys.mazsize are permitted but some features (such as
len()) may raise OverflowError.

Range examples:

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(1, 11))

[1, 2, 3, 4, 5,6, 7, 8,9, 10]
>>> list(range(0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list(range(0, 10, 3))

[0, 3, 6, 9]

>>> list(range(0, -10, -1))

o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list(range(0))

1

>>> list(range(1, 0))

]

Ranges implement all of the common sequence operations except concatenation and repetition (due to
the fact that range objects can only represent sequences that follow a strict pattern and repetition and
concatenation will usually violate that pattern).

start
The value of the start parameter (or 0 if the parameter was not supplied)

stop
The value of the stop parameter

step
The value of the step parameter (or 1 if the parameter was not supplied)

The advantage of the range type over a regular list or tuple is that a range object will always take the
same (small) amount of memory, no matter the size of the range it represents (as it only stores the start,
stop and step values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range(0, 20, 2)
>>> 1

range(0, 20, 2)

>>> 11 in r

False

>>> 10 in r
True

>>> r.index(10)
5

>>> r[5]

(continues on next page)

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

10

>>> r[:5]
range(0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare
equal might have different start, stop and step attributes, for example range(0) == range(2, 1, 3) or
range(0, 3, 2) == range(0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int
objects for membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘== and ‘!="to compare range objects based on the sequence of values they
define (instead of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.
See also:

e The linspace recipe shows how to implement a lazy version of range that suitable for floating point
applications.

4.7 Text Sequence Type — str

Textual data in Python is handled with st objects, or strings. Strings are immutable sequences of Unicode
code points. String literals are written in a variety of ways:

e Single quotes: 'allows embedded "double" quotes'
e Double quotes: "allows embedded 'single' quotes".
e Triple quoted: '''Three single quotes''', """Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly
converted to a single string literal. That is, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the
r (“raw”) prefix that disables most escape sequence processing.

Strings may also be created from other objects using the str constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a
non-empty string s, s[0] == s[0:1].

There is also no mutable string type, but str. join() or i0.StringI0 can be used to efficiently construct
strings from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again
permitted on string literals. It has no effect on the meaning of string literals and cannot be combined with
the r prefix.

class str(object=")

class str(object=b", encoding="utf-8’, errors=’strict’)
Return a string version of object. If object is not provided, returns the empty string. Otherwise, the
behavior of str() depends on whether encoding or errors is given, as follows.

4.7. Text Sequence Type — str 43

http://code.activestate.com/recipes/579000/

The Python Library Reference, Release 3.6.5

If neither encoding nor errorsis given, str(object) returns object.__str__(), which is the “informal”
or nicely printable string representation of object. For string objects, this is the string itself. If object
does not have a __str__() method, then str() falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytes or
bytearray). In this case, if object is a bytes (or bytearray) object, then str(bytes, encoding,
errors) is equivalent to bytes.decode(encoding, errors). Otherwise, the bytes object underlying
the buffer object is obtained before calling bytes.decode(). See Binary Sequence Types — bytes,
bytearray, memoryview and bufferobjects for information on buffer objects.

Passing a bytes object to str() without the encoding or errors arguments falls under the first case
of returning the informal string representation (see also the -b command-line option to Python). For
example:

>>> str(b'Zoot!")
||b| Zoot ! 1]

For more information on the str class and its methods, see Text Sequence Type str and the String
Methods section below. To output formatted strings, see the f-strings and Format String Syntax
sections. In addition, see the Text Processing Services section.

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described
below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customiza-
tion (see str.format (), Format String Syntax and Custom String Formatting) and the other based on C
printf style formatting that handles a narrower range of types and is slightly harder to use correctly, but
is often faster for the cases it can handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide
various text related utilities (including regular expression support in the re module).

str.capitalize()
Return a copy of the string with its first character capitalized and the rest lowercased.

str.casefold()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case
distinctions in a string. For example, the German lowercase letter '8' is equivalent to "ss". Since it
is already lowercase, lLower () would do nothing to '8'; casefold() converts it to "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.
New in version 3.3.

str.center (width[, ﬁllchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is an
ASCII space). The original string is returned if width is less than or equal to len(s).

str.count(sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

str.encode (encoding="utf-8”, errors="strict”)
Return an encoded version of the string as a bytes object. Default encoding is 'utf-8'. er-
rors may be given to set a different error handling scheme. The default for errors is 'strict',

44 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

meaning that encoding errors raise a UnicodeError. Other possible values are 'ignore',
'replace', 'xmlcharrefreplace', 'backslashreplace' and any other name registered via codecs.
register_error(), see section Error Handlers. For a list of possible encodings, see section Standard
Encodings.

Changed in version 3.1: Support for keyword arguments added.

str.endswith(suﬁx[, sta,rt[, end]])
Return True if the string ends with the specified suffiz, otherwise return False. suffiz can also be a
tuple of suffixes to look for. With optional start, test beginning at that position. With optional end,
stop comparing at that position.

str.expandtabs (tabsize=8)

Return a copy of the string where all tab characters are replaced by one or more spaces, depending
on the current column and the given tab size. Tab positions occur every tabsize characters (default
is 8, giving tab positions at columns 0, 8, 16 and so on). To expand the string, the current column
is set to zero and the string is examined character by character. If the character is a tab (\t), one
or more space characters are inserted in the result until the current column is equal to the next tab
position. (The tab character itself is not copied.) If the character is a newline (\n) or return (\r), it
is copied and the current column is reset to zero. Any other character is copied unchanged and the
current column is incremented by one regardless of how the character is represented when printed.

>>> '01\t012\t0123\t01234"' . expandtabs ()
01 012 0123 01234"

>>> '01\t012\t0123\t01234"' . expandtabs(4)
'01 012 0123 01234

str.find(sub[, stam‘[7 end]])
Return the lowest index in the string where substring sub is found within the slice s[start:end].
Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not found.

Note: The find() method should be used only if you need to know the position of sub. To check if
sub is a substring or not, use the in operator:

>>> 'Py' in 'Python'
True

str.format (*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal
text or replacement fields delimited by braces {}. Each replacement field contains either the numeric
index of a positional argument, or the name of a keyword argument. Returns a copy of the string
where each replacement field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is " format (1+2)
'The sum of 1 + 2 is 3'

See Format String Syntaz for a description of the various formatting options that can be specified in
format strings.

Note: When formatting a number (int, float, float and subclasses) with the n type (ex: '{:n}'.
format (1234)), the function sets temporarily the LC_CTYPE locale to the LC_NUMERIC locale to decode
decimal_point and thousands_sep fields of localeconv() if they are non-ASCII or longer than 1
byte, and the LC_NUMERIC locale is different than the LC_CTYPE locale. This temporary change affects
other threads.

4.7. Text Sequence Type — str 45

The Python Library Reference, Release 3.6.5

str.

str.

str.

str.

str.

str.

str.

str.

str.

Changed in version 3.6.5: When formatting a number with the n type, the function sets temporarily
the LC_CTYPE locale to the LC_NUMERIC locale in some cases.

format_map (mapping)
Similar to str.format (**mapping), except that mapping is used directly and not copied to a dict.
This is useful if for example mapping is a dict subclass:

>>> class Default(dict):
def __missing__(self, key):
return key

>>> ! was born in ' . format_map(Default(name='Guido'))
'Guido was born in country'

New in version 3.2.

index(sub[, start[, end]])
Like find (), but raise ValueError when the substring is not found.

isalnum()

Return true if all characters in the string are alphanumeric and there is at least one character, false
otherwise. A character c is alphanumeric if one of the following returns True: c.isalpha(), c.
isdecimal(), c.isdigit(), or c.isnumeric().

isalpha()

Return true if all characters in the string are alphabetic and there is at least one character, false
otherwise. Alphabetic characters are those characters defined in the Unicode character database as
“Letter”, i.e., those with general category property being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note
that this is different from the “Alphabetic” property defined in the Unicode Standard.

isdecimal ()

Return true if all characters in the string are decimal characters and there is at least one character, false
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660,
ARABIC-INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General
Category “Nd”.

isdigit()

Return true if all characters in the string are digits and there is at least one character, false otherwise.
Digits include decimal characters and digits that need special handling, such as the compatibility
superscript digits. This covers digits which cannot be used to form numbers in base 10, like the
Kharosthi numbers. Formally, a digit is a character that has the property value Numeric_ Type=Digit
or Numeric_ Type=Decimal.

isidentifier()

Return true if the string is a valid identifier according to the language definition, section identifiers.
Use keyword. iskeyword () to test for reserved identifiers such as def and class.

islower()

Return true if all cased characters® in the string are lowercase and there is at least one cased character,
false otherwise.

isnumeric()

Return true if all characters in the string are numeric characters, and there is at least one charac-
ter, false otherwise. Numeric characters include digit characters, and all characters that have the
Unicode numeric value property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, nu-

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase),
or “Lt” (Letter, titlecase).

46

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

str.

str.

str.

str.

str

str

str.

str.

meric characters are those with the property value Numeric_ Type=Digit, Numeric_ Type=Decimal or
Numeric_ Type=Numeric.

isprintable()
Return true if all characters in the string are printable or the string is empty, false otherwise. Non-
printable characters are those characters defined in the Unicode character database as “Other” or
“Separator”, excepting the ASCII space (0x20) which is considered printable. (Note that printable
characters in this context are those which should not be escaped when repr () is invoked on a string.
It has no bearing on the handling of strings written to sys.stdout or sys.stderr.)

isspace()
Return true if there are only whitespace characters in the string and there is at least one character,
false otherwise. Whitespace characters are those characters defined in the Unicode character database
as “Other” or “Separator” and those with bidirectional property being one of “WS”, “B”, or “S”.
istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

isupper ()
Return true if all cased characters? in the string are uppercase and there is at least one cased character,
false otherwise.

.join(¢terable)

Return a string which is the concatenation of the strings in iterable. A TypeError will be raised if
there are any non-string values in iterable, including bytes objects. The separator between elements
is the string providing this method.

1just (width[, fillchar)

Return the string left justified in a string of length width. Padding is done using the specified fillchar
(default is an ASCII space). The original string is returned if width is less than or equal to len(s).

lower ()
Return a copy of the string with all the cased characters? converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

1strip([cham])
Return a copy of the string with leading characters removed. The chars argument is a string specifying
the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious '.lstrip()
'spacious !

>>> 'www.example.com'.lstrip('cmowz."')
'example.com'

static str.maketrans(a:[7 y[, z]])

This static method returns a translation table usable for str. translate().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters
(strings of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will
then be converted to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each
character in x will be mapped to the character at the same position in y. If there is a third argument,
it must be a string, whose characters will be mapped to None in the result.

4.7.

Text Sequence Type — str 47

The Python Library Reference, Release 3.6.5

str.

str.

str

str.

str.

str.

str

str

str.

partition(sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the
separator, the separator itself, and the part after the separator. If the separator is not found, return a
3-tuple containing the string itself, followed by two empty strings.

replace (old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

.rfind(sub[, start[, end]])

Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on
failure.

rindex(sub[7 start[, end]])
Like rfind () but raises ValueError when the substring sub is not found.

rjust (width|, fillchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar
(default is an ASCII space). The original string is returned if width is less than or equal to len(s).

rpartition(sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the
separator, the separator itself, and the part after the separator. If the separator is not found, return a
3-tuple containing two empty strings, followed by the string itself.

.rsplit(sep=None, mazxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If mazsplit is given, at most
mazxsplit splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is
a separator. Except for splitting from the right, rsplit () behaves like split () which is described in
detail below.

.rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying
the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious ".rstrip()

! spacious'

>>> 'mississippi'.rstrip('ipz')
'mississ’

split (sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If mazsplit is given, at most
mazsplit splits are done (thus, the list will have at most maxsplit+1 elements). If mazsplit is not
specified or -1, then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty
strings (for example, '1,,2' .split(',"') returns ['1', '', '2']). The sep argument may consist
of multiple characters (for example, '1<>2<>3"' .split('<>"') returns ['1', '2', '3']). Splitting an
empty string with a specified separator returns [''].

For example:

>>> '1,2,3'.split(',")

[lll’ |2|, |3|]

>>> '1,2,3" .split(',"', maxsplit=1)
[lll, l2,3l]

(continues on next page)

48

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> '1,2,,3," .split(',")
[lll’ |2|, ll’ |3|’ ||]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the
string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting
of just whitespace with a None separator returns [J.

For example:

>>> '1 2 3'.split()

(1, '2', '3']

>>> '1 2 3'.split(maxsplit=1)
['1', '2 3']

>>> ! 1 2 3 '.split()
[rav, 2+, '3']

str.splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of
universal newlines.

Representation | Description

\n Line Feed

\r Carriage Return

\r\n Carriage Return + Line Feed
\v or \xOb Line Tabulation

\f or \xOc Form Feed

\x1c File Separator

\x1d Group Separator

\x1le Record Separator

\x85 Next Line (C1 Control Code)
\u2028 Line Separator

\u2029 Paragraph Separator

Changed in version 3.2: \v and \f added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()

['ab c', '', 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True)
['ab c\n', '"\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty
string, and a terminal line break does not result in an extra line:

>>> "' gplitlines()

]

>>> "One line\n".splitlines()
['One line']

For comparison, split('\n') gives:

4.7. Text Sequence Type — str 49

The Python Library Reference, Release 3.6.5

>>> ' osplit('\n')

['']
>>> 'Two lines\n'.split('\n')
['Two lines', '']

str.startswith(preﬁa:[, start[, end]])

Return True if string starts with the prefiz, otherwise return False. prefix can also be a tuple of
prefixes to look for. With optional start, test string beginning at that position. With optional end,
stop comparing string at that position.

str.strip([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a
string specifying the set of characters to be removed. If omitted or None, the chars argument defaults
to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its
values are stripped:

>>> ' spacious '.strip()
'spacious'

>>> 'wwyw.example.com'.strip('cmowz.')
'example’

The outermost leading and trailing chars argument values are stripped from the string. Characters
are removed from the leading end until reaching a string character that is not contained in the set of
characters in chars. A similar action takes place on the trailing end. For example:

>>> comment_string = '#....... Section 3.2.1 Issue #32 !
>>> comment_string.strip('.#! ')
'Section 3.2.1 Issue #32'

str.swapcase()

Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that
it is not necessarily true that s.swapcase() .swapcase() == s.

str.title()

Return a titlecased version of the string where words start with an uppercase character and the re-
maining characters are lowercase.

For example:

>>> 'Hello world'.title()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives
form word boundaries, which may not be the desired result:

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+('[A-Za-z]+)7",
lambda mo: mo.group(0) [0].upper() +
mo.group(0) [1:].lower(),
s)

(continues on next page)

50

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (table)
Return a copy of the string in which each character has been mapped through the given translation
table. The table must be an object that implements indexing via __getitem__Q), typically a mapping
or sequence. When indexed by a Unicode ordinal (an integer), the table object can do any of the
following: return a Unicode ordinal or a string, to map the character to one or more other characters;
return None, to delete the character from the return string; or raise a LookupError exception, to map
the character to itself.

You can use str.maketrans() to create a translation map from character-to-character mappings in
different formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper ()
Return a copy of the string with all the cased characters? converted to uppercase. Note that str.
upper () . isupper () might be False if s contains uncased characters or if the Unicode category of the
resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.zf£ill (width)
Return a copy of the string left filled with ASCII '0' digits to make a string of length width. A leading
sign prefix ('+'/'~") is handled by inserting the padding after the sign character rather than before.
The original string is returned if width is less than or equal to len(s).

For example:

>>> 42" z£fill(5)
'00042"
>>> "-42" zfill(5)
'-0042"

4.7.2 printf-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of
common errors (such as failing to display tuples and dictionaries correctly). Using the newer formatted
string literals or the str. format () interface helps avoid these errors. These alternatives also provide more
powerful, flexible and extensible approaches to formatting text.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string
formatting or interpolation operator. Given format % values (where format is a string), % conversion
specifications in format are replaced with zero or more elements of values. The effect is similar to using the
sprintf () in the C language.

If format requires a single argument, values may be a single non-tuple object.” Otherwise, values must be
a tuple with exactly the number of items specified by the format string, or a single mapping object (for
example, a dictionary).

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.7. Text Sequence Type — str 51

The Python Library Reference, Release 3.6.5

A conversion specifier contains two or more characters and has the following components, which must occur
in this order:

1.
2.

6.
7.

The '%' character, which marks the start of the specifier.

Mapping key (optional), consisting of a parenthesised sequence of characters (for example,
(somename)).

Conversion flags (optional), which affect the result of some conversion types.

Minimum field width (optional). If specified as an '*' (asterisk), the actual width is read from the
next element of the tuple in values, and the object to convert comes after the minimum field width
and optional precision.

Precision (optional), given as a '.' (dot) followed by the precision. If specified as '*' (an asterisk),
the actual precision is read from the next element of the tuple in values, and the value to convert comes
after the precision.

Length modifier (optional).

Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must
include a parenthesised mapping key into that dictionary inserted immediately after the '%' character. The
mapping key selects the value to be formatted from the mapping. For example:

>>> print (' has quote types.' %

{'language': "Python", "number": 2})

Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

'#' | The value conversion will use the “alternate form” (where defined below).

'0' | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the '0' conversion if both are given).

" ' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

'+' | A sign character ('+' or '-') will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. %1d
is identical to %d.

The conversion types are:

52

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

Con- Meaning Note

version

'd! Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. (1)

"u' Obsolete type — it is identical to 'd". (6)

'x! Signed hexadecimal (lowercase). (2)

X! Signed hexadecimal (uppercase). (2)

e! Floating point exponential format (lowercase). (3)

'E' Floating point exponential format (uppercase). (3)

£ Floating point decimal format. (3)

'F! Floating point decimal format. (3)

'g' Floating point format. Uses lowercase exponential format if exponent is less than -4 or | (4)
not less than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or | (4)
not less than precision, decimal format otherwise.

'c' Single character (accepts integer or single character string).

'r! String (converts any Python object using repr()). (5)

's! String (converts any Python object using str()). (5)

'a String (converts any Python object using asciz ()). (5)

A No argument is converted, results in a '%' character in the result.

Notes:

1. The alternate form causes a leading octal specifier ('00') to be inserted before the first digit.

2. The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'X' format was
used) to be inserted before the first digit.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not
removed as they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults
to 6.

5. If precision is N, the output is truncated to N characters.
6. See PEP 237.
Since Python strings have an explicit length, %s conversions do not assume that '\0' is the end of the string.

Changed in version 3.1: %f conversions for numbers whose absolute value is over 1e50 are no longer replaced
by %g conversions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by
memoryview which uses the buffer protocol to access the memory of other binary objects without needing to
make a copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-
precision floating values.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 53

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.6.5

4.8.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on
the ASCII text encoding, bytes objects offer several methods that are only valid when working with ASCII
compatible data and are closely related to string objects in a variety of other ways.

class bytes([source[7 encodz’ng[, errors]]])
Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix
is added:

e Single quotes: b'still allows embedded "double" quotes'
e Double quotes: b"still allows embedded 'single' quotes".
e Triple quoted: b'''3 single quotes''',K b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding).
Any binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences.
See strings for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like
immutable sequences of integers, with each value in the sequence restricted such that 0 <= x < 256
(attempts to violate this restriction will trigger ValueError. This is done deliberately to emphasise
that while many binary formats include ASCII based elements and can be usefully manipulated with
some text-oriented algorithms, this is not generally the case for arbitrary binary data (blindly applying
text processing algorithms to binary data formats that are not ASCII compatible will usually lead to
data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
¢ A zero-filled bytes object of a specified length: bytes(10)
e From an iterable of integers: bytes(range(20))
e Copying existing binary data via the buffer protocol: bytes(obj)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly
used format for describing binary data. Accordingly, the bytes type has an additional class method to
read data in that format:

classmethod fromhex (string)
This bytes class method returns a bytes object, decoding the given string object. The string
must contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex('2Ef0 F1f2 ')
b' \xfO\xf1\xf2'

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

hex()
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\xfO\xf1\xf2' . hex()
'fof1£2"'

New in version 3.5.

54 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b[0] will be an integer,
while b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and
slicing will produce a string of length 1)

The representation of bytes objects uses the literal format (b'...") since it is often more useful than e.g.
bytes([46, 46, 46]). You can always convert a bytes object into a list of integers using 1ist (b).

Note: For Python 2.x users: In the Python 2.x series, a variety of implicit conversions between 8-bit
strings (the closest thing 2.x offers to a built-in binary data type) and Unicode strings were permitted. This
was a backwards compatibility workaround to account for the fact that Python originally only supported
8-bit text, and Unicode text was a later addition. In Python 3.x, those implicit conversions are gone -
conversions between 8-bit binary data and Unicode text must be explicit, and bytes and string objects will
always compare unequal.

4.8.2 Bytearray Objects

bytearray objects are a mutable counterpart to bytes objects.

class bytearray([source[, encodz'ng[, errors]]])
There is no dedicated literal syntax for bytearray objects, instead they are always created by calling
the constructor:

¢ Creating an empty instance: bytearray ()

o Creating a zero-filled instance with a given length: bytearray(10)

o From an iterable of integers: bytearray(range(20))

¢ Copying existing binary data via the buffer protocol: bytearray(b'Hi!')

As bytearray objects are mutable, they support the mutable sequence operations in addition to the
common bytes and bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly
used format for describing binary data. Accordingly, the bytearray type has an additional class method
to read data in that format:

classmethod fromhex (string)
This bytearray class method returns bytearray object, decoding the given string object. The
string must contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytearray.fromhex('2Ef0 F1f2 ')
bytearray(b'.\xfO\xf1\x£f2')

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

hex()
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray(b'\xf0\xf1\xf2') .hex()
'fOf1£2"

New in version 3.5.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 55

The Python Library Reference, Release 3.6.5

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b[0] will be an
integer, while b[0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both
indexing and slicing will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (bytearray(b'...')) since it is often
more useful than e.g. bytearray([46, 46, 46]). You can always convert a bytearray object into a list of
integers using 1ist(b).

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with
operands of the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed
in operations without causing errors. However, the return type of the result may depend on the order of
operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the
methods on strings don’t accept bytes as their arguments. For example, you have to write:

a = "abc"
b = a.replace("a", "f")

and:

a = b"abc"
b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should
be avoided when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based
format may lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.

bytes.count(sub[, start[, end]])

bytearray.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Op-
tional arguments start and end are interpreted as in slice notation.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.decode (encoding="utf-8”, errors="strict”)

bytearray.decode (encoding="utf-8”, errors="strict”)
Return a string decoded from the given bytes. Default encoding is 'utf-8'. errors may be given
to set a different error handling scheme. The default for errors is 'strict', meaning that encoding
errors raise a UnicodeError. Other possible values are 'ignore', 'replace' and any other name
registered via codecs.register_error(), see section Error Handlers. For a list of possible encodings,
see section Standard Encodings.

56 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

Note: Passing the encoding argument to str allows decoding any bytes-like object directly, without
needing to make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

bytes.endswith(suﬂix[, start[, end]])

bytearray.endswith(sujﬁ:r[, start[, end]])
Return True if the binary data ends with the specified suffiz, otherwise return False. suffiz can also
be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional
end, stop comparing at that position.

The suffix(es) to search for may be any bytes-like object.

by‘ces.find(&’ub[7 start[, end]])

bytearray.find(sub[, start[, end]])
Return the lowest index in the data where the subsequence sub is found, such that sub is contained in
the slice s [start:end]. Optional arguments start and end are interpreted as in slice notation. Return
-1 if sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Note: The find () method should be used only if you need to know the position of sub. To check if
sub is a substring or not, use the in operator:

>>> b'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.index(sub[, start[, end]])

bytearray. index(sub[, start[, end]])
Like find (), but raise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes. join(iterable)

bytearray. join(iterable)
Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable.
A TypeError will be raised if there are any values in iterable that are not bytes-like objects, including
str objects. The separator between elements is the contents of the bytes or bytearray object providing
this method.

static bytes.maketrans(from, to)

static bytearray.maketrans(from, to)
This static method returns a translation table usable for bytes.translate() that will map each
character in from into the character at the same position in to; from and to must both be bytes-like
objects and have the same length.

New in version 3.1.

bytes.partition(sep)
bytearray.partition(sep)
Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the

4.8. Binary Sequence Types — bytes, bytearray, memoryview 57

The Python Library Reference, Release 3.6.5

separator, the separator itself or its bytearray copy, and the part after the separator. If the separator
is not found, return a 3-tuple containing a copy of the original sequence, followed by two empty bytes
or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.replace(old, new[, count])

bytearray.replace (old, new[, count])
Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.rfind(sub[, start[, end]])

by‘cearray.rfind(sub[7 start[, end]])
Return the highest index in the sequence where the subsequence sub is found, such that sub is contained
within s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return
-1 on failure.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rindex(sub[, stam‘[, end]])

bytearray.rindex(sub[, start[, end]])
Like rfind () but raises ValueError when the subsequence sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rpartition(sep)

bytearray.rpartition(sep)
Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the
separator, the separator itself or its bytearray copy, and the part after the separator. If the separator
is not found, return a 3-tuple containing a copy of the original sequence, followed by two empty bytes
or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.startswith(preﬁx[, start[, end]])

bytearray.startswith (preﬁx[, start[, end]])
Return True if the binary data starts with the specified prefiz, otherwise return False. prefiz can also
be a tuple of prefixes to look for. With optional start, test beginning at that position. With optional
end, stop comparing at that position.
The prefix(es) to search for may be any bytes-like object.

bytes.translate(table, delete=b")

bytearray.translate({able, delete=b")
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument

delete are removed, and the remaining bytes have been mapped through the given translation table,
which must be a bytes object of length 256.

You can use the bytes.maketrans () method to create a translation table.

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

Set the table argument to None for translations that only delete characters:

>>> b'read this short text'.translate(None, b'aeiou')
b'rd ths shrt txt'

Changed in version 3.6: delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of
ASCII compatible binary formats, but can still be used with arbitrary binary data by passing appropriate
arguments. Note that all of the bytearray methods in this section do not operate in place, and instead
produce new objects.

bytes.center(width[, ﬁllbyte])
bytearray.center (wz’dth[, ﬁllbyte])

Return a copy of the object centered in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if width is less
than or equal to len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.1just (width|, fillbyte])
bytearray.ljust (width[, ﬁllbyte])

Return a copy of the object left justified in a sequence of length width. Padding is done using the
specified fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if
width is less than or equal to len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes. lstrip([chars])

bytearray.lstrip([chars])

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary
sequence specifying the set of byte values to be removed - the name refers to the fact this method
is usually used with ASCII characters. If omitted or None, the chars argument defaults to removing
ASCII whitespace. The chars argument is not a prefix; rather, all combinations of its values are
stripped:

>>> b' spacious '.lstrip()
b'spacious !

>>> b'www.example.com'.lstrip(b'cmowz. ")
b'example.com'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.rjust(width[, ﬁllbyte])
bytearray.rjust (width[, ﬁllbyte])

Return a copy of the object right justified in a sequence of length width. Padding is done using the

4.8. Binary Sequence Types — bytes, bytearray, memoryview 59

The Python Library Reference, Release 3.6.5

specified fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if
width is less than or equal to len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.rsplit (sep=None, mazsplit=-1)
bytearray.rsplit (sep=None, mazsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If
mazxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or None,
any subsequence consisting solely of ASCII whitespace is a separator. Except for splitting from the
right, rsplit () behaves like split () which is described in detail below.

bytes.rstrip([chars])

bytearray.rstrip([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary
sequence specifying the set of byte values to be removed - the name refers to the fact this method is
usually used with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII
whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> b' spacious ".rstrip()

b' spacious'

>>> b'mississippi'.rstrip(b'ipz')
b'mississ'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.split(sep=None, mazxsplit=-1)
bytearray.split (sep=None, mazxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If
mazxsplit is given and non-negative, at most mazxsplit splits are done (thus, the list will have at most
maxsplit+1 elements). If mazsplit is not specified or is -1, then there is no limit on the number of
splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty
subsequences (for example, b'1,,2'.split(b',"') returns [b'1', b'', b'2']). The sep argument
may consist of a multibyte sequence (for example, b'1<>2<>3"' .split(b'<>') returns [b'1', b'2"',
b'3']). Splitting an empty sequence with a specified separator returns [b''] or [bytearray(b'')]
depending on the type of object being split. The sep argument may be any bytes-like object.

For example:

>>> b'1,2,3"'.split(b',")

[b'1', b'2', b'3']

>>> b'1,2,3"'.split(b',"', maxsplit=1)
[b'1', ©'2,3']
>>>Db'1,2,,3,".split(b',")

[blll’ b'2', bll’ b'3', bll]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII
whitespace are regarded as a single separator, and the result will contain no empty strings at the start

60

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

or end if the sequence has leading or trailing whitespace. Consequently, splitting an empty sequence
or a sequence consisting solely of ASCII whitespace without a specified separator returns [J.

For example:

>>> Db'l 2 3'.split()

[b'1', b'2"', b'3"']

>>> b'l 2 3'.split(maxsplit=1)
[b'1', p'2 3']

>>> b' 1 2 3 '.split ()
[b'1', b'2', b'3"']

bytes. strip([chars])

bytearray.strip([chars])
Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument
is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this
method is usually used with ASCII characters. If omitted or None, the chars argument defaults to
removing ASCII whitespace. The chars argument is not a prefix or suffix; rather, all combinations of
its values are stripped:

>>> b! spacious ".strip(Q)
b'spacious'

>>> b'www.example.com'.strip(b'cmowz. ")
b'example'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats
and should not be applied to arbitrary binary data. Note that all of the bytearray methods in this section
do not operate in place, and instead produce new objects.

bytes.capitalize()

bytearray.capitalize()
Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte
capitalized and the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.expandtabs (tabsize=8)

bytearray.expandtabs (tabsize=8)
Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII
spaces, depending on the current column and the given tab size. Tab positions occur every tabsize
bytes (default is 8, giving tab positions at columuns 0, 8, 16 and so on). To expand the sequence, the
current column is set to zero and the sequence is examined byte by byte. If the byte is an ASCII tab
character (b'\t'), one or more space characters are inserted in the result until the current column is
equal to the next tab position. (The tab character itself is not copied.) If the current byte is an ASCII
newline (b'\n') or carriage return (b'\r'), it is copied and the current column is reset to zero. Any
other byte value is copied unchanged and the current column is incremented by one regardless of how
the byte value is represented when printed:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61

The Python Library Reference, Release 3.6.5

>>> b'01\t012\t0123\t01234 "' .expandtabs ()
b'01 012 0123 01234

>>> b'01\t012\t0123\t01234"' .expandtabs(4)
b'01 012 0123 01234'

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.isalnum()

bytearray.isalnum()
Return true if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and
the sequence is not empty, false otherwise. Alphabetic ASCII characters are those byte values in the
sequence b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. ASCII decimal digits are
those byte values in the sequence b'0123456789".

For example:

>>> b'ABCabcl'.isalnum()
True
>>> b'ABC abcl'.isalnum()
False

bytes.isalpha()

bytearray.isalpha()
Return true if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, false otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.

For example:

>>> b'ABCabc'.isalpha()
True
>>> b'ABCabcl'.isalpha()
False

bytes.isdigit()

bytearray.isdigit()
Return true if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, false
otherwise. ASCII decimal digits are those byte values in the sequence b'0123456789".

For example:

>>> b'1234"' .isdigit ()
True
>>> b'1.23".isdigit()
False

bytes.islower ()

bytearray.islower ()
Return true if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII
characters, false otherwise.

For example:

62 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

>>> b'hello world'.islower ()
True
>>> b'Hello world'.islower()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b' ABCDEFGHI JKLMNOPQRSTUVWXYZ'.

bytes.isspace()

bytearray.isspace()
Return true if all bytes in the sequence are ASCII whitespace and the sequence is not empty, false
otherwise. ASCII whitespace characters are those byte values in the sequence b' \t\n\r\xOb\f'
(space, tab, newline, carriage return, vertical tab, form feed).

bytes.istitle()

bytearray.istitle()
Return true if the sequence is ASCII titlecase and the sequence is not empty, false otherwise. See
bytes.title() for more details on the definition of “titlecase”.

For example:

>>> b'Hello World'.istitle()
True
>>> b'Hello world'.istitle()
False

bytes.isupper()

bytearray.isupper()
Return true if there is at least one uppercase alphabetic ASCII character in the sequence and no
lowercase ASCII characters, false otherwise.

For example:

>>> b'HELLO WORLD'.isupper()
True
>>> b'Hello world'.isupper ()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.lower ()

bytearray.lower ()
Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding
lowercase counterpart.

For example:

>>> b'Hello World'.lower()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.6.5

bytes.splitlines (keepends=Fualse)
bytearray.splitlines (keepends=Fulse)

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses
the universal newlines approach to splitting lines. Line breaks are not included in the resulting list
unless keepends is given and true.

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines()

[b'ab c', b'', b'de fg', b'kl']

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty
string, and a terminal line break does not result in an extra line:

>>> b"".split(b'\n'), b"Two lines\n".split(b'\n')
([b''], [b'Two lines', b''])

>>> b"".splitlines(), b"One line\n".splitlines()
([], [b'One line'])

bytes.swapcase()
bytearray.swapcase ()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding
uppercase counterpart and vice-versa.

For example:

>>> b'Hello World'.swapcase()
b'hELLO wORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Unlike str. swapcase (), it is always the case that bin.swapcase () .swapcase() == bin for the binary
versions. Case conversions are symmetrical in ASCII, even though that is not generally true for
arbitrary Unicode code points.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.title()
bytearray.title()

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character
and the remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b' ABCDEFGHI JKLMNOPQRSTUVWXYZ'.
All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives

64

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

form word boundaries, which may not be the desired result:

>>> b"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(rb"[A-Za-z]+(' [A-Za-z]+)7",
lambda mo: mo.group(0) [0:1] .upper() +
mo.group(0) [1:].lower(),
s)

>>> titlecase(b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.upper ()

bytearray.upper ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding
uppercase counterpart.

For example:

>>> b'Hello World'.upper()
b'HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.zfill (width)

bytearray.zfill (width)
Return a copy of the sequence left filled with ASCII b'0' digits to make a sequence of length width. A
leading sign prefix (b'+'/ b'~" is handled by inserting the padding after the sign character rather than
before. For bytes objects, the original sequence is returned if width is less than or equal to len(seq).

For example:

>>> p"42" . zfill(5)
b'00042"'
>>> pb"-42".z£il11(5)
b'-0042"'

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.6.5

4.8.4 printf-style Bytes Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of
common errors (such as failing to display tuples and dictionaries correctly). If the value being printed may
be a tuple or dictionary, wrap it in a tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also
known as the bytes formatting or interpolation operator. Given format % values (where format is a bytes
object), % conversion specifications in format are replaced with zero or more elements of values. The effect
is similar to using the sprintf () in the C language.

If format requires a single argument, values may be a single non-tuple object.® Otherwise, values must be a
tuple with exactly the number of items specified by the format bytes object, or a single mapping object (for
example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur
in this order:

1. The '%"' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example,
(somename)).

3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an '*' (asterisk), the actual width is read from the
next element of the tuple in values, and the object to convert comes after the minimum field width
and optional precision.

5. Precision (optional), given as a '."' (dot) followed by the precision. If specified as '*' (an asterisk),
the actual precision is read from the next element of the tuple in values, and the value to convert comes
after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must
include a parenthesised mapping key into that dictionary inserted immediately after the '%' character. The
mapping key selects the value to be formatted from the mapping. For example:

>>> print(b' has quote types.' %
.. {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

'#' | The value conversion will use the “alternate form” (where defined below).

'0' | The conversion will be zero padded for numeric values.

- The converted value is left adjusted (overrides the '0' conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

'+' | A sign character ('+' or '-') will precede the conversion (overrides a “space” flag).

66 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. %1d
is identical to %d.

The conversion types are:

Con- Meaning Note

version

'd' Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. (1)

"u! Obsolete type — it is identical to 'd". (8)

'x! Signed hexadecimal (lowercase). (2)

X! Signed hexadecimal (uppercase). (2)

e! Floating point exponential format (lowercase). (3)

'E' Floating point exponential format (uppercase). (3)

£ Floating point decimal format. (3)

'F! Floating point decimal format. (3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or | (4)
not less than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or | (4)
not less than precision, decimal format otherwise.

‘¢! Single byte (accepts integer or single byte objects).

'b! Bytes (any object that follows the buffer protocol or has __bytes__Q)). (5)

's! 's' is an alias for 'b' and should only be used for Python2/3 code bases. (6)

'a' Bytes (converts any Python object using repr(obj).encode('ascii', | (5)
'backslashreplace)).

'r' 'r' is an alias for 'a' and should only be used for Python2/3 code bases. (7)

"% No argument is converted, results in a '%' character in the result.

Notes:

1. The alternate form causes a leading octal specifier ('0o0") to be inserted before the first digit.

2. The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'X' format was
used) to be inserted before the first digit.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not
removed as they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults
to 6.

If precision is N, the output is truncated to N characters.
b'%s"' is deprecated, but will not be removed during the 3.x series.

b'%r' is deprecated, but will not be removed during the 3.x series.

See PEP 237.

® N> o

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 67

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.6.5

See also:

PEP 461.

New in version 3.5.

4.8.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer
protocol without copying.

class memoryview(o0bj)

Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that
support the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object obj. For many simple types such as bytes and bytearray, an element is a single byte, but other
types such as array.array may have bigger elements.

len(view) is equal to the length of tolist. If view.ndim = O, the length is 1. If view.ndim = 1,
the length is equal to the number of elements in the view. For higher dimensions, the length is equal
to the length of the nested list representation of the view. The itemsize attribute will give you the
number of bytes in a single element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in
a subview:

>>> v = memoryview(b'abcefg')
>>> y[1]

98

>>> v[-1]

103

>>> v[1:4]

<memory at 0x7£3ddc9f4350>
>>> bytes(v[1:4])

b'bce'’

If format is one of the native format specifiers from the struct module, indexing with an integer or a
tuple of integers is also supported and returns a single element with the correct type. One-dimensional
memoryviews can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews
can be indexed with tuples of exactly ndim integers where ndim is the number of dimensions. Zero-
dimensional memoryviews can be indexed with the empty tuple.

Here is an example with a non-byte format:

>>> import array

>>> a = array.array('l', [-11111111, 22222222, -33333333, 44444444])
>>> m = memoryview(a)

>>> m[0]

-11111111

>>> m[-1]

44444444

>>> m[::2] .tolist ()

[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Re-
sizing is not allowed:

68

Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-0461

The Python Library Reference, Release 3.6.5

>>> data = bytearray(b'abcefg')

>>> v = memoryview(data)

>>> v.readonly

False

>>> v[0] = ord(b'z")

>>> data

bytearray(b'zbcefg')

>>> v[1:4] = b'123"

>>> data

bytearray(b'z123fg')

>>> v[2:3] = b'spam'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: memoryview assignment: lvalue and rvalue have different structures

>>> v[2:6] = b'spam'

>>> data

bytearray(b'zlspam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hash-
able. The hash is defined as hash(m) == hash(m.tobytes()):

>>> v = memoryview(b'abcefg')
>>> hash(v) == hash(b'abcefg')

True

>>> hash(v[2:4]) == hash(b'ce')

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memo-
ryviews with formats ‘B’, ‘b’ or ‘¢’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically with collections.abc.Sequence
Changed in version 3.5: memoryviews can now be indexed with tuple of integers.
memoryview has several methods:

__eq__Cexporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all
corresponding values are equal when the operands’ respective format codes are interpreted using
struct syntax.

For the subset of struct format strings currently supported by tolist (), v and w are equal if
v.tolist() == w.tolist():

>>> import array

>>> a = array.array('I', [1, 2, 3, 4, 5])

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])
>>> ¢ = array.array('b', [5, 3, 11)

>>> x = memoryview(a)

>>> y = memoryview(b)

>>>x==a==y==

True

>>> x.tolist() == a.tolist() == y.tolist() == b.tolist()
True

>>> z = y[::-2]

>>> z == ¢

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 69

https://www.python.org/dev/peps/pep-3118

The Python Library Reference, Release 3.6.5

(continued from previous page)

True
>>> z.tolist() == c.tolist()
True

If either format string is not supported by the struct module, then the objects will always
compare as unequal (even if the format strings and buffer contents are identical):

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint(BigEndianStructure):
fields = [("x", c_long), ("y", c_long)]

>>> point = BEPoint (100, 200)
>>> a = memoryview(point)
>>> b = memoryview(point)

>>> a == point

False

>>> a ==

False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format
and the logical array structure.

tobytes ()

Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor
on the memoryview.

>>> m = memoryview(b"abc")
>>> m.tobytes()

b'abc'

>>> bytes(m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements
converted to bytes. tobytes () supports all format strings, including those that are not in struct
module syntax.

hex ()

Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview(b"abc")
>>> m.hex()
'616263"'

New in version 3.5.

tolist()

Return the data in the buffer as a list of elements.

>>> memoryview(b'abc').tolist ()

[97, 98, 99]

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.3])
>>> m = memoryview(a)

>>> m.tolist()

[1.1, 2.2, 3.3]

70

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

Changed in version 3.3: tolist() now supports all single character native formats in struct
module syntax as well as multi-dimensional representations.

release()
Release the underlying buffer exposed by the memoryview object. Many objects take special
actions when a view is held on them (for example, a bytearray would temporarily forbid resizing);
therefore, calling release() is handy to remove these restrictions (and free any dangling resources)
as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release () itself which can be called multiple times):

>>> m = memoryview(b'abc')
>>> m.release()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview(b'abc') as m:
m[0]

o7

>>> m[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast (format[, shape])
Cast a memoryview to a new format or shape. shape defaults to [byte_length//new_itemsize],
which means that the result view will be one-dimensional. The return value is a new memoryview,
but the buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous ->
1D.

The destination format is restricted to a single element native format in struct syntax. One of
the formats must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the
same as the original length.

Cast 1D/long to 1D /unsigned bytes:

>>> import array

>>> a = array.array('l', [1,2,3])
>>> x = memoryview(a)

>>> x.format

K

>>> x.itemsize

8

>>> len(x)

>>> x.nbytes

24

>>> y = x.cast('B')
>>> y.format

B!

>>> y.itemsize

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 71

The Python Library Reference, Release 3.6.5

(continued from previous page)

1

>>> len(y)
24

>>> y.nbytes
24

Cast 1D /unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz')
>>> x = memoryview(b)
>>> x[0] = b'a’
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview: invalid value for format "B"
>>> y = x.cast('c')
>>> y[0] = b'a’
>>> b
bytearray(b'ayz')

Cast 1D /bytes to 3D/ints to 1D/signed char:

>>> import struct

>>> buf = struct.pack("i"*12, *list(range(12)))
>>> x = memoryview(buf)

>>> y = x.cast('i', shape=[2,2,3])

>>> y.tolist()

tcfo, 1, 21, 3, 4, 511, [[6, 7, 8], [9, 10, 11]1]]
>>> y.format

lil

>>> y.itemsize

4

>>> len(y)

2

>>> y.nbytes

48

>>> z = y.cast('b')

>>> z.format

lbl

>>> z.itemsize

>>> len(z)
48

>>> z.nbytes
48

Cast 1D /unsigned char to 2D /unsigned long:

>>> buf = struct.pack("L"*6, *list(range(6)))
>>> x = memoryview(buf)

>>>y = x.cast('L', shape=[2,3])

>>> len(y)

2

>>> y.nbytes

48

>>> y.tolist ()

[fo, 1, 2], [3, 4, 5]]

72

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

New in version 3.3.

Changed in version 3.5: The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available:

obj

The underlying object of the memoryview:

>>> b = bytearray(b'xyz')
>>> m = memoryview(b)

>>> m.obj is b

True

New in version 3.3.

nbytes

nbytes == product(shape) * itemsize == len(m.tobytes()). This is the amount of space
in bytes that the array would use in a contiguous representation. It is not necessarily equal to
len(m):

>>> import array

>>> a = array.array('i', [1,2,3,4,5])
>>> m = memoryview(a)

>>> len(m)

5

>>> m.nbytes

20

>>> y = m[::2]

>>> len(y)

>>> y.nbytes

12

>>> len(y.tobytes())
12

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack("d"*12, *[1.5%x for x in range(12)])

>>> x = memoryview(buf)

>>> y = x.cast('d', shape=[3,4])

>>> y.tolist()

[(0.0, 1.5, 3.0, 4.5], [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
>>> len(y)

3

>>> y.nbytes

96

New in version 3.3.

readonly

A bool indicating whether the memory is read only.

format

A string containing the format (in struct module style) for each element in the view. A mem-
oryview can be created from exporters with arbitrary format strings, but some methods (e.g.
tolist()) are restricted to native single element formats.

Changed in version 3.3: format 'B' is now handled according to the struct module syntax. This
means that memoryview(b'abc') [0] == b'abc'[0] == 97.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 73

The Python Library Reference, Release 3.6.5

itemsize
The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m = memoryview(array.array('H', [32000, 32001, 32002]))
>>> m.itemsize

2

>>> m[0]

32000

>>> struct.calcsize('H') == m.itemsize

True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each
dimension of the array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets
Used internally for PIL-style arrays. The value is informational only.

c_contiguous
A bool indicating whether the memory is C-contiguous.

New in version 3.3.

f_contiguous
A bool indicating whether the memory is Fortran contiguous.

New in version 3.3.

contiguous
A bool indicating whether the memory is contiguous.

New in version 3.3.

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership
testing, removing duplicates from a sequence, and computing mathematical operations such as intersection,
union, difference, and symmetric difference. (For other containers see the built-in dict, list, and tuple
classes, and the collections module.)

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing,
or other sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can
be changed using methods like add() and remove(). Since it is mutable, it has no hash value and cannot
be used as either a dictionary key or as an element of another set. The frozenset type is immutable and
hashable — its contents cannot be altered after it is created; it can therefore be used as a dictionary key or
as an element of another set.

74 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces,
for example: {'jack', 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

class set([z’temble])

class frozenset([itemble])

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set
must be hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is
not specified, a new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s)
Return the number of elements in set s (cardinality of s).

x in s
Test z for membership in s.

X not in s
Test z for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a proper superset of other, that is, set >= other and set != other.

union (*others)
set | other |
Return a new set with elements from the set and all others.

intersection(*others)
set & other & ...
Return a new set with elements common to the set and all others.

difference (*others)
set - other - ...
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set ~ other
Return a new set with elements in either the set or other but not both.

copy O
Return a new set with a shallow copy of s.

Note, the mnon-operator versions of wunion(), intersection(), difference(), and
symmetric_difference(), issubset(), and issuperset() methods will accept any iterable as
an argument. In contrast, their operator based counterparts require their arguments to be sets.

4.9,

Set Types — set, frozenset 75

The Python Library Reference, Release 3.6.5

This precludes error-prone constructions like set('abc') & 'cbs' in favor of the more readable
set('abc') .intersection('cbs"').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every
element of each set is contained in the other (each is a subset of the other). A set is less than another
set if and only if the first set is a proper subset of the second set (is a subset, but is not equal). A
set is greater than another set if and only if the first set is a proper superset of the second set (is a
superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members.
For example, set('abc') == frozemnset('abc') returns True and so does set('abc') in
set ([frozenset('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any
two nonempty disjoint sets are not equal and are not subsets of each other, so all of the following
return False: a<b, a==b, or a>b.

Since sets only define partial ordering (subset relationships), the output of the list.sort () method
is undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For
example: frozenset('ab') | set('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of
frozenset:

update (*others)
set |= other |
Update the set, adding elements from all others.

intersection_update (*others)
set &= other & ...
Update the set, keeping only elements found in it and all others.

difference_update (*others)
set -= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set "= other
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard(elem)
Remove element elem from the set if it is present.

pop)
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear()
Remove all elements from the set.

Note, the non-operator versions of the update(), intersection_update(), difference_update(),
and symmetric_difference_update() methods will accept any iterable as an argument.

76

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

Note, the elem argument to the __contains__(), remove (), and discard() methods may be a set.
To support searching for an equivalent frozenset, a temporary one is created from elem.

4.10 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is
currently only one standard mapping type, the dictionary. (For other containers see the built-in list, set,
and tuple classes, and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists,
dictionaries or other mutable types (that are compared by value rather than by object identity) may not be
used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers
compare equal (such as 1 and 1.0) then they can be used interchangeably to index the same dictionary entry.
(Note however, that since computers store floating-point numbers as approximations it is usually unwise to
use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for exam-
ple: {'jack': 4098, 'sjoerd': 4127} or {4098: 'jack', 4127: ‘'sjoerd'}, or by the dict construc-
tor.

class dict(**kwarg)

class dict(mapping, **kwarg)

class dict (iterable, **kwarg)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of
keyword arguments.

If no positional argument is given, an empty dictionary is created. If a positional argument is given
and it is a mapping object, a dictionary is created with the same key-value pairs as the mapping object.
Otherwise, the positional argument must be an iterable object. Each item in the iterable must itself be
an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary,
and the second object the corresponding value. If a key occurs more than once, the last value for that
key becomes the corresponding value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary
created from the positional argument. If a key being added is already present, the value from the
keyword argument replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2,

"three": 3}:

>>> a = dict(one=1, two=2, three=3)

>>> b = {'one': 1, 'two': 2, 'three': 3}

>>> ¢ = dict(zip(['one', 'two', 'three'l, [1, 2, 31))
>>> d = dict([('two', 2), ('one', 1), ('three', 3)1)
>>> e = dict({'three': 3, 'one': 1, 'two': 2})

>>> a ==b ==c==d == e

True

Providing keyword arguments as in the first example only works for keys that are valid Python iden-
tifiers. Otherwise, any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should sup-
port too):

len(d)
Return the number of items in the dictionary d.

4.10. Mapping Types — dict 77

The Python Library Reference, Release 3.6.5

d[key]

Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__() and key is not present, the d [key] operation
calls that method with the key key as argument. The d[key] operation then returns or raises
whatever is returned or raised by the __missing__ (key) call. No other operations or methods
invoke __missing__(). If __missing__() is not defined, KeyError is raised. __missing__()

must be a method; it cannot be an instance variable:

>>> class Counter(dict):
def __missing__(self, key):
R return O
>>> ¢ = Counter()
>>> c['red']

>>> c['red'] += 1
>>> c['red']

The example above shows part of the implementation of collections.Counter. A different
__missing__ method is used by collections.defaultdict.

d[key] = value

Set d[key] to value.

del dl[keyl

Remove d[key] from d. Raises a KeyError if key is not in the map.

key in d

Return True if d has a key key, else False.

key not in d

Equivalent to not key in d.

iter(d)

Return an iterator over the keys of the dictionary. This is a shortcut for iter(d.keys()).

clear()

Remove all items from the dictionary.

copy O

Return a shallow copy of the dictionary.

classmethod fromkeys(seq[7 value])

Create a new dictionary with keys from seq and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None.

get (key[, default])

Return the value for key if key is in the dictionary, else default. If default is not given, it defaults
to None, so that this method never raises a KeyError.

items ()

Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view
objects.

keys ()

Return a new view of the dictionary’s keys. See the documentation of view objects.

pop(key[, default])

If key is in the dictionary, remove it and return its value, else return default. If default is not given

78

Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

and key is not in the dictionary, a KeyError is raised.

popitem()
Remove and return an arbitrary (key, value) pair from the dictionary.

popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If
the dictionary is empty, calling popitem() raises a KeyError.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return
default. default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return
None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or
other iterables of length two). If keyword arguments are specified, the dictionary is then updated
with those key/value pairs: d.update(red=1, blue=2).

values()
Return a new view of the dictionary’s values. See the documentation of view objects.

Dictionaries compare equal if and only if they have the same (key, value) pairs. Order comparisons
(‘< ‘<=, *>=", *>7) raise TypeError.

See also:

types.MappingProzyType can be used to create a read-only view of a dict.

4.10.1 Dictionary view objects

The objects returned by dict.keys (), dict.values() and dict.items () are view objects. They provide a
dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects
these changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len(dictview)
Return the number of entries in the dictionary.

iter(dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the
dictionary.

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python
implementations, and depends on the dictionary’s history of insertions and deletions. If keys, values
and items views are iterated over with no intervening modifications to the dictionary, the order of
items will directly correspond. This allows the creation of (value, key) pairs using zip(): pairs =
zip(d.values(), d.keys()). Another way to create the same list is pairs = [(v, k) for (k, v)
in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a RuntimeError or fail to
iterate over all entries.

x in dictview
Return True if z is in the underlying dictionary’s keys, values or items (in the latter case, z should be
a (key, value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key,
value) pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as

4.10. Mapping Types — dict 79

The Python Library Reference, Release 3.6.5

set-like since the entries are generally not unique.) For set-like views, all of the operations defined for the
abstract base class collections.abc.Set are available (for example, ==, <, or 7).

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys()
>>> values = dishes.values()

>>> # iteration

>>>n = 0

>>> for val in values:
c. n += val

>>> print(n)

504

>>> # keys and values are tterated over in the same order
>>> list(keys)

['eggs', 'bacon', 'sausage', 'spam']

>>> list(values)

[2, 1, 1, 500]

>>> # wiew objects are dynamic and reflect dict changes
>>> del dishes['eggs']

>>> del dishes['sausage']

>>> list (keys)

['spam', 'bacon']

>>> # set operations
>>> keys & {'eggs', 'bacon', 'salad'}

{'bacon'}
>>> keys ~ {'sausage', 'juice'}
{'juice', 'sausage', 'bacon', 'spam'}

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This
is implemented using a pair of methods that allow user-defined classes to define a runtime context that is
entered before the statement body is executed and exited when the statement ends:

contextmanager.__enter__()
Enter the runtime context and return either this object or another object related to the runtime context.
The value returned by this method is bound to the identifier in the as clause of with statements using
this context manager.

An example of a context manager that returns itself is a file object. File objects return themselves
from __ enter__ () to allow open() to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext (). These managers set the active decimal context to a copy of the original decimal
context and then return the copy. This allows changes to be made to the current decimal context in
the body of the with statement without affecting code outside the with statement.

contextmanager.__exit__(exc_type, exc_wal, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be
suppressed. If an exception occurred while executing the body of the with statement, the arguments
contain the exception type, value and traceback information. Otherwise, all three arguments are None.

80 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

Returning a true value from this method will cause the with statement to suppress the exception
and continue execution with the statement immediately following the with statement. Otherwise the
exception continues propagating after this method has finished executing. Exceptions that occur during
execution of this method will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a
false value to indicate that the method completed successfully and does not want to suppress the
raised exception. This allows context management code to easily detect whether or not an __ezit__ ()
method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or
other objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not
treated specially beyond their implementation of the context management protocol. See the conteztlib
module for some examples.

Python’s generators and the conteztlib. conteztmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the conteztlib.contexztmanager decorator, it
will return a context manager implementing the necessary __enter__() and __exit__() methods, rather
than the iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the
Python/C API. Extension types wanting to define these methods must provide them as a normal Python
accessible method. Compared to the overhead of setting up the runtime context, the overhead of a single
class dictionary lookup is negligible.

4.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.12.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses
a name defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement
is not, strictly speaking, an operation on a module object; import foo does not require a module object
named foo to exist, rather it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is __dict__. This is the dictionary containing the module’s symbol
table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment to
the __dict__ attribute is not possible (you can writem.__dict__['a']l = 1, which defines m.a to be 1, but
you can’t write m.__dict__ = {}). Modifying __dict__ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file,
they are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

4.12.2 Classes and Class Instances

See objects and class for these.

4.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list).

4.12. Other Built-in Types 81

The Python Library Reference, Release 3.6.5

There are really two flavors of function objects: built-in functions and user-defined functions. Both support
the same operation (to call the function), but the implementation is different, hence the different object

types.

See function for more information.

4.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods
(such as append () on lists) and class instance methods. Built-in methods are described with the types that
support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special
object: a bound method (also called instance method) object. When called, it will add the self argument to
the argument list. Bound methods have two special read-only attributes: m.__self__ is the object on which
the method operates, and m.__func__ is the function implementing the method. Calling m(arg-1, arg-2,

., arg-n) is completely equivalent to calling m.__func__(m.__self__, arg-1, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method
attributes are actually stored on the underlying function object (meth.__func__), setting method attributes
on bound methods is disallowed. Attempting to set an attribute on a method results in an AttributeError
being raised. In order to set a method attribute, you need to explicitly set it on the underlying function
object:

>>> class C:
def method(self):
pass
>>> ¢ = CO
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'
>>> c.method.__func__.whoami = 'my name is method'
>>> c.method.whoami
'my name is method'

See types for more information.

4.12.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such
as a function body. They differ from function objects because they don’t contain a reference to their global
execution environment. Code objects are returned by the built-in compile () function and can be extracted
from function objects through their __code__ attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the ezec () or eval ()
built-in functions.

See types for more information.

4.12.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type ().
There are no special operations on types. The standard module types defines names for all standard built-in

82 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.5

types.

Types are written like this: <class 'int'>.

4.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations.
There is exactly one null object, named None (a built-in name). type (None) () produces the same singleton.

It is written as None.

4.12.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one
ellipsis object, named Ellipsis (a built-in name). type(Ellipsis) () produces the Ellipsis singleton.

It is written as Ellipsis or

4.12.9 The Notlmplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types
they don’t support. See comparisons for more information. There is exactly one NotImplemented object.
type (NotImplemented) () produces the singleton instance.

It is written as NotImplemented.

4.12.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values
(although other values can also be considered false or true). In numeric contexts (for example when used as
the argument to an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in
function bool () can be used to convert any value to a Boolean, if the value can be interpreted as a truth
value (see section Truth Value Testing above).

They are written as False and True, respectively.

4.12.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant.
Some of these are not reported by the dir () built-in function.

object.__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class__
The class to which a class instance belongs.

4.13. Special Attributes 83

The Python Library Reference, Release 3.6.5

class.__bases__
The tuple of base classes of a class object.

definition.__name__
The name of the class, function, method, descriptor, or generator instance.

definition.__qualname__
The qualified name of the class, function, method, descriptor, or generator instance.

New in version 3.3.

class.__mro__
This attribute is a tuple of classes that are considered when looking for base classes during method
resolution.

class.mro()
This method can be overridden by a metaclass to customize the method resolution order for its in-
stances. It is called at class instantiation, and its result is stored in __mro__

class.__subclasses__()
Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all
those references still alive. Example:

>>> int.__subclasses__()
[<class 'bool'>]

84 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseEzception. In a try statement
with an except clause that mentions a particular class, that clause also handles any exception classes derived
from that class (but not exception classes from which it is derived). Two exception classes that are not related
via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where
mentioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or
a tuple of several items of information (e.g., an error code and a string explaining the code). The associated
value is usually passed as arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error
condition “just like” the situation in which the interpreter raises the same exception; but beware that there
is nothing to prevent user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to
derive new exceptions from the Ezception class or one of its subclasses, and not from BaseEzception. More
information on defining exceptions is available in the Python Tutorial under tut-userexceptions.

When raising (or re-raising) an exception in an except or finally clause __context__ is automatically set
to the last exception caught; if the new exception is not handled the traceback that is eventually displayed
will include the originating exception(s) and the final exception.

When raising a new exception (rather than using a bare raise to re-raise the exception currently being
handled), the implicit exception context can be supplemented with an explicit cause by using from with
raise:

’raise new_exc from original_exc

The expression following from must be an exception or None. It will be set as __cause__ on the raised
exception. Setting __cause__ also implicitly sets the __suppress_context__ attribute to True, so that
using raise new_exc from Nomne effectively replaces the old exception with the new one for display purposes
(e.g. converting KeyError to AttributeError, while leaving the old exception available in __context__ for
introspection when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the
exception itself. An explicitly chained exception in __cause__ is always shown when present. An implicitly
chained exception in __context__ is shown only if __cause__ is None and __suppress_context__ is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the
traceback always shows the last exception that was raised.

85

The Python Library Reference, Release 3.6.5

5.1 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes
(for that, use Ezception). If str() is called on an instance of this class, the representation of the
argument(s) to the instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like
OSError) expect a certain number of arguments and assign a special meaning to the elements of
this tuple, while others are usually called only with a single string giving an error message.

with_traceback(td)
This method sets tb as the new traceback for the exception and returns the exception object. It
is usually used in exception handling code like this:

try:

except SomeException:
tb = sys.exc_info() [2]
raise OtherException(...).with_traceback(tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions
should also be derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors:
OverflowError, ZeroDivisionError, FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence
is invalid: IndezError, KeyError. This can be raised directly by codecs. Lookup ().

5.2 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object
does not support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when the input () function hits an end-of-file condition (EOF) without reading any data. (N.B.:
the i0.I0Base.read() and %o.I0Base.readline() methods return an empty string when they hit
EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised

86 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.6.5

when Python is configured with the ——with-fpectl option, or the WANT_SIGFPE_HANDLER symbol is
defined in the pyconfig.h file.

exception GeneratorExit
Raised when a generator or coroutine is closed; see generator.close() and coroutine.close(). It
directly inherits from BaseEzception instead of Ezception since it is technically not an error.

exception ImportError
Raised when the import statement has troubles trying to load a module. Also raised when the “from
list” in from ... import has a name that cannot be found.

The name and path attributes can be set using keyword-only arguments to the constructor. When set
they represent the name of the module that was attempted to be imported and the path to any file
which triggered the exception, respectively.

Changed in version 3.3: Added the name and path attributes.

exception ModuleNotFoundError
A subclass of ImportError which is raised by import when a module could not be located. It is also
raised when None is found in sys.modules.

New in version 3.6.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the
allowed range; if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a
check for interrupts is made regularly. The exception inherits from BaseEzception so as to not be
accidentally caught by code that catches Ezception and thus prevent the interpreter from exiting.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some
objects). The associated value is a string indicating what kind of (internal) operation ran out of mem-
ory. Note that because of the underlying memory management architecture (C’s malloc () function),
the interpreter may not always be able to completely recover from this situation; it nevertheless raises
an exception so that a stack traceback can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exception NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method, or while the class is
being developed to indicate that the real implementation still needs to be added.

Note: It should not be used to indicate that an operator or method is not meant to be supported at
all — in that case either leave the operator / method undefined or, if a subclass, set it to None.

Note: NotImplementedError and NotImplemented are not interchangeable, even though they have
similar names and purposes. See NotImplemented for details on when to use it.

5.2. Concrete exceptions 87

The Python Library Reference, Release 3.6.5

exception OSError([arg])

exception OSError (errno, strermr[, ﬁlename[, winermr[, ﬁlename?]]])
This exception is raised when a system function returns a system-related error, including I/0 failures
such as “file not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes
default to None if not specified. For backwards compatibility, if three arguments are passed, the args
attribute contains only a 2-tuple of the first two constructor arguments.

The constructor often actually returns a subclass of OSError, as described in OS exceptions below. The
particular subclass depends on the final errno value. This behaviour only occurs when constructing
O0SError directly or via an alias, and is not inherited when subclassing.

errno
A numeric error code from the C variable errno.

winerror
Under Windows, this gives you the native Windows error code. The errno attribute is then an
approximate translation, in POSIX terms, of that native error code.

Under Windows, if the winerror constructor argument is an integer, the errno attribute is deter-
mined from the Windows error code, and the errno argument is ignored. On other platforms, the
winerror argument is ignored, and the winerror attribute does not exist.

strerror
The corresponding error message, as provided by the operating system. It is formatted by the C
functions perror () under POSIX, and FormatMessage () under Windows.

filename

filename2
For exceptions that involve a file system path (such as open() or os.unlink()), filename is
the file name passed to the function. For functions that involve two file system paths (such as
os.rename()), filename2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, socket.error, select.error
and mmap.error have been merged into OSError, and the constructor may return a subclass.

Changed in version 3.4: The filename attribute is now the original file name passed to the func-
tion, instead of the name encoded to or decoded from the filesystem encoding. Also, the filename?2
constructor argument and attribute was added.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur
for integers (which would rather raise MemoryError than give up). However, for historical reasons,
OverflowError is sometimes raised for integers that are outside a required range. Because of the lack
of standardization of floating point exception handling in C, most floating point operations are not
checked.

exception RecursionError
This exception is derived from RuntimeError. It is raised when the interpreter detects that the
maximum recursion depth (see sys.getrecursionlimit()) is exceeded.

New in version 3.5: Previously, a plain RuntimeError was raised.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref.prozy () function, is
used to access an attribute of the referent after it has been garbage collected. For more information
on weak references, see the weakref module.

88 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.6.5

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value
is a string indicating what precisely went wrong.

exception StopIteration
Raised by built-in function nezt () and an iterator’s __nexzt__ () method to signal that there are no
further items produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing
the exception, and defaults to None.

When a generator or coroutine function returns, a new StopIteration instance is raised, and the
value returned by the function is used as the value parameter to the constructor of the exception.

If a generator function defined in the presence of a from __future__ import generator_stop direc-
tive raises StopIteration, it will be converted into a RuntimeError (retaining the StopIteration as
the new exception’s cause).

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to
return a value.

Changed in version 3.5: Introduced the RuntimeError transformation.

exception StopAsyncIteration
Must be raised by __anext__() method of an asynchronous iterator object to stop the iteration.

New in version 3.5.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call
to the built-in functions ezec () or ewval (), or when reading the initial script or standard input (also
interactively).

Instances of this class have attributes filename, lineno, offset and text for easier access to the
details. str() of the exception instance returns only the message.

exception IndentationError
Base class for syntax errors related to incorrect indentation. This is a subclass of SyntazError.

exception TabError
Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it
to abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the
version of the Python interpreter (sys.version; it is also printed at the start of an interactive Python
session), the exact error message (the exception’s associated value) and if possible the source of the
program that triggered the error.

exception SystemExit

This exception is raised by the sys.ezit() function. It inherits from BaseEzception instead of
Exzception so that it is not accidentally caught by code that catches Ezception. This allows the
exception to properly propagate up and cause the interpreter to exit. When it is not handled, the
Python interpreter exits; no stack traceback is printed. The constructor accepts the same optional
argument passed to sys.ezit (). If the value is an integer, it specifies the system exit status (passed
to C’s exit () function); if it is None, the exit status is zero; if it has another type (such as a string),
the object’s value is printed and the exit status is one.

5.2. Concrete exceptions 89

The Python Library Reference, Release 3.6.5

A call to sys. ezit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk
of losing control. The os._ezit () function can be used if it is absolutely positively necessary to exit
immediately (for example, in the child process after a call to os. fork()).

code
The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated
value is a string giving details about the type mismatch.

This exception may be raised by user code to indicate that an attempted operation on an object is not
supported, and is not meant to be. If an object is meant to support a given operation but has not yet
provided an implementation, NotImplementedError is the proper exception to raise.

Passing arguments of the wrong type (e.g. passing a list when an int is expected) should result in a
TypeError, but passing arguments with the wrong value (e.g. a number outside expected boundaries)
should result in a ValueError.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been
bound to that variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

UnicodeError has attributes that describe the encoding or decoding error. For example, err.
object[err.start:err.end] gives the particular invalid input that the codec failed on.

encoding
The name of the encoding that raised the error.

reason
A string describing the specific codec error.

object
The object the codec was attempting to encode or decode.

start
The first index of invalid data in object.

end
The index after the last invalid data in object.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an
inappropriate value, and the situation is not described by a more precise exception such as IndezError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a
string indicating the type of the operands and the operation.

90 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.6.5

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they
are aliases of OSError.

exception EnvironmentError
exception IOError

exception WindowsError
Only available on Windows.

5.2.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation.
Corresponds to errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This
attribute is available when using the buffered I/0 classes from the 70 module.

exception ChildProcessError
Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError
A base class for connection-related issues.

Subclasses are BrokenPipeError, ConnectiondbortedError, ConnectionRefusedError and
ConnectionResetError.

exception BrokenPipeError
A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been
closed, or trying to write on a socket which has been shutdown for writing. Corresponds to errno
EPIPE and ESHUTDOWN.

exception ConnectionAbortedError
A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds
to errno ECONNABORTED.

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds
to errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError
Raised when trying to create a file or directory which already exists. Corresponds to errno EEXIST.

exception FileNotFoundError
Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

exception InterruptedError
Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

Changed in version 3.5: Python now retries system calls when a syscall is interrupted by a signal,
except if the signal handler raises an exception (see PEP 475 for the rationale), instead of raising
InterruptedError.

5.2. Concrete exceptions 91

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.6.5

exception IsADirectoryError
Raised when a file operation (such as os.remove()) is requested on a directory. Corresponds to errno
EISDIR.

exception NotADirectoryError
Raised when a directory operation (such as os. listdir()) is requested on something which is not a
directory. Corresponds to errno ENOTDIR.

exception PermissionError
Raised when trying to run an operation without the adequate access rights - for example filesystem
permissions. Corresponds to errno EACCES and EPERM.

exception ProcessLookupError
Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

exception TimeoutError
Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.

New in version 3.3: All the above 0OSError subclasses were added.
See also:

PEP 3151 - Reworking the OS and IO exception hierarchy

5.3 Warnings

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax.

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

exception UnicodeWarning
Base class for warnings related to Unicode.

exception BytesWarning
Base class for warnings related to bytes and bytearray.

exception ResourceWarning
Base class for warnings related to resource usage.

New in version 3.2.

92 Chapter 5. Built-in Exceptions

https://www.python.org/dev/peps/pep-3151

The Python Library Reference, Release 3.6.5

5.4 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception
+-— StoplIteration
+-- StopAsynclteration
+-— ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EQFError
+-— ImportError
| +-- ModuleNotFoundError
+-— LookupError
| +-- IndexError
| +-- KeyError
+-— MemoryError
+-- NameError
| +-- UnboundLocalError
+-- 0SError
| +-- BlockingIOError
| +-— ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-— UnicodeTranslateError

(continues on next page)

5.4. Exception hierarchy

93

The Python Library Reference, Release 3.6.5

(continued from previous page)

+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-— ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

94

Chapter 5. Built-in Exceptions

CHAPTER
SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text
processing services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In
addition, see the documentation for Python’s built-in string type in Text Sequence Type

str.

6.1 string — Common string operations

Source code: Lib/string.py

See also:

Text Sequence Type str

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

string.ascii_lowercase
The lowercase letters 'abcdefghijklmnopgrstuvwxyz'. This value is not locale-dependent and will
not change.

string.ascii_uppercase
The uppercase letters ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'. This value is not locale-dependent and will
not change.

string.digits
The string '0123456789"'.

string.hexdigits
The string '0123456789abcdefABCDEF'

string.octdigits
The string '01234567"'.

95

https://github.com/python/cpython/tree/3.6/Lib/string.py

The Python Library Reference, Release 3.6.5

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

string.printable
String of ASCII characters which are considered printable. This is a combination of digits,
ascti_letters, punctuation, and whitespace.

string.whitespace
A string containing all ASCII characters that are considered whitespace. This includes the characters
space, tab, linefeed, return, formfeed, and vertical tab.

6.1.2 Custom String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via
the format () method described in PEP 3101. The Formatter class in the string module allows you to
create and customize your own string formatting behaviors using the same implementation as the built-in
format () method.

class string.Formatter
The Formatter class has the following public methods:

format (format_string, *args, **kwargs)
The primary API method. It takes a format string and an arbitrary set of positional and keyword
arguments. It is just a wrapper that calls vformat ().

Deprecated since version 3.5: Passing a format string as keyword argument format_ string has
been deprecated.

vformat (format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases
where you want to pass in a predefined dictionary of arguments, rather than unpacking and repack-
ing the dictionary as individual arguments using the *args and **kwargs syntax. vformat () does
the work of breaking up the format string into character data and replacement fields. It calls the
various methods described below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)
Loop over the format_string and return an iterable of tuples (literal text, field name, for-
mat__spec, conversion). This is used by vformat () to break the string into either literal text,
or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement
field. If there is no literal text (which can happen if two replacement fields occur consecutively),
then literal text will be a zero-length string. If there is no replacement field, then the values of
field_name, format_spec and conversion will be None.

get_field(field name, args, kwargs)
Given field _name as returned by parse() (see above), convert it to an object to be formatted.
Returns a tuple (obj, used_key). The default version takes strings of the form defined in PEP
3101, such as “O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The
return value used_key has the same meaning as the key parameter to get_value().

get_value(key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an
integer, it represents the index of the positional argument in args; if it is a string, then it represents
a named argument in kwargs.

96 Chapter 6. Text Processing Services

https://www.python.org/dev/peps/pep-3101
https://www.python.org/dev/peps/pep-3101
https://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.6.5

The args parameter is set to the list of positional arguments to vformat (), and the kwargs
parameter is set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field
name; Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value() to be called with a key
argument of 0. The name attribute will be looked up after get_value() returns by calling the
built-in getattr() function.

If the index or keyword refers to an item that does not exist, then an IndexzError or KeyError
should be raised.

check_unused_args (used__args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of
all argument keys that were actually referred to in the format string (integers for positional argu-
ments, and strings for named arguments), and a reference to the args and kwargs that was passed to
vformat. The set of unused args can be calculated from these parameters. check_unused_args ()
is assumed to raise an exception if the check fails.

format_field(value, format_spec)
format_field() simply calls the global format() built-in. The method is provided so that
subclasses can override it.

convert_field(value, conversion)
Converts the value (returned by get_field()) given a conversion type (as in the tuple returned
[

by the parse() method). The default version understands ‘s’ (str), ‘t’ (repr) and ‘a’ (ascii)
conversion types.

6.1.3 Format String Syntax

The str. format () method and the Formatter class share the same syntax for format strings (although in
the case of Formatter, subclasses can define their own format string syntax). The syntax is related to that
of formatted string literals, but there are differences.

Format strings contain “replacement fields” surrounded by curly braces {}. Anything that is not contained
in braces is considered literal text, which is copied unchanged to the output. If you need to include a brace
character in the literal text, it can be escaped by doubling: {{ and }}.

