
The Python Library Reference

Release 3.5.7

Guido van Rossum

and the Python development team

March 17, 2019

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3

2 Built-in Functions 5

3 Built-in Constants 25
3.1 Constants added by the site module . 25

4 Built-in Types 27
4.1 Truth Value Testing . 27
4.2 Boolean Operations — and, or, not . 27
4.3 Comparisons . 28
4.4 Numeric Types — int, float, complex . 29
4.5 Iterator Types . 34
4.6 Sequence Types — list, tuple, range . 35
4.7 Text Sequence Type — str . 41
4.8 Binary Sequence Types — bytes, bytearray, memoryview . 51
4.9 Set Types — set, frozenset . 72
4.10 Mapping Types — dict . 75
4.11 Context Manager Types . 78
4.12 Other Built-in Types . 79
4.13 Special Attributes . 81

5 Built-in Exceptions 83
5.1 Base classes . 84
5.2 Concrete exceptions . 84
5.3 Warnings . 90
5.4 Exception hierarchy . 90

6 Text Processing Services 93
6.1 string — Common string operations . 93
6.2 re — Regular expression operations . 103
6.3 difflib — Helpers for computing deltas . 122
6.4 textwrap — Text wrapping and filling . 133
6.5 unicodedata — Unicode Database . 137
6.6 stringprep — Internet String Preparation . 139
6.7 readline — GNU readline interface . 140
6.8 rlcompleter — Completion function for GNU readline . 144

7 Binary Data Services 147
7.1 struct — Interpret bytes as packed binary data . 147
7.2 codecs — Codec registry and base classes . 152

i

8 Data Types 171
8.1 datetime — Basic date and time types . 171
8.2 calendar — General calendar-related functions . 198
8.3 collections — Container datatypes . 202
8.4 collections.abc — Abstract Base Classes for Containers . 218
8.5 heapq — Heap queue algorithm . 222
8.6 bisect — Array bisection algorithm . 226
8.7 array — Efficient arrays of numeric values . 228
8.8 weakref — Weak references . 231
8.9 types — Dynamic type creation and names for built-in types 239
8.10 copy — Shallow and deep copy operations . 242
8.11 pprint — Data pretty printer . 243
8.12 reprlib — Alternate repr() implementation . 248
8.13 enum — Support for enumerations . 250

9 Numeric and Mathematical Modules 263
9.1 numbers — Numeric abstract base classes . 263
9.2 math — Mathematical functions . 266
9.3 cmath — Mathematical functions for complex numbers . 271
9.4 decimal — Decimal fixed point and floating point arithmetic 274
9.5 fractions — Rational numbers . 301
9.6 random — Generate pseudo-random numbers . 304
9.7 statistics — Mathematical statistics functions . 308

10 Functional Programming Modules 315
10.1 itertools — Functions creating iterators for efficient looping 315
10.2 functools — Higher-order functions and operations on callable objects 329
10.3 operator — Standard operators as functions . 335

11 File and Directory Access 343
11.1 pathlib — Object-oriented filesystem paths . 343
11.2 os.path — Common pathname manipulations . 359
11.3 fileinput — Iterate over lines from multiple input streams . 363
11.4 stat — Interpreting stat() results . 365
11.5 filecmp — File and Directory Comparisons . 370
11.6 tempfile — Generate temporary files and directories . 372
11.7 glob — Unix style pathname pattern expansion . 377
11.8 fnmatch — Unix filename pattern matching . 378
11.9 linecache — Random access to text lines . 379
11.10 shutil — High-level file operations . 380
11.11 macpath — Mac OS 9 path manipulation functions . 388

12 Data Persistence 389
12.1 pickle — Python object serialization . 389
12.2 copyreg — Register pickle support functions . 402
12.3 shelve — Python object persistence . 403
12.4 marshal — Internal Python object serialization . 405
12.5 dbm — Interfaces to Unix “databases” . 407
12.6 sqlite3 — DB-API 2.0 interface for SQLite databases . 411

13 Data Compression and Archiving 433
13.1 zlib — Compression compatible with gzip . 433
13.2 gzip — Support for gzip files . 437
13.3 bz2 — Support for bzip2 compression . 439
13.4 lzma — Compression using the LZMA algorithm . 442

ii

13.5 zipfile — Work with ZIP archives . 448
13.6 tarfile — Read and write tar archive files . 455

14 File Formats 467
14.1 csv — CSV File Reading and Writing . 467
14.2 configparser — Configuration file parser . 473
14.3 netrc — netrc file processing . 491
14.4 xdrlib — Encode and decode XDR data . 492
14.5 plistlib — Generate and parse Mac OS X .plist files . 495

15 Cryptographic Services 499
15.1 hashlib — Secure hashes and message digests . 499
15.2 hmac — Keyed-Hashing for Message Authentication . 502

16 Generic Operating System Services 505
16.1 os — Miscellaneous operating system interfaces . 505
16.2 io — Core tools for working with streams . 549
16.3 time — Time access and conversions . 561
16.4 argparse — Parser for command-line options, arguments and sub-commands 569
16.5 getopt — C-style parser for command line options . 600
16.6 logging — Logging facility for Python . 602
16.7 logging.config — Logging configuration . 618
16.8 logging.handlers — Logging handlers . 628
16.9 getpass — Portable password input . 640
16.10 curses — Terminal handling for character-cell displays . 641
16.11 curses.textpad — Text input widget for curses programs . 659
16.12 curses.ascii — Utilities for ASCII characters . 660
16.13 curses.panel — A panel stack extension for curses . 663
16.14 platform — Access to underlying platform’s identifying data 664
16.15 errno — Standard errno system symbols . 667
16.16 ctypes — A foreign function library for Python . 673

17 Concurrent Execution 707
17.1 threading — Thread-based parallelism . 707
17.2 multiprocessing — Process-based parallelism . 719
17.3 The concurrent package . 762
17.4 concurrent.futures — Launching parallel tasks . 762
17.5 subprocess — Subprocess management . 768
17.6 sched — Event scheduler . 783
17.7 queue — A synchronized queue class . 785
17.8 dummy_threading — Drop-in replacement for the threading module 787
17.9 _thread — Low-level threading API . 788
17.10 _dummy_thread — Drop-in replacement for the _thread module 790

18 Interprocess Communication and Networking 791
18.1 socket — Low-level networking interface . 791
18.2 ssl — TLS/SSL wrapper for socket objects . 811
18.3 select — Waiting for I/O completion . 839
18.4 selectors — High-level I/O multiplexing . 846
18.5 asyncio — Asynchronous I/O, event loop, coroutines and tasks 850
18.6 asyncore — Asynchronous socket handler . 910
18.7 asynchat — Asynchronous socket command/response handler 914
18.8 signal — Set handlers for asynchronous events . 916
18.9 mmap — Memory-mapped file support . 922

iii

19 Internet Data Handling 927
19.1 email — An email and MIME handling package . 927
19.2 json — JSON encoder and decoder . 983
19.3 mailcap — Mailcap file handling . 992
19.4 mailbox — Manipulate mailboxes in various formats . 993
19.5 mimetypes — Map filenames to MIME types . 1011
19.6 base64 — Base16, Base32, Base64, Base85 Data Encodings 1014
19.7 binhex — Encode and decode binhex4 files . 1017
19.8 binascii — Convert between binary and ASCII . 1018
19.9 quopri — Encode and decode MIME quoted-printable data 1020
19.10 uu — Encode and decode uuencode files . 1020

20 Structured Markup Processing Tools 1023
20.1 html — HyperText Markup Language support . 1023
20.2 html.parser — Simple HTML and XHTML parser . 1023
20.3 html.entities — Definitions of HTML general entities . 1028
20.4 XML Processing Modules . 1029
20.5 xml.etree.ElementTree — The ElementTree XML API . 1030
20.6 xml.dom — The Document Object Model API . 1046
20.7 xml.dom.minidom — Minimal DOM implementation . 1056
20.8 xml.dom.pulldom — Support for building partial DOM trees 1061
20.9 xml.sax — Support for SAX2 parsers . 1062
20.10 xml.sax.handler — Base classes for SAX handlers . 1064
20.11 xml.sax.saxutils — SAX Utilities . 1069
20.12 xml.sax.xmlreader — Interface for XML parsers . 1070
20.13 xml.parsers.expat — Fast XML parsing using Expat . 1074

21 Internet Protocols and Support 1085
21.1 webbrowser — Convenient Web-browser controller . 1085
21.2 cgi — Common Gateway Interface support . 1087
21.3 cgitb — Traceback manager for CGI scripts . 1094
21.4 wsgiref — WSGI Utilities and Reference Implementation . 1095
21.5 urllib — URL handling modules . 1104
21.6 urllib.request — Extensible library for opening URLs . 1105
21.7 urllib.response — Response classes used by urllib . 1122
21.8 urllib.parse — Parse URLs into components . 1123
21.9 urllib.error — Exception classes raised by urllib.request . 1130
21.10 urllib.robotparser — Parser for robots.txt . 1131
21.11 http — HTTP modules . 1131
21.12 http.client — HTTP protocol client . 1133
21.13 ftplib — FTP protocol client . 1139
21.14 poplib — POP3 protocol client . 1145
21.15 imaplib — IMAP4 protocol client . 1147
21.16 nntplib — NNTP protocol client . 1154
21.17 smtplib — SMTP protocol client . 1160
21.18 smtpd — SMTP Server . 1167
21.19 telnetlib — Telnet client . 1170
21.20 uuid — UUID objects according to RFC 4122 . 1173
21.21 socketserver — A framework for network servers . 1176
21.22 http.server — HTTP servers . 1184
21.23 http.cookies — HTTP state management . 1190
21.24 http.cookiejar — Cookie handling for HTTP clients . 1193
21.25 xmlrpc — XMLRPC server and client modules . 1202
21.26 xmlrpc.client — XML-RPC client access . 1202

iv

21.27 xmlrpc.server — Basic XML-RPC servers . 1210
21.28 ipaddress — IPv4/IPv6 manipulation library . 1215

22 Multimedia Services 1229
22.1 audioop — Manipulate raw audio data . 1229
22.2 aifc — Read and write AIFF and AIFC files . 1232
22.3 sunau — Read and write Sun AU files . 1235
22.4 wave — Read and write WAV files . 1237
22.5 chunk — Read IFF chunked data . 1240
22.6 colorsys — Conversions between color systems . 1241
22.7 imghdr — Determine the type of an image . 1242
22.8 sndhdr — Determine type of sound file . 1243
22.9 ossaudiodev — Access to OSS-compatible audio devices . 1243

23 Internationalization 1249
23.1 gettext — Multilingual internationalization services . 1249
23.2 locale — Internationalization services . 1257

24 Program Frameworks 1265
24.1 turtle — Turtle graphics . 1265
24.2 cmd — Support for line-oriented command interpreters . 1299
24.3 shlex — Simple lexical analysis . 1304

25 Graphical User Interfaces with Tk 1309
25.1 tkinter — Python interface to Tcl/Tk . 1309
25.2 tkinter.ttk — Tk themed widgets . 1320
25.3 tkinter.tix — Extension widgets for Tk . 1337
25.4 tkinter.scrolledtext — Scrolled Text Widget . 1342
25.5 IDLE . 1342
25.6 Other Graphical User Interface Packages . 1350

26 Development Tools 1353
26.1 typing — Support for type hints . 1353
26.2 pydoc — Documentation generator and online help system 1367
26.3 doctest — Test interactive Python examples . 1368
26.4 unittest — Unit testing framework . 1392
26.5 unittest.mock — mock object library . 1421
26.6 unittest.mock — getting started . 1455
26.7 2to3 - Automated Python 2 to 3 code translation . 1475
26.8 test — Regression tests package for Python . 1480
26.9 test.support — Utilities for the Python test suite . 1483

27 Debugging and Profiling 1489
27.1 bdb — Debugger framework . 1489
27.2 faulthandler — Dump the Python traceback . 1493
27.3 pdb — The Python Debugger . 1496
27.4 The Python Profilers . 1502
27.5 timeit — Measure execution time of small code snippets . 1510
27.6 trace — Trace or track Python statement execution . 1515
27.7 tracemalloc — Trace memory allocations . 1517

28 Software Packaging and Distribution 1527
28.1 distutils — Building and installing Python modules . 1527
28.2 ensurepip — Bootstrapping the pip installer . 1527
28.3 venv — Creation of virtual environments . 1529

v

28.4 zipapp — Manage executable python zip archives . 1537

29 Python Runtime Services 1543
29.1 sys — System-specific parameters and functions . 1543
29.2 sysconfig — Provide access to Python’s configuration information 1558
29.3 builtins — Built-in objects . 1561
29.4 __main__ — Top-level script environment . 1562
29.5 warnings — Warning control . 1562
29.6 contextlib — Utilities for with-statement contexts . 1567
29.7 abc — Abstract Base Classes . 1579
29.8 atexit — Exit handlers . 1583
29.9 traceback — Print or retrieve a stack traceback . 1585
29.10 __future__ — Future statement definitions . 1591
29.11 gc — Garbage Collector interface . 1592
29.12 inspect — Inspect live objects . 1595
29.13 site — Site-specific configuration hook . 1610
29.14 fpectl — Floating point exception control . 1613

30 Custom Python Interpreters 1615
30.1 code — Interpreter base classes . 1615
30.2 codeop — Compile Python code . 1617

31 Importing Modules 1619
31.1 zipimport — Import modules from Zip archives . 1619
31.2 pkgutil — Package extension utility . 1621
31.3 modulefinder — Find modules used by a script . 1624
31.4 runpy — Locating and executing Python modules . 1625
31.5 importlib — The implementation of import . 1627

32 Python Language Services 1645
32.1 parser — Access Python parse trees . 1645
32.2 ast — Abstract Syntax Trees . 1649
32.3 symtable — Access to the compiler’s symbol tables . 1654
32.4 symbol — Constants used with Python parse trees . 1657
32.5 token — Constants used with Python parse trees . 1657
32.6 keyword — Testing for Python keywords . 1659
32.7 tokenize — Tokenizer for Python source . 1659
32.8 tabnanny — Detection of ambiguous indentation . 1663
32.9 pyclbr — Python class browser support . 1663
32.10 py_compile — Compile Python source files . 1665
32.11 compileall — Byte-compile Python libraries . 1666
32.12 dis — Disassembler for Python bytecode . 1668
32.13 pickletools — Tools for pickle developers . 1680

33 Miscellaneous Services 1683
33.1 formatter — Generic output formatting . 1683

34 MS Windows Specific Services 1689
34.1 msilib — Read and write Microsoft Installer files . 1689
34.2 msvcrt — Useful routines from the MS VC++ runtime . 1694
34.3 winreg — Windows registry access . 1696
34.4 winsound — Sound-playing interface for Windows . 1704

35 Unix Specific Services 1707
35.1 posix — The most common POSIX system calls . 1707

vi

35.2 pwd — The password database . 1708
35.3 spwd — The shadow password database . 1709
35.4 grp — The group database . 1710
35.5 crypt — Function to check Unix passwords . 1710
35.6 termios — POSIX style tty control . 1712
35.7 tty — Terminal control functions . 1713
35.8 pty — Pseudo-terminal utilities . 1714
35.9 fcntl — The fcntl and ioctl system calls . 1715
35.10 pipes — Interface to shell pipelines . 1717
35.11 resource — Resource usage information . 1718
35.12 nis — Interface to Sun’s NIS (Yellow Pages) . 1722
35.13 syslog — Unix syslog library routines . 1723

36 Superseded Modules 1725
36.1 optparse — Parser for command line options . 1725
36.2 imp — Access the import internals . 1752

37 Undocumented Modules 1757
37.1 Platform specific modules . 1757

A Glossary 1759

B About these documents 1771
B.1 Contributors to the Python Documentation . 1771

C History and License 1773
C.1 History of the software . 1773
C.2 Terms and conditions for accessing or otherwise using Python 1774
C.3 Licenses and Acknowledgements for Incorporated Software 1777

D Copyright 1791

Bibliography 1793

Python Module Index 1795

Index 1799

vii

viii

The Python Library Reference, Release 3.5.7

While reference-index describes the exact syntax and semantics of the Python language, this library reference
manual describes the standard library that is distributed with Python. It also describes some of the optional
components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long
table of contents listed below. The library contains built-in modules (written in C) that provide access to
system functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well
as modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability of
Python programs by abstracting away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also
include many additional components. For Unix-like operating systems Python is normally provided as a
collection of packages, so it may be necessary to use the packaging tools provided with the operating system
to obtain some or all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from
individual programs and modules to packages and entire application development frameworks), available
from the Python Package Index.

CONTENTS 1

https://pypi.python.org/pypi

The Python Library Reference, Release 3.5.7

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers
and lists. For these types, the Python language core defines the form of literals and places some constraints
on their semantics, but does not fully define the semantics. (On the other hand, the language core does
define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code
without the need of an import statement. Some of these are defined by the core language, but many are not
essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this
collection. Some modules are written in C and built in to the Python interpreter; others are written in
Python and imported in source form. Some modules provide interfaces that are highly specific to Python,
like printing a stack trace; some provide interfaces that are specific to particular operating systems, such as
access to specific hardware; others provide interfaces that are specific to a particular application domain,
like the World Wide Web. Some modules are available in all versions and ports of Python; others are
only available when the underlying system supports or requires them; yet others are available only when a
particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and
exceptions, and finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get
bored, you will get a reasonable overview of the available modules and application areas that are supported
by the Python library. Of course, you don’t have to read it like a novel — you can also browse the table of
contents (in front of the manual), or look for a specific function, module or term in the index (in the back).
And finally, if you enjoy learning about random subjects, you choose a random page number (see module
random) and read a section or two. Regardless of the order in which you read the sections of this manual, it
helps to start with chapter Built-in Functions, as the remainder of the manual assumes familiarity with this
material.

Let the show begin!

3

The Python Library Reference, Release 3.5.7

4 Chapter 1. Introduction

CHAPTER

TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They
are listed here in alphabetical order.

Built-in Functions
abs() dict() help() min() setattr()
all() dir() hex() next() slice()
any() divmod() id() object() sorted()
ascii() enumerate() input() oct() staticmethod()
bin() eval() int() open() str()
bool() exec() isinstance() ord() sum()
bytearray() filter() issubclass() pow() super()
bytes() float() iter() print() tuple()
callable() format() len() property() type()
chr() frozenset() list() range() vars()
classmethod() getattr() locals() repr() zip()
compile() globals() map() reversed() __import__()
complex() hasattr() max() round()
delattr() hash() memoryview() set()

abs(x)
Return the absolute value of a number. The argument may be an integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

all(iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:

if not element:
return False

return True

any(iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:

if element:
return True

return False

5

The Python Library Reference, Release 3.5.7

ascii(object)
As repr(), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr() using \x, \u or \U escapes. This generates a string similar
to that returned by repr() in Python 2.

bin(x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a
Python int object, it has to define an __index__() method that returns an integer.

class bool([x])
Return a Boolean value, i.e. one of True or False. x is converted using the standard truth testing
procedure. If x is false or omitted, this returns False; otherwise it returns True. The bool class is a
subclass of int (see Numeric Types — int, float, complex). It cannot be subclassed further. Its only
instances are False and True (see Boolean Values).

class bytearray([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x
< 256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types,
as well as most methods that the bytes type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

• If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray()
then converts the string to bytes using str.encode().

• If it is an integer, the array will have that size and will be initialized with null bytes.

• If it is an object conforming to the buffer interface, a read-only buffer of the object will be used
to initialize the bytes array.

• If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used
as the initial contents of the array.

Without an argument, an array of size 0 is created.

See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256.
bytes is an immutable version of bytearray – it has the same non-mutating methods and the same
indexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray().

Bytes objects can also be created with literals, see strings.

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes, and Bytes and Bytearray
Operations.

callable(object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible
that a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling
a class returns a new instance); instances are callable if their class has a __call__() method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python
3.2.

chr(i)
Return the string representing a character whose Unicode code point is the integer i. For example,
chr(97) returns the string 'a', while chr(8364) returns the string 'C'. This is the inverse of ord().

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.7

The valid range for the argument is from 0 through 1,114,111 (0x10FFFF in base 16). ValueError will
be raised if i is outside that range.

classmethod(function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the
instance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, arg1, arg2, ...): ...

The @classmethod form is a function decorator – see the description of function definitions in function
for details.

It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is
passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod()
in this section.

For more information on class methods, consult the documentation on the standard type hierarchy in
types.

compile(source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec() or eval(). source
can either be a normal string, a byte string, or an AST object. Refer to the ast module documentation
for information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value
if it wasn’t read from a file ('<string>' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists
of a sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a
single interactive statement (in the latter case, expression statements that evaluate to something other
than None will be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect
the compilation of source. If neither is present (or both are zero) the code is compiled with those
future statements that are in effect in the code that is calling compile(). If the flags argument is given
and dont_inherit is not (or is zero) then the future statements specified by the flags argument are used
in addition to those that would be used anyway. If dont_inherit is a non-zero integer then the flags
argument is it – the future statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple state-
ments. The bitfield required to specify a given feature can be found as the compiler_flag attribute on
the _Feature instance in the __future__ module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects
the optimization level of the interpreter as given by -O options. Explicit levels are 0 (no optimization;
__debug__ is true), 1 (asserts are removed, __debug__ is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source contains
null bytes.

If you want to parse Python code into its AST representation, see ast.parse().

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be

7

https://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 3.5.7

terminated by at least one newline character. This is to facilitate detection of incomplete and complete
statements in the code module.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does
not have to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

class complex([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex
number. If the first parameter is a string, it will be interpreted as a complex number and the function
must be called without a second parameter. The second parameter can never be a string. Each
argument may be any numeric type (including complex). If imag is omitted, it defaults to zero and the
constructor serves as a numeric conversion like int and float. If both arguments are omitted, returns
0j.

Note: When converting from a string, the string must not contain whitespace around the central +
or - operator. For example, complex('1+2j') is fine, but complex('1 + 2j') raises ValueError.

The complex type is described in Numeric Types — int, float, complex.

delattr(object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows
it. For example, delattr(x, 'foobar') is equivalent to del x.foobar.

class dict(**kwarg)
class dict(mapping, **kwarg)
class dict(iterable, **kwarg)

Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict
for documentation about this class.

For other containers see the built-in list, set, and tuple classes, as well as the collections module.

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt
to return a list of valid attributes for that object.

If the object has a method named __dir__(), this method will be called and must return the list
of attributes. This allows objects that implement a custom __getattr__() or __getattribute__()
function to customize the way dir() reports their attributes.

If the object does not provide __dir__(), the function tries its best to gather information from the
object’s __dict__ attribute, if defined, and from its type object. The resulting list is not necessarily
complete, and may be inaccurate when the object has a custom __getattr__().

The default dir() mechanism behaves differently with different types of objects, as it attempts to
produce the most relevant, rather than complete, information:

• If the object is a module object, the list contains the names of the module’s attributes.

• If the object is a type or class object, the list contains the names of its attributes, and recursively
of the attributes of its bases.

• Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and
recursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.7

>>> import struct
>>> dir() # show the names in the module namespace
['__builtins__', '__name__', 'struct']
>>> dir(struct) # show the names in the struct module # doctest: +SKIP
['Struct', '__all__', '__builtins__', '__cached__', '__doc__', '__file__',
'__initializing__', '__loader__', '__name__', '__package__',
'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',
'unpack', 'unpack_from']
>>> class Shape:
... def __dir__(self):
... return ['area', 'perimeter', 'location']
>>> s = Shape()
>>> dir(s)
['area', 'location', 'perimeter']

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it tries
to supply an interesting set of names more than it tries to supply a rigorously or consistently defined
set of names, and its detailed behavior may change across releases. For example, metaclass attributes
are not in the result list when the argument is a class.

divmod(a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient
and remainder when using integer division. With mixed operand types, the rules for binary arithmetic
operators apply. For integers, the result is the same as (a // b, a % b). For floating point numbers the
result is (q, a % b), where q is usually math.floor(a / b) but may be 1 less than that. In any case q *
b + a % b is very close to a, if a % b is non-zero it has the same sign as b, and 0 <= abs(a % b) <
abs(b).

enumerate(iterable, start=0)
Return an enumerate object. iterable must be a sequence, an iterator, or some other object which
supports iteration. The __next__() method of the iterator returned by enumerate() returns a tuple
containing a count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']
>>> list(enumerate(seasons))
[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list(enumerate(seasons, start=1))
[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate(sequence, start=0):
n = start
for elem in sequence:

yield n, elem
n += 1

eval(expression, globals=None, locals=None)
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary.
If provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a
condition list) using the globals and locals dictionaries as global and local namespace. If the globals
dictionary is present and lacks ‘__builtins__’, the current globals are copied into globals before
expression is parsed. This means that expression normally has full access to the standard builtins

9

The Python Library Reference, Release 3.5.7

module and restricted environments are propagated. If the locals dictionary is omitted it defaults to
the globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval() is called. The return value is the result of the evaluated expression. Syntax errors are
reported as exceptions. Example:

>>> x = 1
>>> eval('x+1')
2

This function can also be used to execute arbitrary code objects (such as those created by compile()).
In this case pass a code object instead of a string. If the code object has been compiled with 'exec'
as the mode argument, eval()’s return value will be None.

Hints: dynamic execution of statements is supported by the exec() function. The globals() and locals()
functions returns the current global and local dictionary, respectively, which may be useful to pass
around for use by eval() or exec().

See ast.literal_eval() for a function that can safely evaluate strings with expressions containing only
literals.

exec(object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code
object. If it is a string, the string is parsed as a suite of Python statements which is then executed
(unless a syntax error occurs).1 If it is a code object, it is simply executed. In all cases, the code that’s
executed is expected to be valid as file input (see the section “File input” in the Reference Manual).
Be aware that the return and yield statements may not be used outside of function definitions even
within the context of code passed to the exec() function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals
is provided, it must be a dictionary, which will be used for both the global and the local variables. If
globals and locals are given, they are used for the global and local variables, respectively. If provided,
locals can be any mapping object. Remember that at module level, globals and locals are the same
dictionary. If exec gets two separate objects as globals and locals, the code will be executed as if it
were embedded in a class definition.

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins are
available to the executed code by inserting your own __builtins__ dictionary into globals before
passing it to exec().

Note: The built-in functions globals() and locals() return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec().

Note: The default locals act as described for function locals() below: modifications to the default
locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects
of the code on locals after function exec() returns.

filter(function, iterable)
Construct an iterator from those elements of iterable for which function returns true. iterable may be
either a sequence, a container which supports iteration, or an iterator. If function is None, the identity
function is assumed, that is, all elements of iterable that are false are removed.

1 Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure
to use newline conversion mode to convert Windows or Mac-style newlines.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.7

Note that filter(function, iterable) is equivalent to the generator expression (item for item in iterable
if function(item)) if function is not None and (item for item in iterable if item) if function is None.

See itertools.filterfalse() for the complementary function that returns elements of iterable for which
function returns false.

class float([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and
optionally embedded in whitespace. The optional sign may be '+' or '-'; a '+' sign has no effect
on the value produced. The argument may also be a string representing a NaN (not-a-number), or a
positive or negative infinity. More precisely, the input must conform to the following grammar after
leading and trailing whitespace characters are removed:

sign ::= "+" | "-"
infinity ::= "Infinity" | "inf"
nan ::= "nan"
numeric_value ::= floatnumber | infinity | nan
numeric_string ::= [sign] numeric_value

Here floatnumber is the form of a Python floating-point literal, described in floating. Case is not
significant, so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for
positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the
same value (within Python’s floating point precision) is returned. If the argument is outside the range
of a Python float, an OverflowError will be raised.

For a general Python object x, float(x) delegates to x.__float__().

If no argument is given, 0.0 is returned.

Examples:

>>> float('+1.23')
1.23
>>> float(' -12345\n')
-12345.0
>>> float('1e-003')
0.001
>>> float('+1E6')
1000000.0
>>> float('-Infinity')
-inf

The float type is described in Numeric Types — int, float, complex.

format(value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of
format_spec will depend on the type of the value argument, however there is a standard formatting
syntax that is used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling str(value).

A call to format(value, format_spec) is translated to type(value).__format__(value, format_spec)
which bypasses the instance dictionary when searching for the value’s __format__() method. A
TypeError exception is raised if the method search reaches object and the format_spec is non-empty,
or if either the format_spec or the return value are not strings.

11

The Python Library Reference, Release 3.5.7

Changed in version 3.4: object().__format__(format_spec) raises TypeError if format_spec is not
an empty string.

class frozenset([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, list, tuple, and dict classes, as well as the collections module.

getattr(object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name
of one of the object’s attributes, the result is the value of that attribute. For example, getattr(x,
'foobar') is equivalent to x.foobar. If the named attribute does not exist, default is returned if
provided, otherwise AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of the
current module (inside a function or method, this is the module where it is defined, not the module
from which it is called).

hasattr(object, name)
The arguments are an object and a string. The result is True if the string is the name of one of
the object’s attributes, False if not. (This is implemented by calling getattr(object, name) and seeing
whether it raises an AttributeError or not.)

hash(object)

Return the hash value of the object (if it has one). Hash values are integers. They are used
to quickly compare dictionary keys during a dictionary lookup. Numeric values that compare
equal have the same hash value (even if they are of different types, as is the case for 1 and
1.0).

Note: For objects with custom __hash__() methods, note that hash() truncates the return value
based on the bit width of the host machine. See __hash__() for details.

help([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is
given, the interactive help system starts on the interpreter console. If the argument is a string, then
the string is looked up as the name of a module, function, class, method, keyword, or documentation
topic, and a help page is printed on the console. If the argument is any other kind of object, a help
page on the object is generated.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables
are now more comprehensive and consistent.

hex(x)
Convert an integer number to a lowercase hexadecimal string prefixed with “0x”, for example:

>>> hex(255)
'0xff'
>>> hex(-42)
'-0x2a'

If x is not a Python int object, it has to define an __index__() method that returns an integer.

See also int() for converting a hexadecimal string to an integer using a base of 16.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.7

Note: To obtain a hexadecimal string representation for a float, use the float.hex() method.

id(object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant
for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same id()
value.

CPython implementation detail: This is the address of the object in memory.

input([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and returns
that. When EOF is read, EOFError is raised. Example:

>>> s = input('--> ')
--> Monty Python's Flying Circus
>>> s
"Monty Python's Flying Circus"

If the readline module was loaded, then input() will use it to provide elaborate line editing and history
features.

class int(x=0)
class int(x, base=10)

Return an integer object constructed from a number or string x, or return 0 if no arguments are given.
If x is a number, return x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing
an integer literal in radix base. Optionally, the literal can be preceded by + or - (with no space in
between) and surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with a to z (or
A to Z) having values 10 to 35. The default base is 10. The allowed values are 0 and 2–36. Base-2,
-8, and -16 literals can be optionally prefixed with 0b/0B, 0o/0O, or 0x/0X, as with integer literals in
code. Base 0 means to interpret exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and
so that int('010', 0) is not legal, while int('010') is, as well as int('010', 8).

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index__
method, that method is called to obtain an integer for the base. Previous versions used base.__int__
instead of base.__index__.

isinstance(object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect
or virtual) subclass thereof. If object is not an object of the given type, the function always returns
false. If classinfo is a tuple of type objects (or recursively, other such tuples), return true if object is an
instance of any of the types. If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised.

issubclass(class, classinfo)
Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a
subclass of itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will
be checked. In any other case, a TypeError exception is raised.

iter(object[, sentinel])
Return an iterator object. The first argument is interpreted very differently depending on the pres-
ence of the second argument. Without a second argument, object must be a collection object which
supports the iteration protocol (the __iter__() method), or it must support the sequence protocol

13

The Python Library Reference, Release 3.5.7

(the __getitem__() method with integer arguments starting at 0). If it does not support either of
those protocols, TypeError is raised. If the second argument, sentinel, is given, then object must be a
callable object. The iterator created in this case will call object with no arguments for each call to its
__next__() method; if the value returned is equal to sentinel, StopIteration will be raised, otherwise
the value will be returned.

See also Iterator Types.

One useful application of the second form of iter() is to read lines of a file until a certain line is reached.
The following example reads a file until the readline() method returns an empty string:

with open('mydata.txt') as fp:
for line in iter(fp.readline, ''):

process_line(line)

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a
string, bytes, tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

class list([iterable])
Rather than being a function, list is actually a mutable sequence type, as documented in Lists and
Sequence Types — list, tuple, range.

locals()
Update and return a dictionary representing the current local symbol table. Free variables are returned
by locals() when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of
local and free variables used by the interpreter.

map(function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional
iterable arguments are passed, function must take that many arguments and is applied to the items
from all iterables in parallel. With multiple iterables, the iterator stops when the shortest iterable
is exhausted. For cases where the function inputs are already arranged into argument tuples, see
itertools.starmap().

max(iterable, *[, key, default])
max(arg1, arg2, *args[, key])

Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is
returned. If two or more positional arguments are provided, the largest of the positional arguments is
returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering
function like that used for list.sort(). The default argument specifies an object to return if the provided
iterable is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted(iterable, key=keyfunc, reverse=True)[0] and heapq.
nlargest(1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

memoryview(obj)
Return a “memory view” object created from the given argument. See Memory Views for more infor-
mation.

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.7

min(iterable, *[, key, default])
min(arg1, arg2, *args[, key])

Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is
returned. If two or more positional arguments are provided, the smallest of the positional arguments
is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering
function like that used for list.sort(). The default argument specifies an object to return if the provided
iterable is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted(iterable, key=keyfunc)[0] and heapq.nsmallest(1,
iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

next(iterator[, default])
Retrieve the next item from the iterator by calling its __next__() method. If default is given, it is
returned if the iterator is exhausted, otherwise StopIteration is raised.

class object
Return a new featureless object. object is a base for all classes. It has the methods that are common
to all instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of
the object class.

oct(x)
Convert an integer number to an octal string. The result is a valid Python expression. If x is not a
Python int object, it has to define an __index__() method that returns an integer.

open(file, mode=’r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True,
opener=None)
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised.

file is either a string or bytes object giving the pathname (absolute or relative to the current working
directory) of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file
descriptor is given, it is closed when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to 'r' which
means open for reading in text mode. Other common values are 'w' for writing (truncating the file if it
already exists), 'x' for exclusive creation and 'a' for appending (which on some Unix systems, means
that all writes append to the end of the file regardless of the current seek position). In text mode, if
encoding is not specified the encoding used is platform dependent: locale.getpreferredencoding(False)
is called to get the current locale encoding. (For reading and writing raw bytes use binary mode and
leave encoding unspecified.) The available modes are:

15

The Python Library Reference, Release 3.5.7

Character Meaning
'r' open for reading (default)
'w' open for writing, truncating the file first
'x' open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of the file if it exists
'b' binary mode
't' text mode (default)
'+' open a disk file for updating (reading and writing)
'U' universal newlines mode (deprecated)

The default mode is 'r' (open for reading text, synonym of 'rt'). For binary read-write access, the
mode 'w+b' opens and truncates the file to 0 bytes. 'r+b' opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in
binary mode (including 'b' in the mode argument) return contents as bytes objects without any
decoding. In text mode (the default, or when 't' is included in the mode argument), the contents of
the file are returned as str, the bytes having been first decoded using a platform-dependent encoding
or using the specified encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the
processing is done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only
allowed in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to
indicate the size in bytes of a fixed-size chunk buffer. When no buffering argument is given, the default
buffering policy works as follows:

• Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a
heuristic trying to determine the underlying device’s “block size” and falling back on io.
DEFAULT_BUFFER_SIZE. On many systems, the buffer will typically be 4096 or 8192 bytes
long.

• “Interactive” text files (files for which isatty() returns True) use line buffering. Other text files
use the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used
in text mode. The default encoding is platform dependent (whatever locale.getpreferredencoding()
returns), but any text encoding supported by Python can be used. See the codecs module for the list
of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this
cannot be used in binary mode. A variety of standard error handlers are available (listed under Error
Handlers), though any error handling name that has been registered with codecs.register_error() is
also valid. The standard names include:

• 'strict' to raise a ValueError exception if there is an encoding error. The default value of None
has the same effect.

• 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.

• 'replace' causes a replacement marker (such as '?') to be inserted where there is malformed
data.

• 'surrogateescape' will represent any incorrect bytes as code points in the Unicode Private Use
Area ranging from U+DC80 to U+DCFF. These private code points will then be turned back

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.7

into the same bytes when the surrogateescape error handler is used when writing data. This is
useful for processing files in an unknown encoding.

• 'xmlcharrefreplace' is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference &#nnn;.

• 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

• 'namereplace' (also only supported when writing) replaces unsupported characters with \N{...}
escape sequences.

newline controls how universal newlines mode works (it only applies to text mode). It can be None,
'', '\n', '\r', and '\r\n'. It works as follows:

• When reading input from the stream, if newline is None, universal newlines mode is enabled.
Lines in the input can end in '\n', '\r', or '\r\n', and these are translated into '\n' before
being returned to the caller. If it is '', universal newlines mode is enabled, but line endings are
returned to the caller untranslated. If it has any of the other legal values, input lines are only
terminated by the given string, and the line ending is returned to the caller untranslated.

• When writing output to the stream, if newline is None, any '\n' characters written are translated
to the system default line separator, os.linesep. If newline is '' or '\n', no translation takes
place. If newline is any of the other legal values, any '\n' characters written are translated to
the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor
will be kept open when the file is closed. If a filename is given closefd must be True (the default)
otherwise an error will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file
object is then obtained by calling opener with (file, flags). opener must return an open file descriptor
(passing os.open as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os.open() function to open a file relative to a
given directory:

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener(path, flags):
... return os.open(path, flags, dir_fd=dir_fd)
...
>>> with open('spamspam.txt', 'w', opener=opener) as f:
... print('This will be written to somedir/spamspam.txt', file=f)
...
>>> os.close(dir_fd) # don't leak a file descriptor

The type of file object returned by the open() function depends on the mode. When open() is used
to open a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of io.TextIOBase
(specifically io.TextIOWrapper). When used to open a file in a binary mode with buffering, the returned
class is a subclass of io.BufferedIOBase. The exact class varies: in read binary mode, it returns an
io.BufferedReader; in write binary and append binary modes, it returns an io.BufferedWriter, and in
read/write mode, it returns an io.BufferedRandom. When buffering is disabled, the raw stream, a
subclass of io.RawIOBase, io.FileIO, is returned.

See also the file handling modules, such as, fileinput, io (where open() is declared), os, os.path, tempfile,
and shutil.

Changed in version 3.3: The opener parameter was added. The 'x' mode was added. IOError used
to be raised, it is now an alias of OSError. FileExistsError is now raised if the file opened in exclusive

17

The Python Library Reference, Release 3.5.7

creation mode ('x') already exists.

Changed in version 3.4: The file is now non-inheritable.

Deprecated since version 3.4, will be removed in version 4.0: The 'U' mode.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the function now retries the system call instead of raising an InterruptedError exception
(see PEP 475 for the rationale).

Changed in version 3.5: The 'namereplace' error handler was added.

ord(c)
Given a string representing one Unicode character, return an integer representing the Unicode code
point of that character. For example, ord('a') returns the integer 97 and ord('C') (Euro sign) returns
8364. This is the inverse of chr().

pow(x, y[, z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently
than pow(x, y) % z). The two-argument form pow(x, y) is equivalent to using the power operator:
x**y.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary
arithmetic operators apply. For int operands, the result has the same type as the operands (after
coercion) unless the second argument is negative; in that case, all arguments are converted to float
and a float result is delivered. For example, 10**2 returns 100, but 10**-2 returns 0.01. If the second
argument is negative, the third argument must be omitted. If z is present, x and y must be of integer
types, and y must be non-negative.

print(*objects, sep=’ ’, end=’\n’, file=sys.stdout, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file and flush, if
present, must be given as keyword arguments.

All non-keyword arguments are converted to strings like str() does and written to the stream, separated
by sep and followed by end. Both sep and end must be strings; they can also be None, which means
to use the default values. If no objects are given, print() will just write end.

The file argument must be an object with a write(string) method; if it is not present or None, sys.stdout
will be used. Since printed arguments are converted to text strings, print() cannot be used with binary
mode file objects. For these, use file.write(...) instead.

Whether output is buffered is usually determined by file, but if the flush keyword argument is true,
the stream is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

class property(fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is
a function for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def __init__(self):

self._x = None

def getx(self):
return self._x

(continues on next page)

18 Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

(continued from previous page)

def setx(self, value):
self._x = value

def delx(self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget’s
docstring (if it exists). This makes it possible to create read-only properties easily using property() as
a decorator:

class Parrot:
def __init__(self):

self._voltage = 100000

@property
def voltage(self):

"""Get the current voltage."""
return self._voltage

The @property decorator turns the voltage() method into a “getter” for a read-only attribute with the
same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C:
def __init__(self):

self._x = None

@property
def x(self):

"""I'm the 'x' property."""
return self._x

@x.setter
def x(self, value):

self._x = value

@x.deleter
def x(self):

del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same
name as the original property (x in this case.)

The returned property object also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

range(stop)

19

The Python Library Reference, Release 3.5.7

range(start, stop[, step])
Rather than being a function, range is actually an immutable sequence type, as documented in Ranges
and Sequence Types — list, tuple, range.

repr(object)
Return a string containing a printable representation of an object. For many types, this function makes
an attempt to return a string that would yield an object with the same value when passed to eval(),
otherwise the representation is a string enclosed in angle brackets that contains the name of the type
of the object together with additional information often including the name and address of the object.
A class can control what this function returns for its instances by defining a __repr__() method.

reversed(seq)
Return a reverse iterator. seq must be an object which has a __reversed__() method or supports the
sequence protocol (the __len__() method and the __getitem__() method with integer arguments
starting at 0).

round(number[, ndigits])
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None,
it returns the nearest integer to its input.

For the built-in types supporting round(), values are rounded to the closest multiple of 10 to the
power minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so,
for example, both round(0.5) and round(-0.5) are 0, and round(1.5) is 2). Any integer value is valid
for ndigits (positive, zero, or negative). The return value is an integer if called with one argument,
otherwise of the same type as number.

For a general Python object number, round(number, ndigits) delegates to number.
__round__(ndigits).

Note: The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives 2.67
instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal fractions
can’t be represented exactly as a float. See tut-fp-issues for more information.

class set([iterable])
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set
and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the collections
module.

setattr(object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary value.
The string may name an existing attribute or a new attribute. The function assigns the value to the
attribute, provided the object allows it. For example, setattr(x, 'foobar', 123) is equivalent to x.foobar
= 123.

class slice(stop)

class slice(start, stop[, step])
Return a slice object representing the set of indices specified by range(start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality;
however they are used by Numerical Python and other third party extensions. Slice objects are also
generated when extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop, i].
See itertools.islice() for an alternate version that returns an iterator.

sorted(iterable[, key][, reverse])
Return a new sorted list from the items in iterable.

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.7

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

Use functools.cmp_to_key() to convert an old-style cmp function to a key function.

The built-in sorted() function is guaranteed to be stable. A sort is stable if it guarantees not to change
the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

staticmethod(function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(arg1, arg2, ...): ...

The @staticmethod form is a function decorator – see the description of function definitions in function
for details.

It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. Also see classmethod() for a
variant that is useful for creating alternate class constructors.

For more information on static methods, consult the documentation on the standard type hierarchy in
types.

class str(object=”)
class str(object=b”, encoding=’utf-8’, errors=’strict’)

Return a str version of object. See str() for details.

str is the built-in string class. For general information about strings, see Text Sequence Type — str.

sum(iterable[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0.
The iterable’s items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate a
sequence of strings is by calling ''.join(sequence). To add floating point values with extended precision,
see math.fsum(). To concatenate a series of iterables, consider using itertools.chain().

super([type[, object-or-type]])
Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful
for accessing inherited methods that have been overridden in a class. The search order is same as that
used by getattr() except that the type itself is skipped.

The __mro__ attribute of the type lists the method resolution search order used by both getattr()
and super(). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an
object, isinstance(obj, type) must be true. If the second argument is a type, issubclass(type2, type)
must be true (this is useful for classmethods).

21

The Python Library Reference, Release 3.5.7

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used
to refer to parent classes without naming them explicitly, thus making the code more maintainable.
This use closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages
that only support single inheritance. This makes it possible to implement “diamond diagrams” where
multiple base classes implement the same method. Good design dictates that this method have the
same calling signature in every case (because the order of calls is determined at runtime, because that
order adapts to changes in the class hierarchy, and because that order can include sibling classes that
are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):

super().method(arg) # This does the same thing as:
super(C, self).method(arg)

Note that super() is implemented as part of the binding process for explicit dotted attribute lookups
such as super().__getitem__(name). It does so by implementing its own __getattribute__() method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly,
super() is undefined for implicit lookups using statements or operators such as super()[name].

Also note that, aside from the zero argument form, super() is not limited to use inside methods.
The two argument form specifies the arguments exactly and makes the appropriate references. The
zero argument form only works inside a class definition, as the compiler fills in the necessary details to
correctly retrieve the class being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super(), see guide to using super().

tuple([iterable])
Rather than being a function, tuple is actually an immutable sequence type, as documented in Tuples
and Sequence Types — list, tuple, range.

class type(object)
class type(name, bases, dict)

With one argument, return the type of an object. The return value is a type object and generally the
same object as returned by object.__class__.

The isinstance() built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class
statement. The name string is the class name and becomes the __name__ attribute; the bases
tuple itemizes the base classes and becomes the __bases__ attribute; and the dict dictionary is the
namespace containing definitions for class body and is copied to a standard dictionary to become the
__dict__ attribute. For example, the following two statements create identical type objects:

>>> class X:
... a = 1
...
>>> X = type('X', (object,), dict(a=1))

See also Type Objects.

vars([object])
Return the __dict__ attribute for a module, class, instance, or any other object with a __dict__
attribute.

22 Chapter 2. Built-in Functions

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.5.7

Objects such as modules and instances have an updateable __dict__ attribute; however, other ob-
jects may have write restrictions on their __dict__ attributes (for example, classes use a types.
MappingProxyType to prevent direct dictionary updates).

Without an argument, vars() acts like locals(). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

zip(*iterables)
Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument
sequences or iterables. The iterator stops when the shortest input iterable is exhausted. With a single
iterable argument, it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator.
Equivalent to:

def zip(*iterables):
zip('ABCD', 'xy') --> Ax By
sentinel = object()
iterators = [iter(it) for it in iterables]
while iterators:

result = []
for it in iterators:

elem = next(it, sentinel)
if elem is sentinel:

return
result.append(elem)

yield tuple(result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for
clustering a data series into n-length groups using zip(*[iter(s)]*n). This repeats the same iterator n
times so that each output tuple has the result of n calls to the iterator. This has the effect of dividing
the input into n-length chunks.

zip() should only be used with unequal length inputs when you don’t care about trailing, unmatched
values from the longer iterables. If those values are important, use itertools.zip_longest() instead.

zip() in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> zipped = zip(x, y)
>>> list(zipped)
[(1, 4), (2, 5), (3, 6)]
>>> x2, y2 = zip(*zip(x, y))
>>> x == list(x2) and y == list(y2)
True

__import__(name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike
importlib.import_module().

This function is invoked by the import statement. It can be replaced (by importing the builtins
module and assigning to builtins.__import__) in order to change semantics of the import statement,
but doing so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain
the same goals and does not cause issues with code which assumes the default import implementation
is in use. Direct use of __import__() is also discouraged in favor of importlib.import_module().

23

https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.7

The function imports the module name, potentially using the given globals and locals to determine
how to interpret the name in a package context. The fromlist gives the names of objects or submodules
that should be imported from the module given by name. The standard implementation does not use
its locals argument at all, and uses its globals only to determine the package context of the import
statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute
imports. Positive values for level indicate the number of parent directories to search relative to the
directory of the module calling __import__() (see PEP 328 for the details).

When the name variable is of the form package.module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist
argument is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __import__('spam', globals(), locals(), [], 0)

The statement import spam.ham results in this call:

spam = __import__('spam.ham', globals(), locals(), [], 0)

Note how __import__() returns the toplevel module here because this is the object that is bound to
a name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus results in

_temp = __import__('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from __import__(). From this object, the names to import
are retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the
default value to 0).

24 Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0328

CHAPTER

THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of the type NoneType. None is frequently used to represent the absence of a value,
as when default arguments are not passed to a function. Assignments to None are illegal and raise a
SyntaxError.

NotImplemented
Special value which should be returned by the binary special methods (e.g. __eq__(), __lt__(),
__add__(), __rsub__(), etc.) to indicate that the operation is not implemented with respect to the
other type; may be returned by the in-place binary special methods (e.g. __imul__(), __iand__(),
etc.) for the same purpose. Its truth value is true.

Note: When NotImplemented is returned, the interpreter will then try the reflected operation on the other
type, or some other fallback, depending on the operator. If all attempted operations return NotImplemented,
the interpreter will raise an appropriate exception.

See Implementing the arithmetic operations for more details.

Ellipsis
The same as Special value used mostly in conjunction with extended slicing syntax for user-defined
container data types.

__debug__
This constant is true if Python was not started with an -O option. See also the assert statement.

Note: The names None, False, True and __debug__ cannot be reassigned (assignments to them, even as
an attribute name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the -S command-line option is
given) adds several constants to the built-in namespace. They are useful for the interactive interpreter shell
and should not be used in programs.

25

The Python Library Reference, Release 3.5.7

quit(code=None)
exit(code=None)

Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when
called, raise SystemExit with the specified exit code.

copyright
license
credits

Objects that when printed, print a message like “Type license() to see the full license text”, and when
called, display the corresponding text in a pager-like fashion (one screen at a time).

26 Chapter 3. Built-in Constants

CHAPTER

FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.

The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place,
and don’t return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared,
tested for truth value, and converted to a string (with the repr() function or the slightly different str()
function). The latter function is implicitly used when an object is written by the print() function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

• None

• False

• zero of any numeric type, for example, 0, 0.0, 0j.

• any empty sequence, for example, '', (), [].

• any empty mapping, for example, {}.

• instances of user-defined classes, if the class defines a __bool__() or __len__() method, when that
method returns the integer zero or bool value False.1

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True
for true, unless otherwise stated. (Important exception: the Boolean operations or and and always return
one of their operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

1 Additional information on these special methods may be found in the Python Reference Manual (customization).

27

The Python Library Reference, Release 3.5.7

Operation Result Notes
x or y if x is false, then y, else x (1)
x and y if x is false, then x, else y (2)
not x if x is false, then True, else False (3)

Notes:

(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.

(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

(3) not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b),
and a == not b is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that
of the Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent
to x < y and y <= z, except that y is evaluated only once (but in both cases z is not evaluated at all when
x < y is found to be false).

This table summarizes the comparison operations:

Operation Meaning
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
!= not equal
is object identity
is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types
(for example, function objects) support only a degenerate notion of comparison where any two objects of
that type are unequal. The <, <=, > and >= operators will raise a TypeError exception when comparing
a complex number with another built-in numeric type, when the objects are of different types that cannot
be compared, or in other cases where there is no defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq__()
method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of
object, unless the class defines enough of the methods __lt__(), __le__(), __gt__(), and __ge__() (in
general, __lt__() and __eq__() are sufficient, if you want the conventional meanings of the comparison
operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects
and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported only by sequence types
(below).

28 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition,
Booleans are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually
implemented using double in C; information about the precision and internal representation of floating point
numbers for the machine on which your program is running is available in sys.float_info. Complex numbers
have a real and imaginary part, which are each a floating point number. To extract these parts from a
complex number z, use z.real and z.imag. (The standard library includes additional numeric types, fractions
that hold rationals, and decimal that hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned
integer literals (including hex, octal and binary numbers) yield integers. Numeric literals containing a
decimal point or an exponent sign yield floating point numbers. Appending 'j' or 'J' to a numeric literal
yields an imaginary number (a complex number with a zero real part) which you can add to an integer or
float to get a complex number with real and imaginary parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where integer is narrower than
floating point, which is narrower than complex. Comparisons between numbers of mixed type use the same
rule.2 The constructors int(), float(), and complex() can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (all nu-
meric operations have a higher priority than comparison operations):

Operation Result Notes Full documen-
tation

x + y sum of x and y
x - y difference of x and y
x * y product of x and y
x / y quotient of x and y
x // y floored quotient of x and y (1)
x % y remainder of x / y (2)
-x x negated
+x x unchanged
abs(x) absolute value or magnitude of x abs()
int(x) x converted to integer (3)(6) int()
float(x) x converted to floating point (4)(6) float()
complex(re,
im)

a complex number with real part re, imaginary part im. im
defaults to zero.

(6) complex()

c.
conjugate()

conjugate of the complex number c

divmod(x, y) the pair (x // y, x % y) (2) divmod()
pow(x, y) x to the power y (5) pow()
x ** y x to the power y (5)

Notes:

(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type
is not necessarily int. The result is always rounded towards minus infinity: 1//2 is 0, (-1)//2 is -1,
1//(-2) is -1, and (-1)//(-2) is 0.

(2) Not for complex numbers. Instead convert to floats using abs() if appropriate.

2 As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 29

The Python Library Reference, Release 3.5.7

(3) Conversion from floating point to integer may round or truncate as in C; see functions math.floor()
and math.ceil() for well-defined conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN)
and positive or negative infinity.

(5) Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for programming languages.

(6) The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with the
Nd property).

See http://www.unicode.org/Public/8.0.0/ucd/extracted/DerivedNumericType.txt for a complete list
of code points with the Nd property.