The grammar for a replacement field is as follows:

replacement_field := "{" [fteld_name] ["!" conversion] [":" format_spec] "}"
field_name = arg_name ("." attribute_name | "[" element_indexr "]")*
arg_name = [identifier | digit+]

attribute_name BES identifier

element_index = digit+ | index_string

index_string n= <any source character except "]"> +

conversion n= "o "s" | "a"

format_spec n= <described in the next section>

In less formal terms, the replacement field can start with a field name that specifies the object whose value
is to be formatted and inserted into the output instead of the replacement field. The field _name is optionally
followed by a conwversion field, which is preceded by an exclamation point '!', and a format_spec, which is
preceded by a colon ':'. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

6.1. string — Common string operations 97

The Python Library Reference, Release 3.6.5

The field__name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it
refers to a positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical
arg_names in a format string are 0, 1, 2, .. in sequence, they can all be omitted (not just some) and the
numbers 0, 1, 2, ... will be automatically inserted in that order. Because arg name is not quote-delimited, it
is not possible to specify arbitrary dictionary keys (e.g., the strings '10" or ':-]') within a format string.
The arg _name can be followed by any number of index or attribute expressions. An expression of the form
'.name' selects the named attribute using getattr (), while an expression of the form '[index]' does an
index lookup using __getitem__Q).

Changed in version 3.1: The positional argument specifiers can be omitted, so '{} {}' is equivalent to '{0}

{13

Some simple format string examples:

"First, thou shalt count to " # References first postitional argument

"Bring me a ! # Implicitly references the first positional argument
"From to {}" # Same as "From {0} to {1}"

"My quest is ! # References keyword argument 'name’

"Weight in tomns " # 'weight' attridbute of first positional arg

"Units destroyed: ! # First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is
done by the __format__() method of the value itself. However, in some cases it is desirable to force a type
to be formatted as a string, overriding its own definition of formatting. By converting the value to a string
before calling __format__(), the normal formatting logic is bypassed.

Three conversion flags are currently supported: '!s' which calls st () on the value, ' 'r' which calls repr ()
and '!a' which calls asciz ().

Some examples:

"Harold's a clever " # Calls str() on the argument first
"Bring out the holy " # Calls repr() on the argument first
"More " # Calls ascii() on the argument first

The format__spec field contains a specification of how the value should be presented, including such details as
field width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting
mini-language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields
may contain a field name, conversion flag and format specification, but deeper nesting is not allowed. The
replacement fields within the format_spec are substituted before the format__spec string is interpreted. This
allows the formatting of a value to be dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how
individual values are presented (see Format String Syntax and f-strings). They can also be passed directly
to the built-in format () function. Each formattable type may define how the format specification is to be
interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting
options are only supported by the numeric types.

98 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

A general convention is that an empty format string ("") produces the same result as if you had called str()
on the value.

A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

format_spec

fill = <any character>

align — ngn | nyn | n=n | n-~n

SlgIl l|+|l | n_n | non

width = digit+

grouping_option = L I

precision = digit+

type = llbll | IICII | Hdll | llell I IIEII | Ilfll | IIFII | Ilgll I IIGII | Ilnll |

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults
to a space if omitted. It is not possible to use a literal curly brace (“{” or “}”) as the fill character in a
formatted string literal or when using the str. format () method. However, it is possible to insert a curly

brace with a nested replacement field. This limitation doesn’t affect the format () function.

The meaning of the various alignment options is as follows:

"O"

Op- | Meaning

tion

'<' | Forces the field to be left-aligned within the available space (this is the default for most
objects).

'>" | Forces the field to be right-aligned within the available space (this is the default for

numbers).

Forces the padding to be placed after the sign (if any) but before the digits. This is
used for printing fields in the form ‘+-000000120°. This alignment option is only valid for
numeric types. It becomes the default when ‘0’ immediately precedes the field width.

Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data

to fill it, so that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning

tion

T+ indicates that a sign should be used for both positive as well as negative numbers.

-t indicates that a sign should be used only for negative numbers (this is the default
behavior).

space | indicates that a leading space should be used on positive numbers, and a minus sign
on negative numbers.

The '#' option causes the “alternate form” to be used for the conversion. The alternate form is defined
differently for different types. This option is only valid for integer, float, complex and Decimal types. For
integers, when binary, octal, or hexadecimal output is used, this option adds the prefix respective '0b', '00"',
or '0x' to the output value. For floats, complex and Decimal the alternate form causes the result of the
conversion to always contain a decimal-point character, even if no digits follow it. Normally, a decimal-point
character appears in the result of these conversions only if a digit follows it. In addition, for 'g' and 'G'

conversions, trailing zeros are not removed from the result.

6.1. string — Common string operations

99

[[filtlalign] [sign] [#] [0] [width] [grouping_option] [.precision] [typel

|ISII

"X"

The Python Library Reference, Release 3.6.5

The ', ' option signals the use of a comma for a thousands separator. For a locale aware separator, use the
'n' integer presentation type instead.

Changed in version 3.1: Added the ', ' option (see also PEP 378).

The ' _' option signals the use of an underscore for a thousands separator for floating point presentation types
and for integer presentation type 'd'. For integer presentation types 'b', 'o', 'x', and 'X', underscores
will be inserted every 4 digits. For other presentation types, specifying this option is an error.

Changed in version 3.6: Added the '_' option (see also PEP 515).

width is a decimal integer defining the minimum field width. If not specified, then the field width will be
determined by the content.

When no explicit alignment is given, preceding the width field by a zero ('0') character enables sign-aware
zero-padding for numeric types. This is equivalent to a fill character of '0' with an alignment type of '='.

The precision is a decimal number indicating how many digits should be displayed after the decimal point
for a floating point value formatted with 'f' and 'F', or before and after the decimal point for a floating
point value formatted with 'g' or 'G'. For non-number types the field indicates the maximum field size -
in other words, how many characters will be used from the field content. The precision is not allowed for
integer values.

Finally, the type determines how the data should be presented.

The available string presentation types are:

Type | Meaning
's' String format. This is the default type for strings and may be omitted.

None | The same as 's'.

The available integer presentation types are:

Type| Meaning

'b' | Binary format. Outputs the number in base 2.

'c' | Character. Converts the integer to the corresponding unicode character before printing.
'd' | Decimal Integer. Outputs the number in base 10.

'o' | Octal format. Outputs the number in base 8.

'x' | Hex format. Outputs the number in base 16, using lower- case letters for the digits
above 9.

'X' | Hex format. Outputs the number in base 16, using upper- case letters for the digits
above 9.

n' | Number. This is the same as 'd', except that it uses the current locale setting to insert
the appropriate number separator characters.

None The same as 'd'.

In addition to the above presentation types, integers can be formatted with the floating point presentation
types listed below (except 'n' and None). When doing so, float () is used to convert the integer to a floating
point number before formatting.

The available presentation types for floating point and decimal values are:

100 Chapter 6. Text Processing Services

https://www.python.org/dev/peps/pep-0378
https://www.python.org/dev/peps/pep-0515

The Python Library Reference, Release 3.6.5

Type| Meaning

'e' | Exponent notation. Prints the number in scientific notation using the letter
indicate the exponent. The default precision is 6.

'E' | Exponent notation. Same as 'e' except it uses an upper case ‘E’ as the separator
character.

'f' | Fixed point. Displays the number as a fixed-point number. The default precision is 6.
'F' | Fixed point. Same as 'f', but converts nan to NAN and inf to INF.

'g' | General format. For a given precision p >= 1, this rounds the number to p significant
digits and then formats the result in either fixed-point format or in scientific notation,
depending on its magnitude.

The precise rules are as follows: suppose that the result formatted with presentation
type 'e' and precision p-1 would have exponent exp. Then if -4 <= exp < p, the
number is formatted with presentation type 'f' and precision p-1-exp. Otherwise,
the number is formatted with presentation type 'e' and precision p-1. In both cases
insignificant trailing zeros are removed from the significand, and the decimal point is
also removed if there are no remaining digits following it.

Positive and negative infinity, positive and negative zero, and nans, are formatted as
inf, -inf, 0, -0 and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1. The default precision is 6.
'G' | General format. Same as 'g' except switches to 'E' if the number gets too large. The
representations of infinity and NaN are uppercased, too.

n' | Number. This is the same as 'g', except that it uses the current locale setting to insert
the appropriate number separator characters.

%" | Percentage. Multiplies the number by 100 and displays in fixed ('f') format, followed
by a percent sign.

Nong Similar to 'g', except that fixed-point notation, when used, has at least one digit past
the decimal point. The default precision is as high as needed to represent the particular
value. The overall effect is to match the output of str() as altered by the other format
modifiers.

‘e’ to

Format examples

This section contains examples of the str. format () syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %-formatting, with the addition of the {} and with :
used instead of %. For example, '%03.2f"' can be translated to '{:03.2f}"'.

The new format syntax also supports new and different options, shown in the follow examples.

Accessing arguments by position:

>>> ! , s ".format('a', 'b', 'c')

'a, b, c'

>>> '{}, s ".format('a', 'b', 'c') # 3.1+ only

'a, b, c'

>>> ! , s ".format('a', 'b', 'c')

'c, b, a'

>>> ! , s ".format (*'abc') # unpacking argument sequence

'c, b, a'

>>> ! ' .format('abra', 'cad') # arguments' indices can be repeated
'abracadabra’

Accessing arguments by name:

6.1. string — Common string operations 101

The Python Library Reference, Release 3.6.5

>>> 'Coordinates: {latitude}, {longitude}'.format(latitude='37.24N', longitude='-115.81W")
'Coordinates: 37.24N, -115.81W'

>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}

>>> 'Coordinates: {latitudel, {longitude}'.format(**coord)

'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> ('The complex number {0} is formed from the real part {0.real} '
'and the imaginary part {0.imagt.').format(c)
'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.'
>>> class Point:
def __init__(self, x, y):
self.x, self.y = x, y
def __str__(self):
return 'Point({self.z}, {self.y})'.format(self=self)

>>> str(Point (4, 2))
'"Point (4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: {0[0]}; Y: {0[1]}'.format(coord)
'X: 3; Y: 5!

Replacing %s and %r:

>>> "repr() shows quotes: {/r}; str() doesn't: {/s}".format('testl', 'test2')
"repr() shows quotes: 'testl'; str() doesn't: test2"

Aligning the text and specifying a width:

>>> ' {:<30}" .format('left aligned')

'left aligned !

>>> '{:>30}" . format('right aligned')

! right aligned'

>>> '{:730}' . format('centered')

! centered !

>>> ' {:#7°30}"' .format('centered') # use '*' as a fill char
Uskokskokk Rk Rk Rk CENt @T @Rk KKKk KKKk |

Replacing %+f, %-f, and % f and specifying a sign:

>>> '{:+f}; {:+f}' .format(3.14, -3.14) # show it always

'+3.140000; -3.140000'

>>> '{: fF; {: f}'.format(3.14, -3.14) # show a space for positive numbers

' 3.140000; -3.140000'

>>> ' {:=f}; {:-f}' .format(3.14, -3.14) # show only the minus -- same as '{:f}; {:f}'
'3.140000; -3.140000'

Replacing %x and %o and converting the value to different bases:

>>> # format also supports binary numbers
>>> "int: {0:d}; hex: {0:z}; oct: {0:0}; Dbin: {0:b}".format (42)
'int: 42; hex: 2a; oct: 52; bin: 101010’

(continues on next page)

102 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> # with Oz, Oo, or 0Ob as prefix:
>>> "int: ; hex: ; oct: ; bin: " format (42)
'int: 42; hex: 0x2a; oct: 0052; bin: 0b101010'

Using the comma as a thousands separator:

>>> ! " . format (1234567890)
'1,234,567,890'

Expressing a percentage:

>>> points = 19

>>> total = 22

>>> 'Correct answers: ' .format (points/total)
'Correct answers: 86.36%'

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> '{:YY-Ym-/d %H:%M:%S}" . format (d)

'2010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip('<™>', ['left', 'center', 'right']):
'{0: 16}' . format(text, fill=align, align=align)

'left<<<<<LLKL!

'>>>>>>>>>>>right!

>>>

>>> octets = [192, 168, 0, 1]

>>> ! '.format (*octets)

'COA80001"

>>> int(_, 16)

3232235521

>>>

>>> width = 5

>>> for num in range(5,12):
for base in 'dXob':

print('{0: }'.format (num, base=base, width=width), end=' ')
print ()
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

6.1.4 Template strings

Templates provide simpler string substitutions as described in PEP 292. Instead of the normal %-based
substitutions, Templates support $-based substitutions, using the following rules:

6.1. string — Common string operations 103

https://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 3.6.5

$$ is an escape; it is replaced with a single $.

$identifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier" is restricted to any case-insensitive ASCII alphanumeric string (including underscores)
that starts with an underscore or ASCII letter. The first non-identifier character after the $ character
terminates this placeholder specification.

${identifier?} is equivalent to $identifier. It is required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "${noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.

The string module provides a Template class that implements these rules. The methods of Template are:

class string.Template (template)

The constructor takes a single argument which is the template string.

substitute (mapping, **kwds)

Performs the template substitution, returning a new string. mapping is any dictionary-like object
with keys that match the placeholders in the template. Alternatively, you can provide keyword
arguments, where the keywords are the placeholders. When both mapping and kwds are given
and there are duplicates, the placeholders from kwds take precedence.

safe_substitute (mapping, **kwds)

Like substitute(), except that if placeholders are missing from mapping and kwds, instead of
raising a KeyError exception, the original placeholder will appear in the resulting string intact.
Also, unlike with substitute (), any other appearances of the $ will simply return $ instead of
raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions
always tries to return a usable string instead of raising an exception. In another sense,
safe_substitute() may be anything other than safe, since it will silently ignore malformed
templates containing dangling delimiters, unmatched braces, or placeholders that are not valid
Python identifiers.

Template instances also provide one public data attribute:

template

This is the object passed to the constructor’s template argument. In general, you shouldn’t change
it, but read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template('$who likes $what')

>>> s.substitute(who='tim', what='kung pao')
'tim likes kung pao'

>>> d = dict(who='tim')

>>> Template('Give $who $100').substitute(d)
Traceback (most recent call last):

ValueError: Invalid placeholder in string: line 1, col 11
>>> Template('$who likes $what').substitute(d)
Traceback (most recent call last):

KeyError: 'what'
>>> Template('$who likes $what').safe_substitute(d)
'tim likes $what'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter
character, or the entire regular expression used to parse template strings. To do this, you can override these

104

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

class attributes:

delimiter — This is the literal string describing a placeholder introducing delimiter. The default value
is $. Note that this should not be a regular expression, as the implementation will call re.escape()
on this string as needed.

idpattern — This is the regular expression describing the pattern for non-braced placeholders (the
braces will be added automatically as appropriate). The default value is the regular expression (?
-i:[_a-zA-Z][_a-zA-Z0-9]%*).

Note: Since default flags is re. IGNORECASE, pattern [a-z] can match with some non-ASCII charac-
ters. That’s why we use local -i flag here.

While flags is kept to re.IGNORECASE for backward compatibility, you can override it to 0 or re.
IGNORECASE | re.ASCII when subclassing.

flags — The regular expression flags that will be applied when compiling the regular expression used
for recognizing substitutions. The default value is re.IGNORECASE. Note that re.VERBOSE will always
be added to the flags, so custom idpatterns must follow conventions for verbose regular expressions.

New in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern.
If you do this, the value must be a regular expression object with four named capturing groups. The capturing
groups correspond to the rules given above, along with the invalid placeholder rule:

escaped — This group matches the escape sequence, e.g. $$, in the default pattern.

named — This group matches the unbraced placeholder name; it should not include the delimiter in
capturing group.

braced — This group matches the brace enclosed placeholder name; it should not include either the
delimiter or braces in the capturing group.

invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should
appear last in the regular expression.

6.1.5 Helper functions

string.capwords (s, sep=None)

Split the argument into words using str.split (), capitalize each word using str. capitalize(), and
join the capitalized words using str. join (). If the optional second argument sep is absent or None,
runs of whitespace characters are replaced by a single space and leading and trailing whitespace are
removed, otherwise sep is used to split and join the words.

6.2 re — Regular expression operations

Source code: Lib/re.py

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings (str) as well as 8-bit strings (bytes).
However, Unicode strings and 8-bit strings cannot be mixed: that is, you cannot match a Unicode string

6.2.

re — Regular expression operations 105

https://github.com/python/cpython/tree/3.6/Lib/re.py

The Python Library Reference, Release 3.6.5

with a byte pattern or vice-versa; similarly, when asking for a substitution, the replacement string must be
of the same type as both the pattern and the search string.

Regular expressions use the backslash character ('\') to indicate special forms or to allow special characters
to be used without invoking their special meaning. This collides with Python’s usage of the same character for
the same purpose in string literals; for example, to match a literal backslash, one might have to write "\\\\'
as the pattern string, because the regular expression must be \\, and each backslash must be expressed as
\\ inside a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not
handled in any special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing
'\' and 'n', while "\n" is a one-character string containing a newline. Usually patterns will be expressed
in Python code using this raw string notation.

It is important to note that most regular expression operations are available as module-level functions and
methods on compiled regular expressions. The functions are shortcuts that don’t require you to compile a
regex object first, but miss some fine-tuning parameters.

See also:

The third-party regex module, which has an API compatible with the standard library re module, but offers
additional functionality and a more thorough Unicode support.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you
check if a particular string matches a given regular expression (or if a given regular expression matches a
particular string, which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular
expressions, then AB is also a regular expression. In general, if a string p matches A and another string
¢ matches B, the string pg will match AB. This holds unless A or B contain low precedence operations;
boundary conditions between A and B; or have numbered group references. Thus, complex expressions can
easily be constructed from simpler primitive expressions like the ones described here. For details of the
theory and implementation of regular expressions, consult the Friedl book referenced above, or almost any
textbook about compiler construction.

A Dbrief explanation of the format of regular expressions follows. For further information and a gentler
presentation, consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 'A"',
'a', or '0', are the simplest regular expressions; they simply match themselves. You can concatenate
ordinary characters, so last matches the string 'last'. (In the rest of this section, we’ll write RE’s in this
special style, usually without quotes, and strings to be matched 'in single quotes'.)

Some characters, like ' | ' or ' (', are special. Special characters either stand for classes of ordinary characters,
or affect how the regular expressions around them are interpreted.

Repetition qualifiers (*, +, 7, {m,n}, etc) cannot be directly nested. This avoids ambiguity with the non-
greedy modifier suffix 7, and with other modifiers in other implementations. To apply a second repetition to
an inner repetition, parentheses may be used. For example, the expression (7:a{6})* matches any multiple
of six 'a' characters.

The special characters are:

. (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been
specified, this matches any character including a newline.

~ (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each
newline.

106 Chapter 6. Text Processing Services

https://pypi.python.org/pypi/regex/

The Python Library Reference, Release 3.6.5

$ Matches the end of the string or just before the newline at the end of the string, and in MULTILINE mode
also matches before a newline. foo matches both ‘foo’” and ‘foobar’, while the regular expression foo$
matches only ‘foo’. More interestingly, searching for foo.$ in 'fool\nfoo2\n' matches ‘{002’ normally,
but ‘fool’ in MULTILINE mode; searching for a single $ in 'foo\n' will find two (empty) matches: one
just before the newline, and one at the end of the string.

* Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible. ab* will match ‘a’, ‘ab’; or ‘a’ followed by any number of ‘b’s.

+ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed
by any non-zero number of ‘b’s; it will not match just ‘a’

? Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

?7, +7, 77 The '' '+' and '7?' qualifiers are all greedy; they match as much text as possible. Sometimes
this behaviour isn’t desired; if the RE <.*> is matched against '<a> b <c>', it will match the entire
string, and not just '<a>'. Adding 7 after the qualifier makes it perform the match in non-greedy or
minimal fashion; as few characters as possible will be matched. Using the RE <.*?> will match only
'<a>'.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire
RE not to match. For example, a{6} will match exactly six 'a' characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match
as many repetitions as possible. For example, a{3,5} will match from 3 to 5 'a' characters. Omitting
m specifies a lower bound of zero, and omitting n specifies an infinite upper bound. As an example,
a{4,}b will match 'aaaab' or a thousand 'a' characters followed by a 'b') but not 'aaab'. The
comma may not be omitted or the modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match
as few repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on
the 6-character string 'aaaaaa', a{3,5} will match 5 'a' characters, while a{3,5}7 will only match
3 characters.

\ Either escapes special characters (permitting you to match characters like '*', '?' and so forth), or
signals a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash
as an escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the
backslash and subsequent character are included in the resulting string. However, if Python would
recognize the resulting sequence, the backslash should be repeated twice. This is complicated and hard
to understand, so it’s highly recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. In a set:
e Characters can be listed individually, e.g. [amk] will match 'a', 'm', or 'k'.

o Ranges of characters can be indicated by giving two characters and separating them by a '-', for
example [a-z] will match any lowercase ASCII letter, [0-5] [0-9] will match all the two-digits
numbers from 00 to 59, and [0-9A-Fa-f] will match any hexadecimal digit. If - is escaped (e.g.
[a\-z]) or if it’s placed as the first or last character (e.g. [-al or [a-1), it will match a literal

e Special characters lose their special meaning inside sets. For example, [(+*)] will match any of
the literal characters ' (', '+', '*' or ')'.

o Character classes such as \w or \S (defined below) are also accepted inside a set, although the
characters they match depends on whether ASCIT or LOCALE mode is in force.

e Characters that are not within a range can be matched by complementing the set. If the first
character of the set is ' ~', all the characters that are not in the set will be matched. For example,

6.2. re — Regular expression operations 107

The Python Library Reference, Release 3.6.5

[*5] will match any character except '5', and [T~] will match any character except '~'. ~ has
no special meaning if it’s not the first character in the set.

e To match a literal '] ' inside a set, precede it with a backslash, or place it at the beginning of the
set. For example, both [() [\1{}] and [] O [{}] will both match a parenthesis.

| AIB, where A and B can be arbitrary REs, creates a regular expression that will match either A or B.
An arbitrary number of REs can be separated by the '|' in this way. This can be used inside groups
(see below) as well. As the target string is scanned, REs separated by '|' are tried from left to right.
When one pattern completely matches, that branch is accepted. This means that once A matches, B
will not be tested further, even if it would produce a longer overall match. In other words, the '|'
operator is never greedy. To match a literal '|', use \|, or enclose it inside a character class, as in

L.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a
group; the contents of a group can be retrieved after a match has been performed, and can be matched
later in the string with the \number special sequence, described below. To match the literals ' (' or
")', use \Cor \), or enclose them inside a character class: [(1, [D].

(?...) Thisis an extension notation (a '?' following a ' (" is not meaningful otherwise). The first character
after the '?' determines what the meaning and further syntax of the construct is. Extensions usually
do not create a new group; (?P<name>...) is the only exception to this rule. Following are the
currently supported extensions.

(7ailmsux) (One or more letters from the set 'a', 'i', 'L', 'm', 's', 'u', 'x'.) The group matches the
empty string; the letters set the corresponding flags: re.4 (ASCII-only matching), re. I (ignore case),
re.L (locale dependent), re.M (multi-line), re.S (dot matches all), re.U (Unicode matching), and
re.X (verbose), for the entire regular expression. (The flags are described in Module Contents.) This
is useful if you wish to include the flags as part of the regular expression, instead of passing a flag
argument to the re. compile () function. Flags should be used first in the expression string.

(?:...) A non-capturing version of regular parentheses. Matches whatever regular expression is inside the
parentheses, but the substring matched by the group cannot be retrieved after performing a match or
referenced later in the pattern.

(?imsx-imsx:...) (Zero or more letters from theset 'i', 'm', 's', 'x', optionally followed by '-"' followed
by one or more letters from the same set.) The letters set or removes the corresponding flags: re.
I (ignore case), re.M (multi-line), re.S (dot matches all), and re.X (verbose), for the part of the
expression. (The flags are described in Module Contents.)

New in version 3.6.

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible via
the symbolic group name name. Group names must be valid Python identifiers, and each group name
must be defined only once within a regular expression. A symbolic group is also a numbered group,
just as if the group were not named.

Named groups can be referenced in three contexts. If the pattern is (?P<quote>['"]) .*7(?P=quote)
(i.e. matching a string quoted with either single or double quotes):

108 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

Context of reference to group “quote” Ways to reference it
in the same pattern itself

« (7P=quote) (as shown)

e \1

when processing match object m
e m.group('quote')

e m.end('quote') (etc.)

in a string passed to the repl argument of re.

subO) e \g<quote>

o \g<1>
o \1

(?P=name) A backreference to a named group; it matches whatever text was matched by the earlier group

(7#

(7=

(7<

named name.
...) A comment; the contents of the parentheses are simply ignored.

...) Matches if ... matches next, but doesn’t consume any of the string. This is called a lookahead
assertion. For example, Isaac (?=Asimov) will match 'Isaac ' only if it’s followed by 'Asimov'.

...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac
(?!Asimov) will match 'Isaac ' only if it’s not followed by 'Asimov'.

=...) Matches if the current position in the string is preceded by a match for ... that ends at the current

position. This is called a positive lookbehind assertion. (?<=abc)def will find a match in 'abcdef’,
since the lookbehind will back up 3 characters and check if the contained pattern matches. The
contained pattern must only match strings of some fixed length, meaning that abc or alb are allowed,
but a* and a{3,4} are not. Note that patterns which start with positive lookbehind assertions will
not match at the beginning of the string being searched; you will most likely want to use the search ()
function rather than the match () function:

>>> import re

>>> m = re.search('(?<=abc)def', 'abcdef')
>>> m.group(0)

'def'

This example looks for a word following a hyphen:

>>> m = re.search(r' (?7<=-)\w+', 'spam-egg')
>>> m.group(0)
1 eggl

Changed in version 3.5: Added support for group references of fixed length.

!...) Matches if the current position in the string is not preceded by a match for This is called
a negative lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must
only match strings of some fixed length. Patterns which start with negative lookbehind assertions may
match at the beginning of the string being searched.

(?(id/name)yes-pattern|no-pattern) Will try to match with yes-pattern if the group with given id or

name exists, and with no-pattern if it doesn’t. no-pattern is optional and can be omitted. For ex-
ample, () ?7\w+@\w+(7:\.\w+)+) (?(1)>[$) is a poor email matching pattern, which will match with
'<user@host.com>' as well as 'user@host.com', but not with '<user@host.com' nor 'user@host.
com>"'.

6.2.

re — Regular expression operations 109

The Python Library Reference, Release 3.6.5

The special sequences consist of '\' and a character from the list below. If the ordinary character is not
an ASCII digit or an ASCII letter, then the resulting RE will match the second character. For example, \$
matches the character '$'.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example, (.+) \1 matches 'the the' or '55 55' but not 'thethe' (note the space after the group).
This special sequence can only be used to match one of the first 99 groups. If the first digit of number
is 0, or number is 3 octal digits long, it will not be interpreted as a group match, but as the character
with octal value number. Inside the '[' and ']"' of a character class, all numeric escapes are treated
as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
word characters. Note that formally, \b is defined as the boundary between a \w and a \W character (or
vice versa), or between \w and the beginning/end of the string. This means that r'\bfoo\b' matches
'foo', 'foo.', '(foo)', 'bar foo baz' but not 'foobar' or 'foo3'.

By default Unicode alphanumerics are the ones used in Unicode patterns, but this can be changed by
using the ASCIT flag. Word boundaries are determined by the current locale if the LOCALE flag is used.
Inside a character range, \b represents the backspace character, for compatibility with Python’s string
literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This means that
r'py\B' matches 'python', 'py3', 'py2', but not 'py', 'py.', or 'py!'. \B is just the opposite
of \b, so word characters in Unicode patterns are Unicode alphanumerics or the underscore, although
this can be changed by using the 4SCIT flag. Word boundaries are determined by the current locale if
the LOCALE flag is used.

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode
character category [Nd]). This includes [0-9], and also many other digit characters. If the ASCIT
flag is used only [0-9] is matched (but the flag affects the entire regular expression, so in such
cases using an explicit [0-9] may be a better choice).

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a decimal digit. This is the opposite of \d. If the ASCIT flag is used
this becomes the equivalent of [70-9] (but the flag affects the entire regular expression, so in such
cases using an explicit [70-9] may be a better choice).

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [
\t\n\r\f\v], and also many other characters, for example the non-breaking spaces man-
dated by typography rules in many languages). If the ASCIT flag is used, only [\t\n\r\f\v]
is matched (but the flag affects the entire regular expression, so in such cases using an explicit [
\t\n\r\£f\v] may be a better choice).

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set;
this is equivalent to [\t\n\r\f\v].

\S Matches any character which is not a whitespace character. This is the opposite of \s. If the ASCIT
flag is used this becomes the equivalent of [~ \t\n\r\f\v] (but the flag affects the entire regular
expression, so in such cases using an explicit [~ \t\n\r\f\v] may be a better choice).

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes most characters that
can be part of a word in any language, as well as numbers and the underscore. If the ASCIT flag

110 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

is used, only [a-zA-Z0-9_] is matched (but the flag affects the entire regular expression, so in
such cases using an explicit [a-zA-Z0-9_] may be a better choice).

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character
set; this is equivalent to [a-zA-Z0-9_]. If the LOCALE flag is used, matches characters considered
alphanumeric in the current locale and the underscore.

\W Matches any character which is not a word character. This is the opposite of \w. If the ASCIT flag is
used this becomes the equivalent of [~a-zA-Z0-9_] (but the flag affects the entire regular expression,
so in such cases using an explicit ["a-zA-Z0-9_] may be a better choice). If the LOCALE flag is used,
matches characters considered alphanumeric in the current locale and the underscore.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression
parser:

\a \b \f \n
\r \t \u \U
\v \x A\

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)
"\u' and '\U' escape sequences are only recognized in Unicode patterns. In bytes patterns they are errors.

Octal escapes are included in a limited form. If the first digit is a 0, or if there are three octal digits, it is
considered an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always
at most three digits in length.

Changed in version 3.3: The '\u' and '\U' escape sequences have been added.
Changed in version 3.6: Unknown escapes consisting of '\"' and an ASCII letter now are errors.
See also:

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly.
The second edition of the book no longer covers Python at all, but the first edition covered writing
good regular expression patterns in great detail.

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified
versions of the full featured methods for compiled regular expressions. Most non-trivial applications always
use the compiled form.

Changed in version 3.6: Flag constants are now instances of RegexFlag, which is a subclass of enum. IntFlag.

re.compile (pattern, flags=0)
Compile a regular expression pattern into a reqular expression object, which can be used for matching
using its match (), search() and other methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the
following variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile(pattern)
result = prog.match(string)

is equivalent to

6.2. re — Regular expression operations 111

The Python Library Reference, Release 3.6.5

re.A

result = re.match(pattern, string)

but using re.compile() and saving the resulting regular expression object for reuse is more efficient
when the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.compile () and the module-
level matching functions are cached, so programs that use only a few regular expressions at a time
needn’t worry about compiling regular expressions.

re.ASCII

Make \w, \W, \b, \B, \d, \D, \s and \S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode patterns, and is ignored for byte patterns. Corresponds to the
inline flag (7a).

Note that for backward compatibility, the re.U flag still exists (as well as its synonym re.UNICODE
and its embedded counterpart (?u)), but these are redundant in Python 3 since matches are Unicode
by default for strings (and Unicode matching isn’t allowed for bytes).

re.DEBUG

re.l

Display debug information about compiled expression. No corresponding inline flag.

re.IGNORECASE

re.L

Perform case-insensitive matching; expressions like [A-Z] will also match lowercase letters. Full Uni-
code matching (such as U matching i) also works unless the re.ASCIT flag is used to disable non-ASCII
matches. The current locale does not change the effect of this flag unless the re.LOCALE flag is also
used. Corresponds to the inline flag (71).

Note that when the Unicode patterns [a-z] or [A-Z] are used in combination with the IGNORECASE
flag, they will match the 52 ASCII letters and 4 additional non-ASCII letters: ‘I’ (U+0130, Latin
capital letter I with dot above), 0’ (U40131, Latin small letter dotless i), ‘I’ (U4+017F, Latin small
letter long s) and ‘K’ (U+212A, Kelvin sign). If the ASCIT flag is used, only letters ‘a’ to ‘z’ and ‘A’
to ‘Z’ are matched (but the flag affects the entire regular expression, so in such cases using an explicit
(?7-i:[a-zA-Z]) may be a better choice).

re.LOCALE

re.M

Make \w, \W, \b, \B and case-insensitive matching dependent on the current locale. This flag can be
used only with bytes patterns. The use of this flag is discouraged as the locale mechanism is very
unreliable, it only handles one “culture” at a time, and it only works with 8-bit locales. Unicode
matching is already enabled by default in Python 3 for Unicode (str) patterns, and it is able to handle
different locales/languages. Corresponds to the inline flag (?L).

Changed in version 3.6: re.LOCALE can be used only with bytes patterns and is not compatible with
re.ASCII.

re .MULTILINE

re.S

When specified, the pattern character ' ~' matches at the beginning of the string and at the beginning
of each line (immediately following each newline); and the pattern character '$' matches at the end of
the string and at the end of each line (immediately preceding each newline). By default, ' ™' matches
only at the beginning of the string, and '$' only at the end of the string and immediately before the
newline (if any) at the end of the string. Corresponds to the inline flag (?m).

112

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

re.DOTALL
Make the '.' special character match any character at all, including a newline; without this flag, '."'
will match anything except a newline. Corresponds to the inline flag (?s).

re.X

re.VERBOSE
This flag allows you to write regular expressions that look nicer and are more readable by allowing you
to visually separate logical sections of the pattern and add comments. Whitespace within the pattern
is ignored, except when in a character class, or when preceded by an unescaped backslash, or within
tokens like *?, (?: or (?P<...>. When a line contains a # that is not in a character class and is not
preceded by an unescaped backslash, all characters from the leftmost such # through the end of the
line are ignored.

This means that the two following regular expression objects that match a decimal number are func-
tionally equal:

a = re.compile(r"""\d + # the integral part

\. # the decimal point

\d * # some fractional digits""", re.X)
b = re.compile(r"\d+\.\d*")

Corresponds to the inline flag (7x).

re.search(pattern, string, flags=0)
Scan through string looking for the first location where the regular expression pattern produces a
match, and return a corresponding match object. Return None if no position in the string matches the
pattern; note that this is different from finding a zero-length match at some point in the string.

re.match(pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return a

corresponding match object. Return None if the string does not match the pattern; note that this is
different from a zero-length match.

Note that even in MULTILINE mode, re.match() will only match at the beginning of the string and
not at the beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

re.fullmatch(pattern, string, flags=0)
If the whole string matches the regular expression pattern, return a corresponding match object. Return
None if the string does not match the pattern; note that this is different from a zero-length match.

New in version 3.4.

re.split (pattern, string, mazxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text
of all groups in the pattern are also returned as part of the resulting list. If mazsplit is nonzero, at
most mazxsplit splits occur, and the remainder of the string is returned as the final element of the list.

>>> re.split(r'\W+', 'Words, words, words.')
['Words', 'words', 'words', '']

>>> re.split(r' (\W+)', 'Words, words, words.')
['Words', ', ', 'words', ', ', 'words', '.', '']
>>> re.split(r'\W+', 'Words, words, words.', 1)

['Words', 'words, words.']
>>> re.split('[a-f]+', '0a3B9', flags=re.IGNORECASE)
[lOI’ |3|’ |9|]

If there are capturing groups in the separator and it matches at the start of the string, the result will
start with an empty string. The same holds for the end of the string:

6.2. re — Regular expression operations 113

The Python Library Reference, Release 3.6.5

>>> re.split(r' (\W+)', '...words, words...')
[re, *...', 'words', ', ', 'words', '...', '']

That way, separator components are always found at the same relative indices within the result list.

Note: split() doesn’t currently split a string on an empty pattern match. For example:

>>> re.split('x*', 'axbc')
[lal, 'bC']

Even though 'x*' also matches 0 ‘x’ before ‘a’, between ‘b’ and ‘c’, and after ‘c’, currently these
matches are ignored. The correct behavior (i.e. splitting on empty matches too and returning ['',
'a', 'b', 'c', '"']) will be implemented in future versions of Python, but since this is a backward
incompatible change, a FuturelWarning will be raised in the meanwhile.

Patterns that can only match empty strings currently never split the string. Since this doesn’t match
the expected behavior, a ValueError will be raised starting from Python 3.5:

>>> re.split("~$", "foo\n\nbar\n", flags=re.M)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: split() requires a non-empty pattern match.

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Splitting on a pattern that could match an empty string now raises a warning.
Patterns that can only match empty strings are now rejected.

re.findall (pattern, string, flags=0)

Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned
left-to-right, and matches are returned in the order found. If one or more groups are present in the
pattern, return a list of groups; this will be a list of tuples if the pattern has more than one group.
Empty matches are included in the result.

Note: Due to the limitation of the current implementation the character following an empty match is
not included in a next match, so findall(r'~|\w+', 'two words') returns ['', 'wo', 'words']
(note missed “t”). This is changed in Python 3.7.

re.finditer (pattern, string, flags=0)

Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string.
The string is scanned left-to-right, and matches are returned in the order found. Empty matches are
included in the result. See also the note about findall ().

re.sub(pattern, repl, string, count=0, flags=0)

Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string
by the replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string
or a function; if it is a string, any backslash escapes in it are processed. That is, \n is converted to a
single newline character, \r is converted to a carriage return, and so forth. Unknown escapes such as
\& are left alone. Backreferences, such as \6, are replaced with the substring matched by group 6 in
the pattern. For example:

114

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

>>> re.sub(r'def\s+([a-zA-Z_] [a-zA-Z_0-9]*)\s*\(\s*\):',
r'static PyObject*\npy_\1(void)\n{',

c 'def myfunc():')

'static PyObject*\npy_myfunc(void)\n{'

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a
single match object argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == '-': return ' '
. else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro----gram-files')
'pro--gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or a pattern object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count
must be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches
for the pattern are replaced only when not adjacent to a previous match, so sub('xx', '-', 'abc')
returns '-a-b-c-"'.

In string-type repl arguments, in addition to the character escapes and backreferences described above,
\g<name> will use the substring matched by the group named name, as defined by the (?P<name>...)
syntax. \g<number> uses the corresponding group number; \g<2> is therefore equivalent to \2, but
isn’t ambiguous in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20,
not a reference to group 2 followed by the literal character '0'. The backreference \g<0> substitutes
in the entire substring matched by the RE.

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

Changed in version 3.6: Unknown escapes in pattern consisting of '\' and an ASCII letter now are
€ITOorS.

Deprecated since version 3.5, will be removed in version 3.7: Unknown escapes in repl consisting of
"\' and an ASCII letter now raise a deprecation warning and will be forbidden in Python 3.7.

re.subn(pattern, repl, string, count=0, flags=0)

Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).
Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

re.escape (pattern)

Escape all the characters in pattern except ASCII letters, numbers and '_'. This is useful if you
want to match an arbitrary literal string that may have regular expression metacharacters in it. For
example:

>>> print(re.escape('python.exe'))

python\.exe

>>> legal_chars = string.ascii_lowercase + string.digits + "!#$)&'*+-.7_"|~:"
>>> print('[/s]+' 7, re.escape(legal_chars))
[abcdefghijklmnopqrstuvwxyz0123456789\ ' \#\F\Z\&\ ' *x\+\-\ . \"_\ "\ [\~\:]+

(continues on next page)

6.2.

re — Regular expression operations 115

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> operators = ['+', '=', "', '/', ‘xx']
>>> print('|'.join(map(re.escape, sorted(operators, reverse=True))))

AVARIACIACACIAN

This functions must not be used for the replacement string in sub() and subn(), only backslashes
should be escaped. For example:

>>> digits_re = r'\d+'

>>> sample = '/usr/sbin/sendmail - O errors, 12 warnings'

>>> print(re.sub(digits_re, digits_re.replace('\\', r'\\'), sample))
/usr/sbin/sendmail - \d+ errors, \d+ warnings

Changed in version 3.3: The '_' character is no longer escaped.

re.purge()

Clear the regular expression cache.

exception re.error(msg, pattern=None, pos=None)

Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation
or matching. It is never an error if a string contains no match for a pattern. The error instance has
the following additional attributes:

msg
The unformatted error message.

pattern
The regular expression pattern.

pos
The index in pattern where compilation failed (may be None).

lineno
The line corresponding to pos (may be None).

colno
The column corresponding to pos (may be None).

Changed in version 3.5: Added additional attributes.

6.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

regex.search(stm'ng[, pos[, endpos]])

Scan through string looking for the first location where this regular expression produces a match, and
return a corresponding match object. Return None if no position in the string matches the pattern;
note that this is different from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults
to 0. This is not completely equivalent to slicing the string; the '~' pattern character matches at the
real beginning of the string and at positions just after a newline, but not necessarily at the index where
the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is
endpos characters long, so only the characters from pos to endpos - 1 will be searched for a match. If
endpos is less than pos, no match will be found; otherwise, if rz is a compiled regular expression object,
rx.search(string, 0, 50) is equivalent to rx.search(string[:50], 0).

116

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

>>> pattern = re.compile("d")

>>> pattern.search("dog") # Match at indez O

<_sre.SRE_Match object; span=(0, 1), match='d'>

>>> pattern.search("dog", 1) # No match; search doesn't include the "d"

regex.match(string[7 pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a correspond-
ing match object. Return None if the string does not match the pattern; note that this is different from
a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o0")

>>> pattern.match("dog") # No match as "o" is mot at the start of "dog".
>>> pattern.match("dog", 1) # Match as "o" is the 2nd character of "dog".
<_sre.SRE_Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

regex.:fullmatch(stm’ng[7 pos[, endpos]])
If the whole string matches this regular expression, return a corresponding match object. Return None
if the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o[ghl")

>>> pattern.fullmatch("dog") # No match as "o" is mot at the start of "dog".
>>> pattern.fullmatch("ogre") # No match as not the full string matches.

>>> pattern.fullmatch("doggie", 1, 3) # Matches within given limits.
<_sre.SRE_Match object; span=(1, 3), match='og'>

New in version 3.4.

regex.split (string, mazxsplit=0)
Identical to the split () function, using the compiled pattern.

regex.findall(strz'ng[, pos[, endpos]])
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and
endpos parameters that limit the search region like for search ().

regex.finditer(string[, pos[, endpos]])
Similar to the finditer() function, using the compiled pattern, but also accepts optional pos and
endpos parameters that limit the search region like for search ().

regex.sub(repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

regex.subn(repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

regex.flags
The regex matching flags. This is a combination of the flags given to compile (), any (?7...) inline
flags in the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

regex.groups
The number of capturing groups in the pattern.
regex.groupindex

A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictio-
nary is empty if no symbolic groups were used in the pattern.

6.2. re — Regular expression operations 117

The Python Library Reference, Release 3.6.5

regex.pattern

The pattern string from which the RE object was compiled.

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match() and search() return None when there
is no match, you can test whether there was a match with a simple if statement:

match = re.search(pattern, string)
if match:

process(match)

Match objects support the following methods and attributes:

match.expand (template)

Return the string obtained by doing backslash substitution on the template string template, as done
by the sub () method. Escapes such as \n are converted to the appropriate characters, and numeric
backreferences (\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by the contents of
the corresponding group.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

ma‘cch.group([group]7])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string;
if there are multiple arguments, the result is a tuple with one item per argument. Without arguments,
groupl defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding
return value is the entire matching string; if it is in the inclusive range [1..99], it is the string matching
the corresponding parenthesized group. If a group number is negative or larger than the number of
groups defined in the pattern, an IndezError exception is raised. If a group is contained in a part of
the pattern that did not match, the corresponding result is None. If a group is contained in a part of
the pattern that matched multiple times, the last match is returned.

>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")

>>> m.group(0) # The entire match

'Isaac Newton'

>>> m.group(1) # The first parenthesized subgroup.
'Isaac'

>>> m.group(2) # The second parenthesized subgroup.
'Newton'

>>> m.group(l, 2) # Multiple arguments give us a tuple.

('Isaac', 'Newton')

If the regular expression uses the (?P<name>...) syntax, the groupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the
pattern, an IndexzError exception is raised.

A moderately complicated example:

>>> m = re.match(r" (?P<first_name>\w+) (7P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group('first_name')

'Malcolm'

>>> m.group('last_name')

'Reynolds’

Named groups can also be referred to by their index:

118

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

>>> m.group(1)
'Malcolm'
>>> m.group(2)
'Reynolds'

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r"(..)+", "alb2c3") # Matches 3 times.

>>> m.group(1) # Returns only the last match.
|C3|

match.__getitem__(g)

This is identical to m.group(g). This allows easier access to an individual group from a match:

>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")
>>> m[0] # The entire match

'Isaac Newton'

>>> m[1] # The first parenthestzed subgroup.

'Isaac'

>>> m[2] # The second parenthesized subgroup.
'Newton'

New in version 3.6.

match.groups (default=None)

Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in

the pattern. The default argument is used for groups that did not participate in the match; it defaults
to None.

For example:

>>> m = re.match(r"(\d+)\.(\d+)", "24.1632")
>>> m.groups ()
('24', '1632"')

If we make the decimal place and everything after it optional, not all groups might participate in the
match. These groups will default to None unless the default argument is given:

>>> m = re.match(r"(\d+)\.?2(\d+)7", "24")

>>> m.groups () # Second group defaults to None.

('24', None)

>>> m.groups('0') # Now, the second group defaults to '0O'.
('24', '0")

match.groupdict (default=None)

Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name.

The default argument is used for groups that did not participate in the match; it defaults to None. For
example:

>>> m = re.match(r" (?P<first_name>\w+) (7P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{'first_name': 'Malcolm', 'last_name': 'Reynolds'}

match.start ([group])

match.end([group])

Return the indices of the start and end of the substring matched by group; group defaults to zero
(meaning the whole matched substring). Return -1 if group exists but did not contribute to the

re — Regular expression operations 119

The Python Library Reference, Release 3.6.5

match. For a match object m, and a group ¢ that did contribute to the match, the substring matched
by group g (equivalent to m.group(g)) is

m.string[m.start(g) :m.end(g)]

Note that m.start (group) will equal m.end (group) if group matched a null string. For example, after
m = re.search('b(c?)', 'cba'), m.start(0) is 1, m.end(0) is 2, m.start(1) and m.end(1) are
both 2, and m.start (2) raises an IndezError exception.

An example that will remove remowve_this from email addresses:

>>> email = "tonyQtiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start ()] + email[m.end():]
'tony@tiger.net'

match.span([group])
For a match m, return the 2-tuple (m.start(group), m.end(group)). Note that if group did not
contribute to the match, this is (-1, -1). group defaults to zero, the entire match.

match.pos
The value of pos which was passed to the search () or match() method of a regex object. This is the
index into the string at which the RE engine started looking for a match.

match.endpos
The value of endpos which was passed to the search() or match() method of a regex object. This is
the index into the string beyond which the RE engine will not go.

match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For
example, the expressions (a)b, ((a) (b)), and ((ab)) will have lastindex == 1 if applied to the
string 'ab', while the expression (a) (b) will have lastindex == 2, if applied to the same string.

match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group
was matched at all.

match.re
The regular expression object whose match() or search () method produced this match instance.

match.string
The string passed to match () or search().

6.2.5 Regular Expression Examples

Checking for a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch(match):
if match is None:
return None
return '<Match: , groups=/r>' 7, (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with
each character representing a card, “a” for ace, “k” for king, “q” for queen, “j” for jack, “t” for 10, and “2”
through “9” representing the card with that value.

120 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(zr"" [a2-9tjqk] {5}$")

>>> displaymatch(valid.match("akt5q")) # Valid.
"<Match: 'aktbq', groups=()>"

>>> displaymatch(valid.match("akt5e")) # Invalid.
>>> displaymatch(valid.match("akt")) # Invalid.
>>> displaymatch(valid.match("727ak")) # Valid.
"<Match: '727ak', groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular
expression, one could use backreferences as such:

>>> pair = re.compile(r".*(.).*\1")

>>> displaymatch(pair.match("717ak")) # Pair of 7s.
"<Match: '717', groups=('7',)>"

>>> displaymatch(pair.match("718ak")) # No pairs.

>>> displaymatch(pair.match("354aa")) # Pair of aces.

"<Match: '354aa', groups=('a',)>"

To find out what card the pair consists of, one could use the group () method of the match object in the
following manner:

>>> pair.match("717ak") .group(1)
l7|

Error because re.match() returns None, which doesn't have a group() method:
>>> pair.match("718ak") .group(1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match(r".*(.) . *\1", "718ak").group(1)
AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa") .group(1)
|a|

Simulating scanf()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful,
though also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent
mappings between scanf () format tokens and regular expressions.

scanf () Token | Regular Expression

%he .

%5¢ .{5}

%d [-+]7\d+

%he, hE, %, %g [-+17(\d+(\.\d*) 7|\ .\d+) ([eE] [-+]?\d+)?
hi [-+]1?(0[xX] [\dA-Fa-f]1+|10[0-71*|\d+)

%o [-+]7[0-7]+

%s \S+

%u \d+

hx, hX [-+17(0[xX]) 7 [\dA-Fa-f]+

To extract the filename and numbers from a string like

6.2. re — Regular expression operations 121

The Python Library Reference, Release 3.6.5

’/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf () format like

%s - %d errors, Jd warnings

The equivalent regular expression would be

’(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers two different primitive operations based on regular expressions: re.match () checks for a match
only at the beginning of the string, while re.search () checks for a match anywhere in the string (this is
what Perl does by default).

For example:

>>> re.match("c", "abcdef") # No match
>>> re.search("c", "abcdef") # Match
<_sre.SRE_Match object; span=(2, 3), match='c'>

Regular expressions beginning with '~' can be used with search () to restrict the match at the beginning
of the string:

>>> re.match("c", "abcdef") # No match
>>> re.search(""c", "abcdef") # No match
>>> re.search(""a", "abcdef") # Match

<_sre.SRE_Match object; span=(0, 1), match='a'>

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with '~' will match at the beginning of each line.

>>> re.match('X', 'A\nB\nX', re.MULTILINE) # No match
>>> re.search('"X', 'A\nB\nX', re.MULTILINE) # Match
<_sre.SRE_Match object; span=(4, 5), match='X'>

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting
textual data into data structures that can be easily read and modified by Python as demonstrated in the
following example that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

. Ronald Heathmore: 892.345.3428 436 Finley Avenue
. Frank Burger: 925.541.7625 662 South Dogwood Way

. Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty
line having its own entry:

122 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

>>> entries = re.split("\n+", text)

>>> entries

['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the
maxsplit parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['Ross', 'McFluff',6 '834.345.1254', '155 Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'l],
['Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584', '919 Park Place']]

The :? pattern matches the colon after the last name, so that it does not occur in the result list. With a
maxsplit of 4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[['Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'l],
['Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demon-
strates using sub () with a function to “munge” text, or randomize the order of all the characters in each
word of a sentence except for the first and last characters:

>>> def repl(m):
inner_word = list(m.group(2))
random.shuffle (inner_word)
return m.group(1) + "".join(inner_word) + m.group(3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub(r" (\w) (\w+) (\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub(r" (\w) (\w+) (\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search() does. For example, if
one was a writer and wanted to find all of the adverbs in some text, he or she might use findall () in the
following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall(r"\w+ly", text)
['carefully', 'quickly']

6.2. re — Regular expression operations 123

The Python Library Reference, Release 3.6.5

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer() is useful
as it provides match objects instead of strings. Continuing with the previous example, if one was a writer
who wanted to find all of the adverbs and their positions in some text, he or she would use finditer() in
the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer(r"\w+ly", text):

. print (' /02d-/02d: /s' % (m.start(), m.end(), m.group(0)))
07-16: carefully

40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash ('\') in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of
code are functionally identical:

>>> re.match(r"\W(.)\1\wW", " f£f ")
<_sre.SRE_Match object; span=(0, 4), match=' ff '>
>>> re.match("\\WC.)\\I\\w", " £f ")
<_sre.SRE_Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string
notation, this means r"\\". Without raw string notation, one must use "\\\\", making the following lines
of code functionally identical:

>>> re.match(zr"\\", r"\\")
<_sre.SRE_Match object; span=(0, 1), match='\\'>
>>> re.match ("\\\\", r"\\")
<_sre.SRE_Match object; span=(0, 1), match='\\'>

Writing a Tokenizer
A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in
writing a compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single
master regular expression and to loop over successive matches:

import collections
import re

Token = collections.namedtuple('Token', ['typ', 'value', 'line', 'column'])

def tokenize(code):
keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
token_specification = [
('NUMBER', =r'\d+(\.\d*)?'), # Integer or decimal number

("ASSIGN', r':='), # Assignment operator
('END', r';'), # Statement terminator
('ID', r'[A-Za-z]+"'), # Identifiers

(rop', ' [+\-x/1"), # Arithmetic operators

(continues on next page)

124 Chapter 6. Text Processing Services

https://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.6.5

(continued from previous page)

('NEWLINE', r'\n'), # Line endings
('SKIP', r'[\t]l+"), # Skip over spaces and tabs
('MISMATCH',r'."), # Any other character

]

tok_regex = '['.join('(7P</s>//s)' 7, pair for pair in token_specification)

line_num = 1
line_start = 0
for mo in re.finditer(tok_regex, code):
kind = mo.lastgroup
value = mo.group (kind)
if kind == 'NEWLINE':
line_start = mo.end()
line_num += 1

elif kind == 'SKIP':

pass
elif kind == 'MISMATCH':

raise RuntimeError(f'{wvalue!/r} unexpected on line {line_num}')
else:

if kind == 'ID' and value in keywords:

kind = value
column = mo.start() - line_start
yield Token(kind, value, line_num, column)

statements = '''
IF quantity THEN
total := total + price * quantity;
tax := price * 0.05;
ENDIF;

for token in tokenize(statements):
print (token)

The tokenizer produces the following output:

Token(typ='IF', value='IF', line=2, column=4)
Token(typ='ID', value='quantity', line=2, column=7)
Token(typ='THEN', value='THEN', line=2, column=16)
Token(typ='ID', value='total', line=3, column=8)
Token(typ="'ASSIGN', value=':=', line=3, column=14)
Token(typ='ID', value='total', line=3, column=17)
Token(typ='0P', value='+', line=3, column=23)
Token(typ='ID', value='price', line=3, column=25)
Token(typ='0P', value='*', line=3, column=31)
Token(typ='ID', value='quantity', line=3, column=33)

Token(typ='END', value=';', line=3, column=41)
Token(typ='ID', value='tax', line=4, column=8)
Token(typ='ASSIGN', value=':=', line=4, column=12)

Token(typ='ID', value='price', line=4, column=15)
Token(typ='0P', value='*', line=4, column=21)
Token(typ='NUMBER', value='0.05', line=4, column=23)

Token(typ='END', value=';', line=4, column=27)
Token(typ='ENDIF', value='ENDIF', line=5, column=4)
Token(typ='END', value=';', line=5, column=9)

6.2. re — Regular expression operations 125

The Python Library Reference, Release 3.6.5

6.3 difflib — Helpers for computing deltas

Source code: Lib/difflib.py

This module provides classes and functions for comparing sequences. It can be used for example, for com-
paring files, and can produce difference information in various formats, including HTML and context and
unified diffs. For comparing directories and files, see also, the filecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements
are hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the
late 1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea
is to find the longest contiguous matching subsequence that contains no “junk” elements; these “junk”
elements are ones that are uninteresting in some sense, such as blank lines or whitespace. (Handling
junk is an extension to the Ratcliff and Obershelp algorithm.) The same idea is then applied recursively
to the pieces of the sequences to the left and to the right of the matching subsequence. This does not
yield minimal edit sequences, but does tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time
in the expected case. SequenceMatcher is quadratic time for the worst case and has expected-case
behavior dependent in a complicated way on how many elements the sequences have in common; best
case time is linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain
sequence items as junk. The heuristic counts how many times each individual item appears in the
sequence. If an item’s duplicates (after the first one) account for more than 1% of the sequence and
the sequence is at least 200 items long, this item is marked as “popular” and is treated as junk for the
purpose of sequence matching. This heuristic can be turned off by setting the autojunk argument to
False when creating the SequenceMatcher.

New in version 3.2: The autojunk parameter.

class difflib.Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of a Differ delta begins with a two-letter code:

Code | Meaning
'= ' | line unique to sequence 1

'+ ' | line unique to sequence 2
vt line common to both sequences
'? ' | line not present in either input sequence

Lines beginning with ‘?’ attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff

This class can be used to create an HTML table (or a complete HTML file containing the table)
showing a side by side, line by line comparison of text with inter-line and intra-line change highlights.
The table can be generated in either full or contextual difference mode.

The constructor for this class is:

126

Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.6/Lib/difflib.py

The Python Library Reference, Release 3.6.5

__init__(tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS CHARACTER_JUNK)
Initializes instance of HtmlDiff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff() (used by HtmlDiff
to generate the side by side HTML differences). See ndiff () documentation for argument default
values and descriptions.

The following methods are public:

make_file (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5, *, charset="utf-
8"
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings
(both default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual
differences are to be shown, else the default is False to show the full files. numlines defaults to 5.
When context is True numlines controls the number of context lines which surround the difference
highlights. When context is False numlines controls the number of lines which are shown before
a difference highlight when using the “next” hyperlinks (setting to zero would cause the “next”
hyperlinks to place the next difference highlight at the top of the browser without any leading
context).

Changed in version 3.5: charset keyword-only argument was added. The default charset of HTML
document changed from 'IS0-8859-1' to 'utf-8'.

»

make_table (fromlines, tolines, fromdesc=", todesc=", context=Fualse, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML
table showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its
use.

difflib.context_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context
diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context.
The changes are shown in a before/after style. The number of context lines is set by n which defaults
to three.

By default, the diff control lines (those with *** or ---) are created with a trailing newline. This is
helpful so that inputs created from 7o.I0Base.readlines() result in diffs that are suitable for use
with i0.I0Base.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will
be uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times
are normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.

6.3. difflib — Helpers for computing deltas 127

The Python Library Reference, Release 3.6.5

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines(context_diff(sl, s2, fromfile='before.py', tofile='after.py'))
*** before.py

--- after.py

Kokkok kKR ok Kok K

wokk 1,4 kkkk

! bacon

! eggs

! ham

See A command-line interface to diffiib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)

Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list
of strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater
than 0.

Optional argument cutoff (default 0.6) is a float in the range [0, 1]. Possibilities that don’t score at
least that similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity
score, most similar first.

>>> get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'l)
['apple', 'ape']

>>> import keyword

>>> get_close_matches('wheel', keyword.kwlist)

['while']

>>> get_close_matches('pineapple', keyword.kwlist)
d

>>> get_close_matches('accept', keyword.kwlist)
['except']

difflib.ndiff (a, b, linejunk=None, charjunk=1S_CHARACTER_JUNK)

Compare a and b (lists of strings); return a D7 f fer-style delta (a generator generating the delta lines).
Optional keyword parameters linejunk and charjunk are filtering functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false
if not. The default is None. There is also a module-level function IS LINE_JUNK (), which filters out
lines without visible characters, except for at most one pound character ('#') — however the underlying
SequenceMatcher class does a dynamic analysis of which lines are so frequent as to constitute noise,
and this usually works better than using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is
junk, or false if not. The default is module-level function I.S_CHARACTER_JUNK (), which filters out
whitespace characters (a blank or tab; it’s a bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

128

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines(keepends=True),
. 'ore\ntree\nemu\n'.splitlines(keepends=True))
>>> print(''.join(diff), end="")

one

ore

N+ N

two
- three

tree

+ o+

emu

difflib.restore (sequence, which)

Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare() or ndiff (), extract lines originating from file 1 or
2 (parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines(keepends=True),
ce. 'ore\ntree\nemu\n'.splitlines(keepends=True))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print(''.join(restore(diff, 1)), end="")

one

two

three

>>> print(''.join(restore(diff, 2)), end="")

ore

tree

emu

difflib.unified_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n")

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff
format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context.
The changes are shown in an inline style (instead of separate before/after blocks). The number of
context lines is set by n which defaults to three.

By default, the diff control lines (those with ——-, +++, or @@) are created with a trailing newline. This
is helpful so that inputs created from %o0.I0Base.readlines () result in diffs that are suitable for use
with 70.I0Base.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will
be uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times
are normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines(unified_diff(sl, s2, fromfile='before.py', tofile='after.py'))
--- before.py

+++ after.py

00 -1,4 +1,4 @@

(continues on next page)

6.3. difflib — Helpers for computing deltas 129

The Python Library Reference, Release 3.6.5

(continued from previous page)

-bacon
-eggs
-ham
+python
teggy
+hamster
guido

See A command-line interface to diffiib for a more detailed example.

difflib.diff_bytes(dfunc, a, b, fromfile=b" tofile=b", fromfiledate=b", tofiledate=b", n=23,
lineterm=>b"\n")
Compare a and b (lists of bytes objects) using dfunc; yield a sequence of delta lines (also bytes) in the for-
mat returned by dfunc. dfunc must be a callable, typically either unified diff() or contezt_diff().

Allows you to compare data with unknown or inconsistent encoding. All inputs except n must be
bytes objects, not str. Works by losslessly converting all inputs (except n) to str, and calling dfunc(a,
b, fromfile, tofile, fromfiledate, tofiledate, n, lineterm). The output of dfunc is then
converted back to bytes, so the delta lines that you receive have the same unknown/inconsistent
encodings as a and b.

New in version 3.5.

difflib.IS_LINE_JUNK (line)
Return true for ignorable lines. The line line is ignorable if line is blank or contains a single '#',
otherwise it is not ignorable. Used as a default for parameter linejunk in ndiff () in older versions.

difflib.IS_CHARACTER_JUNK (ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it
is not ignorable. Used as a default for parameter charjunk in ndiff().

See also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and
D. E. Metzener. This was published in Dr. Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

4

class difflib.SequenceMatcher (isjunk=None, a=", b=", autojunk=True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. Passing None for
isjunk is equivalent to passing lambda x: O; in other words, no elements are ignored. For example,
pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard
tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The
elements of both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk heuristic.

New in version 3.2: The autojunk parameter.

130 Chapter 6. Text Processing Services

http://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
http://www.drdobbs.com/

The Python Library Reference, Release 3.6.5

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is
True; bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled);
b2j is a dict mapping the remaining elements of b to a list of positions where they occur. All three are
reset whenever b is reset with set_seqs() or set_seqg2().

New in version 3.2: The bjunk and bpopular attributes.
SequenceMatcher objects have the following methods:

set_seas(a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want
to compare one sequence against many sequences, use set_seq2() to set the commonly used sequence
once and call set_seq1 () repeatedly, once for each of the other sequences.

set_seql(a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2(b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match(alo, ahi, blo, bhi)
Find longest matching block in alalo:ahi] and b[blo:bhi].

If isjunk was omitted or None, find_longest_match() returns (i, j, k) such that a[i:i+k]
is equal to b[j:j+k], where alo <= i <= itk <= ahi and blo <= j <= j+k <= bhi. For all
(i', j', k') meeting those conditions, the additional conditions k >= k', i <= i', and if i
== i' j <= j' are also met. In other words, of all maximal matching blocks, return one that
starts earliest in a, and of all those maximal matching blocks that start earliest in a, return the
one that starts earliest in b.

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match(a=0, b=4, size=b)

If isjunk was provided, first the longest matching block is determined as above, but with the
additional restriction that no junk element appears in the block. Then that block is extended
as far as possible by matching (only) junk elements on both sides. So the resulting block never
matches on junk except as identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd'
from matching the ' abcd' at the tail end of the second sequence directly. Instead only the
'abcd' can match, and matches the leftmost 'abcd' in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match(a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).
This method returns a named tuple Match(a, b, size).

get_matching_blocks()
Return list of triples describing matching subsequences. Each triple is of the form (i, j, n),
and means that ali:i+n] == b[j:j+n]l. The triples are monotonically increasing in ¢ and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). It is the only triple with
n==0. If (i, j, n) and (i', j', n') are adjacent triples in the list, and the second is not
the last triple in the list, then i+n != i' or j+n != j'; in other words, adjacent triples always
describe non-adjacent equal blocks.

6.3. difflib — Helpers for computing deltas 131

The Python Library Reference, Release 3.6.5

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> s.get_matching_blocks()
[Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, i2,
j1, j2). The first tuple has i1 == j1 == 0, and remaining tuples have i equal to the 2 from
the preceding tuple, and, likewise, j1 equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning

'replace' | al[il:i2] should be replaced by b[j1:j2].

'delete’ a[i1:12] should be deleted. Note that j1 == j2 in this case.

'insert' b[j1:j2] should be inserted at a[i1:11]. Note that i1 == i2 in this case.
'equal' ali1:i2] == b[j1:j2] (the sub-sequences are equal).

For example:

>>> a = "qabxcd"

>>> b "abycdf"

>>> s = SequenceMatcher(None, a, b)

>>> for tag, il, i2, j1, j2 in s.get_opcodes():

print (' al{}:{}] —-=> bl{}F:{H] -—> ' . format(
tag, i1, i2, j1, j2, ali1:i2], b[j1:j21))
delete al0:1] --> b[0:0] 'q' > "
equal al[1:3] --> b[0:2] 'ab' --> 'ab'
replace a[3:4] --> b[2:3] x>y
equal al4:6] --> b[3:5] 'cd' --> 'cd'
insert al[6:6] -—> b[5:6] > U f

get_grouped_opcodes (n=>35)
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes (), this method splits out smaller change
clusters and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes ().

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this
is 2.0*M / T. Note that this is 1.0 if the sequences are identical, and 0.0 if they have nothing in
common.

This is expensive to compute if get_matching blocks() or get_opcodes () hasn’t already been
called, in which case you may want to try quick_ratio() or real_quick_ratio () first to get an
upper bound.

quick_ratio()
Return an upper bound on ratio () relatively quickly.

real_quick_ratio()
Return an upper bound on ratio () very quickly.

The three methods that return the ratio of matching to total characters can give different results due to
differing levels of approximation, although quick_ratio() and real_quick_ratio() are always at least as
large as ratio():

132 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher(lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio()
value over 0.6 means the sequences are close matches:

>>> print(round(s.ratio(), 3))
0.866

If you’re only interested in where the sequences match, get_matching_blocks() is handy:

>>> for block in s.get_matching_blocks():

.. print("al[/d] and b[/d] match for elements" 7 block)
a[0] and b[0] match for 8 elements

a[8] and b[17] match for 21 elements

a[29] and b[38] match for O elements

Note that the last tuple returned by get_matching_blocks() is always a dummy, (len(a), len(b), 0),
and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes():

>>> for opcode in s.get_opcodes():

. print (" al/d:/d] vl/d:/dl" 7 opcode)
equal a[0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:29] b[17:38]

See also:

e The get_close_matches() function in this module which shows how simple code building on
SequenceMatcher can be used to do useful work.

e Simple version control recipe for a small application built with SequenceMatcher.

6.3.3 Differ Objects

Note that D7 ffer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are
often counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages
apart. Restricting synch points to contiguous matches preserves some notion of locality, at the occasional
cost of producing a longer diff.

The Differ class has this constructor:

6.3. difflib — Helpers for computing deltas 133

https://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.6.5

class difflib.Differ (linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The
default is None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true
if the character is junk. The default is None, meaning that no character is considered junk.

These junk-filtering functions speed up matching to find differences and do not cause any differing
lines or characters to be ignored. Read the description of the find_longest_match () method’s isjunk
parameter for an explanation.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences
can be obtained from the readlines() method of file-like objects. The delta generated also
consists of newline-terminated strings, ready to be printed as-is via the writelines () method of
a file-like object.

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending
with newlines (such sequences can also be obtained from the readlines() method of file-like objects):

>>> textl = ''' 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
. "' . splitlines(keepends=True)
>>> len(textl)
4
>>> text1[0] [-1]
l\nl
>>> text2 = ''' 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.
"' . splitlines(keepends=True)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating a D ffer object we may pass functions to filter out line and character “junk.”
See the Differ () constructor for details.

Finally, we compare the two:

>>> result = list(d.compare(textl, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint (result)

(continues on next page)

134 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

(continued from previous page)

[1. Beautiful is better than ugly.\n',
'- 2. Explicit is better than implicit.\n',
'- 3. Simple is better than complex.\n',
'+ 3. Simple is better than complex.\n',

|? ++\n| s

'- 4. Complex is better than complicated.\n',
vd -~ _———— "\nl s
'+ 4. Complicated is better than complex.\n',
g +++4+ 7 “\n',

'+ 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines(result)
1. Beautiful is better than ugly.
2. Explicit is better than implicit.
- 3. Simple is better than complex.
3

+ Simple is better than complex.
? ++

4. Complex is better than complicated.
> ~ -
+ 4. Complicated is better than complex.
? +++4+ 7 ~
+ 5. Flat is better than nested.

6.3.5 A command-line interface to difflib

This example shows how to use difflib to create a diff-like utility. It is also contained in the Python source
distribution, as Tools/scripts/diff.py.

#1/usr/bin/env python3
" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.
* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.
* html: generates side by side comparison with change highlights.

wmn

import sys, os, difflib, argparse
from datetime import datetime, timezone

def file_mtime(path):
t = datetime.fromtimestamp(os.stat(path).st_mtime,
timezone.utc)
return t.astimezone() .isoformat()

def main():

parser = argparse.ArgumentParser()

parser.add_argument('-c', action='store_true', default=False,
help='Produce a context format diff (default)')

parser.add_argument('-u', action='store_true', default=False,

(continues on next page)

6.3. difflib — Helpers for computing deltas 135

The Python Library Reference, Release 3.6.5

(continued from previous page)

help='Produce a unified format diff')
parser.add_argument('-m', action='store_true', default=False,
help='Produce HTML side by side diff '
'(can use -c and -1 in conjunction)')
parser.add_argument('-n', action='store_true', default=False,
help='Produce a ndiff format diff')
parser.add_argument('-1', '--lines', type=int, default=3,
help='Set number of context lines (default 3)')
parser.add_argument ('fromfile')
parser.add_argument ('tofile')
options = parser.parse_args()

n = options.lines
fromfile = options.fromfile
tofile = options.tofile

fromdate = file_mtime(fromfile)
todate = file _mtime(tofile)
with open(fromfile) as ff:
fromlines = ff.readlines()
with open(tofile) as tf:
tolines = tf.readlines()

if options.u:
diff = difflib.unified_diff(fromlines, tolines, fromfile, tofile, fromdate, todate, n=n)
elif options.n:
diff = difflib.ndiff(fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff() .make_file(fromlines,tolines,fromfile,tofile,context=options.c,
<snumlines=n)
else:
diff = difflib.context_diff(fromlines, tolines, fromfile, tofile, fromdate, todate, n=n)

sys.stdout.writelines(diff)

if __name__ == '__main__"':
main()

6.4 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The teztwrap module provides some convenience functions, as well as TeztWrapper, the class that does all
the work. If you're just wrapping or filling one or two text strings, the convenience functions should be good
enough; otherwise, you should use an instance of TextWrapper for efficiency.

textwrap.wrap (text, width="70, **kwargs)
Wraps the single paragraph in tezt (a string) so every line is at most width characters long. Returns a
list of output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TeztiWrapper, documented below.
width defaults to 70.

See the TextWrapper.wrap () method for additional details on how wrap () behaves.

136 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.6/Lib/textwrap.py

The Python Library Reference, Release 3.6.5

textwrap.fill (text, width=70, **kwargs)

Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph.
f2111() is shorthand for

"\n".join(wrap(text, ...))

In particular, f411 () accepts exactly the same keyword arguments as wrap ().

textwrap.shorten (text, width, **kwargs)

Collapse and truncate the given text to fit in the given width.

First the whitespace in text is collapsed (all whitespace is replaced by single spaces). If the result fits
in the width, it is returned. Otherwise, enough words are dropped from the end so that the remaining
words plus the placeholder fit within width:

>>> textwrap.shorten("Hello world!", width=12)
'Hello world!'
>>> textwrap.shorten("Hello world!", width=11)

'Hello [...]"
>>> textwrap.shorten("Hello world", width=10, placeholder="...")
'Hello...'

Optional keyword arguments correspond to the instance attributes of TeztWrapper, documented below.
Note that the whitespace is collapsed before the text is passed to the TeztiWrapper fi11 () function, so
changing the value of tabsize, ezpand_tabs, drop_whitespace, and replace_whitespace will have
no effect.

New in version 3.4.

textwrap.dedent (text)

Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left edge of the display, while still
presenting them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello"
and "\thello" are considered to have no common leading whitespace.

For example:

def test():
end first line with \ to avoid the empty line!
s = """\
hello
world
1
print (repr(s)) # prints ' hello\n world\n !

print(repr(dedent(s))) # prints 'hello\n world\n'

textwrap.indent (text, prefiz, predicate=None)

Add prefiz to the beginning of selected lines in text.
Lines are separated by calling text.splitlines(True).

By default, prefiz is added to all lines that do not consist solely of whitespace (including any line
endings).

For example:

6.4.

textwrap — Text wrapping and filling 137

The Python Library Reference, Release 3.6.5

>>> s = 'hello\n\n \nworld'
>>> indent(s, ' ')
' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is
easy to add prefix to even empty and whitespace-only lines:

>>> print(indent(s, '+ ', lambda line: True))
+ hello

+

+

+ world

New in version 3.3.

wrap (), fill() and shorten() work by creating a TexztWrapper instance and calling a single method on it.
That instance is not reused, so for applications that process many text strings using wrap () and/or fi11(),
it may be more efficient to create your own TeztWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will
long words be broken if necessary, unless TexztWrapper.break_long_words is set to false.

class textwrap.TextWrapper (**kwargs)
The TeztWrapper constructor accepts a number of optional keyword arguments. Each keyword argu-
ment corresponds to an instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

is the same as

wrapper = TextWrapper()
wrapper.initial_indent = "x "

You can re-use the same TeztWrapper object many times, and you can change any of its options
through direct assignment to instance attributes between uses.

The TeztWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words
in the input text longer than width, TeztWrapper guarantees that no output line will be longer
than width characters.

expand_tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the
expandtabs () method of tezt.

tabsize
(default: 8) If ezpand_tabs is true, then all tab characters in text will be expanded to zero or
more spaces, depending on the current column and the given tab size.

New in version 3.3.

replace_whitespace
(default: True) If true, after tab expansion but before wrapping, the wrap () method will replace
each whitespace character with a single space. The whitespace characters replaced are as follows:
tab, newline, vertical tab, formfeed, and carriage return ('\t\n\v\f\r').

138 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

Note: If ezpand_tabs is false and replace_whitespace is true, each tab character will be
replaced by a single space, which is not the same as tab expansion.