All numbers.Real types (int and float) also include the following operations:

Operation Result
math.trunc(x) x truncated to Integral
round(x[, n]) x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor(x) the greatest Integral <= x
math.ceil(x) the least Integral >= x

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. Negative numbers are treated as their 2’s complement value
(this assumes that there are enough bits so that no overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation ~ has the same priority as the other unary numeric operations (+ and -).

This table lists the bitwise operations sorted in ascending priority:

Operation Result Notes
x | y bitwise or of x and y
x ^ y bitwise exclusive or of x and y
x & y bitwise and of x and y
x << n x shifted left by n bits (1)(2)
x >> n x shifted right by n bits (1)(3)
~x the bits of x inverted

Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.

(2) A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division by pow(2, n) without overflow check.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers.Integral abstract base class. In addition, it provides a few more
methods:

30 Chapter 4. Built-in Types

http://www.unicode.org/Public/8.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.5.7

int.bit_length()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading
zeros:

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6

More precisely, if x is nonzero, then x.bit_length() is the unique positive integer k such that 2**(k-1)
<= abs(x) < 2**k. Equivalently, when abs(x) is small enough to have a correctly rounded logarithm,
then k = 1 + int(log(abs(x), 2)). If x is zero, then x.bit_length() returns 0.

Equivalent to:

def bit_length(self):
s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101') --> 6

New in version 3.1.

int.to_bytes(length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'

The integer is represented using length bytes. An OverflowError is raised if the integer is not repre-
sentable with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "little", the most
significant byte is at the end of the byte array. To request the native byte order of the host system,
use sys.byteorder as the byte order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed
is False and a negative integer is given, an OverflowError is raised. The default value for signed is
False.

New in version 3.2.

classmethod int.from_bytes(bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024

(continues on next page)

4.4. Numeric Types — int, float, complex 31

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "little", the most
significant byte is at the end of the byte array. To request the native byte order of the host system,
use sys.byteorder as the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

New in version 3.2.

4.4.3 Additional Methods on Float

The float type implements the numbers.Real abstract base class. float also has the following additional
methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denomi-
nator. Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally
as binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In
contrast, hexadecimal strings allow exact representation and specification of floating-point numbers. This
can be useful when debugging, and in numerical work.

float.hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point
numbers, this representation will always include a leading 0x and a trailing p and exponent.

classmethod float.fromhex(s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading
and trailing whitespace.

Note that float.hex() is an instance method, while float.fromhex() is a class method.

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or -, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at
least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified
in section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

output of float.hex() is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal
strings produced by C’s %a format character or Java’s Double.toHexString are accepted by float.fromhex().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by
which to multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point
number (3 + 10./16 + 7./16**2) * 2.0**10, or 3740.0:

>>> float.fromhex('0x3.a7p10')
3740.0

Applying the reverse conversion to 3740.0 gives a different hexadecimal string representing the same number:

>>> float.hex(3740.0)
'0x1.d380000000000p+11'

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash(x) == hash(y) whenever
x == y (see the __hash__() method documentation for more details). For ease of implementation and
efficiency across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational
number, and hence applies to all instances of int and fractions.Fraction, and all finite instances of float and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of
P is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime used is P = 2**31 - 1 on machines with 32-bit C longs
and P = 2**61 - 1 on machines with 64-bit C longs.

Here are the rules in detail:

• If x = m / n is a nonnegative rational number and n is not divisible by P, define hash(x) as m *
invmod(n, P) % P, where invmod(n, P) gives the inverse of n modulo P.

• If x = m / n is a nonnegative rational number and n is divisible by P (but m is not) then n has no
inverse modulo P and the rule above doesn’t apply; in this case define hash(x) to be the constant value
sys.hash_info.inf.

• If x = m / n is a negative rational number define hash(x) as -hash(-x). If the resulting hash is -1,
replace it with -2.

• The particular values sys.hash_info.inf, -sys.hash_info.inf and sys.hash_info.nan are used as hash
values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have the same
hash value.)

• For a complex number z, the hash values of the real and imaginary parts are combined by computing
hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.hash_info.width so that it
lies in range(-2**(sys.hash_info.width - 1), 2**(sys.hash_info.width - 1)). Again, if the result is -1,
it’s replaced with -2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing
the hash of a rational number, float, or complex:

import sys, math

def hash_fraction(m, n):
"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.

(continues on next page)

4.4. Numeric Types — int, float, complex 33

The Python Library Reference, Release 3.5.7

(continued from previous page)

Equivalent to hash(fractions.Fraction(m, n)).

"""
P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
while m % P == n % P == 0:

m, n = m // P, n // P

if n % P == 0:
hash_value = sys.hash_info.inf

else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.
hash_value = (abs(m) % P) * pow(n, P - 2, P) % P

if m < 0:
hash_value = -hash_value

if hash_value == -1:
hash_value = -2

return hash_value

def hash_float(x):
"""Compute the hash of a float x."""

if math.isnan(x):
return sys.hash_info.nan

elif math.isinf(x):
return sys.hash_info.inf if x > 0 else -sys.hash_info.inf

else:
return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):
"""Compute the hash of a complex number z."""

hash_value = hash_float(z.real) + sys.hash_info.imag * hash_float(z.imag)
do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)
hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:

hash_value = -2
return hash_value

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods;
these are used to allow user-defined classes to support iteration. Sequences, described below in more detail,
always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

container.__iter__()
Return an iterator object. The object is required to support the iterator protocol described below.
If a container supports different types of iteration, additional methods can be provided to specifically
request iterators for those iteration types. (An example of an object supporting multiple forms of
iteration would be a tree structure which supports both breadth-first and depth-first traversal.) This
method corresponds to the tp_iter slot of the type structure for Python objects in the Python/C API.

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

The iterator objects themselves are required to support the following two methods, which together form the
iterator protocol:

iterator.__iter__()
Return the iterator object itself. This is required to allow both containers and iterators to be used
with the for and in statements. This method corresponds to the tp_iter slot of the type structure for
Python objects in the Python/C API.

iterator.__next__()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the
Python/C API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictio-
naries, and other more specialized forms. The specific types are not important beyond their implementation
of the iterator protocol.

Once an iterator’s __next__() method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__() method is implemented as a generator, it will automatically return an iterator object (techni-
cally, a generator object) supplying the __iter__() and __next__() methods. More information about
generators can be found in the documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for
processing of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable.
The collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on
custom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and t are sequences of the
same type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions
imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation)
and * (repetition) operations have the same priority as the corresponding numeric operations.3

3 They must have since the parser can’t tell the type of the operands.

4.6. Sequence Types — list, tuple, range 35

The Python Library Reference, Release 3.5.7

Operation Result Notes
x in s True if an item of s is equal to x, else False (1)
x not in s False if an item of s is equal to x, else True (1)
s + t the concatenation of s and t (6)(7)
s * n or n * s equivalent to adding s to itself n times (2)(7)
s[i] ith item of s, origin 0 (3)
s[i:j] slice of s from i to j (3)(4)
s[i:j:k] slice of s from i to j with step k (3)(5)
len(s) length of s
min(s) smallest item of s
max(s) largest item of s
s.index(x[, i[, j]]) index of the first occurrence of x in s (at or after index i and before index j) (8)
s.count(x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexico-
graphically by comparing corresponding elements. This means that to compare equal, every element must
compare equal and the two sequences must be of the same type and have the same length. (For full details
see comparisons in the language reference.)

Notes:

(1) While the in and not in operations are used only for simple containment testing in the general case,
some specialised sequences (such as str, bytes and bytearray) also use them for subsequence testing:

>>> "gg" in "eggs"
True

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note
that items in the sequence s are not copied; they are referenced multiple times. This often haunts new
Python programmers; consider:

>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of
[[]] * 3 are references to this single empty list. Modifying any of the elements of lists modifies this
single list. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)
>>> lists[1].append(5)
>>> lists[2].append(7)
>>> lists
[[3], [5], [7]]

Further explanation is available in the FAQ entry faq-multidimensional-list.

(3) If i or j is negative, the index is relative to the end of sequence s: len(s) + i or len(s) + j is substituted.
But note that -0 is still 0.

(4) The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. If i or
j is greater than len(s), use len(s). If i is omitted or None, use 0. If j is omitted or None, use len(s).
If i is greater than or equal to j, the slice is empty.

36 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

(5) The slice of s from i to j with step k is defined as the sequence of items with index x = i + n*k such
that 0 <= n < (j-i)/k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping when j
is reached (but never including j). When k is positive, i and j are reduced to len(s) if they are greater.
When k is negative, i and j are reduced to len(s) - 1 if they are greater. If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None,
it is treated like 1.

(6) Concatenating immutable sequences always results in a new object. This means that building up a
sequence by repeated concatenation will have a quadratic runtime cost in the total sequence length.
To get a linear runtime cost, you must switch to one of the alternatives below:

• if concatenating str objects, you can build a list and use str.join() at the end or else write to an
io.StringIO instance and retrieve its value when complete

• if concatenating bytes objects, you can similarly use bytes.join() or io.BytesIO, or you can do in-
place concatenation with a bytearray object. bytearray objects are mutable and have an efficient
overallocation mechanism

• if concatenating tuple objects, extend a list instead

• for other types, investigate the relevant class documentation

(7) Some sequence types (such as range) only support item sequences that follow specific patterns, and
hence don’t support sequence concatenation or repetition.

(8) index raises ValueError when x is not found in s. When supported, the additional arguments to the
index method allow efficient searching of subsections of the sequence. Passing the extra arguments is
roughly equivalent to using s[i:j].index(x), only without copying any data and with the returned index
being relative to the start of the sequence rather than the start of the slice.

4.6.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by
mutable sequence types is support for the hash() built-in.

This support allows immutable sequences, such as tuple instances, to be used as dict keys and stored in set
and frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.
MutableSequence ABC is provided to make it easier to correctly implement these operations on custom
sequence types.

In the table s is an instance of a mutable sequence type, t is any iterable object and x is an arbitrary object
that meets any type and value restrictions imposed by s (for example, bytearray only accepts integers that
meet the value restriction 0 <= x <= 255).

4.6. Sequence Types — list, tuple, range 37

The Python Library Reference, Release 3.5.7

Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:j] = t slice of s from i to j is replaced by the contents of the iterable t
del s[i:j] same as s[i:j] = []
s[i:j:k] = t the elements of s[i:j:k] are replaced by those of t (1)
del s[i:j:k] removes the elements of s[i:j:k] from the list
s.append(x) appends x to the end of the sequence (same as s[len(s):len(s)] = [x])
s.clear() removes all items from s (same as del s[:]) (5)
s.copy() creates a shallow copy of s (same as s[:]) (5)
s.extend(t) or s +=
t

extends s with the contents of t (for the most part the same as s[len(s):len(s)]
= t)

s *= n updates s with its contents repeated n times (6)
s.insert(i, x) inserts x into s at the index given by i (same as s[i:i] = [x])
s.pop([i]) retrieves the item at i and also removes it from s (2)
s.remove(x) remove the first item from s where s[i] == x (3)
s.reverse() reverses the items of s in place (4)

Notes:

(1) t must have the same length as the slice it is replacing.

(2) The optional argument i defaults to -1, so that by default the last item is removed and returned.

(3) remove raises ValueError when x is not found in s.

(4) The reverse() method modifies the sequence in place for economy of space when reversing a large
sequence. To remind users that it operates by side effect, it does not return the reversed sequence.

(5) clear() and copy() are included for consistency with the interfaces of mutable containers that don’t
support slicing operations (such as dict and set)

New in version 3.3: clear() and copy() methods.

(6) The value n is an integer, or an object implementing __index__(). Zero and negative values of n clear
the sequence. Items in the sequence are not copied; they are referenced multiple times, as explained
for s * n under Common Sequence Operations.

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise
degree of similarity will vary by application).

class list([iterable])
Lists may be constructed in several ways:

• Using a pair of square brackets to denote the empty list: []

• Using square brackets, separating items with commas: [a], [a, b, c]

• Using a list comprehension: [x for x in iterable]

• Using the type constructor: list() or list(iterable)

The constructor builds a list whose items are the same and in the same order as iterable’s items.
iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable
is already a list, a copy is made and returned, similar to iterable[:]. For example, list('abc') returns
['a', 'b', 'c'] and list((1, 2, 3)) returns [1, 2, 3]. If no argument is given, the constructor creates a
new empty list, [].

38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

Many other operations also produce lists, including the sorted() built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following
additional method:

sort(*, key=None, reverse=None)
This method sorts the list in place, using only < comparisons between items. Exceptions are not
suppressed - if any comparison operations fail, the entire sort operation will fail (and the list will
likely be left in a partially modified state).

sort() accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list
element (for example, key=str.lower). The key corresponding to each item in the list is calculated
once and then used for the entire sorting process. The default value of None means that list items
are sorted directly without calculating a separate key value.

The functools.cmp_to_key() utility is available to convert a 2.x style cmp function to a key
function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison
were reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence.
To remind users that it operates by side effect, it does not return the sorted sequence (use sorted()
to explicitly request a new sorted list instance).

The sort() method is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate,
or even inspect, the list is undefined. The C implementation of Python makes the list appear
empty for the duration, and raises ValueError if it can detect that the list has been mutated
during a sort.

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-
tuples produced by the enumerate() built-in). Tuples are also used for cases where an immutable sequence
of homogeneous data is needed (such as allowing storage in a set or dict instance).

class tuple([iterable])
Tuples may be constructed in a number of ways:

• Using a pair of parentheses to denote the empty tuple: ()

• Using a trailing comma for a singleton tuple: a, or (a,)

• Separating items with commas: a, b, c or (a, b, c)

• Using the tuple() built-in: tuple() or tuple(iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable’s items.
iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable
is already a tuple, it is returned unchanged. For example, tuple('abc') returns ('a', 'b', 'c') and
tuple([1, 2, 3]) returns (1, 2, 3). If no argument is given, the constructor creates a new empty tuple,
().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are
optional, except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For

4.6. Sequence Types — list, tuple, range 39

The Python Library Reference, Release 3.5.7

example, f(a, b, c) is a function call with three arguments, while f((a, b, c)) is a function call with a
3-tuple as the sole argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple() may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific
number of times in for loops.

class range(stop)

class range(start, stop[, step])
The arguments to the range constructor must be integers (either built-in int or any object that imple-
ments the __index__ special method). If the step argument is omitted, it defaults to 1. If the start
argument is omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r[i] = start + step*i where
i >= 0 and r[i] < stop.

For a negative step, the contents of the range are still determined by the formula r[i] = start + step*i,
but the constraints are i >= 0 and r[i] > stop.

A range object will be empty if r[0] does not meet the value constraint. Ranges do support negative
indices, but these are interpreted as indexing from the end of the sequence determined by the positive
indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as
len()) may raise OverflowError.

Range examples:

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list(range(0, 30, 5))
[0, 5, 10, 15, 20, 25]
>>> list(range(0, 10, 3))
[0, 3, 6, 9]
>>> list(range(0, -10, -1))
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list(range(0))
[]
>>> list(range(1, 0))
[]

Ranges implement all of the common sequence operations except concatenation and repetition (due to
the fact that range objects can only represent sequences that follow a strict pattern and repetition and
concatenation will usually violate that pattern).

start
The value of the start parameter (or 0 if the parameter was not supplied)

stop
The value of the stop parameter

40 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

step
The value of the step parameter (or 1 if the parameter was not supplied)

The advantage of the range type over a regular list or tuple is that a range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and
step values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment tests,
element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range(0, 20, 2)
>>> r
range(0, 20, 2)
>>> 11 in r
False
>>> 10 in r
True
>>> r.index(10)
5
>>> r[5]
10
>>> r[:5]
range(0, 10, 2)
>>> r[-1]
18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects
are considered equal if they represent the same sequence of values. (Note that two range objects that compare
equal might have different start, stop and step attributes, for example range(0) == range(2, 1, 3) or range(0,
3, 2) == range(0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects
for membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘==’ and ‘ !=’ to compare range objects based on the sequence of values they
define (instead of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.

4.7 Text Sequence Type — str

Textual data in Python is handled with str objects, or strings. Strings are immutable sequences of Unicode
code points. String literals are written in a variety of ways:

• Single quotes: 'allows embedded "double" quotes'

• Double quotes: "allows embedded 'single' quotes".

• Triple quoted: '''Three single quotes''', """Three double quotes"""

Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly
converted to a single string literal. That is, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the
r (“raw”) prefix that disables most escape sequence processing.

Strings may also be created from other objects using the str constructor.

4.7. Text Sequence Type — str 41

The Python Library Reference, Release 3.5.7

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a
non-empty string s, s[0] == s[0:1].

There is also no mutable string type, but str.join() or io.StringIO can be used to efficiently construct strings
from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again
permitted on string literals. It has no effect on the meaning of string literals and cannot be combined with
the r prefix.

class str(object=”)
class str(object=b”, encoding=’utf-8’, errors=’strict’)

Return a string version of object. If object is not provided, returns the empty string. Otherwise, the
behavior of str() depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str(object) returns object.__str__(), which is the “informal”
or nicely printable string representation of object. For string objects, this is the string itself. If object
does not have a __str__() method, then str() falls back to returning repr(object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytes or
bytearray). In this case, if object is a bytes (or bytearray) object, then str(bytes, encoding, errors) is
equivalent to bytes.decode(encoding, errors). Otherwise, the bytes object underlying the buffer object
is obtained before calling bytes.decode(). See Binary Sequence Types — bytes, bytearray, memoryview
and bufferobjects for information on buffer objects.

Passing a bytes object to str() without the encoding or errors arguments falls under the first case of
returning the informal string representation (see also the -b command-line option to Python). For
example:

>>> str(b'Zoot!')
"b'Zoot!'"

For more information on the str class and its methods, see Text Sequence Type — str and the String
Methods section below. To output formatted strings, see the Format String Syntax section. In addition,
see the Text Processing Services section.

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described
below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customiza-
tion (see str.format(), Format String Syntax and Custom String Formatting) and the other based on C printf
style formatting that handles a narrower range of types and is slightly harder to use correctly, but is often
faster for the cases it can handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide
various text related utilities (including regular expression support in the re module).

str.capitalize()
Return a copy of the string with its first character capitalized and the rest lowercased.

str.casefold()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case
distinctions in a string. For example, the German lowercase letter 'ß' is equivalent to "ss". Since it
is already lowercase, lower() would do nothing to 'ß'; casefold() converts it to "ss".

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

The casefolding algorithm is described in section 3.13 of the Unicode Standard.

New in version 3.3.

str.center(width[, fillchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is an
ASCII space). The original string is returned if width is less than or equal to len(s).

str.count(sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

str.encode(encoding="utf-8", errors="strict")
Return an encoded version of the string as a bytes object. Default encoding is 'utf-8'. errors may
be given to set a different error handling scheme. The default for errors is 'strict', meaning that
encoding errors raise a UnicodeError. Other possible values are 'ignore', 'replace', 'xmlcharrefre-
place', 'backslashreplace' and any other name registered via codecs.register_error(), see section Error
Handlers. For a list of possible encodings, see section Standard Encodings.

Changed in version 3.1: Support for keyword arguments added.

str.endswith(suffix[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a
tuple of suffixes to look for. With optional start, test beginning at that position. With optional end,
stop comparing at that position.

str.expandtabs(tabsize=8)
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on
the current column and the given tab size. Tab positions occur every tabsize characters (default is 8,
giving tab positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to
zero and the string is examined character by character. If the character is a tab (\t), one or more space
characters are inserted in the result until the current column is equal to the next tab position. (The
tab character itself is not copied.) If the character is a newline (\n) or return (\r), it is copied and the
current column is reset to zero. Any other character is copied unchanged and the current column is
incremented by one regardless of how the character is represented when printed.

>>> '01\t012\t0123\t01234'.expandtabs()
'01 012 0123 01234'
>>> '01\t012\t0123\t01234'.expandtabs(4)
'01 012 0123 01234'

str.find(sub[, start[, end]])
Return the lowest index in the string where substring sub is found within the slice s[start:end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 if sub is not found.

Note: The find() method should be used only if you need to know the position of sub. To check if
sub is a substring or not, use the in operator:

>>> 'Py' in 'Python'
True

str.format(*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal
text or replacement fields delimited by braces {}. Each replacement field contains either the numeric
index of a positional argument, or the name of a keyword argument. Returns a copy of the string
where each replacement field is replaced with the string value of the corresponding argument.

4.7. Text Sequence Type — str 43

The Python Library Reference, Release 3.5.7

>>> "The sum of 1 + 2 is {0}".format(1+2)
'The sum of 1 + 2 is 3'

See Format String Syntax for a description of the various formatting options that can be specified in
format strings.

str.format_map(mapping)
Similar to str.format(**mapping), except that mapping is used directly and not copied to a dict. This
is useful if for example mapping is a dict subclass:

>>> class Default(dict):
... def __missing__(self, key):
... return key
...
>>> '{name} was born in {country}'.format_map(Default(name='Guido'))
'Guido was born in country'

New in version 3.2.

str.index(sub[, start[, end]])
Like find(), but raise ValueError when the substring is not found.

str.isalnum()
Return true if all characters in the string are alphanumeric and there is at least one character, false
otherwise. A character c is alphanumeric if one of the following returns True: c.isalpha(), c.isdecimal(),
c.isdigit(), or c.isnumeric().

str.isalpha()
Return true if all characters in the string are alphabetic and there is at least one character, false
otherwise. Alphabetic characters are those characters defined in the Unicode character database as
“Letter”, i.e., those with general category property being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note
that this is different from the “Alphabetic” property defined in the Unicode Standard.

str.isdecimal()
Return true if all characters in the string are decimal characters and there is at least one character, false
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660,
ARABIC-INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General
Category “Nd”.

str.isdigit()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
Digits include decimal characters and digits that need special handling, such as the compatibility
superscript digits. This covers digits which cannot be used to form numbers in base 10, like the
Kharosthi numbers. Formally, a digit is a character that has the property value Numeric_Type=Digit
or Numeric_Type=Decimal.

str.isidentifier()
Return true if the string is a valid identifier according to the language definition, section identifiers.

Use keyword.iskeyword() to test for reserved identifiers such as def and class.

str.islower()
Return true if all cased characters4 in the string are lowercase and there is at least one cased character,
false otherwise.

str.isnumeric()
Return true if all characters in the string are numeric characters, and there is at least one charac-

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “Ll” (Letter, lowercase),
or “Lt” (Letter, titlecase).

44 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

ter, false otherwise. Numeric characters include digit characters, and all characters that have the
Unicode numeric value property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, nu-
meric characters are those with the property value Numeric_Type=Digit, Numeric_Type=Decimal
or Numeric_Type=Numeric.

str.isprintable()
Return true if all characters in the string are printable or the string is empty, false otherwise. Non-
printable characters are those characters defined in the Unicode character database as “Other” or
“Separator”, excepting the ASCII space (0x20) which is considered printable. (Note that printable
characters in this context are those which should not be escaped when repr() is invoked on a string. It
has no bearing on the handling of strings written to sys.stdout or sys.stderr.)

str.isspace()
Return true if there are only whitespace characters in the string and there is at least one character,
false otherwise. Whitespace characters are those characters defined in the Unicode character database
as “Other” or “Separator” and those with bidirectional property being one of “WS”, “B”, or “S”.

str.istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

str.isupper()
Return true if all cased characters4 in the string are uppercase and there is at least one cased character,
false otherwise.

str.join(iterable)
Return a string which is the concatenation of the strings in iterable. A TypeError will be raised if
there are any non-string values in iterable, including bytes objects. The separator between elements is
the string providing this method.

str.ljust(width[, fillchar])
Return the string left justified in a string of length width. Padding is done using the specified fillchar
(default is an ASCII space). The original string is returned if width is less than or equal to len(s).

str.lower()
Return a copy of the string with all the cased characters4 converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.lstrip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying
the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ' spacious '.lstrip()
'spacious '
>>> 'www.example.com'.lstrip('cmowz.')
'example.com'

static str.maketrans(x[, y[, z]])
This static method returns a translation table usable for str.translate().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters
(strings of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will
then be converted to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each
character in x will be mapped to the character at the same position in y. If there is a third argument,
it must be a string, whose characters will be mapped to None in the result.

4.7. Text Sequence Type — str 45

The Python Library Reference, Release 3.5.7

str.partition(sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the
separator, the separator itself, and the part after the separator. If the separator is not found, return a
3-tuple containing the string itself, followed by two empty strings.

str.replace(old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

str.rfind(sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

str.rindex(sub[, start[, end]])
Like rfind() but raises ValueError when the substring sub is not found.

str.rjust(width[, fillchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar
(default is an ASCII space). The original string is returned if width is less than or equal to len(s).

str.rpartition(sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the
separator, the separator itself, and the part after the separator. If the separator is not found, return a
3-tuple containing two empty strings, followed by the string itself.

str.rsplit(sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most
maxsplit splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a
separator. Except for splitting from the right, rsplit() behaves like split() which is described in detail
below.

str.rstrip([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying
the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ' spacious '.rstrip()
' spacious'
>>> 'mississippi'.rstrip('ipz')
'mississ'

str.split(sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most
maxsplit splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not
specified or -1, then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty
strings (for example, '1,,2'.split(',') returns ['1', '', '2']). The sep argument may consist of
multiple characters (for example, '1<>2<>3'.split('<>') returns ['1', '2', '3']). Splitting an
empty string with a specified separator returns [''].

For example:

>>> '1,2,3'.split(',')
['1', '2', '3']
>>> '1,2,3'.split(',', maxsplit=1)
['1', '2,3']
>>> '1,2,,3,'.split(',')
['1', '2', '', '3', '']

46 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the
string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting
of just whitespace with a None separator returns [].

For example:

>>> '1 2 3'.split()
['1', '2', '3']
>>> '1 2 3'.split(maxsplit=1)
['1', '2 3']
>>> ' 1 2 3 '.split()
['1', '2', '3']

str.splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of
universal newlines.

Representation Description
\n Line Feed
\r Carriage Return
\r\n Carriage Return + Line Feed
\v or \x0b Line Tabulation
\f or \x0c Form Feed
\x1c File Separator
\x1d Group Separator
\x1e Record Separator
\x85 Next Line (C1 Control Code)
\u2028 Line Separator
\u2029 Paragraph Separator

Changed in version 3.2: \v and \f added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()
['ab c', '', 'de fg', 'kl']
>>> 'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True)
['ab c\n', '\n', 'de fg\r', 'kl\r\n']

Unlike split() when a delimiter string sep is given, this method returns an empty list for the empty
string, and a terminal line break does not result in an extra line:

>>> "".splitlines()
[]
>>> "One line\n".splitlines()
['One line']

For comparison, split('\n') gives:

>>> ''.split('\n')
['']
>>> 'Two lines\n'.split('\n')
['Two lines', '']

4.7. Text Sequence Type — str 47

The Python Library Reference, Release 3.5.7

str.startswith(prefix[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of
prefixes to look for. With optional start, test string beginning at that position. With optional end,
stop comparing string at that position.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a
string specifying the set of characters to be removed. If omitted or None, the chars argument defaults
to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its
values are stripped:

>>> ' spacious '.strip()
'spacious'
>>> 'www.example.com'.strip('cmowz.')
'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters
are removed from the leading end until reaching a string character that is not contained in the set of
characters in chars. A similar action takes place on the trailing end. For example:

>>> comment_string = '#....... Section 3.2.1 Issue #32'
>>> comment_string.strip('.#! ')
'Section 3.2.1 Issue #32'

str.swapcase()
Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that
it is not necessarily true that s.swapcase().swapcase() == s.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the re-
maining characters are lowercase.