Note: If replace_whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines()
or similar) which are wrapped separately.

drop_whitespace
(default: True) If true, whitespace at the beginning and ending of every line (after wrapping
but before indenting) is dropped. Whitespace at the beginning of the paragraph, however, is not
dropped if non-whitespace follows it. If whitespace being dropped takes up an entire line, the
whole line is dropped.

initial_indent
(default: '') String that will be prepended to the first line of wrapped output. Counts towards
the length of the first line. The empty string is not indented.

subsequent_indent
(default: ') String that will be prepended to all lines of wrapped output except the first. Counts
towards the length of each line except the first.

fix_sentence_endings
(default: False) If true, TeztWrapper attempts to detect sentence endings and ensure that
sentences are always separated by exactly two spaces. This is generally desired for text in a
monospaced font. However, the sentence detection algorithm is imperfect: it assumes that a sen-
tence ending consists of a lowercase letter followed by one of '.', '!' or '?', possibly followed
by one of """ or "'" followed by a space. One problem with this is algorithm is that it is unable
to detect the difference between “Dr.” in

’[...] Dr. Frankenstein's monster [...]

and “Spot.” in

’[...] See Spot. See Spot run [...]

fiz_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same
line, it is specific to English-language texts.

break_long_words
(default: True) If true, then words longer than width will be broken in order to ensure that no
lines are longer than width. If it is false, long words will not be broken, and some lines may be
longer than width. (Long words will be put on a line by themselves, in order to minimize the
amount by which width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens
in compound words, as it is customary in English. If false, only whitespaces will be considered
as potentially good places for line breaks, but you need to set break_long words to false if you
want truly insecable words. Default behaviour in previous versions was to always allow breaking
hyphenated words.

6.4. textwrap — Text wrapping and filling 139

The Python Library Reference, Release 3.6.5

max_lines
(default: None) If not None, then the output will contain at most maz__lines lines, with placeholder
appearing at the end of the output.

New in version 3.4.

placeholder
(default: ' [...]") String that will appear at the end of the output text if it has been truncated.

New in version 3.4.

TexztWrapper also provides some public methods, analogous to the module-level convenience functions:

wrap (text)
Wraps the single paragraph in text (a string) so every line is at most width characters long. All
wrapping options are taken from instance attributes of the TeztWrapper instance. Returns a list
of output lines, without final newlines. If the wrapped output has no content, the returned list is
empty.

£ill (text)
Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph.

6.5 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties
for all Unicode characters. The data contained in this database is compiled from the UCD version 9.0.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode
Character Database”. It defines the following functions:

unicodedata.lookup(name)
Look up character by name. If a character with the given name is found, return the corresponding
character. If not found, KeyError is raised.

Changed in version 3.3: Support for name aliases' and named sequences® has been added.

unicodedata.name (chr[7 default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.decimal (chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default
is returned, or, if not given, ValueError is raised.

unicodedata.digit (chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.numeric(chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.category (chr)
Returns the general category assigned to the character chr as string.

L http://www.unicode.org/Public/9.0.0 /ucd/NameAliases.txt
2 http://www.unicode.org/Public/9.0.0/ucd /NamedSequences.txt

140 Chapter 6. Text Processing Services

http://www.unicode.org/Public/9.0.0/ucd
http://www.unicode.org/reports/tr44/tr44-6.html
http://www.unicode.org/reports/tr44/tr44-6.html
http://www.unicode.org/Public/9.0.0/ucd/NameAliases.txt
http://www.unicode.org/Public/9.0.0/ucd/NamedSequences.txt

The Python Library Reference, Release 3.6.5

unicodedata.bidirectional (chr)
Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an
empty string is returned.

unicodedata.combining(chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no
combining class is defined.

unicodedata.east_asian_width(chr)
Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored(chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has
been identified as a “mirrored” character in bidirectional text, 0 otherwise.

unicodedata.decomposition(chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string
is returned in case no such mapping is defined.

unicodedata.normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD".

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)
can also be expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+40327 (COMBINING
CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D
(NFD) is also known as canonical decomposition, and translates each character into its decomposed
form. Normal form C (NFC) first applies a canonical decomposition, then composes pre-combined
characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equiv-
alence. In Unicode, certain characters are supported which normally would be unified with other
characters. For example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049
(LATIN CAPITAL LETTER I). However, it is supported in Unicode for compatibility with existing
character sets (e.g. gh2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compati-
bility characters with their equivalents. The normal form KC (NFKC) first applies the compatibility
decomposition, followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining
characters and the other doesn’t, they may not compare equal.

In addition, the module exposes the following constant:

unicodedata.unidata_version
The version of the Unicode database used in this module.

unicodedata.ucd_3_2_0
This is an object that has the same methods as the entire module, but uses the Unicode database
version 3.2 instead, for applications that require this specific version of the Unicode database (such as
IDNA).

Examples:

6.5. unicodedata — Unicode Database 141

The Python Library Reference, Release 3.6.5

>>> import unicodedata
>>> unicodedata.lookup('LEFT CURLY BRACKET')
|{|
>>> unicodedata.name('/")
'SOLIDUS'
>>> unicodedata.decimal('9"')
9
>>> unicodedata.decimal('a')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: not a decimal
>>> unicodedata.category('A') # 'L'etter, 'u'ppercase
lLul
>>> unicodedata.bidirectional ('\u0660') # 'A'rabic, 'N'umber
|AN|

6.6 stringprep — Internet String Preparation

Source code: Lib/stringprep.py

When identifying things (such as host names) in the internet, it is often necessary to compare such identifi-
cations for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g.
whether it should be case-insensitive or not. It may be also necessary to restrict the possible identifications,
to allow only identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings
onto the wire, they are processed with the preparation procedure, after which they have a certain normalized
form. The RFC defines a set of tables, which can be combined into profiles. Each profile must define which
tables it uses, and what other optional parts of the stringprep procedure are part of the profile. One
example of a stringprep profile is nameprep, which is used for internationalized domain names.

The module stringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The
module source code itself was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in
the RFC: sets and mappings. For a set, stringprep provides the “characteristic function”; i.e. a function
that returns true if the parameter is part of the set. For mappings, it provides the mapping function: given
the key, it returns the associated value. Below is a list of all functions available in the module.

stringprep.in_table_al(code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_b1(code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_b2(code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_b3(code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no nor-
malization).

stringprep.in_table_c11(code)
Determine whether code is in tableC.1.1 (ASCII space characters).

142 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.6/Lib/stringprep.py
https://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 3.6.5

stringprep.in_table_c12(code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_c11_c12(code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21(code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22(code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22(code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3(code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4(code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_cb5(code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6(code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8(code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9(code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1(code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2(code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline — GNU readline interface

The readline module defines a number of functions to facilitate completion and reading/writing of history
files from the Python interpreter. This module can be used directly, or via the rlcompleter module, which
supports completion of Python identifiers at the interactive prompt. Settings made using this module affect
the behaviour of both the interpreter’s interactive prompt and the prompts offered by the built-in input ()
function.

Note: The underlying Readline library API may be implemented by the 1ibedit library instead of GNU
readline. On MacOS X the readline module detects which library is being used at run time.

The configuration file for libedit is different from that of GNU readline. If you programmatically load
configuration strings you can check for the text “libedit” in readline.__doc__ to differentiate between
GNU readline and libedit.

6.7. readline — GNU readline interface 143

The Python Library Reference, Release 3.6.5

Readline keybindings may be configured via an initialization file, typically .inputrc in your home directory.
See Readline Init File in the GNU Readline manual for information about the format and allowable constructs
of that file, and the capabilities of the Readline library in general.

6.7.1 Init file

The following functions relate to the init file and user configuration:

readline.parse_and_bind (string)
Execute the init line provided in the string argument. This calls r1_parse_and_bind () in the under-
lying library.

readline.read_init_file([ﬁlename])
Execute a readline initialization file. The default filename is the last filename used. This calls
rl_read_init_file() in the underlying library.

6.7.2 Line buffer

The following functions operate on the line buffer:

readline.get_line_buffer()
Return the current contents of the line buffer (r1_line_buffer in the underlying library).

readline.insert_text (string)
Insert text into the line buffer at the cursor position. This calls r1_insert_text() in the underlying
library, but ignores the return value.

readline.redisplay()
Change what’s displayed on the screen to reflect the current contents of the line buffer. This calls
rl_redisplay() in the underlying library.

6.7.3 History file

The following functions operate on a history file:

readline.read_history_file([ﬁlename])
Load a readline history file, and append it to the history list. The default filename is ~/.history.
This calls read_history() in the underlying library.

readline.write_history_file([ﬁlename])
Save the history list to a readline history file, overwriting any existing file. The default filename is
~/.history. This calls write_history() in the underlying library.

readline.append_history_file(nelements[, ﬁlename])
Append the last nelements items of history to a file. The default filename is ~/.history. The file
must already exist. This calls append_history() in the underlying library. This function only exists
if Python was compiled for a version of the library that supports it.

New in version 3.5.

readline.get_history_length()

readline.set_history_length(length)
Set or return the desired number of lines to save in the history file. The write_history_file()
function uses this value to truncate the history file, by calling history_truncate_file() in the
underlying library. Negative values imply unlimited history file size.

144 Chapter 6. Text Processing Services

https://cnswww.cns.cwru.edu/php/chet/readline/rluserman.html#SEC9

The Python Library Reference, Release 3.6.5

6.7.4 History list

The following functions operate on a global history list:

readline.clear_history()
Clear the current history. This calls clear_history() in the underlying library. The Python function
only exists if Python was compiled for a version of the library that supports it.

readline.get_current_history_length()
Return the number of items currently in the history. (This is different from get_history_length(),
which returns the maximum number of lines that will be written to a history file.)

readline.get_history_item(index)
Return the current contents of history item at inder. The item index is one-based. This calls
history_get () in the underlying library.

readline.remove_history_item(pos)
Remove history item specified by its position from the history. The position is zero-based. This calls
remove_history() in the underlying library.

readline.replace_history_item(pos, line)
Replace history item specified by its position with line. The position is zero-based. This calls
replace_history_entry() in the underlying library.

readline.add_history (line)
Append line to the history buffer, as if it was the last line typed. This calls add_history() in the
underlying library.

readline.set_auto_history(enabled)
Enable or disable automatic calls to add_history() when reading input via readline. The enabled
argument should be a Boolean value that when true, enables auto history, and that when false, disables
auto history.

New in version 3.6.

CPython implementation detail: Auto history is enabled by default, and changes to this do not
persist across multiple sessions.

6.7.5 Startup hooks

readline.set_startup_hook([function])
Set or remove the function invoked by the rl_startup_hook callback of the underlying library. If
function is specified, it will be used as the new hook function; if omitted or None, any function already
installed is removed. The hook is called with no arguments just before readline prints the first prompt.

readline.set_pre_input_hook([function])
Set or remove the function invoked by the rl_pre_input_hook callback of the underlying library. If
function is specified, it will be used as the new hook function; if omitted or None, any function already
installed is removed. The hook is called with no arguments after the first prompt has been printed and
just before readline starts reading input characters. This function only exists if Python was compiled
for a version of the library that supports it.

6.7.6 Completion

The following functions relate to implementing a custom word completion function. This is typically operated
by the Tab key, and can suggest and automatically complete a word being typed. By default, Readline is set

6.7. readline — GNU readline interface 145

The Python Library Reference, Release 3.6.5

up to be used by rlcompleter to complete Python identifiers for the interactive interpreter. If the readline
module is to be used with a custom completer, a different set of word delimiters should be set.

readline.set_completer([function])
Set or remove the completer function. If function is specified, it will be used as the new completer
function; if omitted or None, any completer function already installed is removed. The completer
function is called as function(text, state), for statein 0, 1, 2, ..., until it returns a non-string value.
It should return the next possible completion starting with text.

The installed completer function is invoked by the entry func callback passed to
rl_completion_matches() in the underlying library. The text string comes from the first pa-
rameter to the r1_attempted_completion_function callback of the underlying library.

readline.get_completer()
Get the completer function, or None if no completer function has been set.

readline.get_completion_type()
Get the type of completion being attempted. This returns the rl_completion_type variable in the
underlying library as an integer.

readline.get_begidx ()

readline.get_endidx()
Get the beginning or ending index of the completion scope. These indexes are the start and end
arguments passed to the rl_attempted_completion_function callback of the underlying library.

readline.set_completer_delims (string)

readline.get_completer_delims()
Set or get the word delimiters for completion. These determine the start of the word
to be considered for completion (the completion scope). These functions access the
rl_completer_word_break_characters variable in the underlying library.

readline.set_completion_display_matches_hook([functz'on])
Set or remove the completion display function. If function is specified, it will be used as the new
completion display function; if omitted or None, any completion display function already installed
is removed. This sets or clears the r1_completion_display_matches_hook callback in the under-
lying library. The completion display function is called as function(substitution, [matches],
longest_match_length) once each time matches need to be displayed.

6.7.7 Example

The following example demonstrates how to use the readline module’s history reading and writing func-
tions to automatically load and save a history file named .python_history from the user’s home direc-
tory. The code below would normally be executed automatically during interactive sessions from the user’s
PYTHONSTARTUP file.

import atexit
import os
import readline

histfile = os.path.join(os.path.expanduser("~"), ".python_history")
try:
readline.read_history_file(histfile)
default history len is -1 (infinite), which may grow unruly
readline.set_history_length(1000)
except FileNotFoundError:
pass

(continues on next page)

146 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.6.5

(continued from previous page)

atexit.register(readline.write_history_file, histfile)

This code is actually automatically run when Python is run in interactive mode (see Readline configuration).

The following example achieves the same goal but supports concurrent interactive sessions, by only appending
the new history.

import atexit

import os

import readline

histfile = os.path.join(os.path.expanduser("~"), ".python_history")
try:

readline.read_history_file(histfile)

h_len = readline.get_current_history_length()
except FileNotFoundError:

open(histfile, 'wb').close()

h_len = 0

def save(prev_h_len, histfile):
new_h_len = readline.get_current_history_length()
readline.set_history_length(1000)
readline.append_history_file(new_h_len - prev_h_len, histfile)
atexit.register(save, h_len, histfile)

The following example extends the code. InteractiveConsole class to support history save/restore.

import atexit
import code
import os
import readline

class HistoryConsole(code.InteractiveConsole):
def __init__(self, locals=None, filename='"<console>",
histfile=os.path.expanduser("~/.console-history")):
code.InteractiveConsole.__init__(self, locals, filename)
self.init_history(histfile)

def init_history(self, histfile):
readline.parse_and_bind("tab: complete")
if hasattr(readline, "read_history_file"):
try:
readline.read_history_file(histfile)
except FileNotFoundError:
pass
atexit.register(self.save_history, histfile)

def save_history(self, histfile):
readline.set_history_length(1000)
readline.write_history_file(histfile)

6.8 rlcompleter — Completion function for GNU readline

Source code: Lib/rlcompleter.py

6.8. rlcompleter — Completion function for GNU readline 147

https://github.com/python/cpython/tree/3.6/Lib/rlcompleter.py

The Python Library Reference, Release 3.6.5

The rlcompleter module defines a completion function suitable for the readline module by completing
valid Python identifiers and keywords.

When this module is imported on a Unix platform with the readline module available, an instance of the
Completer class is automatically created and its complete() method is set as the readline completer.

Example:

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete")

>>> readline. <TAB PRESSED>

readline.__doc__ readline.get_line_buffer(readline.read_init_file(
readline.__file__ readline.insert_text(readline.set_completer(
readline.__name__ readline.parse_and_bind(

>>> readline.

The rlcompleter module is designed for use with Python’s interactive mode. Unless Python is run with
the -8 option, the module is automatically imported and configured (see Readline configuration).

On platforms without readline, the Completer class defined by this module can still be used for custom
purposes.

6.8.1 Completer Objects

Completer objects have the following method:

Completer.complete (text, state)
Return the stateth completion for text.

If called for text that doesn’t include a period character ('."'), it will complete from names currently
defined in __main__, builtins and keywords (as defined by the keyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will
not be evaluated, but it can generate calls to __getattr__()) up to the last part, and find matches
for the rest via the dir() function. Any exception raised during the evaluation of the expression is
caught, silenced and None is returned.

148 Chapter 6. Text Processing Services

CHAPTER

SEVEN

BINARY DATA SERVICES

The modules described in this chapter provide some basic services operations for manipulation of binary
data. Other operations on binary data, specifically in relation to file formats and network protocols, are
described in the relevant sections.

Some libraries described under Text Processing Services also work with either ASCII-compatible binary
formats (for example, re) or all binary data (for example, diff14b).

In addition, see the documentation for Python’s built-in binary data types in Binary Sequence Types
bytes, bytearray, memoryview.

7.1 struct — Interpret bytes as packed binary data

Source code: Lib/struct.py

This module performs conversions between Python values and C structs represented as Python bytes objects.
This can be used in handling binary data stored in files or from network connections, among other sources.
It uses Format Strings as compact descriptions of the layout of the C structs and the intended conversion
to/from Python values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper
alignment for the C types involved; similarly, alignment is taken into account when unpacking. This behavior
is chosen so that the bytes of a packed struct correspond exactly to the layout in memory of the corresponding
C struct. To handle platform-independent data formats or omit implicit pad bytes, use standard size and
alignment instead of native size and alignment: see Byte Order, Size, and Alignment for details.

Several struct functions (and methods of Struct) take a buffer argument. This refers to objects that
implement the bufferobjects and provide either a readable or read-writable buffer. The most common types
used for that purpose are bytes and bytearray, but many other types that can be viewed as an array of
bytes implement the buffer protocol, so that they can be read/filled without additional copying from a bytes
object.

7.1.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct.error
Exception raised on various occasions; argument is a string describing what is wrong.

149

https://github.com/python/cpython/tree/3.6/Lib/struct.py

The Python Library Reference, Release 3.6.5

struct.pack(fmt, vi, v2, ...)
Return a bytes object containing the values v1, v2, ... packed according to the format string fmt. The
arguments must match the values required by the format exactly.

struct.pack_into (fmt, buffer, offset, vi, v2, ...)
Pack the values vi1, v2, .. according to the format string fmt¢ and write the packed bytes into the
writable buffer buffer starting at position offset. Note that offset is a required argument.

struct.unpack (fmt, buffer)
Unpack from the buffer buffer (presumably packed by pack(fmt, ...)) according to the format string
fmt. The result is a tuple even if it contains exactly one item. The buffer’s size in bytes must match
the size required by the format, as reflected by calcsize().

struct.unpack_from(fmt, buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string fm¢. The result is a tuple
even if it contains exactly one item. The buffer’s size in bytes, minus offset, must be at least the size
required by the format, as reflected by calcsize().

struct.iter_unpack(fmt, buffer)
Iteratively unpack from the buffer buffer according to the format string fmt. This function returns an
iterator which will read equally-sized chunks from the buffer until all its contents have been consumed.
The buffer’s size in bytes must be a multiple of the size required by the format, as reflected by
calecsize().

Each iteration yields a tuple as specified by the format string.
New in version 3.4.

struct.calcsize (fmt)
Return the size of the struct (and hence of the bytes object produced by pack(fmt, ...)) correspond-
ing to the format string fmt.

7.1.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data.
They are built up from Format Characters, which specify the type of data being packed/unpacked. In
addition, there are special characters for controlling the Byte Order, Size, and Alignment.

Byte Order, Size, and Alignment
By default, C types are represented in the machine’s native format and byte order, and properly aligned by
skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment
of the packed data, according to the following table:

Character | Byte order Size Alignment
@ native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, '@' is assumed.

150 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.6.5

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and
AMD64 (x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium
feature switchable endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined
with native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between '@' and '=': both use native byte order, but the size and alignment of the
latter is standardized.

The form '!' is available for those poor souls who claim they can’t remember whether network byte order
is big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of '<'
or '>'.
Notes:

1. Padding is only automatically added between successive structure members. No padding is added at

the beginning or the end of the encoded struct.

2. No padding is added when using non-native size and alignment, e.g. with ‘<’, ‘>’ ‘=’ and ‘I’

3. To align the end of a structure to the alignment requirement of a particular type, end the format with
the code for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be
obvious given their types. The ‘Standard size’ column refers to the size of the packed value in bytes when
using standard size; that is, when the format string starts with one of '<', '>' '1' or '='. When using
native size, the size of the packed value is platform-dependent.

Format | C Type Python type Standard size | Notes
X pad byte no value

c char bytes of length 1 | 1

b signed char integer 1 (1),(3)
B unsigned char integer 1 (3)

? _Bool bool 1 (1)

h short integer 2 (3)

H unsigned short integer 2 (3)

i int integer 4 (3)

I unsigned int integer 4 (3)

1 long integer 4 (3)

L unsigned long integer 4 (3)

q long long integer 8 (2), (3)
Q unsigned long long | integer 8 (2), (3)
n ssize_t integer (4)

N size_t integer (4)

e (7) float 2 (5)

f float float 4 (5)

d double float 8 (5)

s char[] bytes

P char (] bytes

P void * integer (6)

7.1. struct — Interpret bytes as packed binary data 151

The Python Library Reference, Release 3.6.5

Changed in version 3.3: Added support for the 'n' and 'N' formats.
Changed in version 3.6: Added support for the 'e' format.
Notes:

1. The '?"' conversion code corresponds to the _Bool type defined by C99. If this type is not available,
it is simulated using a char. In standard mode, it is always represented by one byte.

2. The 'q' and 'Q' conversion codes are available in native mode only if the platform C compiler supports
C long lomng, or, on Windows, __int64. They are always available in standard modes.

3. When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer
has a __index__() method then that method is called to convert the argument to an integer before
packing.

Changed in version 3.2: Use of the __index__() method for non-integers is new in 3.2.

4. The 'n' and 'N' conversion codes are only available for the native size (selected as the default or
with the '@' byte order character). For the standard size, you can use whichever of the other integer
formats fits your application.

5. For the 'f', 'd' and 'e' conversion codes, the packed representation uses the IEEE 754 binary32,
binary64 or binaryl6 format (for '£', 'd' or 'e' respectively), regardless of the floating-point format
used by the platform.

6. The 'P' format character is only available for the native byte ordering (selected as the default or
with the '@"' byte order character). The byte order character '=' chooses to use little- or big-endian
ordering based on the host system. The struct module does not interpret this as native ordering, so
the 'P' format is not available.

7. The IEEE 754 binaryl6 “half precision” type was introduced in the 2008 revision of the IEEE 754
standard. It has a sign bit, a 5-bit exponent and 11-bit precision (with 10 bits explicitly stored), and
can represent numbers between approximately 6.1e-05 and 6.5e+04 at full precision. This type is not
widely supported by C compilers: on a typical machine, an unsigned short can be used for storage, but
not for math operations. See the Wikipedia page on the half-precision floating-point format for more
information.

A format character may be preceded by an integral repeat count. For example, the format string '4h' means
exactly the same as 'hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace
though.

For the 's' format character, the count is interpreted as the length of the bytes, not a repeat count like
for the other format characters; for example, '10s' means a single 10-byte string, while '10c' means 10
characters. If a count is not given, it defaults to 1. For packing, the string is truncated or padded with null
bytes as appropriate to make it fit. For unpacking, the resulting bytes object always has exactly the specified
number of bytes. As a special case, '0s' means a single, empty string (while '0Oc' means 0 characters).

When packing a value x using one of the integer formats ('b', 'B', 'h', 'H', 'i', 'I', '1', 'L', 'q', 'Q"),
if x is outside the valid range for that format then struct.error is raised.

Changed in version 3.1: In 3.0, some of the integer formats wrapped out-of-range values and raised
DeprecationiWarning instead of struct.error.

The 'p' format character encodes a “Pascal string”, meaning a short variable-length string stored in a fized
number of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is
smaller. The bytes of the string follow. If the string passed in to pack() is too long (longer than the count
minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it is
padded with null bytes so that exactly count bytes in all are used. Note that for unpack (), the 'p' format
character consumes count bytes, but that the string returned can never contain more than 255 bytes.

152 Chapter 7. Binary Data Services

https://en.wikipedia.org/wiki/IEEE_floating_point#IEEE_754-2008
https://en.wikipedia.org/wiki/IEEE_floating_point#IEEE_754-2008
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

The Python Library Reference, Release 3.6.5

For the '?' format character, the return value is either True or False. When packing, the truth value of
the argument object is used. Either 0 or 1 in the native or standard bool representation will be packed, and
any non-zero value will be True when unpacking.

Examples

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import *

>>> pack('hhl', 1, 2, 3)
b'\x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack('hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03")

(1, 2, 3)
>>> calcsize('hhl')
8

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = b'raymond \x32\x12\x08\x01\x08'
>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)

>>> from collections import namedtuple

>>> Student = namedtuple('Student', 'name serialnum school gradelevel')
>>> Student._make(unpack('<10sHHb', record))
Student (name=b ' raymond ', serialnum=4658, school=264, gradelevel=38)

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment
requirements is different:

>>> pack('ci', b'*', 0x12131415)
b'*\x00\x00\x00\x12\x13\x14\x15"
>>> pack('ic', 0x12131415, b'*"')
b'\x12\x13\x14\x15x%"

>>> calcsize('ci')

8

>>> calcsize('ic')

5

The following format '11h01' specifies two pad bytes at the end, assuming longs are aligned on 4-byte
boundaries:

>>> pack('11h01', 1, 2, 3)
b'\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"'

This only works when native size and alignment are in effect; standard size and alignment does not enforce
any alignment.

See also:
Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

7.1. struct — Interpret bytes as packed binary data 153

The Python Library Reference, Release 3.6.5

7.1.3 Classes

The struct module also defines the following type:

class struct.Struct (format)
Return a new Struct object which writes and reads binary data according to the format string format.
Creating a Struct object once and calling its methods is more efficient than calling the struct functions
with the same format since the format string only needs to be compiled once.

Compiled Struct objects support the following methods and attributes:

pack(vi, v2, ...)
Identical to the pack() function, using the compiled format. (len(result) will equal size.)

pack_into (buffer, offset, vi, v2, ...)
Identical to the pack_into () function, using the compiled format.

unpack (buffer)
Identical to the unpack () function, using the compiled format. The buffer’s size in bytes must
equal size.

unpack_from(buffer, offset=0)
Identical to the unpack_from() function, using the compiled format. The buffer’s size in bytes,
minus offset, must be at least size.

iter_unpack (buffer)
Identical to the Zter_unpack() function, using the compiled format. The buffer’s size in bytes
must be a multiple of size.

New in version 3.4.

format
The format string used to construct this Struct object.

size
The calculated size of the struct (and hence of the bytes object produced by the pack () method)
corresponding to format.

7.2 codecs — Codec registry and base classes

Source code: Lib/codecs.py

This module defines base classes for standard Python codecs (encoders and decoders) and provides access
to the internal Python codec registry, which manages the codec and error handling lookup process. Most
standard codecs are text encodings, which encode text to bytes, but there are also codecs provided that
encode text to text, and bytes to bytes. Custom codecs may encode and decode between arbitrary types,
but some module features are restricted to use specifically with text encodings, or with codecs that encode
to bytes.

The module defines the following functions for encoding and decoding with any codec:

codecs.encode (obj, encoding="utf-8’, errors=’strict’)
Encodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handler is
'strict' meaning that encoding errors raise ValueError (or a more codec specific subclass, such
as UnicodeEncodeError). Refer to Codec Base Classes for more information on codec error handling.

154 Chapter 7. Binary Data Services

https://github.com/python/cpython/tree/3.6/Lib/codecs.py

The Python Library Reference, Release 3.6.5

codecs.decode (obj, encoding="utf-8’, errors=’strict’)
Decodes o0bj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handler is
'strict' meaning that decoding errors raise ValueError (or a more codec specific subclass, such
as UnicodeDecodeError). Refer to Codec Base Classes for more information on codec error handling.

The full details for each codec can also be looked up directly:

codecs.lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined below.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions
is scanned. If no CodecInfo object is found, a LookupError is raised. Otherwise, the CodecInfo object
is stored in the cache and returned to the caller.

class codecs.CodecInfo(encode, decode, streamreader=None, streamwriter=None, incrementalen-

coder=None, incrementaldecoder=None, name=None)
Codec details when looking up the codec registry. The constructor arguments are stored in attributes

of the same name:

name
The name of the encoding.

encode

decode
The stateless encoding and decoding functions. These must be functions or methods which have
the same interface as the encode() and decode () methods of Codec instances (see Codec Inter-
face). The functions or methods are expected to work in a stateless mode.

incrementalencoder

incrementaldecoder
Incremental encoder and decoder classes or factory functions. These have to provide the inter-
face defined by the base classes IncrementalEncoder and IncrementalDecoder, respectively.
Incremental codecs can maintain state.

streamwriter

streamreader
Stream writer and reader classes or factory functions. These have to provide the interface defined
by the base classes Streamiriter and StreamReader, respectively. Stream codecs can maintain
state.

To simplify access to the various codec components, the module provides these additional functions which
use Lookup () for the codec lookup:

codecs.getencoder (encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getdecoder (encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder (encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

codecs.getincrementaldecoder (encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

7.2. codecs — Codec registry and base classes 155

The Python Library Reference, Release 3.6.5

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

codecs.getreader (encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.getwriter (encoding)
Look up the codec for the given encoding and return its Streamiriter class or factory function.

Raises a LookupError in case the encoding cannot be found.
Custom codecs are made available by registering a suitable codec search function:

codecs.register (search_ function)
Register a codec search function. Search functions are expected to take one argument, being the
encoding name in all lower case letters, and return a CodecInfo object. In case a search function
cannot find a given encoding, it should return None.

Note: Search function registration is not currently reversible, which may cause problems in some
cases, such as unit testing or module reloading.

While the builtin open() and the associated 7o module are the recommended approach for working with
encoded text files, this module provides additional utility functions and classes that allow the use of a wider
range of codecs when working with binary files:

codecs.open(filename, mode="r’; encoding=None, errors="strict’, buffering=1)
Open an encoded file using the given mode and return an instance of StreamReadeririter, providing
transparent encoding/decoding. The default file mode is 'r', meaning to open the file in read mode.

Note: Underlying encoded files are always opened in binary mode. No automatic conversion of '\n'
is done on reading and writing. The mode argument may be any binary mode acceptable to the built-in
open () function; the 'b' is automatically added.

encoding specifies the encoding which is to be used for the file. Any encoding that encodes to and
decodes from bytes is allowed, and the data types supported by the file methods depend on the codec
used.

errors may be given to define the error handling. It defaults to 'strict' which causes a ValueError
to be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to line buffered.

codecs.EncodedFile (file, data__encoding, file__encoding=None, errors=’strict’)
Return a StreamRecoder instance, a wrapped version of file which provides transparent transcoding.
The original file is closed when the wrapped version is closed.

Data written to the wrapped file is decoded according to the given data__encoding and then written to
the original file as bytes using file encoding. Bytes read from the original file are decoded according
to file__encoding, and the result is encoded using data__encoding.

If file_encoding is not given, it defaults to data__encoding.

errors may be given to define the error handling. It defaults to 'strict', which causes ValueError
to be raised in case an encoding error occurs.

codecs.iterencode (iterator, encoding, errors=’strict’, **kwargs)
Uses an incremental encoder to iteratively encode the input provided by iterator. This function is a

156 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.6.5

generator. The errors argument (as well as any other keyword argument) is passed through to the
incremental encoder.

This function requires that the codec accept text str objects to encode. Therefore it does not support
bytes-to-bytes encoders such as base64_codec.

codecs.iterdecode (iterator, encoding, errors=’strict’, **kwargs)
Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a
generator. The errors argument (as well as any other keyword argument) is passed through to the
incremental decoder.

This function requires that the codec accept bytes objects to decode. Therefore it does not support
text-to-text encoders such as rot_13, although rot_13 may be used equivalently with iterencode().

The module also provides the following constants which are useful for reading and writing to platform
dependent files:

codecs.BOM

codecs.BOM_BE

codecs.BOM_LE

codecs.BOM_UTF8

codecs.BOM_UTF16

codecs.BOM_UTF16_BE

codecs.BOM_UTF16_LE

codecs.BOM_UTF32

codecs.BOM_UTF32_BE

codecs.BOM_UTF32_LE
These constants define various byte sequences, being Unicode byte order marks (BOMs) for several
encodings. They are used in UTF-16 and UTF-32 data streams to indicate the byte order used, and
in UTF-8 as a Unicode signature. BOM_UTF16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on
the platform’s native byte order, BOM is an alias for BOM_UTF16, BOM_LE for BOM_UTF16_LE and BOM_BE
for BOM_UTF16_BE. The others represent the BOM in UTF-8 and UTF-32 encodings.

7.2.1 Codec Base Classes

The codecs module defines a set of base classes which define the interfaces for working with codec objects,
and can also be used as the basis for custom codec implementations.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless
decoder, stream reader and stream writer. The stream reader and writers typically reuse the stateless
encoder/decoder to implement the file protocols. Codec authors also need to define how the codec will
handle encoding and decoding errors.

Error Handlers

To simplify and standardize error handling, codecs may implement different error handling schemes by
accepting the errors string argument. The following string values are defined and implemented by all
standard Python codecs:

Value Meaning

'strict' | Raise UnicodeError (or a subclass); this is the default. Implemented in strict_errors().
'ignore' | Ignore the malformed data and continue without further notice. Implemented in
ignore_errors().

The following error handlers are only applicable to text encodings:

7.2. codecs — Codec registry and base classes 157

The Python Library Reference, Release 3.6.5

Value Meaning

'replace| Replace with a suitable replacement marker; Python will use the official U+FFFD REPLACE-

MENT CHARACTER for the built-in codecs on decoding, and ‘?” on encoding. Implemented

in replace_errors().

'xmlcharrd¥eelptaceith the appropriate XML character reference (only for encoding). Implemented in

zmlcharrefreplace_errors().

'backslagHteplhacetith backslashed escape sequences. Implemented in backslashreplace_errors().

'namereplldteplace with \N{...} escape sequences (only for encoding). Implemented in

namereplace_errors().

'surrogatdascdperding, replace byte with individual surrogate code ranging from U+DC80 to U+DCFF.

This code will then be turned back into the same byte when the 'surrogateescape' error
handler is used when encoding the data. (See PEP 383 for more.)

In addition, the following error handler is specific to the given codecs:

Value Codecs Meaning

'surrogatepsfs8, utf-16, utf-32, utf-16-be, | Allow encoding and decoding of surrogate codes. These

utf-16-le, utf-32-be, utf-32-le codecs normally treat the presence of surrogates as an error.

New in version 3.1: The 'surrogateescape' and 'surrogatepass' error handlers.

Changed in version 3.4: The 'surrogatepass' error handlers now works with utf-16* and utf-32* codecs.

New in version 3.5: The 'namereplace' error handler.

Changed in version 3.5: The 'backslashreplace' error handlers now works with decoding and translating.

The set of allowed values can be extended by registering a new named error handler:

codecs.register_error(name, error__handler)

Register the error handling function error_handler under the name name. The error_handler argu-
ment will be called during encoding and decoding in case of an error, when name is specified as the
errors parameter.

For encoding, error__handler will be called with a UnicodeEncodeError instance, which contains in-
formation about the location of the error. The error handler must either raise this or a different
exception, or return a tuple with a replacement for the unencodable part of the input and a position
where encoding should continue. The replacement may be either str or bytes. If the replacement is
bytes, the encoder will simply copy them into the output buffer. If the replacement is a string, the
encoder will encode the replacement. Encoding continues on original input at the specified position.
Negative position values will be treated as being relative to the end of the input string. If the resulting
position is out of bound an IndezError will be raised.

Decoding and translating works similarly, except UnicodeDecodeError or UnicodeTranslateError
will be passed to the handler and that the replacement from the error handler will be put into the
output directly.

Previously registered error handlers (including the standard error handlers) can be looked up by name:

codecs.lookup_error (name)

Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

The following standard error handlers are also made available as module level functions:

codecs.strict_errors (exception)

Implements the 'strict' error handling: each encoding or decoding error raises a UnicodeError.

158

Chapter 7. Binary Data Services

https://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.6.5

codecs.replace_errors (exception)
Implements the 'replace' error handling (for text encodings only): substitutes '?' for encoding errors
(to be encoded by the codec), and '\ufffd' (the Unicode replacement character) for decoding errors.

codecs.ignore_errors (exception)
Implements the 'ignore' error handling: malformed data is ignored and encoding or decoding is
continued without further notice.

codecs.xmlcharrefreplace_errors (exception)
Implements the 'xmlcharrefreplace' error handling (for encoding with text encodings only): the
unencodable character is replaced by an appropriate XML character reference.

codecs.backslashreplace_errors (exception)
Implements the 'backslashreplace' error handling (for text encodings only): malformed data is
replaced by a backslashed escape sequence.

codecs.namereplace_errors (exception)
Implements the 'namereplace' error handling (for encoding with text encodings only): the unencod-
able character is replaced by a \N{. ..} escape sequence.

New in version 3.5.

Stateless Encoding and Decoding

The base Codec class defines these methods which also define the function interfaces of the stateless encoder
and decoder:

Codec.encode (input[, errors])
Encodes the object input and returns a tuple (output object, length consumed). For instance, text
encoding converts a string object to a bytes object using a particular character set encoding (e.g.,
cp1252 or is0-8859-1).

The errors argument defines the error handling to apply. It defaults to 'strict' handling.

The method may not store state in the Codec instance. Use Streamiriter for codecs which have to
keep state in order to make encoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object
type in this situation.

Codec.decode (z'nput[, errors])
Decodes the object input and returns a tuple (output object, length consumed). For instance, for a
text encoding, decoding converts a bytes object encoded using a particular character set encoding to a
string object.

For text encodings and bytes-to-bytes codecs, input must be a bytes object or one which provides the
read-only buffer interface — for example, buffer objects and memory mapped files.

The errors argument defines the error handling to apply. It defaults to 'strict' handling.

The method may not store state in the Codec instance. Use StreamReader for codecs which have to
keep state in order to make decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object
type in this situation.

7.2. codecs — Codec registry and base classes 159

The Python Library Reference, Release 3.6.5

Incremental Encoding and Decoding

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental en-
coding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder
function, but with multiple calls to the encode()/decode () method of the incremental encoder/decoder.
The incremental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode()/decode () method is the same as if all the single inputs were
joined into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following
methods which every incremental encoder must define in order to be compatible with the Python codec
registry.

class codecs.IncrementalEncoder (errors=’strict’)
Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional
keyword arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors
keyword argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalEncoder object.

encode(object[, ﬁnal])
Encodes object (taking the current state of the encoder into account) and returns the resulting
encoded object. If this is the last call to encode () final must be true (the default is false).

reset ()
Reset the encoder to the initial state. The output is discarded: call .encode(object,
final=True), passing an empty byte or text string if necessary, to reset the encoder and to
get the output.

getstate()
Return the current state of the encoder which must be an integer. The implementation should
make sure that 0 is the most common state. (States that are more complicated than integers
can be converted into an integer by marshaling/pickling the state and encoding the bytes of the
resulting string into an integer).

setstate(state)
Set the state of the encoder to state. state must be an encoder state returned by getstate().

IncrementalDecoder Objects

The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following
methods which every incremental decoder must define in order to be compatible with the Python codec
registry.

class codecs.IncrementalDecoder (errors=’strict’)
Constructor for an IncrementalDecoder instance.

160 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.6.5

All incremental decoders must provide this constructor interface. They are free to add additional
keyword arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors
keyword argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalDecoder object.

decode(object[, ﬁnal])
Decodes object (taking the current state of the decoder into account) and returns the resulting
decoded object. If this is the last call to decode() final must be true (the default is false). If
final is true the decoder must decode the input completely and must flush all buffers. If this isn’t
possible (e.g. because of incomplete byte sequences at the end of the input) it must initiate error
handling just like in the stateless case (which might raise an exception).

reset ()
Reset the decoder to the initial state.

getstate()

Return the current state of the decoder. This must be a tuple with two items, the first must be the
buffer containing the still undecoded input. The second must be an integer and can be additional
state info. (The implementation should make sure that 0 is the most common additional state
info.) If this additional state info is 0 it must be possible to set the decoder to the state which has
no input buffered and 0 as the additional state info, so that feeding the previously buffered input to
the decoder returns it to the previous state without producing any output. (Additional state info
that is more complicated than integers can be converted into an integer by marshaling/pickling
the info and encoding the bytes of the resulting string into an integer.)

setstate (state)
Set the state of the encoder to state. state must be a decoder state returned by getstate().

Stream Encoding and Decoding

The StreamiWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects

The Streamiiriter class is a subclass of Codec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.

class codecs.StreamWriter (stream, errors=’strict’)

Constructor for a Streami/riter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for writing text or binary data, as appropriate for
the specific codec.

The StreamiWriter may implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for the standard error handlers the underlying stream codec may
support.

7.2.

codecs — Codec registry and base classes 161

The Python Library Reference, Release 3.6.5

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
Streamiriter object.

write (object)
Writes the object’s contents encoded to the stream.

writelines(list)
Writes the concatenated list of strings to the stream (possibly by reusing the write () method).
The standard bytes-to-bytes codecs do not support this method.

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows
appending of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the Streamiriter must also inherit all other methods and attributes
from the underlying stream.

StreamReader Objects

The StreamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class codecs.StreamReader (stream, errors=’strict’)

Constructor for a StreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for reading text or binary data, as appropriate
for the specific codec.

The StreamReader may implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for the standard error handlers the underlying stream codec may
support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
StreamReader object.

The set of allowed values for the errors argument can be extended with register_error().

read ([size[, chars[, ﬁrstline]]])
Decodes data from the stream and returns the resulting object.

The chars argument indicates the number of decoded code points or bytes to return. The read ()
method will never return more data than requested, but it might return less, if there is not enough
available.

The size argument indicates the approximate maximum number of encoded bytes or code points
to read for decoding. The decoder can modify this setting as appropriate. The default value -1
indicates to read and decode as much as possible. This parameter is intended to prevent having
to decode huge files in one step.

The firstline flag indicates that it would be sufficient to only return the first line, if there are
decoding errors on later lines.

162

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.6.5

The method should use a greedy read strategy meaning that it should read as much data as is
allowed within the definition of the encoding and the given size, e.g. if optional encoding endings
or state markers are available on the stream, these should be read too.

readline([size[, keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s read () method.

If keepends is false line-endings will be stripped from the lines returned.

readlines([sizehint[, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries
if keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be
able to recover from decoding errors.

In addition to the above methods, the StreamReader must also inherit all other methods and attributes
from the underlying stream.

StreamReaderWriter Objects

The StreamReadeririter is a convenience class that allows wrapping streams which work in both read and
write modes.

The design is such that one can use the factory functions returned by the lookup () function to construct
the instance.

class codecs.StreamReaderWriter (stream, Reader, Writer, errors="strict’)
Creates a StreamReadeririter instance. stream must be a file-like object. Reader and Writer must
be factory functions or classes providing the StreamReader and Streamiriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReadeririter instances define the combined interfaces of StreamReader and Streamiriter classes.
They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The StreamRecoder translates data from one encoding to another, which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned by the lookup () function to construct
the instance.

class codecs.StreamRecoder (stream, encode, decode, Reader, Writer, errors=’strict’)
Creates a StreamRecoder instance which implements a two-way conversion: encode and decode work
on the frontend — the data visible to code calling read () and write(), while Reader and Writer work
on the backend — the data in stream.

You can use these objects to do transparent transcodings from e.g. Latin-1 to UTF-8 and back.

The stream argument must be a file-like object.

7.2. codecs — Codec registry and base classes 163

The Python Library Reference, Release 3.6.5

The encode and decode arguments must adhere to the Codec interface. Reader and Writer must
be factory functions or classes providing objects of the StreamReader and Streamiriter interface
respectively.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of StreamReader and Streamiriter classes. They
inherit all other methods and attributes from the underlying stream.

7.2.2 Encodings and Unicode

Strings are stored internally as sequences of code points in range 0x0-0x10FFFF. (See PEP 393 for more
details about the implementation.) Once a string object is used outside of CPU and memory, endianness
and how these arrays are stored as bytes become an issue. As with other codecs, serialising a string into a
sequence of bytes is known as encoding, and recreating the string from the sequence of bytes is known as
decoding. There are a variety of different text serialisation codecs, which are collectivity referred to as text
encodings.

The simplest text encoding (called 'latin-1' or 'iso-8859-1') maps the code points 0-255 to the bytes
0x0—-0xff, which means that a string object that contains code points above U+00FF can’t be encoded with
this codec. Doing so will raise a UnicodeEncodeError that looks like the following (although the details of the
error message may differ): UnicodeEncodeError: 'latin-1' codec can't encode character '\ul234'
in position 3: ordinal not in range(256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all
Unicode code points and how these code points are mapped to the bytes 0x0-0xff. To see how this is done
simply open e.g. encodings/cp1252.py (which is an encoding that is used primarily on Windows). There’s
a string constant with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 code points defined in Unicode. A simple and
straightforward way that can store each Unicode code point, is to store each code point as four consecutive
bytes. There are two possibilities: store the bytes in big endian or in little endian order. These two encodings
are called UTF-32-BE and UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF-32-BE on
a little endian machine you will always have to swap bytes on encoding and decoding. UTF-32 avoids this
problem: bytes will always be in natural endianness. When these bytes are read by a CPU with a different
endianness, then bytes have to be swapped though. To be able to detect the endianness of a UTF-16 or
UTF-32 byte sequence, there’s the so called BOM (“Byte Order Mark”). This is the Unicode character
U+FEFF. This character can be prepended to every UTF-16 or UTF-32 byte sequence. The byte swapped
version of this character (OxFFFE) is an illegal character that may not appear in a Unicode text. So when the
first character in an UTF-16 or UTF-32 byte sequence appears to be a U+FFFE the bytes have to be swapped
on decoding. Unfortunately the character U+FEFF had a second purpose as a ZERO WIDTH NO-BREAK SPACE:
a character that has no width and doesn’t allow a word to be split. It can e.g. be used to give hints to a
ligature algorithm. With Unicode 4.0 using U+FEFF as a ZERO WIDTH NO-BREAK SPACE has been deprecated
(with U+2060 (WORD JOINER) assuming this role). Nevertheless Unicode software still must be able to handle
U+FEFF in both roles: as a BOM it’s a device to determine the storage layout of the encoded bytes, and
vanishes once the byte sequence has been decoded into a string; as a ZERO WIDTH NO-BREAK SPACE it’s a
normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is
an 8-bit encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte
sequence consists of two parts: marker bits (the most significant bits) and payload bits. The marker bits are
a sequence of zero to four 1 bits followed by a 0 bit. Unicode characters are encoded like this (with x being
payload bits, which when concatenated give the Unicode character):

164 Chapter 7. Binary Data Services

https://www.python.org/dev/peps/pep-0393

The Python Library Reference, Release 3.6.5

Range Encoding

U-00000000 ... U-0000007F | OxXXXXXX

U-00000080 ... U-000007FF | 110xxxxx 10XXXXXX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxx 10XXXXXX
U-00010000 .. U-0010FFFF | 11110xxx 10xxxxxx 10xxxx%xx 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if
it’s the first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a
string. Each charmap encoding can decode any random byte sequence. However that’s not possible with
UTF-8, as UTF-8 byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase
the reliability with which a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that
Python 2.5 calls "utf-8-sig") for its Notepad program: Before any of the Unicode characters is written to
the file, a UTF-8 encoded BOM (which looks like this as a byte sequence: Oxef, 0xbb, Oxbf) is written. As
it’s rather improbable that any charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in is0-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the
byte sequence. So here the BOM is not used to be able to determine the byte order used for generating the
byte sequence, but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will
write Oxef, Oxbb, Oxbf as the first three bytes to the file. On decoding utf-8-sig will skip those three bytes
if they appear as the first three bytes in the file. In UTF-8, the use of the BOM is discouraged and should
generally be avoided.

7.2.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as
mapping tables. The following table lists the codecs by name, together with a few common aliases, and the
languages for which the encoding is likely used. Neither the list of aliases nor the list of languages is meant
to be exhaustive. Notice that spelling alternatives that only differ in case or use a hyphen instead of an
underscore are also valid aliases; therefore, e.g. 'utf-8' is a valid alias for the 'utf_8' codec.

CPython implementation detail: Some common encodings can bypass the codecs lookup machinery to
improve performance. These optimization opportunities are only recognized by CPython for a limited set
of (case insensitive) aliases: utf-8, utf8, latin-1, latinl, is0-8859-1, is08859-1, mbcs (Windows only), ascii,
us-ascii, utf-16, utfl6, utf-32, utf32, and the same using underscores instead of dashes. Using alternative
aliases for these encodings may result in slower execution.

Changed in version 3.6: Optimization opportunity recognized for us-ascii.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the
EURO SIGN is supported or not), and in the assignment of characters to code positions. For the European
languages in particular, the following variants typically exist:

e an ISO 8859 codeset

e a Microsoft Windows code page, which is typically derived from an 8859 codeset, but replaces control
characters with additional graphic characters

« an IBM EBCDIC code page

7.2. codecs — Codec registry and base classes 165

The Python Library Reference, Release 3.6.5

e an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
bigh bigh-tw, csbigh Traditional Chinese
bighhkscs bigh-hkscs, hkscs Traditional Chinese
cp037 IBMO037, IBM039 English
cp273 273, IBM273, csIBM273 German
New in version 3.4.
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP- | Western Europe
CH, IBM500
cp720 Arabic
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM857 Turkish
cp858 858, IBM858 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM8&61 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBMS864 Arabic
cp865 865, IBM865 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chinese
cpl1006 Urdu
cpl026 ibm1026 Turkish
cpl125 1125, ibm1125, c¢p866u, ruscii Ukrainian
New in version 3.4.
cpl140 ibm1140 Western Europe
cpl1250 windows-1250 Central and Eastern Europe
cpl251 windows-1251 Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian
cpl252 windows-1252 Western Europe
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic languages
cpl258 windows-1258 Vietnamese

Continued on next page

166

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.6.5

Table 1 — continued from previous page

Codec Aliases Languages
cp65001 Windows only: Windows UTF-8
(CP_UTF8)
New in version 3.3.
euc_jp eucjp, ujis, u-jis Japanese
euc_ jis_ 2004 jisx0213, eucjis2004 Japanese
euc_ jisx0213 eucjisx0213 Japanese
euc_ kr euckr, korean, ksc5601, ks_c- | Korean
5601, ks_ c-5601-1987, ksx1001,
ks_ x-1001
gh2312 chinese, csisob8gb231280, | Simplified Chinese
euc- cn, euccn, eucgb2312-cn,
gb2312-1980, gb2312-80, iso-
ir-58
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gh-2312 Simplified Chinese
is02022__jp ¢sis02022jp, is02022jp, iso-2022- | Japanese
Jp
is02022_jp_1 is02022jp-1, is0-2022-jp-1 Japanese
is02022_jp_ 2 is02022jp-2, is0-2022-jp-2 Japanese, Korean, Simplified
Chinese, Western Europe, Greek
is02022_jp_ 2004 | is02022jp-2004, iso-2022-jp-2004 | Japanese
is02022_jp_ 3 is02022jp-3, iso-2022-jp-3 Japanese
is02022__jp_ ext is02022jp-ext, iso-2022-jp-ext Japanese
1802022 kr csis02022kr, is02022kr, iso-2022- | Korean
kr
latin_ 1 is0-8859-1, iso8859-1, 8859, | West Europe
cp819, latin, latinl, L1
iso8859 2 is0-8859-2, latin2, L2 Central and Eastern Europe
is08859_ 3 is0-8859-3, latin3, L3 Esperanto, Maltese
iso8859 4 is0-8859-4, latind, L4 Baltic languages
is08859_ 5 is0-8859-5, cyrillic Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian
iso8859 6 is0-8859-6, arabic Arabic
is08859__7 is0-8859-7, greek, greek8 Greek
iso8859 8 is0-8859-8, hebrew Hebrew
is08859_ 9 is0-8859-9, latinb, L5 Turkish
is08859_ 10 is0-8859-10, latin6, L6 Nordic languages
iso8859_ 11 is0-8859-11, thai Thai languages
is08859_ 13 is0-8859-13, latin7, L7 Baltic languages
is08859_ 14 is0-8859-14, lating, L8 Celtic languages
is08859 15 is0-8859-15, latin9, L9 Western Europe
iso8859 16 is0-8859-16, latin10, L10 South-Eastern Europe
johab cpl361, ms1361 Korean
koi8_r Russian
koi8_t Tajik
New in version 3.5.
koi8 u Ukrainian
kz1048 kz_ 1048, strk1048_ 2002, | Kazakh
rk1048 New in version 3.5.

Continued on next page

7.2.

codecs — Codec registry and base classes

167

The Python Library Reference, Release 3.6.5

Table 1 — continued from previous page

Codec Aliases Languages

mac__cyrillic maccyrillic Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian

mac_ greek macgreek Greek

mac_ iceland maciceland Icelandic

mac_ latin2

maclatin2, maccentraleurope

Central and Eastern Europe

mac__roman

macroman, macintosh

Western Europe

mac__turkish macturkish Turkish
ptcplb4 cspteplbd, pt1d4, cplb4, cyrillic- | Kazakh
asian
shift_ jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_ jis_ 2004 shiftjis2004, sjis_ 2004, sjis2004 Japanese
shift_ jisx0213 shiftjisx0213, sjisx0213, | Japanese
s_ jisx0213
utf 32 U32, utf32 all languages
utf 32 be UTF-32BE all languages
utf 32 _le UTF-32LE all languages
utf 16 U16, utfl6 all languages
utf 16_be UTF-16BE all languages
utf 16_1le UTF-16LE all languages
utf 7 U7, unicode-1-1-utf-7 all languages
utf 8 U8, UTF, utf8 all languages
utf 8 sig all languages

Changed in version 3.4: The utf-16* and utf-32* encoders no longer allow surrogate code points (U+D800—
U+DFFF) to be encoded. The utf-32* decoders no longer decode byte sequences that correspond to surrogate
code points.

7.2.4 Python Specific Encodings

A number of predefined codecs are specific to Python, so their codec names have no meaning outside Python.
These are listed in the tables below based on the expected input and output types (note that while text
encodings are the most common use case for codecs, the underlying codec infrastructure supports arbitrary
data transforms rather than just text encodings). For asymmetric codecs, the stated purpose describes the
encoding direction.

Text Encodings

The following codecs provide str to bytes encoding and bytes-like object to str decoding, similar to the
Unicode text encodings.

168 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.6.5

Codec Aliases Purpose

idna Implements RFC 3490, see
also encodings. idna. Only
errors='strict' is supported.

mbcs ansi, dbcs Windows only: Encode operand
according to the ANSI codepage
(CP_ACP)

oem Windows only: Encode operand
according to the OEM codepage
(CP_OEMCP)
New in version 3.6.

palmos Encoding of PalmOS 3.5

punycode Implements RFC 3492. State-

ful codecs are not supported.

raw__unicode_ escape

Latin-1 encoding with \uXXXX
and \UXXXXXXXX for other code
points. Existing backslashes are
not escaped in any way. It is
used in the Python pickle pro-
tocol.

undefined

Raise an exception for all conver-
sions, even empty strings. The
error handler is ignored.

unicode__escape

Encoding suitable as the con-
tents of a Unicode literal in
ASClII-encoded Python source
code, except that quotes are not
escaped. Decodes from Latin-
1 source code. Beware that
Python source code actually uses
UTF-8 by default.

unicode internal

Return the internal representa-
tion of the operand. Stateful
codecs are not supported.
Deprecated since version 3.3:
This representation is obsoleted
by PEP 393.

Binary Transforms

The following codecs provide binary transforms: bytes-like object to bytes mappings. They are not supported

by bytes.decode() (which only produces str output).

7.2.

codecs — Codec registry and base classes

169

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3492.html
https://www.python.org/dev/peps/pep-0393

The Python Library Reference, Release 3.6.5

Codec Aliases Purpose Encoder / decoder
base64__codec’ | base64, Convert operand to multiline MIME base64 (the baseb4.
base 64 result always includes a trailing '\n") encodebytes() /
Changed in version 3.4: accepts any bytes-like baseb.
object as input for encoding and decoding decodebytes ()
bz2_ codec bz2 Compress the operand using bz2 bz2.compress ()
/ bz2.
decompress ()
hex_ codec hex Convert operand to hexadecimal representation, binascit.
with two digits per byte b2a_hez() /
binascit.
a2b_hez ()
quopri_ codec quopri, Convert operand to MIME quoted printable quoprt.
quoted- encode () with
printable, quotetabs=True
quoted__printable / quopTi.
decode()
uu__codec uu Convert the operand using uuencode uu. encode() /
uy. decode ()
zlib_ codec zip, zlib Compress the operand using gzip zlib.
compress () /
zlzb.
decompress ()

New in version 3.2: Restoration of the binary transforms.

Changed in version 3.4: Restoration of the aliases for the binary transforms.

Text Transforms

The following codec provides a text transform: a str to str mapping. It is not supported by str. encode ()
(which only produces bytes output).

Codec

Aliases

Purpose

rot 13 | rotl3

Returns the Caesar-cypher encryption of the operand

New in version 3.2: Restoration of the rot_13 text transform.

Changed in version 3.4: Restoration of the rot13 alias.

7.2.5 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492
(Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode
encoding and stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain
name containing non-ASCII characters (such as www.Alliancefrangaise.nu) is converted into an ASCII-
compatible encoding (ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the domain
name is then used in all places where arbitrary characters are not allowed by the protocol, such as DNS
queries, HT'TP Host fields, and so on. This conversion is carried out in the application; if possible invisible

1 In addition to bytes-like objects, 'base64_codec' also accepts ASCII-only instances of str for decoding

170 Chapter 7. Binary Data Services

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 3.6.5

to the user: The application should transparently convert Unicode domain labels to IDNA on the wire, and
convert back ACE labels to Unicode before presenting them to the user.

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and
ACE, separating an input string into labels based on the separator characters defined in section 3.1 (1) of
RFC 3490 and converting each label to ACE as required, and conversely separating an input byte string
into labels based on the . separator and converting any ACE labels found into unicode. Furthermore,
the socket module transparently converts Unicode host names to ACE, so that applications need not be
concerned about converting host names themselves when they pass them to the socket module. On top
of that, modules that have host names as function parameters, such as http.client and ftplib, accept
Unicode host names (http.client then also transparently sends an IDNA hostname in the Host field if it
sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to
Unicode is performed: Applications wishing to present such host names to the user should decode them to
Unicode.

The module encodings.idna also implements the nameprep procedure, which performs certain normal-
izations on host names, to achieve case-insensitivity of international domain names, and to unify similar
characters. The nameprep functions can be used directly if desired.

encodings.idna.nameprep (label)
Return the nameprepped version of label. The implementation currently assumes query strings, so
AllowUnassigned is true.

encodings.idna.ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

7.2.6 encodings.mbcs — Windows ANSI codepage

Encode operand according to the ANSI codepage (CP__ACP).
Availability: Windows only.
Changed in version 3.3: Support any error handler.

Changed in version 3.2: Before 3.2, the errors argument was ignored; 'replace' was always used to encode,
and 'ignore' to decode.

7.2.7 encodings.utf_8_sig — UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will be
prepended to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to
the byte stream). For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

7.2. codecs — Codec registry and base classes 171

https://tools.ietf.org/html/rfc3490#section-3.1
https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3490.html

The Python Library Reference, Release 3.6.5

172 Chapter 7. Binary Data Services

CHAPTER

EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times,
fixed-type arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, dict, list, set and frozenset, and tuple.
The str class is used to hold Unicode strings, and the bytes class is used to hold binary data.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

Source code: Lib/datetime.py

The datetime module supplies classes for manipulating dates and times in both simple and complex ways.
While date and time arithmetic is supported, the focus of the implementation is on efficient attribute
extraction for output formatting and manipulation. For related functionality, see also the time and calendar
modules.

There are two kinds of date and time objects: “naive” and “aware”.

An aware object has sufficient knowledge of applicable algorithmic and political time adjustments, such as
time zone and daylight saving time information, to locate itself relative to other aware objects. An aware
object is used to represent a specific moment in time that is not open to interpretation’.

A naive object does not contain enough information to unambiguously locate itself relative to other date/time
objects. Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some
other timezone is purely up to the program, just like it is up to the program whether a particular number
represents metres, miles, or mass. Naive objects are easy to understand and to work with, at the cost of
ignoring some aspects of reality.

For applications requiring aware objects, datetime and time objects have an optional time zone information
attribute, tzinfo, that can be set to an instance of a subclass of the abstract tzinfo class. These tzinfo
objects capture information about the offset from UTC time, the time zone name, and whether Daylight
Saving Time is in effect. Note that only one concrete tzinfo class, the timezone class, is supplied by the
datetime module. The timezone class can represent simple timezones with fixed offset from UTC, such as
UTC itself or North American EST and EDT timezones. Supporting timezones at deeper levels of detail
is up to the application. The rules for time adjustment across the world are more political than rational,
change frequently, and there is no standard suitable for every application aside from UTC.

The datetime module exports the following constants:

1 If, that is, we ignore the effects of Relativity

173

https://github.com/python/cpython/tree/3.6/Lib/datetime.py

The Python Library Reference, Release 3.6.5

datetime.MINYEAR
The smallest year number allowed in a date or datetime object. MINYEAR is 1.

datetime.MAXYEAR
The largest year number allowed in a date or datetime object. MAXYEAR is 9999.

See also:
Module calendar General calendar related functions.

Module time Time access and conversions.

8.1.1 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in
effect. Attributes: year, month, and day.

class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60
seconds (there is no notion of “leap seconds” here). Attributes: hour, minute, second, microsecond,
and tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second,
microsecond, and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, time, or datetime instances to microsecond
resolution.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the datetime and time
classes to provide a customizable notion of time adjustment (for example, to account for time zone
and/or daylight saving time).

class datetime.timezone
A class that implements the tzinfo abstract base class as a fixed offset from the UTC.

New in version 3.2.
Objects of these types are immutable.
Objects of the date type are always naive.

An object of type time or datetime may be naive or aware. A datetime object d is aware if d.tzinfo is
not None and d.tzinfo.utcoffset(d) does not return None. If d.tzinfo is None, or if d.tzinfo is not
None but d.tzinfo.utcoffset(d) returns None, d is naive. A time object t is aware if t.tzinfo is not
None and t.tzinfo.utcoffset (None) does not return None. Otherwise, ¢ is naive.

The distinction between naive and aware doesn’t apply to timedelta objects.

Subclass relationships:

object
timedelta
tzinfo
timezone
time
date
datetime

174 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

8.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0,

hours=0, weeks=0)
All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive
or negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:
¢ A millisecond is converted to 1000 microseconds.
¢ A minute is converted to 60 seconds.
e An hour is converted to 3600 seconds.
e A week is converted to 7 days.
and days, seconds and microseconds are then normalized so that the representation is unique, with
e 0 <= microseconds < 1000000
e 0 <= seconds < 3600%24 (the number of seconds in one day)
e -999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over
from all arguments are combined and their sum is rounded to the nearest microsecond using round-
half-to-even tiebreaker. If no argument is a float, the conversion and normalization processes are exact
(no information is lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example,

>>> from datetime import timedelta

>>> d = timedelta(microseconds=-1)

>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes are:

timedelta.min
The most negative timedelta object, timedelta(-999999999).

timedelta.max
The most positive timedelta object, timedelta(days=999999999, hours=23, minutes=59,
seconds=59, microseconds=999999).

timedelta.resolution
The smallest possible difference between non-equal timedelta objects, timedelta(microseconds=1).

Note that, because of normalization, timedelta.max > -timedelta.min. -timedelta.max is not repre-
sentable as a timedelta object.

Instance attributes (read-only):

Attribute Value

days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds | Between 0 and 999999 inclusive

8.1. datetime — Basic date and time types 175

The Python Library Reference, Release 3.6.5

Supported operations:

Operation Result

tl = t2 + t3 Sum of t2 and t3. Afterwards t1-t2 == t3 and tI1-t3 == t2 are true. (1)

tl = t2 - t3 Difference of t2 and t3. Afterwards t1 == ¢2 - t3 and ¢2 == t1 + t3 are true. (1

tl = t2 * i or t1 | Delta multiplied by an integer. Afterwards t1 // i == t2 is true, provided 1 !=

=i *x t2 0.
In general, t1 * i == t1* (i-1) + tI is true. (1)

tl = t2 * £ or t1 | Delta multiplied by a float. The result is rounded to the nearest multiple of

=f *x t2 timedelta.resolution using round-half-to-even.

f=1t2/ 13 Division (3) of ¢2 by ¢3. Returns a float object.

tl = t2 / £ or t1 | Delta divided by a float or an int. The result is rounded to the nearest multiple

=t2/ i of timedelta.resolution using round-half-to-even.

tl = t2 // i or t1 | The floor is computed and the remainder (if any) is thrown away. In the second

=t2 // t3 case, an integer is returned. (3)

t1 = t2 % t3 The remainder is computed as a timedelta object. (3)

q, r = divmod(tl, | Computes the quotient and the remainder: g = t1 // t2 (3) andr = t1 % t2.

t2) q is an integer and r is a timedelta object.

+t1 Returns a timedelta object with the same value. (2)

-t1 equivalent to timedelta(-t1.days, -t1.seconds, -t1.microseconds), and to tI1* -1.
(1)(4)

abs (t) equivalent to +¢ when t.days >= 0, and to -t when t.days < 0. (2)

str(t) Returns a string in the form [D day[s],][H]JH:MM:SS[.UUUUUU], where D is
negative for negative t. (5)

repr(t) Returns a string in the form datetime.timedelta(D[, S[, U]]), where D is
negative for negative t. (5)

Notes:

1. This is exact, but may overflow.
This is exact, and cannot overflow.
Division by 0 raises ZeroDivisionError.

-timedelta.max is not representable as a timedelta object.

AN

String representations of timedelta objects are normalized similarly to their internal representation.
This leads to somewhat unusual results for negative timedeltas. For example:

>>> timedelta(hours=-5)
datetime.timedelta(-1, 68400)
>>> print(_)

-1 day, 19:00:00

In addition to the operations listed above timedelta objects support certain additions and subtractions
with date and datetime objects (see below).

Changed in version 3.2: Floor division and true division of a timedelta object by another timedelta object
are now supported, as are remainder operations and the dzvmod () function. True division and multiplication
of a timedelta object by a float object are now supported.

Comparisons of timedelta objects are supported with the timedelta object representing the smaller dura-
tion considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the
default comparison by object address, when a timedelta object is compared to an object of a different type,
TypeError is raised unless the comparison is == or !=. The latter cases return False or True, respectively.

176 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean con-
texts, a timedelta object is considered to be true if and only if it isn’t equal to timedelta(0).

Instance methods:

timedelta.total_seconds()
Return the total number of seconds contained in the duration. Equivalent to td /
timedelta(seconds=1).

Note that for very large time intervals (greater than 270 years on most platforms) this method will
lose microsecond accuracy.

New in version 3.2.

Example usage:

>>> from datetime import timedelta

>>> year = timedelta(days=365)

>>> another_year = timedelta(weeks=40, days=84, hours=23,

c. minutes=50, seconds=600) # adds up to 365 days
>>> year.total_seconds()
31536000.0

>>> year == another_year
True

>>> ten_years = 10 * year
>>> ten_years, ten_years.days // 365
(datetime.timedelta(3650), 10)

>>> nine_years = ten_years - year

>>> nine_years, nine_years.days // 365
(datetime.timedelta(3285), 9)

>>> three_years = nine_years // 3;

>>> three_years, three_years.days // 365
(datetime.timedelta(1095), 3)

>>> abs(three_years - ten_years) == 2 * three_years + year
True

8.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian
calendar indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of
year 1 is called day number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in
Dershowitz and Reingold’s book Calendrical Calculations, where it’s the base calendar for all computations.
See the book for algorithms for converting between proleptic Gregorian ordinals and many other calendar
systems.

class datetime.date(year, month, day)
All arguments are required. Arguments may be integers, in the following ranges:

e MINYEAR <= year <= MAXYEAR
e 1 <= month <= 12
¢ 1 <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod date.today()
Return the current local date. This is equivalent to date.fromtimestamp(time.time()).

8.1. datetime — Basic date and time types 177

The Python Library Reference, Release 3.6.5

classmethod date.fromtimestamp (timestamp)

Return the local date corresponding to the POSIX timestamp, such as is returned by time. time().
This may raise OverflowError, if the timestamp is out of the range of values supported by the platform
C localtime() function, and OSError on localtime() failure. It’s common for this to be restricted
to years from 1970 through 2038. Note that on non-POSIX systems that include leap seconds in their
notion of a timestamp, leap seconds are ignored by fromtimestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of
the range of values supported by the platform C localtime() function. Raise OSError instead of
ValueError on localtime() failure.

classmethod date.fromordinal Cordinal)

Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1. ValueError is raised unless 1 <= ordinal <= date.max.toordinal(). For any date d,
date.fromordinal(d.toordinal()) ==

Class attributes:

date.min

The earliest representable date, date (MINYEAR, 1, 1).

date.max

The latest representable date, date (MAXYEAR, 12, 31).

date.resolution

The smallest possible difference between non-equal date objects, timedelta(days=1).

Instance attributes (read-only):

date.year

Between MINYEAR and MAXYEAR inclusive.

date.month

Between 1 and 12 inclusive.

date.day

Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result

date2 = datel + date2 is timedelta.days days removed from datel. (1)

timedelta

date2 = datel - Computes date2 such that date2 + timedelta == datel. (2)

timedelta

timedelta = datel - (3)

date2

datel < date2 datel is considered less than date2 when datel precedes date2 in time.
(4)

Notes:

1. date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days < 0. Af-

terward date2 - datel == timedelta.days. timedelta.seconds and timedelta.microseconds
are ignored. OverflowError is raised if date2.year would be smaller than MINYEAR or larger than
MAXYEAR.

This isn’t quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases
where datel - timedelta does not. timedelta.seconds and timedelta.microseconds are ignored.

178

Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

3.

This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 +
timedelta == datel after.

In other words, datel < date2 if and only if datel.toordinal() < date2.toordinal(). In order to
stop comparison from falling back to the default scheme of comparing object addresses, date comparison
normally raises TypeError if the other comparand isn’t also a date object. However, NotImplemented
is returned instead if the other comparand has a timetuple () attribute. This hook gives other kinds of
date objects a chance at implementing mixed-type comparison. If not, when a date object is compared
to an object of a different type, TypeError is raised unless the comparison is == or !=. The latter cases
return False or True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date objects are considered to be true.

Instance methods:

date.

date.

date.

date.

date.

date.

date.

date.

replace (year=self.year, month=self.month, day=self.day)

Return a date with the same value, except for those parameters given new values by whichever keyword
arguments are specified. For example, if d == date(2002, 12, 31), then d.replace(day=26) ==
date (2002, 12, 26).

timetuple()

Return a time.struct_time such as returned by time.localtime(). The hours, minutes and sec-
onds are 0, and the DST flag is -1. d.timetuple() is equivalent to time.struct_time((d.year,
d.month, d.day, 0, 0, 0, d.weekday(), yday, -1)), where yday = d.toordinal() - date(d.
year, 1, 1).toordinal() + 1 isthe day number within the current year starting with 1 for January
1st.

toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any
date object d, date.fromordinal (d.toordinal()) ==

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002,
12, 4) .weekday() == 2, a Wednesday. See also isoweekday ().

isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002,
12, 4) .isoweekday() == 3, a Wednesday. See also weekday (), isocalendar().

isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See https://www.staff.science.
uu.nl/~gent0113/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a
Sunday. The first week of an ISO year is the first (Gregorian) calendar week of a year containing a
Thursday. This is called week number 1, and the ISO year of that Thursday is the same as its Gregorian
year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec
2003 and ends on Sunday, 4 Jan 2004, so that date(2003, 12, 29).isocalendar() == (2004, 1,
1) and date(2004, 1, 4).isocalendar() == (2004, 1, 7).

isoformat ()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD". For example, date (2002,
12, 4).isoformat() == '2002-12-04"'.

str__Q

For a date d, str(d) is equivalent to d.isoformat ().

8.1.

datetime — Basic date and time types 179

https://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm
https://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm

The Python Library Reference, Release 3.6.5

date.ctime()
Return a string representing the date, for example date (2002, 12, 4).ctime() == 'Wed Dec 4
00:00:00 2002'. d.ctime() is equivalent to time.ctime (time.mktime(d.timetuple())) on plat-
forms where the native C ctime () function (which time.ctime () invokes, but which date.ctime ()
does not invoke) conforms to the C standard.

date.strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to
hours, minutes or seconds will see 0 values. For a complete list of formatting directives, see strftime()
and strptime() Behavior.

date.__format__(format)
Same as date.strftime(). This makes it possible to specify a format string for a date object in
formatted string literals and when using str. format (). For a complete list of formatting directives,
see strftime() and strptime() Behavior.

Example of counting days to an event:

>>> import time
>>> from datetime import date
>>> today = date.today()

>>> today

datetime.date (2007, 12, 5)

>>> today == date.fromtimestamp(time.time())
True

>>> my_birthday = date(today.year, 6, 24)

>>> if my_birthday < today:

. my_birthday = my_birthday.replace(year=today.year + 1)
>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs(my_birthday - today)

>>> time_to_birthday.days

202

Example of working with date:

>>> from datetime import date

>>> d = date.fromordinal(730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date (2002, 3, 11)

>>> t = d.timetuple()

>>> for i in t:

. print (i)

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> ic = d.isocalendar()
>>> for i in ic:

. print (i)

2002 # ISO year

11 # IS0 week number

1 # IS0 day number (1 = Monday)

(continues on next page)

180 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> d.isoformat ()

'2002-03-11"

>>> d.strftime("/d/fm/%y")
'11/03/02"'

>>> d.strftime("%A Jd. 7B %Y")

'Monday 11. March 2002’
>>> 'The {1} is {0:/d}, the {2} is {0:%B}.'.format(d, "day", "month")
'The day is 11, the month is March.'

8.1.4 datetime Objects

A datetime object is a single object containing all the information from a date object and a time object.
Like a date object, datetime assumes the current Gregorian calendar extended in both directions; like a
time object, datetime assumes there are exactly 3600%24 seconds in every day.