For example:

>>> 'Hello world'.title()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives
form word boundaries, which may not be the desired result:

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
... return re.sub(r"[A-Za-z]+('[A-Za-z]+)?",
... lambda mo: mo.group(0)[0].upper() +
... mo.group(0)[1:].lower(),
... s)
...
>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate(table)
Return a copy of the string in which each character has been mapped through the given translation

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

table. The table must be an object that implements indexing via __getitem__(), typically a mapping
or sequence. When indexed by a Unicode ordinal (an integer), the table object can do any of the
following: return a Unicode ordinal or a string, to map the character to one or more other characters;
return None, to delete the character from the return string; or raise a LookupError exception, to map
the character to itself.

You can use str.maketrans() to create a translation map from character-to-character mappings in
different formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper()
Return a copy of the string with all the cased characters4 converted to uppercase. Note that str.
upper().isupper() might be False if s contains uncased characters or if the Unicode category of the
resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.zfill(width)
Return a copy of the string left filled with ASCII '0' digits to make a string of length width. A leading
sign prefix ('+'/'-') is handled by inserting the padding after the sign character rather than before.
The original string is returned if width is less than or equal to len(s).

For example:

>>> "42".zfill(5)
'00042'
>>> "-42".zfill(5)
'-0042'

4.7.2 printf-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common
errors (such as failing to display tuples and dictionaries correctly). Using the newer str.format() interface
helps avoid these errors, and also provides a generally more powerful, flexible and extensible approach to
formatting text.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the
string formatting or interpolation operator. Given format % values (where format is a string), % conversion
specifications in format are replaced with zero or more elements of values. The effect is similar to using the
sprintf() in the C language.

If format requires a single argument, values may be a single non-tuple object.5 Otherwise, values must be
a tuple with exactly the number of items specified by the format string, or a single mapping object (for
example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur
in this order:

1. The '%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (some-
name)).

3. Conversion flags (optional), which affect the result of some conversion types.

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.7. Text Sequence Type — str 49

The Python Library Reference, Release 3.5.7

4. Minimum field width (optional). If specified as an '*' (asterisk), the actual width is read from the
next element of the tuple in values, and the object to convert comes after the minimum field width
and optional precision.

5. Precision (optional), given as a '.' (dot) followed by the precision. If specified as '*' (an asterisk),
the actual precision is read from the next element of the tuple in values, and the value to convert comes
after the precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must
include a parenthesised mapping key into that dictionary inserted immediately after the '%' character.
The mapping key selects the value to be formatted from the mapping. For example:

>>> print('%(language)s has %(number)03d quote types.' %
... {'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning
'#' The value conversion will use the “alternate form” (where defined below).
'0' The conversion will be zero padded for numeric values.
'-' The converted value is left adjusted (overrides the '0' conversion if both are given).
' ' (a space) A blank should be left before a positive number (or empty string) produced by a signed

conversion.
'+' A sign character ('+' or '-') will precede the conversion (overrides a “space” flag).

A length modifier (h, l, or L) may be present, but is ignored as it is not necessary for Python – so e.g. %ld
is identical to %d.

The conversion types are:

50 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

Con-
version

Meaning Notes

'd' Signed integer decimal.
'i' Signed integer decimal.
'o' Signed octal value. (1)
'u' Obsolete type – it is identical to 'd'. (6)
'x' Signed hexadecimal (lowercase). (2)
'X' Signed hexadecimal (uppercase). (2)
'e' Floating point exponential format (lowercase). (3)
'E' Floating point exponential format (uppercase). (3)
'f' Floating point decimal format. (3)
'F' Floating point decimal format. (3)
'g' Floating point format. Uses lowercase exponential format if exponent is less than -4 or

not less than precision, decimal format otherwise.
(4)

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or
not less than precision, decimal format otherwise.

(4)

'c' Single character (accepts integer or single character string).
'r' String (converts any Python object using repr()). (5)
's' String (converts any Python object using str()). (5)
'a' String (converts any Python object using ascii()). (5)
'%' No argument is converted, results in a '%' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier ('0o') to be inserted before the first digit.

(2) The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'X' format was
used) to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not
removed as they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults
to 6.

(5) If precision is N, the output is truncated to N characters.

(6) See PEP 237.

Since Python strings have an explicit length, %s conversions do not assume that '\0' is the end of the
string.

Changed in version 3.1: %f conversions for numbers whose absolute value is over 1e50 are no longer replaced
by %g conversions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by
memoryview which uses the buffer protocol to access the memory of other binary objects without needing
to make a copy.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 51

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.5.7

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-
precision floating values.

4.8.1 Bytes

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on
the ASCII text encoding, bytes objects offer several methods that are only valid when working with ASCII
compatible data and are closely related to string objects in a variety of other ways.

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is
added:

• Single quotes: b'still allows embedded "double" quotes'

• Double quotes: b"still allows embedded 'single' quotes".

• Triple quoted: b'''3 single quotes''', b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any
binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See
strings for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like im-
mutable sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts
to violate this restriction will trigger ValueError. This is done deliberately to emphasise that while many
binary formats include ASCII based elements and can be usefully manipulated with some text-oriented algo-
rithms, this is not generally the case for arbitrary binary data (blindly applying text processing algorithms
to binary data formats that are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:

• A zero-filled bytes object of a specified length: bytes(10)

• From an iterable of integers: bytes(range(20))

• Copying existing binary data via the buffer protocol: bytes(obj)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytes type has an additional class method to read data
in that format:

classmethod bytes.fromhex(string)
This bytes class method returns a bytes object, decoding the given string object. The string must
contain two hexadecimal digits per byte, with ASCII spaces being ignored.

>>> bytes.fromhex('2Ef0 F1f2 ')
b'.\xf0\xf1\xf2'

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

bytes.hex()
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\xf0\xf1\xf2'.hex()
'f0f1f2'

New in version 3.5.

52 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b[0] will be an integer,
while b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and
slicing will produce a string of length 1)

The representation of bytes objects uses the literal format (b'...') since it is often more useful than e.g.
bytes([46, 46, 46]). You can always convert a bytes object into a list of integers using list(b).

Note: For Python 2.x users: In the Python 2.x series, a variety of implicit conversions between 8-bit strings
(the closest thing 2.x offers to a built-in binary data type) and Unicode strings were permitted. This was
a backwards compatibility workaround to account for the fact that Python originally only supported 8-bit
text, and Unicode text was a later addition. In Python 3.x, those implicit conversions are gone - conversions
between 8-bit binary data and Unicode text must be explicit, and bytes and string objects will always
compare unequal.

4.8.2 Bytearray Objects

bytearray objects are a mutable counterpart to bytes objects. There is no dedicated literal syntax for
bytearray objects, instead they are always created by calling the constructor:

• Creating an empty instance: bytearray()

• Creating a zero-filled instance with a given length: bytearray(10)

• From an iterable of integers: bytearray(range(20))

• Copying existing binary data via the buffer protocol: bytearray(b'Hi!')

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common
bytes and bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytearray type has an additional class method to read
data in that format:

classmethod bytearray.fromhex(string)
This bytearray class method returns bytearray object, decoding the given string object. The string
must contain two hexadecimal digits per byte, with ASCII spaces being ignored.

>>> bytearray.fromhex('2Ef0 F1f2 ')
bytearray(b'.\xf0\xf1\xf2')

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

bytearray.hex()
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray(b'\xf0\xf1\xf2').hex()
'f0f1f2'

New in version 3.5.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b[0] will be an
integer, while b[0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both
indexing and slicing will produce a string of length 1)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 53

The Python Library Reference, Release 3.5.7

The representation of bytearray objects uses the bytes literal format (bytearray(b'...')) since it is often more
useful than e.g. bytearray([46, 46, 46]). You can always convert a bytearray object into a list of integers
using list(b).

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with
operands of the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed
in operations without causing errors. However, the return type of the result may depend on the order of
operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the
methods on strings don’t accept bytes as their arguments. For example, you have to write:

a = "abc"
b = a.replace("a", "f")

and:

a = b"abc"
b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should
be avoided when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based
format may lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.

bytes.count(sub[, start[, end]])
bytearray.count(sub[, start[, end]])

Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Op-
tional arguments start and end are interpreted as in slice notation.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.decode(encoding="utf-8", errors="strict")
bytearray.decode(encoding="utf-8", errors="strict")

Return a string decoded from the given bytes. Default encoding is 'utf-8'. errors may be given to
set a different error handling scheme. The default for errors is 'strict', meaning that encoding errors
raise a UnicodeError. Other possible values are 'ignore', 'replace' and any other name registered
via codecs.register_error(), see section Error Handlers. For a list of possible encodings, see section
Standard Encodings.

Note: Passing the encoding argument to str allows decoding any bytes-like object directly, without
needing to make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

54 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

bytes.endswith(suffix[, start[, end]])
bytearray.endswith(suffix[, start[, end]])

Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also
be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional
end, stop comparing at that position.

The suffix(es) to search for may be any bytes-like object.

bytes.find(sub[, start[, end]])
bytearray.find(sub[, start[, end]])

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in
the slice s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1
if sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Note: The find() method should be used only if you need to know the position of sub. To check if
sub is a substring or not, use the in operator:

>>> b'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.index(sub[, start[, end]])
bytearray.index(sub[, start[, end]])

Like find(), but raise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.join(iterable)
bytearray.join(iterable)

Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable.
A TypeError will be raised if there are any values in iterable that are not bytes-like objects, including
str objects. The separator between elements is the contents of the bytes or bytearray object providing
this method.

static bytes.maketrans(from, to)
static bytearray.maketrans(from, to)

This static method returns a translation table usable for bytes.translate() that will map each character
in from into the character at the same position in to; from and to must both be bytes-like objects and
have the same length.

New in version 3.1.

bytes.partition(sep)
bytearray.partition(sep)

Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the
separator, the separator, and the part after the separator. If the separator is not found, return a
3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.replace(old, new[, count])

4.8. Binary Sequence Types — bytes, bytearray, memoryview 55

The Python Library Reference, Release 3.5.7

bytearray.replace(old, new[, count])
Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.rfind(sub[, start[, end]])
bytearray.rfind(sub[, start[, end]])

Return the highest index in the sequence where the subsequence sub is found, such that sub is contained
within s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1
on failure.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rindex(sub[, start[, end]])
bytearray.rindex(sub[, start[, end]])

Like rfind() but raises ValueError when the subsequence sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rpartition(sep)
bytearray.rpartition(sep)

Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the
separator, the separator, and the part after the separator. If the separator is not found, return a
3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.startswith(prefix[, start[, end]])
bytearray.startswith(prefix[, start[, end]])

Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also
be a tuple of prefixes to look for. With optional start, test beginning at that position. With optional
end, stop comparing at that position.

The prefix(es) to search for may be any bytes-like object.

bytes.translate(table[, delete])
bytearray.translate(table[, delete])

Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument
delete are removed, and the remaining bytes have been mapped through the given translation table,
which must be a bytes object of length 256.

You can use the bytes.maketrans() method to create a translation table.

Set the table argument to None for translations that only delete characters:

>>> b'read this short text'.translate(None, b'aeiou')
b'rd ths shrt txt'

The following methods on bytes and bytearray objects have default behaviours that assume the use of
ASCII compatible binary formats, but can still be used with arbitrary binary data by passing appropriate

56 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

arguments. Note that all of the bytearray methods in this section do not operate in place, and instead
produce new objects.

bytes.center(width[, fillbyte])
bytearray.center(width[, fillbyte])

Return a copy of the object centered in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if width is less
than or equal to len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.ljust(width[, fillbyte])
bytearray.ljust(width[, fillbyte])

Return a copy of the object left justified in a sequence of length width. Padding is done using the
specified fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if
width is less than or equal to len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.lstrip([chars])
bytearray.lstrip([chars])

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary
sequence specifying the set of byte values to be removed - the name refers to the fact this method
is usually used with ASCII characters. If omitted or None, the chars argument defaults to removing
ASCII whitespace. The chars argument is not a prefix; rather, all combinations of its values are
stripped:

>>> b' spacious '.lstrip()
b'spacious '
>>> b'www.example.com'.lstrip(b'cmowz.')
b'example.com'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.rjust(width[, fillbyte])
bytearray.rjust(width[, fillbyte])

Return a copy of the object right justified in a sequence of length width. Padding is done using the
specified fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if
width is less than or equal to len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.rsplit(sep=None, maxsplit=-1)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 57

The Python Library Reference, Release 3.5.7

bytearray.rsplit(sep=None, maxsplit=-1)
Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If
maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or None,
any subsequence consisting solely of ASCII whitespace is a separator. Except for splitting from the
right, rsplit() behaves like split() which is described in detail below.

bytes.rstrip([chars])
bytearray.rstrip([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary
sequence specifying the set of byte values to be removed - the name refers to the fact this method
is usually used with ASCII characters. If omitted or None, the chars argument defaults to removing
ASCII whitespace. The chars argument is not a suffix; rather, all combinations of its values are
stripped:

>>> b' spacious '.rstrip()
b' spacious'
>>> b'mississippi'.rstrip(b'ipz')
b'mississ'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.split(sep=None, maxsplit=-1)
bytearray.split(sep=None, maxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If
maxsplit is given and non-negative, at most maxsplit splits are done (thus, the list will have at most
maxsplit+1 elements). If maxsplit is not specified or is -1, then there is no limit on the number of
splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty
subsequences (for example, b'1,,2'.split(b',') returns [b'1', b'', b'2']). The sep argument may
consist of a multibyte sequence (for example, b'1<>2<>3'.split(b'<>') returns [b'1', b'2', b'3']).
Splitting an empty sequence with a specified separator returns [b''] or [bytearray(b'')] depending on
the type of object being split. The sep argument may be any bytes-like object.

For example:

>>> b'1,2,3'.split(b',')
[b'1', b'2', b'3']
>>> b'1,2,3'.split(b',', maxsplit=1)
[b'1', b'2,3']
>>> b'1,2,,3,'.split(b',')
[b'1', b'2', b'', b'3', b'']

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII
whitespace are regarded as a single separator, and the result will contain no empty strings at the start
or end if the sequence has leading or trailing whitespace. Consequently, splitting an empty sequence
or a sequence consisting solely of ASCII whitespace without a specified separator returns [].

For example:

>>> b'1 2 3'.split()
[b'1', b'2', b'3']

(continues on next page)

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> b'1 2 3'.split(maxsplit=1)
[b'1', b'2 3']
>>> b' 1 2 3 '.split()
[b'1', b'2', b'3']

bytes.strip([chars])
bytearray.strip([chars])

Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument
is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this
method is usually used with ASCII characters. If omitted or None, the chars argument defaults to
removing ASCII whitespace. The chars argument is not a prefix or suffix; rather, all combinations of
its values are stripped:

>>> b' spacious '.strip()
b'spacious'
>>> b'www.example.com'.strip(b'cmowz.')
b'example'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats
and should not be applied to arbitrary binary data. Note that all of the bytearray methods in this section
do not operate in place, and instead produce new objects.

bytes.capitalize()
bytearray.capitalize()

Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte
capitalized and the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.expandtabs(tabsize=8)
bytearray.expandtabs(tabsize=8)

Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII
spaces, depending on the current column and the given tab size. Tab positions occur every tabsize
bytes (default is 8, giving tab positions at columns 0, 8, 16 and so on). To expand the sequence, the
current column is set to zero and the sequence is examined byte by byte. If the byte is an ASCII tab
character (b'\t'), one or more space characters are inserted in the result until the current column is
equal to the next tab position. (The tab character itself is not copied.) If the current byte is an ASCII
newline (b'\n') or carriage return (b'\r'), it is copied and the current column is reset to zero. Any
other byte value is copied unchanged and the current column is incremented by one regardless of how
the byte value is represented when printed:

>>> b'01\t012\t0123\t01234'.expandtabs()
b'01 012 0123 01234'
>>> b'01\t012\t0123\t01234'.expandtabs(4)
b'01 012 0123 01234'

4.8. Binary Sequence Types — bytes, bytearray, memoryview 59

The Python Library Reference, Release 3.5.7

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.isalnum()
bytearray.isalnum()

Return true if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and
the sequence is not empty, false otherwise. Alphabetic ASCII characters are those byte values in the
sequence b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. ASCII decimal
digits are those byte values in the sequence b'0123456789'.

For example:

>>> b'ABCabc1'.isalnum()
True
>>> b'ABC abc1'.isalnum()
False

bytes.isalpha()
bytearray.isalpha()

Return true if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, false otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.

For example:

>>> b'ABCabc'.isalpha()
True
>>> b'ABCabc1'.isalpha()
False

bytes.isdigit()
bytearray.isdigit()

Return true if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, false
otherwise. ASCII decimal digits are those byte values in the sequence b'0123456789'.

For example:

>>> b'1234'.isdigit()
True
>>> b'1.23'.isdigit()
False

bytes.islower()
bytearray.islower()

Return true if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII
characters, false otherwise.

For example:

>>> b'hello world'.islower()
True
>>> b'Hello world'.islower()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence
b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

60 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

bytes.isspace()
bytearray.isspace()

Return true if all bytes in the sequence are ASCII whitespace and the sequence is not empty, false
otherwise. ASCII whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f' (space,
tab, newline, carriage return, vertical tab, form feed).

bytes.istitle()
bytearray.istitle()

Return true if the sequence is ASCII titlecase and the sequence is not empty, false otherwise. See
bytes.title() for more details on the definition of “titlecase”.

For example:

>>> b'Hello World'.istitle()
True
>>> b'Hello world'.istitle()
False

bytes.isupper()
bytearray.isupper()

Return true if there is at least one uppercase alphabetic ASCII character in the sequence and no
lowercase ASCII characters, false otherwise.

For example:

>>> b'HELLO WORLD'.isupper()
True
>>> b'Hello world'.isupper()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence
b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.lower()
bytearray.lower()

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding
lowercase counterpart.

For example:

>>> b'Hello World'.lower()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence
b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.splitlines(keepends=False)
bytearray.splitlines(keepends=False)

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses
the universal newlines approach to splitting lines. Line breaks are not included in the resulting list
unless keepends is given and true.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61

The Python Library Reference, Release 3.5.7

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines()
[b'ab c', b'', b'de fg', b'kl']
>>> b'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split() when a delimiter string sep is given, this method returns an empty list for the empty
string, and a terminal line break does not result in an extra line:

>>> b"".split(b'\n'), b"Two lines\n".split(b'\n')
([b''], [b'Two lines', b''])
>>> b"".splitlines(), b"One line\n".splitlines()
([], [b'One line'])

bytes.swapcase()
bytearray.swapcase()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding
uppercase counterpart and vice-versa.

For example:

>>> b'Hello World'.swapcase()
b'hELLO wORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence
b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Unlike str.swapcase(), it is always the case that bin.swapcase().swapcase() == bin for the binary
versions. Case conversions are symmetrical in ASCII, even though that is not generally true for
arbitrary Unicode code points.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.title()
bytearray.title()

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character
and the remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence
b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'. All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives
form word boundaries, which may not be the desired result:

>>> b"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

62 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
... return re.sub(rb"[A-Za-z]+('[A-Za-z]+)?",
... lambda mo: mo.group(0)[0:1].upper() +
... mo.group(0)[1:].lower(),
... s)
...
>>> titlecase(b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.upper()
bytearray.upper()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding
uppercase counterpart.

For example:

>>> b'Hello World'.upper()
b'HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence
b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

bytes.zfill(width)
bytearray.zfill(width)

Return a copy of the sequence left filled with ASCII b'0' digits to make a sequence of length width.
A leading sign prefix (b'+'/ b'-' is handled by inserting the padding after the sign character rather
than before. For bytes objects, the original sequence is returned if width is less than or equal to
len(seq).

For example:

>>> b"42".zfill(5)
b'00042'
>>> b"-42".zfill(5)
b'-0042'

Note: The bytearray version of this method does not operate in place - it always produces a new
object, even if no changes were made.

4.8.4 printf-style Bytes Formatting

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.5.7

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common
errors (such as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple
or dictionary, wrap it in a tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also
known as the bytes formatting or interpolation operator. Given format % values (where format is a bytes
object), % conversion specifications in format are replaced with zero or more elements of values. The effect
is similar to using the sprintf() in the C language.

If format requires a single argument, values may be a single non-tuple object.5 Otherwise, values must be a
tuple with exactly the number of items specified by the format bytes object, or a single mapping object (for
example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur
in this order:

1. The '%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (some-
name)).

3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an '*' (asterisk), the actual width is read from the
next element of the tuple in values, and the object to convert comes after the minimum field width
and optional precision.

5. Precision (optional), given as a '.' (dot) followed by the precision. If specified as '*' (an asterisk),
the actual precision is read from the next element of the tuple in values, and the value to convert comes
after the precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must
include a parenthesised mapping key into that dictionary inserted immediately after the '%' character. The
mapping key selects the value to be formatted from the mapping. For example:

>>> print(b'%(language)s has %(number)03d quote types.' %
... {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning
'#' The value conversion will use the “alternate form” (where defined below).
'0' The conversion will be zero padded for numeric values.
'-' The converted value is left adjusted (overrides the '0' conversion if both are given).
' ' (a space) A blank should be left before a positive number (or empty string) produced by a signed

conversion.
'+' A sign character ('+' or '-') will precede the conversion (overrides a “space” flag).

A length modifier (h, l, or L) may be present, but is ignored as it is not necessary for Python – so e.g. %ld
is identical to %d.

64 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

The conversion types are:

Con-
version

Meaning Notes

'd' Signed integer decimal.
'i' Signed integer decimal.
'o' Signed octal value. (1)
'u' Obsolete type – it is identical to 'd'. (8)
'x' Signed hexadecimal (lowercase). (2)
'X' Signed hexadecimal (uppercase). (2)
'e' Floating point exponential format (lowercase). (3)
'E' Floating point exponential format (uppercase). (3)
'f' Floating point decimal format. (3)
'F' Floating point decimal format. (3)
'g' Floating point format. Uses lowercase exponential format if exponent is less than -4 or

not less than precision, decimal format otherwise.
(4)

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or
not less than precision, decimal format otherwise.

(4)

'c' Single byte (accepts integer or single byte objects).
'b' Bytes (any object that follows the buffer protocol or has __bytes__()). (5)
's' 's' is an alias for 'b' and should only be used for Python2/3 code bases. (6)
'a' Bytes (converts any Python object using repr(obj).encode('ascii','backslashreplace)). (5)
'r' 'r' is an alias for 'a' and should only be used for Python2/3 code bases. (7)
'%' No argument is converted, results in a '%' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier ('0o') to be inserted before the first digit.

(2) The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'X' format was
used) to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not
removed as they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults
to 6.

(5) If precision is N, the output is truncated to N characters.

(6) b'%s' is deprecated, but will not be removed during the 3.x series.

(7) b'%r' is deprecated, but will not be removed during the 3.x series.

(8) See PEP 237.

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

See also:

PEP 461.

New in version 3.5.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65

https://www.python.org/dev/peps/pep-0237
https://www.python.org/dev/peps/pep-0461

The Python Library Reference, Release 3.5.7

4.8.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer
protocol without copying.

class memoryview(obj)
Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that
support the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the orig-
inating object obj. For many simple types such as bytes and bytearray, an element is a single byte,
but other types such as array.array may have bigger elements.

len(view) is equal to the length of tolist. If view.ndim = 0, the length is 1. If view.ndim = 1, the
length is equal to the number of elements in the view. For higher dimensions, the length is equal to the
length of the nested list representation of the view. The itemsize attribute will give you the number of
bytes in a single element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in
a subview:

>>> v = memoryview(b'abcefg')
>>> v[1]
98
>>> v[-1]
103
>>> v[1:4]
<memory at 0x7f3ddc9f4350>
>>> bytes(v[1:4])
b'bce'

If format is one of the native format specifiers from the struct module, indexing with an integer or a
tuple of integers is also supported and returns a single element with the correct type. One-dimensional
memoryviews can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews
can be indexed with tuples of exactly ndim integers where ndim is the number of dimensions. Zero-
dimensional memoryviews can be indexed with the empty tuple.

Here is an example with a non-byte format:

>>> import array
>>> a = array.array('l', [-11111111, 22222222, -33333333, 44444444])
>>> m = memoryview(a)
>>> m[0]
-11111111
>>> m[-1]
44444444
>>> m[::2].tolist()
[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Re-
sizing is not allowed:

>>> data = bytearray(b'abcefg')
>>> v = memoryview(data)
>>> v.readonly
False
>>> v[0] = ord(b'z')
>>> data

(continues on next page)

66 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

(continued from previous page)

bytearray(b'zbcefg')
>>> v[1:4] = b'123'
>>> data
bytearray(b'z123fg')
>>> v[2:3] = b'spam'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: memoryview assignment: lvalue and rvalue have different structures
>>> v[2:6] = b'spam'
>>> data
bytearray(b'z1spam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hash-
able. The hash is defined as hash(m) == hash(m.tobytes()):

>>> v = memoryview(b'abcefg')
>>> hash(v) == hash(b'abcefg')
True
>>> hash(v[2:4]) == hash(b'ce')
True
>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memo-
ryviews with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically with collections.abc.Sequence

Changed in version 3.5: memoryviews can now be indexed with tuple of integers.

memoryview has several methods:

__eq__(exporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corre-
sponding values are equal when the operands’ respective format codes are interpreted using struct
syntax.

For the subset of struct format strings currently supported by tolist(), v and w are equal if
v.tolist() == w.tolist():

>>> import array
>>> a = array.array('I', [1, 2, 3, 4, 5])
>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])
>>> c = array.array('b', [5, 3, 1])
>>> x = memoryview(a)
>>> y = memoryview(b)
>>> x == a == y == b
True
>>> x.tolist() == a.tolist() == y.tolist() == b.tolist()
True
>>> z = y[::-2]
>>> z == c
True
>>> z.tolist() == c.tolist()
True

If either format string is not supported by the struct module, then the objects will always compare
as unequal (even if the format strings and buffer contents are identical):

4.8. Binary Sequence Types — bytes, bytearray, memoryview 67

https://www.python.org/dev/peps/pep-3118

The Python Library Reference, Release 3.5.7

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint(BigEndianStructure):
... _fields_ = [("x", c_long), ("y", c_long)]
...
>>> point = BEPoint(100, 200)
>>> a = memoryview(point)
>>> b = memoryview(point)
>>> a == point
False
>>> a == b
False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format
and the logical array structure.

tobytes()
Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor
on the memoryview.

>>> m = memoryview(b"abc")
>>> m.tobytes()
b'abc'
>>> bytes(m)
b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements
converted to bytes. tobytes() supports all format strings, including those that are not in struct
module syntax.

hex()
Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview(b"abc")
>>> m.hex()
'616263'

New in version 3.5.

tolist()
Return the data in the buffer as a list of elements.

>>> memoryview(b'abc').tolist()
[97, 98, 99]
>>> import array
>>> a = array.array('d', [1.1, 2.2, 3.3])
>>> m = memoryview(a)
>>> m.tolist()
[1.1, 2.2, 3.3]

Changed in version 3.3: tolist() now supports all single character native formats in struct module
syntax as well as multi-dimensional representations.

release()
Release the underlying buffer exposed by the memoryview object. Many objects take special
actions when a view is held on them (for example, a bytearray would temporarily forbid resizing);
therefore, calling release() is handy to remove these restrictions (and free any dangling resources)
as soon as possible.

68 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

After this method has been called, any further operation on the view raises a ValueError (except
release() itself which can be called multiple times):

>>> m = memoryview(b'abc')
>>> m.release()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview(b'abc') as m:
... m[0]
...
97
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast(format[, shape])
Cast a memoryview to a new format or shape. shape defaults to [byte_length//new_itemsize],
which means that the result view will be one-dimensional. The return value is a new memoryview,
but the buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous ->
1D.

The destination format is restricted to a single element native format in struct syntax. One of the
formats must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as
the original length.

Cast 1D/long to 1D/unsigned bytes:

>>> import array
>>> a = array.array('l', [1,2,3])
>>> x = memoryview(a)
>>> x.format
'l'
>>> x.itemsize
8
>>> len(x)
3
>>> x.nbytes
24
>>> y = x.cast('B')
>>> y.format
'B'
>>> y.itemsize
1
>>> len(y)
24
>>> y.nbytes
24

Cast 1D/unsigned bytes to 1D/char:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 69

The Python Library Reference, Release 3.5.7

>>> b = bytearray(b'zyz')
>>> x = memoryview(b)
>>> x[0] = b'a'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: memoryview: invalid value for format "B"
>>> y = x.cast('c')
>>> y[0] = b'a'
>>> b
bytearray(b'ayz')

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct
>>> buf = struct.pack("i"*12, *list(range(12)))
>>> x = memoryview(buf)
>>> y = x.cast('i', shape=[2,2,3])
>>> y.tolist()
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]]
>>> y.format
'i'
>>> y.itemsize
4
>>> len(y)
2
>>> y.nbytes
48
>>> z = y.cast('b')
>>> z.format
'b'
>>> z.itemsize
1
>>> len(z)
48
>>> z.nbytes
48

Cast 1D/unsigned char to 2D/unsigned long:

>>> buf = struct.pack("L"*6, *list(range(6)))
>>> x = memoryview(buf)
>>> y = x.cast('L', shape=[2,3])
>>> len(y)
2
>>> y.nbytes
48
>>> y.tolist()
[[0, 1, 2], [3, 4, 5]]

New in version 3.3.

Changed in version 3.5: The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available:

obj
The underlying object of the memoryview:

70 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

>>> b = bytearray(b'xyz')
>>> m = memoryview(b)
>>> m.obj is b
True

New in version 3.3.

nbytes
nbytes == product(shape) * itemsize == len(m.tobytes()). This is the amount of space in bytes
that the array would use in a contiguous representation. It is not necessarily equal to len(m):

>>> import array
>>> a = array.array('i', [1,2,3,4,5])
>>> m = memoryview(a)
>>> len(m)
5
>>> m.nbytes
20
>>> y = m[::2]
>>> len(y)
3
>>> y.nbytes
12
>>> len(y.tobytes())
12

Multi-dimensional arrays:

>>> import struct
>>> buf = struct.pack("d"*12, *[1.5*x for x in range(12)])
>>> x = memoryview(buf)
>>> y = x.cast('d', shape=[3,4])
>>> y.tolist()
[[0.0, 1.5, 3.0, 4.5], [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
>>> len(y)
3
>>> y.nbytes
96

New in version 3.3.

readonly
A bool indicating whether the memory is read only.

format
A string containing the format (in struct module style) for each element in the view. A mem-
oryview can be created from exporters with arbitrary format strings, but some methods (e.g.
tolist()) are restricted to native single element formats.

Changed in version 3.3: format 'B' is now handled according to the struct module syntax. This
means that memoryview(b'abc')[0] == b'abc'[0] == 97.

itemsize
The size in bytes of each element of the memoryview:

>>> import array, struct
>>> m = memoryview(array.array('H', [32000, 32001, 32002]))
>>> m.itemsize

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 71

The Python Library Reference, Release 3.5.7

(continued from previous page)

2
>>> m[0]
32000
>>> struct.calcsize('H') == m.itemsize
True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each
dimension of the array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets
Used internally for PIL-style arrays. The value is informational only.

c_contiguous
A bool indicating whether the memory is C-contiguous.

New in version 3.3.

f_contiguous
A bool indicating whether the memory is Fortran contiguous.

New in version 3.3.

contiguous
A bool indicating whether the memory is contiguous.

New in version 3.3.

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership
testing, removing duplicates from a sequence, and computing mathematical operations such as intersection,
union, difference, and symmetric difference. (For other containers see the built-in dict, list, and tuple classes,
and the collections module.)

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection, sets
do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can
be changed using methods like add() and remove(). Since it is mutable, it has no hash value and cannot
be used as either a dictionary key or as an element of another set. The frozenset type is immutable and
hashable — its contents cannot be altered after it is created; it can therefore be used as a dictionary key or
as an element of another set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces,
for example: {'jack', 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

72 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

class set([iterable])
class frozenset([iterable])

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set
must be hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not
specified, a new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s)
Return the number of elements in set s (cardinality of s).

x in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint(other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset(other)
set <= other

Test whether every element in the set is in other.

set < other
Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset(other)
set >= other

Test whether every element in other is in the set.

set > other
Test whether the set is a proper superset of other, that is, set >= other and set != other.

union(*others)
set | other | ...

Return a new set with elements from the set and all others.

intersection(*others)
set & other & ...

Return a new set with elements common to the set and all others.

difference(*others)
set - other - ...

Return a new set with elements in the set that are not in the others.

symmetric_difference(other)
set ^ other

Return a new set with elements in either the set or other but not both.

copy()
Return a new set with a shallow copy of s.

Note, the non-operator versions of union(), intersection(), difference(), and symmetric_difference(),
issubset(), and issuperset() methods will accept any iterable as an argument. In contrast, their operator
based counterparts require their arguments to be sets. This precludes error-prone constructions like
set('abc') & 'cbs' in favor of the more readable set('abc').intersection('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and
only if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater

4.9. Set Types — set, frozenset 73

The Python Library Reference, Release 3.5.7

than another set if and only if the first set is a proper superset of the second set (is a superset, but is
not equal).

Instances of set are compared to instances of frozenset based on their members. For example,
set('abc') == frozenset('abc') returns True and so does set('abc') in set([frozenset('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any
two nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return
False: a<b, a==b, or a>b.

Since sets only define partial ordering (subset relationships), the output of the list.sort() method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For
example: frozenset('ab') | set('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of
frozenset:

update(*others)
set |= other | ...

Update the set, adding elements from all others.

intersection_update(*others)
set &= other & ...

Update the set, keeping only elements found in it and all others.

difference_update(*others)
set -= other | ...

Update the set, removing elements found in others.

symmetric_difference_update(other)
set ^= other

Update the set, keeping only elements found in either set, but not in both.

add(elem)
Add element elem to the set.

remove(elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard(elem)
Remove element elem from the set if it is present.

pop()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear()
Remove all elements from the set.

Note, the non-operator versions of the update(), intersection_update(), difference_update(), and sym-
metric_difference_update() methods will accept any iterable as an argument.

Note, the elem argument to the __contains__(), remove(), and discard() methods may be a set. To
support searching for an equivalent frozenset, a temporary one is created from elem.

74 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

4.10 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is
currently only one standard mapping type, the dictionary. (For other containers see the built-in list, set,
and tuple classes, and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists,
dictionaries or other mutable types (that are compared by value rather than by object identity) may not be
used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers
compare equal (such as 1 and 1.0) then they can be used interchangeably to index the same dictionary entry.
(Note however, that since computers store floating-point numbers as approximations it is usually unwise to
use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example:
{'jack': 4098, 'sjoerd': 4127} or {4098: 'jack', 4127: 'sjoerd'}, or by the dict constructor.

class dict(**kwarg)
class dict(mapping, **kwarg)
class dict(iterable, **kwarg)

Return a new dictionary initialized from an optional positional argument and a possibly empty set of
keyword arguments.

If no positional argument is given, an empty dictionary is created. If a positional argument is given
and it is a mapping object, a dictionary is created with the same key-value pairs as the mapping object.
Otherwise, the positional argument must be an iterable object. Each item in the iterable must itself be
an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary,
and the second object the corresponding value. If a key occurs more than once, the last value for that
key becomes the corresponding value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary
created from the positional argument. If a key being added is already present, the value from the
keyword argument replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2, "three": 3}:

>>> a = dict(one=1, two=2, three=3)
>>> b = {'one': 1, 'two': 2, 'three': 3}
>>> c = dict(zip(['one', 'two', 'three'], [1, 2, 3]))
>>> d = dict([('two', 2), ('one', 1), ('three', 3)])
>>> e = dict({'three': 3, 'one': 1, 'two': 2})
>>> a == b == c == d == e
True

Providing keyword arguments as in the first example only works for keys that are valid Python iden-
tifiers. Otherwise, any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should sup-
port too):

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__() and key is not present, the d[key] operation
calls that method with the key key as argument. The d[key] operation then returns or raises
whatever is returned or raised by the __missing__(key) call. No other operations or methods

4.10. Mapping Types — dict 75

The Python Library Reference, Release 3.5.7

invoke __missing__(). If __missing__() is not defined, KeyError is raised. __missing__()
must be a method; it cannot be an instance variable:

>>> class Counter(dict):
... def __missing__(self, key):
... return 0
>>> c = Counter()
>>> c['red']
0
>>> c['red'] += 1
>>> c['red']
1

The example above shows part of the implementation of collections.Counter. A different __miss-
ing__ method is used by collections.defaultdict.

d[key] = value
Set d[key] to value.

del d[key]
Remove d[key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter(d.keys()).

clear()
Remove all items from the dictionary.

copy()
Return a shallow copy of the dictionary.

classmethod fromkeys(seq[, value])
Create a new dictionary with keys from seq and values set to value.

fromkeys() is a class method that returns a new dictionary. value defaults to None.

get(key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults
to None, so that this method never raises a KeyError.

items()
Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view
objects.

keys()
Return a new view of the dictionary’s keys. See the documentation of view objects.

pop(key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not
given and key is not in the dictionary, a KeyError is raised.

popitem()
Remove and return an arbitrary (key, value) pair from the dictionary.

popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If
the dictionary is empty, calling popitem() raises a KeyError.

76 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

setdefault(key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return
default. default defaults to None.

update([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return
None.

update() accepts either another dictionary object or an iterable of key/value pairs (as tuples or
other iterables of length two). If keyword arguments are specified, the dictionary is then updated
with those key/value pairs: d.update(red=1, blue=2).

values()
Return a new view of the dictionary’s values. See the documentation of view objects.

Dictionaries compare equal if and only if they have the same (key, value) pairs. Order comparisons
(‘<’, ‘<=’, ‘>=’, ‘>’) raise TypeError.

See also:

types.MappingProxyType can be used to create a read-only view of a dict.

4.10.1 Dictionary view objects

The objects returned by dict.keys(), dict.values() and dict.items() are view objects. They provide a dynamic
view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these
changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len(dictview)
Return the number of entries in the dictionary.

iter(dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the dictionary.

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python
implementations, and depends on the dictionary’s history of insertions and deletions. If keys, values
and items views are iterated over with no intervening modifications to the dictionary, the order of
items will directly correspond. This allows the creation of (value, key) pairs using zip(): pairs =
zip(d.values(), d.keys()). Another way to create the same list is pairs = [(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a RuntimeError or fail to
iterate over all entries.

x in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be
a (key, value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key,
value) pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as
set-like since the entries are generally not unique.) For set-like views, all of the operations defined for the
abstract base class collections.abc.Set are available (for example, ==, <, or ^).

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys()
>>> values = dishes.values()

(continues on next page)

4.10. Mapping Types — dict 77

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> # iteration
>>> n = 0
>>> for val in values:
... n += val
>>> print(n)
504

>>> # keys and values are iterated over in the same order
>>> list(keys)
['eggs', 'bacon', 'sausage', 'spam']
>>> list(values)
[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes['eggs']
>>> del dishes['sausage']
>>> list(keys)
['spam', 'bacon']

>>> # set operations
>>> keys & {'eggs', 'bacon', 'salad'}
{'bacon'}
>>> keys ^ {'sausage', 'juice'}
{'juice', 'sausage', 'bacon', 'spam'}

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This
is implemented using a pair of methods that allow user-defined classes to define a runtime context that is
entered before the statement body is executed and exited when the statement ends:

contextmanager.__enter__()
Enter the runtime context and return either this object or another object related to the runtime context.
The value returned by this method is bound to the identifier in the as clause of with statements using
this context manager.

An example of a context manager that returns itself is a file object. File objects return themselves
from __enter__() to allow open() to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext(). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body
of the with statement without affecting code outside the with statement.

contextmanager.__exit__(exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be
suppressed. If an exception occurred while executing the body of the with statement, the arguments
contain the exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception
and continue execution with the statement immediately following the with statement. Otherwise the
exception continues propagating after this method has finished executing. Exceptions that occur during
execution of this method will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false

78 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

value to indicate that the method completed successfully and does not want to suppress the raised
exception. This allows context management code to easily detect whether or not an __exit__()
method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or
other objects, and simpler manipulation of the active decimal arithmetic context. The specific types are
not treated specially beyond their implementation of the context management protocol. See the contextlib
module for some examples.

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will
return a context manager implementing the necessary __enter__() and __exit__() methods, rather than
the iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the
Python/C API. Extension types wanting to define these methods must provide them as a normal Python
accessible method. Compared to the overhead of setting up the runtime context, the overhead of a single
class dictionary lookup is negligible.

4.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.12.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses
a name defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement
is not, strictly speaking, an operation on a module object; import foo does not require a module object
named foo to exist, rather it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is __dict__. This is the dictionary containing the module’s symbol
table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment to
the __dict__ attribute is not possible (you can write m.__dict__['a'] = 1, which defines m.a to be 1,
but you can’t write m.__dict__ = {}). Modifying __dict__ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file,
they are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

4.12.2 Classes and Class Instances

See objects and class for these.

4.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support
the same operation (to call the function), but the implementation is different, hence the different object
types.

See function for more information.

4.12. Other Built-in Types 79

The Python Library Reference, Release 3.5.7

4.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods
(such as append() on lists) and class instance methods. Built-in methods are described with the types that
support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special
object: a bound method (also called instance method) object. When called, it will add the self argument
to the argument list. Bound methods have two special read-only attributes: m.__self__ is the object on
which the method operates, and m.__func__ is the function implementing the method. Calling m(arg-1,
arg-2, ..., arg-n) is completely equivalent to calling m.__func__(m.__self__, arg-1, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method
attributes are actually stored on the underlying function object (meth.__func__), setting method attributes
on bound methods is disallowed. Attempting to set an attribute on a method results in an AttributeError
being raised. In order to set a method attribute, you need to explicitly set it on the underlying function
object:

>>> class C:
... def method(self):
... pass
...
>>> c = C()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'method' object has no attribute 'whoami'
>>> c.method.__func__.whoami = 'my name is method'
>>> c.method.whoami
'my name is method'

See types for more information.

4.12.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such
as a function body. They differ from function objects because they don’t contain a reference to their global
execution environment. Code objects are returned by the built-in compile() function and can be extracted
from function objects through their __code__ attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec() or eval()
built-in functions.

See types for more information.

4.12.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type().
There are no special operations on types. The standard module types defines names for all standard built-in
types.

Types are written like this: <class 'int'>.

80 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.7

4.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations.
There is exactly one null object, named None (a built-in name). type(None)() produces the same singleton.

It is written as None.

4.12.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly
one ellipsis object, named Ellipsis (a built-in name). type(Ellipsis)() produces the Ellipsis singleton.

It is written as Ellipsis or

4.12.9 The NotImplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types
they don’t support. See comparisons for more information. There is exactly one NotImplemented object.
type(NotImplemented)() produces the singleton instance.

It is written as NotImplemented.

4.12.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values
(although other values can also be considered false or true). In numeric contexts (for example when used as
the argument to an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in
function bool() can be used to convert any value to a Boolean, if the value can be interpreted as a truth
value (see section Truth Value Testing above).

They are written as False and True, respectively.

4.12.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant.
Some of these are not reported by the dir() built-in function.

object.__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class__
The class to which a class instance belongs.

class.__bases__
The tuple of base classes of a class object.

definition.__name__
The name of the class, function, method, descriptor, or generator instance.

4.13. Special Attributes 81

The Python Library Reference, Release 3.5.7

definition.__qualname__
The qualified name of the class, function, method, descriptor, or generator instance.

New in version 3.3.

class.__mro__
This attribute is a tuple of classes that are considered when looking for base classes during method
resolution.

class.mro()
This method can be overridden by a metaclass to customize the method resolution order for its in-
stances. It is called at class instantiation, and its result is stored in __mro__.

class.__subclasses__()
Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all
those references still alive. Example:

>>> int.__subclasses__()
[<class 'bool'>]

82 Chapter 4. Built-in Types

CHAPTER

FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement
with an except clause that mentions a particular class, that clause also handles any exception classes derived
from that class (but not exception classes from which it is derived). Two exception classes that are not
related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where
mentioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or
a tuple of several items of information (e.g., an error code and a string explaining the code). The associated
value is usually passed as arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error
condition “just like” the situation in which the interpreter raises the same exception; but beware that there
is nothing to prevent user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to
derive new exceptions from the Exception class or one of its subclasses, and not from BaseException. More
information on defining exceptions is available in the Python Tutorial under tut-userexceptions.

When raising (or re-raising) an exception in an except or finally clause __context__ is automatically set
to the last exception caught; if the new exception is not handled the traceback that is eventually displayed
will include the originating exception(s) and the final exception.

When raising a new exception (rather than using a bare raise to re-raise the exception currently being
handled), the implicit exception context can be supplemented with an explicit cause by using from with
raise:

raise new_exc from original_exc

The expression following from must be an exception or None. It will be set as __cause__ on the raised
exception. Setting __cause__ also implicitly sets the __suppress_context__ attribute to True, so that
using raise new_exc from None effectively replaces the old exception with the new one for display purposes
(e.g. converting KeyError to AttributeError, while leaving the old exception available in __context__ for
introspection when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the
exception itself. An explicitly chained exception in __cause__ is always shown when present. An implicitly
chained exception in __context__ is shown only if __cause__ is None and __suppress_context__ is
false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the
traceback always shows the last exception that was raised.

83

The Python Library Reference, Release 3.5.7

5.1 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined
classes (for that, use Exception). If str() is called on an instance of this class, the representation of the
argument(s) to the instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like OSEr-
ror) expect a certain number of arguments and assign a special meaning to the elements of this
tuple, while others are usually called only with a single string giving an error message.

with_traceback(tb)
This method sets tb as the new traceback for the exception and returns the exception object. It
is usually used in exception handling code like this:

try:
...

except SomeException:
tb = sys.exc_info()[2]
raise OtherException(...).with_traceback(tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions
should also be derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence
is invalid: IndexError, KeyError. This can be raised directly by codecs.lookup().

5.2 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object
does not support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when the input() function hits an end-of-file condition (EOF) without reading any data. (N.B.:
the io.IOBase.read() and io.IOBase.readline() methods return an empty string when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised

84 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.5.7

when Python is configured with the --with-fpectl option, or the WANT_SIGFPE_HANDLER symbol
is defined in the pyconfig.h file.

exception GeneratorExit
Raised when a generator or coroutine is closed; see generator.close() and coroutine.close(). It directly
inherits from BaseException instead of Exception since it is technically not an error.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import fails to
find a name that is to be imported.

The name and path attributes can be set using keyword-only arguments to the constructor. When set
they represent the name of the module that was attempted to be imported and the path to any file
which triggered the exception, respectively.

Changed in version 3.3: Added the name and path attributes.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the
allowed range; if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check
for interrupts is made regularly. The exception inherits from BaseException so as to not be accidentally
caught by code that catches Exception and thus prevent the interpreter from exiting.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some
objects). The associated value is a string indicating what kind of (internal) operation ran out of mem-
ory. Note that because of the underlying memory management architecture (C’s malloc() function),
the interpreter may not always be able to completely recover from this situation; it nevertheless raises
an exception so that a stack traceback can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exception NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method.

exception OSError([arg])
exception OSError(errno, strerror[, filename[, winerror[, filename2]]])

This exception is raised when a system function returns a system-related error, including I/O failures
such as “file not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes
default to None if not specified. For backwards compatibility, if three arguments are passed, the args
attribute contains only a 2-tuple of the first two constructor arguments.

The constructor often actually returns a subclass of OSError, as described in OS exceptions below. The
particular subclass depends on the final errno value. This behaviour only occurs when constructing
OSError directly or via an alias, and is not inherited when subclassing.

errno
A numeric error code from the C variable errno.

5.2. Concrete exceptions 85

The Python Library Reference, Release 3.5.7

winerror
Under Windows, this gives you the native Windows error code. The errno attribute is then an
approximate translation, in POSIX terms, of that native error code.

Under Windows, if the winerror constructor argument is an integer, the errno attribute is deter-
mined from the Windows error code, and the errno argument is ignored. On other platforms, the
winerror argument is ignored, and the winerror attribute does not exist.

strerror
The corresponding error message, as provided by the operating system. It is formatted by the C
functions perror() under POSIX, and FormatMessage() under Windows.

filename
filename2

For exceptions that involve a file system path (such as open() or os.unlink()), filename is the
file name passed to the function. For functions that involve two file system paths (such as os.
rename()), filename2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, socket.error, select.error and
mmap.error have been merged into OSError, and the constructor may return a subclass.

Changed in version 3.4: The filename attribute is now the original file name passed to the function, in-
stead of the name encoded to or decoded from the filesystem encoding. Also, the filename2 constructor
argument and attribute was added.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur
for integers (which would rather raise MemoryError than give up). However, for historical reasons,
OverflowError is sometimes raised for integers that are outside a required range. Because of the lack
of standardization of floating point exception handling in C, most floating point operations are not
checked.

exception RecursionError
This exception is derived from RuntimeError. It is raised when the interpreter detects that the maxi-
mum recursion depth (see sys.getrecursionlimit()) is exceeded.

New in version 3.5: Previously, a plain RuntimeError was raised.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref.proxy() function, is used
to access an attribute of the referent after it has been garbage collected. For more information on weak
references, see the weakref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value
is a string indicating what precisely went wrong.

exception StopIteration
Raised by built-in function next() and an iterator’s __next__() method to signal that there are no
further items produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing
the exception, and defaults to None.

When a generator or coroutine function returns, a new StopIteration instance is raised, and the value
returned by the function is used as the value parameter to the constructor of the exception.

If a generator function defined in the presence of a from __future__ import generator_stop directive
raises StopIteration, it will be converted into a RuntimeError (retaining the StopIteration as the new
exception’s cause).

86 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.5.7

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return
a value.

Changed in version 3.5: Introduced the RuntimeError transformation.

exception StopAsyncIteration
Must be raised by __anext__() method of an asynchronous iterator object to stop the iteration.

New in version 3.5.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call
to the built-in functions exec() or eval(), or when reading the initial script or standard input (also
interactively).

Instances of this class have attributes filename, lineno, offset and text for easier access to the details.
str() of the exception instance returns only the message.

exception IndentationError
Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError
Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of Inden-
tationError.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it
to abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the
version of the Python interpreter (sys.version; it is also printed at the start of an interactive Python
session), the exact error message (the exception’s associated value) and if possible the source of the
program that triggered the error.

exception SystemExit
This exception is raised by the sys.exit() function. It inherits from BaseException instead of Exception
so that it is not accidentally caught by code that catches Exception. This allows the exception to
properly propagate up and cause the interpreter to exit. When it is not handled, the Python interpreter
exits; no stack traceback is printed. The constructor accepts the same optional argument passed to
sys.exit(). If the value is an integer, it specifies the system exit status (passed to C’s exit() function); if
it is None, the exit status is zero; if it has another type (such as a string), the object’s value is printed
and the exit status is one.

A call to sys.exit() is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk
of losing control. The os._exit() function can be used if it is absolutely positively necessary to exit
immediately (for example, in the child process after a call to os.fork()).

code
The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated
value is a string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been
bound to that variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

5.2. Concrete exceptions 87

The Python Library Reference, Release 3.5.7

UnicodeError has attributes that describe the encoding or decoding error. For example, err.object[err.
start:err.end] gives the particular invalid input that the codec failed on.

encoding
The name of the encoding that raised the error.

reason
A string describing the specific codec error.

object
The object the codec was attempting to encode or decode.

start
The first index of invalid data in object.

end
The index after the last invalid data in object.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an
inappropriate value, and the situation is not described by a more precise exception such as IndexError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a
string indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they
are aliases of OSError.

exception EnvironmentError

exception IOError

exception WindowsError
Only available on Windows.

5.2.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation.
Corresponds to errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This
attribute is available when using the buffered I/O classes from the io module.

exception ChildProcessError
Raised when an operation on a child process failed. Corresponds to errno ECHILD.

88 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.5.7

exception ConnectionError
A base class for connection-related issues.

Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError and Connection-
ResetError.

exception BrokenPipeError
A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been
closed, or trying to write on a socket which has been shutdown for writing. Corresponds to errno
EPIPE and ESHUTDOWN.

exception ConnectionAbortedError
A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds
to errno ECONNABORTED.

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds
to errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError
Raised when trying to create a file or directory which already exists. Corresponds to errno EEXIST.

exception FileNotFoundError
Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

exception InterruptedError
Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

Changed in version 3.5: Python now retries system calls when a syscall is interrupted by a signal,
except if the signal handler raises an exception (see PEP 475 for the rationale), instead of raising
InterruptedError.

exception IsADirectoryError
Raised when a file operation (such as os.remove()) is requested on a directory. Corresponds to errno
EISDIR.

exception NotADirectoryError
Raised when a directory operation (such as os.listdir()) is requested on something which is not a
directory. Corresponds to errno ENOTDIR.

exception PermissionError
Raised when trying to run an operation without the adequate access rights - for example filesystem
permissions. Corresponds to errno EACCES and EPERM.

exception ProcessLookupError
Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

exception TimeoutError
Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.