Constructor:

class datetime.datetime(year, month, day, hour=0, minute=0, second=0, microsecond=0, tz-
info=None, *, fold=0)
The year, month and day arguments are required. tzinfo may be None, or an instance of a tzinfo
subclass. The remaining arguments may be integers, in the following ranges:

e MINYEAR <= year <= MAXYEAR,
o 1

N
I

month <= 12,

A
I

o 1 day <= number of days in the given month and year,
<= hour < 24,
<= minute < 60,

0
0

e 0 <= second < 60,
0

AN
]

microsecond < 1000000,
e fold in [0, 1].
If an argument outside those ranges is given, ValueError is raised.
New in version 3.6: Added the fold argument.
Other constructors, all class methods:

classmethod datetime.today()
Return the current local datetime, with tzinfo None. This is equivalent to datetime.
fromtimestamp (time.time()). See also now(), fromtimestamp ().

classmethod datetime.now({z=None)
Return the current local date and time. If optional argument ¢z is None or not specified, this is like
today (), but, if possible, supplies more precision than can be gotten from going through a time.
time () timestamp (for example, this may be possible on platforms supplying the C gettimeofday ()
function).

If ¢z is not Nomne, it must be an instance of a tzinfo subclass, and the current date and time are
converted to tz’s time zone. In this case the result is equivalent to tz.fromutc(datetime.utcnow() .
replace(tzinfo=tz)). See also today (), utcnow().

classmethod datetime.utcnow()
Return the current UTC date and time, with tzinfo None. This is like now (), but returns the current

8.1. datetime — Basic date and time types 181

The Python Library Reference, Release 3.6.5

UTC date and time, as a naive datetime object. An aware current UT'C datetime can be obtained by
calling datetime.now(timezone.utc). See also now().

classmethod datetime.fromtimestamp (timestamp, tz=None)

Return the local date and time corresponding to the POSIX timestamp, such as is returned by time.
time (). If optional argument ¢z is None or not specified, the timestamp is converted to the platform’s
local date and time, and the returned datetime object is naive.

If ¢z is not None, it must be an instance of a tzinfo subclass, and the timestamp is converted to ¢z’s time
zone. In this case the result is equivalent to tz.fromutc(datetime.utcfromtimestamp (timestamp) .
replace(tzinfo=tz)).

fromtimestamp () may raise OverflowError, if the timestamp is out of the range of values supported
by the platform C localtime() or gmtime() functions, and OSError on localtime() or gmtime()
failure. It’s common for this to be restricted to years in 1970 through 2038. Note that on non-
POSIX systems that include leap seconds in their notion of a timestamp, leap seconds are ignored
by fromtimestamp (), and then it’s possible to have two timestamps differing by a second that yield
identical datetime objects. See also utcfromtimestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C localtime() or gmtime() functions. Raise OSError
instead of ValueError on localtime() or gmtime() failure.

Changed in version 3.6: fromtimestamp () may return instances with fold set to 1.

classmethod datetime.utcfromtimestamp (timestamp)

Return the UTC datetime corresponding to the POSIX timestamp, with tzinfo None. This may raise
OverflowError, if the timestamp is out of the range of values supported by the platform C gmtime ()
function, and OSError on gmtime() failure. It’s common for this to be restricted to years in 1970
through 2038.

To get an aware datetime object, call fromtimestamp ():

’ datetime.fromtimestamp(timestamp, timezone.utc)

On the POSIX compliant platforms, it is equivalent to the following expression:

’datetime(1970, 1, 1, tzinfo=timezone.utc) + timedelta(seconds=timestamp)

except the latter formula always supports the full years range: between MINYEAR and MAXYEAR inclusive.

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C gmtime () function. Raise OSError instead of ValueError
on gmtime () failure.

classmethod datetime.fromordinal (ordinal)

Return the datetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1. ValueError is raised unless 1 <= ordinal <= datetime.max.toordinal(). The hour,
minute, second and microsecond of the result are all 0, and tzinfo is None.

classmethod datetime.combine (date, time, tzinfo=self.tzinfo)

Return a new datetime object whose date components are equal to the given date object’s, and whose
time components are equal to the given time object’s. If the tzinfo argument is provided, its value is
used to set the tzinfo attribute of the result, otherwise the tzinfo attribute of the time argument is
used.

For any datetime object d, d == datetime.combine(d.date(), d.time(), d.tzinfo). If date is a
datetime object, its time components and tzinfo attributes are ignored.

Changed in version 3.6: Added the tzinfo argument.

182

Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

classmethod datetime.strptime(date_string, format)
Return a datetime corresponding to date string, parsed according to format. This is equiva-
lent to datetime(*(time.strptime(date_string, format) [0:6])). ValueError is raised if the
date_string and format can’t be parsed by time.strptime () or if it returns a value which isn’t a time
tuple. For a complete list of formatting directives, see strftime() and strptime() Behavior.

Class attributes:

datetime.min
The earliest representable datetime, datetime (MINYEAR, 1, 1, tzinfo=None).

datetime.max
The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal datetime objects, timedelta(microseconds=1).

Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

datetime.month
Between 1 and 12 inclusive.

datetime.day
Between 1 and the number of days in the given month of the given year.

datetime.hour
In range(24).

datetime.minute
In range(60).

datetime.second
In range(60).

datetime.microsecond
In range (1000000).

datetime.tzinfo
The object passed as the tzinfo argument to the datetime constructor, or None if none was passed.

datetime.fold
In [0, 1]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs
when clocks are rolled back at the end of daylight saving time or when the UTC offset for the current
zone is decreased for political reasons.) The value 0 (1) represents the earlier (later) of the two moments
with the same wall time representation.

New in version 3.6.

Supported operations:

Operation Result

datetime2 = datetimel + timedelta | (1)

datetime2 = datetimel - timedelta | (2)

timedelta = datetimel - datetime2 | (3)

datetimel < datetime2 Compares datetime to datetime. (4)

1. datetime2 is a duration of timedelta removed from datetimel, moving forward in time if timedelta.
days > 0, or backward if timedelta.days < 0. The result has the same tzinfo attribute as the input

8.1. datetime — Basic date and time types 183

The Python Library Reference, Release 3.6.5

datetime, and datetime2 - datetimel == timedelta after. OverflowError is raised if datetime2.year
would be smaller than MINYEAR or larger than MAXYEAR. Note that no time zone adjustments are done
even if the input is an aware object.

2. Computes the datetime2 such that datetime2 + timedelta == datetimel. As for addition, the result
has the same tzinfo attribute as the input datetime, and no time zone adjustments are done even
if the input is aware. This isn’t quite equivalent to datetimel + (-timedelta), because -timedelta in
isolation can overflow in cases where datetimel - timedelta does not.

3. Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same tzinfo attribute, the tzinfo attributes are
ignored, and the result is a timedelta object ¢ such that datetime2 + t == datetimel. No time
zone adjustments are done in this case.

If both are aware and have different tzinfo attributes, a-b acts as if ¢ and b were first converted
to naive UTC datetimes first. The result is (a.replace(tzinfo=None) - a.utcoffset()) - (b.
replace(tzinfo=None) - b.utcoffset()) except that the implementation never overflows.

4. datetimel is considered less than datetime2 when datetimel precedes datetime2 in time.

If one comparand is naive and the other is aware, TypeError is raised if an order comparison is
attempted. For equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same tzinfo attribute, the common tzinfo attribute
is ignored and the base datetimes are compared. If both comparands are aware and have different
tzinfo attributes, the comparands are first adjusted by subtracting their UTC offsets (obtained from
self.utcoffset()).

Changed in version 3.3: Equality comparisons between naive and aware datetime instances don’t raise
TypeError.

Note: In order to stop comparison from falling back to the default scheme of comparing object
addresses, datetime comparison normally raises TypeError if the other comparand isn’t also a datetime
object. However, NotImplemented is returned instead if the other comparand has a timetuple()
attribute. This hook gives other kinds of date objects a chance at implementing mixed-type comparison.
If not, when a datetime object is compared to an object of a different type, TypeError is raised unless
the comparison is == or !=. The latter cases return False or True, respectively.

datetime objects can be used as dictionary keys. In Boolean contexts, all datetime objects are considered
to be true.

Instance methods:

datetime.date()
Return date object with same year, month and day.

datetime.time ()
Return time object with same hour, minute, second, microsecond and fold. ¢zinfo is None. See also
method timetz ().

Changed in version 3.6: The fold value is copied to the returned time object.

datetime.timetz()
Return time object with same hour, minute, second, microsecond, fold, and tzinfo attributes. See also
method time().

Changed in version 3.6: The fold value is copied to the returned time object.

184 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

datetime.replace (year=self.year, month=self.month, day=self.day, hour=self.hour,
minute=self.minute, second=self.second, microsecond=self.microsecond, tz-
info=self.tzinfo, * fold=0)
Return a datetime with the same attributes, except for those attributes given new values by whichever
keyword arguments are specified. Note that tzinfo=None can be specified to create a naive datetime
from an aware datetime with no conversion of date and time data.

New in version 3.6: Added the fold argument.

datetime.astimezone (tz=None)
Return a datetime object with new tzinfo attribute ¢z, adjusting the date and time data so the result
is the same UTC time as self, but in ¢2’s local time.

If provided, ¢z must be an instance of a tzinfo subclass, and its utcoffset () and dst () methods
must not return None. If self is naive (self.tzinfo is Nome), it is presumed to represent time in the
system timezone.

If called without arguments (or with tz=None) the system local timezone is assumed for the target
timezone. The .tzinfo attribute of the converted datetime instance will be set to an instance of
timezone with the zone name and offset obtained from the OS.

If self.tzinfo is tz, self.astimezone(tz) is equal to self: no adjustment of date or time data is
performed. Else the result is local time in the timezone ¢z, representing the same UTC time as self:
after astz = dt.astimezone(tz), astz - astz.utcoffset() will have the same date and time data
as dt - dt.utcoffset().

If you merely want to attach a time zone object tz to a datetime dt without adjustment of date and
time data, use dt.replace(tzinfo=tz). If you merely want to remove the time zone object from an
aware datetime dt without conversion of date and time data, use dt.replace(tzinfo=None).

Note that the default tzinfo. fromutc () method can be overridden in a tzinfo subclass to affect the
result returned by astimezone (). Ignoring error cases, astimezone () acts like:

def astimezone(self, tz):
if self.tzinfo is tz:
return self
Convert self to UIC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz's local time.

return tz.fromutc(utc)

Changed in version 3.3: ¢tz now can be omitted.

Changed in version 3.6: The astimezone () method can now be called on naive instances that are
presumed to represent system local time.

datetime.utcoffset ()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset(self), and raises an exception
if the latter doesn’t return None, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

datetime.dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst(self), and raises an exception if
the latter doesn’t return None, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

datetime.tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname(self), raises an exception if the
latter doesn’t return None or a string object,

8.1. datetime — Basic date and time types 185

The Python Library Reference, Release 3.6.5

datetime.timetuple()
Return a time.struct_time such as returned by time.localtime(). d.timetuple() is equivalent
to time.struct_time((d.year, d.month, d.day, d.hour, d.minute, d.second, d.weekday(),
yday, dst)), where yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1 is the day
number within the current year starting with 1 for January 1st. The tm_isdst flag of the result is set
according to the dst () method: tzinfo is None or dst () returns None, tm_isdst is set to -1; else if
dst () returns a non-zero value, tm_isdst is set to 1; else tm_isdst is set to O.

datetime.utctimetuple()
If datetime instance d is naive, this is the same as d.timetuple() except that tm_isdst is forced to
0 regardless of what d.dst() returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset(), and a time.struct_time
for the normalized time is returned. tm_isdst is forced to 0. Note that an OverflowError may be
raised if d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year boundary.

datetime.toordinal()
Return the proleptic Gregorian ordinal of the date. The same as self.date() .toordinal().

datetime.timestamp ()
Return POSIX timestamp corresponding to the datetime instance. The return value is a float similar
to that returned by time. time ().

Naive datetime instances are assumed to represent local time and this method relies on the platform
C mktime () function to perform the conversion. Since datetime supports wider range of values than
mktime () on many platforms, this method may raise OverflowError for times far in the past or far
in the future.

For aware datetime instances, the return value is computed as:

(dt - datetime(1970, 1, 1, tzinfo=timezone.utc)).total_seconds()

New in version 3.3.

Changed in version 3.6: The timestamp () method uses the fold attribute to disambiguate the times
during a repeated interval.

Note: There is no method to obtain the POSIX timestamp directly from a naive datetime instance
representing UTC time. If your application uses this convention and your system timezone is not set
to UTC, you can obtain the POSIX timestamp by supplying tzinfo=timezone.utc:

timestamp = dt.replace(tzinfo=timezone.utc).timestamp()

or by calculating the timestamp directly:

timestamp = (dt - datetime(1970, 1, 1)) / timedelta(seconds=1)

datetime.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as self.
date() .weekday (). See also isoweekday ().

datetime.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.
date() .isoweekday (). See also weekday (), isocalendar().

datetime.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as self.date().
isocalendar().

186 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

datetime.isoformat (sep="T" timespec="auto’)
Return a string representing the date and time in ISO 8601 format, YYYY-MM-
DDTHH:MM:SS.mmmmmm or, if microsecond is 0, YYYY-MM-DDTHH:MM:SS

If utcoffset() does not return None, a 6-character string is appended, giving the UTC offset in
(signed) hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or, if microsecond is
0 YYYY-MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default 'T') is a one-character separator, placed between the date and
time portions of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):
def utcoffset(self, dt): return timedelta(minutes=-399)

>>> datetime (2002, 12, 25, tzinfo=TZ()).isoformat(' ')
'2002-12-25 00:00:00-06:39'

The optional argument timespec specifies the number of additional components of the time to include
(the default is 'auto'). It can be one of the following:

e 'auto': Same as 'seconds' if microsecond is 0, same as 'microseconds' otherwise.
e 'hours': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH:MM format.

e 'seconds': Include hour, minute, and second in HH:MM:SS format.

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds.
HH:MM:SS.sss format.

e 'microseconds': Include full time in HH:MM:SS.mmmmmm format.

Note: Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid timespec argument.

>>> from datetime import datetime

>>> datetime.now() .isoformat (timespec='minutes')
'2002-12-25T00:00"'

>>> dt = datetime(2015, 1, 1, 12, 30, 59, 0)
>>> dt.isoformat (timespec='microseconds')
'2015-01-01T12:30:59.000000"'

New in version 3.6: Added the timespec argument.

datetime.__str__Q)
For a datetime instance d, str(d) is equivalent to d.isoformat(' ').

datetime.ctime ()
Return a string representing the date and time, for example datetime (2002, 12, 4, 20, 30, 40).
ctime() == 'Wed Dec 4 20:30:40 2002'. d.ctime() is equivalent to time.ctime (time.mktime(d.
timetuple())) on platforms where the native C ctime () function (which time.ctime () invokes, but
which datetime.ctime() does not invoke) conforms to the C standard.

datetime.strftime (format)
Return a string representing the date and time, controlled by an explicit format string. For a complete
list of formatting directives, see strftime() and strptime() Behavior.

8.1. datetime — Basic date and time types 187

The Python Library Reference, Release 3.6.5

datetime.__format__(format)
Same as datetime.strftime(). This makes it possible to specify a format string for a datetime
object in formatted string literals and when using str. format (). For a complete list of formatting
directives, see strftime() and strptime() Behavior.

Examples of working with datetime objects:

>>> from datetime import datetime, date, time

>>> # Using datetime.combine()

>>> d = date(2005, 7, 14)

>>> t = time(12, 30)

>>> datetime.combine(d, t)

datetime.datetime (2005, 7, 14, 12, 30)

>>> # Using datetime.now() or datetime.utcnow()

>>> datetime.now()

datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime.utcnow()

datetime.datetime (2007, 12, 6, 15, 29, 43, 79060)

>>> # Using datetime.strptime()

>>> dt = datetime.strptime("21/11/06 16:30", "/d//m/%hy %H:/M")
>>> dt

datetime.datetime (2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple() to get tuple of all attributes
>>> tt = dt.timetuple()

>>> for it in tt:

print(it)
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1st January

-1 # dst - method tzinfo.dst() returned None
>>> # Date in ISO format
>>> ic = dt.isocalendar()
>>> for it in ic:
print(it)

2006 # IS0 year

47 # ISO week

2 # IS0 weekday

>>> # Formatting datetime

>>> dt.strftime("%A, Zd. %B WY %I:%Mp")

'Tuesday, 21. November 2006 04:30PM'

>>> 'The {1} is {0:/d}, the {2} is {0:%B}, the {3} is {0:%I:%M/p}.'.format(dt, "day", "month",
—"time")

'The day is 21, the month is November, the time is 04:30PM.'

Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo
>>> class GMT1(tzinfo):
def utcoffset(self, dt):
return timedelta(hours=1) + self.dst(dt)
def dst(self, dt):

(continues on next page)

188 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

DST starts last Sunday in March

d = datetime(dt.year, 4, 1) # ends last Sunday in October

self .dston = d - timedelta(days=d.weekday() + 1)

d = datetime(dt.year, 11, 1)

self .dstoff = d - timedelta(days=d.weekday() + 1)

if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
return timedelta(hours=1)

else:
return timedelta(0)

def tzname(self,dt):
return "GMT +1"

>>> class GMT2(tzinfo):
def utcoffset(self, dt):
return timedelta(hours=2) + self.dst(dt)
def dst(self, dt):
d = datetime(dt.year, 4, 1)
self.dston = d - timedelta(days=d.weekday() + 1)
d = datetime(dt.year, 11, 1)
self .dstoff = d - timedelta(days=d.weekday() + 1)
if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
return timedelta(hours=1)
else:
return timedelta(0)
def tzname(self,dt):
return "GMT +2"

>>> gmtl = GMT1()

>>> # Daylight Saving Time

>>> dtl = datetime(2006, 11, 21, 16, 30, tzinfo=gmtl)
>>> dt1l.dst()

datetime.timedelta(0)

>>> dtl.utcoffset()

datetime.timedelta (0, 3600)

>>> dt2 = datetime(2006, 6, 14, 13, 0, tzinfo=gmtl)
>>> dt2.dst ()

datetime.timedelta (0, 3600)

>>> dt2.utcoffset ()

datetime.timedelta (0, 7200)

>>> # Convert datetime to another time zone

>>> dt3 = dt2.astimezone (GMT2())

>>> dt3

datetime.datetime (2006, 6, 14, 14, 0, tzinfo=<GMT2 object at 0x...>)
>>> dt2

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=<GMT1 object at Ox...>)
>>> dt2.utctimetuple() == dt3.utctimetuple()

True

8.1.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment
via a tzinfo object.

class datetime.time (hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0)
All arguments are optional. tzinfo may be None, or an instance of a tzinfo subclass. The remaining
arguments may be integers, in the following ranges:

8.1. datetime — Basic date and time types 189

The Python Library Reference, Release 3.6.5

N
I

hour < 24,

N
I

0
e 0 minute < 60,

0 <= second < 60,
e 0 <= microsecond < 1000000,
o fold in [0, 1].

If an argument outside those ranges is given, ValueError is raised. All default to 0 except tzinfo,

which defaults to None.

Class attributes:

time.min

The earliest representable time, time (0, 0, 0, 0).

time.max

The latest representable time, time (23, 59, 59, 999999).

time.resolution

The smallest possible difference between non-equal time objects, timedelta(microseconds=1), al-
though note that arithmetic on tZme objects is not supported.

Instance attributes (read-only):

time.hour

In range(24).

time.minute

In range(60).

time.second

In range(60).

time.microsecond

In range (1000000).

time.tzinfo

The object passed as the tzinfo argument to the time constructor, or None if none was passed.

time.fold

In [0, 1]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs
when clocks are rolled back at the end of daylight saving time or when the UTC offset for the current
zone is decreased for political reasons.) The value 0 (1) represents the earlier (later) of the two moments
with the same wall time representation.

New in version 3.6.

Supported operations:

e comparison of time to time, where a is considered less than b when a precedes b in time. If one

comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted.
For equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same tzinfo attribute, the common tzinfo attribute is
ignored and the base times are compared. If both comparands are aware and have different tzinfo
attributes, the comparands are first adjusted by subtracting their UTC offsets (obtained from self.
utcoffset()). In order to stop mixed-type comparisons from falling back to the default comparison
by object address, when a time object is compared to an object of a different type, TypeError is raised
unless the comparison is == or !=. The latter cases return False or True, respectively.

190

Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

Changed in version 3.3: Equality comparisons between naive and aware time instances don’t raise
TypeError.

hash, use as dict key
efficient pickling

In boolean contexts, a time object is always considered to be true.

Changed in version 3.5: Before Python 3.5, a time object was considered to be false if it represented midnight
in UTC. This behavior was considered obscure and error-prone and has been removed in Python 3.5. See

bpo-1

3936 for full details.

Instance methods:

time.

time.

replace (hour=self.hour, minute=self.minute, second=self.second, microsec-
ond=self.microsecond, tzinfo=self.tzinfo, * fold=0)

Return a time with the same value, except for those attributes given new values by whichever keyword

arguments are specified. Note that tzinfo=None can be specified to create a naive time from an aware

time, without conversion of the time data.

New in version 3.6: Added the fold argument.

isoformat (timespec="auto’)

Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if microsecond
is 0, HH:MM:SS If utcoffset () does not return None, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm-+HH:MM or, if self.microsecond is
0, HH:MM:SS+HH:MM

The optional argument timespec specifies the number of additional components of the time to include
(the default is 'auto'). It can be one of the following:

e 'auto': Same as 'seconds' if microsecond is 0, same as 'microseconds' otherwise.
e 'hours': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH:MM format.

e 'seconds': Include hour, minute, and second in HH:MM:SS format.

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds.
HH:MM:SS.sss format.

e 'microseconds': Include full time in HH:MM:SS.mmmmmm format.

Note: Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid ¢timespec argument.

>>> from datetime import time

>>> time(hour=12, minute=34, second=56, microsecond=123456) .isoformat (timespec='minutes')
'12:34"

>>> dt = time(hour=12, minute=34, second=56, microsecond=0)

>>> dt.isoformat (timespec='microseconds')

'12:34:56.000000'

>>> dt.isoformat(timespec='auto')

'12:34:56'

time.

New in version 3.6: Added the timespec argument.

str__QO

For a time ¢, str(t) is equivalent to t.isoformat().

8.1.

datetime — Basic date and time types 191

https://bugs.python.org/issue13936

The Python Library Reference, Release 3.6.5

time.

time.

time.

time.

time.

strftime (format)
Return a string representing the time, controlled by an explicit format string. For a complete list of
formatting directives, see strftime() and strptime() Behavior.

__format__ (format)

Same as time.strftime(). This makes it possible to specify a format string for a time object in
formatted string literals and when using str. format (). For a complete list of formatting directives,
see strftime() and strptime() Behavior.

utcoffset ()

If tzinfo is None, returns None, else returns self.tzinfo.utcoffset (None), and raises an exception
if the latter doesn’t return None or a timedelta object representing a whole number of minutes with
magnitude less than one day.

dst ()

If tzinfo is None, returns None, else returns self.tzinfo.dst(None), and raises an exception if
the latter doesn’t return None, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname (None), or raises an exception if the
latter doesn’t return None or a string object.

Example:

>>> from datetime import time, tzinfo, timedelta
>>> class GMT1(tzinfo):

>>> t
>>> t

def utcoffset(self, dt):
return timedelta(hours=1)
def dst(self, dt):
return timedelta(0)
def tzname(self,dt):
return "Europe/Prague"

= time(12, 10, 30, tzinfo=GMT1())

datetime.time(12, 10, 30, tzinfo=<GMT1 object at Ox...>)
>>> gmt = GMT1()

>>> t

.isoformat ()

'12:10:30+01:00'

>>> t

.dst()

datetime.timedelta(0)

>>> t

.tzname ()

'Europe/Prague’

>>> t

.strftime ("/H:4M: %S %Z")

'12:10:30 Europe/Prague'’
>>> 'The is {:%H:%M}.'.format("time", t)
'The time is 12:10.'

8.1.6 tzinfo Objects

class datetime.tzinfo

This is an abstract base class, meaning that this class should not be instantiated directly. You need
to derive a concrete subclass, and (at least) supply implementations of the standard tzinfo methods
needed by the datetime methods you use. The datetime module supplies a simple concrete subclass
of tzinfo, timezone, which can represent timezones with fixed offset from UTC such as UTC itself or
North American EST and EDT.

192

Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and
time objects. The latter objects view their attributes as being in local time, and the tzinfo object
supports methods revealing offset of local time from UTC, the name of the time zone, and DST offset,
all relative to a date or time object passed to them.

Special requirement for pickling: A tzinfo subclass must have an __init__() method that can be
called with no arguments, else it can be pickled but possibly not unpickled again. This is a technical
requirement that may be relaxed in the future.

A concrete subclass of tzinfo may need to implement the following methods. Exactly which methods
are needed depends on the uses made of aware datetime objects. If in doubt, simply implement all of
them.

tzinfo.utcoffset (dt)

Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should
be negative. Note that this is intended to be the total offset from UTC; for example, if a tzinfo
object represents both time zone and DST adjustments, uvtcoffset () should return their sum. If the
UTC offset isn’t known, return None. Else the value returned must be a timedelta object specifying
a whole number of minutes in the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the
offset must be less than one day). Most implementations of utcoffset () will probably look like one
of these two:

return CONSTANT # fized-offset class
return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset () does not return None, dst () should not return None either.

The default implementation of utcoffset () raises NotImplementedError.

tzinfo.dst (dt)

Return the daylight saving time (DST) adjustment, in minutes east of UTC, or None if DST information
isn’t known. Return timedelta(0) if DST is not in effect. If DST is in effect, return the offset as a
timedelta object (see utcoffset () for details). Note that DST offset, if applicable, has already been
added to the UTC offset returned by utcoffset (), so there’s no need to consult dst () unless you're
interested in obtaining DST info separately. For example, datetime. timetuple () calls its tzinfo
attribute’s dst () method to determine how the tm_isdst flag should be set, and tzinfo. fromutc ()
calls dst () to account for DST changes when crossing time zones.

An instance tz of a tzinfo subclass that models both standard and daylight times must be consistent
in this sense:

tz.utcoffset(dt) - tz.dst(dt)

must return the same result for every datetime dt with dt.tzinfo == tz For sane tzinfo subclasses,
this expression yields the time zone’s “standard offset”, which should not depend on the date or the
time, but only on geographic location. The implementation of datetime.astimezone () relies on this,
but cannot detect violations; it’s the programmer’s responsibility to ensure it. If a tzinfo subclass
cannot guarantee this, it may be able to override the default implementation of tzinfo. fromutc () to
work correctly with astimezone () regardless.

Most implementations of dst () will probably look like one of these two:

def dst(self, dt):
a fized-offset class: doesn't account for DST
return timedelta(0)

or

8.1.

datetime — Basic date and time types 193

The Python Library Reference, Release 3.6.5

def dst(self, dt):
Code to set dston and dstoff to the time zone's DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta(hours=1)

else:
return timedelta(0)

The default implementation of dst () raises NotImplementedError.

tzinfo.tzname (dt)

Return the time zone name corresponding to the datetime object dt, as a string. Nothing about
string names is defined by the datetime module, and there’s no requirement that it mean anything
in particular. For example, “GMT?”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New
York” are all valid replies. Return None if a string name isn’t known. Note that this is a method rather
than a fixed string primarily because some tzinfo subclasses will wish to return different names
depending on the specific value of dt passed, especially if the tzinfo class is accounting for daylight
time.

The default implementation of tzname () raises NotImplementedError.

These methods are called by a datetime or time object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a time object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a dt argument of None, or of class datetime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None
is appropriate if the class wishes to say that time objects don’t participate in the tzinfo protocols. It may
be more useful for utcoffset (None) to return the standard UTC offset, as there is no other convention for
discovering the standard offset.

When a datetime object is passed in response to a datetime method, dt.tzinfo is the same object as self.
tzinfo methods can rely on this, unless user code calls tzinfo methods directly. The intent is that the
tzinfo methods interpret dt as being in local time, and not need worry about objects in other timezones.

There is one more tzinfo method that a subclass may wish to override:

tzinfo.fromutc (dt)
This is called from the default datetime.astimezone () implementation. When called from that, dt.
tzinfo is self, and dt’s date and time data are to be viewed as expressing a UTC time. The purpose of
fromutc() is to adjust the date and time data, returning an equivalent datetime in self’s local time.

Most tzinfo subclasses should be able to inherit the default fromutc() implementation without
problems. It’s strong enough to handle fixed-offset time zones, and time zones accounting for both
standard and daylight time, and the latter even if the DST transition times differ in different years. An
example of a time zone the default fromutc() implementation may not handle correctly in all cases
is one where the standard offset (from UTC) depends on the specific date and time passed, which can
happen for political reasons. The default implementations of astimezone() and fromutc() may not
produce the result you want if the result is one of the hours straddling the moment the standard offset
changes.

Skipping code for error cases, the default fromutc() implementation acts like:

def fromutc(self, dt):
raise ValueError error if dt.tzinfo is not self
dtoff = dt.utcoffset()
dtdst = dt.dst()

(continues on next page)

194 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

raise ValueError <f dtoff is Nonme or dtdst is None
delta = dtoff - dtdst # this is self's standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst()
raise ValueError if dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

Example tzinfo classes:

from datetime import tzinfo, timedelta, datetime, timezone

ZERO = timedelta(0)
HOUR = timedelta(hours=1)
SECOND = timedelta(seconds=1)

A class capturing the platform's tdea of local time.
(May result in wrong values on historical times in
timezones where UIC offset and/or the DST rules had
changed in the past.)

import time as _time

STDOFFSET = timedelta(seconds = -_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = -_time.altzone)
else:

DSTOFFSET = STDOFFSET
DSTDIFF = DSTOFFSET - STDOFFSET
class LocalTimezone(tzinfo):

def fromutc(self, dt):
assert dt.tzinfo is self
stamp = (dt - datetime(1970, 1, 1, tzinfo=self)) // SECOND
args = _time.localtime(stamp) [:6]
dst_diff = DSTDIFF // SECOND
Detect fold
fold = (args == _time.localtime(stamp - dst_diff))
return datetime(*args, microsecond=dt.microsecond,
tzinfo=self, fold=fold)

def utcoffset(self, dt):
if self._isdst(dt):
return DSTOFFSET
else:
return STDOFFSET

def dst(self, dt):
if self._isdst(dt):
return DSTDIFF
else:
return ZERO

(continues on next page)

8.1. datetime — Basic date and time types

195

The Python Library Reference, Release 3.6.5

(continued from previous page)

def tzname(self, dt):
return _time.tzname[self._isdst(dt)]

def _isdst(self, dt):
tt = (dt.year, dt.month, dt.day,
dt .hour, dt.minute, dt.second,
dt.weekday(), 0, 0)
stamp = _time.mktime(tt)
tt = _time.localtime(stamp)
return tt.tm_isdst > O

Local = LocalTimezone()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
days_to_go = 6 - dt.weekday()
if days_to_go:
dt += timedelta(days_to_go)
return dt

US DST Rules

This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www. twinsun. com/tz/tz-1link.htm
http://sourceforge.net/projects/pytz/ (might not be up-to-date)

In the US, since 2007, DST starts at 2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar §.
DSTSTART_2007 = datetime(l, 3, 8, 2)

and ends at 2am (DST time) on the first Sunday of Nowv.

DSTEND_2007 = datetime(l, 11, 1, 2)

From 1987 to 2006, DST used to start at 2am (standard time) on the first
Sunday in April and to end at 2am (DST time) on the last

Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime(l, 4, 1, 2)

DSTEND_1987_2006 = datetime(1, 10, 25, 2)

From 1967 to 1986, DST used to start at 2am (standard time) on the last
Sunday in April (the one on or after April 24) and to end at 2am (DST time)
on the last Sunday of October, which is the first Sunday

on or after Oct 25.

DSTSTART_1967_1986 = datetime(l, 4, 24, 2)

DSTEND_1967_1986 = DSTEND_1987_2006

HOH R OR R R R B W W

def us_dst_range(year):
Find start and end times for US DST. For years before 1967, return
start = end for mo DST.
if 2006 < year:
dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < year < 2007:
dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006

(continues on next page)

196 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

elif 1966 < year < 1987:

dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else:

return (datetime(year, 1, 1),) * 2

start = first_sunday_on_or_after(dststart.replace(year=year))
end = first_sunday_on_or_after(dstend.replace(year=year))
return start, end

class USTimeZone (tzinfo):

def __init__(self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta(hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dstname = dstname

def __repr__(self):
return self.reprname

def tzname(self, dt):
if self.dst(dt):
return self.dstname
else:
return self.stdname

def utcoffset(self, dt):
return self.stdoffset + self.dst(dt)

def dst(self, dt):

if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc() implementation (called by the default astimezone()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

start, end = us_dst_range(dt.year)

Can't compare naive to aware objects, so strip the timezone from

dt first.

dt = dt.replace(tzinfo=None)

if start + HOUR <= dt < end - HOUR:
DST is in effect.
return HOUR

if end - HOUR <= dt < end:
Fold (an ambiguous hour): use dt.fold to disambiguate.
return ZERO if dt.fold else HOUR

if start <= dt < start + HOUR:
Gap (a non-existent hour): reverse the fold rule.
return HOUR if dt.fold else ZERO

DST is off.

return ZERO

def fromutc(self, dt):
assert dt.tzinfo is self

(continues on next page)

8.1. datetime — Basic date and time types

197

The Python Library Reference, Release 3.6.5

(continued from previous page)

start, end = us_dst_range(dt.year)
start = start.replace(tzinfo=self)
end = end.replace(tzinfo=self)
std_time = dt + self.stdoffset
dst_time = std_time + HOUR
if end <= dst_time < end + HOUR:
Repeated hour
return std_time.replace(fold=1)
if std_time < start or dst_time >= end:
Standard time
return std_time
if start <= std_time < end - HOUR:
Daylight saving time
return dst_time

Eastern = USTimeZone(-5, "Eastern", "EST", "EDT")
Central = USTimeZone(-6, "Central", "CST", "CDT")
Mountain = USTimeZone(-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone(-8, "Pacific", "PST", "PDT")

Note that there are unavoidable subtleties twice per year in a tzinfo subclass accounting for both standard
and daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where
EDT begins the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59
(EDT) on the first Sunday in November:

Uur¢ 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM 0:MM 1:MM 2:MM 3:MM
EDT 23:MM O:MM 1:MM 2:MM 3:MM 4:MM
start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form
2:MM doesn’t really make sense on that day, so astimezone (Eastern) won’t deliver a result with hour ==
2 on the day DST begins. For example, at the Spring forward transition of 2016, we get

>>> u0 = datetime (2016, 3, 13, 5, tzinfo=timezone.utc)
>>> for i in range(4):

u = u0 + i*HOUR

t = u.astimezone(Eastern)

print(u.time(), 'UTC =', t.time(), t.tzname())
05:00:00 UTC = 00:00:00 EST
06:00:00 UTC = 01:00:00 EST
07:00:00 UTC = 03:00:00 EDT
08:00:00 UTC = 04:00:00 EDT

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled
unambiguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form
5:MM UTC on the day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00
(standard time) again. Local times of the form 1:MM are ambiguous. astimezone () mimics the local clock’s
behavior by mapping two adjacent UTC hours into the same local hour then. In the Eastern example, UTC
times of the form 5:MM and 6:MM both map to 1:MM when converted to Eastern, but earlier times have
the fold attribute set to 0 and the later times have it set to 1. For example, at the Fall back transition of

198 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

2016, we get

>>> u0 = datetime (2016, 11, 6, 4, tzinfo=timezone.utc)
>>> for i in range(4):
u = u0 + i*HOUR
t = u.astimezone(Eastern)
print(u.time(), 'UTC =', t.time(), t.tzname(), t.fold)

04:00:00 UTC = 00:00:00 EDT O
05:00:00 UTC = 01:00:00 EDT O
06:00:00 UTC = 01:00:00 EST 1
07:00:00 UTC = 02:00:00 EST O

Note that the datetime instances that differ only by the value of the fold attribute are considered equal in
comparisons.

Applications that can’t bear wall-time ambiguities should explicitly check the value of the fold attribute
or avoid using hybrid tzinfo subclasses; there are no ambiguities when using timezone, or any other fixed-
offset tzinfo subclass (such as a class representing only EST (fixed offset -5 hours), or only EDT (fixed
offset -4 hours)).

See also:

dateutil.tz The standard library has timezone class for handling arbitrary fixed offsets from UTC and
timezone.utc as UTC timezone instance.

dateutil.tz library brings the JANA timezone database (also known as the Olson database) to Python
and its usage is recommended.

TANA timezone database The Time Zone Database (often called tz, tzdata or zoneinfo) contains code
and data that represent the history of local time for many representative locations around the globe.
It is updated periodically to reflect changes made by political bodies to time zone boundaries, UTC
offsets, and daylight-saving rules.

8.1.7 timezone Objects

The timezone class is a subclass of tzinfo, each instance of which represents a timezone defined by a fixed
offset from UTC. Note that objects of this class cannot be used to represent timezone information in the
locations where different offsets are used in different days of the year or where historical changes have been
made to civil time.

class datetime.timezone (offset, name=None)
The offset argument must be specified as a timedelta object representing the difference between the
local time and UTC. It must be strictly between -timedelta(hours=24) and timedelta(hours=24)
and represent a whole number of minutes, otherwise ValueError is raised.

The name argument is optional. If specified it must be a string that will be used as the value returned
by the datetime. tzname () method.

New in version 3.2.

timezone.utcoffset (dt)
Return the fixed value specified when the timezone instance is constructed. The di argument is
ignored. The return value is a timedelta instance equal to the difference between the local time and
UTC.

timezone.tzname (dt)
Return the fixed value specified when the timezone instance is constructed. If name is not provided in
the constructor, the name returned by tzname (dt) is generated from the value of the offset as follows.

8.1. datetime — Basic date and time types 199

https://dateutil.readthedocs.io/en/stable/tz.html
https://www.iana.org/time-zones

The Python Library Reference, Release 3.6.5

If offset is timedelta(0), the name is “UTC”, otherwise it is a string ‘UTC+HH:MM’, where + is the
sign of offset, HH and MM are two digits of offset.hours and offset.minutes respectively.

Changed in version 3.6: Name generated from offset=timedelta(0) is now plain ‘UTC’, not
‘UTC+00:00".

timezone.dst (dt)
Always returns None.

timezone.fromutc (dt)
Return dt + offset. The dt argument must be an aware datetime instance, with tzinfo set to self.

Class attributes:

timezone.utc
The UTC timezone, timezone (timedelta(0)).

8.1.8 strftime() and strptime() Behavior

date, datetime, and time objects all support a strftime(format) method, to create a string representing
the time under the control of an explicit format string. Broadly speaking, d.strftime(fmt) acts like
the time module’s time.strftime(fmt, d.timetuple()) although not all objects support a timetuple()
method.

Conversely, the datetime.strptime() class method creates a datetime object from a string representing a
date and time and a corresponding format string. datetime.strptime(date_string, format) isequivalent
to datetime (*x(time.strptime(date_string, format) [0:6])).

For time objects, the format codes for year, month, and day should not be used, as time objects have no
such values. If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as
date objects have no such values. If they’re used anyway, 0 is substituted for them.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime () function, and platform variations are common. To see the full set of format codes supported on
your platform, consult the strftime(3) documentation.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work
on all platforms with a standard C implementation. Note that the 1999 version of the C standard added
additional format codes.

200 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

Directive Meaning Example Notes
ha Weekday as locale’s ab- (1)
breviated name.
Sun, Mon, ..., Sat
(en_US);
So, Mo, ..., Sa (de_ DE)
A Weekday as locale’s full (1)
Hatme. Sunday, Monday, ...,
Saturday (en_ US);
Sonntag, Montag, ...,
Samstag (de_ DE)
VA"l Weekday as a decimal | 0, 1, .., 6
number, where 0 is Sun-
day and 6 is Saturday.
%d Day of the month as | 01, 02, .., 31
a zero-padded decimal
number.
%b Month as locale’s abbre- (1)
viated name. Jan, Feb, ..., Dec
(en_US);
Jan, Feb, ..., Dez
(de_DE)
%B Month as locale’s full (1)
fame. January, February, ...,
December (en_ US);
Januar, Februar, ...,
Dezember (de_DE)
%m Month as a zero-padded | 01, 02, ..., 12
decimal number.
hy Year without century as | 00, 01, ..., 99
a zero-padded decimal
number.
%Y Year with century as a | 0001, 0002, .., 2013, | (2)
decimal number. 2014, ..., 9998, 9999
%H Hour (24-hour clock) as | 00, 01, ..., 23
a zero-padded decimal
number.
yAs Hour (12-hour clock) as | 01, 02, ..., 12
a zero-padded decimal
number.
hp Locale’s equivalent of ei- (1), (3)
ther AM or PM.
AM, PM (en_US);
am, pm (de_DE)
%M Minute as a zero-padded | 00, 01, ..., 59
decimal number.
%S Second as a zero-padded | 00, 01, ..., 59 (4)
decimal number
8/t datetime — Basic dakéi@ndetimeé types a | 000000, 000001, .., | (5) 201
decimal number, zero- | 999999

padded on the left.

%z

UTC offset in the form

(empty), 40000, -0400,

The Python Library Reference, Release 3.6.5

Several additional directives not required by the C89 standard are included for convenience. These param-
eters all correspond to ISO 8601 date values. These may not be available on all platforms when used with
the strftime() method. The ISO 8601 year and ISO 8601 week directives are not interchangeable with
the year and week number directives above. Calling strptime() with incomplete or ambiguous ISO 8601
directives will raise a ValueError.

Di- Meaning Example Notes

rec-

tive

%G ISO 8601 year with century representing the year that contains | 0001, 0002, .., 2013, | (8)
the greater part of the ISO week (%V). 2014, ..., 9998, 9999

AN ISO 8601 weekday as a decimal number where 1 is Monday. 1,2, ..,7

YA ISO 8601 week as a decimal number with Monday as the first day | 01, 02, ..., 53 (8)
of the week. Week 01 is the week containing Jan 4.

New in version 3.6: %G, %u and %V were added.

Notes:

1.

Because the format depends on the current locale, care should be taken when making assumptions about
the output value. Field orderings will vary (for example, “month/day/year” versus “day/month/year”),
and the output may contain Unicode characters encoded using the locale’s default encoding (for ex-
ample, if the current locale is ja_JP, the default encoding could be any one of eucJP, SJIS, or utf-8;
use locale.getlocale() to determine the current locale’s encoding).

. The strptime () method can parse years in the full [1, 9999] range, but years < 1000 must be zero-filled

to 4-digit width.
Changed in version 3.2: In previous versions, strftime () method was restricted to years >= 1900.
Changed in version 3.3: In version 3.2, strftime () method was restricted to years >= 1000.

When used with the strptime () method, the %p directive only affects the output hour field if the %I
directive is used to parse the hour.

Unlike the time module, the datetime module does not support leap seconds.

When used with the strptime () method, the %f directive accepts from one to six digits and zero pads
on the right. %f is an extension to the set of format characters in the C standard (but implemented
separately in datetime objects, and therefore always available).

For a naive object, the %z and %Z format codes are replaced by empty strings.
For an aware object:

%z utcoffset() is transformed into a 5-character string of the form +HHMM or -HHMM, where
HH is a 2-digit string giving the number of UTC offset hours, and MM is a 2-digit string giving
the number of UTC offset minutes. For example, if utcoffset () returns timedelta(hours=-3,
minutes=-30), %z is replaced with the string '-0330"'.

%Z If tzname() returns None, %Z is replaced by an empty string. Otherwise %Z is replaced by the
returned value, which must be a string.

Changed in version 3.2: When the %z directive is provided to the strptime() method, an aware
datetime object will be produced. The tzinfo of the result will be set to a timezone instance.

When used with the strptime () method, %U and %W are only used in calculations when the day of the
week and the calendar year (%Y) are specified.

Similar to %U and %W, %V is only used in calculations when the day of the week and the ISO year (%G)
are specified in a strptime() format string. Also note that %G and %Y are not interchangeable.

202

Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

8.2 calendar — General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful
functions related to the calendar. By default, these calendars have Monday as the first day of the week,
and Sunday as the last (the European convention). Use setfirstweekday () to set the first day of the week
to Sunday (6) or to any other weekday. Parameters that specify dates are given as integers. For related
functionality, see also the datetime and time modules.

Most of these functions and classes rely on the datetime module which uses an idealized calendar, the current
Gregorian calendar extended in both directions. This matches the definition of the “proleptic Gregorian”
calendar in Dershowitz and Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all
computations.

class calendar.Calendar (firstweekday=0)

Creates a Calendar object. firstweekday is an integer specifying the first day of the week. 0 is Monday
(the default), 6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for
formatting. This class doesn’t do any formatting itself. This is the job of subclasses.

Calendar instances have the following methods:

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from
the iterator will be the same as the value of the firstweekday property.

itermonthdates (year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days
(as datetime. date objects) for the month and all days before the start of the month or after the
end of the month that are required to get a complete week.

itermonthdays2(year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days
returned will be tuples consisting of a day number and a week day number.

itermonthdays (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days
returned will simply be day numbers.

monthdatescalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime. date objects.

monthdays2calendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
tuples of day numbers and weekday numbers.

monthdayscalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
day numbers.

yeardatescalendar (year, width=3)
Return the data for the specified year ready for formatting. The return value is a list of month
rows. Each month row contains up to width months (defaulting to 3). Each month contains
between 4 and 6 weeks and each week contains 1-7 days. Days are datetime. date objects.

8.2.

calendar — General calendar-related functions 203

https://github.com/python/cpython/tree/3.6/Lib/calendar.py

The Python Library Reference, Release 3.6.5

yeardays2calendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar()).
Entries in the week lists are tuples of day numbers and weekday numbers. Day numbers outside
this month are zero.

yeardayscalendar (year, width=23)
Return the data for the specified year ready for formatting (similar to yeardatescalendar()).
Entries in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar (firstweekday=0)
This class can be used to generate plain text calendars.

TeztCalendar instances have the following methods:

formatmonth (theyear, themonth, w=0, |=0)
Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the date
columns, which are centered. If [is given, it specifies the number of lines that each week will use.
Depends on the first weekday as specified in the constructor or set by the setfirstweekday ()
method.

prmonth (theyear, themonth, w=0, |=0)
Print a month’s calendar as returned by formatmonth().

formatyear (theyear, w=2, I=1, c=6, m=3)
Return a m-column calendar for an entire year as a multi-line string. Optional parameters
w, I, and ¢ are for date column width, lines per week, and number of spaces between month
columns, respectively. Depends on the first weekday as specified in the constructor or set by
the setfirstweekday () method. The earliest year for which a calendar can be generated is
platform-dependent.

pryear (theyear, w=2, |=1, c=6, m=3)
Print the calendar for an entire year as returned by formatyear().

class calendar.HTMLCalendar (firstweekday=0)
This class can be used to generate HT'ML calendars.

HTMLCalendar instances have the following methods:

formatmonth (theyear, themonth, withyear="True)
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the
header, otherwise just the month name will be used.

formatyear (theyear, width=3)
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of
months per row.

formatyearpage (theyear, width=3, css=’calendar.css’, encoding=None)
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number
of months per row. css is the name for the cascading style sheet to be used. None can be passed if
no style sheet should be used. encoding specifies the encoding to be used for the output (defaulting
to the system default encoding).

class calendar.LocaleTextCalendar (firstweekday=0, locale=None)
This subclass of TexztCalendar can be passed a locale name in the constructor and will return month
and weekday names in the specified locale. If this locale includes an encoding all strings containing
month and weekday names will be returned as unicode.

class calendar.LocaleHTMLCalendar (firstweekday=0, locale=None)
This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month
and weekday names in the specified locale. If this locale includes an encoding all strings containing
month and weekday names will be returned as unicode.

204 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

Note: The formatweekday() and formatmonthname () methods of these two classes temporarily change
the current locale to the given locale. Because the current locale is a process-wide setting, they are not
thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday (weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For example, to
set the first weekday to Sunday:

import calendar
calendar.setfirstweekday(calendar.SUNDAY)

calendar.firstweekday ()
Returns the current setting for the weekday to start each week.

calendar.isleap (year)
Returns True if year is a leap year, otherwise False.

calendar.leapdays(yl, y2)
Returns the number of leap years in the range from y1 to y2 (exclusive), where yI and y2 are years.

This function works for ranges spanning a century change.

calendar.weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970—...), month (1-12), day (1-31).

calendar.weekheader (n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one
weekday.

calendar .monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and
month.

calendar .monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the
month a represented by zeros. Each week begins with Monday unless set by setfirstweekday ().

calendar.prmonth (theyear, themonth, w=0, |=0)
Prints a month’s calendar as returned by month ().

calendar .month(theyear, themonth, w=0, =0)
Returns a month’s calendar in a multi-line string using the formatmonth() of the TeztCalendar class.

calendar.prcal (year, w=0, I=0, c=6, m=3)
Prints the calendar for an entire year as returned by calendar().

calendar.calendar (year, w=2, =1, c=6, m=3)
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear() of the
TextCalendar class.

calendar.timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned by the gmtime () function
in the time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970,
and the POSIX encoding. In fact, time.gmtime () and timegm() are each others’ inverse.

The calendar module exports the following data attributes:

8.2. calendar — General calendar-related functions 205

The Python Library Reference, Release 3.6.5

calendar.day_name
An array that represents the days of the week in the current locale.

calendar.day_abbr
An array that represents the abbreviated days of the week in the current locale.

calendar.month_name
An array that represents the months of the year in the current locale. This follows normal convention
of January being month number 1, so it has a length of 13 and month_name [0] is the empty string.

calendar.month_abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal
convention of January being month number 1, so it has a length of 13 and month_abbr [0] is the empty
string.

See also:

Module datetime Object-oriented interface to dates and times with similar functionality to the ¢<me mod-
ule.

Module time Low-level time related functions.

8.3 collections — Container datatypes

Source code: Lib/collections/ init_ .py

This module implements specialized container datatypes providing alternatives to Python’s general purpose
built-in containers, dict, list, set, and tuple.

namedtuple () | factory function for creating tuple subclasses with named fields

deque list-like container with fast appends and pops on either end
ChainMap dict-like class for creating a single view of multiple mappings
Counter dict subclass for counting hashable objects

OrderedDict dict subclass that remembers the order entries were added
defaultdict dict subclass that calls a factory function to supply missing values

UserDict wrapper around dictionary objects for easier dict subclassing
UserList wrapper around list objects for easier list subclassing
UserString wrapper around string objects for easier string subclassing

Changed in version 3.3: Moved Collections Abstract Base Classes to the collections.abc module. For
backwards compatibility, they continue to be visible in this module as well.

8.3.1 ChainMap objects

New in version 3.3.

A ChainMap class is provided for quickly linking a number of mappings so they can be treated as a single
unit. It is often much faster than creating a new dictionary and running multiple update () calls.

The class can be used to simulate nested scopes and is useful in templating.

class collections.ChainMap(*maps)
A ChainMap groups multiple dicts or other mappings together to create a single, updateable view. If

206 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.6/Lib/collections/__init__.py

The Python Library Reference, Release 3.6.5

no maps are specified, a single empty dictionary is provided so that a new chain always has at least
one mapping.

The underlying mappings are stored in a list. That list is public and can be accessed or updated using
the maps attribute. There is no other state.

Lookups search the underlying mappings successively until a key is found. In contrast, writes, updates,
and deletions only operate on the first mapping.

A ChainMap incorporates the underlying mappings by reference. So, if one of the underlying mappings
gets updated, those changes will be reflected in ChainMap.

All of the usual dictionary methods are supported. In addition, there is a maps attribute, a method
for creating new subcontexts, and a property for accessing all but the first mapping:

maps
A user updateable list of mappings. The list is ordered from first-searched to last-searched. It
is the only stored state and can be modified to change which mappings are searched. The list
should always contain at least one mapping.

new_child(m=~None)
Returns a new ChainMap containing a new map followed by all of the maps in the current instance.
If m is specified, it becomes the new map at the front of the list of mappings; if not specified, an
empty dict is used, so that a call to d.new_child() is equivalent to: ChainMap({}, *d.maps).
This method is used for creating subcontexts that can be updated without altering values in any
of the parent mappings.

Changed in version 3.4: The optional m parameter was added.

parents
Property returning a new ChainMap containing all of the maps in the current instance except the
first one. This is useful for skipping the first map in the search. Use cases are similar to those
for the nonlocal keyword used in nested scopes. The use cases also parallel those for the built-in
super () function. A reference to d.parents is equivalent to: ChainMap (*d.maps[1:]).

See also:

The MultiContext class in the Enthought CodeTools package has options to support writing to any
mapping in the chain.

Django’s Context class for templating is a read-only chain of mappings. It also features pushing and
popping of contexts similar to the new_child() method and the parents () property.

The Nested Contexts recipe has options to control whether writes and other mutations apply only to
the first mapping or to any mapping in the chain.

A greatly simplified read-only version of Chainmap.

ChainMap Examples and Recipes

This section shows various approaches to working with chained maps.

Example of simulating Python’s internal lookup chain:

import builtins
pylookup = ChainMap(locals(), globals(), vars(builtins))

Example of letting user specified command-line arguments take precedence over environment variables which
in turn take precedence over default values:

8.3.

collections — Container datatypes 207

https://github.com/enthought/codetools/blob/4.0.0/codetools/contexts/multi_context.py
https://github.com/enthought/codetools
https://github.com/django/django/blob/master/django/template/context.py
https://code.activestate.com/recipes/577434/
https://code.activestate.com/recipes/305268/

The Python Library Reference, Release 3.6.5

import os, argparse
defaults = {'color': 'red', 'user': 'guest'}

parser = argparse.ArgumentParser ()

parser.add_argument('-u', '--user')

parser.add_argument('-c', '--color')

namespace = parser.parse_args()

command_line_args = {k:v for k, v in vars(namespace).items() if v}

combined = ChainMap(command_line_args, os.environ, defaults)
print (combined['color'])
print (combined['user'])

Example patterns for using the ChainMap class to simulate nested contexts:

¢ = ChainMap() # Create root context

d = c.new_child() # Create nested child context

e = c.new_child() # Child of c, independent from d

e.maps [0] # Current context dictionary —— like Python's locals()
e.maps[-1] # Root context -- like Python's globals()

e.parents # Enclosing context chain —— like Python's nonlocals
dl'x'] # Get first key in the chain of contexts

d['x'] = 1 # Set wvalue in current context

del d['x'] # Delete from current context

list(d) # All nested values

k in d # Check all nested values

len(d) # Number of nested values

d.items() # All nested items

dict(d) # Flatten into a regular dictionary

The ChainMap class only makes updates (writes and deletions) to the first mapping in the chain while lookups
will search the full chain. However, if deep writes and deletions are desired, it is easy to make a subclass
that updates keys found deeper in the chain:

class DeepChainMap(ChainMap) :
'Variant of ChainMap that allows direct updates to inner scopes'

def __setitem__(self, key, value):
for mapping in self.maps:
if key in mapping:
mapping[key] = value
return
self .maps[0] [key] = value

def __delitem__(self, key):
for mapping in self.maps:
if key in mapping:
del mapping[key]
return
raise KeyError (key)

>>> d = DeepChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})

>>> d['lion'] = 'orange' # update an existing key two levels down
>>> d['snake'] = 'red' # new keys get added to the topmost dict
>>> del d['elephant'] # remove an existing key one level down

(continues on next page)

208 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

DeepChainMap({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

8.3.2 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

>>> # Tally occurrences of words in a list

>>> cnt = Counter()

>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue'l:

.. cnt [word] += 1

>>> cnt

Counter({'blue': 3, 'red': 2, 'green': 1})

>>> # Find the tem most common words in Hamlet

>>> import re

>>> words = re.findall(r'\w+', open('hamlet.txt').read().lower())

>>> Counter (words) .most_common(10)

[('the', 1143), ('and',6 966), ('to', 762), ('of', 669), ('i', 631),
('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

class collections.Counter([itemble—or—mapping])
A Counter is a dict subclass for counting hashable objects. It is an unordered collection where
elements are stored as dictionary keys and their counts are stored as dictionary values. Counts are
allowed to be any integer value including zero or negative counts. The Counter class is similar to bags
or multisets in other languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> ¢ = Counter() # a new, empty counter

>>> ¢ = Counter('gallahad') # a new counter from an iterable
>>> ¢ = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping
>>> ¢ = Counter(cats=4, dogs=8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items
instead of raising a KeyError:

>>> ¢ = Counter(['eggs', 'ham'])
>>> c['bacon'] # count of a missing element is zero
0

Setting a count to zero does not remove an element from a counter. Use del to remove it entirely:

>>> c['sausage'] =0 # counter entry with a zero count
>>> del c['sausage'] # del actually Temoves the entry

New in version 3.1.
Counter objects support three methods beyond those available for all dictionaries:

elements ()
Return an iterator over elements repeating each as many times as its count. Elements are returned
in arbitrary order. If an element’s count is less than one, elements () will ignore it.

>>> ¢ = Counter(a=4, b=2, c=0, d=-2)
>>> sorted(c.elements())
[Ial 'a! 'a! 'a! 'b! 'b']

8.3. collections — Container datatypes 209

The Python Library Reference, Release 3.6.5

most_common([n])

Return a list of the n most common elements and their counts from the most common to the
least. If m is omitted or None, most_common () returns all elements in the counter. Elements with
equal counts are ordered arbitrarily:

>>> Counter ('abracadabra') .most_common(3)

[Cra', 5), ('r', 2), ('b', 2)]

subtract([itemble-or-mapping])
Elements are subtracted from an dterable or from another mapping (or counter). Like dict.
update () but subtracts counts instead of replacing them. Both inputs and outputs may be zero

or negative.

>>> ¢ =

>>> d =

>>> c.subtract(d)
>>> ¢
Counter({'a': 3,

Counter (a=4, b=2, c=0, d=-2)
Counter(a=1, b=2, c=3, d=4)

: 0, '¢c': -3, 'd': -6})

New in version 3.2.

The usual dictionary methods are available for Counter objects except for two which work differently

for counters.

fromkeys (iterable)

This class method is not implemented for Counter objects.

update ([z’temble—or—mapping])
Elements are counted from an iterable or added-in from another mapping (or counter). Like
dict.update () but adds counts instead of replacing them. Also, the iterable is expected to be a
sequence of elements, not a sequence of (key, value) pairs.

Common patterns for working with Counter objects:

sum(c.values())
c.clear()
list(c)

set(c)

dict(c)
c.items()

Counter(dict(list_of_pairs))

c.most_common() [:-n-1:-1]
+C

total of all counts

reset all counts

list unique elements

convert to a set

convert to a regular dictionary

convert to a list of (elem, cnt) pairs
convert from a list of (elem, cnt) pairs
n least common elements

remove zero and negative counts

HORH OKR OB R R R R R

Several mathematical operations are provided for combining Counter objects to produce multisets (counters
that have counts greater than zero). Addition and subtraction combine counters by adding or subtracting
the counts of corresponding elements. Intersection and union return the minimum and maximum of corre-
sponding counts. Each operation can accept inputs with signed counts, but the output will exclude results

with counts of zero or less.

>>> ¢ = Counter(a=3, b=1)
>>> d = Counter(a=1, b=2)
>>> ¢ + d

Counter({'a': 4, 'b': 3})
>>> ¢ - d

Counter({'a': 2})

>>> c & d

Counter({'a': 1, 'b': 1})

add two counters together: clz] + dl[z]
subtract (keeping only positive counts)

intersection: min(cl[z], d[z])

(continues on next page)

210

Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> ¢ | d # union: maz(clz], dlz])
Counter({'a': 3, 'b': 2})

Unary addition and subtraction are shortcuts for adding an empty counter or subtracting from an empty
counter.

>>> ¢ = Counter(a=2, b=-4)
>>> +¢

Counter({'a': 23})

>>> —¢

Counter({'b': 4})

New in version 3.3: Added support for unary plus, unary minus, and in-place multiset operations.

Note: Counters were primarily designed to work with positive integers to represent running counts; however,
care was taken to not unnecessarily preclude use cases needing other types or negative values. To help with
those use cases, this section documents the minimum range and type restrictions.

e The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values
are intended to be numbers representing counts, but you could store anything in the value field.

e The most_common () method requires only that the values be orderable.

o For in-place operations such as c[key] += 1, the value type need only support addition and subtrac-
tion. So fractions, floats, and decimals would work and negative values are supported. The same is also
true for update () and subtract() which allow negative and zero values for both inputs and outputs.

e The multiset methods are designed only for use cases with positive values. The inputs may be negative
or zero, but only outputs with positive values are created. There are no type restrictions, but the value
type needs to support addition, subtraction, and comparison.

e The elements () method requires integer counts. It ignores zero and negative counts.

See also:
« Bag class in Smalltalk.
o Wikipedia entry for Multisets.
e C+-+ multisets tutorial with examples.

o For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer
Programming Volume II, Section 4.6.3, FExercise 19.

e To enumerate all distinct multisets of a given size over a given set of elements, see itertools.
combinations_with_replacement ():

map(Counter, combinations_ with_replacement(‘ABC’, 2)) —> AA AB AC BB BC CC

8.3.3 deque objects

class collections.deque([z'temble[, maxlen]])
Returns a new deque object initialized left-to-right (using append ()) with data from iterable. If iterable
is not specified, the new deque is empty.

8.3. collections — Container datatypes 211

https://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
https://en.wikipedia.org/wiki/Multiset
http://www.java2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 3.6.5

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for
“double-ended queue”). Deques support thread-safe, memory efficient appends and pops from either
side of the deque with approximately the same O(1) performance in either direction.

Though 1ist objects support similar operations, they are optimized for fast fixed-length operations
and incur O(n) memory movement costs for pop(0) and insert (0, v) operations which change both
the size and position of the underlying data representation.

If mazlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is
bounded to the specified maximum length. Once a bounded length deque is full, when new items are
added, a corresponding number of items are discarded from the opposite end. Bounded length deques
provide functionality similar to the tail filter in Unix. They are also useful for tracking transactions
and other pools of data where only the most recent activity is of interest.

Deque objects support the following methods:

append (x)
Add z to the right side of the deque.

appendleft(z)
Add z to the left side of the deque.

clear()
Remove all elements from the deque leaving it with length 0.

copy O
Create a shallow copy of the deque.

New in version 3.5.

count ()
Count the number of deque elements equal to z.

New in version 3.2.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left
appends results in reversing the order of elements in the iterable argument.

index(m[, start[, stop]])
Return the position of z in the deque (at or after index start and before index stop). Returns the
first match or raises ValueError if not found.

New in version 3.5.

insert (i, x)
Insert z into the deque at position 4.

If the insertion would cause a bounded deque to grow beyond mazlen, an IndezError is raised.

New in version 3.5.

pop Q)
Remove and return an element from the right side of the deque. If no elements are present, raises
an IndezError.

popleft ()
Remove and return an element from the left side of the deque. If no elements are present, raises
an IndexError.

212

Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

remove (value)
Remove the first occurrence of value. If not found, raises a ValueError.

reverse()
Reverse the elements of the deque in-place and then return None.

New in version 3.2.

rotate(n=1)
Rotate the deque n steps to the right. If n is negative, rotate to the left.

When the deque is not empty, rotating one step to the right is equivalent to d.appendleft(d.
pop()), and rotating one step to the left is equivalent to d.append(d.popleft()).

Deque objects also provide one read-only attribute:

maxlen
Maximum size of a deque or None if unbounded.

New in version 3.1.

In addition to the above, deques support iteration, pickling, len(d), reversed(d), copy.copy(d), copy.
deepcopy (d), membership testing with the in operator, and subscript references such as d[-1]. Indexed

access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.
Starting in version 3.5, deques support __add__(, __mul__ (), and __imul__Q).

Example:

>>> from collections import deque

>>> d = deque('ghi') # make a new deque with three items
>>> for elem in d: # iterate over the deque's elements

. print (elem.upper())

G

H

I

>>> d.append('j") # add a new entry to the right side
>>> d.appendleft('f') # add a new entry to the left stde

>>> d # show the representation of the deque

deque(['f', |g|, lhl’ lil’ |J-|])

>>> d.pop() # return and remove the rightmost item
ljl

>>> d.popleft() # return and remove the leftmost item
lfl

>>> list(d) # list the contents of the deque

[Igl’ Ihl, |i|]

>>> d[0] # peek at leftmost item

lgl

>>> d[-1] # peek at rightmost item

lil

>>> list(reversed(d)) # list the contents of a deque in reverse
[Iil |h| lgl]

>>> 'h' in d # search the deque

True

>>> d.extend('jk1') # add multiple elements at once

>>> d

deque(['g', 'h', lil, Ij‘: Ik', Ill])

>>> d.rotate(1) # right rotation

(continues on next page)

8.3. collections — Container datatypes 213

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> d

deque(['l', |g|’ lhl, Ii', |j|’ Ikl])

>>> d.rotate(-1) # left rotation
>>> d

deque(['g', 'hl, lil, |j|’ Ik', Ill])

>>> deque(reversed(d)) # make a new deque in Teverse order
deque(['l', 'kl, ljl, Ii', Ih', |g|])

>>> d.clear() # empty the deque

>>> d.pop() # cannot pop from an empty deque

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
d.pop(Q)
IndexError: pop from an empty deque

>>> d.extendleft('abc') # extendleft () reverses the input order
>>> d
deque(['c', 'b', 'a'l)

deque Recipes

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter in Unix:

def tail(filename, n=10):
'Return the last n lines of a file'
with open(filename) as f:
return deque(f, n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the
right and popping to the left:

def moving_average(iterable, n=3):
moving_average ([40, 30, 50, 46, 39, 44]) —=> 40.0 42.0 45.0 43.0
http://en.wikipedia.org/wiki/Moving_average
it = iter(iterable)
d = deque(itertools.islice(it, n-1))
d.appendleft(0)
s = sum(d)
for elem in it:
s += elem - d.popleft()
d.append (elem)
yield s / n

The rotate () method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate() method to position elements to be popped:

def delete_nth(d, n):
d.rotate(-n)
d.popleft()
d.rotate(n)

To implement deque slicing, use a similar approach applying rotate() to bring a target element to the left
side of the deque. Remove old entries with popleft (), add new entries with extend (), and then reverse the

214 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

rotation. With minor variations on that approach, it is easy to implement Forth style stack manipulations
such as dup, drop, swap, over, pick, rot, and roll.

8.3.4 defaultdict objects

class collections.defaultdict([default_factory[,]])
Returns a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides
one method and adds one writable instance variable. The remaining functionality is the same as for
the dict class and is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None.
All remaining arguments are treated the same as if they were passed to the dict constructor, including
keyword arguments.

defaultdict objects support the following method in addition to the standard dict operations:

__missing__(key)
If the default_factory attribute is None, this raises a KeyError exception with the key as
argument.

If default_factory is not None, it is called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem__() method of the dict class when the requested key is
not found; whatever it returns or raises is then returned or raised by __getitem__().

Note that __missing__ () is not called for any operations besides __getitem__(). This
means that get() will, like normal dictionaries, return None as a default rather than using
default_factory.

defaultdict objects support the following instance variable:

default_factory
This attribute is used by the __missing _ () method; it is initialized from the first argument to
the constructor, if present, or to None, if absent.

defaultdict Examples

Using list as the default_factory, it is easy to group a sequence of key-value pairs into a dictionary of
lists:

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict(list)
>>> for k, v in s:

d[k] .append(v)

>>> sorted(d.items())
[('blue', [2, 41), ('red', [11), ('yellow', [1, 31)]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically
created using the default_factory function which returns an empty list. The list.append() operation
then attaches the value to the new list. When keys are encountered again, the look-up proceeds normally
(returning the list for that key) and the list.append() operation adds another value to the list. This
technique is simpler and faster than an equivalent technique using dict.setdefault ():

8.3. collections — Container datatypes 215

The Python Library Reference, Release 3.6.5

>>>d = {}
>>> for k, v in s:
d.setdefault(k, []).append(v)

;;; sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 31)]

Setting the default_factory to int makes the defaultdict useful for counting (like a bag or multiset in
other languages):

>>> s = 'mississippi'
>>> d = defaultdict(int)
>>> for k in s:

dlk] += 1

;;; sorted(d.items())
[Ci', 4), ('m', 1), C'p', 2), ('s', 4)]

When a letter is first encountered, it is missing from the mapping, so the default_factory function calls
int () to supply a default count of zero. The increment operation then builds up the count for each letter.

The function ¢nt () which always returns zero is just a special case of constant functions. A faster and more
flexible way to create constant functions is to use a lambda function which can supply any constant value
(not just zero):

>>> def constant_factory(value):

. return lambda: value

>>> d = defaultdict(constant_factory('<missing>'))
>>> d.update(name='John', action='ran')

>>> ! to " %od

'John ran to <missing>'

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> d = defaultdict(set)
>>> for k, v in s:

d[k] .add(v)

>>> sorted(d.items())
[("blue', {2, 4}), ('red', {1, 3})]

8.3.5 namedtuple() Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code.
They can be used wherever regular tuples are used, and they add the ability to access fields by name instead
of position index.

collections.namedtuple (typename, field _names, * verbose=False, rename=False, module=None)

Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects
that have fields accessible by attribute lookup as well as being indexable and iterable. Instances of
the subclass also have a helpful docstring (with typename and field_names) and a helpful __repr__()
method which lists the tuple contents in a name=value format.

The field _names are a sequence of strings such as ['x', 'y']. Alternatively, field _names can be a
single string with each fieldname separated by whitespace and/or commas, for example 'x y' or 'x,

216 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

y .

Any valid Python identifier may be used for a fieldname except for names starting with an underscore.
Valid identifiers consist of letters, digits, and underscores but do not start with a digit or underscore
and cannot be a keyword such as class, for, return, global, pass, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For exam-
ple, ['abc', 'def', 'ghi', 'abc'] is converted to ['abc', '_1', 'ghi', '_3'], eliminating the
keyword def and the duplicate fieldname abc.

If verbose is true, the class definition is printed after it is built. This option is outdated; instead, it is
simpler to print the _source attribute.

If module is defined, the __module__ attribute of the named tuple is set to that value.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no
more memory than regular tuples.

Changed in version 3.1: Added support for rename.
Changed in version 3.6: The verbose and rename parameters became keyword-only arguments.

Changed in version 3.6: Added the module parameter.

>>> # Basic ezample

>>> Point = namedtuple('Point', ['x', 'y'])

>>> p = Point (11, y=22) # instantiate with positional or keyword arguments
>>> pl0] + pl[1] # indexable like the plain tuple (11, 22)

33

>>> x, y=p # unpack like a regular tuple

>>> X, ¥y

(11, 22)

>>> p.x + p.y # fields also accessible by name

33

>>> p # readable __repr__ with a name=value style

Point (x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sqlite3
modules:

EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')

import csv
for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):
print (emp.name, emp.title)

import sqlite3
conn = sqlite3.connect('/companydata')
cursor = conn.cursor ()
cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
for emp in map(EmployeeRecord._make, cursor.fetchall()):
print (emp.name, emp.title)

In addition to the methods inherited from tuples, named tuples support three additional methods and two
attributes. To prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make (iterable)
Class method that makes a new instance from an existing sequence or iterable.

8.3. collections — Container datatypes 217

The Python Library Reference, Release 3.6.5

>>> t = [11, 22]
>>> Point._make(t)
Point (x=11, y=22)

somenamedtuple._asdict ()

Return a new OrderedDict which maps field names to their corresponding values:

>>> p = Point(x=11, y=22)
>>> p._asdict()
OrderedDict([('x', 11), ('y', 22)1)

Changed in version 3.1: Returns an OrderedDict instead of a regular dict.

somenamedtuple._replace (**kwargs)

Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point(x=11, y=22)
>>> p._replace(x=33)
Point (x=33, y=22)

>>> for partnum, record in inventory.items():
inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())

somenamedtuple._source

A string with the pure Python source code used to create the named tuple class. The source makes
the named tuple self-documenting. It can be printed, executed using ezec (), or saved to a file and
imported.

New in version 3.3.

somenamedtuple._fields

Tuple of strings listing the field names. Useful for introspection and for creating new named tuple
types from existing named tuples.

>>> p._fields # view the field names
(IXI’ lyl)
>>> Color = namedtuple('Color', 'red green blue')

>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
>>> Pixel(11, 22, 128, 255, 0)
Pixel(x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, use the getattr() function:

>>> getattr(p, 'x')

11

To convert a dictionary to a named tuple, use the double-star-operator (as described in tut-unpacking-
arguments):

>>>d = {'x': 11, 'y': 22}
>>> Point (**d)
Point (x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here
is how to add a calculated field and a fixed-width print format:

218

Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

>>> class Point(namedtuple('Point', ['x', 'y'])):
__slots__ = Q)
Q@property
def hypot(self):
return (self.x **x 2 + self.y **x 2) **x 0.5
def __str__(self):
return 'Point: x= y= hypot= " % (self.x, self.y, self.hypot)

>>> for p in Point(3, 4), Point(14, 5/7):
. print(p)

Point: x= 3.000 y= 4.000 hypot= 5.000
Point: x=14.000 y= 0.714 hypot=14.018

The subclass shown above sets __slots__ to an empty tuple. This helps keep memory requirements low by
preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from
the _fields attribute:

>>> Point3D = namedtuple('Point3D', Point._fields + ('z',))

Docstrings can be customized by making direct assignments to the __doc__ fields:

>>> Book = namedtuple('Book', ['id', 'title', 'authors'])

>>> Book.__doc__ += ': Hardcover book in active collection'

>>> Book.id.__doc__ = '13-digit ISBN'

>>> Book.title.__doc__ = 'Title of first printing'

>>> Book.authors._ _doc__ = 'List of authors sorted by last name'

Changed in version 3.5: Property docstrings became writeable.

Default values can be implemented by using _replace() to customize a prototype instance:

>>> Account = namedtuple('Account', 'owner balance transaction_count')
>>> default_account = Account('<owner name>', 0.0, 0)

>>> johns_account = default_account._replace(owner='John')

>>> janes_account = default_account._replace(owner='Jane')

See also:

e Recipe for named tuple abstract base class with a metaclass mix-in by Jan Kaliszewski. Besides provid-
ing an abstract base class for named tuples, it also supports an alternate metaclass-based constructor
that is convenient for use cases where named tuples are being subclassed.

e See types.SimpleNamespace() for a mutable namespace based on an underlying dictionary instead
of a tuple.

e See typing.NamedTuple() for a way to add type hints for named tuples.

8.3.6 OrderedDict objects

Ordered dictionaries are just like regular dictionaries but they remember the order that items were inserted.
When iterating over an ordered dictionary, the items are returned in the order their keys were first added.

class collections.OrderedDict([items])
Return an instance of a dict subclass, supporting the usual dict methods. An OrderedDict is a dict
that remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the

8.3. collections — Container datatypes 219

https://code.activestate.com/recipes/577629-namedtupleabc-abstract-base-class-mix-in-for-named/

The Python Library Reference, Release 3.6.5

original insertion position is left unchanged. Deleting an entry and reinserting it will move it to the
end.