New in version 3.3: All the above OSError subclasses were added.

See also:

PEP 3151 - Reworking the OS and IO exception hierarchy

5.2. Concrete exceptions 89

https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-3151

The Python Library Reference, Release 3.5.7

5.3 Warnings

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax.

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

exception UnicodeWarning
Base class for warnings related to Unicode.

exception BytesWarning
Base class for warnings related to bytes and bytearray.

exception ResourceWarning
Base class for warnings related to resource usage.

New in version 3.2.

5.4 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- StopAsyncIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError

(continues on next page)

90 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.5.7

(continued from previous page)

+-- ImportError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning

+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

5.4. Exception hierarchy 91

The Python Library Reference, Release 3.5.7

92 Chapter 5. Built-in Exceptions

CHAPTER

SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text
processing services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In
addition, see the documentation for Python’s built-in string type in Text Sequence Type — str.

6.1 string — Common string operations

Source code: Lib/string.py

See also:

Text Sequence Type — str

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This value
is not locale-dependent.

string.ascii_lowercase
The lowercase letters 'abcdefghijklmnopqrstuvwxyz'. This value is not locale-dependent and will not
change.

string.ascii_uppercase
The uppercase letters 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'. This value is not locale-dependent
and will not change.

string.digits
The string '0123456789'.

string.hexdigits
The string '0123456789abcdefABCDEF'.

string.octdigits
The string '01234567'.

93

https://github.com/python/cpython/tree/3.5/Lib/string.py

The Python Library Reference, Release 3.5.7

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

string.printable
String of ASCII characters which are considered printable. This is a combination of digits, ascii_letters,
punctuation, and whitespace.

string.whitespace
A string containing all ASCII characters that are considered whitespace. This includes the characters
space, tab, linefeed, return, formfeed, and vertical tab.

6.1.2 Custom String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via
the format() method described in PEP 3101. The Formatter class in the string module allows you to create
and customize your own string formatting behaviors using the same implementation as the built-in format()
method.

class string.Formatter
The Formatter class has the following public methods:

format(format_string, *args, **kwargs)
The primary API method. It takes a format string and an arbitrary set of positional and keyword
arguments. It is just a wrapper that calls vformat().

Deprecated since version 3.5: Passing a format string as keyword argument format_string has
been deprecated.

vformat(format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases
where you want to pass in a predefined dictionary of arguments, rather than unpacking and
repacking the dictionary as individual arguments using the *args and **kwargs syntax. vformat()
does the work of breaking up the format string into character data and replacement fields. It calls
the various methods described below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse(format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, for-
mat_spec, conversion). This is used by vformat() to break the string into either literal text, or
replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement
field. If there is no literal text (which can happen if two replacement fields occur consecutively),
then literal_text will be a zero-length string. If there is no replacement field, then the values of
field_name, format_spec and conversion will be None.

get_field(field_name, args, kwargs)
Given field_name as returned by parse() (see above), convert it to an object to be formatted.
Returns a tuple (obj, used_key). The default version takes strings of the form defined in PEP
3101, such as “0[name]” or “label.title”. args and kwargs are as passed in to vformat(). The return
value used_key has the same meaning as the key parameter to get_value().

get_value(key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an
integer, it represents the index of the positional argument in args; if it is a string, then it represents
a named argument in kwargs.

94 Chapter 6. Text Processing Services

https://www.python.org/dev/peps/pep-3101
https://www.python.org/dev/peps/pep-3101
https://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.5.7

The args parameter is set to the list of positional arguments to vformat(), and the kwargs param-
eter is set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field
name; Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value() to be called with a key
argument of 0. The name attribute will be looked up after get_value() returns by calling the
built-in getattr() function.

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError
should be raised.

check_unused_args(used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of
all argument keys that were actually referred to in the format string (integers for positional argu-
ments, and strings for named arguments), and a reference to the args and kwargs that was passed
to vformat. The set of unused args can be calculated from these parameters. check_unused_args()
is assumed to raise an exception if the check fails.

format_field(value, format_spec)
format_field() simply calls the global format() built-in. The method is provided so that subclasses
can override it.

convert_field(value, conversion)
Converts the value (returned by get_field()) given a conversion type (as in the tuple returned by
the parse() method). The default version understands ‘s’ (str), ‘r’ (repr) and ‘a’ (ascii) conversion
types.

6.1.3 Format String Syntax

The str.format() method and the Formatter class share the same syntax for format strings (although in the
case of Formatter, subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces {}. Anything that is not contained
in braces is considered literal text, which is copied unchanged to the output. If you need to include a brace
character in the literal text, it can be escaped by doubling: {{ and }}.

The grammar for a replacement field is as follows:

replacement_field ::= "{" [field_name] ["!" conversion] [":" format_spec] "}"
field_name ::= arg_name ("." attribute_name | "[" element_index "]")*
arg_name ::= [identifier | integer]
attribute_name ::= identifier
element_index ::= integer | index_string
index_string ::= <any source character except "]"> +
conversion ::= "r" | "s" | "a"
format_spec ::= <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value
is to be formatted and inserted into the output instead of the replacement field. The field_name is optionally
followed by a conversion field, which is preceded by an exclamation point '!', and a format_spec, which is
preceded by a colon ':'. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it

6.1. string — Common string operations 95

The Python Library Reference, Release 3.5.7

refers to a positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical
arg_names in a format string are 0, 1, 2, . . . in sequence, they can all be omitted (not just some) and the
numbers 0, 1, 2, . . . will be automatically inserted in that order. Because arg_name is not quote-delimited,
it is not possible to specify arbitrary dictionary keys (e.g., the strings '10' or ':-]') within a format string.
The arg_name can be followed by any number of index or attribute expressions. An expression of the form
'.name' selects the named attribute using getattr(), while an expression of the form '[index]' does an index
lookup using __getitem__().

Changed in version 3.1: The positional argument specifiers can be omitted, so '{} {}' is equivalent to '{0}
{1}'.

Some simple format string examples:

"First, thou shalt count to {0}" # References first positional argument
"Bring me a {}" # Implicitly references the first positional argument
"From {} to {}" # Same as "From {0} to {1}"
"My quest is {name}" # References keyword argument 'name'
"Weight in tons {0.weight}" # 'weight' attribute of first positional arg
"Units destroyed: {players[0]}" # First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is
done by the __format__() method of the value itself. However, in some cases it is desirable to force a type
to be formatted as a string, overriding its own definition of formatting. By converting the value to a string
before calling __format__(), the normal formatting logic is bypassed.

Three conversion flags are currently supported: '!s' which calls str() on the value, '!r' which calls repr()
and '!a' which calls ascii().

Some examples:

"Harold's a clever {0!s}" # Calls str() on the argument first
"Bring out the holy {name!r}" # Calls repr() on the argument first
"More {!a}" # Calls ascii() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as
field width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting
mini-language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields
may contain a field name, conversion flag and format specification, but deeper nesting is not allowed. The
replacement fields within the format_spec are substituted before the format_spec string is interpreted. This
allows the formatting of a value to be dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how
individual values are presented (see Format String Syntax). They can also be passed directly to the built-in
format() function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting
options are only supported by the numeric types.

A general convention is that an empty format string ("") produces the same result as if you had called str()
on the value. A non-empty format string typically modifies the result.

96 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

The general form of a standard format specifier is:

format_spec ::= [[fill]align][sign][#][0][width][,][.precision][type]
fill ::= <any character>
align ::= "<" | ">" | "=" | "^"
sign ::= "+" | "-" | " "
width ::= integer
precision ::= integer
type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults
to a space if omitted. It is not possible to use a literal curly brace (“{” or “}”) as the fill character when using
the str.format() method. However, it is possible to insert a curly brace with a nested replacement field. This
limitation doesn’t affect the format() function.

The meaning of the various alignment options is as follows:

Op-
tion

Meaning

'<' Forces the field to be left-aligned within the available space (this is the default for most
objects).

'>' Forces the field to be right-aligned within the available space (this is the default for
numbers).

'=' Forces the padding to be placed after the sign (if any) but before the digits. This is
used for printing fields in the form ‘+000000120’. This alignment option is only valid for
numeric types. It becomes the default when ‘0’ immediately precedes the field width.

'^' Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data
to fill it, so that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op-
tion

Meaning

'+' indicates that a sign should be used for both positive as well as negative numbers.
'-' indicates that a sign should be used only for negative numbers (this is the default

behavior).
space indicates that a leading space should be used on positive numbers, and a minus sign

on negative numbers.

The '#' option causes the “alternate form” to be used for the conversion. The alternate form is defined
differently for different types. This option is only valid for integer, float, complex and Decimal types. For
integers, when binary, octal, or hexadecimal output is used, this option adds the prefix respective '0b',
'0o', or '0x' to the output value. For floats, complex and Decimal the alternate form causes the result of
the conversion to always contain a decimal-point character, even if no digits follow it. Normally, a decimal-
point character appears in the result of these conversions only if a digit follows it. In addition, for 'g' and
'G' conversions, trailing zeros are not removed from the result.

The ',' option signals the use of a comma for a thousands separator. For a locale aware separator, use the
'n' integer presentation type instead.

Changed in version 3.1: Added the ',' option (see also PEP 378).

6.1. string — Common string operations 97

https://www.python.org/dev/peps/pep-0378

The Python Library Reference, Release 3.5.7

width is a decimal integer defining the minimum field width. If not specified, then the field width will be
determined by the content.

When no explicit alignment is given, preceding the width field by a zero ('0') character enables sign-aware
zero-padding for numeric types. This is equivalent to a fill character of '0' with an alignment type of '='.

The precision is a decimal number indicating how many digits should be displayed after the decimal point
for a floating point value formatted with 'f' and 'F', or before and after the decimal point for a floating
point value formatted with 'g' or 'G'. For non-number types the field indicates the maximum field size -
in other words, how many characters will be used from the field content. The precision is not allowed for
integer values.

Finally, the type determines how the data should be presented.

The available string presentation types are:

Type Meaning
's' String format. This is the default type for strings and may be omitted.
None The same as 's'.

The available integer presentation types are:

Type Meaning
'b' Binary format. Outputs the number in base 2.
'c' Character. Converts the integer to the corresponding unicode character before printing.
'd' Decimal Integer. Outputs the number in base 10.
'o' Octal format. Outputs the number in base 8.
'x' Hex format. Outputs the number in base 16, using lower- case letters for the digits

above 9.
'X' Hex format. Outputs the number in base 16, using upper- case letters for the digits

above 9.
'n' Number. This is the same as 'd', except that it uses the current locale setting to insert

the appropriate number separator characters.
None The same as 'd'.

In addition to the above presentation types, integers can be formatted with the floating point presentation
types listed below (except 'n' and None). When doing so, float() is used to convert the integer to a floating
point number before formatting.

The available presentation types for floating point and decimal values are:

98 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

Type Meaning
'e' Exponent notation. Prints the number in scientific notation using the letter ‘e’ to

indicate the exponent. The default precision is 6.
'E' Exponent notation. Same as 'e' except it uses an upper case ‘E’ as the separator

character.
'f' Fixed point. Displays the number as a fixed-point number. The default precision is 6.
'F' Fixed point. Same as 'f', but converts nan to NAN and inf to INF.
'g' General format. For a given precision p >= 1, this rounds the number to p significant

digits and then formats the result in either fixed-point format or in scientific notation,
depending on its magnitude.
The precise rules are as follows: suppose that the result formatted with presentation
type 'e' and precision p-1 would have exponent exp. Then if -4 <= exp < p, the
number is formatted with presentation type 'f' and precision p-1-exp. Otherwise,
the number is formatted with presentation type 'e' and precision p-1. In both cases
insignificant trailing zeros are removed from the significand, and the decimal point is
also removed if there are no remaining digits following it.
Positive and negative infinity, positive and negative zero, and nans, are formatted as
inf, -inf, 0, -0 and nan respectively, regardless of the precision.
A precision of 0 is treated as equivalent to a precision of 1. The default precision is 6.

'G' General format. Same as 'g' except switches to 'E' if the number gets too large. The
representations of infinity and NaN are uppercased, too.

'n' Number. This is the same as 'g', except that it uses the current locale setting to insert
the appropriate number separator characters.

'%' Percentage. Multiplies the number by 100 and displays in fixed ('f') format, followed
by a percent sign.

None Similar to 'g', except that fixed-point notation, when used, has at least one digit past
the decimal point. The default precision is as high as needed to represent the particular
value. The overall effect is to match the output of str() as altered by the other format
modifiers.

Format examples

This section contains examples of the str.format() syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %-formatting, with the addition of the {} and with :
used instead of %. For example, '%03.2f' can be translated to '{:03.2f}'.

The new format syntax also supports new and different options, shown in the follow examples.

Accessing arguments by position:

>>> '{0}, {1}, {2}'.format('a', 'b', 'c')
'a, b, c'
>>> '{}, {}, {}'.format('a', 'b', 'c') # 3.1+ only
'a, b, c'
>>> '{2}, {1}, {0}'.format('a', 'b', 'c')
'c, b, a'
>>> '{2}, {1}, {0}'.format(*'abc') # unpacking argument sequence
'c, b, a'
>>> '{0}{1}{0}'.format('abra', 'cad') # arguments' indices can be repeated
'abracadabra'

Accessing arguments by name:

6.1. string — Common string operations 99

The Python Library Reference, Release 3.5.7

>>> 'Coordinates: {latitude}, {longitude}'.format(latitude='37.24N', longitude='-115.81W')
'Coordinates: 37.24N, -115.81W'
>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}
>>> 'Coordinates: {latitude}, {longitude}'.format(**coord)
'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> c = 3-5j
>>> ('The complex number {0} is formed from the real part {0.real} '
... 'and the imaginary part {0.imag}.').format(c)
'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.'
>>> class Point:
... def __init__(self, x, y):
... self.x, self.y = x, y
... def __str__(self):
... return 'Point({self.x}, {self.y})'.format(self=self)
...
>>> str(Point(4, 2))
'Point(4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: {0[0]}; Y: {0[1]}'.format(coord)
'X: 3; Y: 5'

Replacing %s and %r:

>>> "repr() shows quotes: {!r}; str() doesn't: {!s}".format('test1', 'test2')
"repr() shows quotes: 'test1'; str() doesn't: test2"

Aligning the text and specifying a width:

>>> '{:<30}'.format('left aligned')
'left aligned '
>>> '{:>30}'.format('right aligned')
' right aligned'
>>> '{:^30}'.format('centered')
' centered '
>>> '{:*^30}'.format('centered') # use '*' as a fill char
'***********centered***********'

Replacing %+f, %-f, and % f and specifying a sign:

>>> '{:+f}; {:+f}'.format(3.14, -3.14) # show it always
'+3.140000; -3.140000'
>>> '{: f}; {: f}'.format(3.14, -3.14) # show a space for positive numbers
' 3.140000; -3.140000'
>>> '{:-f}; {:-f}'.format(3.14, -3.14) # show only the minus -- same as '{:f}; {:f}'
'3.140000; -3.140000'

Replacing %x and %o and converting the value to different bases:

>>> # format also supports binary numbers
>>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(42)
'int: 42; hex: 2a; oct: 52; bin: 101010'

(continues on next page)

100 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> # with 0x, 0o, or 0b as prefix:
>>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: {0:#b}".format(42)
'int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010'

Using the comma as a thousands separator:

>>> '{:,}'.format(1234567890)
'1,234,567,890'

Expressing a percentage:

>>> points = 19
>>> total = 22
>>> 'Correct answers: {:.2%}'.format(points/total)
'Correct answers: 86.36%'

Using type-specific formatting:

>>> import datetime
>>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)
>>> '{:%Y-%m-%d %H:%M:%S}'.format(d)
'2010-07-04 12:15:58'

Nesting arguments and more complex examples:

>>> for align, text in zip('<^>', ['left', 'center', 'right']):
... '{0:{fill}{align}16}'.format(text, fill=align, align=align)
...
'left<<<<<<<<<<<<'
'^^^^^center^^^^^'
'>>>>>>>>>>>right'
>>>
>>> octets = [192, 168, 0, 1]
>>> '{:02X}{:02X}{:02X}{:02X}'.format(*octets)
'C0A80001'
>>> int(_, 16)
3232235521
>>>
>>> width = 5
>>> for num in range(5,12):
... for base in 'dXob':
... print('{0:{width}{base}}'.format(num, base=base, width=width), end=' ')
... print()
...

5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

6.1.4 Template strings

Templates provide simpler string substitutions as described in PEP 292. Instead of the normal %-based
substitutions, Templates support $-based substitutions, using the following rules:

6.1. string — Common string operations 101

https://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 3.5.7

• $$ is an escape; it is replaced with a single $.

• $identifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier" is restricted to any case-insensitive ASCII alphanumeric string (including underscores)
that starts with an underscore or ASCII letter. The first non-identifier character after the $ character
terminates this placeholder specification.

• ${identifier} is equivalent to $identifier. It is required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "${noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.

The string module provides a Template class that implements these rules. The methods of Template are:

class string.Template(template)
The constructor takes a single argument which is the template string.

substitute(mapping, **kwds)
Performs the template substitution, returning a new string. mapping is any dictionary-like object
with keys that match the placeholders in the template. Alternatively, you can provide keyword
arguments, where the keywords are the placeholders. When both mapping and kwds are given
and there are duplicates, the placeholders from kwds take precedence.

safe_substitute(mapping, **kwds)
Like substitute(), except that if placeholders are missing from mapping and kwds, instead of
raising a KeyError exception, the original placeholder will appear in the resulting string intact.
Also, unlike with substitute(), any other appearances of the $ will simply return $ instead of
raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always
tries to return a usable string instead of raising an exception. In another sense, safe_substitute()
may be anything other than safe, since it will silently ignore malformed templates containing
dangling delimiters, unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructor’s template argument. In general, you shouldn’t change
it, but read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template
>>> s = Template('$who likes $what')
>>> s.substitute(who='tim', what='kung pao')
'tim likes kung pao'
>>> d = dict(who='tim')
>>> Template('Give $who $100').substitute(d)
Traceback (most recent call last):
...
ValueError: Invalid placeholder in string: line 1, col 11
>>> Template('$who likes $what').substitute(d)
Traceback (most recent call last):
...
KeyError: 'what'
>>> Template('$who likes $what').safe_substitute(d)
'tim likes $what'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter
character, or the entire regular expression used to parse template strings. To do this, you can override these
class attributes:

102 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

• delimiter – This is the literal string describing a placeholder introducing delimiter. The default value
is $. Note that this should not be a regular expression, as the implementation will call re.escape() on
this string as needed.

• idpattern – This is the regular expression describing the pattern for non-braced placeholders (the braces
will be added automatically as appropriate). The default value is the regular expression [_a-z][_a-z0-
9]*.

• flags – The regular expression flags that will be applied when compiling the regular expression used for
recognizing substitutions. The default value is re.IGNORECASE. Note that re.VERBOSE will always
be added to the flags, so custom idpatterns must follow conventions for verbose regular expressions.

New in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern.
If you do this, the value must be a regular expression object with four named capturing groups. The capturing
groups correspond to the rules given above, along with the invalid placeholder rule:

• escaped – This group matches the escape sequence, e.g. $$, in the default pattern.

• named – This group matches the unbraced placeholder name; it should not include the delimiter in
capturing group.

• braced – This group matches the brace enclosed placeholder name; it should not include either the
delimiter or braces in the capturing group.

• invalid – This group matches any other delimiter pattern (usually a single delimiter), and it should
appear last in the regular expression.

6.1.5 Helper functions

string.capwords(s, sep=None)
Split the argument into words using str.split(), capitalize each word using str.capitalize(), and join
the capitalized words using str.join(). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed,
otherwise sep is used to split and join the words.

6.2 re — Regular expression operations

Source code: Lib/re.py

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings as well as 8-bit strings. However, Unicode
strings and 8-bit strings cannot be mixed: that is, you cannot match a Unicode string with a byte pattern
or vice-versa; similarly, when asking for a substitution, the replacement string must be of the same type as
both the pattern and the search string.

Regular expressions use the backslash character ('\') to indicate special forms or to allow special characters
to be used without invoking their special meaning. This collides with Python’s usage of the same character for
the same purpose in string literals; for example, to match a literal backslash, one might have to write '\\\\'
as the pattern string, because the regular expression must be \\, and each backslash must be expressed as
\\ inside a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not
handled in any special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing

6.2. re — Regular expression operations 103

https://github.com/python/cpython/tree/3.5/Lib/re.py

The Python Library Reference, Release 3.5.7

'\' and 'n', while "\n" is a one-character string containing a newline. Usually patterns will be expressed
in Python code using this raw string notation.

It is important to note that most regular expression operations are available as module-level functions and
methods on compiled regular expressions. The functions are shortcuts that don’t require you to compile a
regex object first, but miss some fine-tuning parameters.

See also:

The third-party regex module, which has an API compatible with the standard library re module, but offers
additional functionality and a more thorough Unicode support.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you
check if a particular string matches a given regular expression (or if a given regular expression matches a
particular string, which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular
expressions, then AB is also a regular expression. In general, if a string p matches A and another string
q matches B, the string pq will match AB. This holds unless A or B contain low precedence operations;
boundary conditions between A and B; or have numbered group references. Thus, complex expressions can
easily be constructed from simpler primitive expressions like the ones described here. For details of the
theory and implementation of regular expressions, consult the Friedl book referenced above, or almost any
textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler
presentation, consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 'A',
'a', or '0', are the simplest regular expressions; they simply match themselves. You can concatenate
ordinary characters, so last matches the string 'last'. (In the rest of this section, we’ll write RE’s in this
special style, usually without quotes, and strings to be matched 'in single quotes'.)

Some characters, like '|' or '(', are special. Special characters either stand for classes of ordinary characters,
or affect how the regular expressions around them are interpreted. Regular expression pattern strings may
not contain null bytes, but can specify the null byte using a \number notation such as '\x00'.

Repetition qualifiers (*, +, ?, {m,n}, etc) cannot be directly nested. This avoids ambiguity with the non-
greedy modifier suffix ?, and with other modifiers in other implementations. To apply a second repetition to
an inner repetition, parentheses may be used. For example, the expression (?:a{6})* matches any multiple
of six 'a' characters.

The special characters are:

'.' (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been
specified, this matches any character including a newline.

'^' (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after
each newline.

'$' Matches the end of the string or just before the newline at the end of the string, and in MULTILINE
mode also matches before a newline. foo matches both ‘foo’ and ‘foobar’, while the regular expression
foo$ matches only ‘foo’. More interestingly, searching for foo.$ in 'foo1\nfoo2\n' matches ‘foo2’
normally, but ‘foo1’ in MULTILINE mode; searching for a single $ in 'foo\n' will find two (empty)
matches: one just before the newline, and one at the end of the string.

'*' Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as
are possible. ab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

104 Chapter 6. Text Processing Services

https://pypi.python.org/pypi/regex/

The Python Library Reference, Release 3.5.7

'+' Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’
followed by any non-zero number of ‘b’s; it will not match just ‘a’.

'?' Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. ab? will match either ‘a’ or
‘ab’.

?, +?, ?? The '', '+', and '?' qualifiers are all greedy; they match as much text as possible. Sometimes
this behaviour isn’t desired; if the RE <.*> is matched against <a> b <c>, it will match the entire
string, and not just <a>. Adding ? after the qualifier makes it perform the match in non-greedy or
minimal fashion; as few characters as possible will be matched. Using the RE <.*?> will match only
<a>.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire
RE not to match. For example, a{6} will match exactly six 'a' characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match
as many repetitions as possible. For example, a{3,5} will match from 3 to 5 'a' characters. Omitting
m specifies a lower bound of zero, and omitting n specifies an infinite upper bound. As an example,
a{4,}b will match aaaab or a thousand 'a' characters followed by a b, but not aaab. The comma may
not be omitted or the modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match
as few repetitions as possible. This is the non-greedy version of the previous qualifier. For example,
on the 6-character string 'aaaaaa', a{3,5} will match 5 'a' characters, while a{3,5}? will only match
3 characters.

'\' Either escapes special characters (permitting you to match characters like '*', '?', and so forth), or
signals a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash
as an escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the
backslash and subsequent character are included in the resulting string. However, if Python would
recognize the resulting sequence, the backslash should be repeated twice. This is complicated and hard
to understand, so it’s highly recommended that you use raw strings for all but the simplest expressions.

[] Used to indicate a set of characters. In a set:

• Characters can be listed individually, e.g. [amk] will match 'a', 'm', or 'k'.

• Ranges of characters can be indicated by giving two characters and separating them by a '-',
for example [a-z] will match any lowercase ASCII letter, [0-5][0-9] will match all the two-digits
numbers from 00 to 59, and [0-9A-Fa-f] will match any hexadecimal digit. If - is escaped (e.g.
[a\-z]) or if it’s placed as the first or last character (e.g. [a-]), it will match a literal '-'.

• Special characters lose their special meaning inside sets. For example, [(+*)] will match any of
the literal characters '(', '+', '*', or ')'.

• Character classes such as \w or \S (defined below) are also accepted inside a set, although the
characters they match depends on whether ASCII or LOCALE mode is in force.

• Characters that are not within a range can be matched by complementing the set. If the first
character of the set is '^', all the characters that are not in the set will be matched. For example,
[^5] will match any character except '5', and [^^] will match any character except '^'. ^ has
no special meaning if it’s not the first character in the set.

• To match a literal ']' inside a set, precede it with a backslash, or place it at the beginning of the
set. For example, both [()[\]{}] and []()[{}] will both match a parenthesis.

'|' A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B.
An arbitrary number of REs can be separated by the '|' in this way. This can be used inside groups
(see below) as well. As the target string is scanned, REs separated by '|' are tried from left to right.

6.2. re — Regular expression operations 105

The Python Library Reference, Release 3.5.7

When one pattern completely matches, that branch is accepted. This means that once A matches, B
will not be tested further, even if it would produce a longer overall match. In other words, the '|'
operator is never greedy. To match a literal '|', use \|, or enclose it inside a character class, as in [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a
group; the contents of a group can be retrieved after a match has been performed, and can be matched
later in the string with the \number special sequence, described below. To match the literals '(' or
')', use \(or \), or enclose them inside a character class: [(] [)].

(?...) This is an extension notation (a '?' following a '(' is not meaningful otherwise). The first character
after the '?' determines what the meaning and further syntax of the construct is. Extensions usually
do not create a new group; (?P<name>...) is the only exception to this rule. Following are the currently
supported extensions.