New in version 3.1.

popitem(last=True)
The popitem() method for ordered dictionaries returns and removes a (key, value) pair. The
pairs are returned in LIFO (last-in, first-out) order if last is true or FIFO (first-in, first-out)
order if false.

move_to_end (key, last=True)
Move an existing key to either end of an ordered dictionary. The item is moved to the right end
if last is true (the default) or to the beginning if last is false. Raises KeyError if the key does not
exist:

>>> d = OrderedDict.fromkeys('abcde')
>>> d.move_to_end('b")

>>> "' join(d.keys())

'acdeb'

>>> d.move_to_end('b', last=False)
>>> "' join(d.keys())

'bacde’

New in version 3.2.

In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using
reversed().

Equality tests between OrderedDict objects are order-sensitive and are implemented as list(odl.
items())==1list(od2.items()). Equality tests between OrderedDict objects and other Mapping objects
are order-insensitive like regular dictionaries. This allows OrderedDict objects to be substituted anywhere
a regular dictionary is used.

Changed in version 3.5: The items, keys, and values views of OrderedDict now support reverse iteration
using reversed().

Changed in version 3.6: With the acceptance of PEP 468, order is retained for keyword arguments passed
to the OrderedDict constructor and its update () method.

OrderedDict Examples and Recipes

Since an ordered dictionary remembers its insertion order, it can be used in conjunction with sorting to make
a sorted dictionary:

>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}

>>> # dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])

>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)]1)

>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

220 Chapter 8. Data Types

https://www.python.org/dev/peps/pep-0468

The Python Library Reference, Release 3.6.5

The new sorted dictionaries maintain their sort order when entries are deleted. But when new keys are
added, the keys are appended to the end and the sort is not maintained.

It is also straight-forward to create an ordered dictionary variant that remembers the order the keys were last
inserted. If a new entry overwrites an existing entry, the original insertion position is changed and moved
to the end:

class LastUpdatedOrderedDict(OrderedDict) :
'Store items in the order the keys were last added'

def __setitem__(self, key, value):
if key in self:
del self [key]
OrderedDict.__setitem__(self, key, value)

An ordered dictionary can be combined with the Counter class so that the counter remembers the order
elements are first encountered:

class OrderedCounter(Counter, OrderedDict):
'Counter that remembers the order elements are first encountered'

def __repr__(self):
return '/s(/r)' % (self._ _class__._ name__, OrderedDict(self))

def __reduce__(self):
return self. class__, (OrderedDict(self),)

8.3.7 UserDict objects

The class, UserDict acts as a wrapper around dictionary objects. The need for this class has been partially
supplanted by the ability to subclass directly from dict; however, this class can be easier to work with
because the underlying dictionary is accessible as an attribute.

class collections.UserDict([im'tz'aldata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is
accessible via the data attribute of UserDict instances. If initialdata is provided, data is initialized
with its contents; note that a reference to initialdata will not be kept, allowing it be used for other
purposes.

In addition to supporting the methods and operations of mappings, UserDict instances provide the
following attribute:

data
A real dictionary used to store the contents of the UserDict class.

8.3.8 UserList objects

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which
can inherit from them and override existing methods or add new ones. In this way, one can add new behaviors
to lists.

The need for this class has been partially supplanted by the ability to subclass directly from 1ist; however,
this class can be easier to work with because the underlying list is accessible as an attribute.

class collections.UserList([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via

8.3. collections — Container datatypes 221

The Python Library Reference, Release 3.6.5

the data attribute of UserList instances. The instance’s contents are initially set to a copy of list,
defaulting to the empty list []. list can be any iterable, for example a real Python list or a UserList
object.

In addition to supporting the methods and operations of mutable sequences, UserList instances provide
the following attribute:

data
A real 1ist object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expected to offer a constructor which can be called
with either no arguments or one argument. List operations which return a new sequence attempt to create
an instance of the actual implementation class. To do so, it assumes that the constructor can be called with
a single parameter, which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by
this class will need to be overridden; please consult the sources for information about the methods which
need to be provided in that case.

8.3.9 UserString objects

The class, UserString acts as a wrapper around string objects. The need for this class has been partially
supplanted by the ability to subclass directly from str; however, this class can be easier to work with because
the underlying string is accessible as an attribute.

class collections.UserString([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string
object, which is accessible via the data attribute of UserString instances. The instance’s contents
are initially set to a copy of sequence. The sequence can be an instance of bytes, str, UserString
(or a subclass) or an arbitrary sequence which can be converted into a string using the built-in str()
function.

Changed in version 3.5: New methods __getnewargs
isprintable, and maketrans.

__rmod__, casefold, format_map,

—_—

8.4 collections.abc — Abstract Base Classes for Containers

New in version 3.3: Formerly, this module was part of the collections module.

Source code: Lib/ collections abc.py

This module provides abstract base classes that can be used to test whether a class provides a particular
interface; for example, whether it is hashable or whether it is a mapping.

8.4.1 Collections Abstract Base Classes

The collections module offers the following A BCs:

222 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.6/Lib/_collections_abc.py

The Python Library Reference, Release 3.6.5

ABC Inherits Abstract Methods Mixin Methods
from
Container __contains__
Hashable __hash__
Iterable __iter__
Iterator Iterable __next__ __iter__
Reversible Iterable __reversed__
Generator Iterator send, throw close, __iter__, __mnext__
Sized __len__
Callable __call _
Collection Sized, __contains__,
Iterable, __iter__, __len__
Container
Sequence Reversible,| __getitem__, __len__ __contains__, __iter__,
Collection __reversed__, index, and count
MutableSequence | Sequence __getitem__, Inherited Sequence methods and append,
__setitem__, reverse, extend, pop, remove, and
__delitem__, __len__, __iadd__
insert
ByteString Sequence __getitem__, __len__ Inherited Sequence methods
Set Collection| __contains__, _le__,__1t__, __eq__, __ne__,
__iter__, __len__ __gt__,__ge__,__and__, __or__,
__sub__, __xor__, and isdisjoint
MutableSet Set __contains__, Inherited Set methods and clear, pop,
__iter__, __len__, remove, __ior__, __iand__, __ixor__,
add, discard and __isub__
Mapping Collection| __getitem__, __contains__, keys, items, values,
__iter__, _len__ get, __eq__, and __ne__
MutableMapping | Mapping __getitem__, Inherited Mapping methods and pop,
__setitem__, popitem, clear, update, and
__delitem__, setdefault
__iter__, __len__
MappingView Sized __len__
ItemsView MappingVieuw, __contains__, __iter__
Set
KeysView MappingVieu, __contains__, __iter__
Set
ValuesView MappingViey __contains__, __iter__
Awaitable __await__
Coroutine Awatitable | send, throw close
AsyncIterable __aiter__
AsyncIterator AsyncIteralle_anext__ __aiter__
AsyncGenerator AsyncIteratoasend, athrow aclose, __aiter__, __anext__
class collections.abc.Container
class collections.abc.Hashable
class collections.abc.Sized
class collections.abc.Callable
ABCs for classes that provide respectively the methods __contains__(), __hash__(), __len__Q),
and __call__Q).
class collections.abc.Iterable
ABC for classes that provide the __iter__() method.
8.4. collections.abc — Abstract Base Classes for Containers 223

The Python Library Reference, Release 3.6.5

Checking isinstance(obj, Iterable) detects classes that are registered as Iterable or that have
an __iter__() method, but it does not detect classes that iterate with the __getitem__() method.
The only reliable way to determine whether an object is iterable is to call iter (obj).

class collections.abc.Collection
ABC for sized iterable container classes.

New in version 3.6.

class collections.abc.Iterator
ABC for classes that provide the __iter _ () and __nezt__ () methods. See also the definition of
iterator.

class collections.abc.Reversible
ABC for iterable classes that also provide the __reversed__() method.

New in version 3.6.

class collections.abc.Generator
ABC for generator classes that implement the protocol defined in PEP 342 that extends iterators
with the send (), throw() and close() methods. See also the definition of generator.

New in version 3.5.

class collections.abc.Sequence
class collections.abc.MutableSequence
class collections.abc.ByteString

ABCs for read-only and mutable sequences.

Implementation note: Some of the mixin methods, such as __iter__(), __reversed__() and index(),
make repeated calls to the underlying __getitem__() method. Consequently, if __getitem__() is
implemented with constant access speed, the mixin methods will have linear performance; however,
if the underlying method is linear (as it would be with a linked list), the mixins will have quadratic
performance and will likely need to be overridden.

Changed in version 3.5: The index() method added support for stop and start arguments.

class collections.abc.Set
class collections.abc.MutableSet
ABCs for read-only and mutable sets.

class collections.abc.Mapping
class collections.abc.MutableMapping
ABC:s for read-only and mutable mappings.

class collections.abc.MappingView
class collections.abc.ItemsView
class collections.abc.KeysView
class collections.abc.ValuesView
ABCs for mapping, items, keys, and values views.

class collections.abc.Awaitable
ABC for awaitable objects, which can be used in await expressions. Custom implementations must
provide the __await__() method.

Coroutine objects and instances of the Coroutine ABC are all instances of this ABC.

Note: In CPython, generator-based coroutines (generators decorated with types.coroutine() or
asyncio.coroutine()) are awaitables, even though they do not have an __await__() method. Us-
ing isinstance(gencoro, Awaitable) for them will return False. Use inspect.isawaitable() to

224 Chapter 8. Data Types

https://www.python.org/dev/peps/pep-0342

The Python Library Reference, Release 3.6.5

detect them.

New in version 3.5.

class collections.abc.Coroutine
ABC for coroutine compatible classes. These implement the following methods, defined in coroutine-
objects: send(), throw(), and close(). Custom implementations must also implement __await__().
All Coroutine instances are also instances of Awaitable. See also the definition of coroutine.

Note: In CPython, generator-based coroutines (generators decorated with types.coroutine() or
asyncio.coroutine()) are awaitables, even though they do not have an __await__() method. Us-
ing isinstance(gencoro, Coroutine) for them will return False. Use inspect.isawaitable() to
detect them.

New in version 3.5.

class collections.abc.AsyncIterable
ABC for classes that provide __aiter__ method. See also the definition of asynchronous iterable.

New in version 3.5.

class collections.abc.AsyncIterator
ABC for classes that provide __aiter__ and __anext__ methods. See also the definition of asyn-
chronous iterator.

New in version 3.5.

class collections.abc.AsyncGenerator
ABC for asynchronous generator classes that implement the protocol defined in PEP 525 and PEP
492.

New in version 3.6.

These ABCs allow us to ask classes or instances if they provide particular functionality, for example:

size = None
if isinstance(myvar, collections.abc.Sized):
size = len(myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs.
For example, to write a class supporting the full Set API, it is only necessary to supply the three underlying
abstract methods: __contains__ (), __iter__(),and __len__(). The ABC supplies the remaining methods
such as __and__() and isdisjoint():

class ListBasedSet(collections.abc.Set):
""" Alternate set implementation favoring space over speed
and not requiring the set elements to be hashable. '''
def __init__(self, iterable):
self.elements = 1lst = []
for value in iterable:
if value not in 1st:
1st.append(value)

def __iter__(self):
return iter(self.elements)

def __contains__(self, value):

(continues on next page)

8.4. collections.abc — Abstract Base Classes for Containers 225

https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492

The Python Library Reference, Release 3.6.5

(continued from previous page)

return value in self.elements

def __len__(self):
return len(self.elements)

s1 = ListBasedSet('abcdef')
s2 = ListBasedSet('defghi')
overlap = sl & s2 # The __and__ () method is supported automatically

Notes on using Set and MutableSet as a mixin:

1. Since some set operations create new sets, the default mixin methods need a way to create
new instances from an iterable. The class constructor is assumed to have a signature in the
form ClassName(iterable). That assumption is factored-out to an internal classmethod called
_from_iterable() which calls cls(iterable) to produce a new set. If the Set mixin is being used
in a class with a different constructor signature, you will need to override _from_iterable() with a
classmethod that can construct new instances from an iterable argument.

2. To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le__() and
__ge__Q), then the other operations will automatically follow suit.

3. The Set mixin provides a _hash() method to compute a hash value for the set; however, __hash__ ()
is not defined because not all sets are hashable or immutable. To add set hashability using mixins,
inherit from both Set () and Hashable(), then define __hash__ = Set._hash.

See also:
e OrderedSet recipe for an example built on MutableSet.

e For more about ABCs, see the abc module and PEP 3119.

8.5 heapq — Heap queue algorithm

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue
algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children. This
implementation uses arrays for which heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for all £,
counting elements from zero. For the sake of comparison, non-existing elements are considered to be infinite.
The interesting property of a heap is that its smallest element is always the root, heap[0].

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This
makes the relationship between the index for a node and the indexes for its children slightly less obvious,
but is more suitable since Python uses zero-based indexing. (b) Our pop method returns the smallest item,
not the largest (called a “min heap” in textbooks; a “max heap” is more common in texts because of its
suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap[0] is the
smallest item, and heap.sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function
heapify().

The following functions are provided:

226 Chapter 8. Data Types

https://code.activestate.com/recipes/576694/
https://www.python.org/dev/peps/pep-3119
https://github.com/python/cpython/tree/3.6/Lib/heapq.py

The Python Library Reference, Release 3.6.5

heapq.heappush (heap, item)
Push the value item onto the heap, maintaining the heap invariant.

heapq.heappop (heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised. To access the smallest item without popping it, use heap[0].

heapq.heappushpop (heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action
runs more efficiently than heappush () followed by a separate call to heappop ().

heapq.heapify(z)
Transform list x into a heap, in-place, in linear time.

heapq.heapreplace (heap, item)
Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t
change. If the heap is empty, IndexzError is raised.

This one step operation is more efficient than a heappop () followed by heappush () and can be more
appropriate when using a fixed-size heap. The pop/push combination always returns an element from
the heap and replaces it with item.

The value returned may be larger than the item added. If that isn’t desired, consider using
heappushpop () instead. Its push/pop combination returns the smaller of the two values, leaving
the larger value on the heap.

The module also offers three general purpose functions based on heaps.

heapq.merge (*iterables, key=None, reverse=False)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from
multiple log files). Returns an iterator over the sorted values.

Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to
largest).

Has two optional arguments which must be specified as keyword arguments.

key specifies a key function of one argument that is used to extract a comparison key from each input
element. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the input elements are merged as if each comparison
were reversed.

Changed in version 3.5: Added the optional key and reverse parameters.

heapq.nlargest(n, iterable, key=None)
Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted(iterable, key=key, reverse=True) [:n]

heapq.nsmallest (n, iterable, key=None)
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided,
specifies a function of one argument that is used to extract a comparison key from each element in the
iterable: key=str.lower Equivalent to: sorted(iterable, key=key) [:n]

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use
the sorted() function. Also, when n==1, it is more efficient to use the built-in min () and maz () functions.
If repeated usage of these functions is required, consider turning the iterable into an actual heap.

8.5. heapq — Heap queue algorithm 227

The Python Library Reference, Release 3.6.5

8.5.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values
one at a time:

>>> def heapsort(iterable):
h =]
for value in iterable:
heappush(h, value)
return [heappop(h) for i in range(len(h))]

>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
o, 1, 2, 3, 4, 5,6, 7, 8, 9]

This is similar to sorted(iterable), but unlike sorted (), this implementation is not stable.

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside
the main record being tracked:

>>> h = []

>>> heappush(h, (5, 'write code'))

>>> heappush(h, (7, 'release product'))
>>> heappush(h, (1, 'write spec'))

>>> heappush(h, (3, 'create tests'))
>>> heappop (h)

(1, 'write spec')

8.5.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:

e Sort stability: how do you get two tasks with equal priorities to be returned in the order they were
originally added?

« Tuple comparison breaks for (priority, task) pairs if the priorities are equal and the tasks do not have
a default comparison order.

o If the priority of a task changes, how do you move it to a new position in the heap?
e Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry
count, and the task. The entry count serves as a tie-breaker so that two tasks with the same priority are
returned in the order they were added. And since no two entry counts are the same, the tuple comparison
will never attempt to directly compare two tasks.

The remaining challenges revolve around finding a pending task and making changes to its priority or
removing it entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure
invariants. So, a possible solution is to mark the entry as removed and add a new entry with the revised
priority:

pa = (1 # list of entries arranged in a heap
entry_finder = {} # mapping of tasks to entries
REMOVED = '<removed-task>' # placeholder for a removed task
counter = itertools.count() # unique sequence count

(continues on next page)

228 Chapter 8. Data Types

https://en.wikipedia.org/wiki/Heapsort
https://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 3.6.5

(continued from previous page)

def add_task(task, priority=0):
'Add a new task or update the priority of an existing task'
if task in entry_finder:
remove_task(task)
count = next(counter)
entry = [priority, count, task]
entry_finder[task] = entry
heappush(pq, entry)

def remove_task(task):
'Mark an existing task as REMOVED. Raise KeyError if not found.'
entry = entry_finder.pop(task)
entry[-1] = REMOVED

def pop_task():
'Remove and return the lowest priority task. Raise KeyError if empty.'
while pq:
priority, count, task = heappop(pq)
if task is not REMOVED:
del entry_finder[task]
return task
raise KeyError('pop from an empty priority queue')

8.5.3 Theory

Heaps are arrays for which a[k] <= a[2*k+1] and al[k] <= a[2%k+2] for all &, counting elements from O.
For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of
a heap is that a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The
numbers below are k, not a[k]:

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 2324 2526 27 28 29 30

In the tree above, each cell k is topping 2*k+1 and 2*k+2. In a usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents
s/he had. However, in many computer applications of such tournaments, we do not need to trace the history
of a winner. To be more memory efficient, when a winner is promoted, we try to replace it by something
else at a lower level, and the rule becomes that a cell and the two cells it tops contain three different items,
but the top cell “wins” over the two topped cells.

If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic
way to remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above)
into the 0 position, and then percolate this new 0 down the tree, exchanging values, until the invariant is
re-established. This is clearly logarithmic on the total number of items in the tree. By iterating over all
items, you get an O(n log n) sort.

8.5. heapq — Heap queue algorithm 229

The Python Library Reference, Release 3.6.5

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided
that the inserted items are not “better” than the last 0’th element you extracted. This is especially useful in
simulation contexts, where the tree holds all incoming events, and the “win” condition means the smallest
scheduled time. When an event schedules other events for execution, they are scheduled into the future, so
they can easily go into the heap. So, a heap is a good structure for implementing schedulers (this is what I
used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this,
as they are reasonably speedy, the speed is almost constant, and the worst case is not much different than
the average case. However, there are other representations which are more efficient overall, yet the worst
cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing
“runs” (which are pre-sorted sequences, whose size is usually related to the amount of CPU memory), followed
by a merging passes for these runs, which merging is often very cleverly organised'. It is very important
that the initial sort produces the longest runs possible. Tournaments are a good way to achieve that. If,
using all the memory available to hold a tournament, you replace and percolate items that happen to fit the
current run, you’ll produce runs which are twice the size of the memory for random input, and much better
for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament
(because the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap
decreases. The freed memory could be cleverly reused immediately for progressively building a second heap,
which grows at exactly the same rate the first heap is melting. When the first heap completely vanishes, you
switch heaps and start a new run. Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is
good to keep a ‘heap’ module around. :-)

8.6 bisect — Array bisection algorithm

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each
insertion. For long lists of items with expensive comparison operations, this can be an improvement over the
more common approach. The module is called bisect because it uses a basic bisection algorithm to do its
work. The source code may be most useful as a working example of the algorithm (the boundary conditions
are already right!).

The following functions are provided:

bisect.bisect_left(a, z, lo=0, hi=len(a))
Locate the insertion point for z in a to maintain sorted order. The parameters lo and hi may be used
to specify a subset of the list which should be considered; by default the entire list is used. If z is
already present in a, the insertion point will be before (to the left of) any existing entries. The return
value is suitable for use as the first parameter to 1ist.insert () assuming that a is already sorted.

The returned insertion point ¢ partitions the array a into two halves so that all(val < x for val
in a[lo:1i]) for the left side and all(val >= x for val in ali:hi]) for the right side.

1 The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of
the seeking capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one
had to be very clever to ensure (far in advance) that each tape movement will be the most effective possible (that is, will best
participate at “progressing” the merge). Some tapes were even able to read backwards, and this was also used to avoid the
rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all times, sorting has always been a
Great Art! :-)

230 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.6/Lib/bisect.py

The Python Library Reference, Release 3.6.5

bisect.bisect_right (a, z, lo=0, hi=len(a))

bisect.bisect (a, z, lo=0, hi=len(a))
Similar to bisect_left(), but returns an insertion point which comes after (to the right of) any
existing entries of z in a.

The returned insertion point ¢ partitions the array a into two halves so that all(val <= x for val
in allo:i]) for the left side and all(val > x for val in ali:hi]) for the right side.

bisect.insort_left(a, z, lo=0, hi=len(a))
Insert z in a in sorted order. This is equivalent to a.insert(bisect.bisect_left(a, x, lo, hi),
x) assuming that a is already sorted. Keep in mind that the O(log n) search is dominated by the slow
O(n) insertion step.

bisect.insort_right(a, z, lo=0, hi=len(a))
bisect.insort(a, z, lo=0, hi=len(a))
Similar to <nsort_left (), but inserting = in a after any existing entries of z.

See also:

SortedCollection recipe that uses bisect to build a full-featured collection class with straight-forward search
methods and support for a key-function. The keys are precomputed to save unnecessary calls to the key
function during searches.

8.6.1 Searching Sorted Lists

The above bisect () functions are useful for finding insertion points but can be tricky or awkward to use
for common searching tasks. The following five functions show how to transform them into the standard
lookups for sorted lists:

def index(a, x):
'Locate the leftmost value exactly equal to x'
i = bisect_left(a, x)
if i != len(a) and al[i] == x:
return i
raise ValueError

def find_lt(a, x):
'Find rightmost value less than x'
i = bisect_left(a, x)
if i:
return al[i-1]
raise ValueError

def find_le(a, x):
'Find rightmost value less than or equal to x'
i = bisect_right(a, x)
if i:
return al[i-1]
raise ValueError

def find_gt(a, x):
'Find leftmost value greater than x'
i = bisect_right(a, x)
if i != len(a):
return ali]
raise ValueError

(continues on next page)

8.6. bisect — Array bisection algorithm 231

https://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 3.6.5

(continued from previous page)

def find_ge(a, x):
'Find leftmost item greater than or equal to x'
i = bisect_left(a, x)
if i != len(a):
return ali]
raise ValueError

8.6.2 Other Examples

The bisect () function can be useful for numeric table lookups. This example uses bisect () to look up a
letter grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80
to 89 is a ‘B’, and so on:

>>> def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):
i = bisect(breakpoints, score)
return grades[i]

>>> [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]
[IFI A |C| |C| 'B! A 'A']

Unlike the sorted() function, it does not make sense for the bisect () functions to have key or reversed
arguments because that would lead to an inefficient design (successive calls to bisect functions would not
“remember” all of the previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

>>> data = [('red', 5), ('blue', 1), ('yellow', 8), ('black', 0)]
>>> data.sort(key=lambda r: r[1])

>>> keys = [r[1] for r in datal] # precomputed list of keys
>>> datal[bisect_left(keys, 0)]

('black', 0)

>>> datal[bisect_left(keys, 1)]

('blue', 1)

>>> datal[bisect_left(keys, 5)]

('red', 5)

>>> datal[bisect_left(keys, 8)]
('yellow', 8)

8.7 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters,
integers, floating point numbers. Arrays are sequence types and behave very much like lists, except that the
type of objects stored in them is constrained. The type is specified at object creation time by using a type
code, which is a single character. The following type codes are defined:

232 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

Type code | C Type Python Type Minimum size in bytes | Notes
'b! signed char int 1

'B' unsigned char int 1

'u' Py UNICODE Unicode character | 2 (1)
'h! signed short int 2

'H' unsigned short int 2

i signed int int 2

"I unsigned int int 2

'l signed long int 4

'L unsigned long int 4

'q' signed long long int 8 (2)
Q' unsigned long long | int 8 (2)
'f! float float 4

'q' double float 8

Notes:

1. The 'u' type code corresponds to Python’s obsolete unicode character (Py_UNICODE which is wchar_t).
Depending on the platform, it can be 16 bits or 32 bits.

'u' will be removed together with the rest of the Py_UNICODE API.
Deprecated since version 3.3, will be removed in version 4.0.

2. The 'q' and 'Q"' type codes are available only if the platform C compiler used to build Python supports
C long long, or, on Windows, __int64.

New in version 3.3.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C
implementation). The actual size can be accessed through the itemsize attribute.

The module defines the following type:

class array.array(typecode[, initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value,
which must be a list, a bytes-like object, or iterable over elements of the appropriate type.

If given a list or string, the initializer is passed to the new array’s fromlist(), frombytes(), or
fromunicode () method (see below) to add initial items to the array. Otherwise, the iterable initializer
is passed to the exztend () method.

array.typecodes
A string with all available type codes.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplica-
tion. When using slice assignment, the assigned value must be an array object with the same type code; in
all other cases, TypeError is raised. Array objects also implement the buffer interface, and may be used
wherever bytes-like objects are supported.

The following data items and methods are also supported:

array.typecode
The typecode character used to create the array.

array.itemsize
The length in bytes of one array item in the internal representation.

array.append (x)
Append a new item with value z to the end of the array.

8.7. array — Efficient arrays of numeric values 233

The Python Library Reference, Release 3.6.5

array.buffer_info()
Return a tuple (address, length) giving the current memory address and the length in elements of
the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed
as array.buffer_info() [1] * array.itemsize. This is occasionally useful when working with low-
level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl()
operations. The returned numbers are valid as long as the array exists and no length-changing opera-
tions are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make
use of this information), it makes more sense to use the buffer interface supported by array objects.
This method is maintained for backward compatibility and should be avoided in new code. The buffer
interface is documented in bufferobjects.

array.byteswap()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of values, RuntimeError is raised. It is useful when reading data from a file written on
a machine with a different byte order.

array.count (z)
Return the number of occurrences of z in the array.

array . extend (iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly
the same type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable
and its elements must be the right type to be appended to the array.

array.frombytes(s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been
read from a file using the fromfile () method).

New in version 3.2: fromstring () is renamed to frombytes() for clarity.

array.fromfile(f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If
less than n items are available, EOFError is raised, but the items that were available are still inserted
into the array. f must be a real built-in file object; something else with a read() method won'’t do.

array.fromlist (list)
Append items from the list. This is equivalent to for x in list: a.append(x) except that if there
is a type error, the array is unchanged.

array.fromstring()
Deprecated alias for frombytes().

array.fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type 'u' array;
otherwise a ValueError is raised. Use array.frombytes(unicodestring.encode(enc)) to append
Unicode data to an array of some other type.

array.index(z)
Return the smallest ¢ such that ¢ is the index of the first occurrence of z in the array.

array.insert (i, x)
Insert a new item with value z in the array before position 7. Negative values are treated as being
relative to the end of the array.

array.pop([z'])
Removes the item with the index 7 from the array and returns it. The optional argument defaults to

234 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

-1, so that by default the last item is removed and returned.

array.remove (1)
Remove the first occurrence of z from the array.

array.reverse()
Reverse the order of the items in the array.

array.tobytes()
Convert the array to an array of machine values and return the bytes representation (the same sequence
of bytes that would be written to a file by the tofile () method.)

New in version 3.2: tostring() is renamed to tobytes () for clarity.

array.tofile(f)
Write all items (as machine values) to the file object f.

array.tolist()
Convert the array to an ordinary list with the same items.

array.tostring()
Deprecated alias for tobytes().

array.tounicode ()
Convert the array to a unicode string. The array must be a type 'u' array; otherwise a ValueError
is raised. Use array.tobytes() .decode(enc) to obtain a unicode string from an array of some other

type.

When an array object is printed or converted to a string, it is represented as array(typecode,
initializer). The initializer is omitted if the array is empty, otherwise it is a string if the typecode
is 'u', otherwise it is a list of numbers. The string is guaranteed to be able to be converted back to an array
with the same type and value using eval (), so long as the array class has been imported using from array
import array. Examples:

array('1l')

array('u', 'hello \u2641')
array('1l', [1, 2, 3, 4, 5])
array('d', [1.0, 2.0, 3.141)

See also:
Module struct Packing and unpacking of heterogeneous binary data.

Module xdrlib Packing and unpacking of External Data Representation (XDR) data as used in some
remote procedure call systems.

The Numerical Python Documentation The Numeric Python extension (NumPy) defines another ar-
ray type; see http://www.numpy.org/ for further information about Numerical Python.

8.8 weakref — Weak references

Source code: Lib/weakref.py

The weakref module allows the Python programmer to create weak references to objects.
In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references
to a referent are weak references, garbage collection is free to destroy the referent and reuse its memory for

8.8. weakref — Weak references 235

https://docs.scipy.org/doc/
http://www.numpy.org/
https://github.com/python/cpython/tree/3.6/Lib/weakref.py

The Python Library Reference, Release 3.6.5

something else. However, until the object is actually destroyed the weak reference may return the object
even if there are no strong references to it.

A primary use for weak references is to implement caches or mappings holding large objects, where it’s
desired that a large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with
each. If you used a Python dictionary to map names to images, or images to names, the image objects would
remain alive just because they appeared as values or keys in the dictionaries. The WeakKeyDictionary and
WeakValueDictionary classes supplied by the weakref module are an alternative, using weak references to
construct mappings that don’t keep objects alive solely because they appear in the mapping objects. If, for
example, an image object is a value in a WeakValueDictionary, then when the last remaining references to
that image object are the weak references held by weak mappings, garbage collection can reclaim the object,
and its corresponding entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up
callback functions on the weak references that notify the weak dictionaries when a key or value has been
reclaimed by garbage collection. WeakSet implements the set interface, but keeps weak references to its
elements, just like a WeakKeyDictionary does.

finalize provides a straight forward way to register a cleanup function to be called when an object is
garbage collected. This is simpler to use than setting up a callback function on a raw weak reference, since
the module automatically ensures that the finalizer remains alive until the object is collected.

Most programs should find that using one of these weak container types or finalize is all they need — it’s
not usually necessary to create your own weak references directly. The low-level machinery is exposed by
the weakref module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written
in Python (but not in C), instance methods, sets, frozensets, some file objects, generators, type objects,
sockets, arrays, deques, regular expression pattern objects, and code objects.

Changed in version 3.2: Added support for thread.lock, threading.Lock, and code objects.

Several built-in types such as list and dict do not directly support weak references but can add support
through subclassing:

class Dict(dict):
pass

obj = Dict(red=1, green=2, blue=3) # this object is weak referenceable

Other built-in types such as tuple and int do not support weak references even when subclassed (This is
an implementation detail and may be different across various Python implementations.).

Extension types can easily be made to support weak references; see weakref-support.

class weakref.ref(object[, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object
if the referent is still alive; if the referent is no longer alive, calling the reference object will cause None
to be returned. If callback is provided and not None, and the returned weakref object is still alive,
the callback will be called when the object is about to be finalized; the weak reference object will be
passed as the only parameter to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for
each weak reference will be called from the most recently registered callback to the oldest registered
callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated;
they are handled in exactly the same way as exceptions raised from an object’s __del__() method.

236 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

Weak references are hashable if the object is hashable. They will maintain their hash value even after
the object was deleted. If hash () is called the first time only after the object was deleted, the call will
raise TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardless of the callback). If either referent has
been deleted, the references are equal only if the reference objects are the same object.

This is a subclassable type rather than a factory function.

__callback__
This read-only attribute returns the callback currently associated to the weakref. If there is no
callback or if the referent of the weakref is no longer alive then this attribute will have value None.

Changed in version 3.4: Added the __callback__ attribute.

weakref .proxy(object[, callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object
will have a type of either ProxyType or CallableProxyType, depending on whether object is callable.
Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to
their fundamentally mutable nature, and prevent their use as dictionary keys. callback is the same as
the parameter of the same name to the ref () function.

weakref . getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

weakref . getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

class weakref.WeakKeyDictionary([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned
by other parts of an application without adding attributes to those objects. This can be especially
useful with objects that override attribute accesses.

Note: Caution: Because a WeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakKeyDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by
magic” (as a side effect of garbage collection).

WeakKeyDictionary objects have an additional method that exposes the internal references directly. The
references are not guaranteed to be “live” at the time they are used, so the result of calling the references
needs to be checked before being used. This can be used to avoid creating references that will cause the
garbage collector to keep the keys around longer than needed.

WeakKeyDictionary.keyrefs()
Return an iterable of the weak references to the keys.

class weakref.WeakValueDictionary([dz’ct])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

Note: Caution: Because a WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakValueDictionary because

8.8. weakref — Weak references 237

The Python Library Reference, Release 3.6.5

actions performed by the program during iteration may cause items in the dictionary to vanish “by
magic” (as a side effect of garbage collection).

WeakValueDictionary objects have an additional method that has the same issues as the keyrefs () method
of WeakKeyDictionary objects.

WeakValueDictionary.valuerefs()

Return an iterable of the weak references to the values.

class weakref.WeakSet ([elements])

Set class that keeps weak references to its elements. An element will be discarded when no strong
reference to it exists any more.

class weakref.WeakMethod (method)

A custom ref subclass which simulates a weak reference to a bound method (i.e., a method defined on
a class and looked up on an instance). Since a bound method is ephemeral, a standard weak reference
cannot keep hold of it. WeakMethod has special code to recreate the bound method until either the
object or the original function dies:

>>> class C:
def method(self):
print("method called!")
>>> ¢ = C(Q)
>>> r = weakref.ref (c.method)
>>> r()
>>> r = weakref.WeakMethod(c.method)
>>> r()
<bound method C.method of <__main__.C object at 0x7£c859830220>>
>>> ()0
method called!
>>> del ¢
>>> gc.collect()
0
>>> r()
>>>

New in version 3.4.

class weakref.finalize(obj, func, *args, **kwargs)

Return a callable finalizer object which will be called when obj is garbage collected. Unlike an ordinary
weak reference, a finalizer will always survive until the reference object is collected, greatly simplifying
lifecycle management.

A finalizer is considered alive until it is called (either explicitly or at garbage collection), and after
that it is dead. Calling a live finalizer returns the result of evaluating func (xarg, **kwargs), whereas
calling a dead finalizer returns None.

Exceptions raised by finalizer callbacks during garbage collection will be shown on the standard error
output, but cannot be propagated. They are handled in the same way as exceptions raised from an
object’s __del__() method or a weak reference’s callback.

When the program exits, each remaining live finalizer is called unless its atezit attribute has been set
to false. They are called in reverse order of creation.

A finalizer will never invoke its callback during the later part of the interpreter shutdown when module
globals are liable to have been replaced by None.

__call__QO
If self is alive then mark it as dead and return the result of calling func(*args, **kwargs). If

238

Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

self is dead then return None.

detach()
If self is alive then mark it as dead and return the tuple (obj, func, args, kwargs). If self is
dead then return None.

peek O
If self is alive then return the tuple (obj, func, args, kwargs). If self is dead then return
None.

alive
Property which is true if the finalizer is alive, false otherwise.

atexit
A writable boolean property which by default is true. When the program exits, it calls all
remaining live finalizers for which atezit is true. They are called in reverse order of creation.

Note: It is important to ensure that func, args and kwargs do not own any references to obj, either
directly or indirectly, since otherwise 0bj will never be garbage collected. In particular, func should
not be a bound method of obj.

New in version 3.4.

weakref .ReferenceType
The type object for weak references objects.

weakref .ProxyType
The type object for proxies of objects which are not callable.

weakref.CallableProxyType
The type object for proxies of callable objects.

weakref .ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a
proxy without being dependent on naming both proxy types.

exception weakref.ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the
same as the standard ReferenceError exception.

See also:

PEP 205 - Weak References The proposal and rationale for this feature, including links to earlier im-
plementations and information about similar features in other languages.

8.8.1 Weak Reference Objects

Weak reference objects have no methods and no attributes besides ref.__callback__. A weak reference
object allows the referent to be obtained, if it still exists, by calling it:

>>> import weakref
>>> class Object:
pass

>>> o = Object()
>>> r = weakref.ref (o)
>>> 02 = r()

(continues on next page)

8.8. weakref — Weak references 239

https://www.python.org/dev/peps/pep-0205

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> o is 02
True

If the referent no longer exists, calling the reference object returns None:

>>> del o, 02
>>> print(zr())
None

Testing that a weak reference object is still live should be done using the expression ref () is not None.
Normally, application code that needs to use a reference object should follow this pattern:

r 15 a weak reference object
o=r10
if o is Nome:
referent has been garbage collected
print("Object has been deallocated; can't frobnicate.")
else:
print("Object is still live!")
o.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can
cause a weak reference to become invalidated before the weak reference is called; the idiom shown above is
safe in threaded applications as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation
of the WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be
most useful to associate additional information with a reference, but could also be used to insert additional
processing on calls to retrieve the referent.

This example shows how a subclass of ref can be used to store additional information about an object and
affect the value that’s returned when the referent is accessed:

import weakref

class ExtendedRef (weakref.ref):
def __init__(self, ob, callback=None, **annotations):
super (ExtendedRef, self).__init__(ob, callback)
self.__counter = 0
for k, v in annotations.items():
setattr(self, k, v)

def __call__(self):
"""Return a pair containing the referent and the number of
times the reference has been called.
nnn
ob = super(ExtendedRef, self).__call__()
if ob is not Nomne:
self.__counter += 1
ob = (ob, self.__counter)
return ob

8.8.2 Example

This simple example shows how an application can use object IDs to retrieve objects that it has seen before.
The IDs of the objects can then be used in other data structures without forcing the objects to remain alive,

240 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

but the objects can still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember (obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

8.8.3 Finalizer Objects

The main benefit of using finalize is that it makes it simple to register a callback without needing to
preserve the returned finalizer object. For instance

>>> import weakref
>>> class Object:
pass

>>> kenny = Object()

>>> weakref.finalize(kenny, print, "You killed Kenny!")
<finalize object at ...; for 'Object' at ...>

>>> del kenny

You killed Kenny!

The finalizer can be called directly as well. However the finalizer will invoke the callback at most once.

>>> def callback(x, y, z):
print ("CALLBACK")
return x + y + z

>>> obj = Object()
>>> f = weakref.finalize(obj, callback, 1, 2, z=3)
>>> assert f.alive
>>> assert f() ==

CALLBACK

>>> assert not f.alive

>>> £() # callback not called because finalizer dead
>>> del obj # callback not called because finalizer dead

You can unregister a finalizer using its detach () method. This kills the finalizer and returns the arguments
passed to the constructor when it was created.

>>> obj = Object()

>>> f = weakref.finalize(obj, callback, 1, 2, z=3)

>>> f.detach()

(<__main__.Object object ...>, <function callback ...>, (1, 2), {'z': 3})
>>> newobj, func, args, kwargs = _

>>> assert not f.alive

>>> assert newobj is obj

>>> assert func(*args, **kwargs) ==

CALLBACK

8.8. weakref — Weak references 241

The Python Library Reference, Release 3.6.5

Unless you set the atezit attribute to False, a finalizer will be called when the program exits if it is still
alive. For instance

>>> obj = Object()

>>> weakref.finalize(obj, print, "obj dead or exiting")
<finalize object at ...; for 'Object' at ...>

>>> exit()

obj dead or exiting

8.8.4 Comparing finalizers with __del__() methods
Suppose we want to create a class whose instances represent temporary directories. The directories should
be deleted with their contents when the first of the following events occurs:

e the object is garbage collected,

e the object’s remove () method is called, or

e the program exits.

We might try to implement the class using a __del__() method as follows:

class TempDir:
def __init__(self):
self .name = tempfile.mkdtemp()

def remove(self):
if self.name is not None:
shutil.rmtree(self.name)
self .name = None

@property
def removed(self):
return self.name is Nomne

def __del__(self):
self.remove()

Starting with Python 3.4, __del__() methods no longer prevent reference cycles from being garbage col-
lected, and module globals are no longer forced to None during interpreter shutdown. So this code should
work without any issues on CPython.

However, handling of __del__() methods is notoriously implementation specific, since it depends on internal
details of the interpreter’s garbage collector implementation.

A more robust alternative can be to define a finalizer which only references the specific functions and objects
that it needs, rather than having access to the full state of the object:

class TempDir:
def __init__(self):
self .name = tempfile.mkdtemp()
self._finalizer = weakref.finalize(self, shutil.rmtree, self.name)

def remove(self):
self._finalizer()

Q@property

(continues on next page)

242 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

def removed(self):
return not self._finalizer.alive

Defined like this, our finalizer only receives a reference to the details it needs to clean up the directory
appropriately. If the object never gets garbage collected the finalizer will still be called at exit.

The other advantage of weakref based finalizers is that they can be used to register finalizers for classes
where the definition is controlled by a third party, such as running code when a module is unloaded:

import weakref, sys
def unloading_module():

implicit reference to the module globals from the function body
weakref .finalize(sys.modules[name__], unloading_module)

Note: If you create a finalizer object in a daemonic thread just as the program exits then there is the
possibility that the finalizer does not get called at exit. However, in a daemonic thread atezit.register(),
try: ... finally: ... and with: ... do not guarantee that cleanup occurs either.

8.9 types — Dynamic type creation and names for built-in types

Source code: Lib/types.py

This module defines utility function to assist in dynamic creation of new types.

It also defines names for some object types that are used by the standard Python interpreter, but not exposed
as builtins like int or str are.

Finally, it provides some additional type-related utility classes and functions that are not fundamental enough
to be builtins.

8.9.1 Dynamic Type Creation
types.new_class(name, bases=(), kwds=None, exec_body=None)
Creates a class object dynamically using the appropriate metaclass.

The first three arguments are the components that make up a class definition header: the class name,
the base classes (in order), the keyword arguments (such as metaclass).

The ezxec_body argument is a callback that is used to populate the freshly created class namespace. It
should accept the class namespace as its sole argument and update the namespace directly with the
class contents. If no callback is provided, it has the same effect as passing in lambda ns: ns.

New in version 3.3.

types.prepare_class(name, bases=(), kwds=None)
Calculates the appropriate metaclass and creates the class namespace.

The arguments are the components that make up a class definition header: the class name, the base
classes (in order) and the keyword arguments (such as metaclass).

The return value is a 3-tuple: metaclass, namespace, kwds

8.9. types — Dynamic type creation and names for built-in types 243

https://github.com/python/cpython/tree/3.6/Lib/types.py

The Python Library Reference, Release 3.6.5

metaclass is the appropriate metaclass, namespace is the prepared class namespace and kwds is an
updated copy of the passed in kwds argument with any 'metaclass' entry removed. If no kwds
argument is passed in, this will be an empty dict.

New in version 3.3.

Changed in version 3.6: The default value for the namespace element of the returned tuple has changed.
Now an insertion-order-preserving mapping is used when the metaclass does not have a __prepare__
method,

See also:
metaclasses Full details of the class creation process supported by these functions

PEP 3115 - Metaclasses in Python 3000 Introduced the __prepare__ namespace hook

8.9.2 Standard Interpreter Types

This module provides names for many of the types that are required to implement a Python interpreter.
It deliberately avoids including some of the types that arise only incidentally during processing such as the
listiterator type.

Typical use of these names is for 7sinstance() or issubclass () checks.
Standard names are defined for the following types:

types.FunctionType
types.LambdaType
The type of user-defined functions and functions created by lambda expressions.

types.GeneratorType
The type of generator-iterator objects, created by generator functions.

types.CoroutineType
The type of coroutine objects, created by async def functions.

New in version 3.5.

types.AsyncGeneratorType
The type of asynchronous generator-iterator objects, created by asynchronous generator functions.

New in version 3.6.

types.CodeType
The type for code objects such as returned by compile().

types.MethodType
The type of methods of user-defined class instances.

types.BuiltinFunctionType

types.BuiltinMethodType
The type of built-in functions like len() or sys.ezit (), and methods of built-in classes. (Here, the
term “built-in” means “written in C”.)

class types.ModuleType (name, doc=None)
The type of modules. Constructor takes the name of the module to be created and optionally its
docstring.

Note: Use importlib.util.module_from spec() to create a new module if you wish to set the
various import-controlled attributes.

244 Chapter 8. Data Types

https://www.python.org/dev/peps/pep-3115

The Python Library Reference, Release 3.6.5

__doc__
The docstring of the module. Defaults to None.

__loader__
The loader which loaded the module. Defaults to None.

Changed in version 3.4: Defaults to None. Previously the attribute was optional.

_name__
The name of the module.

__package__
Which package a module belongs to. If the module is top-level (i.e. not a part of any specific
package) then the attribute should be set to '', else it should be set to the name of the package
(which can be __name__ if the module is a package itself). Defaults to None.

Changed in version 3.4: Defaults to None. Previously the attribute was optional.

types.TracebackType

The type of traceback objects such as found in sys.exc_info() [2].

types.FrameType

The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

types.GetSetDescriptorType

The type of objects defined in extension modules with PyGetSetDef, such as FrameType.f_locals or
array.array.typecode. This type is used as descriptor for object attributes; it has the same purpose
as the property type, but for classes defined in extension modules.

types.MemberDescriptorType

The type of objects defined in extension modules with PyMemberDef, such as datetime.timedelta.
days. This type is used as descriptor for simple C data members which use standard conversion
functions; it has the same purpose as the property type, but for classes defined in extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical
to GetSetDescriptorType.

class types.MappingProxyType (mapping)

Read-only proxy of a mapping. It provides a dynamic view on the mapping’s entries, which means
that when the mapping changes, the view reflects these changes.

New in version 3.3.

key in proxy
Return True if the underlying mapping has a key key, else False.

proxy [key]
Return the item of the underlying mapping with key key. Raises a KeyError if key is not in the
underlying mapping.

iter(proxy)

Return an iterator over the keys of the underlying mapping. This is a shortcut for iter (proxy.
keys()).

len(proxy)
Return the number of items in the underlying mapping.

copy O
Return a shallow copy of the underlying mapping.

get(key[, default])
Return the value for key if key is in the underlying mapping, else default. If default is not given,
it defaults to None, so that this method never raises a KeyError.

8.9.

types — Dynamic type creation and names for built-in types 245

The Python Library Reference, Release 3.6.5

items ()
Return a new view of the underlying mapping’s items ((key, value) pairs).

keys ()
Return a new view of the underlying mapping’s keys.

values()
Return a new view of the underlying mapping’s values.

8.9.3 Additional Utility Classes and Functions

class types.SimpleNamespace

A simple object subclass that provides attribute access to its namespace, as well as a meaningful repr.

Unlike object, with SimpleNamespace you can add and remove attributes. If a SimpleNamespace
object is initialized with keyword arguments, those are directly added to the underlying namespace.

The type is roughly equivalent to the following code:

class SimpleNamespace:
def __init__(self, **xkwargs):
self. _dict__.update(kwargs)

def __repr__(self):
keys = sorted(self.__dict__)
items = ("{}= ".format(k, self._ _dict__[k]) for k in keys)

return "{}({})".format(type(self)._ _name__, ", ".join(items))

def __eq__(self, other):
return self. _dict__ == other.__dict__

SimpleNamespace may be useful as a replacement for class NS: pass. However, for a structured
record type use namedtuple() instead.

New in version 3.3.

types.DynamicClassAttribute (fget=None, fset=None, fdel=None, doc=None)

Route attribute access on a class to _ getattr_ .

This is a descriptor, used to define attributes that act differently when accessed through an instance
and through a class. Instance access remains normal, but access to an attribute through a class will
be routed to the class’s _ getattr_ method; this is done by raising AttributeError.

This allows one to have properties active on an instance, and have virtual attributes on the class with
the same name (see Enum for an example).

New in version 3.4.

8.9.4 Coroutine Utility Functions

types.coroutine (gen_ func)

This function transforms a generator function into a coroutine function which returns a generator-
based coroutine. The generator-based coroutine is still a generator iterator, but is also considered to
be a coroutine object and is awaitable. However, it may not necessarily implement the __await__()
method.

If gen_ func is a generator function, it will be modified in-place.

246

Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

If gen_ func is not a generator function, it will be wrapped. If it returns an instance of collections.
abc.Generator, the instance will be wrapped in an awaitable proxy object. All other types of objects
will be returned as is.

New in version 3.5.

8.10 copy — Shallow and deep copy operations

Source code: Lib/copy.py

Assignment statements in Python do not copy objects, they create bindings between a target and an object.
For collections that are mutable or contain mutable items, a copy is sometimes needed so one can change one
copy without changing the other. This module provides generic shallow and deep copy operations (explained
below).

Interface summary:

copy . copy ()
Return a shallow copy of .

copy .deepcopy (z)
Return a deep copy of z.

exception copy.error
Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

e A shallow copy constructs a new compound object and then (to the extent possible) inserts references
into it to the objects found in the original.

e A deep copy constructs a new compound object and then, recursively, inserts copies into it of the
objects found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

o Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves)
may cause a recursive loop.

e Because deep copy copies everything it may copy too much, such as data which is intended to be shared
between copies.

The deepcopy () function avoids these problems by:
e keeping a “memo” dictionary of objects already copied during the current copying pass; and
o letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array,
or any similar types. It does “copy” functions and classes (shallow and deeply), by returning the original
object unchanged; this is compatible with the way these are treated by the pickle module.

Shallow copies of dictionaries can be made using dict. copy (), and of lists by assigning a slice of the entire
list, for example, copied_list = original_list[:].

Classes can use the same interfaces to control copying that they use to control pickling. See the description
of module pickle for information on these methods. In fact, the copy module uses the registered pickle
functions from the copyreg module.

8.10. copy — Shallow and deep copy operations 247

https://github.com/python/cpython/tree/3.6/Lib/copy.py

The Python Library Reference, Release 3.6.5

In order for a class to define its own copy implementation, it can define special methods __copy__() and
__deepcopy__(Q). The former is called to implement the shallow copy operation; no additional arguments
are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the __deepcopy__() implementation needs to make a deep copy of a component, it should
call the deepcopy () function with the component as first argument and the memo dictionary as second
argument.

See also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

8.11 pprint — Data pretty printer

Source code: Lib/pprint.py

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which
can be used as input to the interpreter. If the formatted structures include objects which are not fundamental
Python types, the representation may not be loadable. This may be the case if objects such as files, sockets
or classes are included, as well as many other objects which are not representable as Python literals.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if
they don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust
the width constraint.

Dictionaries are sorted by key before the display is computed.
The pprint module defines one class:

class pprint.PrettyPrinter (indent=1, width=80, depth=None, stream=None, *, compact=False)

Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using the stream keyword; the only method used on the stream object is the
file protocol’s write () method. If not specified, the PrettyPrinter adopts sys.stdout. The amount
of indentation added for each recursive level is specified by indent; the default is one. Other values can
cause output to look a little odd, but can make nesting easier to spot. The number of levels which may
be printed is controlled by depth; if the data structure being printed is too deep, the next contained
level is replaced by By default, there is no constraint on the depth of the objects being formatted.
The desired output width is constrained using the width parameter; the default is 80 characters. If a
structure cannot be formatted within the constrained width, a best effort will be made. If compact is
false (the default) each item of a long sequence will be formatted on a separate line. If compact is true,
as many items as will fit within the width will be formatted on each output line.

Changed in version 3.4: Added the compact parameter.

>>> import pprint
>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert(0, stuffl[:])
>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint (stuff)
[['spam', 'eggs', 'lumberjack', 'knights', 'ni'],
'spam',
'eggs',
'lumberjack',
'knights’',
'ni']
>>> pp = pprint.PrettyPrinter(width=41, compact=True)

(continues on next page)

248 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.6/Lib/pprint.py

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> pp.pprint (stuff)
[['spam', 'eggs', 'lumberjack',
'knights', 'ni'],
'spam', 'eggs', 'lumberjack', 'knights',
'ni']
>>> tup = ('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead',
('parrot', ('fresh fruit',))))))))
>>> pp = pprint.PrettyPrinter (depth=6)
>>> pp.pprint (tup)
('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead', (...)))))))

The pprint module also provides several shortcut functions:

pprint.pformat (object, indent=1, width=80, depth=None, * compact=False)

Return the formatted representation of object as a string. indent, width, depth and compact will be
passed to the PrettyPrinter constructor as formatting parameters.

Changed in version 3.4: Added the compact parameter.

pprint.pprint (object, stream=None, indent=1, width=80, depth=None, *, compact=False)

Prints the formatted representation of object on stream, followed by a newline. If stream is None,
sys.stdout is used. This may be used in the interactive interpreter instead of the print () function
for inspecting values (you can even reassign print = pprint.pprint for use within a scope). indent,
width, depth and compact will be passed to the PrettyPrinter constructor as formatting parameters.

Changed in version 3.4: Added the compact parameter.

>>> import pprint
>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert(0, stuff)
>>> pprint.pprint(stuff)
[<Recursion on list with id=...>,
'spam’',
'eggs',
'lumberjack',
'knights',
'ni']

pprint.isreadable (object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct the
value using eval (). This always returns False for recursive objects.

i

>>> pprint.isreadable(stuff)
False

pprint.isrecursive (object)
Determine if object requires a recursive representation.

One more support function is also defined:

pprint.saferepr (object)
Return a string representation of object, protected against recursive data structures. If the representa-
tion of object exposes a recursive entry, the recursive reference will be represented as <Recursion on
typename with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)
"[<Recursion on list with id=...>, 'spam', 'eggs', 'lumberjack', 'knights', 'ni'l]"

8.11. pprint — Data pretty printer 249

The Python Library Reference, Release 3.6.5

8.11.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

PrettyPrinter.pformat (object)
Return the formatted representation of object. This takes into account the options passed to the
PrettyPrinter constructor.

PrettyPrinter.pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names.
Using these methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need
to be created.

PrettyPrinter.isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct
the value using ewval (). Note that this returns False for recursive objects. If the depth parameter of
the PrettyPrinter is set and the object is deeper than allowed, this returns False.

)

PrettyPrinter.isrecursive (object)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings.
The default implementation uses the internals of the saferepr() implementation.

PrettyPrinter.format (object, context, mazlevels, level)

Returns three values: the formatted version of object as a string, a flag indicating whether the result is
readable, and a flag indicating whether recursion was detected. The first argument is the object to be
presented. The second is a dictionary which contains the ©d () of objects that are part of the current
presentation context (direct and indirect containers for object that are affecting the presentation) as the
keys; if an object needs to be presented which is already represented in context, the third return value
should be True. Recursive calls to the format () method should add additional entries for containers
to this dictionary. The third argument, mazlevels, gives the requested limit to recursion; this will be
0 if there is no requested limit. This argument should be passed unmodified to recursive calls. The
fourth argument, level, gives the current level; recursive calls should be passed a value less than that
of the current call.

8.11.2 Example

To demonstrate several uses of the pprint () function and its parameters, let’s fetch information about a
project from PyPI:

>>> import json

>>> import pprint

>>> from urllib.request import urlopen

>>> with urlopen('http://pypi.python.org/pypi/Twisted/json') as url:
http_info = url.info()

.. raw_data = url.read().decode(http_info.get_content_charset())

>>> project_info = json.loads(raw_data)

In its basic form, pprint () shows the whole object:

>>> pprint.pprint(project_info)

{'info': {'_pypi_hidden': False,
'_pypi_ordering': 125,
'author': 'Glyph Lefkowitz',

(continues on next page)

250 Chapter 8. Data Types

https://pypi.python.org/pypi

The Python Library Reference, Release 3.6.5

(continued from previous page)

'author_email': 'glyph@twistedmatrix.com',

'bugtrack_url': '',

'cheesecake_code_kwalitee_id': None,

'cheesecake_documentation_id': None,

'cheesecake_installability_id': None,

'classifiers': ['Programming Language :: Python :: 2.6',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 2 :: Only'],

'description': 'An extensible framework for Python programming, with '
'special focus\r\n'
'on event-based network programming and multiprotocol '
'integration.',

'docs_url': '',

'download_url': 'UNKNOWN',

'home_page': 'http://twistedmatrix.com/',

'keywords': '',

'license': 'MIT',

'maintainer': '"',

'maintainer_email': '',

'name': 'Twisted',

'package_url': 'http://pypi.python.org/pypi/Twisted’,

'platform': 'UNKNOWN',

'release_url': 'http://pypi.python.org/pypi/Twisted/12.3.0',

'requires_python': None,

'stable_version': None,

'summary': 'An asynchronous networking framework written in Python',
'version': '12.3.0'},
'urls': [{'comment_text': '',

'downloads': 71844,

'filename': 'Twisted-12.3.0.tar.bz2',

'has_sig': False,

'md5_digest': '6e289825f3bf5591cfd670874cc08624d",

'packagetype': 'sdist',

'python_version': 'source',

'size': 2615733,

'upload_time': '2012-12-26T12:47:03',

'url': 'https://pypi.python.org/packages/source/T/Twisted/Twisted-12.3.0.tar.bz2'},

{'comment_text': '',

'downloads': 5224,

'filename': 'Twisted-12.3.0.win32-py2.7.msi',

'has_sig': False,

'md5_digest': '6b778£5201b622ab519a2acala2feb12',

'packagetype': 'bdist_msi',

'python_version': '2.7',

'size': 2916352,

'upload_time': '2012-12-26T12:48:15',

'url': 'https://pypi.python.org/packages/2.7/T/Twisted/Twisted-12.3.0.win32-py2.7.msi'}
—1}

The result can be limited to a certain depth (ellipsis is used for deeper contents):

>>> pprint.pprint(project_info, depth=2)

{'info': {'_pypi_hidden': False,
'_pypi_ordering': 125,
'author': 'Glyph Lefkowitz',
'author_email': 'glyph@twistedmatrix.com',

(continues on next page)

8.11. pprint — Data pretty printer 251

The Python Library Reference, Release 3.6.5

(continued from previous page)

'bugtrack_url': '',

'cheesecake_code_kwalitee_id': None,

'cheesecake_documentation_id': None,

'cheesecake_installability_id': None,

'classifiers': [...],

'description': 'An extensible framework for Python programming, with '
'special focus\r\n'
'on event-based network programming and multiprotocol '
'integration.',

'docs_url': '',

'download_url': 'UNKNOWN',

'home_page': 'http://twistedmatrix.com/',

'keywords': '',

'license': 'MIT',

'maintainer': '',

'maintainer_email': '',

'name': 'Twisted',

'package_url': 'http://pypi.python.org/pypi/Twisted',

'platform': 'UNKNOWN',

'release_url': 'http://pypi.python.org/pypi/Twisted/12.3.0',

'requires_python': None,

'stable_version': None,

'summary': 'An asynchronous networking framework written in Python',

'version': '12.3.0'},

'urls': [{...}, {...}1}

Additionally, maximum character width can be suggested. If a long object cannot be split, the specified
width will be exceeded:

>>> pprint.pprint(project_info, depth=2, width=50)
{'info': {'_pypi_hidden': False,

'_pypi_ordering': 125,

'author': 'Glyph Lefkowitz',

'author_email': 'glyphO@twistedmatrix.com',

'bugtrack_url': '',

'cheesecake_code_kwalitee_id': None,

'cheesecake_documentation_id': None,

'cheesecake_installability_id': None,

'classifiers': [...],

'description': 'An extensible '
'framework for Python '
'programming, with '
'special focus\r\n'
'on event-based network '
'programming and '
'multiprotocol '
'integration.',

'docs_url': '',

'download_url': 'UNKNOWN',

'home_page': 'http://twistedmatrix.com/',

'keywords': '',

'license': 'MIT',

'maintainer': '',

'maintainer_email': '',

'name': 'Twisted',

'package_url': 'http://pypi.python.org/pypi/Twisted',

(continues on next page)

252 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

'platform': 'UNKNOWN',

'release_url': 'http://pypi.python.org/pypi/Twisted/12.3.0',
'requires_python': None,

'stable_version': None,

'summary': 'An asynchronous networking '
'framework written in '
'Python',

'version': '12.3.0'},

'urls': [{...}, {...}1}

8.12 reprlib — Alternate repr() implementation

Source code: Lib/reprlib.py

The repriib module provides a means for producing object representations with limits on the size of the
resulting strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class reprlib.Repr
Class which provides formatting services useful in implementing functions similar to the built-in repr ();
size limits for different object types are added to avoid the generation of representations which are
excessively long.

reprlib.aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing
the attributes of this object will affect the size limits used by repr () and the Python debugger.

reprlib.repr (obj)
This is the repr () method of aRepr. It returns a string similar to that returned by the built-in function
of the same name, but with limits on most sizes.

In addition to size-limiting tools, the module also provides a decorator for detecting recursive calls to
__repr__() and substituting a placeholder string instead.

@reprlib.recursive_repr (fillvalue="..")
Decorator for __repr__() methods to detect recursive calls within the same thread. If a recursive call
is made, the fillvalue is returned, otherwise, the usual __repr__() call is made. For example:

>>> class MyList(list):
@recursive_repr()
def __repr__(self):
return '<' + '|'.join(map(repr, self)) + '>'

>>> m = MyList('abc')
>>> m.append (m)

>>> m.append('x')

>>> print(m)
<a'l'b'l'c'l.. x>

New in version 3.2.

8.12. reprlib — Alternate repr () implementation 253

https://github.com/python/cpython/tree/3.6/Lib/reprlib.py

The Python Library Reference, Release 3.6.5

8.12.1 Repr Objects

Repr instances provide several attributes which can be used to provide size limits for the representations of
different object types, and methods which format specific object types.

Repr.maxlevel
Depth limit on the creation of recursive representations. The default is 6.

Repr.maxdict

Repr.maxlist

Repr.maxtuple

Repr.maxset

Repr.maxfrozenset

Repr.maxdeque

Repr.maxarray
Limits on the number of entries represented for the named object type. The default is 4 for mazdict,
5 for mazarray, and 6 for the others.

Repr.maxlong
Maximum number of characters in the representation for an integer. Digits are dropped from the
middle. The default is 40.

Repr.maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” represen-
tation of the string is used as the character source: if escape sequences are needed in the representation,
these may be mangled when the representation is shortened. The default is 30.

Repr.maxother
This limit is used to control the size of object types for which no specific formatting method is available
on the Repr object. It is applied in a similar manner as mazstring. The default is 20.

Repr.repr (obj)
The equivalent to the built-in repr () that uses the formatting imposed by the instance.

Repr.repril(obj, level)
Recursive implementation used by repr(). This uses the type of 0bj to determine which formatting
method to call, passing it 0bj and level. The type-specific methods should call repri () to perform
recursive formatting, with level - 1 for the value of level in the recursive call.

Repr.repr_TYPE(obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type
name. In the method name, TYPE is replaced by '_'.join(type(obj).__name__.split()). Dis-

patch to these methods is handled by repri (). Type-specific methods which need to recursively format
a value should call self.reprl(subobj, level - 1).

8.12.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.repri() allows subclasses of Repr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how special
support for file objects could be added:

import reprlib
import sys

class MyRepr(reprlib.Repr):

def repr_TextIOWrapper(self, obj, level):

(continues on next page)

254 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

if obj.name in {'<stdin>', '<stdout>', '<stderr>'}:
return obj.name
return repr(obj)

aRepr = MyRepr()
print (aRepr.repr(sys.stdin)) # prints '<stdin>'

8.13 enum — Support for enumerations

New in version 3.4.

Source code: Lib/enum.py

An enumeration is a set of symbolic names (members) bound to unique, constant values. Within an enu-
meration, the members can be compared by identity, and the enumeration itself can be iterated over.

8.13.1 Module Contents

This module defines four enumeration classes that can be used to define unique sets of names and values:
Enum, IntEnum, Flag, and IntFlag. It also defines one decorator, unique (), and one helper, auto.

class enum.Enum
Base class for creating enumerated constants. See section Functional API for an alternate construction
syntax.

class enum.IntEnum
Base class for creating enumerated constants that are also subclasses of int.

class enum.IntFlag
Base class for creating enumerated constants that can be combined using the bitwise operators without
losing their IntFlag membership. IntFlag members are also subclasses of int.

class enum.Flag
Base class for creating enumerated constants that can be combined using the bitwise operations without
losing their Flag membership.

enum.unique ()
Enum class decorator that ensures only one name is bound to any one value.

class enum.auto
Instances are replaced with an appropriate value for Enum members.

New in version 3.6: Flag, IntFlag, auto

8.13.2 Creating an Enum

Enumerations are created using the class syntax, which makes them easy to read and write. An alternative
creation method is described in Functional API. To define an enumeration, subclass Enum as follows:

8.13. enum — Support for enumerations 255

https://github.com/python/cpython/tree/3.6/Lib/enum.py

The Python Library Reference, Release 3.6.5

>>> from enum import Enum
>>> class Color(Enum):
RED = 1
GREEN = 2
BLUE = 3

Note: Enum member values

Member values can be anything: int, str, etc.. If the exact value is unimportant you may use auto instances
and an appropriate value will be chosen for you. Care must be taken if you mix auto with other values.

Note: Nomenclature
o The class Color is an enumeration (or enum)

o The attributes Color.RED, Color.GREEN, etc., are enumeration members (or enum members) and are
functionally constants.

e The enum members have names and values (the name of Color.RED is RED, the value of Color.BLUE
is 3, etc.)

Note: Even though we use the class syntax to create Enums, Enums are not normal Python classes. See
How are Enums different? for more details.

Enumeration members have human readable string representations:

>>> print(Color.RED)
Color.RED

..while their repr has more information:

>>> print (repr(Color.RED))
<Color.RED: 1>

The type of an enumeration member is the enumeration it belongs to:

>>> type(Color.RED)

<enum 'Color'>

>>> isinstance(Color.GREEN, Color)
True

>>>

Enum members also have a property that contains just their item name:

>>> print (Color.RED.name)
RED

Enumerations support iteration, in definition order:

>>> class Shake(Enum) :
VANILLA = 7
CHOCOLATE = 4

(continues on next page)

256 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

COOKIES = 9
MINT = 3

>>> for shake in Shake:
print (shake)

Shake.VANILLA
Shake .CHOCOLATE
Shake .COOKIES
Shake .MINT

Enumeration members are hashable, so they can be used in dictionaries and sets:

>>> apples = {}

>>> apples[Color.RED] = 'red delicious'

>>> apples[Color.GREEN] = 'granny smith'

>>> apples == {Color.RED: 'red delicious', Color.GREEN: 'granny smith'}
True

8.13.3 Programmatic access to enumeration members and their attributes

Sometimes it’s useful to access members in enumerations programmatically (i.e. situations where Color.RED
won’t do because the exact color is not known at program-writing time). Enum allows such access:

>>> Color (1)
<Color.RED: 1>
>>> Color(3)
<Color.BLUE: 3>

If you want to access enum members by name, use item access:

>>> Color['RED']
<Color.RED: 1>
>>> Color['GREEN']
<Color.GREEN: 2>

If you have an enum member and need its name or value:

>>> member = Color.RED
>>> member .name

'RED'

>>> member .value

1

8.13.4 Duplicating enum members and values

Having two enum members with the same name is invalid:

>>> class Shape(Enum) :
SQUARE = 2
SQUARE = 3

Traceback (most recent call last):

(continues on next page)

8.13. enum — Support for enumerations 257

The Python Library Reference, Release 3.6.5

(continued from previous page)

TypeError: Attempted to reuse key: 'SQUARE'

However, two enum members are allowed to have the same value. Given two members A and B with the
same value (and A defined first), B is an alias to A. By-value lookup of the value of A and B will return A.
By-name lookup of B will also return A:

>>> class Shape(Enum) :

SQUARE = 2
DIAMOND = 1
CIRCLE = 3

ALTAS_FOR_SQUARE = 2

>>> Shape.SQUARE
<Shape.SQUARE: 2>

>>> Shape.ALIAS_FOR_SQUARE
<Shape.SQUARE: 2>

>>> Shape(2)
<Shape.SQUARE: 2>

Note: Attempting to create a member with the same name as an already defined attribute (another
member, a method, etc.) or attempting to create an attribute with the same name as a member is not
allowed.

8.13.5 Ensuring unique enumeration values

By default, enumerations allow multiple names as aliases for the same value. When this behavior isn’t
desired, the following decorator can be used to ensure each value is used only once in the enumeration:
Q@enum.unique

A class decorator specifically for enumerations. It searches an enumeration’s __members__ gathering any
aliases it finds; if any are found ValueError is raised with the details:

>>> from enum import Enum, unique
>>> Qunique
. class Mistake (Enum):

ONE = 1
TWO = 2
THREE = 3
FOUR = 3

Traceback (most recent call last):

ValueError: duplicate values found in <enum 'Mistake'>: FOUR -> THREE

8.13.6 Using automatic values

If the exact value is unimportant you can use auto:

258 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

>>> from enum import Enum, auto
>>> class Color (Enum) :

RED = auto()

BLUE = auto()

GREEN = auto()

>>> list(Color)
[<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

The values are chosen by _generate_next_value_(), which can be overridden:

>>> class AutoName (Enum) :
def _generate_next_value_(name, start, count, last_values):
return name

>>> class Ordinal (AutoName) :
NORTH = auto()
SOUTH = auto()
EAST = auto()
WEST = auto()

>>> list(Ordinal)
[<Ordinal .NORTH: 'NORTH'>, <Ordinal.SOUTH: 'SOUTH'>, <Ordinal.EAST: 'EAST'>, <0rdinal.WEST: 'WEST'>
]

Note: The goal of the default _generate_next_value_() methods is to provide the next int in sequence
with the last int provided, but the way it does this is an implementation detail and may change.

8.13.7 lteration

Iterating over the members of an enum does not provide the aliases:

>>> list(Shape)
[<Shape.SQUARE: 2>, <Shape.DIAMOND: 1>, <Shape.CIRCLE: 3>]

The special attribute __members__ is an ordered dictionary mapping names to members. It includes all
names defined in the enumeration, including the aliases:

>>> for name, member in Shape.__members__.items():
name, member

('"SQUARE', <Shape.SQUARE: 2>)
('DIAMOND', <Shape.DIAMOND: 1>)
('CIRCLE', <Shape.CIRCLE: 3>)
('ALIAS_FOR_SQUARE', <Shape.SQUARE: 2>)

The __members__ attribute can be used for detailed programmatic access to the enumeration members. For
example, finding all the aliases:

>>> [name for name, member in Shape.__members__.items() if member.name != name]
["ALIAS_FOR_SQUARE']

8.13. enum — Support for enumerations 259

The Python Library Reference, Release 3.6.5

8.13.8 Comparisons

Enumeration members are compared by identity:

>>> Color.RED is Color.RED

True

>>> Color.RED is Color.BLUE
False

>>> Color.RED is not Color.BLUE
True

Ordered comparisons between enumeration values are not supported. Enum members are not integers (but
see IntEnum below):

>>> Color.RED < Color.BLUE
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'Color' and 'Color'

Equality comparisons are defined though:

>>> Color.BLUE == Color.RED

False

>>> Color.BLUE != Color.RED
True

>>> Color.BLUE == Color.BLUE
True

Comparisons against non-enumeration values will always compare not equal (again, IntEnum was explicitly
designed to behave differently, see below):

>>> Color.BLUE ==
False

8.13.9 Allowed members and attributes of enumerations

The examples above use integers for enumeration values. Using integers is short and handy (and provided by
default by the Functional API), but not strictly enforced. In the vast majority of use-cases, one doesn’t care
what the actual value of an enumeration is. But if the value s important, enumerations can have arbitrary
values.

Enumerations are Python classes, and can have methods and special methods as usual. If we have this
enumeration:

>>> class Mood(Enum) :
FUNKY = 1
HAPPY = 3

def describe(self):
self is the member here

return self.name, self.value

def __str__(self):
return 'my custom str! ' . format(self.value)

Q@classmethod

(continues on next page)

260 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

def favorite_mood(cls):
cls here is the enumeration
return cls.HAPPY

Then:

>>> Mood.favorite_mood()
<Mood.HAPPY: 3>

>>> Mood.HAPPY.describe()
('HAPPY', 3)

>>> str(Mood.FUNKY)

'my custom str! 1'

The rules for what is allowed are as follows: names that start and end with a single underscore are reserved
by enum and cannot be used; all other attributes defined within an enumeration will become members of this
enumeration, with the exception of special methods (__str__Q add__(), etc.) and descriptors (methods
are also descriptors).

) ——

Note: if your enumeration defines __new__() and/or __init__() then whatever value(s) were given to the
enum member will be passed into those methods. See Planet for an example.

8.13.10 Restricted subclassing of enumerations

Subclassing an enumeration is allowed only if the enumeration does not define any members. So this is
forbidden:

>>> class MoreColor(Color):
PINK = 17

Traceback (most recent call last):

TypeError: Cannot extend enumerations

But this is allowed:

>>> class Foo(Enum):
def some_behavior(self):
pass

>>> class Bar(Foo):
HAPPY = 1
SAD = 2

Allowing subclassing of enums that define members would lead to a violation of some important invariants
of types and instances. On the other hand, it makes sense to allow sharing some common behavior between
a group of enumerations. (See OrderedEnum for an example.)

8.13.11 Pickling

Enumerations can be pickled and unpickled:

8.13. enum — Support for enumerations 261

The Python Library Reference, Release 3.6.5

>>> from test.test_enum import Fruit

>>> from pickle import dumps, loads

>>> Fruit.TOMATO is loads(dumps(Fruit.TOMATO))
True

The usual restrictions for pickling apply: picklable enums must be defined in the top level of a module, since
unpickling requires them to be importable from that module.

Note: With pickle protocol version 4 it is possible to easily pickle enums nested in other classes.

It is possible to modify how Enum members are pickled/unpickled by defining __reduce_ez__ () in the
enumeration class.

8.13.12 Functional API

The Enum class is callable, providing the following functional API:

>>> Animal = Enum('Animal', 'ANT BEE CAT DOG')

>>> Animal

<enum 'Animal'>

>>> Animal.ANT

<Animal.ANT: 1>

>>> Animal.ANT.value

1

>>> list(Animal)

[<Animal.ANT: 1>, <Animal.BEE: 2>, <Animal.CAT: 3>, <Animal.DOG: 4>]

The semantics of this API resemble namedtuple. The first argument of the call to Enum is the name of the
enumeration.

The second argument is the source of enumeration member names. It can be a whitespace-separated string
of names, a sequence of names, a sequence of 2-tuples with key/value pairs, or a mapping (e.g. dictionary)
of names to values. The last two options enable assigning arbitrary values to enumerations; the others auto-
assign increasing integers starting with 1 (use the start parameter to specify a different starting value). A
new class derived from Enum is returned. In other words, the above assignment to Animal is equivalent to:

>>> class Animal (Enum) :

ANT = 1
BEE = 2
CAT = 3
DOG = 4

The reason for defaulting to 1 as the starting number and not 0 is that 0 is False in a boolean sense, but
enum members all evaluate to True.

Pickling enums created with the functional API can be tricky as frame stack implementation details are used
to try and figure out which module the enumeration is being created in (e.g. it will fail if you use a utility
function in separate module, and also may not work on IronPython or Jython). The solution is to specify
the module name explicitly as follows:

>>> Animal = Enum('Animal', 'ANT BEE CAT DOG', module=__name__)

262 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

Warning: If module is not supplied, and Enum cannot determine what it is, the new Enum members
will not be unpicklable; to keep errors closer to the source, pickling will be disabled.

The new pickle protocol 4 also, in some circumstances, relies on __qualname__ being set to the location
where pickle will be able to find the class. For example, if the class was made available in class SomeData
in the global scope:

>>> Animal = Enum('Animal', 'ANT BEE CAT DOG', qualname='SomeData.Animal')

The complete signature is:

Enum(value='NewEnumName', names=<...>, *, module='...', qualname='...', type=<mixed-in class>,
—start=1)

value What the new Enum class will record as its name.

names The Enum members. This can be a whitespace or comma separated string (values will
start at 1 unless otherwise specified):

"RED GREEN BLUE' | 'RED,GREEN,BLUE' | 'RED, GREEN, BLUE' ‘

or an iterator of names:

’['RED‘, '"GREEN', 'BLUE'] ‘

or an iterator of (name, value) pairs:

’[('CYAN', 4), ('MAGENTA', 5), ('YELLOW', 6)] ‘

or a mapping:

’{'CHARTREUSE': 7, 'SEA_GREEN': 11, 'ROSEMARY': 42}

module name of module where new Enum class can be found.
qualname where in module new Enum class can be found.
type type to mix in to new Enum class.

start number to start counting at if only names are passed in.

Changed in version 3.5: The start parameter was added.

8.13.13 Derived Enumerations

IntEnum

The first variation of Enum that is provided is also a subclass of int. Members of an IntEnum can be compared
to integers; by extension, integer enumerations of different types can also be compared to each other:

>>> from enum import IntEnum
>>> class Shape(IntEnum) :
CIRCLE = 1
SQUARE = 2

>>> class Request(IntEnum) :

(continues on next page)

8.13. enum — Support for enumerations 263

The Python Library Reference, Release 3.6.5

(continued from previous page)

POST = 1
GET = 2

>>> Shape == 1

False

>>> Shape.CIRCLE ==

True

>>> Shape.CIRCLE == Request.POST
True

However, they still can’t be compared to standard Enum enumerations:

>>> class Shape (IntEnum) :
CIRCLE = 1
SQUARE = 2

>>> class Color (Enum) :
RED = 1
GREEN = 2

>>> Shape.CIRCLE == Color.RED
False

IntEnum values behave like integers in other ways you’d expect:

>>> int (Shape.CIRCLE)

1

>>> ['a', 'b', 'c'][Shape.CIRCLE]
lbl

>>> [i for i in range(Shape.SQUARE)]
o, 1]

IntFlag

The next variation of Enum provided, IntFlag, is also based on int. The difference being IntFlag members
can be combined using the bitwise operators (&, |, ~, ~) and the result is still an IntFlag member. However,
as the name implies, IntFlag members also subclass int and can be used wherever an Znt is used. Any
operation on an IntFlag member besides the bit-wise operations will lose the IntFlag membership.

New in version 3.6.

Sample IntFlag class:

>>> from enum import IntFlag
>>> class Perm(IntFlag):

R =4
W=2
X=1

>>> Perm.R | Perm.W
<Perm.R|W: 6>

>>> Perm.R + Perm.W

6

>>> RW = Perm.R | Perm.W
>>> Perm.R in RW

True

264

Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

It is also possible to name the combinations:

>>> class Perm(IntFlag):

R =4
W=2
X=1
RWX =7

>>> Perm.RWX
<Perm.RWX: 7>
>>> ~Perm.RWX
<Perm.-8: -8>

Another important difference between IntFlag and Enum is that if no flags are set (the value is 0), its boolean
evaluation is False:

>>> Perm.R & Perm.X
<Perm.0: 0>

>>> bool(Perm.R & Perm.X)
False

Because IntFlag members are also subclasses of int they can be combined with them:

>>> Perm.X | 8
<Perm.8|X: 9>

Flag

The last variation is Flag. Like IntFlag, Flag members can be combined using the bitwise operators (&, |,
~, ~). Unlike IntFlag, they cannot be combined with, nor compared against, any other Flag enumeration,
nor snt. While it is possible to specify the values directly it is recommended to use auto as the value and
let Flag select an appropriate value.

New in version 3.6.

Like IntFlag, if a combination of Flag members results in no flags being set, the boolean evaluation is
False:

>>> from enum import Flag, auto
>>> class Color(Flag):

RED = auto()

BLUE = auto()

GREEN = auto()

>>> Color.RED & Color.GREEN
<Color.0: 0>

>>> bool(Color.RED & Color.GREEN)
False

Individual flags should have values that are powers of two (1, 2, 4, 8, ...), while combinations of flags won’t:

>>> class Color(Flag):
RED = auto()
BLUE = auto()
GREEN = auto()
WHITE = RED | BLUE | GREEN

(continues on next page)

8.13. enum — Support for enumerations 265

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> Color.WHITE
<Color.WHITE: 7>

Giving a name to the “no flags set” condition does not change its boolean value:

>>> class Color(Flag):
BLACK = 0
RED = auto()
BLUE = auto()
GREEN = auto()

>>> Color.BLACK
<Color.BLACK: 0>

>>> bool(Color.BLACK)
False

Note: For the majority of new code, Enum and Flag are strongly recommended, since IntEnum and IntFlag
break some semantic promises of an enumeration (by being comparable to integers, and thus by transitivity
to other unrelated enumerations). IntEnum and IntFlag should be used only in cases where Enum and Flag
will not do; for example, when integer constants are replaced with enumerations, or for interoperability with
other systems.

Others

While IntEnum is part of the enum module, it would be very simple to implement independently:

class IntEnum(int, Enum):
pass

This demonstrates how similar derived enumerations can be defined; for example a StrEnum that mixes in
str instead of int.

Some rules:

1. When subclassing Enum, mix-in types must appear before Enum itself in the sequence of bases, as in
the IntEnum example above.

2. While Enum can have members of any type, once you mix in an additional type, all the members must
have values of that type, e.g. int above. This restriction does not apply to mix-ins which only add
methods and don’t specify another data type such as int or str.

3. When another data type is mixed in, the value attribute is not the same as the enum member itself,
although it is equivalent and will compare equal.

4. %-style formatting: %s and %r call the Enum class’s __str__() and __repr__() respectively; other
codes (such as % or %h for IntEnum) treat the enum member as its mixed-in type.

5. Formatted string literals, str. format (), and format () will use the mixed-in type’s __format__(). If
the Enum class’s str() or repr() is desired, use the /s or /r format codes.

8.13.14 Interesting examples

While Enum, IntEnum, IntFlag, and Flag are expected to cover the majority of use-cases, they cannot cover
them all. Here are recipes for some different types of enumerations that can be used directly, or as examples

266 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

for creating one’s own.

Omitting values
In many use-cases one doesn’t care what the actual value of an enumeration is. There are several ways to
define this type of simple enumeration:

 use instances of auto for the value

 use instances of object as the value

e use a descriptive string as the value

e use a tuple as the value and a custom __new__() to replace the tuple with an int value

Using any of these methods signifies to the user that these values are not important, and also enables one
to add, remove, or reorder members without having to renumber the remaining members.

Whichever method you choose, you should provide a repr () that also hides the (unimportant) value:

>>> class NoValue(Enum) :
def __repr__(self):
return '</s./s>' % (self. class__. name_ _, self.name)

Using auto

Using auto would look like:

>>> class Color(NoValue):
RED = auto()
BLUE = auto()
GREEN = auto()

>>> Color.GREEN
<Color.GREEN>

Using object

Using object would look like:

>>> class Color(NoValue):
RED = object()
GREEN = object()
BLUE = object()

>>> Color.GREEN
<Color.GREEN>

Using a descriptive string

Using a string as the value would look like:

8.13. enum — Support for enumerations 267

The Python Library Reference, Release 3.6.5

>>> class Color(NoValue):
RED = 'stop'
GREEN = 'go'
BLUE = 'too fast!'

>>> Color.GREEN
<Color.GREEN>
>>> Color.GREEN.value

lgol

Using a custom __new__Q)

Using an auto-numbering __new__() would look like:

>>> class AutoNumber (NoValue):
def __new__(cls):
value = len(cls.__members__
obj = object.__new__(cls)
obj._value_ = value

return obj

) + 1

>>> class Color (AutoNumber) :

RED = ()
GREEN = ()
BLUE = ()

>>> Color.GREEN
<Color.GREEN>

>>> Color.GREEN.value
2

Note: The __new__() method, if defined, is used during creation of the Enum members; it is then replaced
by Enum’s __new__() which is used after class creation for lookup of existing members.

OrderedEnum

An ordered enumeration that is not based on IntEnum and so maintains the normal Enum invariants (such
as not being comparable to other enumerations):

>>> class OrderedEnum(Enum) :
def __ge__(self, other):
if self._ _class__ is other._ _class__
return self.value >= other.value
return NotImplemented
def __gt__(self, other):
if self._ _class__ is other.__class__
return self.value > other.value
return NotImplemented
def __le__(self, other):
if self. _class__ is other.__class__
return self.value <= other.value
return NotImplemented

(continues on next page)

268 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

(continued from previous page)

def __1t__(self, other):
if self. _class__ is other.__class__
return self.value < other.value
return NotImplemented

>>> class Grade(OrderedEnum) :
A =5

m o QW
[
=N Wb

>>> Grade.C < Grade.A
True

DuplicateFreeEnum

Raises an error if a duplicate member name is found instead of creating an alias:

>>> class DuplicateFreeEnum(Enum) :
def __init__(self, *args):
cls = self.__class__
if any(self.value == e.value for e in cls):
a = self.name
e = cls(self.value).name
raise ValueError(
"aliases not allowed in DuplicateFreeEnum: Jr --> /r"

% (a, e))
>>> class Color(DuplicateFreeEnum) :
RED = 1
GREEN = 2
BLUE = 3
GRENE = 2

Traceback (most recent call last):

ValueError: aliases not allowed in DuplicateFreeEnum: 'GRENE' --> 'GREEN'

Note: This is a useful example for subclassing Enum to add or change other behaviors as well as disallowing
aliases. If the only desired change is disallowing aliases, the unique () decorator can be used instead.

Planet

If __new__QO or __init__Q) is defined the value of the enum member will be passed to those methods:

>>> class Planet (Enum):
MERCURY = (3.303e+23, 2.4397e6)

VENUS = (4.869e+24, 6.0518e6)
EARTH = (5.976e+24, 6.37814e6)
MARS = (6.421e+23, 3.3972e6)

(continues on next page)

8.13. enum — Support for enumerations

269

The Python Library Reference, Release 3.6.5

(continued from previous page)

JUPITER = (1.9e+27, 7.1492e7)

SATURN = (5.688e+26, 6.0268e7)

URANUS = (8.686e+25, 2.5559e7)

NEPTUNE = (1.024e+26, 2.4746e7)

def __init__(self, mass, radius):
self .mass = mass # in kilograms
self.radius = radius # in meters

@property

def surface_gravity(self):
universal gravitational constant (m3 kg-1 s-2)
G = 6.67300E-11
return G * self.mass / (self.radius * self.radius)

>>> Planet.EARTH.value
(5.976e+24, 6378140.0)

>>> Planet.EARTH.surface_gravity
9.802652743337129

8.13.15 How are Enums different?

Enums have a custom metaclass that affects many aspects of both derived Enum classes and their instances
(members).

Enum Classes
The EnumMeta metaclass is responsible for providing the __contains__(), __dir__(Q), __iter__() and
other methods that allow one to do things with an Enum class that fail on a typical class, such as list(Color)

or some_var in Color. EnumMeta is responsible for ensuring that various other methods on the final Enum
class are correct (such as __new__(), __getnewargs__ (), __str__() and __repr__Q)).

Enum Members (aka instances)
The most interesting thing about Enum members is that they are singletons. EnumMeta creates them all

while it is creating the Enum class itself, and then puts a custom __new__() in place to ensure that no new
ones are ever instantiated by returning only the existing member instances.

Finer Points
Supported __dunder__ names

__members__ is an OrderedDict of member_name:member items. It is only available on the class.

__new__(), if specified, must create and return the enum members; it is also a very good idea to set the
member’s _value_ appropriately. Once all the members are created it is no longer used.

Supported _sunder_ names

e _name_ — name of the member

o _value_ — value of the member; can be set / modified in __new__

270 Chapter 8. Data Types

The Python Library Reference, Release 3.6.5

e _missing_ — a lookup function used when a value is not found; may be overridden

o _order_ — used in Python 2/3 code to ensure member order is consistent (class attribute, removed
during class creation)

e _generate_next_value_ — used by the Functional API and by auto to get an appropriate value for
an enum member; may be overridden

New in version 3.6: _missing_, _order_, _generate_next_value_

To help keep Python 2 / Python 3 code in sync an _order_ attribute can be provided. It will be checked
against the actual order of the enumeration and raise an error if the two do not match:

>>> class Color (Enum) :
order = 'RED GREEN BLUE'
RED = 1
BLUE = 3
GREEN = 2

Traceback (most recent call last):

TypeError: member order does not match _order_

Note: In Python 2 code the _order_ attribute is necessary as definition order is lost before it can be
recorded.

Enum member type

Enum members are instances of their Enum class, and are normally accessed as EnumClass.member. Under
certain circumstances they can also be accessed as EnumClass.member .member, but you should never do this
as that lookup may fail or, worse, return something besides the Enum member you are looking for (this is
another good reason to use all-uppercase names for members):

>>> class FieldTypes(Enum):

name = 0
value = 1
size = 2

>>> FieldTypes.value.size
<FieldTypes.size: 2>

>>> FieldTypes.size.value
2

Changed in version 3.5.

Boolean value of Enum classes and members

Enum members that are mixed with non-Enum types (such as int, str, etc.) are evaluated according to
the mixed-in type’s rules; otherwise, all members evaluate as True. To make your own Enum’s boolean
evaluation depend on the member’s value add the following to your class:

def __bool__(self):
return bool(self.value)

8.13. enum — Support for enumerations 271

The Python Library Reference, Release 3.6.5

Enum classes always evaluate as True.

Enum classes with methods

If you give your Enum subclass extra methods, like the Planel class above, those methods will show up in a
dir () of the member, but not of the class:

>>> dir(Planet)

['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS', 'VENUS', '__class__', '__
<doc__"', '__members__', '__module__"']

>>> dir(Planet.EARTH)

['__class__', '__doc__', '__module__', 'name', 'surface_gravity', 'value'l

Combining members of Flag

If a combination of Flag members is not named, the repr () will include all named flags and all named
combinations of flags that are in the value:

>>> class Color(Flag):
RED = auto()
GREEN = auto()
BLUE = auto()
MAGENTA = RED | BLUE
YELLOW = RED | GREEN
CYAN = GREEN | BLUE

>>> Color(3) # mamed combination
<Color.YELLOW: 3>

>>> Color(7) # not named combination
<Color.CYAN|MAGENTA |BLUE|YELLOW|GREEN|RED: 7>

272 Chapter 8. Data Types

CHAPTER
NINE

NUMERIC AND MATHEMATICAL MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The
numbers module defines an abstract hierarchy of numeric types. The math and cmath modules contain
various mathematical functions for floating-point and complex numbers. The decimal module supports
exact representations of decimal numbers, using arbitrary precision arithmetic.

The following modules are documented in this chapter:

0.1 numbers — Numeric abstract base classes

Source code: Lib/numbers.py

The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which progressively
define more operations. None of the types defined in this module can be instantiated.

class numbers.Number
The root of the numeric hierarchy. If you just want to check if an argument z is a number, without
caring what kind, use isinstance(x, Number).

9.1.1 The numeric tower

class numbers.Complex
Subclasses of this type describe complex numbers and include the operations that work on the built-

in complez type. These are: conversions to complez and bool, real, imag, +, -, *, /, abs(),
conjugate(), ==, and !=. All except - and != are abstract.
real

Abstract. Retrieves the real component of this number.

imag
Abstract. Retrieves the imaginary component of this number.

abstractmethod conjugate()
Abstract. Returns the complex conjugate. For example, (1+3j) .conjugate() == (1-3j).

class numbers.Real
To Complez, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, math.trunc(), round(), math. floor(), math.ceil(),
divmod (), //, h, <, <=, >, and >=.

Real also provides defaults for complez (), real, imag, and conjugate().

273

https://github.com/python/cpython/tree/3.6/Lib/numbers.py
https://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 3.6.5

class numbers.Rational
Subtypes Real and adds numerator and denominator properties, which should be in lowest terms.

With these, it provides a default for float ().

numerator
Abstract.

denominator
Abstract.

class numbers.Integral
Subtypes Rational and adds a conversion to int. Provides defaults for float (), numerator, and
denominator. Adds abstract methods for ** and bit-string operations: <<, >>, &, =, |, ~.

9.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This
may be subtle if there are two different extensions of the real numbers. For example, fractions.Fraction
implements hash () as follows:

def __hash__(self):

if self.denominator ==
Get integers right.
return hash(self.numerator)

Expensive check, but definitely correct.

if self == float(self):
return hash(float(self))

else:
Use tuple's hash to avoid a high collision rate on
simple fractions.
return hash((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded
the possibility of adding those. You can add MyFoo between Complexz and Real with:

class MyFoo(Complex):
MyFoo.register (Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation
whose author knew about the types of both arguments, or convert both to the nearest built in type and
do the operation there. For subtypes of Integral, this means that __add__() and __radd__() should be
defined as:

class MyIntegral(Integral):

def __add__(self, other):
if isinstance(other, MyIntegral):
return do_my_adding_stuff(self, other)
elif isinstance(other, OtherTypeIKnowAbout) :
return do_my_other_adding_stuff (self, other)

(continues on next page)

274 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

(continued from previous page)

else:
return NotImplemented
def __radd__(self, other):
if isinstance(other, MyIntegral):
return do_my_adding_stuff (other, self)
elif isinstance(other, OtherTypeIKnowAbout) :

return do_my_other_adding_stuff (other, self)

elif isinstance(other, Integral):

return int(other) + int(self)
elif isinstance(other, Real):

return float(other) + float(self)
elif isinstance(other, Complex):

return complex(other) + complex(self)
else:

return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complez. I'll refer to all of the above
code that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance of

A, which is a subtype of Complez (a :
1.
2.

IfaA

If A defines an __add__() which accepts b, all is well.

A <: Complex),andb :

B <: Complex. I'll consider a + b:

If A falls back to the boilerplate code, and it were to return a value from __add__ (), we’d miss the pos-
sibility that B defines a more intelligent __radd__ (), so the boilerplate should return NotImplemented
from __add__(). (Or A may not implement __add__() at all.)

Then B’s __radd__() gets a chance. If it accepts a, all is well.

If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default

implementation should live.

If B <: A, Python tries B.__radd__ before A.__add_

_. This is ok, because it was implemented with

knowledge of A, so it can handle those instances before delegating to Complez.

<:

Complex and B <: Real without sharing any other knowledge, then the appropriate shared opera-

tion is the one involving the built in complexz, and both __radd__() s land there, so atb == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper
function which generates the forward and reverse instances of any given operator. For example, fractions.
Fraction uses:

def _operator_fallbacks(monomorphic_operator, fallback_operator):

def forward(a, b):
if isinstance(b, (int, Fraction)):
return monomorphic_operator(a, b)
elif isinstance(b, float):
return fallback_operator(float(a), b)
elif isinstance(b, complex):
return fallback_operator(complex(a), b)
else:
return NotImplemented
forward. name =

forward.__doc__ = monomorphic_operator.__doc_

def reverse(b, a):
if isinstance(a, Rational):
Includes ints.

'__' + fallback_operator.__name__

(continues on next page)

9.1.

numbers — Numeric abstract base classes

275

The Python Library Reference, Release 3.6.5

(continued from previous page)

return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float(b))
elif isinstance(a, numbers.Complex):
return fallback_operator(complex(a), complex(b))
else:
return NotImplemented
reverse.__name__ = '__r' + fallback_operator.__name__ +
reverse.__doc__ = monomorphic_operator.__doc

return forward, reverse

def _add(a, b):
nnng 4o punn
return Fraction(a.numerator * b.denominator +
b.numerator * a.denominator,
a.denominator * b.denominator)

__add__, __radd__ = _operator_fallbacks(_add, operator.add)

9.2 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath
module if you require support for complex numbers. The distinction between functions which support
complex numbers and those which don’t is made since most users do not want to learn quite as much
mathematics as required to understand complex numbers. Receiving an exception instead of a complex result
allows earlier detection of the unexpected complex number used as a parameter, so that the programmer
can determine how and why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return
values are floats.

9.2.1 Number-theoretic and representation functions

math.ceil(x)
Return the ceiling of z, the smallest integer greater than or equal to z. If x is not a float, delegates to
x.__ceil__ (), which should return an Integral value.

math.copysign(z,)
Return a float with the magnitude (absolute value) of = but the sign of y. On platforms that support
signed zeros, copysign(1.0, -0.0) returns -1.0.

math.fabs(z)
Return the absolute value of z.

math.factorial ()
Return z factorial. Raises ValueError if x is not integral or is negative.

276 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

math.

math.

math.

math.

floor(x)
Return the floor of z, the largest integer less than or equal to z. If z is not a float, delegates to
x.__floor__(), which should return an Integral value.

fmod (z, y)

Return fmod(x, y), as defined by the platform C library. Note that the Python expression x %
y may not return the same result. The intent of the C standard is that fmod(x, y) be exactly
(mathematically; to infinite precision) equal to x - n*y for some integer n such that the result has
the same sign as z and magnitude less than abs(y). Python’s x % y returns a result with the sign
of y instead, and may not be exactly computable for float arguments. For example, fmod(-1e-100,
1e100) is -1e-100, but the result of Python’s -1e-100 % 1e100 is 1e100-1e-100, which cannot be
represented exactly as a float, and rounds to the surprising 1€100. For this reason, function fmod()
is generally preferred when working with floats, while Python’s x % y is preferred when working with
integers.

frexp(x)
Return the mantissa and exponent of z as the pair (m, e). m is a float and e is an integer such that
X == m * 2x%xe exactly. If z is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used

to “pick apart” the internal representation of a float in a portable way.

fsum (iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking
multiple intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
0.9999999999999999

>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
1.0

math.

math.

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the
rounding mode is half-even. On some non-Windows builds, the underlying C library uses extended
precision addition and may occasionally double-round an intermediate sum causing it to be off in its
least significant bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate
floating point summation.

gcd(a, b)

Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the value
of gcd(a, b) is the largest positive integer that divides both @ and b. gcd(0, 0) returns 0.

New in version 3.5.

isclose(a, b, * rel tol=1e-09, abs tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative
tolerances.

rel_tol is the relative tolerance — it is the maximum allowed difference between a and b, relative to
the larger absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The
default tolerance is 1e-09, which assures that the two values are the same within about 9 decimal
digits. rel_tol must be greater than zero.

abs__tol is the minimum absolute tolerance — useful for comparisons near zero. abs_tol must be at least
ZEero.

If no errors occur, the result will be: abs(a-b) <= max(rel_tol * max(abs(a), abs(b)),
abs_tol).

9.2.

math — Mathematical functions 277

https://code.activestate.com/recipes/393090/
https://code.activestate.com/recipes/393090/

The Python Library Reference, Release 3.6.5

The IEEE 754 special values of NaN, inf, and -inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and -inf are only considered close
to themselves.

New in version 3.5.
See also:
PEP 485 — A function for testing approximate equality

math.isfinite(x)

Return True if z is neither an infinity nor a NaN, and False otherwise. (Note that 0.0 és considered
finite.)

New in version 3.2.

math.isinf ()
Return True if z is a positive or negative infinity, and False otherwise.

math.isnan(z)
Return True if z is a NaN (not a number), and False otherwise.

math.ldexp(z, 7)
Return x * (2*x*i). This is essentially the inverse of function frezp ().

math.modf (z)
Return the fractional and integer parts of z. Both results carry the sign of z and are floats.

math.trunc(x)
Return the Real value z truncated to an Integral (usually an integer). Delegates to x.__trunc__Q).

Note that frezp() and modf () have a different call/return pattern than their C equivalents: they take a
single argument and return a pair of values, rather than returning their second return value through an
‘output parameter’ (there is no such thing in Python).

For the ceil (), floor(), and modf () functions, note that all floating-point numbers of sufficiently large
magnitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as
the platform C double type), in which case any float « with abs(x) >= 2**52 necessarily has no fractional
bits.

9.2.2 Power and logarithmic functions

math.exp(x)
Return exx*x.

math.expml (x)
Return e*x*x - 1. For small floats z, the subtraction in exp(x) - 1 can result in a significant loss of
precision; the ezpm? () function provides a way to compute this quantity to full precision:

>>> from math import exp, expml

>>> exp(le-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05

>>> expml(le-5) # result accurate to full precision
1.0000050000166668e-05

New in version 3.2.

math.log(x[, base])
With one argument, return the natural logarithm of z (to base e).

With two arguments, return the logarithm of z to the given base, calculated as log(x)/log(base).

278 Chapter 9. Numeric and Mathematical Modules

https://www.python.org/dev/peps/pep-0485
https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Loss_of_significance

The Python Library Reference, Release 3.6.5

math.

math.

math.

math.

math.

loglip(x)
Return the natural logarithm of 7+ (base e€). The result is calculated in a way which is accurate for
Z near zero.

log2(z)
Return the base-2 logarithm of z. This is usually more accurate than log(x, 2).

New in version 3.3.
See also:

int.bit_length() returns the number of bits necessary to represent an integer in binary, excluding
the sign and leading zeros.

logl0(x)
Return the base-10 logarithm of z. This is usually more accurate than log(x, 10).

pow (z, y)

Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as
possible. In particular, pow(1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a
NaN. If both x and y are finite, x is negative, and y is not an integer then pow(x, y) is undefined,
and raises ValueError.

Unlike the built-in ** operator, math.pow() converts both its arguments to type float. Use ** or the
built-in pow() function for computing exact integer powers.

sqrt(x)
Return the square root of z.

9.2.3 Trigonometric functions

math.

math.

math.

math.

math.

math.

math.

math.

acos (z)
Return the arc cosine of z, in radians.

asin(z)
Return the arc sine of z, in radians.

atan(z)
Return the arc tangent of z, in radians.

atan2(y, x)

Return atan(y / x), in radians. The result is between -pi and pi. The vector in the plane from
the origin to point (x, y) makes this angle with the positive X axis. The point of atan2() is that
the signs of both inputs are known to it, so it can compute the correct quadrant for the angle. For
example, atan(1) and atan2(1, 1) are both pi/4, but atan2(-1, -1) is -3*pi/4.

cos (1)
Return the cosine of z radians.

hypot (z, y)
Return the Euclidean norm, sqrt(x*x + y*y). This is the length of the vector from the origin to
point (x, y).

sin(x)
Return the sine of z radians.

tan(zx)
Return the tangent of z radians.

9.2.

math — Mathematical functions 279

The Python Library Reference, Release 3.6.5

9.2.4 Angular conversion
math.degrees ()
Convert angle = from radians to degrees.

math.radians(z)
Convert angle z from degrees to radians.

9.2.5 Hyperbolic functions

Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.

math.acosh(x)
Return the inverse hyperbolic cosine of z.

math.asinh(x)
Return the inverse hyperbolic sine of z.

math.atanh(x)
Return the inverse hyperbolic tangent of z.

math.cosh(z)
Return the hyperbolic cosine of z.

math.sinh(x)
Return the hyperbolic sine of z.

math.tanh(z)
Return the hyperbolic tangent of z.

9.2.6 Special functions
math.erf ()
Return the error function at z.

The erf() function can be used to compute traditional statistical functions such as the cumulative
standard normal distribution:

def phi(x):
'Cumulative distribution function for the standard normal distribution'
return (1.0 + erf(x / sqrt(2.0))) / 2.0

New in version 3.2.

math.erfc(x)
Return the complementary error function at . The complementary error function is defined as 1.0 -
erf (x). It is used for large values of z where a subtraction from one would cause a loss of significance.

New in version 3.2.

math.gamma ()
Return the Gamma function at z.

New in version 3.2.

math.lgamma ()
Return the natural logarithm of the absolute value of the Gamma function at z.

New in version 3.2.

280 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Hyperbolic_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Gamma_function

The Python Library Reference, Release 3.6.5

9.2.7 Constants

math.pi
The mathematical constant 7 = 3.141592..., to available precision.

math.e
The mathematical constant e = 2.718281..., to available precision.

math.tau
The mathematical constant 7 = 6.283185..., to available precision. Tau is a circle constant equal to 2,
the ratio of a circle’s circumference to its radius. To learn more about Tau, check out Vi Hart’s video
Pi is (still) Wrong, and start celebrating Tau day by eating twice as much pie!

New in version 3.6.

math.inf
A floating-point positive infinity. (For negative infinity, use -math.inf.) Equivalent to the output of
float('inf"').

New in version 3.5.

math.nan
A floating-point “not a number” (NaN) value. Equivalent to the output of float('nan').

New in version 3.5.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform
C math library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropri-
ate. The current implementation will raise ValueError for invalid operations like sqrt(-1.0) or 1og(0.0)
(where C99 Annex F recommends signaling invalid operation or divide-by-zero), and OverflowError for
results that overflow (for example, exp(1000.0)). A NaN will not be returned from any of the functions
above unless one or more of the input arguments was a NaN; in that case, most functions will return a NaN,
but (again following C99 Annex F) there are some exceptions to this rule, for example pow(float('nan'),
0.0) or hypot(float('nan'), float('inf')).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling
NaNs remains unspecified. Typical behavior is to treat all NaNs as though they were quiet.

See also:

Module cmath Complex number versions of many of these functions.

9.3 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The
functions in this module accept integers, floating-point numbers or complex numbers as arguments. They will
also accept any Python object that has either a __complex__() or a __float__() method: these methods
are used to convert the object to a complex or floating-point number, respectively, and the function is then
applied to the result of the conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch
cuts are continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch
cut from the other. On platforms that do not support signed zeros the continuity is as specified below.

9.3. cmath — Mathematical functions for complex numbers 281

https://www.youtube.com/watch?v=jG7vhMMXagQ
http://tauday.com/

The Python Library Reference, Release 3.6.5

9.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely
determined by its real part z.real and its imaginary part z.imag. In other words:

z == z.real + z.imag*1j

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex
number z is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the
origin, while the phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to
the line segment that joins the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates
and back.

cmath.phase(x)
Return the phase of z (also known as the argument of z), as a float. phase(x) is equivalent to math.
atan2(x.imag, x.real). The result lies in the range [-7, 7], and the branch cut for this operation lies
along the negative real axis, continuous from above. On systems with support for signed zeros (which
includes most systems in current use), this means that the sign of the result is the same as the sign of
x.imag, even when x.imag is zero:

>>> phase(complex(-1.0, 0.0))
3.141592653589793
>>> phase(complex(-1.0, -0.0))
-3.141592653589793

Note: The modulus (absolute value) of a complex number z can be computed using the built-in abs ()
function. There is no separate cmath module function for this operation.

cmath.polar(x)
Return the representation of z in polar coordinates. Returns a pair (r, phi) where r is the modulus
of z and phi is the phase of z. polar(x) is equivalent to (abs(x), phase(x)).

cmath.rect (r, phi)
Return the complex number z with polar coordinates r and phi. Equivalent to r * (math.cos(phi)
+ math.sin(phi)*1j).

9.3.2 Power and logarithmic functions

cmath.exp(x)
Return the exponential value ex*x.

cmath.log(a:[, base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm
of z. There is one branch cut, from 0 along the negative real axis to -co, continuous from above.

cmath.logl0(x)
Return the base-10 logarithm of z. This has the same branch cut as Log ().

cmath.sqrt (z)
Return the square root of x. This has the same branch cut as log().

282 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

9.3.3 Trigonometric functions

cmath.acos(x)
Return the arc cosine of . There are two branch cuts: One extends right from 1 along the real axis to
00, continuous from below. The other extends left from -1 along the real axis to -co, continuous from
above.

cmath.asin(z)
Return the arc sine of z. This has the same branch cuts as acos ().

cmath.atan(z)
Return the arc tangent of z. There are two branch cuts: One extends from 1j along the imaginary
axis to coj, continuous from the right. The other extends from -1j along the imaginary axis to -ooj,
continuous from the left.

cmath.cos(z)
Return the cosine of z.

cmath.sin(x)
Return the sine of z.

cmath.tan(x)
Return the tangent of z.

9.3.4 Hyperbolic functions

cmath.acosh(x)
Return the inverse hyperbolic cosine of z. There is one branch cut, extending left from 1 along the real
axis to -0o, continuous from above.

cmath.asinh(x)
Return the inverse hyperbolic sine of z. There are two branch cuts: One extends from 1j along the
imaginary axis to coj, continuous from the right. The other extends from -1j along the imaginary
axis to —0oj, continuous from the left.

cmath.atanh(z)
Return the inverse hyperbolic tangent of x. There are two branch cuts: One extends from 1 along
the real axis to oo, continuous from below. The other extends from -1 along the real axis to -oo,
continuous from above.

cmath.cosh(z)
Return the hyperbolic cosine of z.

cmath.sinh(z)
Return the hyperbolic sine of z.

cmath.tanh(x)
Return the hyperbolic tangent of z.

9.3.5 Classification functions

cmath.isfinite(x)
Return True if both the real and imaginary parts of z are finite, and False otherwise.
New in version 3.2.

cmath.isinf ()
Return True if either the real or the imaginary part of z is an infinity, and False otherwise.

9.3. cmath — Mathematical functions for complex numbers 283

The Python Library Reference, Release 3.6.5

cmath.isnan(z)
Return True if either the real or the imaginary part of z is a NaN, and False otherwise.

cmath.isclose(a, b, * rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative
tolerances.

rel_tol is the relative tolerance — it is the maximum allowed difference between a and b, relative to
the larger absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The
default tolerance is 1e-09, which assures that the two values are the same within about 9 decimal
digits. rel_tol must be greater than zero.

abs__tol is the minimum absolute tolerance — useful for comparisons near zero. abs_tol must be at least
Zero.

If no errors occur, the result will be: abs(a-b) <= max(rel_tol * max(abs(a), abs(b)),
abs_tol).

The IEEE 754 special values of NaN, inf, and -inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and -inf are only considered close
to themselves.

New in version 3.5.
See also:

PEP 485 — A function for testing approximate equality

9.3.6 Constants

cmath.pi
The mathematical constant 7, as a float.

cmath.e
The mathematical constant e, as a float.

cmath.tau
The mathematical constant 7, as a float.

New in version 3.6.

cmath.inf
Floating-point positive infinity. Equivalent to float('inf').

New in version 3.6.

cmath.infj
Complex number with zero real part and positive infinity imaginary part. Equivalent to complex (0.0,
float('inf')).

New in version 3.6.

cmath.nan
A floating-point “not a number” (NaN) value. Equivalent to float('nan').

New in version 3.6.

cmath.nanj
Complex number with zero real part and NaN imaginary part. Equivalent to complex(0.0,
float('nan')).

284 Chapter 9. Numeric and Mathematical Modules

https://www.python.org/dev/peps/pep-0485

The Python Library Reference, Release 3.6.5

New in version 3.6.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for
having two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know
what they are. They would rather have math.sqrt(-1) raise an exception than return a complex number.
Also note that the functions defined in cmath always return a complex number, even if the answer can be
expressed as a real number (in which case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are
a necessary feature of many complex functions. It is assumed that if you need to compute with complex
functions, you will understand about branch cuts. Consult almost any (not too elementary) book on complex
variables for enlightenment. For information of the proper choice of branch cuts for numerical purposes, a
good reference should be the following;:

See also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles,
A, and Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) ppl65-211.

9.4 decimal — Decimal fixed point and floating point arithmetic

Source code: Lib/decimal.py

The decimal module provides support for fast correctly-rounded decimal floating point arithmetic. It offers
several advantages over the float datatype:

e Decimal “is based on a floating-point model which was designed with people in mind, and necessarily
has a paramount guiding principle — computers must provide an arithmetic that works in the same
way as the arithmetic that people learn at school.” — excerpt from the decimal arithmetic specification.

e Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2.2 do not have exact
representations in binary floating point. End users typically would not expect 1.1 + 2.2 to display
as 3.3000000000000003 as it does with binary floating point.

o The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 is
exactly equal to zero. In binary floating point, the result is 5.5511151231257827e-017. While near to
zero, the differences prevent reliable equality testing and differences can accumulate. For this reason,
decimal is preferred in accounting applications which have strict equality invariants.

e The decimal module incorporates a notion of significant places so that 1.30 + 1.20 is 2.50. The trail-
ing zero is kept to indicate significance. This is the customary presentation for monetary applications.
For multiplication, the “schoolbook” approach uses all the figures in the multiplicands. For instance,
1.3 * 1.2 gives 1.56 while 1.30 * 1.20 gives 1.5600.

o Unlike hardware based binary floating point, the decimal module has a user alterable precision (de-
faulting to 28 places) which can be as large as needed for a given problem:

>>> from decimal import *

>>> getcontext() .prec = 6

>>> Decimal(1) / Decimal(7)
Decimal('0.142857"')

>>> getcontext() .prec = 28

>>> Decimal(1) / Decimal(7)
Decimal('0.1428571428571428571428571429")

9.4. decimal — Decimal fixed point and floating point arithmetic 285

https://github.com/python/cpython/tree/3.6/Lib/decimal.py

The Python Library Reference, Release 3.6.5

e Both binary and decimal floating point are implemented in terms of published standards. While the
built-in float type exposes only a modest portion of its capabilities, the decimal module exposes all
required parts of the standard. When needed, the programmer has full control over rounding and
signal handling. This includes an option to enforce exact arithmetic by using exceptions to block any
inexact operations.

e The decimal module was designed to support “without prejudice, both exact unrounded decimal arith-
metic (sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” — excerpt from
the decimal arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and
signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance,
the coeflicient digits do not truncate trailing zeros. Decimals also include special values such as Infinity,
-Infinity, and NaN. The standard also differentiates -0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents,
flags indicating the results of operations, and trap enablers which determine whether signals are treated
as exceptions. Rounding options include ROUND_ CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF DOWN,
ROUND_HALF _EVEN, ROUND_HALF_UP, ROUND_UP, and ROUND_05UP

Signals are groups of exceptional conditions arising during the course of computation. Depending on the
needs of the application, signals may be ignored, considered as informational, or treated as exceptions.
The signals in the decimal module are: Clamped, InvalidOperation, DivistonByZero, Inezact, Rounded,
Subnormal, Overflow, Underflow and FloatOperation.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if
the trap enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before
monitoring a calculation.

See also:

e IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

9.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with getcontexzt ()
and, if necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import *

>>> getcontext()

Context (prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[0verflow, DivisionByZero,
InvalidOperation])

>>> getcontext() .prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, floats, or tuples. Construction from an integer
or a float performs an exact conversion of the value of that integer or float. Decimal numbers include special
values such as NaN which stands for “Not a number”, positive and negative Infinity, and -0:

>>> getcontext() .prec = 28
>>> Decimal(10)
Decimal('10')

>>> Decimal('3.14"')
Decimal('3.14")

>>> Decimal(3.14)

(continues on next page)

286 Chapter 9. Numeric and Mathematical Modules

http://speleotrove.com/decimal/decarith.html

The Python Library Reference, Release 3.6.5

(continued from previous page)

Decimal ('3.140000000000000124344978758017532527446746826171875")
>>> Decimal ((0, (3, 1, 4), -2))
Decimal('3.14"')

>>> Decimal(str(2.0 ** 0.5))
Decimal('1.4142135623730951"')

>>> Decimal(2) ** Decimal('0.5')

Decimal ('1.414213562373095048801688724 ")
>>> Decimal('NaN')

Decimal ('NaN')

>>> Decimal ('-Infinity')
Decimal('-Infinity')

If the FloatOperation signal is trapped, accidental mixing of decimals and floats in constructors or ordering
comparisons raises an exception:

>>> ¢ = getcontext ()

>>> c.traps[FloatOperation] = True
>>> Decimal(3.14)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') < 3.7
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') == 3.5
True

New in version 3.3.

The significance of a new Decimal is determined solely by the number of digits input. Context precision and
rounding only come into play during arithmetic operations.

>>> getcontext() .prec = 6

>>> Decimal('3.0')

Decimal('3.0')

>>> Decimal('3.1415926535")

Decimal('3.1415926535"')

>>> Decimal('3.1415926535') + Decimal('2.7182818285")
Decimal('5.85987"')

>>> getcontext () .rounding = ROUND_UP

>>> Decimal('3.1415926535') + Decimal('2.7182818285")
Decimal('5.85988"')

If the internal limits of the C version are exceeded, constructing a decimal raises InvalidOperation:

>>> Decimal("1€9999999999999999999")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]

Changed in version 3.3.

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
>>> max(data)

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic 287

The Python Library Reference, Release 3.6.5

(continued from previous page)

Decimal('9.25")

>>> min(data)
Decimal('0.03")

>>> sorted(data)
[Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87"'),
Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
>>> sum(data)
Decimal('19.29")

>>> a,b,c = datal[:3]
>>> str(a)

'1.34"

>>> float(a)

1.34

>>> round(a, 1)
Decimal('1.3")

>>> int(a)

1

>>> a * 5
Decimal('6.70")

>>> a *x b
Decimal('2.5058")
>>> ¢ % a
Decimal('0.77")

And some mathematical functions are also available to Decimal:

>>> getcontext() .prec = 28

>>> Decimal(2) .sqrt()
Decimal('1.414213562373095048801688724"')
>>> Decimal(1).exp()

Decimal ('2.718281828459045235360287471")
>>> Decimal('10').1n()
Decimal('2.302585092994045684017991455")
>>> Decimal('10') .logl0()

Decimal('1')

The quantize () method rounds a number to a fixed exponent. This method is useful for monetary appli-
cations that often round results to a fixed number of places:

>>> Decimal('7.325') .quantize(Decimal('.01'), rounding=ROUND_DOWN)
Decimal('7.32')

>>> Decimal('7.325") .quantize(Decimal('1."), rounding=ROUND_UP)
Decimal('8')

As shown above, the getcontezt () function accesses the current context and allows the settings to be
changed. This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To
make an alternate active, use the setcontezt () function.

In accordance with the standard, the decimal module provides two ready to use standard contexts,
BasicContext and EzxtendedContexzt. The former is especially useful for debugging because many of the
traps are enabled:

>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
>>> setcontext (myothercontext)
>>> Decimal(1) / Decimal(7)

(continues on next page)

288 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

(continued from previous page)

Decimal('0.142857142857142857142857142857142857142857142857142857142857 ")

>>> ExtendedContext

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[])

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal(7)

Decimal('0.142857143")

>>> Decimal(42) / Decimal(0)

Decimal('Infinity"')

>>> setcontext(BasicContext)
>>> Decimal (42) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal (42) / Decimal(0)
DivisionByZero: x / O

Contexts also have signal flags for monitoring exceptional conditions encountered during computations.
The flags remain set until explicitly cleared, so it is best to clear the flags before each set of monitored
computations by using the clear_flags() method.

>>> setcontext (ExtendedContext)

>>> getcontext().clear_flags()

>>> Decimal (355) / Decimal(113)

Decimal('3.14159292"')

>>> getcontext ()

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])

The flags entry shows that the rational approximation to Pi was rounded (digits beyond the context precision
were thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the traps field of a context:

>>> setcontext (ExtendedContext)

>>> Decimal(1) / Decimal(0)

Decimal('Infinity"')

>>> getcontext() .traps[DivisionByZero] = 1

>>> Decimal(1) / Decimal(0)

Traceback (most recent call last):

File "<pyshell#112>", line 1, in -toplevel-

Decimal(1) / Decimal(0)

DivisionByZero: x / O

Most programs adjust the current context only once, at the beginning of the program. And, in many
applications, data is converted to Decimal with a single cast inside a loop. With context set and decimals
created, the bulk of the program manipulates the data no differently than with other Python numeric types.

9.4.2 Decimal objects
class decimal.Decimal (value="0", context=None)
Construct a new Decimal object based from wvalue.

value can be an integer, string, tuple, float, or another Decimal object. If no value is given, returns
Decimal ('0'). If value is a string, it should conform to the decimal numeric string syntax after leading

9.4. decimal — Decimal fixed point and floating point arithmetic 289

The Python Library Reference, Release 3.6.5

and trailing whitespace characters, as well as underscores throughout, are removed:

sign ri= |

digit L e R I R R A A A L N
indicator := 'e' | 'E!

digits 1:= digit [digit]...

decimal-part ::= digits '.' [digits] | ['.'] digits

exponent-part ::= indicator [sign] digits

infinity ::= 'Infinity' | 'Inf'

nan ::= 'NaN' [digits] | 'sNaN' [digits]

numeric-value ::= decimal-part [exponent-part] | infinity

numeric-string :: [sign] numeric-value | [sign] nan

Other Unicode decimal digits are also permitted where digit appears above. These include decimal
digits from various other alphabets (for example, Arabic-Indic and Devanagari digits) along with the
fullwidth digits '\uff10' through '\uff19'.

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a
tuple of digits, and an integer exponent. For example, Decimal ((0, (1, 4, 1, 4), -3)) returns
Decimal('1.414"').

If value is a float, the binary floating point value is losslessly converted to its exact decimal equivalent.
This conversion can often require 53 or more digits of precision. For example, Decimal (float('1.1'))
converts to Decimal ('1.100000000000000088817841970012523233890533447265625").

The context precision does not affect how many digits are stored. That is determined exclusively by
the number of digits in value. For example, Decimal('3.00000') records all five zeros even if the
context precision is only three.

The purpose of the contexrt argument is determining what to do if value is a malformed string. If
the context traps InvalidOperation, an exception is raised; otherwise, the constructor returns a new
Decimal with the value of NaN.

Once constructed, Decimal objects are immutable.
Changed in version 3.2: The argument to the constructor is now permitted to be a float instance.

Changed in version 3.3: float arguments raise an exception if the FloatOperation trap is set. By
default the trap is off.

Changed in version 3.6: Underscores are allowed for grouping, as with integral and floating-point
literals in code.

Decimal floating point objects share many properties with the other built-in numeric types such as
float and int. All of the usual math operations and special methods apply. Likewise, decimal objects
can be copied, pickled, printed, used as dictionary keys, used as set elements, compared, sorted, and
coerced to another type (such as float or int).

There are some small differences between arithmetic on Decimal objects and arithmetic on integers
and floats. When the remainder operator % is applied to Decimal objects, the sign of the result is the
sign of the dividend rather than the sign of the divisor:

>>> (=7) % 4

1

>>> Decimal(-7) % Decimal(4)
Decimal('-3")

The integer division operator // behaves analogously, returning the integer part of the true quotient
(truncating towards zero) rather than its floor, so as to preserve the usual identity x == (x // y) *
y+xhy:

290

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

>>> -7 // 4

-2

>>> Decimal(-7) // Decimal(4)
Decimal('-1")

The % and // operators implement the remainder and divide-integer operations (respectively) as
described in the specification.

Decimal objects cannot generally be combined with floats or instances of fractions.Fraction in
arithmetic operations: an attempt to add a Decimal to a float, for example, will raise a TypeError.
However, it is possible to use Python’s comparison operators to compare a Decimal instance x with
another number y. This avoids confusing results when doing equality comparisons between numbers
of different types.

Changed in version 3.2: Mixed-type comparisons between Decimal instances and other numeric types
are now fully supported.

In addition to the standard numeric properties, decimal floating point objects also have a number of
specialized methods:

adjusted()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the
lead digit remains: Decimal('321e+5').adjusted() returns seven. Used for determining the
position of the most significant digit with respect to the decimal point.

as_integer_ratio()
Return a pair (n, d) of integers that represent the given Decimal instance as a fraction, in lowest
terms and with a positive denominator:

>>> Decimal('-3.14"').as_integer_ratio()
(=157, 50)

The conversion is exact. Raise OverflowError on infinities and ValueError on NaNs.
New in version 3.6.

as_tuple()
Return a named tuple representation of the number: DecimalTuple(sign, digits, exponent).

canonical ()
Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance
is always canonical, so this operation returns its argument unchanged.

compare (other, context=None)
Compare the values of two Decimal instances. compare() returns a Decimal instance, and if
either operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal('NaN')
a<b ==> Decimal('-1"')
a==> ==> Decimal('0")
a>b ==> Decimal('1"')

compare_signal (other, context=None)
This operation is identical to the compare () method, except that all NaNs signal. That is, if
neither operand is a signaling NaN then any quiet NaN operand is treated as though it were a
signaling NaN.

compare_total (other, context=None)
Compare two operands using their abstract representation rather than their numerical value.
Similar to the compare () method, but the result gives a total ordering on Decimal instances. Two

9.4. decimal — Decimal fixed point and floating point arithmetic 291

The Python Library Reference, Release 3.6.5

Decimal instances with the same numeric value but different representations compare unequal in
this ordering:

>>> Decimal('12.0').compare_total(Decimal('12'))
Decimal('-1')

Quiet and signaling NaNs are also included in the total ordering. The result of this function is
Decimal('0"') if both operands have the same representation, Decimal ('-1") if the first operand
is lower in the total order than the second, and Decimal ('1"') if the first operand is higher in the
total order than the second operand. See the specification for details of the total order.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is
performed. As an exception, the C version may raise InvalidOperation if the second operand
cannot be converted exactly.

compare_total_mag(other, context=None)
Compare two operands using their abstract representation rather than their value as in
compare_total (), but ignoring the sign of each operand. x.compare_total_mag(y) is equiv-
alent to x.copy_abs () . compare_total(y.copy_abs()).

This operation is unaffected by context and is quiet: no flags are changed and no rounding is
performed. As an exception, the C version may raise InvalidOperation if the second operand
cannot be converted exactly.

conjugate ()
Just returns self, this method is only to comply with the Decimal Specification.

copy_abs ()
Return the absolute value of the argument. This operation is unaffected by the context and is
quiet: no flags are changed and no rounding is performed.

copy_negate()
Return the negation of the argument. This operation is unaffected by the context and is quiet:
no flags are changed and no rounding is performed.

copy_sign(other, context=None)
Return a copy of the first operand with the sign set to be the same as the sign of the second
operand. For example:

>>> Decimal('2.3') .copy_sign(Decimal('-1.5"'))
Decimal('-2.3')

This operation is unaffected by context and is quiet: no flags are changed and no rounding is
performed. As an exception, the C version may raise InvalidOperation if the second operand
cannot be converted exactly.

exp (context=None)
Return the value of the (natural) exponential function e**x at the given number. The result is
correctly rounded using the ROUND_HALF EVEN rounding mode.

>>> Decimal (1) .exp()

Decimal ('2.718281828459045235360287471")

>>> Decimal(321) .exp()

Decimal ('2.561702493119680037517373933E+139"')

from_float (f)
Classmethod that converts a float to a decimal number, exactly.

Note Decimal.from_float(0.1) is not the same as Decimal(‘0.1°). Since 0.1 is not ex-
actly representable in binary floating point, the value is stored as the nearest rep-

292

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

resentable value which is 0x1.999999999999ap-4. That equivalent value in decimal is
0.1000000000000000055511151231257827021181583404541015625.

Note: From Python 3.2 onwards, a Decimal instance can also be constructed directly from a
float.

>>> Decimal.from_float(0.1)

Decimal ('0.1000000000000000055511151231257827021181583404541015625")
>>> Decimal.from_float(float('nan'))

Decimal ('NaN')

>>> Decimal.from_float(float('inf'))

Decimal ('Infinity')

>>> Decimal.from_float(float('-inf'))

Decimal('-Infinity')

New in version 3.1.

fma (other, third, context=None)
Fused multiply-add. Return self*other+third with no rounding of the intermediate product
self*other.

>>> Decimal(2) .fma(3, 5)
Decimal('11"')

is_canonical()
Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is
always canonical, so this operation always returns True.

is_finite()
Return True if the argument is a finite number, and False if the argument is an infinity or a
NaN.

is_infinite()
Return True if the argument is either positive or negative infinity and False otherwise.

is_nan()
Return True if the argument is a (quiet or signaling) NaN and False otherwise.

is_normal (context=None)
Return True if the argument is a normal finite number. Return False if the argument is zero,
subnormal, infinite or a NaN.

is_gnan()
Return True if the argument is a quiet NaN, and False otherwise.

is_signed()
Return True if the argument has a negative sign and False otherwise. Note that zeros and NaNs
can both carry signs.

is_snan()
Return True if the argument is a signaling NaN and False otherwise.

is_subnormal (context=None)
Return True if the argument is subnormal, and False otherwise.

is_zero()
Return True if the argument is a (positive or negative) zero and False otherwise.

9.4.

decimal — Decimal fixed point and floating point arithmetic 293

The Python Library Reference, Release 3.6.5

1n(context=None)
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

logl0(context=None)
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

logb (context=None)
For a nonzero number, return the adjusted exponent of its operand as a Decimal instance. If
the operand is a zero then Decimal ('-Infinity') is returned and the DivisionByZero flag is
raised. If the operand is an infinity then Decimal (' Infinity') is returned.

logical_and(other, context=None)
logical_and() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise and of the two operands.

logical_invert (context=None)
logical_invert () is a logical operation. The result is the digit-wise inversion of the operand.

logical_or(other, context=None)
logical_or() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise or of the two operands.

logical_xor (other, context=None)
logical_zor() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise exclusive or of the two operands.

max (other, context=None)
Like max(self, other) except that the context rounding rule is applied before returning and
that NaN values are either signaled or ignored (depending on the context and whether they are
signaling or quiet).

max_mag (other, contert=None)
Similar to the maz () method, but the comparison is done using the absolute values of the operands.

min (other, context=None)
Like min(self, other) except that the context rounding rule is applied before returning and
that NaN values are either signaled or ignored (depending on the context and whether they are
signaling or quiet).

min_mag(other, context=None)
Similar to the min () method, but the comparison is done using the absolute values of the operands.

next_minus (context=None)
Return the largest number representable in the given context (or in the current thread’s context
if no context is given) that is smaller than the given operand.

next_plus (context=None)
Return the smallest number representable in the given context (or in the current thread’s context
if no context is given) that is larger than the given operand.

next_toward (other, context=None)
If the two operands are unequal, return the number closest to the first operand in the direction
of the second operand. If both operands are numerically equal, return a copy of the first operand
with the sign set to be the same as the sign of the second operand.

normalize (context=None)
Normalize the number by stripping the rightmost trailing zeros and converting any result equal to

294

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

Decimal ('0') toDecimal('0e0'). Used for producing canonical values for attributes of an equiv-
alence class. For example, Decimal ('32.100') and Decimal('0.321000e+2"') both normalize to
the equivalent value Decimal ('32.1').

number_class (context=None)
Return a string describing the class of the operand. The returned value is one of the following
ten strings.

e "-Infinity", indicating that the operand is negative infinity.

e "-Normal", indicating that the operand is a negative normal number.
e "-Subnormal", indicating that the operand is negative and subnormal.
e "-Zero", indicating that the operand is a negative zero.

e "+Zero", indicating that the operand is a positive zero.

e "+Subnormal", indicating that the operand is positive and subnormal.
e "+Normal", indicating that the operand is a positive normal number.

e "+Infinity", indicating that the operand is positive infinity.

o "NaN", indicating that the operand is a quiet NaN (Not a Number).

e "sNaN", indicating that the operand is a signaling NaN.

quantize (exp, rounding=None, context=None)
Return a value equal to the first operand after rounding and having the exponent of the second
operand.

>>> Decimal('1.41421356') .quantize(Decimal('1.000'))
Decimal('1.414"')

Unlike other operations, if the length of the coefficient after the quantize operation would be
greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there
is an error condition, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal
and inexact.

If the exponent of the second operand is larger than that of the first then rounding may be
necessary. In this case, the rounding mode is determined by the rounding argument if given, else
by the given context argument; if neither argument is given the rounding mode of the current
thread’s context is used.

An error is returned whenever the resulting exponent is greater than Emax or less than Etiny.

radix()
Return Decimal (10), the radix (base) in which the Decimal class does all its arithmetic. Included
for compatibility with the specification.

remainder_near (other, context=None)
Return the remainder from dividing self by other. This differs from self % other in that the
sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return
value is self - n * other where n is the integer nearest to the exact value of self / other,
and if two integers are equally near then the even one is chosen.

If the result is zero then its sign will be the sign of self.

9.4. decimal — Decimal fixed point and floating point arithmetic 295

The Python Library Reference, Release 3.6.5

>>> Decimal (18) .remainder_near(Decimal(10))
Decimal('-2")
>>> Decimal (25) .remainder_near (Decimal (10))
Decimal('5")
>>> Decimal(35) .remainder_near (Decimal(10))
Decimal('-5")

rotate (other, context=None)
Return the result of rotating the digits of the first operand by an amount specified by the second
operand. The second operand must be an integer in the range -precision through precision. The
absolute value of the second operand gives the number of places to rotate. If the second operand
is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first
operand is padded on the left with zeros to length precision if necessary. The sign and exponent
of the first operand are unchanged.

same_quantum (other, context=None)
Test whether self and other have the same exponent or whether both are NaN.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is
performed. As an exception, the C version may raise InvalidOperation if the second operand
cannot be converted exactly.

scaleb (other, context=None)
Return the first operand with exponent adjusted by the second. Equivalently, return the first
operand multiplied by 10**other. The second operand must be an integer.

shift (other, context=None)
Return the result of shifting the digits of the first operand by an amount specified by the second
operand. The second operand must be an integer in the range -precision through precision. The
absolute value of the second operand gives the number of places to shift. If the second operand
is positive then the shift is to the left; otherwise the shift is to the right. Digits shifted into the
coefficient are zeros. The sign and exponent of the first operand are unchanged.

sqrt (context=None)
Return the square root of the argument to full precision.

to_eng_string(context=None)
Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to
the left of the decimal place and may require the addition of either one or two trailing zeros.

For example, this converts Decimal ('123E+1') to Decimal('1.23E+3"').

to_integral (rounding=None, context=None)
Identical to the to_integral_value() method. The to_integral name has been kept for com-
patibility with older versions.

to_integral_exact (rounding=None, context=None)
Round to the nearest integer, signaling Inezact or Rounded as appropriate if rounding occurs.
The rounding mode is determined by the rounding parameter if given, else by the given context.
If neither parameter is given then the rounding mode of the current context is used.

to_integral_value (rounding=None, context=None)
Round to the nearest integer without signaling Inmezact or Rounded. If given, applies rounding;
otherwise, uses the rounding method in either the supplied context or the current context.

296

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

Logical operands

The logical_and(), logical_invert(), logical_or(), and logical_xor() methods expect their argu-
ments to be logical operands. A logical operand is a Decimal instance whose exponent and sign are both
zero, and whose digits are all either 0 or 1.

9.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine
which signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the getcontezt() and
setcontext () functions:

decimal.getcontext ()
Return the current context for the active thread.

decimal.setcontext (c)
Set the current context for the active thread to c.

You can also use the with statement and the localcontezt () function to temporarily change the active
context.

decimal.localcontext (ctz=None)
Return a context manager that will set the current context for the active thread to a copy of ctx on
entry to the with-statement and restore the previous context when exiting the with-statement. If no
context is specified, a copy of the current context is used.

For example, the following code sets the current decimal precision to 42 places, performs a calculation,
and then automatically restores the previous context:

from decimal import localcontext

with localcontext() as ctx:
ctx.prec = 42 # Perform a high precision calculation
s = calculate_something()
s = +s # Round the final result back to the default precision

New contexts can also be created using the Contexzt constructor described below. In addition, the module
provides three pre-made contexts:

class decimal.BasicContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set
to nine. Rounding is set to ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated as
exceptions) except Inezact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

class decimal.ExtendedContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set
to nine. Rounding is set to ROUND_HALF EVEN. All flags are cleared. No traps are enabled (so that
exceptions are not raised during computations).

Because the traps are disabled, this context is useful for applications that prefer to have result value
of NaN or Infinity instead of raising exceptions. This allows an application to complete a run in the
presence of conditions that would otherwise halt the program.

class decimal.DefaultContext
This context is used by the Contezt constructor as a prototype for new contexts. Changing a field

9.4. decimal — Decimal fixed point and floating point arithmetic 297

The Python Library Reference, Release 3.6.5

(such a precision) has the effect of changing the default for new contexts created by the Contexzt
constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads
are started has the effect of setting system-wide defaults. Changing the fields after threads have started
is not recommended as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create
contexts explicitly as described below.

The default values are prec=28, rounding=ROUND_HALF EVEN, and enabled traps for Overflow,
InvalidOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Contezt constructor.

class decimal.Context (prec=None, rounding=None, Emin=None, Emaxr=None, capitals=None,

clamp=None, flags=None, traps=None)
Creates a new context. If a field is not specified or is None, the default values are copied from the
DefaultContezt. If the flags field is not specified or is None, all flags are cleared.

prec is an integer in the range [1, MAX_PREC] that sets the precision for arithmetic operations in the
context.

The rounding option is one of the constants listed in the section Rounding Modes.

The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and
leave the flags clear.

The Emin and Emaz fields are integers specifying the outer limits allowable for exponents. Emin must
be in the range [MIN_EMIN, 0], Emaz in the range [0, MAX_EMAX].

The capitals field is either 0 or 1 (the default). If set to 1, exponents are printed with a capital E;
otherwise, a lowercase e is used: Decimal ('6.02e+23"').

The clamp field is either 0 (the default) or 1. If set to 1, the exponent e of a Decimal instance
representable in this context is strictly limited to the range Emin - prec + 1 <= e <= Emax - prec
+ 1. If clamp is 0 then a weaker condition holds: the adjusted exponent of the Decimal instance is at
most Emax. When clamp is 1, a large normal number will, where possible, have its exponent reduced and
a corresponding number of zeros added to its coefficient, in order to fit the exponent constraints; this
preserves the value of the number but loses information about significant trailing zeros. For example:

>>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999")
Decimal('1.23000E+999"')

A clamp value of 1 allows compatibility with the fixed-width decimal interchange formats specified in
IEEE 754.

The Contezt class defines several general purpose methods as well as a large number of methods for do-
ing arithmetic directly in a given context. In addition, for each of the Decimal methods described above
(with the exception of the adjusted() and as_tuple() methods) there is a corresponding Contezt
method. For example, for a Contezt instance C and Decimal instance x, C.exp(x) is equivalent to
x.exp(context=C). Each Contexzt method accepts a Python integer (an instance of int) anywhere
that a Decimal instance is accepted.

clear_flags()
Resets all of the flags to 0.

clear_traps()
Resets all of the traps to 0.

New in version 3.3.

298

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

copy O
Return a duplicate of the context.

copy_decimal (num)
Return a copy of the Decimal instance num.

create_decimal (num)
Creates a new Decimal instance from num but using self as context. Unlike the Decimal con-
structor, the context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the
application. Another benefit is that rounding immediately eliminates unintended effects from
digits beyond the current precision. In the following example, using unrounded inputs means that
adding zero to a sum can change the result:

>>> getcontext() .prec = 3

>>> Decimal('3.4445') + Decimal('1.0023")
Decimal('4.45")

>>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023")
Decimal('4.44")

This method implements the to-number operation of the IBM specification. If the argument is a
string, no leading or trailing whitespace or underscores are permitted.

create_decimal_from_float (f)
Creates a new Decimal instance from a float f but rounding using self as the context. Unlike the
Decimal. from_float () class method, the context precision, rounding method, flags, and traps
are applied to the conversion.

>>> context = Context(prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_from_float(math.pi)
Decimal('3.1415")

>>> context = Context(prec=5, traps=[Inexact])

>>> context.create_decimal_from_float(math.pi)
Traceback (most recent call last):

decimal.Inexact: None

New in version 3.1.

Etiny ()
Returns a value equal to Emin - prec + 1 which is the minimum exponent value for subnormal
results. When underflow occurs, the exponent is set to Etiny.

Etop()
Returns a value equal to Emax - prec + 1.

The usual approach to working with decimals is to create Decimal instances and then apply arithmetic
operations which take place within the current context for the active thread. An alternative approach
is to use context methods for calculating within a specific context. The methods are similar to those
for the Decimal class and are only briefly recounted here.

abs (x)
Returns the absolute value of .

add (z, y)
Return the sum of z and y.

canonical(z)
Returns the same Decimal object z.

9.4.

decimal — Decimal fixed point and floating point arithmetic 299

The Python Library Reference, Release 3.6.5

compare (z, y)
Compares z and y numerically.

compare_signal(z, y)
Compares the values of the two operands numerically.

compare_total(z, y)
Compares two operands using their abstract representation.

compare_total_mag(z, y)
Compares two operands using their abstract representation, ignoring sign.

copy_abs ()
Returns a copy of x with the sign set to 0.

copy_negate (z)
Returns a copy of x with the sign inverted.

copy_sign(z, y)
Copies the sign from y to z.

divide(x, y)
Return z divided by y.

divide_int (z, y)
Return z divided by y, truncated to an integer.

divmod (z, ¥)
Divides two numbers and returns the integer part of the result.

exp ()

Returns e **

Z.

fma(z, y, 2)
Returns z multiplied by y, plus z.

is_canonical(x)
Returns True if z is canonical; otherwise returns False.

is_finite(x)

Returns True if z is finite; otherwise returns False.
is_infinite(x)

Returns True if z is infinite; otherwise returns False.

is_nan(z)
Returns True if z is a qNaN or sNaN; otherwise returns False.

is_normal(x)
Returns True if z is a normal number; otherwise returns False.

is_gnan(zx)
Returns True if z is a quiet NaN; otherwise returns False.

is_signed(x)
Returns True if z is negative; otherwise returns False.

is_snan(z)
Returns True if z is a signaling NaN; otherwise returns False.

is_subnormal (1)
Returns True if x is subnormal; otherwise returns False.

300 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

is_zero(z)
Returns True if z is a zero; otherwise returns False.

1n(x)
Returns the natural (base e) logarithm of z.

logl0(x)
Returns the base 10 logarithm of .

logb(z)
Returns the exponent of the magnitude of the operand’s MSD.

logical_and(z, 3)
Applies the logical operation and between each operand’s digits.

logical_invert(z)
Invert all the digits in z.

logical_or(z, y)
Applies the logical operation or between each operand’s digits.

logical_xor(z, y)
Applies the logical operation zor between each operand’s digits.

max (x, y)
Compares two values numerically and returns the maximum.

max_mag(x, y)
Compares the values numerically with their sign ignored.

min(x, y)
Compares two values numerically and returns the minimum.

min_mag(x,)
Compares the values numerically with their sign ignored.

minus (z)
Minus corresponds to the unary prefix minus operator in Python.

multiply(z, y)
Return the product of z and .

next_minus(x)
Returns the largest representable number smaller than z.

next_plus(z)
Returns the smallest representable number larger than z.

next_toward(z, y)
Returns the number closest to z, in direction towards .

normalize(x)
Reduces z to its simplest form.

number_class(z)
Returns an indication of the class of z.

plus(x)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context
precision and rounding, so it is not an identity operation.

power (z, y, modulo=None)
Return x to the power of y, reduced modulo modulo if given.

decimal — Decimal fixed point and floating point arithmetic 301

The Python Library Reference, Release 3.6.5

With two arguments, compute x**y. If x is negative then y must be integral. The result will
be inexact unless y is integral and the result is finite and can be expressed exactly in ‘precision’
digits. The rounding mode of the context is used. Results are always correctly-rounded in the
Python version.

Changed in version 3.3: The C module computes power () in terms of the correctly-rounded ezp ()
and In() functions. The result is well-defined but only “almost always correctly-rounded”.

With three arguments, compute (x**y) % modulo. For the three argument form, the following
restrictions on the arguments hold:

e all three arguments must be integral

o y must be nonnegative

o at least one of x or y must be nonzero

e modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context.power(x, y, modulo) is equal to the value that would be
obtained by computing (x**y) % modulo with unbounded precision, but is computed more effi-
ciently. The exponent of the result is zero, regardless of the exponents of x, y and modulo. The
result is always exact.

quantize(z, y)
Returns a value equal to z (rounded), having the exponent of y.

radix()
Just returns 10, as this is Decimal, :)

remainder (z, y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near(z, y)
Returns x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then
its sign will be the sign of z).

rotate(x, y)
Returns a rotated copy of z, y times.

same_quantum(z, ¥)
Returns True if the two operands have the same exponent.

scaleb(z, y)
Returns the first operand after adding the second value its exp.

shift(x, y)
Returns a shifted copy of z, y times.

sqrt(z)
Square root of a non-negative number to context precision.

subtract(z, y)
Return the difference between x and .

to_eng_string(x)
Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to
the left of the decimal place and may require the addition of either one or two trailing zeros.

302 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

to_integral_exact (z)
Rounds to an integer.

to_sci_string(x)
Converts a number to a string using scientific notation.

9.4.4 Constants

The constants in this section are only relevant for the C module. They are also included in the pure Python
version for compatibility.

32-bit 64-bit
decimal .MAX_PREC 425000000 999999999999999999
decimal .MAX_EMAX 425000000 999999999999999999
decimal . MIN_EMIN -425000000 -999999999999999999
decimal .MIN_ETINY -849999999 -1999999999999999997

decimal.HAVE_THREADS
The default value is True. If Python is compiled without threads, the C version automatically disables
the expensive thread local context machinery. In this case, the value is False.

9.4.5 Rounding modes

decimal.ROUND_CEILING
Round towards Infinity.

decimal.ROUND_DOWN
Round towards zero.

decimal .ROUND_FLOOR
Round towards -Infinity.

decimal.ROUND_HALF_DOWN
Round to nearest with ties going towards zero.

decimal.ROUND_HALF_EVEN
Round to nearest with ties going to nearest even integer.

decimal.ROUND_HALF_UP
Round to nearest with ties going away from zero.

decimal .ROUND_UP
Round away from zero.

decimal.ROUND_O5UP
Round away from zero if last digit after rounding towards zero would have been 0 or 5; otherwise round
towards zero.

9.4. decimal — Decimal fixed point and floating point arithmetic 303

The Python Library Reference, Release 3.6.5

9.4.6 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one
context trap enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked
for informational purposes (for instance, to determine whether a computation was exact). After checking
the flags, be sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be
raised. For example, if the DivisionByZero trap is set, then a DivisionByZero exception is raised upon
encountering the condition.

class decimal.Clamped
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If
possible, the exponent is reduced to fit by adding zeros to the coefficient.

class decimal.DecimalException
Base class for other signals and a subclass of ArithmeticError.

class decimal.DivisionByZero
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this
signal is not trapped, returns Infinity or -Infinity with the sign determined by the inputs to the
calculation.

class decimal.Inexact
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The
signal flag or trap is used to detect when results are inexact.

class decimal.InvalidOperation
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN.
Possible causes include:

Infinity - Infinity
0 * Infinity
Infinity / Infinity
x %0

Infinity 7 x
sqrt(-x) and x > 0
0 *x O

x ** (non-integer)

x *x Infinity

class decimal.Overflow
Numerical overflow.

Indicates the exponent is larger than Emax after rounding has occurred. If not trapped, the result
depends on the rounding mode, either pulling inward to the largest representable finite number or
rounding outward to Infinity. In either case, Inexzact and Rounded are also signaled.

class decimal.Rounded
Rounding occurred though possibly no information was lost.

304 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to
5.0). If not trapped, returns the result unchanged. This signal is used to detect loss of significant
digits.

class decimal.Subnormal

Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the
result unchanged.

class decimal.Underflow
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Inezact and Subnormal are also
signaled.

class decimal.FloatOperation
Enable stricter semantics for mixing floats and Decimals.

If the signal is not trapped (default), mixing floats and Decimals is permitted in the Decimal construc-
tor, create_decimal () and all comparison operators. Both conversion and comparisons are exact.
Any occurrence of a mixed operation is silently recorded by setting FloatOperation in the context
flags. Explicit conversions with from_float () or create_decimal_from_ float () do not set the flag.

Otherwise (the signal is trapped), only equality comparisons and explicit conversions are silent. All
other mixed operations raise FloatOperation.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError(exceptions.Exception)
DecimalException
Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow(Inexact, Rounded)
Underflow(Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal
FloatOperation(DecimalException, exceptions.TypeError)

9.4.7 Floating Point Notes
Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent
0.1 exactly); however, some operations can still incur round-off error when non-zero digits exceed the fixed
precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities
resulting in loss of significance. Knuth provides two instructive examples where rounded floating point
arithmetic with insufficient precision causes the breakdown of the associative and distributive properties of
addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext() .prec = 8

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic 305

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111")
>>> (u +v) + w

Decimal('9.5111111")

>>> u + (v + w)

Decimal('10")

>>> u, v, w = Decimal (20000), Decimal(-6), Decimal('6.0000003"')
>>> (u*v) + (u*w)

Decimal('0.01")

>>> u * (v+w)

Decimal('0.0060000")

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to
avoid loss of significance:

>>> getcontext() .prec = 20

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111")
>>> (u +v) +w

Decimal('9.51111111")

>>>u + (v + w)

Decimal('9.51111111")

>>>

>>> u, v, w = Decimal (20000), Decimal(-6), Decimal('6.0000003"')
>>> (u*v) + (u*w)

Decimal ('0.0060000"')

>>> u * (v+w)

Decimal('0.0060000")

Special values

The number system for the decimal module provides special values including NaN, sNaN, -Infinity,
Infinity, and two zeros, +0 and -O0.