(?aiLmsux) (One or more letters from the set 'a', 'i', 'L', 'm', 's', 'u', 'x'.) The group matches
the empty string; the letters set the corresponding flags: re.A (ASCII-only matching), re.I (ignore
case), re.L (locale dependent), re.M (multi-line), re.S (dot matches all), and re.X (verbose), for the
entire regular expression. (The flags are described in Module Contents.) This is useful if you wish to
include the flags as part of the regular expression, instead of passing a flag argument to the re.compile()
function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the
flag, the results are undefined.

(?:...) A non-capturing version of regular parentheses. Matches whatever regular expression is inside the
parentheses, but the substring matched by the group cannot be retrieved after performing a match or
referenced later in the pattern.

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible via the
symbolic group name name. Group names must be valid Python identifiers, and each group name must
be defined only once within a regular expression. A symbolic group is also a numbered group, just as
if the group were not named.

Named groups can be referenced in three contexts. If the pattern is (?P<quote>['"]).*?(?P=quote)
(i.e. matching a string quoted with either single or double quotes):

Context of reference to group “quote” Ways to reference it
in the same pattern itself

• (?P=quote) (as shown)
• \1

when processing match object m
• m.group('quote')
• m.end('quote') (etc.)

in a string passed to the repl argument of re.
sub() • \g<quote>

• \g<1>
• \1

(?P=name) A backreference to a named group; it matches whatever text was matched by the earlier group
named name.

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches if ... matches next, but doesn’t consume any of the string. This is called a lookahead
assertion. For example, Isaac (?=Asimov) will match 'Isaac ' only if it’s followed by 'Asimov'.

106 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac (?!
Asimov) will match 'Isaac ' only if it’s not followed by 'Asimov'.

(?<=...) Matches if the current position in the string is preceded by a match for ... that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc)def will find a match in abcdef, since
the lookbehind will back up 3 characters and check if the contained pattern matches. The contained
pattern must only match strings of some fixed length, meaning that abc or a|b are allowed, but a*
and a{3,4} are not. Note that patterns which start with positive lookbehind assertions will not match
at the beginning of the string being searched; you will most likely want to use the search() function
rather than the match() function:

>>> import re
>>> m = re.search('(?<=abc)def', 'abcdef')
>>> m.group(0)
'def'

This example looks for a word following a hyphen:

>>> m = re.search('(?<=-)\w+', 'spam-egg')
>>> m.group(0)
'egg'

Changed in version 3.5: Added support for group references of fixed length.

(?<!...) Matches if the current position in the string is not preceded by a match for This is called a
negative lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must
only match strings of some fixed length. Patterns which start with negative lookbehind assertions may
match at the beginning of the string being searched.

(?(id/name)yes-pattern|no-pattern) Will try to match with yes-pattern if the group with given id or name
exists, and with no-pattern if it doesn’t. no-pattern is optional and can be omitted. For exam-
ple, (<)?(\w+@\w+(?:\.\w+)+)(?(1)>|$) is a poor email matching pattern, which will match with
'<user@host.com>' as well as 'user@host.com', but not with '<user@host.com' nor 'user@host.
com>'.

The special sequences consist of '\' and a character from the list below. If the ordinary character is not on
the list, then the resulting RE will match the second character. For example, \$ matches the character '$'.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example, (.+) \1 matches 'the the' or '55 55', but not 'thethe' (note the space after the group).
This special sequence can only be used to match one of the first 99 groups. If the first digit of number
is 0, or number is 3 octal digits long, it will not be interpreted as a group match, but as the character
with octal value number. Inside the '[' and ']' of a character class, all numeric escapes are treated
as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence
of Unicode alphanumeric or underscore characters, so the end of a word is indicated by whitespace
or a non-alphanumeric, non-underscore Unicode character. Note that formally, \b is defined as the
boundary between a \w and a \W character (or vice versa), or between \w and the beginning/end
of the string. This means that r'\bfoo\b' matches 'foo', 'foo.', '(foo)', 'bar foo baz' but not
'foobar' or 'foo3'.

By default Unicode alphanumerics are the ones used, but this can be changed by using the ASCII flag.
Inside a character range, \b represents the backspace character, for compatibility with Python’s string
literals.

6.2. re — Regular expression operations 107

The Python Library Reference, Release 3.5.7

\B Matches the empty string, but only when it is not at the beginning or end of a word. This means that
r'py\B' matches 'python', 'py3', 'py2', but not 'py', 'py.', or 'py!'. \B is just the opposite of
\b, so word characters are Unicode alphanumerics or the underscore, although this can be changed by
using the ASCII flag.

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode
character category [Nd]). This includes [0-9], and also many other digit characters. If the ASCII
flag is used only [0-9] is matched (but the flag affects the entire regular expression, so in such
cases using an explicit [0-9] may be a better choice).

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a Unicode decimal digit. This is the opposite of \d. If the ASCII
flag is used this becomes the equivalent of [^0-9] (but the flag affects the entire regular expression, so
in such cases using an explicit [^0-9] may be a better choice).

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v], and
also many other characters, for example the non-breaking spaces mandated by typography rules
in many languages). If the ASCII flag is used, only [\t\n\r\f\v] is matched (but the flag affects
the entire regular expression, so in such cases using an explicit [\t\n\r\f\v] may be a better
choice).

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this
is equivalent to [\t\n\r\f\v].

\S Matches any character which is not a Unicode whitespace character. This is the opposite of \s. If the
ASCII flag is used this becomes the equivalent of [^ \t\n\r\f\v] (but the flag affects the entire regular
expression, so in such cases using an explicit [^ \t\n\r\f\v] may be a better choice).

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes most characters that can
be part of a word in any language, as well as numbers and the underscore. If the ASCII flag is
used, only [a-zA-Z0-9_] is matched (but the flag affects the entire regular expression, so in such
cases using an explicit [a-zA-Z0-9_] may be a better choice).

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set;
this is equivalent to [a-zA-Z0-9_].

\W Matches any character which is not a Unicode word character. This is the opposite of \w. If the
ASCII flag is used this becomes the equivalent of [^a-zA-Z0-9_] (but the flag affects the entire regular
expression, so in such cases using an explicit [^a-zA-Z0-9_] may be a better choice).

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression
parser:

\a \b \f \n
\r \t \u \U
\v \x \\

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

'\u' and '\U' escape sequences are only recognized in Unicode patterns. In bytes patterns they are not
treated specially.

108 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

Octal escapes are included in a limited form. If the first digit is a 0, or if there are three octal digits, it is
considered an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always
at most three digits in length.

Changed in version 3.3: The '\u' and '\U' escape sequences have been added.

Deprecated since version 3.5, will be removed in version 3.6: Unknown escapes consisting of '\' and ASCII
letter now raise a deprecation warning and will be forbidden in Python 3.6.

See also:

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The
second edition of the book no longer covers Python at all, but the first edition covered writing good
regular expression patterns in great detail.

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified
versions of the full featured methods for compiled regular expressions. Most non-trivial applications always
use the compiled form.

re.compile(pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching
using its match() and search() methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the
following variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile(pattern)
result = prog.match(string)

is equivalent to

result = re.match(pattern, string)

but using re.compile() and saving the resulting regular expression object for reuse is more efficient
when the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.compile() and the module-level
matching functions are cached, so programs that use only a few regular expressions at a time needn’t
worry about compiling regular expressions.

re.A
re.ASCII

Make \w, \W, \b, \B, \d, \D, \s and \S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode patterns, and is ignored for byte patterns.

Note that for backward compatibility, the re.U flag still exists (as well as its synonym re.UNICODE
and its embedded counterpart (?u)), but these are redundant in Python 3 since matches are Unicode
by default for strings (and Unicode matching isn’t allowed for bytes).

re.DEBUG
Display debug information about compiled expression.

re.I

6.2. re — Regular expression operations 109

The Python Library Reference, Release 3.5.7

re.IGNORECASE
Perform case-insensitive matching; expressions like [A-Z] will match lowercase letters, too. This is not
affected by the current locale and works for Unicode characters as expected.

re.L
re.LOCALE

Make \w, \W, \b, \B, \s and \S dependent on the current locale. The use of this flag is discouraged
as the locale mechanism is very unreliable, and it only handles one “culture” at a time anyway; you
should use Unicode matching instead, which is the default in Python 3 for Unicode (str) patterns. This
flag makes sense only with bytes patterns.

Deprecated since version 3.5, will be removed in version 3.6: Deprecated the use of re.LOCALE with
string patterns or re.ASCII.

re.M
re.MULTILINE

When specified, the pattern character '^' matches at the beginning of the string and at the beginning
of each line (immediately following each newline); and the pattern character '$' matches at the end of
the string and at the end of each line (immediately preceding each newline). By default, '^' matches
only at the beginning of the string, and '$' only at the end of the string and immediately before the
newline (if any) at the end of the string.

re.S
re.DOTALL

Make the '.' special character match any character at all, including a newline; without this flag, '.'
will match anything except a newline.

re.X
re.VERBOSE

This flag allows you to write regular expressions that look nicer and are more readable by allowing you
to visually separate logical sections of the pattern and add comments. Whitespace within the pattern
is ignored, except when in a character class or when preceded by an unescaped backslash. When a
line contains a # that is not in a character class and is not preceded by an unescaped backslash, all
characters from the leftmost such # through the end of the line are ignored.

This means that the two following regular expression objects that match a decimal number are func-
tionally equal:

a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d * # some fractional digits""", re.X)

b = re.compile(r"\d+\.\d*")

re.search(pattern, string, flags=0)
Scan through string looking for the first location where the regular expression pattern produces a
match, and return a corresponding match object. Return None if no position in the string matches the
pattern; note that this is different from finding a zero-length match at some point in the string.

re.match(pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return a
corresponding match object. Return None if the string does not match the pattern; note that this is
different from a zero-length match.

Note that even in MULTILINE mode, re.match() will only match at the beginning of the string and
not at the beginning of each line.

If you want to locate a match anywhere in string, use search() instead (see also search() vs. match()).

110 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

re.fullmatch(pattern, string, flags=0)
If the whole string matches the regular expression pattern, return a corresponding match object. Return
None if the string does not match the pattern; note that this is different from a zero-length match.

New in version 3.4.

re.split(pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text
of all groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at
most maxsplit splits occur, and the remainder of the string is returned as the final element of the list.

>>> re.split('\W+', 'Words, words, words.')
['Words', 'words', 'words', '']
>>> re.split('(\W+)', 'Words, words, words.')
['Words', ', ', 'words', ', ', 'words', '.', '']
>>> re.split('\W+', 'Words, words, words.', 1)
['Words', 'words, words.']
>>> re.split('[a-f]+', '0a3B9', flags=re.IGNORECASE)
['0', '3', '9']

If there are capturing groups in the separator and it matches at the start of the string, the result will
start with an empty string. The same holds for the end of the string:

>>> re.split('(\W+)', '...words, words...')
['', '...', 'words', ', ', 'words', '...', '']

That way, separator components are always found at the same relative indices within the result list.

Note: split() doesn’t currently split a string on an empty pattern match. For example:

>>> re.split('x*', 'axbc')
['a', 'bc']

Even though 'x*' also matches 0 ‘x’ before ‘a’, between ‘b’ and ‘c’, and after ‘c’, currently these
matches are ignored. The correct behavior (i.e. splitting on empty matches too and returning ['',
'a', 'b', 'c', '']) will be implemented in future versions of Python, but since this is a backward
incompatible change, a FutureWarning will be raised in the meanwhile.

Patterns that can only match empty strings currently never split the string. Since this doesn’t match
the expected behavior, a ValueError will be raised starting from Python 3.5:

>>> re.split("^$", "foo\n\nbar\n", flags=re.M)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
...

ValueError: split() requires a non-empty pattern match.

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Splitting on a pattern that could match an empty string now raises a warning.
Patterns that can only match empty strings are now rejected.

re.findall(pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned
left-to-right, and matches are returned in the order found. If one or more groups are present in the
pattern, return a list of groups; this will be a list of tuples if the pattern has more than one group.
Empty matches are included in the result unless they touch the beginning of another match.

6.2. re — Regular expression operations 111

The Python Library Reference, Release 3.5.7

re.finditer(pattern, string, flags=0)
Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string.
The string is scanned left-to-right, and matches are returned in the order found. Empty matches are
included in the result unless they touch the beginning of another match.

re.sub(pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string
by the replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string
or a function; if it is a string, any backslash escapes in it are processed. That is, \n is converted to a
single newline character, \r is converted to a carriage return, and so forth. Unknown escapes such as
\& are left alone. Backreferences, such as \6, are replaced with the substring matched by group 6 in
the pattern. For example:

>>> re.sub(r'def\s+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\):',
... r'static PyObject*\npy_\1(void)\n{',
... 'def myfunc():')
'static PyObject*\npy_myfunc(void)\n{'

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a
single match object argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
... if matchobj.group(0) == '-': return ' '
... else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro----gram-files')
'pro--gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or an RE object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count
must be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches
for the pattern are replaced only when not adjacent to a previous match, so sub('x*', '-', 'abc')
returns '-a-b-c-'.

In string-type repl arguments, in addition to the character escapes and backreferences described above,
\g<name> will use the substring matched by the group named name, as defined by the (?P<name>...)
syntax. \g<number> uses the corresponding group number; \g<2> is therefore equivalent to \2, but
isn’t ambiguous in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20,
not a reference to group 2 followed by the literal character '0'. The backreference \g<0> substitutes
in the entire substring matched by the RE.

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

Deprecated since version 3.5, will be removed in version 3.6: Unknown escapes consist of '\' and
ASCII letter now raise a deprecation warning and will be forbidden in Python 3.6.

re.subn(pattern, repl, string, count=0, flags=0)
Perform the same operation as sub(), but return a tuple (new_string, number_of_subs_made).

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

re.escape(pattern)
Escape all the characters in pattern except ASCII letters, numbers and '_'. This is useful if you

112 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

want to match an arbitrary literal string that may have regular expression metacharacters in it. For
example:

>>> print(re.escape('python.exe'))
python\.exe

>>> legal_chars = string.ascii_lowercase + string.digits + "!#$%&'*+-.^_`|~:"
>>> print('[%s]+' % re.escape(legal_chars))
[abcdefghijklmnopqrstuvwxyz0123456789\!\#\$\%\&\'*\+\-\.\^_\`\|\~\:]+

>>> operators = ['+', '-', '*', '/', '**']
>>> print('|'.join(map(re.escape, sorted(operators, reverse=True))))
\/|\-|\+|**|*

Changed in version 3.3: The '_' character is no longer escaped.

re.purge()
Clear the regular expression cache.

exception re.error(msg, pattern=None, pos=None)
Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation
or matching. It is never an error if a string contains no match for a pattern. The error instance has
the following additional attributes:

msg
The unformatted error message.

pattern
The regular expression pattern.

pos
The index in pattern where compilation failed (may be None).

lineno
The line corresponding to pos (may be None).

colno
The column corresponding to pos (may be None).

Changed in version 3.5: Added additional attributes.

6.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

regex.search(string[, pos[, endpos]])
Scan through string looking for the first location where this regular expression produces a match, and
return a corresponding match object. Return None if no position in the string matches the pattern;
note that this is different from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults
to 0. This is not completely equivalent to slicing the string; the '^' pattern character matches at the
real beginning of the string and at positions just after a newline, but not necessarily at the index where
the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is
endpos characters long, so only the characters from pos to endpos - 1 will be searched for a match.
If endpos is less than pos, no match will be found; otherwise, if rx is a compiled regular expression
object, rx.search(string, 0, 50) is equivalent to rx.search(string[:50], 0).

6.2. re — Regular expression operations 113

The Python Library Reference, Release 3.5.7

>>> pattern = re.compile("d")
>>> pattern.search("dog") # Match at index 0
<_sre.SRE_Match object; span=(0, 1), match='d'>
>>> pattern.search("dog", 1) # No match; search doesn't include the "d"

regex.match(string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a correspond-
ing match object. Return None if the string does not match the pattern; note that this is different
from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search() method.

>>> pattern = re.compile("o")
>>> pattern.match("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match("dog", 1) # Match as "o" is the 2nd character of "dog".
<_sre.SRE_Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search() instead (see also search() vs. match()).

regex.fullmatch(string[, pos[, endpos]])
If the whole string matches this regular expression, return a corresponding match object. Return None
if the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search() method.

>>> pattern = re.compile("o[gh]")
>>> pattern.fullmatch("dog") # No match as "o" is not at the start of "dog".
>>> pattern.fullmatch("ogre") # No match as not the full string matches.
>>> pattern.fullmatch("doggie", 1, 3) # Matches within given limits.
<_sre.SRE_Match object; span=(1, 3), match='og'>

New in version 3.4.

regex.split(string, maxsplit=0)
Identical to the split() function, using the compiled pattern.

regex.findall(string[, pos[, endpos]])
Similar to the findall() function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match().

regex.finditer(string[, pos[, endpos]])
Similar to the finditer() function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match().

regex.sub(repl, string, count=0)
Identical to the sub() function, using the compiled pattern.

regex.subn(repl, string, count=0)
Identical to the subn() function, using the compiled pattern.

regex.flags
The regex matching flags. This is a combination of the flags given to compile(), any (?...) inline flags
in the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

regex.groups
The number of capturing groups in the pattern.

regex.groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictio-
nary is empty if no symbolic groups were used in the pattern.

114 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

regex.pattern
The pattern string from which the RE object was compiled.

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match() and search() return None when there is
no match, you can test whether there was a match with a simple if statement:

match = re.search(pattern, string)
if match:

process(match)

Match objects support the following methods and attributes:

match.expand(template)
Return the string obtained by doing backslash substitution on the template string template, as done
by the sub() method. Escapes such as \n are converted to the appropriate characters, and numeric
backreferences (\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by the contents
of the corresponding group.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

match.group([group1, ...])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string;
if there are multiple arguments, the result is a tuple with one item per argument. Without arguments,
group1 defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding
return value is the entire matching string; if it is in the inclusive range [1..99], it is the string matching
the corresponding parenthesized group. If a group number is negative or larger than the number of
groups defined in the pattern, an IndexError exception is raised. If a group is contained in a part of
the pattern that did not match, the corresponding result is None. If a group is contained in a part of
the pattern that matched multiple times, the last match is returned.

>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group(0) # The entire match
'Isaac Newton'
>>> m.group(1) # The first parenthesized subgroup.
'Isaac'
>>> m.group(2) # The second parenthesized subgroup.
'Newton'
>>> m.group(1, 2) # Multiple arguments give us a tuple.
('Isaac', 'Newton')

If the regular expression uses the (?P<name>...) syntax, the groupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the
pattern, an IndexError exception is raised.

A moderately complicated example:

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group('first_name')
'Malcolm'
>>> m.group('last_name')
'Reynolds'

Named groups can also be referred to by their index:

6.2. re — Regular expression operations 115

The Python Library Reference, Release 3.5.7

>>> m.group(1)
'Malcolm'
>>> m.group(2)
'Reynolds'

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r"(..)+", "a1b2c3") # Matches 3 times.
>>> m.group(1) # Returns only the last match.
'c3'

match.groups(default=None)
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in
the pattern. The default argument is used for groups that did not participate in the match; it defaults
to None.

For example:

>>> m = re.match(r"(\d+)\.(\d+)", "24.1632")
>>> m.groups()
('24', '1632')

If we make the decimal place and everything after it optional, not all groups might participate in the
match. These groups will default to None unless the default argument is given:

>>> m = re.match(r"(\d+)\.?(\d+)?", "24")
>>> m.groups() # Second group defaults to None.
('24', None)
>>> m.groups('0') # Now, the second group defaults to '0'.
('24', '0')

match.groupdict(default=None)
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name.
The default argument is used for groups that did not participate in the match; it defaults to None.
For example:

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict()
{'first_name': 'Malcolm', 'last_name': 'Reynolds'}

match.start([group])
match.end([group])

Return the indices of the start and end of the substring matched by group; group defaults to zero
(meaning the whole matched substring). Return -1 if group exists but did not contribute to the match.
For a match object m, and a group g that did contribute to the match, the substring matched by group
g (equivalent to m.group(g)) is

m.string[m.start(g):m.end(g)]

Note that m.start(group) will equal m.end(group) if group matched a null string. For example, after
m = re.search('b(c?)', 'cba'), m.start(0) is 1, m.end(0) is 2, m.start(1) and m.end(1) are both 2,
and m.start(2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

116 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start()] + email[m.end():]
'tony@tiger.net'

match.span([group])
For a match m, return the 2-tuple (m.start(group), m.end(group)). Note that if group did not con-
tribute to the match, this is (-1, -1). group defaults to zero, the entire match.

match.pos
The value of pos which was passed to the search() or match() method of a regex object. This is the
index into the string at which the RE engine started looking for a match.

match.endpos
The value of endpos which was passed to the search() or match() method of a regex object. This is
the index into the string beyond which the RE engine will not go.

match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For
example, the expressions (a)b, ((a)(b)), and ((ab)) will have lastindex == 1 if applied to the string
'ab', while the expression (a)(b) will have lastindex == 2, if applied to the same string.

match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group
was matched at all.

match.re
The regular expression object whose match() or search() method produced this match instance.

match.string
The string passed to match() or search().

6.2.5 Regular Expression Examples

Checking for a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch(match):
if match is None:

return None
return '<Match: %r, groups=%r>' % (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with
each character representing a card, “a” for ace, “k” for king, “q” for queen, “j” for jack, “t” for 10, and “2”
through “9” representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r"^[a2-9tjqk]{5}$")
>>> displaymatch(valid.match("akt5q")) # Valid.
"<Match: 'akt5q', groups=()>"
>>> displaymatch(valid.match("akt5e")) # Invalid.
>>> displaymatch(valid.match("akt")) # Invalid.
>>> displaymatch(valid.match("727ak")) # Valid.
"<Match: '727ak', groups=()>"

6.2. re — Regular expression operations 117

The Python Library Reference, Release 3.5.7

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular
expression, one could use backreferences as such:

>>> pair = re.compile(r".*(.).*\1")
>>> displaymatch(pair.match("717ak")) # Pair of 7s.
"<Match: '717', groups=('7',)>"
>>> displaymatch(pair.match("718ak")) # No pairs.
>>> displaymatch(pair.match("354aa")) # Pair of aces.
"<Match: '354aa', groups=('a',)>"

To find out what card the pair consists of, one could use the group() method of the match object in the
following manner:

>>> pair.match("717ak").group(1)
'7'

Error because re.match() returns None, which doesn't have a group() method:
>>> pair.match("718ak").group(1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match(r".*(.).*\1", "718ak").group(1)

AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa").group(1)
'a'

Simulating scanf()

Python does not currently have an equivalent to scanf(). Regular expressions are generally more powerful,
though also more verbose, than scanf() format strings. The table below offers some more-or-less equivalent
mappings between scanf() format tokens and regular expressions.

scanf() Token Regular Expression
%c .
%5c .{5}
%d [-+]?\d+
%e, %E, %f, %g [-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?
%i [-+]?(0[xX][\dA-Fa-f]+|0[0-7]*|\d+)
%o [-+]?[0-7]+
%s \S+
%u \d+
%x, %X [-+]?(0[xX])?[\dA-Fa-f]+

To extract the filename and numbers from a string like

/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

118 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers two different primitive operations based on regular expressions: re.match() checks for a match
only at the beginning of the string, while re.search() checks for a match anywhere in the string (this is what
Perl does by default).

For example:

>>> re.match("c", "abcdef") # No match
>>> re.search("c", "abcdef") # Match
<_sre.SRE_Match object; span=(2, 3), match='c'>

Regular expressions beginning with '^' can be used with search() to restrict the match at the beginning of
the string:

>>> re.match("c", "abcdef") # No match
>>> re.search("^c", "abcdef") # No match
>>> re.search("^a", "abcdef") # Match
<_sre.SRE_Match object; span=(0, 1), match='a'>

Note however that in MULTILINE mode match() only matches at the beginning of the string, whereas using
search() with a regular expression beginning with '^' will match at the beginning of each line.