Infinities can be constructed directly with: Decimal('Infinity'). Also, they can arise from dividing by
zero when the DivistionByZero signal is not trapped. Likewise, when the Overflow signal is not trapped,
infinity can result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very
large, indeterminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the InvalidOperation signal is trapped, raise an
exception. For example, 0/0 returns NaN which means “not a number”. This variety of NaN is quiet and, once
created, will flow through other computations always resulting in another NaN. This behavior can be useful
for a series of computations that occasionally have missing inputs — it allows the calculation to proceed
while flagging specific results as invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return
value when an invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a NaN is involved. A test
for equality where one of the operands is a quiet or signaling NaN always returns False (even when doing
Decimal ('NaN')==Decimal('NaN')), while a test for inequality always returns True. An attempt to compare
two Decimals using any of the <, <=, > or >= operators will raise the InvalidOperation signal if either
operand is a NaN, and return False if this signal is not trapped. Note that the General Decimal Arithmetic
specification does not specify the behavior of direct comparisons; these rules for comparisons involving a NaN

306 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

were taken from the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliance,
use the compare() and compare-signal () methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted
if the calculation had been carried out to greater precision. Since their magnitude is zero, both positive and
negative zeros are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero
with differing precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed
to normalized floating point representations, it is not immediately obvious that the following calculation
returns a value equal to zero:

>>> 1 / Decimal('Infinity')
Decimal ('0E-1000026")

9.4.8 Working with threads

The getcontext () function accesses a different Contezt object for each thread. Having separate thread
contexts means that threads may make changes (such as getcontext () .prec=10) without interfering with
other threads.

Likewise, the setcontexzt () function automatically assigns its target to the current thread.

If setcontezt () has not been called before getcontezt (), then getcontezt () will automatically create a
new context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that
each thread will use the same values throughout the application, directly modify the DefaultContext object.
This should be done before any threads are started so that there won’t be a race condition between threads
calling getcontext (). For example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1

setcontext (DefaultContext)

Afterwards, the threads can be started
tl.start()
t2.start ()
t3.start ()

9.4.9 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal
class:

def moneyfmt(value, places=2, curr='', sep=',', dp='.',
pos='', neg='-', trailneg='"'):
"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic 307

The Python Library Reference, Release 3.6.5

(continued from previous page)

sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)

only specify as blank when places is zero
pos: optional sign for postitive numbers: '+', space or blank
neg: optional sign for negative numbers: '-', '(', space or blank
trailneg:optional trailing minus indicator: '-', ')', space or blank

>>> d = Dectimal ('-1234567.8901")

>>> moneyfmt(d, curr='$"')

'-$1,234,567.89'

>>> moneyfmt(d, places=0, sep='.', dp='"', neg='"', trailneg='-"')
'1.234.568-"

>>> moneyfmt(d, curr='$', neg='(", trailneg=')"')
'($1,234,567.89) "'

>>> moneyfmt (Decimal (123456789), sep="' ')

'123 456 789.00'

>>> moneyfmt (Decimal ('-0.02'), neg='<', trailneg='>")

'<0.02>'

q = Decimal(10) ** -places # 2 places —=> '0.01'
sign, digits, exp = value.quantize(q).as_tuple()
result = []

digits = list(map(str, digits))
build, next = result.append, digits.pop
if sign:

build(trailneg)
for i in range(places):

build(next() if digits else '0')
if places:

build(dp)
if not digits:

build('0")
i=20
while digits:

build(next())

i+=1

if i == 3 and digits:

i=20
build(sep)

build(curr)
build(neg if sign else pos)
return ''.join(reversed(result))

def pi():
"""Compute Pi to the current precision.

>>> print (pi())
3.141592653589793238462643383

mmn

getcontext() .prec += 2 # extra digits for intermediate steps

three = Decimal(3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:

lasts = s

(continues on next page)

308 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

(continued from previous page)

n, na = ntna, nat+8
d, da = d+da, da+32
t=1(t*n)/d
s += t
getcontext () .prec -= 2
return +s # unary plus applies the new precision

def exp(x):
"""Return e raised to the power of x. Result type matches input type.

>>> print (exp (Decimal (1)))
2.718281828459045235360287471
>>> print (ezp (Decimal (2)))
7.389056098930650227230427461
>>> print (exp (2.0))
7.38905609893

>>> print (exp (2+07))
("7.38905609893+07)

mmn

getcontext () .prec += 2
i, lasts, s, fact, num = 0, O, 1, 1, 1
while s != lasts:
lasts = s
i+=1
fact *= i
num *= X
s += num / fact
getcontext () .prec -= 2
return +s

def cos(x):
"""Return the cosine of T as measured in Tadians.

The Taylor series approximation works best for a small wvalue of .
For larger values, first compute ¢ =z J (2 * pi).

>>> print (cos(Decimal ('0.5')))
0.8775825618903727161162815826
>>> print(cos(0.5))
0.87758256189

>>> print (cos(0.5+03))
(0.87758256189+075)

mmn

getcontext () .prec += 2
i, lasts, s, fact, num, sign =0, 0, 1, 1, 1, 1

while s != lasts:
lasts = s
i+=2

fact *= 1 * (i-1)

num *= X * X

sign *= -1

s += num / fact * sign
getcontext() .prec -= 2
return +s

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic

309

The Python Library Reference, Release 3.6.5

(continued from previous page)

def sin(x):
"""Return the sine of T as measured in radians.

The Taylor series approximation works best for a small wvalue of .
For larger values, first compute © =z 7 (2 * pi).

>>> print (sin(Decimal ('0.5')))
0.4794255386042030002732879352
>>> print (sin(0.5))
0.4794256538604

>>> print (sin(0.5+07))
(0.479425538604+05)

mmn

getcontext () .prec += 2
i, lasts, s, fact, num, sign =1, 0, x, 1, x, 1

while s != lasts:
lasts = s
i+=2

fact *= i * (i-1)

num *= X * X

sign *= -1

s += num / fact * sign
getcontext () .prec -= 2
return +s

9.4.10 Decimal FAQ

Q. It is cumbersome to type decimal.Decimal('1234.5'). Is there a way to minimize typing when using
the interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D('1.23"') + D('3.45")
Decimal('4.68")

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be
rounded. Others are not supposed to have excess digits and need to be validated. What methods should be
used?

A. The quantize () method rounds to a fixed number of decimal places. If the Inezact trap is set, it is also
useful for validation:

>>> TWOPLACES = Decimal(10) #** -2 # same as Decimal('0.01"')

>>> # Round to two places
>>> Decimal('3.214') .quantize (TWOPLACES)
Decimal('3.21")

>>> # Validate that a number does not exceed two places
>>> Decimal('3.21") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Decimal('3.21"')

310 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

>>> Decimal('3.214') .quantize (TWOPLACES, context=Context(traps=[Inexact]))
Traceback (most recent call last):

Inexact: None

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve
fixed point. Others operations, like division and non-integer multiplication, will change the number of
decimal places and need to be followed-up with a quantize() step:

>>> a = Decimal('102.72") # Initial fized-point values

>>> b = Decimal('3.17")

>>>a +b # Addition preserves fized-point
Decimal('105.89"')

>>> a - b

Decimal('99.55")

>>> a *x 42 # So does integer multiplication
Decimal('4314.24"')

>>> (a * b).quantize (TWOPLACES) # Must quantize non-integer multiplication
Decimal('325.62')

>>> (b / a).quantize(TWOPLACES) # And quantize division

Decimal('0.03")

In developing fixed-point applications, it is convenient to define functions to handle the quantize () step:

>>> def mul(x, y, fp=TWOPLACES):

. return (x * y).quantize(fp)

>>> def div(x, y, fp=TWOPLACES):
return (x / y).quantize(fp)

>>> mul(a, b) # Automatically preserve fized-point
Decimal('325.62')

>>> div(b, a)

Decimal('0.03"')

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and 02E+4 all have the
same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. The normalize () method maps all equivalent values to a single representative:

>>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
>>> [v.normalize() for v in values]
[Decimal ('2E+2'), Decimal ('2E+2'), Decimal('2E+2'), Decimal('2E+2')]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential
representation?

A. For some values, exponential notation is the only way to express the number of significant places in the
coefficient. For example, expressing 5.0E+3 as 5000 keeps the value constant but cannot show the original’s
two-place significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing
zeroes, losing significance, but keeping the value unchanged:

>>> def remove_exponent(d) :
return d.quantize(Decimal(1l)) if d == d.to_integral() else d.normalize()

9.4. decimal — Decimal fixed point and floating point arithmetic 311

The Python Library Reference, Release 3.6.5

>>> remove_exponent (Decimal ('5E+3'))
Decimal('5000')

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, any binary floating point number can be exactly expressed as a Decimal though an exact conversion
may take more precision than intuition would suggest:

>>> Decimal (math.pi)
Decimal('3.141592653589793115997963468544185161590576171875")

Q. Within a complex calculation, how can I make sure that I haven’t gotten a spurious result because of
insufficient precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater
precision and with various rounding modes. Widely differing results indicate insufficient precision, rounding
mode issues, ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there
anything to watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values.
Only the results are rounded. The advantage for inputs is that “what you type is what you get”. A
disadvantage is that the results can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext() .prec = 3

>>> Decimal('3.104') + Decimal('2.104")

Decimal('5.21")

>>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Decimal('5.20")

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext() .prec = 3
>>> +Decimal('1.23456789"') # unary plus triggers rounding
Decimal('1.23"')

Alternatively, inputs can be rounded upon creation using the Contezt.create_decimal () method:

>>> Context(prec=5, rounding=ROUND_DOWN) .create_decimal('1.2345678")
Decimal('1.2345")

9.5 fractions — Rational numbers

Source code: Lib/fractions.py

The fractions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a
string.

class fractions.Fraction(numerator=0, denominator=1)
class fractions.Fraction(other fraction)

class fractions.Fraction(float)

class fractions.Fraction(decimal)

312 Chapter 9. Numeric and Mathematical Modules

https://github.com/python/cpython/tree/3.6/Lib/fractions.py

The Python Library Reference, Release 3.6.5

class fractions.Fraction(string)

The first version requires that numerator and denominator are instances of numbers.Rational and
returns a new Fraction instance with value numerator/denominator. If denominator is O, it raises
a ZeroDivisionError. The second version requires that other fraction is an instance of numbers.
Rational and returns a Fraction instance with the same value. The next two versions accept either
a float or a decimal.Decimal instance, and return a Fraction instance with exactly the same
value. Note that due to the usual issues with binary floating-point (see tut-fp-issues), the argument to
Fraction(1.1) is not exactly equal to 11/10, and so Fraction(1.1) does not return Fraction(11,
10) as one might expect. (But see the documentation for the 1imit_denominator () method below.)
The last version of the constructor expects a string or unicode instance. The usual form for this
instance is:

[sign] numerator ['/' denominator]

(33

where the optional sign may be either ‘4’ or and numerator and denominator (if present) are
strings of decimal digits. In addition, any string that represents a finite value and is accepted by the
float constructor is also accepted by the Fraction constructor. In either form the input string may
also have leading and/or trailing whitespace. Here are some examples:

>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)

>>> Fraction(123)

Fraction(123, 1)

>>> Fraction()

Fraction(0, 1)

>>> Fraction('3/7")

Fraction(3, 7)

>>> Fraction(' -3/7 ')
Fraction(-3, 7)

>>> Fraction('1.414213 \t\n')
Fraction(1414213, 1000000)

>>> Fraction('-.125")
Fraction(-1, 8)

>>> Fraction('7e-6"')
Fraction(7, 1000000)

>>> Fraction(2.25)

Fraction(9, 4)

>>> Fraction(1.1)
Fraction(2476979795053773, 2251799813685248)
>>> from decimal import Decimal
>>> Fraction(Decimal('1.1'))
Fraction(11, 10)

The Fraction class inherits from the abstract base class numbers.Rational, and implements all of
the methods and operations from that class. Fraction instances are hashable, and should be treated
as immutable. In addition, Fraction has the following properties and methods:

Changed in version 3.2: The Fraction constructor now accepts float and decimal.Decimal instances.

numerator
Numerator of the Fraction in lowest term.

denominator
Denominator of the Fraction in lowest term.

from_float (fit)

9.5. fractions — Rational numbers 313

The Python Library Reference, Release 3.6.5

This class method constructs a Fraction representing the exact value of fit, which must be a
float. Beware that Fraction.from_float(0.3) is not the same value as Fraction(3, 10).

Note: From Python 3.2 onwards, you can also construct a Fraction instance directly from a
float.

from_decimal (dec)

This class method constructs a Fraction representing the exact value of dec, which must be a
decimal.Decimal instance.

Note: From Python 3.2 onwards, you can also construct a Fraction instance directly from a
decimal.Decimal instance.

limit_denominator (maz_denominator=1000000)

Finds and returns the closest Fraction to self that has denominator at most max_denominator.
This method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932"') .1imit_denominator (1000)
Fraction(355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos

>>> Fraction(cos(pi/3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction(cos(pi/3)).1limit_denominator ()
Fraction(1l, 2)

>>> Fraction(1.1).limit_denominator()
Fraction(11, 10)

__floor__QO)

Returns the greatest int <= self. This method can also be accessed through the math. floor()
function:

>>> from math import floor
>>> floor(Fraction(355, 113))
3

__ceil__QO

Returns the least int >= self. This method can also be accessed through the math.ceil ()
function.

__round__()
__round__ (ndigits)

The first version returns the nearest int to self, rounding half to even. The second version rounds
self to the nearest multiple of Fraction(1, 10%*ndigits) (logically, if ndigits is negative),
again rounding half toward even. This method can also be accessed through the round () function.

fractions.gcd(a, b)

Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the
absolute value of gcd(a, b) is the largest integer that divides both a and b. gcd(a,b) has the same
sign as b if b is nonzero; otherwise it takes the sign of a. gcd(0, 0) returns 0.

Deprecated since version 3.5: Use math.gcd() instead.

314

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

See also:

Module numbers The abstract base classes making up the numeric tower.

9.6 random — Generate pseudo-random numbers

Source code: Lib/random.py

This module implements pseudo-random number generators for various distributions.

For integers, there is uniform selection from a range. For sequences, there is uniform selection of a random
element, a function to generate a random permutation of a list in-place, and a function for random sampling
without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential,
gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random(), which generates a random float uni-
formly in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces
53-bit precision floats and has a period of 2*¥*19937-1. The underlying implementation in C is both fast
and threadsafe. The Mersenne Twister is one of the most extensively tested random number generators in
existence. However, being completely deterministic, it is not suitable for all purposes, and is completely
unsuitable for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random.Random
class. You can instantiate your own instances of Random to get generators that don’t share state.

Class Random can also be subclassed if you want to use a different basic generator of your own devising:
in that case, override the random(), seed(), getstate(), and setstate() methods. Optionally, a new
generator can supply a getrandbits() method — this allows randrange () to produce selections over an
arbitrarily large range.

The random module also provides the SystemRandom class which uses the system function os.urandom() to
generate random numbers from sources provided by the operating system.

Warning: The pseudo-random generators of this module should not be used for security purposes. For
security or cryptographic uses, see the secrets module.

See also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseu-
dorandom number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1,
January pp.3-30 1998.

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a
long period and comparatively simple update operations.

9.6.1 Bookkeeping functions

random. seed (a=None, version==2)
Initialize the random number generator.

9.6. random — Generate pseudo-random numbers 315

https://github.com/python/cpython/tree/3.6/Lib/random.py
https://code.activestate.com/recipes/576707/

The Python Library Reference, Release 3.6.5

If @ is omitted or None, the current system time is used. If randomness sources are provided by the
operating system, they are used instead of the system time (see the os.urandom() function for details
on availability).

If a is an int, it is used directly.

With version 2 (the default), a str, bytes, or bytearray object gets converted to an int and all of
its bits are used.

With version 1 (provided for reproducing random sequences from older versions of Python), the algo-
rithm for str and bytes generates a narrower range of seeds.

Changed in version 3.2: Moved to the version 2 scheme which uses all of the bits in a string seed.

random.getstate()

Return an object capturing the current internal state of the generator. This object can be passed to
setstate() to restore the state.

random.setstate (state)

state should have been obtained from a previous call to getstate(), and setstate() restores the
internal state of the generator to what it was at the time getstate() was called.

random.getrandbits (k)

Returns a Python integer with k& random bits. This method is supplied with the MersenneTwister
generator and some other generators may also provide it as an optional part of the API. When available,
getrandbits () enables randrange () to handle arbitrarily large ranges.

9.6.2 Functions for integers

random.randrange (stop)

random.randrange (start, stop[, step])

Return a randomly selected element from range(start, stop, step). This is equivalent to
choice(range(start, stop, step)), but doesn’t actually build a range object.

The positional argument pattern matches that of range (). Keyword arguments should not be used
because the function may use them in unexpected ways.

Changed in version 3.2: randrange () is more sophisticated about producing equally distributed values.
Formerly it used a style like int (random() #*n) which could produce slightly uneven distributions.

random.randint (a, b)

Return a random integer N such that a <= N <= b. Alias for randrange(a, b+1).

9.6.3 Functions for sequences

random.choice (seq)

random. choices (population, weights=None,

Return a random element from the non-empty sequence seq. If seq is empty, raises IndezError.

* cum__weights=None, k=1)

Return a k sized list of elements chosen from the population with replacement. If the population is
empty, raises IndexError.

If a weights sequence is specified, selections are made according to the relative weights. Alternatively, if
a cum,__weights sequence is given, the selections are made according to the cumulative weights (perhaps
computed using itertools.accumulate()). For example, the relative weights [10, 5, 30, 5] are
equivalent to the cumulative weights [10, 15, 45, 50]. Internally, the relative weights are converted
to cumulative weights before making selections, so supplying the cumulative weights saves work.

316

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

If neither weights nor cum_ weights are specified, selections are made with equal probability. If a
weights sequence is supplied, it must be the same length as the population sequence. It is a TypeError
to specify both weights and cum__ weights.

The weights or cum__weights can use any numeric type that interoperates with the float values re-
turned by random() (that includes integers, floats, and fractions but excludes decimals).

New in version 3.6.

random. shuffle(a:[, mndom])
Shuffle the sequence z in place.

The optional argument random is a 0-argument function returning a random float in [0.0, 1.0); by
default, this is the function random().

To shuffle an immutable sequence and return a new shuffled list, use sample(x, k=len(x)) instead.

Note that even for small 1len(x), the total number of permutations of x can quickly grow larger than
the period of most random number generators. This implies that most permutations of a long sequence
can never be generated. For example, a sequence of length 2080 is the largest that can fit within the
period of the Mersenne Twister random number generator.

random. sample (population, k)
Return a £ length list of unique elements chosen from the population sequence or set. Used for random
sampling without replacement.

Returns a new list containing elements from the population while leaving the original population
unchanged. The resulting list is in selection order so that all sub-slices will also be valid random
samples. This allows raffle winners (the sample) to be partitioned into grand prize and second place
winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then
each occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use a range () object as an argument. This is especially
fast and space efficient for sampling from a large population: sample(range(10000000), k=60).

If the sample size is larger than the population size, a ValueError is raised.

9.6.4 Real-valued distributions

The following functions generate specific real-valued distributions. Function parameters are named after the
corresponding variables in the distribution’s equation, as used in common mathematical practice; most of
these equations can be found in any statistics text.

random.random()
Return the next random floating point number in the range [0.0, 1.0).

random.uniform(a, b)
Return a random floating point number N such that a <= N <= bfora <= bandb <= N <= aforb
< a.

The end-point value b may or may not be included in the range depending on floating-point rounding
in the equation a + (b-a) * random().

random.triangular (low, high, mode)
Return a random floating point number N such that low <= N <= high and with the specified mode
between those bounds. The low and high bounds default to zero and one. The mode argument defaults
to the midpoint between the bounds, giving a symmetric distribution.

9.6. random — Generate pseudo-random numbers 317

The Python Library Reference, Release 3.6.5

random.betavariate (alpha, beta)
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range
between 0 and 1.

random. expovariate (lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The
parameter would be called “lambda”, but that is a reserved word in Python.) Returned values range
from 0 to positive infinity if lambd is positive, and from negative infinity to 0 if lambd is negative.

random.gammavariate (alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and
beta > 0.

The probability distribution function is:

x ** (alpha - 1) * math.exp(-x / beta)

math.gamma(alpha) * beta ** alpha

random. gauss (mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster
than the normalvariate () function defined below.

random. lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal
distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must be
greater than zero.

random.normalvariate (mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

random.vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration param-
eter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces
to a uniform random angle over the range 0 to 2*pi.

random.paretovariate (alpha)
Pareto distribution. alpha is the shape parameter.

random.weibullvariate Calpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

9.6.5 Alternative Generator

class random.SystemRandom([seed])
Class that uses the os.urandom() function for generating random numbers from sources provided by
the operating system. Not available on all systems. Does not rely on software state, and sequences are
not reproducible. Accordingly, the seed () method has no effect and is ignored. The getstate() and
setstate() methods raise NotImplementedError if called.

9.6.6 Notes on Reproducibility

Sometimes it is useful to be able to reproduce the sequences given by a pseudo random number generator.
By re-using a seed value, the same sequence should be reproducible from run to run as long as multiple
threads are not running.

318 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

Most of the random module’s algorithms and seeding functions are subject to change across Python versions,
but two aspects are guaranteed not to change:

e If a new seeding method is added, then a backward compatible seeder will be offered.

e The generator’s random() method will continue to produce the same sequence when the compatible
seeder is given the same seed.

9.6.7 Examples and Recipes

Basic examples:

>>> random() # Random float: 0.0 <=z < 1.0
0.37444887175646646

>>> uniform(2.5, 10.0) # Random float: 2.5 <=z < 10.0
3.1800146073117523

>>> expovariate(l / 5) # Interval between arrivals averaging 5 seconds
5.148957571865031

>>> randrange (10) # Integer from O to 9 inclusive

7

>>> randrange(0, 101, 2) # Even integer from O to 100 inclusive
26

>>> choice(['win', 'lose', 'draw'l]) # Single random element from a sequence
'draw'

>>> deck = 'ace two three four'.split()

>>> shuffle(deck) # Shuffle a list

>>> deck

['four', 'two', 'ace', 'three'l

>>> sample([10, 20, 30, 40, 501, k=4) # Four samples without replacement
[40, 10, 50, 30]

Simulations:

>>> # Sixz roulette wheel spins (weighted sampling with replacement)
>>> choices(['red', 'black', 'green']l, [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']

>>> # Deal 20 cards without replacement from a deck of 52 playing cards
>>> # and determine the proportion of cards with a ten-value

>>> # (a ten, jack, queen, or king).

>>> deck collections.Counter (tens=16, low_cards=36)

>>> seen = sample(list(deck.elements()), k=20)

>>> seen.count('tens') / 20

0.15

>>> # Estimate the probability of getting 5 or more heads from 7 spins

>>> # of a biased coin that settles on heads 60/ of the time.

>>> trial = lambda: choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
>>> sum(trial() for i in range(10000)) / 10000

0.4169

(continues on next page)

9.6. random — Generate pseudo-random numbers 319

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> # Probability of the median of 5 samples being in middle two quartiles
>>> trial = lambda : 2500 <= sorted(choices(range(10000), k=5))[2] < 7500
>>> sum(trial() for i in range(10000)) / 10000

0.7958

Example of statistical bootstrapping using resampling with replacement to estimate a confidence interval for
the mean of a sample of size five:

http://statistics.about.com/od/Applications/a/Example-0f-Bootstrapping.htm
from statistics import mean
from random import choices

data = 1, 2, 4, 4, 10

means = sorted(mean(choices(data, k=5)) for i in range(20))

print (f'The sample mean of {mean(data):.1f} has a 90/ confidence '
f'interval from {means/[1]:.1f} to {means[-2]:.1f}")

Example of a resampling permutation test to determine the statistical significance or p-value of an observed
difference between the effects of a drug versus a placebo:

Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import mean
from random import shuffle

drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean(placebo)

n = 10000

count = 0

combined = drug + placebo

for i in range(n):
shuffle(combined)
new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):])
count += (new_diff >= observed_diff)

print(f'{n} label reshufflings produced only {count} instances with a difference')
print(f'at least as extreme as the observed difference of {observed_diff:.1fF.")
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
print (f 'hypothesis that there is no difference between the drug and the placebo.')

Simulation of arrival times and service deliveries in a single server queue:

from random import expovariate, gauss
from statistics import mean, median, stdev

average_arrival_interval = 5.6
average_service_time = 5.0
stdev_service_time = 0.5

num_waiting = 0O
arrivals = []

starts = []

arrival = service_end = 0.0
for i in range(20000):

(continues on next page)

320 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests
https://en.wikipedia.org/wiki/P-value

The Python Library Reference, Release 3.6.5

(continued from previous page)

if arrival <= service_end:
num_waiting += 1
arrival += expovariate(1.0 / average_arrival_interval)
arrivals.append(arrival)

else:
num_waiting -= 1
service_start = service_end if num_waiting else arrival
service_time = gauss(average_service_time, stdev_service_time)
service_end = service_start + service_time
starts.append(service_start)

waits = [start - arrival for arrival, start in zip(arrivals, starts)]
print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.')
print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.')

See also:

Statistics for Hackers a video tutorial by Jake Vanderplas on statistical analysis using just a few fundamental
concepts including simulation, sampling, shuffling, and cross-validation.

Economics Simulation a simulation of a marketplace by Peter Norvig that shows effective use of many of
the tools and distributions provided by this module (gauss, uniform, sample, betavariate, choice, triangular,
and randrange).

A Concrete Introduction to Probability (using Python) a tutorial by Peter Norvig covering the basics of
probability theory, how to write simulations, and how to perform data analysis using Python.

0.7 statistics — Mathematical statistics functions

New in version 3.4.

Source code: Lib/statistics.py

This module provides functions for calculating mathematical statistics of numeric (Real-valued) data.

Note: Unless explicitly noted otherwise, these functions support int, float, decimal.Decimal and
fractions.Fraction. Behaviour with other types (whether in the numeric tower or not) is currently
unsupported. Mixed types are also undefined and implementation-dependent. If your input data consists of
mixed types, you may be able to use map () to ensure a consistent result, e.g. map(float, input_data).

9.7.1 Averages and measures of central location

These functions calculate an average or typical value from a population or sample.

mean () Arithmetic mean (“average”) of data.
harmonic_mean () Harmonic mean of data.

median () Median (middle value) of data.
median_low() Low median of data.

median_high() High median of data.

median_grouped() | Median, or 50th percentile, of grouped data.
mode () Mode (most common value) of discrete data.

9.7. statistics — Mathematical statistics functions 321

https://www.youtube.com/watch?v=Iq9DzN6mvYA
https://us.pycon.org/2016/speaker/profile/295/
http://nbviewer.jupyter.org/url/norvig.com/ipython/Economics.ipynb
http://norvig.com/bio.html
http://nbviewer.jupyter.org/url/norvig.com/ipython/Probability.ipynb
http://norvig.com/bio.html
https://github.com/python/cpython/tree/3.6/Lib/statistics.py

The Python Library Reference, Release 3.6.5

9.7.2 Measures of spread

These functions calculate a measure of how much the population or sample tends to deviate from the typical
or average values.

pstdev () Population standard deviation of data.
pvariance() | Population variance of data.

stdev() Sample standard deviation of data.
variance () Sample variance of data.

9.7.3 Function details

Note: The functions do not require the data given to them to be sorted. However, for reading convenience,
most of the examples show sorted sequences.

statistics.mean(data)

Return the sample arithmetic mean of data which can be a sequence or iterator.

The arithmetic mean is the sum of the data divided by the number of data points. It is commonly
called “the average”, although it is only one of many different mathematical averages. It is a measure
of the central location of the data.

If data is empty, StatisticsError will be raised.

Some examples of use:

>>> mean([1, 2, 3, 4, 4])

2.8

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625

>>> from fractions import Fraction as F
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
Fraction(13, 21)

>>> from decimal import Decimal as D
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
Decimal('0.5625")

Note: The mean is strongly affected by outliers and is not a robust estimator for central location: the
mean is not necessarily a typical example of the data points. For more robust, although less efficient,
measures of central location, see median() and mode (). (In this case, “efficient” refers to statistical
efficiency rather than computational efficiency.)

The sample mean gives an unbiased estimate of the true population mean, which means that, taken
on average over all the possible samples, mean (sample) converges on the true mean of the entire pop-
ulation. If data represents the entire population rather than a sample, then mean(data) is equivalent
to calculating the true population mean pu.

statistics.harmonic_mean(data)

Return the harmonic mean of data, a sequence or iterator of real-valued numbers.

The harmonic mean, sometimes called the subcontrary mean, is the reciprocal of the arithmetic mean ()
of the reciprocals of the data. For example, the harmonic mean of three values a, b and ¢ will be
equivalent to 3/(1/a + 1/b + 1/c).

322

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

The harmonic mean is a type of average, a measure of the central location of the data. It is often
appropriate when averaging quantities which are rates or ratios, for example speeds. For example:

Suppose an investor purchases an equal value of shares in each of three companies, with P/E
(price/earning) ratios of 2.5, 3 and 10. What is the average P/E ratio for the investor’s portfolio?

>>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio.
3.6

Using the arithmetic mean would give an average of about 5.167, which is too high.
StatisticsError is raised if data is empty, or any element is less than zero.

New in version 3.6.

statistics.median(data)

Return the median (middle value) of numeric data, using the common “mean of middle two” method.
If data is empty, StatisticsError is raised. data can be a sequence or iterator.

The median is a robust measure of central location, and is less affected by the presence of outliers in
your data. When the number of data points is odd, the middle data point is returned:

>>> median([1, 3, 5])
3

When the number of data points is even, the median is interpolated by taking the average of the two
middle values:

>>> median([1, 3, 5, 71)
4.0

This is suited for when your data is discrete, and you don’t mind that the median may not be an actual
data point.

See also:

median_low(), median_high(), medtan_grouped()

statistics.median_low(data)

Return the low median of numeric data. If data is empty, StatisticsError is raised. data can be a
sequence or iterator.

The low median is always a member of the data set. When the number of data points is odd, the
middle value is returned. When it is even, the smaller of the two middle values is returned.

>>> median_low([1, 3, 5])

3

>>> median_low([1, 3, 5, 7])
3

Use the low median when your data are discrete and you prefer the median to be an actual data point
rather than interpolated.

statistics.median_high(data)

Return the high median of data. If data is empty, StatisticsError is raised. data can be a sequence
or iterator.

The high median is always a member of the data set. When the number of data points is odd, the
middle value is returned. When it is even, the larger of the two middle values is returned.

9.7.

statistics — Mathematical statistics functions 323

The Python Library Reference, Release 3.6.5

>>> median_high([1, 3, 5])

3

>>> median_high([l, 3, 5, 71)
5

Use the high median when your data are discrete and you prefer the median to be an actual data point
rather than interpolated.

statistics.median_grouped (data, interval=1)

Return the median of grouped continuous data, calculated as the 50th percentile, using interpolation.
If data is empty, StatisticsError is raised. data can be a sequence or iterator.

>>> median_grouped([52, 52, 53, 54])
52.5

In the following example, the data are rounded, so that each value represents the midpoint of data
classes, e.g. 1 is the midpoint of the class 0.5-1.5, 2 is the midpoint of 1.5-2.5, 3 is the midpoint of 2.5—
3.5, etc. With the data given, the middle value falls somewhere in the class 3.5—4.5, and interpolation
is used to estimate it:

>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
3.7

Optional argument interval represents the class interval, and defaults to 1. Changing the class interval
naturally will change the interpolation:

>>> median_grouped([1, 3, 3, 5, 7], interval=1)
3.25
>>> median_grouped([1, 3, 3, 5, 7], interval=2)
3.5

This function does not check whether the data points are at least interval apart.

CPython implementation detail: Under some circumstances, median_grouped () may coerce data
points to floats. This behaviour is likely to change in the future.

See also:

o “Statistics for the Behavioral Sciences”, Frederick J Gravetter and Larry B Wallnau (8th Edition).
¢ Calculating the median.

e The SSMEDIAN function in the Gnome Gnumeric spreadsheet, including this discussion.

statistics.mode (data)

Return the most common data point from discrete or nominal data. The mode (when it exists) is the
most typical value, and is a robust measure of central location.

If data is empty, or if there is not exactly one most common value, StatisticsError is raised.

mode assumes discrete data, and returns a single value. This is the standard treatment of the mode as
commonly taught in schools:

>>> mode([1, 1, 2, 3, 3, 3, 3, 41)
3

The mode is unique in that it is the only statistic which also applies to nominal (non-numeric) data:

324

Chapter 9. Numeric and Mathematical Modules

https://www.ualberta.ca/~opscan/median.html
https://help.gnome.org/users/gnumeric/stable/gnumeric.html#gnumeric-function-SSMEDIAN
https://mail.gnome.org/archives/gnumeric-list/2011-April/msg00018.html

The Python Library Reference, Release 3.6.5

>>> mode(["red", "blue", "blue", "red", ||greenn, "red", uredn])
'red'

statistics.pstdev(data, mu=None)

Return the population standard deviation (the square root of the population variance). See
pvariance () for arguments and other details.

>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
0.986893273527251

statistics.pvariance(data, mu=None)

Return the population variance of data, a non-empty iterable of real-valued numbers. Variance, or
second moment about the mean, is a measure of the variability (spread or dispersion) of data. A large
variance indicates that the data is spread out; a small variance indicates it is clustered closely around
the mean.

If the optional second argument mu is given, it should be the mean of data. If it is missing or None
(the default), the mean is automatically calculated.

Use this function to calculate the variance from the entire population. To estimate the variance from
a sample, the variance () function is usually a better choice.

Raises StatisticsError if data is empty.

Examples:

>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
>>> pvariance(data)
1.25

If you have already calculated the mean of your data, you can pass it as the optional second argument
mu to avoid recalculation:

>>> mu = mean(data)
>>> pvariance(data, mu)
1.25

This function does not attempt to verify that you have passed the actual mean as mu. Using arbitrary
values for mu may lead to invalid or impossible results.

Decimals and Fractions are supported:

>>> from decimal import Decimal as D
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]1)
Decimal('24.815"')

>>> from fractions import Fraction as F
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)1)
Fraction(13, 72)

Note: When called with the entire population, this gives the population variance c2. When called
on a sample instead, this is the biased sample variance s2, also known as variance with N degrees of
freedom.

If you somehow know the true population mean p, you may use this function to calculate the variance
of a sample, giving the known population mean as the second argument. Provided the data points are

9.7.

statistics — Mathematical statistics functions 325

The Python Library Reference, Release 3.6.5

representative (e.g. independent and identically distributed), the result will be an unbiased estimate
of the population variance.

statistics.stdev(data, xbar=None)

Return the sample standard deviation (the square root of the sample variance). See variance() for
arguments and other details.

>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
1.0810874155219827

statistics.variance(data, zbar=None)

Return the sample variance of data, an iterable of at least two real-valued numbers. Variance, or
second moment about the mean, is a measure of the variability (spread or dispersion) of data. A large
variance indicates that the data is spread out; a small variance indicates it is clustered closely around
the mean.

If the optional second argument zbar is given, it should be the mean of data. If it is missing or None
(the default), the mean is automatically calculated.

Use this function when your data is a sample from a population. To calculate the variance from the
entire population, see pvariance().

Raises StatisticsError if data has fewer than two values.

Examples:

>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> variance(data)
1.3720238095238095

If you have already calculated the mean of your data, you can pass it as the optional second argument
xbar to avoid recalculation:

>>> m = mean(data)
>>> variance(data, m)
1.3720238095238095

This function does not attempt to verify that you have passed the actual mean as zbar. Using arbitrary
values for zbar can lead to invalid or impossible results.

Decimal and Fraction values are supported:

>>> from decimal import Decimal as D
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")1)
Decimal('31.01875"')

>>> from fractions import Fraction as F
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
Fraction(67, 108)

Note: This is the sample variance s with Bessel’s correction, also known as variance with N-1
degrees of freedom. Provided that the data points are representative (e.g. independent and identically
distributed), the result should be an unbiased estimate of the true population variance.

If you somehow know the actual population mean p you should pass it to the pvariance () function
as the mu parameter to get the variance of a sample.

326

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.6.5

9.7.4 Exceptions

A single exception is defined:

exception statistics.StatisticsError
Subclass of ValueError for statistics-related exceptions.

9.7. statistics — Mathematical statistics functions 327

The Python Library Reference, Release 3.6.5

328 Chapter 9. Numeric and Mathematical Modules

CHAPTER

TEN

FUNCTIONAL PROGRAMMING MODULES

The modules described in this chapter provide functions and classes that support a functional programming
style, and general operations on callables.

The following modules are documented in this chapter:

10.1 itertools — Functions creating iterators for efficient looping

This module implements a number of iterator building blocks inspired by constructs from APL, Haskell, and
SML. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in
combination. Together, they form an “iterator algebra” making it possible to construct specialized tools
succinctly and efficiently in pure Python.

For instance, SML provides a tabulation tool: tabulate(f) which produces a sequence £(0), £(1),
The same effect can be achieved in Python by combining map () and count () to form map(f, count()).

These tools and their built-in counterparts also work well with the high-speed functions in the operator
module. For example, the multiplication operator can be mapped across two vectors to form an efficient
dot-product: sum(map (operator.mul, vectorl, vector2)).

Infinite iterators:

Iterator Argu- Results Example
ments

count () | start, start, start+step, start+2*step, ... count (10) --> 10 11 12 13 14
[step] e

cycle() | p p0, pl, ... plast, p0, pl, .. cycle('ABCD') --> ABCDABC

D ...
repeat ()| elem [n] elem, elem, elem, ... endlessly or up to n | repeat(10, 3) --> 10 10 10
times

Iterators terminating on the shortest input sequence:

329

The Python Library Reference, Release 3.6.5

Iterator Arguments Results Example
accumulate() | p [,func| p0, pO+pl, p0+pl+p2, .. | accumulate([1,2,3,4,5]) --> 1 3 6
10 15
chain() Py Qs - p0, pl, .. plast, q0, ql, .. | chain('ABC', 'DEF') --> AB C D E
F
chain. iterable p0, pl, .. plast, q0, ql, ... | chain.from_iterable(['ABC',
from_iterable() 'DEF']) --=> ABCDEF
compress () data, selectors | (d[0] if s[0]), (d[1] if s[1]), | compress('ABCDEF', [1,0,1,0,1,1])
-—>ACEF
dropwhile() pred, seq seq[n], seq[n+1], starting | dropwhile(lambda x: x<5, [1,4,6,
when pred fails 4,1]1) --> 6 4 1
filterfalse() | pred, seq elements of seq where | filterfalse(lambda x: x%2,
pred(elem) is false range(10)) --> 0 2 4 6 8
groupby () iterable[, key] | sub-iterators grouped by
value of key(v)
islice() seq, |[start,] | elements from | islice('ABCDEFG', 2, None) --> C D
stop [, step] seq|[start:stop:step] EFG
starmap () func, seq func(*seq[0]), starmap (pow, [(2,5), (3,2), (10,
func(*seq[1]), ... 3)1) --> 32 9 1000
takewhile () pred, seq seq[0], seq[1], until pred | takewhile(lambda x: x<5, [1,4,6,
fails 4,1]1) -—> 1 4
tee() it, n itl, it2, .. itn splits one
iterator into n
zip_longest() | p, q, .. (p[0], q[0]), (p[1], a[1]), - | zip_longest('ABCD', 'xy',
fillvalue='-') --> Ax By C- D-
Combinatoric iterators:
Iterator Arguments Results
product () P, g, [re- | cartesian product, equivalent to a nested for-
peat=1] loop
permutations () p[, 1] r-length tuples, all possible orderings, no re-
peated elements
combinations () p, T r-length tuples, in sorted order, no repeated el-
ements
combinations_with_replacement() | p,r r-length tuples, in sorted order, with repeated
elements
product ('ABCD', repeat=2) AA AB AC AD BA BB BC BD CA CB CC CD DA
DB DC DD
permutations('ABCD', 2) AB AC AD BA BC BD CA CB CD DA DB DC
combinations('ABCD', 2) AB AC AD BC BD CD
combinations_with_replacement ('ABCD', AA AB AC AD BB BC BD CC CD DD
2)

10.1.1 Itertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length,
so they should only be accessed by functions or loops that truncate the stream.

itertools .accumulate(z’temble[7 func])
Make an iterator that returns accumulated sums, or accumulated results of other binary functions

330 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.6.5

(specified via the optional func argument). If func is supplied, it should be a function of two arguments.
Elements of the input iterable may be any type that can be accepted as arguments to func. (For
example, with the default operation of addition, elements may be any addable type including Decimal
or Fraction.) If the input iterable is empty, the output iterable will also be empty.

Roughly equivalent to:

def accumulate(iterable, func=operator.add):
'Return running totals'
accumulate([1,2,3,4,5]) --> 1 3 6 10 15
accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120
it = iter(iterable)
try:
total = next(it)
except StopIteration:
return
yield total
for element in it:
total = func(total, element)
yield total

There are a number of uses for the func argument. It can be set to min() for a running minimum,
maz () for a running maximum, or operator.mul () for a running product. Amortization tables can be
built by accumulating interest and applying payments. First-order recurrence relations can be modeled
by supplying the initial value in the iterable and using only the accumulated total in func argument:

>>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]

>>> list(accumulate(data, operator.mul)) # running product
[3, 12, 72, 144, 144, 1296, 0, 0, 0, O]
>>> list(accumulate(data, max)) # Tunning mazimum

[3, 4, 6,6,6,9,9,9,09, 9]

Amortize a 5% loan of 1000 with 4 annual payments of 90

>>> cashflows = [1000, -90, -90, -90, -90]

>>> list(accumulate(cashflows, lambda bal, pmt: bal*1.05 + pmt))
[1000, 960.0, 918.0, 873.9000000000001, 827.5950000000001]

Chaotic recurrence relation https://en.wikipedia.org/wiki/Logistic_map

>>> logistic_map = lambda x, _: r * x * (1 - x)

>>>r = 3.8

>>> x0 = 0.4

>>> inputs = repeat(x0, 36) # only the initial value is used

>>> [format(x, '.2f') for x in accumulate(inputs, logistic_map)]

['O0.40', '0.91', '0.30', '0.81', '0.60', '0.92', '0.29', '0.79', '0.63"',
'0.88', '0.39', '0.90', '0.33', '0.84', '0.52', '0.95', '0.18', '0.57',
'0.93', '0.25', 'O.71', '0.79', '0.63', '0.88', '0.39', '0.91', '0.32',
'0.83', '0.54', '0.95', '0.20', '0.60', '0.91', '0.30', '0.80', '0.60']

See functools.reduce() for a similar function that returns only the final accumulated value.
New in version 3.2.

Changed in version 3.3: Added the optional func parameter.

itertools.chain(*iterables)

Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to
the next iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a
single sequence. Roughly equivalent to:

itertools — Functions creating iterators for efficient looping 331

https://en.wikipedia.org/wiki/Recurrence_relation

The Python Library Reference, Release 3.6.5

def chain(*iterables):
chain('ABC', 'DEF') --=> A BCDZEF
for it in iterables:
for element in it:
yield element

classmethod chain.from_iterable (iterable)

Alternate constructor for chain (). Gets chained inputs from a single iterable argument that is evalu-
ated lazily. Roughly equivalent to:

def from_iterable(iterables):
chain. from_tterable(['ABC', 'DEF']) --> ABCDEF
for it in iterables:
for element in it:
yield element

itertools.combinations (iterable, 1)

Return r length subsequences of elements from the input iterable.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements
are unique, there will be no repeat values in each combination.

Roughly equivalent to:

def combinations(iterable, r):
combinations('ABCD', 2) --> AB AC AD BC BD CD
combinations (range(4), 3) --> 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:
return
indices = list(range(r))
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] '=i + n - r:
break
else:
return
indices[i] += 1
for j in range(i+l, r):
indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)

The code for combinations () can be also expressed as a subsequence of permutations () after filtering
entries where the elements are not in sorted order (according to their position in the input pool):

def combinations(iterable, r):
pool = tuple(iterable)
n = len(pool)
for indices in permutations(range(n), r):
if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)

The number of items returned isn! / r! / (n-r)! when O <= r <= n or zero when r > n.

332

Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.6.5

itertools.combinations_with_replacement (iterable,)
Return r length subsequences of elements from the input iterable allowing individual elements to be
repeated more than once.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements
are unique, the generated combinations will also be unique.

Roughly equivalent to:

def combinations_with_replacement(iterable, r):
combinations_with_replacement ('ABC', 2) --> AA AB AC BB BC CC
pool = tuple(iterable)
n = len(pool)
if not n and r:
return
indices = [0] * r
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):

if indices[i] !'= n - 1:
break
else:
return
indices[i:] = [indices[i] + 1] * (r - i)

yield tuple(pool[i] for i in indices)

The code for combinations_with_replacement () can be also expressed as a subsequence of product ()
after filtering entries where the elements are not in sorted order (according to their position in the input
pool):

def combinations_with_replacement(iterable, r):
pool = tuple(iterable)
n = len(pool)
for indices in product(range(n), repeat=r):
if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)

The number of items returned is (n+r-1)! / r! / (n-1)! whenn > 0.
New in version 3.1.

itertools. compress (data, selectors)
Make an iterator that filters elements from data returning only those that have a corresponding element
in selectors that evaluates to True. Stops when either the data or selectors iterables has been exhausted.
Roughly equivalent to:

def compress(data, selectors):
compress('ABCDEF', [1,0,1,0,1,1]) --> A CEF
return (d for d, s in zip(data, selectors) if s)

New in version 3.1.

itertools.count (start=0, step=1)
Make an iterator that returns evenly spaced values starting with number start. Often used as an
argument to map () to generate consecutive data points. Also, used with zip() to add sequence
numbers. Roughly equivalent to:

10.1. itertools — Functions creating iterators for efficient looping 333

The Python Library Reference, Release 3.6.5

def count(start=0, step=1):
count(10) --> 10 11 12 13 14 ...
count (2.5, 0.5) -> 2.5 3.0 3.5 ...

n = start

while True:
yield n
n += step

When counting with floating point numbers, better accuracy can sometimes be achieved by substituting
multiplicative code such as: (start + step * i for i in count()).

Changed in version 3.1: Added step argument and allowed non-integer arguments.

itertools.cycle (iterable)

Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is
exhausted, return elements from the saved copy. Repeats indefinitely. Roughly equivalent to:

def cycle(iterable):

cycle('ABCD') --> ABCDABCDABCD ...
saved = []
for element in iterable:

yield element

saved.append (element)
while saved:

for element in saved:

yield element

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of
the iterable).

itertools.dropwhile (predicate, iterable)

Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards,
returns every element. Note, the iterator does not produce any output until the predicate first becomes
false, so it may have a lengthy start-up time. Roughly equivalent to:

def dropwhile(predicate, iterable):
dropwhile(lambda xz: =<5, [1,4,6,4,1]) -=> 6 4 1
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x

itertools.filterfalse (predicate, iterable)

Make an iterator that filters elements from iterable returning only those for which the predicate is
False. If predicate is None, return the items that are false. Roughly equivalent to:

def filterfalse(predicate, iterable):
filterfalse(lambda z: =72, range(10)) --> 0 2 4 6 8
if predicate is Nome:
predicate = bool
for x in iterable:
if not predicate(x):
yield x

itertools.groupby (iterable, key=None)

Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.6.5

Make an iterator that returns consecutive keys and groups from the iterable. The key is a function
computing a key value for each element. If not specified or is None, key defaults to an identity function
and returns the element unchanged. Generally, the iterable needs to already be sorted on the same
key function.

The operation of groupby () is similar to the uniq filter in Unix. It generates a break or new group
every time the value of the key function changes (which is why it is usually necessary to have sorted the
data using the same key function). That behavior differs from SQL’s GROUP BY which aggregates
common elements regardless of their input order.

The returned group is itself an iterator that shares the underlying iterable with groupby (). Because
the source is shared, when the groupby () object is advanced, the previous group is no longer visible.
So, if that data is needed later, it should be stored as a list:

groups = []

uniquekeys = []

data = sorted(data, key=keyfunc)

for k, g in groupby(data, keyfunc):
groups . append(list(g)) # Store group iterator as a list
uniquekeys.append (k)

groupby () is roughly equivalent to:

class groupby:
[k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
[list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
def __init__(self, iterable, key=None):
if key is None:
key = lambda x: x
self.keyfunc = key
self.it = iter(iterable)
self.tgtkey = self.currkey = self.currvalue = object()
def __iter__(self):
return self
def __next__(self):
while self.currkey == self.tgtkey:
self.currvalue = next(self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)
self.tgtkey = self.currkey
return (self.currkey, self._grouper(self.tgtkey))
def _grouper(self, tgtkey):
while self.currkey == tgtkey:
yield self.currvalue
try:
self.currvalue = next(self.it)
except StopIteration:
return
self.currkey = self.keyfunc(self.currvalue)

itertools.islice (iterable, stop)

itertools.islice (iterable, start, stop[, step])

Make an iterator that returns selected elements from the iterable. If start is non-zero, then elements
from the iterable are skipped until start is reached. Afterward, elements are returned consecutively
unless step is set higher than one which results in items being skipped. If stop is None, then iteration
continues until the iterator is exhausted, if at all; otherwise, it stops at the specified position. Unlike
regular slicing, islice() does not support negative values for start, stop, or step. Can be used to
extract related fields from data where the internal structure has been flattened (for example, a multi-
line report may list a name field on every third line). Roughly equivalent to:

10.1.

itertools — Functions creating iterators for efficient looping 335

The Python Library Reference, Release 3.6.5

def islice(iterable, *args):
islice('ABCDEFG', 2) --> A B
4islice('ABCDEFG', 2, 4) -=> C D
islice('ABCDEFG', 2, None) --> CD E F G
islice('ABCDEFG', 0, Nome, 2) -=> A C E G
s = slice(*args)
it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
try:
nexti = next(it)
except StoplIteration:
return
for i, element in enumerate(iterable):
if i == nexti:
yield element
nexti = next(it)

If start is None, then iteration starts at zero. If step is None, then the step defaults to one.

itertools.permutations (iterable, r=None)
Return successive r length permutations of elements in the iterable.

If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length
permutations are generated.

Permutations are emitted in lexicographic sort order. So, if the input iterable is sorted, the permutation
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements
are unique, there will be no repeat values in each permutation.

Roughly equivalent to:

def permutations(iterable, r=None):
permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
permutations (range(3)) --> 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:
return
indices = list(range(n))
cycles = list(range(n, n-r, -1))
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[i:] = indices[i+1:] + indices[i:i+1]
cycles[i] = n - i
else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return

The code for permutations () can be also expressed as a subsequence of product (), filtered to exclude
entries with repeated elements (those from the same position in the input pool):

336 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.6.5

def permutations(iterable, r=None):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product(range(n), repeat=r):
if len(set(indices)) == r:
yield tuple(pool[i] for i in indices)

The number of items returned isn! / (n-r)! when 0 <= r <= n or zero when r > n.

itertools.product (*iterables, repeat=1)
Cartesian product of input iterables.

Roughly equivalent to nested for-loops in a generator expression. For example, product (A, B) returns
the same as ((x,y) for x in A for y in B).

The nested loops cycle like an odometer with the rightmost element advancing on every iteration. This
pattern creates a lexicographic ordering so that if the input’s iterables are sorted, the product tuples
are emitted in sorted order.

To compute the product of an iterable with itself, specify the number of repetitions with the optional
repeat keyword argument. For example, product (A, repeat=4) means the same as product(A, A,
A, A).

This function is roughly equivalent to the following code, except that the actual implementation does
not build up intermediate results in memory:

def product(*args, repeat=1):
product ('ABCD', 'zy') --> Az Ay Bz By Cz Cy Dz Dy
product (range(2), repeat=3) --> 000 001 010 011 100 101 110 111
pools = [tuple(pool) for pool in args] * repeat
result = [[1]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)

itertools.repeat (object[, tz’mes])
Make an iterator that returns object over and over again. Runs indefinitely unless the times argument
is specified. Used as argument to map () for invariant parameters to the called function. Also used
with z4p () to create an invariant part of a tuple record.

Roughly equivalent to:

def repeat(object, times=None):
repeat (10, 3) --> 10 10 10
if times is None:
while True:
yield object
else:
for i in range(times):
yield object

A common use for repeat is to supply a stream of constant values to map or zip:

>>> list(map(pow, range(10), repeat(2)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

10.1. itertools — Functions creating iterators for efficient looping 337

The Python Library Reference, Release 3.6.5

itertools.starmap (function, iterable)

Make an iterator that computes the function using arguments obtained from the iterable. Used instead
of map () when argument parameters are already grouped in tuples from a single iterable (the data has
been “pre-zipped”). The difference between map () and starmap () parallels the distinction between
function(a,b) and function(*c). Roughly equivalent to:

def starmap(function, iterable):
starmap (pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
for args in iterable:
yield function(*args)

itertools.takewhile (predicate, iterable)

Make an iterator that returns elements from the iterable as long as the predicate is true. Roughly
equivalent to:

def takewhile(predicate, iterable):
takewhile(lambda x: =<5, [1,4,6,4,1]) -=-> 1 4
for x in iterable:
if predicate(x):
yield x
else:
break

itertools.tee (iterable, n=2)

Return n independent iterators from a single iterable.

The following Python code helps explain what tee does (although the actual implementation is more
complex and uses only a single underlying FIFO queue).

Roughly equivalent to:

def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen(mydeque) :
while True:

if not mydeque: # when the local deque is empty
try:
newval = next(it) # fetch a new value and
except Stoplteration:
return
for d in deques: # load it to all the deques

d.append (newval)
yield mydeque.popleft ()
return tuple(gen(d) for d in deques)

Once tee() has made a split, the original iterable should not be used anywhere else; otherwise, the
iterable could get advanced without the tee objects being informed.

This itertool may require significant auxiliary storage (depending on how much temporary data needs
to be stored). In general, if one iterator uses most or all of the data before another iterator starts, it
is faster to use list () instead of tee().

itertools.zip_longest (*iterables, fillvalue=None)

Make an iterator that aggregates elements from each of the iterables. If the iterables are of uneven
length, missing values are filled-in with fillvalue. Iteration continues until the longest iterable is ex-
hausted. Roughly equivalent to:

Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.6.5

class ZipExhausted(Exception):
pass

def zip_longest(xargs, **xkwds):
zip_longest ('ABCD', 'zy', fillvalue='-') --> Az By C- D-
fillvalue = kwds.get('fillvalue')
counter = len(args) - 1
def sentinel():
nonlocal counter
if not counter:
raise ZipExhausted
counter -= 1
yield fillvalue
fillers = repeat(fillvalue)
iterators = [chain(it, sentinel(), fillers) for it in args]
try:
while iterators:
yield tuple(map(next, iterators))
except ZipExhausted:
pass

If one of the iterables is potentially infinite, then the zip_longest () function should be wrapped with
something that limits the number of calls (for example islice() or takewhile()). If not specified,
fillvalue defaults to None.

10.1.2 Itertools Recipes

This section shows recipes for creating an extended toolset using the existing itertools as building blocks.

The extended tools offer the same high performance as the underlying toolset. The superior memory per-
formance is kept by processing elements one at a time rather than bringing the whole iterable into memory
all at once. Code volume is kept small by linking the tools together in a functional style which helps elimi-
nate temporary variables. High speed is retained by preferring “vectorized” building blocks over the use of
for-loops and generators which incur interpreter overhead.

def take(n, iterable):
"Return first n items of the iterable as a list"
return list(islice(iterable, n))

def tabulate(function, start=0):
"Return function(0), function(1), ..."
return map(function, count(start))

def tail(n, iterable):
"Return an iterator over the last n items"
tatl(3, 'ABCDEFG') --> E F G
return iter(collections.deque(iterable, maxlen=n))

def consume(iterator, n):

"Advance the iterator n-steps ahead. If n is none, consume entirely."

Use functions that consume iterators at C speed.

if n is None:
feed the entire iterator into a zero-length deque
collections.deque(iterator, maxlen=0)

else:
advance to the empty slice starting at position n

(continues on next page)

10.1. itertools — Functions creating iterators for efficient looping 339

The Python Library Reference, Release 3.6.5

(continued from previous page)

def

def

def

def

def

def

def

def

def

def

def

next(islice(iterator, n, n), None)

nth(iterable, n, default=None):
"Returns the nth item or a default value"
return next(islice(iterable, n, None), default)

all_equal(iterable):

"Returns True if all the elements are equal to each other"
g = groupby(iterable)

return next(g, True) and not next(g, False)

quantify(iterable, pred=bool):
"Count how many times the predicate is true"

return sum(map(pred, iterable))

padnone (iterable) :

"""Returns the sequence elements and then returns None indefinitely.

Useful for emulating the behavior of the built-in map() function.

mmn

return chain(iterable, repeat(None))

ncycles(iterable, n):
"Returns the sequence elements n times"
return chain.from_iterable(repeat(tuple(iterable), n))

dotproduct (vecl, vec2):
return sum(map(operator.mul, vecl, vec2))

flatten(listOfLists):
"Flatten one level of nesting"
return chain.from_iterable(listOfLists)

repeatfunc(func, times=None, *args):
"""Repeat calls to func with specified arguments.

Ezample: repeatfunc(random.random)
nmnn
if times is None:
return starmap(func, repeat(args))
return starmap(func, repeat(args, times))

pairwise(iterable):

"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)

next (b, None)

return zip(a, b)

grouper (iterable, n, fillvalue=None):

"Collect data into fixed-length chunks or blocks"
grouper('ABCDEFG', 3, 'xz') --> ABC DEF Gzz"
args = [iter(iterable)] * n

return zip_longest(*args, fillvalue=fillvalue)

roundrobin(*iterables) :
"roundrobin('ABC', 'D', 'EF') --> ADE B F C"

(continues on next page)

340

Chapter 10.

Functional Programming Modules

The Python Library Reference, Release 3.6.5

(continued from previous page)

def

def

def

def

def

Recipe credited to George Sakkis
num_active = len(iterables)
nexts = cycle(iter(it).__next_
while num_active:
try:
for next in nexts:
yield next()
except StopIteration:
Remove the iterator we just ezhausted from the cycle.
num_active -= 1
nexts = cycle(islice(nexts, num_active))

for it in iterables)

partition(pred, iterable):

'Use a predicate to partition entries into false entries and true entries'
partition(is_odd, range(10)) --> 02 4 68 and 13579

t1l, t2 = tee(iterable)

return filterfalse(pred, t1), filter(pred, t2)

powerset (iterable):

"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"

s = list(iterable)

return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

unique_everseen(iterable, key=None):
"List unique elements, preserving order. Remember all elements ever seen."
unique_everseen('AAAABBBCCDAABBB') --> A B C D
unique_everseen('ABBCcAD', str.lower) --> A B C D
seen = set()
seen_add = seen.add
if key is None:
for element in filterfalse(seen.__contains__, iterable):
seen_add(element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen_add (k)
yield element

unique_justseen(iterable, key=None):

"List unique elements, preserving order. Remember only the element just seen."
unique_justseen('AAAABBBCCDAABBB') --> A B C D A B

unique_justseen('ABBCcAD', str.lower) --> A B C A D

return map(next, map(itemgetter(1l), groupby(iterable, key)))

iter_except(func, exception, first=None):
" Call a function repeatedly until an exception is raised.

Converts a call-until-exception interface to an tterator interface.
Like butltins.iter(func, sentinel) but uses an exzception instead
of a sentinel to end the loop.

Ezamples:
iter_ezcept (functools.partial (heappop, h), IndexError) # priority queue iterator
iter_except(d.popitem, KeyError) # non-blocking dict iterator

(continues on next page)

10.1. itertools — Functions creating iterators for efficient looping 341

The Python Library Reference, Release 3.6.5

(continued from previous page)

def

def

def

def

def

def

iter_exzcept(d.popleft, IndexzError) # non-blocking deque iterator
iter_exzcept(q.get_nowait, Queue.Empty) # loop over a producer Rueue
iter_except(s.pop, KeyError) # non-blocking set iterator
try:
if first is not None:
yield first() # For database APIs needing an tinitial cast to db.first()

while True:
yield func()
except exception:
pass

first_true(iterable, default=False, pred=None):
"""Returns the first true wvalue in the iterable.

If no true wvalue is found, returns *default*

If *pred* ts mot Nome, returns the first item
for which pred(item) is true.

mmn

first_true([a,b,c],) -=> a or b or c or «
first_true([a,b], =, f) -=> a if f(a) else b if f(b) else z
return next(filter(pred, iterable), default)

random_product (xargs, repeat=1):

"Random selection from itertools.product(*args, *xkwds)"
pools = [tuple(pool) for pool in args] * repeat

return tuple(random.choice(pool) for pool in pools)

random_permutation(iterable, r=None):

"Random selection from itertools.permutations(iterable, r)"
pool = tuple(iterable)

r = len(pool) if r is None else r

return tuple(random.sample(pool, r))

random_combination(iterable, r):

"Random selection from itertools.combinations(iterable, r)"
pool = tuple(iterable)

n = len(pool)

indices = sorted(random.sample(range(n), r))

return tuple(pool[i] for i in indices)

random_combination_with_replacement (iterable, r):

"Random selection from itertools.combinations_with_replacement(iterable, r)"
pool = tuple(iterable)

n = len(pool)

indices = sorted(random.randrange(n) for i in range(r))

return tuple(pool[i] for i in indices)

nth_combination(iterable, r, index):

'Equivalent to list(combinations(iterable, r)) [index]'
pool = tuple(iterable)

n = len(pool)

if r <0 orr > n:

(continues on next page)

342

Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.6.5

(continued from previous page)

raise ValueError
c=1
min(r, n-r)
for i in range(1l, k+1):
c=c* (n-k+1i) // i
if index < O:
index += ¢
if index < O or index >= c:
raise IndexError
result = []
while r:
¢, n, r=c*r//n, n-1, r-1

~
]

while index >= c:
index -= ¢
c, n =c*(n-r)//n, n-1
result.append(pool[-1-n])
return tuple(result)

Note, many of the above recipes can be optimized by replacing global lookups with local variables defined
as default values. For example, the dotproduct recipe can be written as:

def dotproduct(vecl, vec2, sum=sum, map=map, mul=operator.mul):
return sum(map(mul, vecl, vec2))

10.2 functools — Higher-order functions and operations on callable
objects

Source code: Lib/functools.py

The functools module is for higher-order functions: functions that act on or return other functions. In
general, any callable object can be treated as a function for the purposes of this module.

The functools module defines the following functions:

functools.cmp_to_key(func)
Transform an old-style comparison function to a key function. Used with tools that accept key functions
(such as sorted(), min(), maz (), heapq.nlargest (), heapq.nsmallest (), itertools.groupby()).
This function is primarily used as a transition tool for programs being converted from Python 2 which
supported the use of comparison functions.

A comparison function is any callable that accept two arguments, compares them, and returns a
negative number for less-than, zero for equality, or a positive number for greater-than. A key function
is a callable that accepts one argument and returns another value to be used as the sort key.

Example:

sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order

For sorting examples and a brief sorting tutorial, see sortinghowto.
New in version 3.2.

@functools.lru_cache(maxsize=128, typed=Fulse)
Decorator to wrap a function with a memoizing callable that saves up to the mazsize most recent

10.2. functools — Higher-order functions and operations on callable objects 343

https://github.com/python/cpython/tree/3.6/Lib/functools.py

The Python Library Reference, Release 3.6.5

calls. Tt can save time when an expensive or I/O bound function is periodically called with the same
arguments.

Since a dictionary is used to cache results, the positional and keyword arguments to the function must
be hashable.

If maxsize is set to None, the LRU feature is disabled and the cache can grow without bound. The
LRU feature performs best when mazxsize is a power-of-two.

If typed is set to true, function arguments of different types will be cached separately. For example,
f(3) and £(3.0) will be treated as distinct calls with distinct results.

To help measure the effectiveness of the cache and tune the mazsize parameter, the wrapped function is
instrumented with a cache_info() function that returns a named tuple showing hits, misses, mazxsize
and currsize. In a multi-threaded environment, the hits and misses are approximate.

The decorator also provides a cache_clear () function for clearing or invalidating the cache.

The original underlying function is accessible through the __wrapped__ attribute. This is useful for
introspection, for bypassing the cache, or for rewrapping the function with a different cache.

An LRU (least recently used) cache works best when the most recent calls are the best predictors of
upcoming calls (for example, the most popular articles on a news server tend to change each day). The
cache’s size limit assures that the cache does not grow without bound on long-running processes such
as web servers.

Example of an LRU cache for static web content:

@lru_cache (maxsize=32)
def get_pep(num) :
'Retrieve text of a Python Enhancement Proposal'
resource = 'http://www.python.org/dev/peps/pep- /' % num
try:
with urllib.request.urlopen(resource) as s:
return s.read()
except urllib.error .HTTPError:
return 'Not Found'

>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:

pep = get_pep(n)
print(n, len(pep))

>>> get_pep.cache_info()
CachelInfo(hits=3, misses=8, maxsize=32, currsize=8)

Example of efficiently computing Fibonacci numbers using a cache to implement a dynamic program-
ming technique:

@lru_cache (maxsize=None)
def fib(n):
if n < 2:
return n
return fib(n-1) + fib(n-2)

>>> [fib(n) for n in range(16)]
[o, ¢+, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

>>> fib.cache_info()
CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)

New in version 3.2.

344

Chapter 10. Functional Programming Modules

https://en.wikipedia.org/wiki/Cache_algorithms#Examples
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Dynamic_programming

The Python Library Reference, Release 3.6.5

Changed in version 3.3: Added the typed option.

@functools.total_ordering
Given a class defining one or more rich comparison ordering methods, this class decorator supplies the
rest. This simplifies the effort involved in specifying all of the possible rich comparison operations:

The class must define one of __1t__(O, __le__0, __gt__O, or __ge__(). In addition, the class
should supply an __eq__() method.

For example:

@total_ordering
class Student:
def _is_valid_operand(self, other):
return (hasattr(other, "lastname") and
hasattr(other, "firstname"))
def __eq__(self, other):
if not self._is_valid_operand(other):
return NotImplemented
return ((self.lastname.lower(), self.firstname.lower()) ==
(other.lastname.lower(), other.firstname.lower()))
def __1t__(self, other):
if not self._is_valid_operand(other):
return NotImplemented
return ((self.lastname.lower(), self.firstname.lower()) <
(other.lastname.lower(), other.firstname.lower()))

Note: While this decorator makes it easy to create well behaved totally ordered types, it does come
at the cost of slower execution and more complex stack traces for the derived comparison methods. If
performance benchmarking indicates this is a bottleneck for a given application, implementing all six
rich comparison methods instead is likely to provide an easy speed boost.

New in version 3.2.

Changed in version 3.4: Returning NotImplemented from the underlying comparison function for
unrecognised types is now supported.

functools.partial (func, *args, **keywords)
Return a new partial object which when called will behave like func called with the positional ar-
guments args and keyword arguments keywords. If more arguments are supplied to the call, they are
appended to args. If additional keyword arguments are supplied, they extend and override keywords.
Roughly equivalent to:

def partial(func, *args, **keywords):

def newfunc(*fargs, **fkeywords):
newkeywords = keywords.copy()
newkeywords.update (fkeywords)
return func(*args, *fargs, **newkeywords)

newfunc.func = func

newfunc.args = args

newfunc.keywords = keywords

return newfunc

The partial () is used for partial function application which “freezes” some portion of a function’s ar-
guments and/or keywords resulting in a new object with a simplified signature. For example, partial ()
can be used to create a callable that behaves like the int () function where the base argument defaults
to two:

10.2. functools — Higher-order functions and operations on callable objects 345

The Python Library Reference, Release 3.6.5

>>> from functools import partial
>>> basetwo = partial(int, base=2)

>>> basetwo.__doc__ = 'Convert base 2 string to an int.'
>>> basetwo('10010")
18

class functools.partialmethod(func, *args, **keywords)

Return a new partialmethod descriptor which behaves like partial except that it is designed to be
used as a method definition rather than being directly callable.

func must be a descriptor or a callable (objects which are both, like normal functions, are handled as
descriptors).

When func is a descriptor (such as a normal Python function, classmethod(), staticmethod(),
abstractmethod() or another instance of partialmethod), calls to __get__ are delegated to the
underlying descriptor, and an appropriate partial object returned as the result.

When func is a non-descriptor callable, an appropriate bound method is created dynamically. This
behaves like a normal Python function when used as a method: the self argument will be inserted
as the first positional argument, even before the args and keywords supplied to the partialmethod
constructor.

Example:

>>> class Cell(object):
def __init__(self):
self._alive = False
@property
def alive(self):
return self._alive
def set_state(self, state):
self._alive = bool(state)
set_alive = partialmethod(set_state, True)
set_dead = partialmethod(set_state, False)

>>> ¢ = Cell()
>>> c.alive
False

>>> c.set_alive()
>>> c.alive

True

New in version 3.4.

functools.reduce (function, itemble[, initializer])

Apply function of two arguments cumulatively to the items of sequence, from left to right, so as to
reduce the sequence to a single value. For example, reduce (lambda x, y: x+y, [1, 2, 3, 4, 5])
calculates ((((1+2)+3)+4)+5). The left argument, z, is the accumulated value and the right argument,
y, is the update value from the sequence. If the optional initializer is present, it is placed before the
items of the sequence in the calculation, and serves as a default when the sequence is empty. If
initializer is not given and sequence contains only one item, the first item is returned.

Roughly equivalent to:

def reduce(function, iterable, initializer=None):
it = iter(iterable)
if initializer is None:
value = next(it)

(continues on next page)

346

Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.6.5

(continued from previous page)

else:

value = initializer
for element in it:

value = function(value, element)
return value

@functools.singledispatch
Transform a function into a single-dispatch generic function.

To define a generic function, decorate it with the @singledispatch decorator. Note that the dispatch
happens on the type of the first argument, create your function accordingly:

>>> from functools import singledispatch
>>> @singledispatch
. def fun(arg, verbose=False):
if verbose:
print("Let me just say,", end=" ")
print (arg)

To add overloaded implementations to the function, use the register () attribute of the generic func-
tion. It is a decorator, taking a type parameter and decorating a function implementing the operation
for that type:

>>> @fun.register(int)
. def _(arg, verbose=False):
if verbose:
print("Strength in numbers, eh?", end=" ")
print(arg)

>>> @fun.register(list)
. def _(arg, verbose=False):
if verbose:
print ("Enumerate this:")
for i, elem in enumerate(arg):
print(i, elem)

To enable registering lambdas and pre-existing functions, the register () attribute can be used in a
functional form:

>>> def nothing(arg, verbose=False):
print("Nothing.")

>>> fun.register(type(None), nothing)

The register () attribute returns the undecorated function which enables decorator stacking, pickling,
as well as creating unit tests for each variant independently:

>>> @fun.register(float)
. @fun.register(Decimal)
. def fun_num(arg, verbose=False):
if verbose:
print ("Half of your number:", end=" ")
print(arg / 2)

>>> fun_num is fun
False

10.2. functools — Higher-order functions and operations on callable objects 347

The Python Library Reference, Release 3.6.5

When called, the generic function dispatches on the type of the first argument:

>>> fun("Hello, world.")
Hello, world.

>>> fun("test.", verbose=True)
Let me just say, test.

>>> fun(42, verbose=True)
Strength in numbers, eh? 42
>>> fun(['spam', 'spam', 'eggs', 'spam'], verbose=True)
Enumerate this:

0 spam

1 spam

2 eggs

3 spam

>>> fun(None)

Nothing.

>>> fun(1.23)

0.615

Where there is no registered implementation for a specific type, its method resolution order is used
to find a more generic implementation. The original function decorated with @singledispatch is
registered for the base object type, which means it is used if no better implementation is found.

To check which implementation will the generic function choose for a given type, use the dispatch()
attribute:

>>> fun.dispatch(float)

<function fun_num at 0x1035a2840>

>>> fun.dispatch(dict) # note: default implementation
<function fun at 0x103fe0000>

To access all registered implementations, use the read-only registry attribute:

>>> fun.registry.keys()

dict_keys([<class 'NoneType'>, <class 'int'>, <class 'object'>,
<class 'decimal.Decimal'>, <class 'list'>,
<class 'float'>])

>>> fun.registry[float]

<function fun_num at 0x1035a2840>

>>> fun.registry[object]

<function fun at 0x103fe0000>

New in version 3.4.

functools.update_wrapper (wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, up-

dated=WRAPPER__UPDATES)
Update a wrapper function to look like the wrapped function. The optional arguments are tuples to

specify which attributes of the original function are assigned directly to the matching attributes on the
wrapper function and which attributes of the wrapper function are updated with the corresponding
attributes from the original function. The default values for these arguments are the module level
constants WRAPPER_ASSIGNMENTS (which assigns to the wrapper function’s __module__, __name__,
__qualname__, __annotations__ and __doc__, the documentation string) and WRAPPER_UPDATES
(which updates the wrapper function’s __dict__, i.e. the instance dictionary).

To allow access to the original function for introspection and other purposes (e.g. bypassing a caching
decorator such as lru_cache()), this function automatically adds a __wrapped__ attribute to the
wrapper that refers to the function being wrapped.

The main intended use for this function is in decorator functions which wrap the decorated function

348

Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.6.5

and return the wrapper. If the wrapper function is not updated, the metadata of the returned function
will reflect the wrapper definition rather than the original function definition, which is typically less
than helpful.

update_wrapper () may be used with callables other than functions. Any attributes named in assigned
or updated that are missing from the object being wrapped are ignored (i.e. this function will not
attempt to set them on the wrapper function). 4ttributeError is still raised if the wrapper function
itself is missing any attributes named in updated.

New in version 3.2: Automatic addition of the __wrapped__ attribute.
New in version 3.2: Copying of the __annotations__ attribute by default.
Changed in version 3.2: Missing attributes no longer trigger an AttributeError.

Changed in version 3.4: The __wrapped__ attribute now always refers to the wrapped function, even
if that function defined a __wrapped__ attribute. (see bpo-17482)

@functools.wraps (wrapped, assigned=WRAPPER_ASSIGNMENTS, up-

dated=WRAPPER_UPDATES)
This is a convenience function for invoking update_wrapper() as a function decorator when

defining a wrapper function. It is equivalent to partial (update_wrapper, wrapped=wrapped,
assigned=assigned, updated=updated). For example:

>>> from functools import wraps
>>> def my_decorator(f):
Qwraps (f)
def wrapper (*args, **kwds):
print('Calling decorated function')
return f(*args, **kwds)
return wrapper

>>> @my_decorator
. def example():
"""Docstring"""
print('Called example function')

>>> example()

Calling decorated function
Called example function
>>> example.__name__
'example’

>>> example.__doc
'Docstring'

Without the use of this decorator factory, the name of the example function would have been
'wrapper', and the docstring of the original example () would have been lost.

10.2.1 partial Objects

partial objects are callable objects created by partial (). They have three read-only attributes:

partial.func
A callable object or function. Calls to the partial object will be forwarded to func with new arguments
and keywords.

partial.args
The leftmost positional arguments that will be prepended to the positional arguments provided to a
partial object call.

10.2. functools — Higher-order functions and operations on callable objects 349

https://bugs.python.org/issue17482

The Python Library Reference, Release 3.6.5

partial.keywords
The keyword arguments that will be supplied when the partial object is called.

partial objects are like function objects in that they are callable, weak referencable, and can have at-
tributes. There are some important differences. For instance, the __name__ and __doc__ attributes are
not created automatically. Also, partial objects defined in classes behave like static methods and do not
transform into bound methods during instance attribute look-up.

10.3 operator — Standard operators as functions

Source code: Lib/operator.py

The operator module exports a set of efficient functions corresponding to the intrinsic operators of Python.
For example, operator.add(x, y) is equivalent to the expression x+y. Many function names are those
used for special methods, without the double underscores. For backward compatibility, many of these have
a variant with the double underscores kept. The variants without the double underscores are preferred for
clarity.

The functions fall into categories that perform object comparisons, logical operations, mathematical opera-
tions and sequence operations.

The object comparison functions are useful for all objects, and are named after the rich comparison operators
they support:

operator.lt(a, b)

operator.le(a, b)

operator.eq(a, b)

operator.ne(a, b)

operator.ge(a, b)

operator.gt(a, b)

operator.__lt__(a, b)

operator.__le__(a, b)

operator.__eq__(a, b)

operator.__ne__(a, b)

operator.__ge__(a, b)

operator.__gt__C(a, b)
Perform “rich comparisons” between a and b. Specifically, 1t (a, b) is equivalent to a < b, le(a, b)
is equivalent to a <= b, eq(a, b) is equivalent to a == b, ne(a, b) is equivalent to a != b, gt(a,
b) is equivalent to a > b and ge(a, b) is equivalent to a >= b. Note that these functions can return
any value, which may or may not be interpretable as a Boolean value. See comparisons for more
information about rich comparisons.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests,
and boolean operations:

operator.not_(obj)

operator.__not__(obj)
Return the outcome of not obj. (Note that there is no __not__ () method for object instances; only
the interpreter core defines this operation. The result is affected by the __bool__() and __len__()

methods.)

operator.truth(obj)
Return True if 0bj is true, and False otherwise. This is equivalent to using the bool constructor.

350 Chapter 10. Functional Programming Modules

https://github.com/python/cpython/tree/3.6/Lib/operator.py

The Python Library Reference, Release 3.6.5

operator.is_(a, b)
Return a is b. Tests object identity.

operator.is_not(a, b)
Return a is not b. Tests object identity.

The mathematical and bitwise operations are the most numerous:

operator.abs (obj)
operator.__abs__(o0bj)
Return the absolute value of obj.

operator.add(a, b)
operator.__add__(a, b)
Return a + b, for a and b numbers.

operator.and_(a, b)
operator.__and__(a, b)
Return the bitwise and of a and b.

operator.floordiv(a, b)
operator.__floordiv__(a, b)
Return a // b.

operator.index(a)
operator.__index__(a)
Return a converted to an integer. Equivalent to a.__index__Q).

operator.inv(obj)
operator.invert (obj)
operator.__inv__(obj)
operator.__invert__(obj)
Return the bitwise inverse of the number obj. This is equivalent to ~obj.

operator.lshift(a, b)
operator.__lshift__(a, b)
Return a shifted left by b.

operator.mod (a, b)
operator.__mod__(a, b)
Return a % b.

operator.mul(a, b)
operator.__mul__(a, b)
Return a * b, for a and b numbers.

operator.matmul (a, b)
operator.__matmul__(a, b)
Return a @ b.

New in version 3.5.

operator .neg(obj)
operator.__neg__(obj)
Return obj negated (-obj).

operator.or_(a, b)
operator.__or__(a, b)
Return the bitwise or of a and b.

operator.pos (0bj)

10.3. operator — Standard operators as functions 351

The Python Library Reference, Release 3.6.5

operator.__pos__(obj)
Return obj positive (+obj).

operator.pow(a, b)
operator.__pow__(a, b)
Return a ** b, for @ and b numbers.

operator.rshift(a, b)
operator.__rshift__(a, b)
Return a shifted right by b.

operator.sub(a, b)
operator.__sub__(a, b)
Return a - b.

operator.truediv(a, b)
operator.__truediv__(a, b)
Return a / b where 2/3 is .66 rather than 0. This is also known as “true” division.

operator.xor(a, b)
operator.__xor__(a, b)
Return the bitwise exclusive or of a and b.

Operations which work with sequences (some of them with mappings too) include:

operator.concat(a, b)
operator.__concat__(a, b)
Return a + b for a and b sequences.

operator.contains(a, b)
operator.__contains__(a, b)
Return the outcome of the test b in a. Note the reversed operands.

operator. countO0f (a, b)
Return the number of occurrences of b in a.

operator.delitem(a, b)
operator.__delitem__(a, b)
Remove the value of a at index b.

operator.getitem(a, b)
operator.__getitem__(a, b)
Return the value of a at index b.

operator.index0f (a, b)
Return the index of the first of occurrence of b in a.

operator.setitem(a, b, ¢)
operator.__setitem__(a, b, ¢)
Set the value of a at index b to c.

operator.length_hint (obj, default=0)

Return an estimated length for the object o. First try to return its actual length, then an estimate

using object.__length_hint__(), and finally return the default value.

New in version 3.4.

The operator module also defines tools for generalized attribute and item lookups. These are useful for
making fast field extractors as arguments for map (), sorted(), itertools.groupby(), or other functions

that expect a function argument.

operator.attrgetter (attr)

352 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.6.5

operator.attrgetter (*atirs)

Return a callable object that fetches attr from its operand. If more than one attribute is requested,
returns a tuple of attributes. The attribute names can also contain dots. For example:

e After f = attrgetter('name'), the call f(b) returns b.name.
e After f = attrgetter('name', 'date'), the call £(b) returns (b.name, b.date).
o After £ = attrgetter('name.first', 'name.last'), the call £(b) returns (b.name.first,

b.name.last).

Equivalent to:

def attrgetter(*items):
if any(not isinstance(item, str) for item in items):
raise TypeError('attribute name must be a string')
if len(items) ==
attr = items[0]
def g(obj):
return resolve_attr(obj, attr)
else:
def g(obj):

return tuple(resolve_attr(obj, attr) for attr in items)
return g

def resolve_attr(obj, attr):
for name in attr.split("."):
obj = getattr(obj, name)
return obj

operator.itemgetter (item)
operator.itemgetter (*items)

Return a callable object that fetches item from its operand using the operand’s __getitem__ () method.
If multiple items are specified, returns a tuple of lookup values. For example:

o After f = itemgetter(2), the call f£(r) returns r[2].

o After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3]).

Equivalent to:

def itemgetter (*items):
if len(items) ==
item = items[0]
def g(obj):
return obj[item]
else:
def g(obj):

return tuple(obj[item] for item in items)
return g

The items can be any type accepted by the operand’s __getitem _ () method. Dictionaries accept
any hashable value. Lists, tuples, and strings accept an index or a slice:

>>> itemgetter (1) ('ABCDEFG')

IBl

>>> itemgetter(1,3,5) (' ABCDEFG')

('B', 'D', 'F")

>>> jtemgetter(slice(2,None)) ('ABCDEFG')
' CDEFG'

10.3. operator — Standard operators as functions 353

The Python Library Reference, Release 3.6.5

Example of using itemgetter() to retrieve specific fields from a tuple record:

>>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)]
>>> getcount = itemgetter(l)

>>> list(map(getcount, inventory))

[3, 2, 5, 1]

>>> sorted(inventory, key=getcount)

[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]

operator .methodcaller (name[, args...])

Return a callable object that calls the method name on its operand. If additional arguments and/or

keyword arguments are given, they will be given to the method as well. For example:

e After f = methodcaller('name'), the call f£(b) returns b.name().

e After f = methodcaller('name', 'foo', bar=1), the call f(b) returns b.name('foo',

bar=1).

Equivalent to:

def methodcaller (name, *args, *xkwargs):
def caller(obj):
return getattr(obj, name) (*args, **kwargs)
return caller

10.3.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the

functions in the operator module.

Operation Syntax Function

Addition a+hb add(a, b)
Concatenation seql + seq2 concat(seql, seq2)
Containment Test obj in seq contains(seq, obj)
Division a/b truediv(a, b)
Division a//b floordiv(a, b)
Bitwise And a&b and_(a, b)

Bitwise Exclusive Or a~ b xor(a, b)

Bitwise Inversion ~ a invert(a)

Bitwise Or alb or_(a, b)
Exponentiation a ** b pow(a, b)

Identity a is b is_(a, b)

Identity a is not b is_not(a, b)
Indexed Assignment objlk] = v setitem(obj, k, v)
Indexed Deletion del obj[k] delitem(obj, k)
Indexing obj [k] getitem(obj, k)
Left Shift a<<b lshift(a, b)
Modulo ahb mod(a, b)
Multiplication ax*xb mul (a, b)

Matrix Multiplication | a @ b matmul (a, b)
Negation (Arithmetic) | - a neg(a)

Negation (Logical) not a not_(a)

Positive + a pos(a)

Continued on next page

354 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.6.5

Table 1 — continued from previous page

Operation Syntax Function

Right Shift a>b rshift(a, b)

Slice Assignment seql[i:j] = values | setitem(seq, slice(i, j), values)
Slice Deletion del seqli:j] delitem(seq, slice(i, j))
Slicing seqli:j] getitem(seq, slice(i, j))
String Formatting s % obj mod(s, obj)

Subtraction a-b sub(a, b)

Truth Test obj truth(obj)

Ordering a<hb 1t(a, b)

Ordering a<=b le(a, b)

Equality a==>, eq(a, b)

Difference al=hb ne(a, b)

Ordering a>b ge(a, b)

Ordering a>b gt(a, b)

10.3.2 Inplace Operators

Many operations have an “in-place” version. Listed below are functions providing a more primitive access
to in-place operators than the usual syntax does; for example, the statement x += y is equivalent to x =
operator.iadd(x, y). Another way to put it is to say that z = operator.iadd(x, y) is equivalent to the

compound statement z = x; z += y.

In those examples, note that when an in-place method is called, the computation and assignment are per-
formed in two separate steps. The in-place functions listed below only do the first step, calling the in-place
method. The second step, assignment, is not handled.

For immutable targets such as strings, numbers, and tuples, the updated value is computed, but not assigned
back to the input variable:

>>> a = 'hello'

>>> jadd(a, ' world')
'hello world'

>>> a

'hello’

For mutable targets such as lists and dictionaries, the inplace method will perform the update, so no subse-
quent assignment is necessary:

>>> g = [lhl’ lel’ 'l‘, 'l‘, 'O‘]
>>> iadd(s, [| |’ ‘W', ‘O', ‘I', lll, ldl])

[Ihl, |e|’ |1|’ |1|’ '0', ! |’ lwl’ 101’ |r|, 111, 'd']
>>> s
[Ihl’ Iel’ Ill’ Ill, Iol’ 1 l’ |w|’ '0" lrl’ lll’ ldl]

operator.iadd(a, b)
operator.__iadd__(a, b)
a = iadd(a, b) is equivalent to a += b.

operator.iand(a, b)
operator.__iand__(a, b)
a = iand(a, b) is equivalent to a &= b.

operator.iconcat(a, b)
operator.__iconcat__(a, b)
a = iconcat(a, b) is equivalent to a += b for ¢ and b sequences.

10.3. operator — Standard operators as functions 355

The Python Library Reference, Release 3.6.5

operator.ifloordiv(a, b)
operator.__ifloordiv__(a, b)
a = ifloordiv(a, b) is equivalent to a //= b.

operator.ilshift(a, b)
operator.__ilshift__(a, b)
a = ilshift(a, b) is equivalent to a <<= b.

operator.imod(a, b)
operator.__imod__(a, b)
a = imod(a, b) is equivalent to a %= b.

operator.imul(a, b)
operator.__imul__(a, b)
a = imul(a, b) is equivalent to a *= b.

operator.imatmul (a, b)
operator.__imatmul__(a, b)
a = imatmul(a, b) is equivalent to a @= b.

New in version 3.5.

operator.ior(a, b)
operator.__ior__(a, b)
a = ior(a, b) is equivalent to a |= b.

operator.ipow(a, b)
operator.__ipow__(a, b)
a = ipow(a, b) is equivalent to a **= b.

operator.irshift(a, b)
operator.__irshift__(a, b)
a = irshift(a, b) is equivalent to a >>= b.

operator.isub(a, b)
operator.__isub__(a, b)
a = isub(a, b) is equivalent to a -= b.

operator.itruediv(a, b)
operator.__itruediv__(a, b)
a = itruediv(a, b) is equivalent to a /= b.

operator.ixor(a, b)
operator.__ixor__(a, b)
a = ixor(a, b) is equivalent to a = b.

356 Chapter 10. Functional Programming Modules

CHAPTER
ELEVEN

FILE AND DIRECTORY ACCESS

The modules described in this chapter deal with disk files and directories. For example, there are modules
for reading the properties of files, manipulating paths in a portable way, and creating temporary files. The
full list of modules in this chapter is:

11.1 pathlib — Object-oriented filesystem paths

New in version 3.4.

Source code: Lib/pathlib.py

This module offers classes representing filesystem paths with semantics appropriate for different operating
systems. Path classes are divided between pure paths, which provide purely computational operations without
I/0, and concrete paths, which inherit from pure paths but also provide I/O operations.

357

https://github.com/python/cpython/tree/3.6/Lib/pathlib.py

The Python Library Reference, Release 3.6.5

— PurePath <

A

PurePosixPath PureWindowsPath

A A

—>| Path <

PosixPath WindowsPath

If you’ve never used this module before or just aren’t sure which class is right for your task, Path is most
likely what you need. It instantiates a concrete path for the platform the code is running on.

Pure paths are useful in some special cases; for example:

1. If you want to manipulate Windows paths on a Unix machine (or vice versa). You cannot instantiate
a WindowsPath when running on Unix, but you can instantiate PureWindowsPath.

2. You want to make sure that your code only manipulates paths without actually accessing the OS.
In this case, instantiating one of the pure classes may be useful since those simply don’t have any
OS-accessing operations.

See also:
PEP 428: The pathlib module — object-oriented filesystem paths.
See also:

For low-level path manipulation on strings, you can also use the os.path module.

358 Chapter 11. File and Directory Access

https://www.python.org/dev/peps/pep-0428

The Python Library Reference, Release 3.6.5

11.1.1 Basic use

Importing the main class:

>>> from pathlib import Path

Listing subdirectories:

>>> p = Path('.")
>>> [x for x in p.iterdir() if x.is_dir()]

[PosixPath('.hg'), PosixPath('docs'), PosixPath('dist'),

PosixPath('__pycache__'), PosixPath('build')]

Listing Python source files in this directory tree:

>>> list(p.glob('**/*.py'))
[PosixPath('test_pathlib.py'), PosixPath('setup.py'),
PosixPath('pathlib.py'), PosixPath('docs/conf.py'),
PosixPath('build/lib/pathlib.py')]

Navigating inside a directory tree:

>>> p = Path('/etc')
>>> q =p / 'init.d' / 'reboot'
>>> g

PosixPath('/etc/init.d/reboot')
>>> q.resolve()
PosixPath('/etc/rc.d/init.d/halt"')

Querying path properties:

>>> q.exists()
True
>>> q.is_dir(Q)
False

Opening a file:

>>> with q.open() as f: f.readline()

'#!/bin/bash\n'

11.1.2 Pure paths

Pure path objects provide path-handling operations which don’t actually access a filesystem. There are three

ways to access these classes, which we also call flavours:

class pathlib.PurePath(*pathsegments)

A generic class that represents the system’s path flavour (instantiating it creates either a

PurePosizPath or a PureWindowsPath):

PurePosixPath('setup.py')

>>> PurePath('setup.py') # Running on a Uniz machine

Each element of pathsegments can be either a string representing a path segment, an object implement-
ing the os.PathLike interface which returns a string, or another path object:

11.1. pathlib — Object-oriented filesystem paths

359

The Python Library Reference, Release 3.6.5

>>> PurePath('foo', 'some/path', 'bar')
PurePosixPath('foo/some/path/bar"')

>>> PurePath(Path('foo'), Path('bar'))
PurePosixPath('foo/bar')

When pathsegments is empty, the current directory is assumed:

>>> PurePath()
PurePosixPath('."')

When several absolute paths are given, the last is taken as an anchor (mimicking os.path. join()’s
behaviour):

>>> PurePath('/etc', '/usr', 'lib64')
PurePosixPath('/usr/1ib64"')

>>> PureWindowsPath('c:/Windows', 'd:bar')
PureWindowsPath('d:bar')

However, in a Windows path, changing the local root doesn’t discard the previous drive setting:

>>> PureWindowsPath('c:/Windows', '/Program Files')
PureWindowsPath('c:/Program Files')

Spurious slashes and single dots are collapsed, but double dots ('..") are not, since this would change
the meaning of a path in the face of symbolic links:

>>> PurePath('foo//bar')
PurePosixPath('foo/bar')
>>> PurePath('foo/./bar')
PurePosixPath('foo/bar')
>>> PurePath('foo/../bar")
PurePosixPath('foo/../bar')

(a naive approach would make PurePosixPath('foo/../bar') equivalent to PurePosixPath('bar'),
which is wrong if foo is a symbolic link to another directory)

Pure path objects implement the os.PathLike interface, allowing them to be used anywhere the
interface is accepted.

Changed in version 3.6: Added support for the os.PathLike interface.

class pathlib.PurePosixPath(*pathsegments)
A subclass of PurePath, this path flavour represents non-Windows filesystem paths:

>>> PurePosixPath('/etc')
PurePosixPath('/etc')

pathsegments is specified similarly to PurePath.

class pathlib.PureWindowsPath(*pathsegments)
A subclass of PurePath, this path flavour represents Windows filesystem paths:

>>> PureWindowsPath('c:/Program Files/')
PureWindowsPath('c:/Program Files')

pathsegments is specified similarly to PurePath.

Regardless of the system you’re running on, you can instantiate all of these classes, since they don’t provide
any operation that does system calls.

360 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

General properties

Paths are immutable and hashable. Paths of a same flavour are comparable and orderable. These properties
respect the flavour’s case-folding semantics:

>>> PurePosixPath('foo') == PurePosixPath('F00')

False

>>> PureWindowsPath('foo') == PureWindowsPath('F00')
True

>>> PureWindowsPath('FO0') in { PureWindowsPath('foo') }
True

>>> PureWindowsPath('C:') < PureWindowsPath('d:")

True

Paths of a different flavour compare unequal and cannot be ordered:

>>> PureWindowsPath('foo') == PurePosixPath('foo')
False
>>> PureWindowsPath('foo') < PurePosixPath('foo')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'PureWindowsPath' and 'PurePosixPath'

Operators

The slash operator helps create child paths, similarly to os.path. join():

>>> p = PurePath('/etc')

>>> p

PurePosixPath('/etc')

>>> p / 'init.d' / 'apache2'
PurePosixPath('/etc/init.d/apache2')
>>> q = PurePath('bin')

>>> '/usr' / q
PurePosixPath('/usr/bin')

A path object can be used anywhere an object implementing os.PathLike is accepted:

>>> import os

>>> p = PurePath('/etc')
>>> os.fspath(p)

'/etc!

The string representation of a path is the raw filesystem path itself (in native form, e.g. with backslashes
under Windows), which you can pass to any function taking a file path as a string:

>>> p = PurePath('/etc')

>>> str(p)

'/etc!

>>> p = PureWindowsPath('c:/Program Files')
>>> str(p)

'c:\\Program Files'

Similarly, calling bytes on a path gives the raw filesystem path as a bytes object, as encoded by os.
fsencode():

11.1. pathlib — Object-oriented filesystem paths 361

The Python Library Reference, Release 3.6.5

>>> bytes(p)
b'/etc!

Note: Calling bytes is only recommended under Unix. Under Windows, the unicode form is the canonical
representation of filesystem paths.

Accessing individual parts

To access the individual “parts” (components) of a path, use the following property:

PurePath.parts
A tuple giving access to the path’s various components:

>>> p = PurePath('/usr/bin/python3"')
>>> p.parts
('/', 'usr', 'bin', 'python3')

>>> p = PureWindowsPath('c:/Program Files/PSF')
>>> p.parts

('c:\\', 'Program Files', 'PSF')

(note how the drive and local root are regrouped in a single part)

Methods and properties

Pure paths provide the following methods and properties:

PurePath.drive
A string representing the drive letter or name, if any:

>>> PureWindowsPath('c:/Program Files/').drive
IC:I

>>> PureWindowsPath('/Program Files/') .drive

(]

>>> PurePosixPath('/etc').drive
L}

UNC shares are also considered drives:

>>> PureWindowsPath('//host/share/foo.txt').drive
"\\\\host\\share'

PurePath.root
A string representing the (local or global) root, if any:

>>> PureWindowsPath('c:/Program Files/').root
|\\|
>>> PureWindowsPath('c:Program Files/').root

>>> PurePosixPath('/etc') .root

|/|

UNC shares always have a root:

362 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

>>> PureWindowsPath('//host/share') .root

|\\|

PurePath.anchor
The concatenation of the drive and root:

>>> PureWindowsPath('c:/Program Files/').anchor
IC:\\I

>>> PureWindowsPath('c:Program Files/').anchor
|C:|

>>> PurePosixPath('/etc') .anchor

I/l

>>> PureWindowsPath('//host/share') .anchor

"\\\\host\\share\\'

PurePath.parents
An immutable sequence providing access to the logical ancestors of the path:

>>> p = PureWindowsPath('c:/foo/bar/setup.py')
>>> p.parents[0]

PureWindowsPath('c:/foo/bar')

>>> p.parents[1]

PureWindowsPath('c:/foo')

>>> p.parents[2]

PureWindowsPath('c:/"')

PurePath.parent
The logical parent of the path:

>>> p = PurePosixPath('/a/b/c/d")
>>> p.parent
PurePosixPath('/a/b/c')

You cannot go past an anchor, or empty path:

>>> p = PurePosixPath('/")
>>> p.parent
PurePosixPath('/"')

>>> p = PurePosixPath('.")
>>> p.parent
PurePosixPath('."')

Note: This is a purely lexical operation, hence the following behaviour:

>>> p = PurePosixPath('foo/..")
>>> p.parent
PurePosixPath('foo')

If you want to walk an arbitrary filesystem path upwards, it is recommended to first call Path.

resolve() so as to resolve symlinks and eliminate “.” components.

PurePath.name
A string representing the final path component, excluding the drive and root, if any:

11.1. pathlib — Object-oriented filesystem paths 363

The Python Library Reference, Release 3.6.5

>>> PurePosixPath('my/library/setup.py') .name
'setup.py’

UNC drive names are not considered:

>>> PureWindowsPath('//some/share/setup.py') .name
'setup.py'

>>> PureWindowsPath('//some/share') .name
(I}

PurePath.suffix

The file extension of the final component, if any:

>>> PurePosixPath('my/library/setup.py').suffix
I'pyl

>>> PurePosixPath('my/library.tar.gz').suffix
I-gZ'

>>> PurePosixPath('my/library') .suffix

PurePath.suffixes

A list of the path’s file extensions:

>>> PurePosixPath('my/library.tar.gar').suffixes
['.tar', '.gar']

>>> PurePosixPath('my/library.tar.gz').suffixes
['.tar', '.gz']

>>> PurePosixPath('my/library').suffixes

1

PurePath.stem

The final path component, without its suffix:

>>> PurePosixPath('my/library.tar.gz').stem
'library.tar'

>>> PurePosixPath('my/library.tar').stem
'library'

>>> PurePosixPath('my/library').stem

'library'’

PurePath.as_posix()

Return a string representation of the path with forward slashes (/):

>>> p = PureWindowsPath('c:\\windows"')
>>> str(p)

'c:\\windows'

>>> p.as_posix()

'c:/windows'

PurePath.as_uri()
Represent the path as a file URIL. ValueError is raised if the path isn’t absolute.

>>> p = PurePosixPath('/etc/passwd')
>>> p.as_uri()

'file:///etc/passud’

>>> p = PureWindowsPath('c:/Windows')

(continues on next page)

364

Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> p.as_uri()
'file:///c:/Windows'

PurePath.is_absolute()

Return whether the path is absolute or not. A path is considered absolute if it has both a root and (if
the flavour allows) a drive:

>>> PurePosixPath('/a/b').is_absolute()
True
>>> PurePosixPath('a/b').is_absolute()
False

>>> PureWindowsPath('c:/a/b').is_absolute()

True

>>> PureWindowsPath('/a/b').is_absolute()

False

>>> PureWindowsPath('c:').is_absolute()

False

>>> PureWindowsPath('//some/share') .is_absolute()
True

PurePath.is_reserved()

With PurelWindowsPath, return True if the path is considered reserved under Windows, False other-
wise. With PurePosizPath, False is always returned.

>>> PureWindowsPath('nul').is_reserved()
True

>>> PurePosixPath('nul').is_reserved()
False

File system calls on reserved paths can fail mysteriously or have unintended effects.

PurePath. joinpath (*other)

Calling this method is equivalent to combining the path with each of the other arguments in turn:

>>> PurePosixPath('/etc').joinpath('passwd')
PurePosixPath('/etc/passwd')

>>> PurePosixPath('/etc').joinpath(PurePosixPath('passwd'))
PurePosixPath('/etc/passwd')

>>> PurePosixPath('/etc').joinpath('init.d', 'apache2')
PurePosixPath('/etc/init.d/apache2')

>>> PureWindowsPath('c:').joinpath('/Program Files')
PureWindowsPath('c:/Program Files')

PurePath.match(pattern)

Match this path against the provided glob-style pattern. Return True if matching is successful, False
otherwise.

If pattern is relative, the path can be either relative or absolute, and matching is done from the right:

>>> PurePath('a/b.py') .match('*.py')

True

>>> PurePath('/a/b/c.py') .match('b/*.py"')
True

>>> PurePath('/a/b/c.py') .match('a/*.py')
False

11.1. pathlib — Object-oriented filesystem paths 365

The Python Library Reference, Release 3.6.5

If pattern is absolute, the path must be absolute, and the whole path must match:

>>> PurePath('/a.py') .match('/*.py')
True
>>> PurePath('a/b.py') .match('/*.py')
False

As with other methods, case-sensitivity is observed:

>>> PureWindowsPath('b.py') .match('*.PY"')
True

PurePath.relative_to (*other)

Compute a version of this path relative to the path represented by other. If it’s impossible, ValueError
is raised:

>>> p = PurePosixPath('/etc/passwd')
>>> p.relative_to('/")
PurePosixPath('etc/passwd')
>>> p.relative_to('/etc')
PurePosixPath('passwd')
>>> p.relative_to('/usr')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "pathlib.py", line 694, in relative_to

.format(str(self), str(formatted)))

ValueError: '/etc/passwd' does not start with '/usr'

PurePath.with_name (name)

Return a new path with the name changed. If the original path doesn’t have a name, ValueError is
raised:

>>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz")
>>> p.with_name('setup.py')
PureWindowsPath('c:/Downloads/setup.py')
>>> p = PureWindowsPath('c:/')
>>> p.with_name('setup.py')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/antoine/cpython/default/Lib/pathlib.py", line 751, in with_name
raise ValueError("/r has an empty name" 7 (self,))
ValueError: PureWindowsPath('c:/') has an empty name

PurePath.with_suffix (suffix)

Return a new path with the suffiz changed. If the original path doesn’t have a suffix, the new suffiz
is appended instead:

>>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz')
>>> p.with_suffix('.bz2')
PureWindowsPath('c:/Downloads/pathlib.tar.bz2"')

>>> p = PureWindowsPath('README')

>>> p.with_suffix('.txt')
PureWindowsPath('README. txt ')

366

Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

11.1.3 Concrete paths

Concrete paths are subclasses of the pure path classes. In addition to operations provided by the latter,
they also provide methods to do system calls on path objects. There are three ways to instantiate concrete
paths:

class pathlib.Path(*pathsegments)
A subclass of PurePath, this class represents concrete paths of the system’s path flavour (instantiating
it creates either a PosizPath or a WindowsPath):

>>> Path('setup.py')
PosixPath('setup.py')

pathsegments is specified similarly to PurePath.

class pathlib.PosixPath(*pathsegments)
A subclass of Path and PurePosizPath, this class represents concrete non-Windows filesystem paths:

>>> PosixPath('/etc')
PosixPath('/etc')

pathsegments is specified similarly to PurePath.

class pathlib.WindowsPath(*pathsegments)
A subclass of Path and PurelWindowsPath, this class represents concrete Windows filesystem paths:

>>> WindowsPath('c:/Program Files/')
WindowsPath('c:/Program Files')

pathsegments is specified similarly to PurePath.

You can only instantiate the class flavour that corresponds to your system (allowing system calls on non-
compatible path flavours could lead to bugs or failures in your application):

>>> import os
>>> os.name
'posix'’
>>> Path('setup.py')
PosixPath('setup.py"')
>>> PosixPath('setup.py')
PosixPath('setup.py"')
>>> WindowsPath('setup.py')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "pathlib.py", line 798, in __new_
% (cls.__name__,))
NotImplementedError: cannot instantiate 'WindowsPath' on your system

Methods
Concrete paths provide the following methods in addition to pure paths methods. Many of these methods
can raise an OSError if a system call fails (for example because the path doesn’t exist):

classmethod Path.cwd()
Return a new path object representing the current directory (as returned by os.getcwd()):

>>> Path.cwd()
PosixPath('/home/antoine/pathlib')

11.1. pathlib — Object-oriented filesystem paths 367

The Python Library Reference, Release 3.6.5

classmethod Path.home()

Return a new path object representing the user’s home directory (as returned by os.path.
ezpanduser () with ~ construct):

>>> Path.home ()
PosixPath('/home/antoine"')

Path.

New in version 3.5.

stat()
Return information about this path (similarly to os.stat()). The result is looked up at each call to
this method.

>>> p = Path('setup.py')
>>> p.stat() .st_size
956

>>> p.stat().st_mtime
1327883547 .852554

Path.

chmod (mode)
Change the file mode and permissions, like os. chmod ():

>>> p = Path('setup.py')
>>> p.stat().st_mode
33277

>>> p.chmod(00444)

>>> p.stat().st_mode
33060

Path.

exists()
Whether the path points to an existing file or directory:

>>> Path('.') .exists()

True

>>> Path('setup.py').exists()

True

>>> Path('/etc') .exists()

True

>>> Path('nonexistentfile') .exists()
False

Path.

Note: If the path points to a symlink, ezists () returns whether the symlink points to an existing
file or directory.

expanduser ()
Return a new path with expanded ~ and ~user constructs, as returned by os.path. ezpanduser():

>>> p = PosixPath('~/films/Monty Python')
>>> p.expanduser ()
PosixPath('/home/eric/films/Monty Python')

Path.

New in version 3.5.

glob(pattern)
Glob the given pattern in the directory represented by this path, yielding all matching files (of any
kind):

368

Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

>>> sorted(Path('.').glob('*.py'))

[PosixPath('pathlib.py'), PosixPath('setup.py'), PosixPath('test_pathlib.py')]
>>> sorted(Path('.').glob('*/*.py'))

[PosixPath('docs/conf.py')]

The “**” pattern means “this directory and all subdirectories, recursively”. In other words, it enables
recursive globbing:

>>> sorted(Path('.').glob('**/*.py'))
[PosixPath('build/lib/pathlib.py'),
PosixPath('docs/conf.py'),
PosixPath('pathlib.py'),
PosixPath('setup.py'),
PosixPath('test_pathlib.py')]

Path.

Path.

Path.

Path.

Path.

Path.

Path.

Note: Using the “*x” pattern in large directory trees may consume an inordinate amount of time.

group ()
Return the name of the group owning the file. KeyError is raised if the file’s gid isn’t found in the
system database.

is_dir()
Return True if the path points to a directory (or a symbolic link pointing to a directory), False if it
points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission
errors) are propagated.

is_file()
Return True if the path points to a regular file (or a symbolic link pointing to a regular file), False if
it points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission
errors) are propagated.

is_symlink()
Return True if the path points to a symbolic link, False otherwise.

False is also returned if the path doesn’t exist; other errors (such as permission errors) are propagated.

is_socket ()
Return True if the path points to a Unix socket (or a symbolic link pointing to a Unix socket), False
if it points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission
errors) are propagated.

is_fifo()
Return True if the path points to a FIFO (or a symbolic link pointing to a FIFO), False if it points
to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission
errors) are propagated.

is_block_device()
Return True if the path points to a block device (or a symbolic link pointing to a block device), False
if it points to another kind of file.

11.1.

pathlib — Object-oriented filesystem paths 369

The Python Library Reference, Release 3.6.5

Path.

Path.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission
errors) are propagated.

is_char_device()
Return True if the path points to a character device (or a symbolic link pointing to a character device),
False if it points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission
errors) are propagated.

iterdir()
When the path points to a directory, yield path objects of the directory contents:

>>> p = Path('docs')
>>> for child in p.iterdir(): child

PosixPath('docs/conf.py')
PosixPath('docs/_templates')
PosixPath('docs/make.bat')
PosixPath('docs/index.rst')
PosixPath('docs/_build')
PosixPath('docs/_static')
PosixPath('docs/Makefile')

Path.

Path.

Path.

Path.

1chmod (mode)
Like Path.chmod() but, if the path points to a symbolic link, the symbolic link’s mode is changed
rather than its target’s.

1stat ()
Like Path.stat () but, if the path points to a symbolic link, return the symbolic link’s information
rather than its target’s.

mkdir (mode=00777, parents=Fulse, exist ok=False)

Create a new directory at this given path. If mode is given, it is combined with the process’ umask
value to determine the file mode and access flags. If the path already exists, FileEzistsError is
raised.

If parents is true, any missing parents of this path are created as needed; they are created with the
default permissions without taking mode into account (mimicking the POSIX mkdir -p command).

If parents is false (the default), a missing parent raises FilelNotFoundError.
If exist ok is false (the default), FileEzistsError is raised if the target directory already exists.

If exist_ok is true, FileEzistsError exceptions will be ignored (same behavior as the POSIX mkdir
-p command), but only if the last path component is not an existing non-directory file.

Changed in version 3.5: The ezist_ ok parameter was added.

open(mode="r’, buffering=-1, encoding=None, errors=None, newline=None)
Open the file pointed to by the path, like the built-in open () function does:

>>> p = Path('setup.py')
>>> with p.open() as f:
f.readline()

'#!/usr/bin/env python3\n'

Path.

owner ()
Return the name of the user owning the file. KeyError is raised if the file’s uid isn’t found in the
system database.

370

Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

Path.

read_bytes()
Return the binary contents of the pointed-to file as a bytes object:

>>> p = Path('my_binary_file')

>>> p.write_bytes(b'Binary file contents')
20

>>> p.read_bytes()

b'Binary file contents'

Path.

New in version 3.5.

read_text (encoding=None, errors=None)
Return the decoded contents of the pointed-to file as a string:

>>> p = Path('my_text_file')

>>> p.write_text('Text file contents')
18

>>> p.read_text()

'Text file contents'

Path.

The optional parameters have the same meaning as in open().
New in version 3.5.

rename (target)
Rename this file or directory to the given target. On Unix, if target exists and is a file, it will be
replaced silently if the user has permission. target can be either a string or another path object:

>>> p = Path('foo')

>>> p.open('w') .write('some text')
9

>>> target = Path('bar')

>>> p.rename (target)

>>> target.open() .read()

'some text'

Path.

Path.

replace(target)
Rename this file or directory to the given target. If target points to an existing file or directory, it will
be unconditionally replaced.

resolve (strict=Fulse)
Make the path absolute, resolving any symlinks. A new path object is returned:

>>> p = Path()

>>> p

PosixPath('.")

>>> p.resolve()
PosixPath('/home/antoine/pathlib')

“..” components are also eliminated (this is the only method to do so):

>>> p = Path('docs/../setup.py')
>>> p.resolve()
PosixPath('/home/antoine/pathlib/setup.py')

If the path doesn’t exist and strict is True, FileNotFoundError is raised. If strict is False, the path
is resolved as far as possible and any remainder is appended without checking whether it exists. If an
infinite loop is encountered along the resolution path, RuntimeError is raised.

New in version 3.6: The strict argument.

11.1.

pathlib — Object-oriented filesystem paths 371

The Python Library Reference, Release 3.6.5

Path.

rglob (pattern)
This is like calling Path.glob () with “**” added in front of the given pattern:

>>> sorted(Path() .rglob("*.py"))
[PosixPath('build/1lib/pathlib.py'),
PosixPath('docs/conf.py'),
PosixPath('pathlib.py'),
PosixPath('setup.py'),
PosixPath('test_pathlib.py')]

Path.

Path.

rmdir ()
Remove this directory. The directory must be empty.

samefile (other_ path)
Return whether this path points to the same file as other path, which can be either a Path object, or
a string. The semantics are similar to os.path.samefile() and os.path.samestat ().

An 0SError can be raised if either file cannot be accessed for some reason.

>>> p = Path('spam')
>>> q = Path('eggs')
>>> p.samefile(q)
False

>>> p.samefile('spam')
True

Path.

New in version 3.5.

symlink_to (target, target is directory=~Fulse)
Make this path a symbolic link to target. Under Windows, target is directory must be true (default
False) if the link’s target is a directory. Under POSIX, target_is_directory’s value is ignored.

>>> p = Path('mylink')

>>> p.symlink_to('setup.py')

>>> p.resolve()
PosixPath('/home/antoine/pathlib/setup.py')
>>> p.stat().st_size

956

>>> p.lstat() .st_size

8

Note: The order of arguments (link, target) is the reverse of os.symlink()’s.

Path.

Path.

Path.

touch(mode=00666, exist ok=True)

Create a file at this given path. If mode is given, it is combined with the process’ umask value to
determine the file mode and access flags. If the file already exists, the function succeeds if exist_ ok is
true (and its modification time is updated to the current time), otherwise FileEzistsError is raised.

unlink()
Remove this file or symbolic link. If the path points to a directory, use Path.rmdir () instead.

write_bytes (data)
Open the file pointed to in bytes mode, write data to it, and close the file:

>>> p = Path('my_binary_file')
>>> p.write_bytes(b'Binary file contents')
20

(continues on next page)

372

Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

(continued from previous page)

>>> p.read_bytes()
b'Binary file contents'

An existing file of the same name is overwritten.
New in version 3.5.

Path.write_text (data, encoding=None, errors=None)
Open the file pointed to in text mode, write data to it, and close the file:

>>> p = Path('my_text_file')

>>> p.write_text('Text file contents')
18

>>> p.read_text()

'Text file contents'

New in version 3.5.

11.2 os.path — Common pathname manipulations

Source code: Lib/posixpath.py (for POSIX), Lib/ntpath.py (for Windows NT'), and Lib/macpath.py (for
Macintosh)

This module implements some useful functions on pathnames. To read or write files see open(), and for
accessing the filesystem see the os module. The path parameters can be passed as either strings, or bytes.
Applications are encouraged to represent file names as (Unicode) character strings. Unfortunately, some file
names may not be representable as strings on Unix, so applications that need to support arbitrary file names
on Unix should use bytes objects to represent path names. Vice versa, using bytes objects cannot represent
all file names on Windows (in the standard mbcs encoding), hence Windows applications should use string
objects to access all files.

Unlike a unix shell, Python does not do any automatic path expansions. Functions such as ezpanduser()
and ezpandvars () can be invoked explicitly when an application desires shell-like path expansion. (See also
the glob module.)

See also:

The pathlib module offers high-level path objects.

Note: All of these functions accept either only bytes or only string objects as their parameters. The result
is an object of the same type, if a path or file name is returned.

Note: Since different operating systems have different path name conventions, there are several versions
of this module in the standard library. The os.path module is always the path module suitable for the
operating system Python is running on, and therefore usable for local paths. However, you can also import
and use the individual modules if you want to manipulate a path that is always in one of the different
formats. They all have the same interface:

o posixpath for UNIX-style paths
o ntpath for Windows paths
e macpath for old-style MacOS paths

11.2. os.path — Common pathname manipulations 373

https://github.com/python/cpython/tree/3.6/Lib/posixpath.py
https://github.com/python/cpython/tree/3.6/Lib/ntpath.py
https://github.com/python/cpython/tree/3.6/Lib/macpath.py

The Python Library Reference, Release 3.6.5

os.path.abspath(path)
Return a normalized absolutized version of the pathname path. On most platforms, this is equivalent
to calling the function normpath () as follows: normpath(join(os.getcwd(), path)).

Changed in version 3.6: Accepts a path-like object.

os.path.basename (path)
Return the base name of pathname path. This is the second element of the pair returned by passing
path to the function splst (). Note that the result of this function is different from the Unix basename
program; where basename for ' /foo/bar/' returns 'bar', the basename () function returns an empty
string ('').
Changed in version 3.6: Accepts a path-like object.

os.path.commonpath (paths)
Return the longest common sub-path of each pathname in the sequence paths. Raise ValueError if

paths contains both absolute and relative pathnames, or if paths is empty. Unlike commonprefiz(),
this returns a valid path.

Availability: Unix, Windows
New in version 3.5.
Changed in version 3.6: Accepts a sequence of path-like objects.

os.path.commonprefix (list)

Return the longest path prefix (taken character-by-character) that is a prefix of all paths in list. If list
is empty, return the empty string ('").

Note: This function may return invalid paths because it works a character at a time. To obtain a
valid path, see commonpath().

>>> os.path.commonprefix(['/usr/1ib', '/usr/local/lib'])
'/usr/1'

>>> os.path.commonpath(['/usr/1lib', '/usr/local/lib'])
'/usr'

Changed in version 3.6: Accepts a path-like object.

os.path.dirname (path)

Return the directory name of pathname path. This is the first element of the pair returned by passing
path to the function split ().

Changed in version 3.6: Accepts a path-like object.

os.path.exists (path)
Return True if path refers to an existing path or an open file descriptor. Returns False for broken
symbolic links. On some platforms, this function may return False if permission is not granted to
execute os.stat () on the requested file, even if the path physically exists.

Changed in version 3.3: path can now be an integer: True is returned if it is an open file descriptor,
False otherwise.
Changed in version 3.6: Accepts a path-like object.

os.path.lexists(path)

Return True if path refers to an existing path. Returns True for broken symbolic links. Equivalent to
ezists () on platforms lacking os. lstat ().

374 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

os.

oS

oS

oS

oS

oS

oS

oS

Changed in version 3.6: Accepts a path-like object.

path.expanduser (path)
On Unix and Windows, return the argument with an initial component of ~ or ~user replaced by that
user’s home directory.

On Unix, an initial ~ is replaced by the environment variable HOME if it is set; otherwise the current
user’s home directory is looked up in the password directory through the built-in module pwd. An
initial ~user is looked up directly in the password directory.

On Windows, HOME and USERPROFILE will be used if set, otherwise a combination of HOMEPATH and
HOMEDRIVE will be used. An initial ~user is handled by stripping the last directory component from
the created user path derived above.

If the expansion fails or if the path does not begin with a tilde, the path is returned unchanged.

Changed in version 3.6: Accepts a path-like object.

.path.expandvars (path)

Return the argument with environment variables expanded. Substrings of the form $name or ${name}
are replaced by the value of environment variable name. Malformed variable names and references to
non-existing variables are left unchanged.

On Windows, %name, expansions are supported in addition to $name and ${name}.

Changed in version 3.6: Accepts a path-like object.

.path.getatime (path)

Return the time of last access of path. The return value is a number giving the number of seconds
since the epoch (see the time module). Raise 0SError if the file does not exist or is inaccessible.

If os.stat_float_times () returns True, the result is a floating point number.

.path.getmtime (path)

Return the time of last modification of path. The return value is a number giving the number of seconds
since the epoch (see the time module). Raise 0SError if the file does not exist or is inaccessible.

If os.stat_float_times () returns True, the result is a floating point number.

Changed in version 3.6: Accepts a path-like object.

.path.getctime (path)

Return the system’s ctime which, on some systems (like Unix) is the time of the last metadata change,
and, on others (like Windows), is the creation time for path. The return value is a number giving the
number of seconds since the epoch (see the time module). Raise 0SError if the file does not exist or
is inaccessible.

Changed in version 3.6: Accepts a path-like object.

.path.getsize (path)

Return the size, in bytes, of path. Raise OSError if the file does not exist or is inaccessible.

Changed in version 3.6: Accepts a path-like object.

.path.isabs(path)

Return True if path is an absolute pathname. On Unix, that means it begins with a slash, on Windows
that it begins with a (back)slash after chopping off a potential drive letter.

Changed in version 3.6: Accepts a path-like object.

.path.isfile(path)

Return True if path is an ezisting regular file. This follows symbolic links, so both 4slink() and
isfile() can be true for the same path.

11.2. os.path — Common pathname manipulations 375

The Python Library Reference, Release 3.6.5

Changed in version 3.6: Accepts a path-like object.

os.path.isdir (path)
Return True if path is an existing directory. This follows symbolic links, so both ¢slink() and
isdir () can be true for the same path.

Changed in version 3.6: Accepts a path-like object.

os.path.islink(path)
Return True if path refers to an ezisting directory entry that is a symbolic link. Always False if
symbolic links are not supported by the Python runtime.

Changed in version 3.6: Accepts a path-like object.

os.path.ismount (path)
Return True if pathname path is a mount point: a point in a file system where a different file system
has been mounted. On POSIX, the function checks whether path’s parent, path/. ., is on a different
device than path, or whether path/.. and path point to the same i-node on the same device — this
should detect mount points for all Unix and POSIX variants. On Windows, a drive letter root and a
share UNC are always mount points, and for any other path GetVolumePathName is called to see if it
is different from the input path.

New in version 3.4: Support for detecting non-root mount points on Windows.
Changed in version 3.6: Accepts a path-like object.

os.path.join(path, *paths)
Join one or more path components intelligently. The return value is the concatenation of path and
any members of *paths with exactly one directory separator (os.sep) following each non-empty part
except the last, meaning that the result will only end in a separator if the last part is empty. If a
component is an absolute path, all previous components are thrown away and joining continues from
the absolute path component.

On Windows, the drive letter is not reset when an absolute path component (e.g., r'\foo') is en-
countered. If a component contains a drive letter, all previous components are thrown away and the
drive letter is reset. Note that since there is a current directory for each drive, os.path. join("c:",
"foo") represents a path relative to the current directory on drive C: (c:foo0), not c:\foo.

Changed in version 3.6: Accepts a path-like object for path and paths.

os.path.normcase (path)
Normalize the case of a pathname. On Unix and Mac OS X, this returns the path unchanged; on
case-insensitive filesystems, it converts the path to lowercase. On Windows, it also converts forward
slashes to backward slashes. Raise a TypeError if the type of path is not str or bytes (directly or
indirectly through the os.PathLike interface).

Changed in version 3.6: Accepts a path-like object.

os.path.normpath (path)
Normalize a pathname by collapsing redundant separators and up-level references so that A//B, A/
B/, A/./B and A/foo/../B all become A/B. This string manipulation may change the meaning of a
path that contains symbolic links. On Windows, it converts forward slashes to backward slashes. To
normalize case, use normcase ().

Changed in version 3.6: Accepts a path-like object.

os.path.realpath(path)
Return the canonical path of the specified filename, eliminating any symbolic links encountered in the
path (if they are supported by the operating system).

Changed in version 3.6: Accepts a path-like object.

376 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

os.path.relpath(path, start=os.curdir)

Return a relative filepath to path either from the current directory or from an optional start directory.
This is a path computation: the filesystem is not accessed to confirm the existence or nature of path
or start.

start defaults to os. curdir.
Availability: Unix, Windows.

Changed in version 3.6: Accepts a path-like object.

os.path.samefile(pathl, path2)

Return True if both pathname arguments refer to the same file or directory. This is determined by the
device number and i-node number and raises an exception if an os.stat () call on either pathname
fails.

Availability: Unix, Windows.
Changed in version 3.2: Added Windows support.
Changed in version 3.4: Windows now uses the same implementation as all other platforms.

Changed in version 3.6: Accepts a path-like object.

os.path.sameopenfile(fpi, fp2)

Return True if the file descriptors fp1 and fp2 refer to the same file.
Availability: Unix, Windows.

Changed in version 3.2: Added Windows support.

Changed in version 3.6: Accepts a path-like object.

os.path.samestat (stati, stat2)

Return True if the stat tuples stat! and stat2 refer to the same file. These structures may have
been returned by os. fstat (), os.lstat (), or os.stat (). This function implements the underlying
comparison used by samefile() and sameopenfile().

Availability: Unix, Windows.
Changed in version 3.4: Added Windows support.
Changed in version 3.6: Accepts a path-like object.

os.path.split(path)

Split the pathname path into a pair, (head, tail) where tail is the last pathname component and
head is everything leading up to that. The tail part will never contain a slash; if path ends in a slash,
tail will be empty. If there is no slash in path, head will be empty. If path is empty, both head and tail
are empty. Trailing slashes are stripped from head unless it is the root (one or more slashes only). In
all cases, join(head, tail) returns a path to the same location as path (but the strings may differ).
Also see the functions dirname () and basename ().

Changed in version 3.6: Accepts a path-like object.

os.path.splitdrive (path)

Split the pathname path into a pair (drive, tail) where drive is either a mount point or the empty
string. On systems which do not use drive specifications, drive will always be the empty string. In all
cases, drive + tail will be the same as path.

On Windows, splits a pathname into drive/UNC sharepoint and relative path.

If the path contains a drive letter, drive will contain everything up to and including the colon. e.g.
splitdrive("c:/dir") returns ("c:", "/dir")

11.2.

os.path — Common pathname manipulations 377

The Python Library Reference, Release 3.6.5

If the path contains a UNC path, drive will contain the host name and share, up to but not including
the fourth separator. e.g. splitdrive("//host/computer/dir") returns ("//host/computer", "/
dir")

Changed in version 3.6: Accepts a path-like object.

os.path.splitext (path)
Split the pathname path into a pair (root, ext) such that root + ext == path, and ezt is empty or
begins with a period and contains at most one period. Leading periods on the basename are ignored;
splitext('.cshrc') returns ('.cshrc', '').

Changed in version 3.6: Accepts a path-like object.

os.path.splitunc(path)
Deprecated since version 3.1: Use splitdrive instead.

Split the pathname path into a pair (unc, rest) so that wunc is the UNC mount point (such as
r'\\host\mount"'), if present, and rest the rest of the path (such as r'\path\file.ext'). For paths
containing drive letters, unc will always be the empty string.

Availability: Windows.

os.path.supports_unicode_filenames
True if arbitrary Unicode strings can be used as file names (within limitations imposed by the file
system).

11.3 fileinput — lterate over lines from multiple input streams

Source code: Lib/fileinput.py

This module implements a helper class and functions to quickly write a loop over standard input or a list of
files. If you just want to read or write one file see open().

The typical use is:

import fileinput
for line in fileinput.input(Q):
process(line)

This iterates over the lines of all files listed in sys.argv[1:], defaulting to sys.stdin if the list is empty.
If a filename is '-', it is also replaced by sys.stdin. To specify an alternative list of filenames, pass it as
the first argument to input (). A single file name is also allowed.

All files are opened in text mode by default, but you can override this by specifying the mode parameter in
the call to input () or FileInput. If an I/O error occurs during opening or reading a file, OSError is raised.

Changed in version 3.3: I0OError used to be raised; it is now an alias of OSError.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for
interactive use, or if it has been explicitly reset (e.g. using sys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is
noticeable at all is when the last file opened is empty.

Lines are returned with any newlines intact, which means that the last line in a file may not have one.

You can control how files are opened by providing an opening hook via the openhook parameter to fileinput.
input () or FileInput (). The hook must be a function that takes two arguments, filename and mode, and
returns an accordingly opened file-like object. Two useful hooks are already provided by this module.

378 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.6/Lib/fileinput.py

The Python Library Reference, Release 3.6.5

The following function is the primary interface of this module:

fileinput.input (files=None, inplace=Fulse, backup=", bufsize=0, mode="r’, openhook=None)
Create an instance of the FileInput class. The instance will be used as global state for the functions
of this module, and is also returned to use during iteration. The parameters to this function will be
passed along to the constructor of the FileInput class.

The FileInput instance can be used as a context manager in the with statement. In this example,
input is closed after the with statement is exited, even if an exception occurs:

with fileinput.input(files=('spam.txt', 'eggs.txt')) as f:
for line in f:
process(line)

Changed in version 3.2: Can be used as a context manager.
Deprecated since version 3.6, will be removed in version 3.8: The bufsize parameter.

The following functions use the global state created by fileinput.input (); if there is no active state,
RuntimeError is raised.

fileinput.filename()
Return the name of the file currently being read. Before the first line has been read, returns None.

fileinput.fileno()
Return the integer “file descriptor” for the current file. When no file is opened (before the first line
and between files), returns -1.

fileinput.lineno()
Return the cumulative line number of the line that has just been read. Before the first line has been
read, returns 0. After the last line of the last file has been read, returns the line number of that line.

fileinput.filelineno ()
Return the line number in the current file. Before the first line has been read, returns 0. After the last
line of the last file has been read, returns the line number of that line within the file.

fileinput.isfirstline()
Returns true if the line just read is the first line of its file, otherwise returns false.

fileinput.isstdin()
Returns true if the last line was read from sys.stdin, otherwise returns false.

fileinput.nextfile()
Close the current file so that the next iteration will read the first line from the next file (if any); lines
not read from the file will not count towards the cumulative line count. The filename is not changed
until after the first line of the next file has been read. Before the first line has been read, this function
has no effect; it cannot be used to skip the first file. After the last line of the last file has been read,
this function has no effect.

fileinput.close()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as
well:

)

class fileinput.FileInput (files=None, inplace=Fulse, backup=", bufsize=0, mode="r’, open-

hook=None)
Class FileInput is the implementation; its methods filename (), fileno (), lineno(), filelineno(),

isfirstline(), isstdin(), nextfile() and close() correspond to the functions of the same name
in the module. In addition it has a readline() method which returns the next input line, and a
__getitem__() method which implements the sequence behavior. The sequence must be accessed in
strictly sequential order; random access and readline () cannot be mixed.

11.3. fileinput — lterate over lines from multiple input streams 379

The Python Library Reference, Release 3.6.5

With mode you can specify which file mode will be passed to open(). It must be one of 'r', 'rU',
'U' and 'rb'.

The openhook, when given, must be a function that takes two arguments, filename and mode, and
returns an accordingly opened file-like object. You cannot use inplace and openhook together.

A FileInput instance can be used as a context manager in the with statement. In this example, input
is closed after the with statement is exited, even if an exception occurs:

with FileInput(files=('spam.txt', 'eggs.txt')) as input:
process(input)

Changed in version 3.2: Can be used as a context manager.
Deprecated since version 3.4: The 'rU' and 'U' modes.
Deprecated since version 3.6, will be removed in version 3.8: The bufsize parameter.

Optional in-place filtering: if the keyword argument inplace=True is passed to fileinput.input () or
to the FileInput constructor, the file is moved to a backup file and standard output is directed to the input
file (if a file of the same name as the backup file already exists, it will be replaced silently). This makes it
possible to write a filter that rewrites its input file in place. If the backup parameter is given (typically as
backup='.<some extension>'), it specifies the extension for the backup file, and the backup file remains
around; by default, the extension is '.bak' and it is deleted when the output file is closed. In-place filtering
is disabled when standard input is read.

The two following opening hooks are provided by this module:

fileinput.hook_compressed(filename, mode)
Transparently opens files compressed with gzip and bzip2 (recognized by the extensions '.gz' and
'.bz2') using the gzip and bz2 modules. If the filename extension is not '.gz' or '.bz2', the file is
opened normally (ie, using open () without any decompression).

Usage example: fi = fileinput.FileInput(openhook=fileinput.hook_compressed)

fileinput.hook_encoded (encoding, errors=None)
Returns a hook which opens each file with open (), using the given encoding and errors to read the file.

Usage example: fi = fileinput.FileInput (openhook=fileinput.hook_encoded("utf-8",
"surrogateescape"))

Changed in version 3.6: Added the optional errors parameter.

11.4 stat — Interpreting stat () results

Source code: Lib/stat.py

The stat module defines constants and functions for interpreting the results of os.stat (), os. fstat () and
os.lstat () (if they exist). For complete details about the stat(), fstat() and 1stat() calls, consult the
documentation for your system.

Changed in version 3.4: The stat module is backed by a C implementation.
The stat module defines the following functions to test for specific file types:

stat.S_ISDIR(mode)
Return non-zero if the mode is from a directory.

380 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.6/Lib/stat.py

The Python Library Reference, Release 3.6.5

stat.S_ISCHR (mode)

Return non-zero if the mode is from a character special device file.

stat.S_ISBLK(mode)
Return non-zero if the mode is from a block special device file.

stat.S_ISREG(mode)
Return non-zero if the mode is from a regular file.

stat.S_ISFIFO(mode)
Return non-zero if the mode is from a FIFO (named pipe).

stat.S_ISLNK (mode)
Return non-zero if the mode is from a symbolic link.

stat.S_ISSOCK (mode)
Return non-zero if the mode is from a socket.

stat.S_ISDOOR (mode)
Return non-zero if the mode is from a door.

New in version 3.4.

stat.S_ISPORT (mode)
Return non-zero if the mode is from an event port.

New in version 3.4.

stat.S_ISWHT (mode)
Return non-zero if the mode is from a whiteout.

New in version 3.4.

Two additional functions are defined for more general manipulation of the file’s mode:

stat.S_IMODE (mode)

Return the portion of the file’s mode that can be set by os.chmod ()—that is, the file’s permission
bits, plus the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

stat.S_IFMT (mode)

Return the portion of the file’s mode that describes the file type (used by the S_IS* () functions above).

Normally, you would use the os.path.is*() functions for testing the type of a file; the functions here are
useful when you are doing multiple tests of the same file and wish to avoid the overhead of the stat ()
system call for each test. These are also useful when checking for information about a file that isn’t handled

by os.path, like the tests for block and character devices.

Example:

import os, sys
from stat import *

def walktree(top, callback):
""'recursively descend the directory tree rooted at top,
calling the callback function for each regular file'''
for £ in os.listdir(top):
pathname = os.path.join(top, f)
mode = os.stat(pathname).st_mode
if S_ISDIR(mode):
It's a directory, recurse into it
walktree(pathname, callback)

(continues on next page)

11.4. stat — Interpreting stat () results

381

The Python Library Reference, Release 3.6.5

(continued from previous page)

elif S_ISREG(mode):
It's a file, call the callback function
callback(pathname)

else:
Unknown file type, print a message
print ('Skipping /s' 7% pathname)

def visitfile(file):
print('visiting', file)

if __name__ == '__main__"':

walktree(sys.argv[1], visitfile)

An additional utility function is provided to convert a file’s mode in a human readable string:

stat.filemode (mode)
Convert a file’s mode to a string of the form ‘-rwxrwxrwx’.

New in version 3.3.
Changed in version 3.4: The function supports S_IFDOOR, S_IFPORT and S_IFWHT.

All the variables below are simply symbolic indexes into the 10-tuple returned by os.stat (), os. fstat()
or os.lstat().

stat.ST_MODE
Inode protection mode.

stat.ST_INO
Inode number.

stat.ST_DEV
Device inode resides on.

stat.ST_NLINK
Number of links to the inode.

stat.ST_UID
User id of the owner.

stat.ST_GID
Group id of the owner.

stat.ST_SIZE
Size in bytes of a plain file; amount of data waiting on some special files.

stat.ST_ATIME
Time of last access.

stat.ST_MTIME
Time of last modification.

stat.ST_CTIME
The “ctime” as reported by the operating system. On some systems (like Unix) is the time of the last
metadata change, and, on others (like Windows), is the creation time (see platform documentation for
details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the file
in bytes. For FIFOs and sockets under most flavors of Unix (including Linux in particular), the “size” is
the number of bytes waiting to be read at the time of the call to os.stat (), os. fstat(), or os.lstat();
this can sometimes be useful, especially for polling one of these special files after a non-blocking open. The

382 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

meaning of the size field for other character and block devices varies more, depending on the implementation
of the underlying system call.

The variables below define the flags used in the ST_MODE field.
Use of the functions above is more portable than use of the first set of flags:

stat.S_IFSOCK
Socket.

stat.S_IFLNK
Symbolic link.

stat.S_IFREG
Regular file.

stat.S_IFBLK
Block device.

stat.S_IFDIR
Directory.

stat.S_IFCHR
Character device.

stat.S_IFIFO
FIFO.

stat.S_IFDOOR
Door.

New in version 3.4.

stat.S_IFPORT
Event port.

New in version 3.4.

stat.S_IFWHT
Whiteout.

New in version 3.4.

Note: S_IFDOOR, S_IFPORT or S_IFWHT are defined as O when the platform does not have support for the
file types.

The following flags can also be used in the mode argument of os. chmod ():

stat.S_ISUID
Set UID bit.

stat.S_ISGID
Set-group-ID bit. This bit has several special uses. For a directory it indicates that BSD semantics is
to be used for that directory: files created there inherit their group ID from the directory, not from the
effective group ID of the creating process, and directories created there will also get the S_ISGID bit
set. For a file that does not have the group execution bit (S_IXGRP) set, the set-group-ID bit indicates
mandatory file/record locking (see also S_ENFMT).

stat.S_ISVTX
Sticky bit. When this bit is set on a directory it means that a file in that directory can be renamed or
deleted only by the owner of the file, by the owner of the directory, or by a privileged process.

11.4. stat — Interpreting stat () results 383

The Python Library Reference, Release 3.6.5

stat.S_IRWXU
Mask for file owner permissions.

stat.S_IRUSR
Owner has read permission.

stat.S_IWUSR
Owner has write permission.

stat.S_IXUSR
Owner has execute permission.

stat.S_IRWXG
Mask for group permissions.

stat.S_IRGRP
Group has read permission.

stat.S_IWGRP
Group has write permission.

stat.S_IXGRP
Group has execute permission.

stat.S_IRWXO
Mask for permissions for others (not in group).

stat.S_IROTH
Others have read permission.

stat.S_IWOTH
Others have write permission.

stat.S_IXO0TH
Others have execute permission.

stat.S_ENFMT
System V file locking enforcement. This flag is shared with S_ISGID: file/record locking is enforced on
files that do not have the group execution bit (S_IXGRP) set.

stat.S_IREAD
Unix V7 synonym for S_TRUSR.

stat.S_IWRITE
Unix V7 synonym for S_IWUSR.

stat.S_IEXEC
Unix V7 synonym for S_IXUSR.

The following flags can be used in the flags argument of os.chflags ():

stat.UF_NODUMP
Do not dump the file.

stat.UF_IMMUTABLE
The file may not be changed.

stat.UF_APPEND
The file may only be appended to.

stat.UF_OPAQUE
The directory is opaque when viewed through a union stack.

384 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

stat.UF_NOUNLINK
The file may not be renamed or deleted.

stat.UF_COMPRESSED
The file is stored compressed (Mac OS X 10.64).

stat.UF_HIDDEN
The file should not be displayed in a GUI (Mac OS X 10.5+).

stat.SF_ARCHIVED
The file may be archived.

stat.SF_IMMUTABLE
The file may not be changed.

stat.SF_APPEND
The file may only be appended to.

stat.SF_NOUNLINK
The file may not be renamed or deleted.

stat.SF_SNAPSHOT
The file is a snapshot file.

See the *BSD or Mac OS systems man page chflags(2) for more information.

On Windows, the following file attribute constants are available for use when testing bits in the
st_file_attributes member returned by os.stat(). See the Windows API documentation for more
detail on the meaning of these constants.

stat.FILE_ATTRIBUTE_ARCHIVE
stat.FILE_ATTRIBUTE_COMPRESSED
stat.FILE_ATTRIBUTE_DEVICE
stat.FILE_ATTRIBUTE_DIRECTORY
stat.FILE_ATTRIBUTE_ENCRYPTED
stat.FILE_ATTRIBUTE_HIDDEN
stat.FILE_ATTRIBUTE_INTEGRITY_STREAM
stat.FILE_ATTRIBUTE_NORMAL
stat.FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
stat.FILE_ATTRIBUTE_NO_SCRUB_DATA
stat.FILE_ATTRIBUTE_OFFLINE
stat.FILE_ATTRIBUTE_READONLY
stat.FILE_ATTRIBUTE_REPARSE_POINT
stat.FILE_ATTRIBUTE_SPARSE_FILE
stat.FILE_ATTRIBUTE_SYSTEM
stat.FILE_ATTRIBUTE_TEMPORARY
stat.FILE_ATTRIBUTE_VIRTUAL

New in version 3.5.

11.5 filecmp — File and Directory Comparisons

Source code: Lib/filecmp.py

The f1ecmp module defines functions to compare files and directories, with various optional time/correctness
trade-offs. For comparing files, see also the d7ff14b module.

The filecmp module defines the following functions:

11.5. filecmp — File and Directory Comparisons 385

https://msdn.microsoft.com/en-us/library/windows/desktop/gg258117.aspx
https://github.com/python/cpython/tree/3.6/Lib/filecmp.py

The Python Library Reference, Release 3.6.5

filecmp.cmp(f1, f2, shallow="True)

Compare the files named fI and f2, returning True if they seem equal, False otherwise.

If shallow is true, files with identical os.stat () signatures are taken to be equal. Otherwise, the
contents of the files are compared.

Note that no external programs are called from this function, giving it portability and efficiency.

This function uses a cache for past comparisons and the results, with cache entries invalidated if the
os.stat () information for the file changes. The entire cache may be cleared using clear_cache().

filecmp.cmpfiles(dirl, dir2, common, shallow="True)

Compare the files in the two directories dir! and dir2 whose names are given by common.

Returns three lists of file names: match, mismatch, errors. match contains the list of files that match,
mismatch contains the names of those that don’t, and errors lists the names of files which could not
be compared. Files are listed in errors if they don’t exist in one of the directories, the user lacks
permission to read them or if the comparison could not be done for some other reason.

The shallow parameter has the same meaning and default value as for filecmp.cmp ().

For example, cmpfiles('a', 'b', ['c', 'd/e']) will compare a/c with b/c and a/d/e with b/d/e.
'c' and 'd/e' will each be in one of the three returned lists.

filecmp.clear_cache()

Clear the filecmp cache. This may be useful if a file is compared so quickly after it is modified that it
is within the mtime resolution of the underlying filesystem.

New in version 3.4.

11.5.1 The dircmp class

class filecmp.dircmp(a, b, ignore=None, hide=None)

Construct a new directory comparison object, to compare the directories a and b. ignore is a list
of names to ignore, and defaults to filecmp.DEFAULT IGNORES. hide is a list of names to hide, and
defaults to [os.curdir, os.pardir].

The dircmp class compares files by doing shallow comparisons as described for filecmp.cmp ().
The dircmp class provides the following methods:

report ()
Print (to sys.stdout) a comparison between a and b.

report_partial_closure()
Print a comparison between a and b and common immediate subdirectories.

report_full_closure()
Print a comparison between a and b and common subdirectories (recursively).

The dircmp class offers a number of interesting attributes that may be used to get various bits of
information about the directory trees being compared.

Note that via __getattr__() hooks, all attributes are computed lazily, so there is no speed penalty if
only those attributes which are lightweight to compute are used.

left
The directory a.

right
The directory b.

386

Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

left_list
Files and subdirectories in a, filtered by hide and ignore.

right_list
Files and subdirectories in b, filtered by hide and ignore.

common
Files and subdirectories in both a and b.

left_only
Files and subdirectories only in a.

right_only
Files and subdirectories only in b.

common_dirs
Subdirectories in both a and b.

common_files
Files in both a and b.

common_funny
Names in both a and b, such that the type differs between the directories, or names for which
0s.stat () reports an error.

same_files
Files which are identical in both ¢ and b, using the class’s file comparison operator.

diff_files
Files which are in both a and b, whose contents differ according to the class’s file comparison
operator.

funny_files
Files which are in both a and b, but could not be compared.

subdirs
A dictionary mapping names in common_dirs to dircmp objects.

filecmp.DEFAULT_IGNORES
New in version 3.4.

List of directories ignored by dircmp by default.

Here is a simplified example of using the subdirs attribute to search recursively through two directories to
show common different files:

>>> from filecmp import dircmp
>>> def print_diff_files(dcmp):
for name in dcmp.diff_files:
print("diff_file found in and " % (name, dcmp.left,
dcmp.right))
for sub_dcmp in dcmp.subdirs.values():
print_diff_files(sub_dcmp)

>>> demp = dircmp('dirl', 'dir2')
>>> print_diff_files(dcmp)

11.6 tempfile — Generate temporary files and directories

Source code: Lib/tempfile.py

11.6. tempfile — Generate temporary files and directories 387

https://github.com/python/cpython/tree/3.6/Lib/tempfile.py

The Python Library Reference, Release 3.6.5

This module creates temporary files and directories. It works on all supported platforms. TemporaryFile,
NamedTemporaryFile, TemporaryDirectory, and SpooledTemporaryFile are high-level interfaces which
provide automatic cleanup and can be used as context managers. mkstemp () and mkdtemp () are lower-level
functions which require manual cleanup.

All the user-callable functions and constructors take additional arguments which allow direct control over
the location and name of temporary files and directories. Files names used by this module include a string
of random characters which allows those files to be securely created in shared temporary directories. To
maintain backward compatibility, the argument order is somewhat odd; it is recommended to use keyword
arguments for clarity.

The module defines the following user-callable items:

tempfile.TemporaryFile (mode="w+b’, buffering=None, encoding=None, mnewline=None, suf-
fix=None, prefit=None, dir=None)

Return a file-like object that can be used as a temporary storage area. The file is created securely,
using the same rules as mkstemp (). It will be destroyed as soon as it is closed (including an implicit
close when the object is garbage collected). Under Unix, the directory entry for the file is either not
created at all or is removed immediately after the file is created. Other platforms do not support this;
your code should not rely on a temporary file created using this function having or not having a visible
name in the file system.

The resulting object can be used as a context manager (see Ezxamples). On completion of the context
or destruction of the file object the temporary file will be removed from the filesystem.

The mode parameter defaults to 'w+b' so that the file created can be read and written without being
closed. Binary mode is used so that it behaves consistently on all platforms without regard for the
data that is stored. buffering, encoding and newline are interpreted as for open().

The dir, prefix and suffix parameters have the same meaning and defaults as with mkstemp ().

The returned object is a true file object on POSIX platforms. On other platforms, it is a file-like object
whose file attribute is the underlying true file object.

The os.0_ TMPFILE flag is used if it is available and works (Linux-specific, requires Linux kernel 3.11
or later).

Changed in version 3.5: The os.0_TMPFILE flag is now used if available.

tempfile.NamedTemporaryFile (mode="w+b’, buffering=None, encoding=None, newline=None, suf-

fix=None, prefit=None, dir=None, delete=True)
This function operates exactly as TemporaryFile() does, except that the file is guaranteed to have
a visible name in the file system (on Unix, the directory entry is not unlinked). That name can be
retrieved from the name attribute of the returned file-like object. Whether the name can be used to
open the file a second time, while the named temporary file is still open, varies across platforms (it
can be so used on Unix; it cannot on Windows NT or later). If delete is true (the default), the file is
deleted as soon as it is closed. The returned object is always a file-like object whose file attribute is
the underlying true file object. This file-like object can be used in a with statement, just like a normal
file.

tempfile.SpooledTemporaryFile (maz_size=0, mode="w+b’, buffering=None, encoding=None, new-
line=None, suffit=None, prefit=None, dir=None)
This function operates exactly as TemporaryFile () does, except that data is spooled in memory until
the file size exceeds mazx__size, or until the file’s fileno () method is called, at which point the contents
are written to disk and operation proceeds as with TemporaryFile().

The resulting file has one additional method, rollover (), which causes the file to roll over to an
on-disk file regardless of its size.

388 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.6.5

The returned object is a file-like object whose _file attribute is either an i0.BytesIO0 or i0.StringI0
object (depending on whether binary or text mode was specified) or a true file object, depending on
whether rollover () has been called. This file-like object can be used in a with statement, just like a
normal file.

Changed in version 3.3: the truncate method now accepts a size argument.

tempfile.TemporaryDirectory (suffit=None, prefit=None, dir=None)
This function securely creates a temporary directory using the same rules as mkdtemp (). The resulting
object can be used as a context manager (see Ezamples). On completion of the context or destruction of
the temporary directory object the newly created temporary directory and all its contents are removed
from the filesystem.

The directory name can be retrieved from the name attribute of the returned object. When the returned
object is used as a context manager, the name will be assigned to the target of the as clause in the
with statement, if there is one.

The directory can be explicitly cleaned up by calling the cleanup() method.
New in version 3.2.

tempfile.mkstemp (suffit=None, prefit=None, dir=None, text=False)
Creates a temporary file in the most secure manner possible. There are no race conditions in the file’s
creation, assuming that the platform properly implements the os.0_EXCL flag for os.open(). The file
is readable and writable only by the creating user ID. If the platform uses permission bits to indicate
whether a file is executable, the file is executable by no one. The file descriptor is not inherited by
child processes.

Unlike TemporaryFile(), the user of mkstemp () is responsible for deleting the temporary file when
done with it.

If suffiz is not None, the file name will end with that suffix, otherwise there will be no suffix. mkstemp ()
does not put a dot between the file name and the suffix; if you need one, put it at the beginning of

suffiz.

If prefiz is not None, the file name will begin with that prefix; otherwise, a default prefix is used. The
default is the return value of gettempprefiz() or gettempprefizb (), as appropriate.

If dir is not None, the file will be created in that directory; otherwise, a default directory is used. The
default directory is chosen from a platform-dependent list, but the user of the application can control
the directory location by setting the TMPDIR, TEMP or TMP environment variables. There is thus
no guarantee that the generated filename will have any nice properties, such as not requiring quoting
when passed to external commands via os.popen().

If any of suffiz, prefix, and dir are not None, they must be the same type. If they are bytes, the returned
name will be bytes instead of str. If you want to force a bytes return value with otherwise default
behavior, pass suffix=b'"'.

If text is specified, it indicates whether to open the file in binary mode (the default) or text mode. On
some platforms, this makes no difference.

mkstemp () returns a tuple containing an OS-level handle to an open file (as would be returned by
os.open()) and the absolute pathname of that file, in that order.

Changed in version 3.5: suff