>>> re.match('X', 'A\nB\nX', re.MULTILINE) # No match
>>> re.search('^X', 'A\nB\nX', re.MULTILINE) # Match
<_sre.SRE_Match object; span=(4, 5), match='X'>

Making a Phonebook

split() splits a string into a list delimited by the passed pattern. The method is invaluable for converting
textual data into data structures that can be easily read and modified by Python as demonstrated in the
following example that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street
...
... Ronald Heathmore: 892.345.3428 436 Finley Avenue
... Frank Burger: 925.541.7625 662 South Dogwood Way
...
...
... Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty
line having its own entry:

>>> entries = re.split("\n+", text)
>>> entries
['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

6.2. re — Regular expression operations 119

The Python Library Reference, Release 3.5.7

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the
maxsplit parameter of split() because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584', '919 Park Place']]

The :? pattern matches the colon after the last name, so that it does not occur in the result list. With a
maxsplit of 4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

Text Munging

sub() replaces every occurrence of a pattern with a string or the result of a function. This example demon-
strates using sub() with a function to “munge” text, or randomize the order of all the characters in each word
of a sentence except for the first and last characters:

>>> def repl(m):
... inner_word = list(m.group(2))
... random.shuffle(inner_word)
... return m.group(1) + "".join(inner_word) + m.group(3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub(r"(\w)(\w+)(\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub(r"(\w)(\w+)(\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

Finding all Adverbs

findall() matches all occurrences of a pattern, not just the first one as search() does. For example, if one was
a writer and wanted to find all of the adverbs in some text, he or she might use findall() in the following
manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall(r"\w+ly", text)
['carefully', 'quickly']

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer() is useful
as it provides match objects instead of strings. Continuing with the previous example, if one was a writer
who wanted to find all of the adverbs and their positions in some text, he or she would use finditer() in the
following manner:

120 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer(r"\w+ly", text):
... print('%02d-%02d: %s' % (m.start(), m.end(), m.group(0)))
07-16: carefully
40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash ('\') in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of
code are functionally identical:

>>> re.match(r"\W(.)\1\W", " ff ")
<_sre.SRE_Match object; span=(0, 4), match=' ff '>
>>> re.match("\\W(.)\\1\\W", " ff ")
<_sre.SRE_Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string
notation, this means r"\\". Without raw string notation, one must use "\\\\", making the following lines
of code functionally identical:

>>> re.match(r"\\", r"\\")
<_sre.SRE_Match object; span=(0, 1), match='\\'>
>>> re.match("\\\\", r"\\")
<_sre.SRE_Match object; span=(0, 1), match='\\'>

Writing a Tokenizer

A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in
writing a compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single
master regular expression and to loop over successive matches:

import collections
import re

Token = collections.namedtuple('Token', ['typ', 'value', 'line', 'column'])

def tokenize(code):
keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
token_specification = [

('NUMBER', r'\d+(\.\d*)?'), # Integer or decimal number
('ASSIGN', r':='), # Assignment operator
('END', r';'), # Statement terminator
('ID', r'[A-Za-z]+'), # Identifiers
('OP', r'[+\-*/]'), # Arithmetic operators
('NEWLINE', r'\n'), # Line endings
('SKIP', r'[\t]+'), # Skip over spaces and tabs
('MISMATCH',r'.'), # Any other character

]
tok_regex = '|'.join('(?P<%s>%s)' % pair for pair in token_specification)
line_num = 1
line_start = 0

(continues on next page)

6.2. re — Regular expression operations 121

https://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.5.7

(continued from previous page)

for mo in re.finditer(tok_regex, code):
kind = mo.lastgroup
value = mo.group(kind)
if kind == 'NEWLINE':

line_start = mo.end()
line_num += 1

elif kind == 'SKIP':
pass

elif kind == 'MISMATCH':
raise RuntimeError('%r unexpected on line %d' % (value, line_num))

else:
if kind == 'ID' and value in keywords:

kind = value
column = mo.start() - line_start
yield Token(kind, value, line_num, column)

statements = '''
IF quantity THEN

total := total + price * quantity;
tax := price * 0.05;

ENDIF;
'''

for token in tokenize(statements):
print(token)

The tokenizer produces the following output:

Token(typ='IF', value='IF', line=2, column=4)
Token(typ='ID', value='quantity', line=2, column=7)
Token(typ='THEN', value='THEN', line=2, column=16)
Token(typ='ID', value='total', line=3, column=8)
Token(typ='ASSIGN', value=':=', line=3, column=14)
Token(typ='ID', value='total', line=3, column=17)
Token(typ='OP', value='+', line=3, column=23)
Token(typ='ID', value='price', line=3, column=25)
Token(typ='OP', value='*', line=3, column=31)
Token(typ='ID', value='quantity', line=3, column=33)
Token(typ='END', value=';', line=3, column=41)
Token(typ='ID', value='tax', line=4, column=8)
Token(typ='ASSIGN', value=':=', line=4, column=12)
Token(typ='ID', value='price', line=4, column=15)
Token(typ='OP', value='*', line=4, column=21)
Token(typ='NUMBER', value='0.05', line=4, column=23)
Token(typ='END', value=';', line=4, column=27)
Token(typ='ENDIF', value='ENDIF', line=5, column=4)
Token(typ='END', value=';', line=5, column=9)

6.3 difflib — Helpers for computing deltas

Source code: Lib/difflib.py

This module provides classes and functions for comparing sequences. It can be used for example, for com-
paring files, and can produce difference information in various formats, including HTML and context and

122 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.5/Lib/difflib.py

The Python Library Reference, Release 3.5.7

unified diffs. For comparing directories and files, see also, the filecmp module.

class difflib.SequenceMatcher
This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements
are hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the
late 1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea
is to find the longest contiguous matching subsequence that contains no “junk” elements; these “junk”
elements are ones that are uninteresting in some sense, such as blank lines or whitespace. (Handling
junk is an extension to the Ratcliff and Obershelp algorithm.) The same idea is then applied recursively
to the pieces of the sequences to the left and to the right of the matching subsequence. This does not
yield minimal edit sequences, but does tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time
in the expected case. SequenceMatcher is quadratic time for the worst case and has expected-case
behavior dependent in a complicated way on how many elements the sequences have in common; best
case time is linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain
sequence items as junk. The heuristic counts how many times each individual item appears in the
sequence. If an item’s duplicates (after the first one) account for more than 1% of the sequence and
the sequence is at least 200 items long, this item is marked as “popular” and is treated as junk for the
purpose of sequence matching. This heuristic can be turned off by setting the autojunk argument to
False when creating the SequenceMatcher.

New in version 3.2: The autojunk parameter.

class difflib.Differ
This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of a Differ delta begins with a two-letter code:

Code Meaning
'- ' line unique to sequence 1
'+ ' line unique to sequence 2
' ' line common to both sequences
'? ' line not present in either input sequence

Lines beginning with ‘?’ attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff
This class can be used to create an HTML table (or a complete HTML file containing the table)
showing a side by side, line by line comparison of text with inter-line and intra-line change highlights.
The table can be generated in either full or contextual difference mode.

The constructor for this class is:

__init__(tabsize=8, wrapcolumn=None, linejunk=None, char-
junk=IS_CHARACTER_JUNK)

Initializes instance of HtmlDiff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

6.3. difflib — Helpers for computing deltas 123

The Python Library Reference, Release 3.5.7

linejunk and charjunk are optional keyword arguments passed into ndiff() (used by HtmlDiff to
generate the side by side HTML differences). See ndiff() documentation for argument default
values and descriptions.

The following methods are public:

make_file(fromlines, tolines, fromdesc=”, todesc=”, context=False, numlines=5, *, charset=’utf-
8’)

Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings
(both default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual
differences are to be shown, else the default is False to show the full files. numlines defaults to 5.
When context is True numlines controls the number of context lines which surround the difference
highlights. When context is False numlines controls the number of lines which are shown before
a difference highlight when using the “next” hyperlinks (setting to zero would cause the “next”
hyperlinks to place the next difference highlight at the top of the browser without any leading
context).

Changed in version 3.5: charset keyword-only argument was added. The default charset of HTML
document changed from 'ISO-8859-1' to 'utf-8'.

make_table(fromlines, tolines, fromdesc=”, todesc=”, context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML
table showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file() method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its use.

difflib.context_diff(a, b, fromfile=”, tofile=”, fromfiledate=”, tofiledate=”, n=3, lineterm=’\n’)
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context
diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context.
The changes are shown in a before/after style. The number of context lines is set by n which defaults
to three.

By default, the diff control lines (those with *** or ---) are created with a trailing newline. This is
helpful so that inputs created from io.IOBase.readlines() result in diffs that are suitable for use with
io.IOBase.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will
be uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times
are normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> sys.stdout.writelines(context_diff(s1, s2, fromfile='before.py', tofile='after.py'))
*** before.py
--- after.py

*** 1,4 ****
! bacon
! eggs

(continues on next page)

124 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

! ham
guido

--- 1,4 ----
! python
! eggy
! hamster
guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches(word, possibilities, n=3, cutoff=0.6)
Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list
of strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater
than 0.

Optional argument cutoff (default 0.6) is a float in the range [0, 1]. Possibilities that don’t score at
least that similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity
score, most similar first.

>>> get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'])
['apple', 'ape']
>>> import keyword
>>> get_close_matches('wheel', keyword.kwlist)
['while']
>>> get_close_matches('pineapple', keyword.kwlist)
[]
>>> get_close_matches('accept', keyword.kwlist)
['except']

difflib.ndiff(a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Compare a and b (lists of strings); return a Differ-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are filtering functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or
false if not. The default is None. There is also a module-level function IS_LINE_JUNK(), which
filters out lines without visible characters, except for at most one pound character ('#') – however
the underlying SequenceMatcher class does a dynamic analysis of which lines are so frequent as to
constitute noise, and this usually works better than using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is
junk, or false if not. The default is module-level function IS_CHARACTER_JUNK(), which filters
out whitespace characters (a blank or tab; it’s a bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff('one\ntwo\nthree\n'.splitlines(keepends=True),
... 'ore\ntree\nemu\n'.splitlines(keepends=True))
>>> print(''.join(diff), end="")
- one
? ^
+ ore
? ^

(continues on next page)

6.3. difflib — Helpers for computing deltas 125

The Python Library Reference, Release 3.5.7

(continued from previous page)

- two
- three
? -
+ tree
+ emu

difflib.restore(sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare() or ndiff(), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff('one\ntwo\nthree\n'.splitlines(keepends=True),
... 'ore\ntree\nemu\n'.splitlines(keepends=True))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print(''.join(restore(diff, 1)), end="")
one
two
three
>>> print(''.join(restore(diff, 2)), end="")
ore
tree
emu

difflib.unified_diff(a, b, fromfile=”, tofile=”, fromfiledate=”, tofiledate=”, n=3, lineterm=’\n’)
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff
format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context.
The changes are shown in an inline style (instead of separate before/after blocks). The number of
context lines is set by n which defaults to three.

By default, the diff control lines (those with ---, +++, or @@) are created with a trailing newline. This
is helpful so that inputs created from io.IOBase.readlines() result in diffs that are suitable for use with
io.IOBase.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will
be uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times
are normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> sys.stdout.writelines(unified_diff(s1, s2, fromfile='before.py', tofile='after.py'))
--- before.py
+++ after.py
@@ -1,4 +1,4 @@
-bacon
-eggs
-ham
+python
+eggy
+hamster
guido

126 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

See A command-line interface to difflib for a more detailed example.

difflib.diff_bytes(dfunc, a, b, fromfile=b”, tofile=b”, fromfiledate=b”, tofiledate=b”, n=3,
lineterm=b’\n’)

Compare a and b (lists of bytes objects) using dfunc; yield a sequence of delta lines (also bytes) in the
format returned by dfunc. dfunc must be a callable, typically either unified_diff() or context_diff().

Allows you to compare data with unknown or inconsistent encoding. All inputs except n must be bytes
objects, not str. Works by losslessly converting all inputs (except n) to str, and calling dfunc(a, b,
fromfile, tofile, fromfiledate, tofiledate, n, lineterm). The output of dfunc is then converted back to
bytes, so the delta lines that you receive have the same unknown/inconsistent encodings as a and b.

New in version 3.5.

difflib.IS_LINE_JUNK(line)
Return true for ignorable lines. The line line is ignorable if line is blank or contains a single '#',
otherwise it is not ignorable. Used as a default for parameter linejunk in ndiff() in older versions.

difflib.IS_CHARACTER_JUNK(ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it
is not ignorable. Used as a default for parameter charjunk in ndiff().

See also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E.
Metzener. This was published in Dr. Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

class difflib.SequenceMatcher(isjunk=None, a=”, b=”, autojunk=True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. Passing None for
isjunk is equivalent to passing lambda x: 0; in other words, no elements are ignored. For example,
pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard
tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The
elements of both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk heuristic.

New in version 3.2: The autojunk parameter.

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is
True; bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled);
b2j is a dict mapping the remaining elements of b to a list of positions where they occur. All three are
reset whenever b is reset with set_seqs() or set_seq2().

New in version 3.2: The bjunk and bpopular attributes.

SequenceMatcher objects have the following methods:

set_seqs(a, b)
Set the two sequences to be compared.

6.3. difflib — Helpers for computing deltas 127

http://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
http://www.drdobbs.com/

The Python Library Reference, Release 3.5.7

SequenceMatcher computes and caches detailed information about the second sequence, so if you want
to compare one sequence against many sequences, use set_seq2() to set the commonly used sequence
once and call set_seq1() repeatedly, once for each of the other sequences.

set_seq1(a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2(b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match(alo, ahi, blo, bhi)
Find longest matching block in a[alo:ahi] and b[blo:bhi].

If isjunk was omitted or None, find_longest_match() returns (i, j, k) such that a[i:i+k] is equal
to b[j:j+k], where alo <= i <= i+k <= ahi and blo <= j <= j+k <= bhi. For all (i', j', k')
meeting those conditions, the additional conditions k >= k', i <= i', and if i == i', j <= j'
are also met. In other words, of all maximal matching blocks, return one that starts earliest in
a, and of all those maximal matching blocks that start earliest in a, return the one that starts
earliest in b.

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match(a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the
additional restriction that no junk element appears in the block. Then that block is extended
as far as possible by matching (only) junk elements on both sides. So the resulting block never
matches on junk except as identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd'
from matching the ' abcd' at the tail end of the second sequence directly. Instead only the
'abcd' can match, and matches the leftmost 'abcd' in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match(a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).

This method returns a named tuple Match(a, b, size).

get_matching_blocks()
Return list of triples describing matching subsequences. Each triple is of the form (i, j, n), and
means that a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). It is the only triple with n == 0.
If (i, j, n) and (i', j', n') are adjacent triples in the list, and the second is not the last triple in
the list, then i+n != i' or j+n != j'; in other words, adjacent triples always describe non-adjacent
equal blocks.

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> s.get_matching_blocks()
[Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, i2, j1,
j2). The first tuple has i1 == j1 == 0, and remaining tuples have i1 equal to the i2 from the
preceding tuple, and, likewise, j1 equal to the previous j2.

The tag values are strings, with these meanings:

128 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

Value Meaning
'replace' a[i1:i2] should be replaced by b[j1:j2].
'delete' a[i1:i2] should be deleted. Note that j1 == j2 in this case.
'insert' b[j1:j2] should be inserted at a[i1:i1]. Note that i1 == i2 in this case.
'equal' a[i1:i2] == b[j1:j2] (the sub-sequences are equal).

For example:

>>> a = "qabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher(None, a, b)
>>> for tag, i1, i2, j1, j2 in s.get_opcodes():
... print('{:7} a[{}:{}] --> b[{}:{}] {!r:>8} --> {!r}'.format(
... tag, i1, i2, j1, j2, a[i1:i2], b[j1:j2]))
delete a[0:1] --> b[0:0] 'q' --> ''
equal a[1:3] --> b[0:2] 'ab' --> 'ab'
replace a[3:4] --> b[2:3] 'x' --> 'y'
equal a[4:6] --> b[3:5] 'cd' --> 'cd'
insert a[6:6] --> b[5:6] '' --> 'f'

get_grouped_opcodes(n=3)
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes(), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes().

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this
is 2.0*M / T. Note that this is 1.0 if the sequences are identical, and 0.0 if they have nothing in
common.

This is expensive to compute if get_matching_blocks() or get_opcodes() hasn’t already been
called, in which case you may want to try quick_ratio() or real_quick_ratio() first to get an
upper bound.

quick_ratio()
Return an upper bound on ratio() relatively quickly.

real_quick_ratio()
Return an upper bound on ratio() very quickly.

The three methods that return the ratio of matching to total characters can give different results due to
differing levels of approximation, although quick_ratio() and real_quick_ratio() are always at least as large
as ratio():

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s.ratio()
0.75
>>> s.quick_ratio()
0.75
>>> s.real_quick_ratio()
1.0

6.3. difflib — Helpers for computing deltas 129

The Python Library Reference, Release 3.5.7

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher(lambda x: x == " ",
... "private Thread currentThread;",
... "private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio() value
over 0.6 means the sequences are close matches:

>>> print(round(s.ratio(), 3))
0.866

If you’re only interested in where the sequences match, get_matching_blocks() is handy:

>>> for block in s.get_matching_blocks():
... print("a[%d] and b[%d] match for %d elements" % block)
a[0] and b[0] match for 8 elements
a[8] and b[17] match for 21 elements
a[29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks() is always a dummy, (len(a), len(b), 0), and this
is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes():

>>> for opcode in s.get_opcodes():
... print("%6s a[%d:%d] b[%d:%d]" % opcode)
equal a[0:8] b[0:8]
insert a[8:8] b[8:17]
equal a[8:29] b[17:38]

See also:

• The get_close_matches() function in this module which shows how simple code building on Sequence-
Matcher can be used to do useful work.

• Simple version control recipe for a small application built with SequenceMatcher.

6.3.3 Differ Objects

Note that Differ-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart.
Restricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of
producing a longer diff.

The Differ class has this constructor:

class difflib.Differ(linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The
default is None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true
if the character is junk. The default is None, meaning that no character is considered junk.

130 Chapter 6. Text Processing Services

https://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.5.7

These junk-filtering functions speed up matching to find differences and do not cause any differing
lines or characters to be ignored. Read the description of the find_longest_match() method’s isjunk
parameter for an explanation.

Differ objects are used (deltas generated) via a single method:

compare(a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences
can be obtained from the readlines() method of file-like objects. The delta generated also consists
of newline-terminated strings, ready to be printed as-is via the writelines() method of a file-like
object.

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending
with newlines (such sequences can also be obtained from the readlines() method of file-like objects):

>>> text1 = ''' 1. Beautiful is better than ugly.
... 2. Explicit is better than implicit.
... 3. Simple is better than complex.
... 4. Complex is better than complicated.
... '''.splitlines(keepends=True)
>>> len(text1)
4
>>> text1[0][-1]
'\n'
>>> text2 = ''' 1. Beautiful is better than ugly.
... 3. Simple is better than complex.
... 4. Complicated is better than complex.
... 5. Flat is better than nested.
... '''.splitlines(keepends=True)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating a Differ object we may pass functions to filter out line and character “junk.”
See the Differ() constructor for details.

Finally, we compare the two:

>>> result = list(d.compare(text1, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint(result)
[' 1. Beautiful is better than ugly.\n',
'- 2. Explicit is better than implicit.\n',
'- 3. Simple is better than complex.\n',
'+ 3. Simple is better than complex.\n',
'? ++\n',
'- 4. Complex is better than complicated.\n',
'? ^ ---- ^\n',
'+ 4. Complicated is better than complex.\n',

(continues on next page)

6.3. difflib — Helpers for computing deltas 131

The Python Library Reference, Release 3.5.7

(continued from previous page)

'? ++++ ^ ^\n',
'+ 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines(result)

1. Beautiful is better than ugly.
- 2. Explicit is better than implicit.
- 3. Simple is better than complex.
+ 3. Simple is better than complex.
? ++
- 4. Complex is better than complicated.
? ^ ---- ^
+ 4. Complicated is better than complex.
? ++++ ^ ^
+ 5. Flat is better than nested.

6.3.5 A command-line interface to difflib

This example shows how to use difflib to create a diff-like utility. It is also contained in the Python source
distribution, as Tools/scripts/diff.py.

#!/usr/bin/env python3
""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.
* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.
* html: generates side by side comparison with change highlights.

"""

import sys, os, time, difflib, argparse
from datetime import datetime, timezone

def file_mtime(path):
t = datetime.fromtimestamp(os.stat(path).st_mtime,

timezone.utc)
return t.astimezone().isoformat()

def main():

parser = argparse.ArgumentParser()
parser.add_argument('-c', action='store_true', default=False,

help='Produce a context format diff (default)')
parser.add_argument('-u', action='store_true', default=False,

help='Produce a unified format diff')
parser.add_argument('-m', action='store_true', default=False,

help='Produce HTML side by side diff '
'(can use -c and -l in conjunction)')

parser.add_argument('-n', action='store_true', default=False,
help='Produce a ndiff format diff')

parser.add_argument('-l', '--lines', type=int, default=3,
help='Set number of context lines (default 3)')

(continues on next page)

132 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

parser.add_argument('fromfile')
parser.add_argument('tofile')
options = parser.parse_args()

n = options.lines
fromfile = options.fromfile
tofile = options.tofile

fromdate = file_mtime(fromfile)
todate = file_mtime(tofile)
with open(fromfile) as ff:

fromlines = ff.readlines()
with open(tofile) as tf:

tolines = tf.readlines()

if options.u:
diff = difflib.unified_diff(fromlines, tolines, fromfile, tofile, fromdate, todate, n=n)

elif options.n:
diff = difflib.ndiff(fromlines, tolines)

elif options.m:
diff = difflib.HtmlDiff().make_file(fromlines,tolines,fromfile,tofile,context=options.c,numlines=n)

else:
diff = difflib.context_diff(fromlines, tolines, fromfile, tofile, fromdate, todate, n=n)

sys.stdout.writelines(diff)

if __name__ == '__main__':
main()

6.4 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The textwrap module provides some convenience functions, as well as TextWrapper, the class that does all
the work. If you’re just wrapping or filling one or two text strings, the convenience functions should be good
enough; otherwise, you should use an instance of TextWrapper for efficiency.

textwrap.wrap(text, width=70, **kwargs)
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns
a list of output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
width defaults to 70.

See the TextWrapper.wrap() method for additional details on how wrap() behaves.

textwrap.fill(text, width=70, **kwargs)
Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph.
fill() is shorthand for

"\n".join(wrap(text, ...))

In particular, fill() accepts exactly the same keyword arguments as wrap().

6.4. textwrap — Text wrapping and filling 133

https://github.com/python/cpython/tree/3.5/Lib/textwrap.py

The Python Library Reference, Release 3.5.7

textwrap.shorten(text, width, **kwargs)
Collapse and truncate the given text to fit in the given width.

First the whitespace in text is collapsed (all whitespace is replaced by single spaces). If the result fits
in the width, it is returned. Otherwise, enough words are dropped from the end so that the remaining
words plus the placeholder fit within width:

>>> textwrap.shorten("Hello world!", width=12)
'Hello world!'
>>> textwrap.shorten("Hello world!", width=11)
'Hello [...]'
>>> textwrap.shorten("Hello world", width=10, placeholder="...")
'Hello...'

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
Note that the whitespace is collapsed before the text is passed to the TextWrapper fill() function, so
changing the value of tabsize, expand_tabs, drop_whitespace, and replace_whitespace will have no
effect.

New in version 3.4.

textwrap.dedent(text)
Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left edge of the display, while still
presenting them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello"
and "\thello" are considered to have no common leading whitespace.

For example:

def test():
end first line with \ to avoid the empty line!
s = '''\
hello
world

'''
print(repr(s)) # prints ' hello\n world\n '
print(repr(dedent(s))) # prints 'hello\n world\n'

textwrap.indent(text, prefix, predicate=None)
Add prefix to the beginning of selected lines in text.

Lines are separated by calling text.splitlines(True).

By default, prefix is added to all lines that do not consist solely of whitespace (including any line
endings).

For example:

>>> s = 'hello\n\n \nworld'
>>> indent(s, ' ')
' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is
easy to add prefix to even empty and whitespace-only lines:

>>> print(indent(s, '+ ', lambda line: True))
+ hello

(continues on next page)

134 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

+
+
+ world

New in version 3.3.

wrap(), fill() and shorten() work by creating a TextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that process many text strings using wrap() and/or fill(), it may
be more efficient to create your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will
long words be broken if necessary, unless TextWrapper.break_long_words is set to false.

class textwrap.TextWrapper(**kwargs)
The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argu-
ment corresponds to an instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

is the same as

wrapper = TextWrapper()
wrapper.initial_indent = "* "

You can re-use the same TextWrapper object many times, and you can change any of its options
through direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words
in the input text longer than width, TextWrapper guarantees that no output line will be longer
than width characters.

expand_tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the
expandtabs() method of text.

tabsize
(default: 8) If expand_tabs is true, then all tab characters in text will be expanded to zero or
more spaces, depending on the current column and the given tab size.

New in version 3.3.

replace_whitespace
(default: True) If true, after tab expansion but before wrapping, the wrap() method will replace
each whitespace character with a single space. The whitespace characters replaced are as follows:
tab, newline, vertical tab, formfeed, and carriage return ('\t\n\v\f\r').

Note: If expand_tabs is false and replace_whitespace is true, each tab character will be replaced
by a single space, which is not the same as tab expansion.

Note: If replace_whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines() or
similar) which are wrapped separately.

6.4. textwrap — Text wrapping and filling 135

The Python Library Reference, Release 3.5.7

drop_whitespace
(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but
before indenting) is dropped. Whitespace at the beginning of the paragraph, however, is not
dropped if non-whitespace follows it. If whitespace being dropped takes up an entire line, the
whole line is dropped.

initial_indent
(default: '') String that will be prepended to the first line of wrapped output. Counts towards
the length of the first line. The empty string is not indented.

subsequent_indent
(default: '') String that will be prepended to all lines of wrapped output except the first. Counts
towards the length of each line except the first.

fix_sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that
sentences are always separated by exactly two spaces. This is generally desired for text in a
monospaced font. However, the sentence detection algorithm is imperfect: it assumes that a sen-
tence ending consists of a lowercase letter followed by one of '.', '!', or '?', possibly followed
by one of '"' or "'", followed by a space. One problem with this is algorithm is that it is unable
to detect the difference between “Dr.” in

[...] Dr. Frankenstein's monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line,
it is specific to English-language texts.

break_long_words
(default: True) If true, then words longer than width will be broken in order to ensure that no
lines are longer than width. If it is false, long words will not be broken, and some lines may be
longer than width. (Long words will be put on a line by themselves, in order to minimize the
amount by which width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens
in compound words, as it is customary in English. If false, only whitespaces will be considered
as potentially good places for line breaks, but you need to set break_long_words to false if you
want truly insecable words. Default behaviour in previous versions was to always allow breaking
hyphenated words.

max_lines
(default: None) If not None, then the output will contain at most max_lines lines, with placeholder
appearing at the end of the output.

New in version 3.4.

placeholder
(default: ' [...]') String that will appear at the end of the output text if it has been truncated.

New in version 3.4.

TextWrapper also provides some public methods, analogous to the module-level convenience functions:

136 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

wrap(text)
Wraps the single paragraph in text (a string) so every line is at most width characters long. All
wrapping options are taken from instance attributes of the TextWrapper instance. Returns a list
of output lines, without final newlines. If the wrapped output has no content, the returned list is
empty.

fill(text)
Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph.

6.5 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties
for all Unicode characters. The data contained in this database is compiled from the UCD version 8.0.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode
Character Database”. It defines the following functions:

unicodedata.lookup(name)
Look up character by name. If a character with the given name is found, return the corresponding
character. If not found, KeyError is raised.

Changed in version 3.3: Support for name aliases1 and named sequences2 has been added.

unicodedata.name(chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.decimal(chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default
is returned, or, if not given, ValueError is raised.

unicodedata.digit(chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.numeric(chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.category(chr)
Returns the general category assigned to the character chr as string.

unicodedata.bidirectional(chr)
Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an
empty string is returned.

unicodedata.combining(chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no com-
bining class is defined.

unicodedata.east_asian_width(chr)
Returns the east asian width assigned to the character chr as string.

1 http://www.unicode.org/Public/8.0.0/ucd/NameAliases.txt
2 http://www.unicode.org/Public/8.0.0/ucd/NamedSequences.txt

6.5. unicodedata — Unicode Database 137

http://www.unicode.org/Public/8.0.0/ucd
http://www.unicode.org/reports/tr44/tr44-6.html
http://www.unicode.org/reports/tr44/tr44-6.html
http://www.unicode.org/Public/8.0.0/ucd/NameAliases.txt
http://www.unicode.org/Public/8.0.0/ucd/NamedSequences.txt

The Python Library Reference, Release 3.5.7

unicodedata.mirrored(chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has
been identified as a “mirrored” character in bidirectional text, 0 otherwise.

unicodedata.decomposition(chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string
is returned in case no such mapping is defined.

unicodedata.normalize(form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)
can also be expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING
CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D
(NFD) is also known as canonical decomposition, and translates each character into its decomposed
form. Normal form C (NFC) first applies a canonical decomposition, then composes pre-combined
characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equiv-
alence. In Unicode, certain characters are supported which normally would be unified with other
characters. For example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049
(LATIN CAPITAL LETTER I). However, it is supported in Unicode for compatibility with existing
character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compati-
bility characters with their equivalents. The normal form KC (NFKC) first applies the compatibility
decomposition, followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining
characters and the other doesn’t, they may not compare equal.

In addition, the module exposes the following constant:

unicodedata.unidata_version
The version of the Unicode database used in this module.

unicodedata.ucd_3_2_0
This is an object that has the same methods as the entire module, but uses the Unicode database
version 3.2 instead, for applications that require this specific version of the Unicode database (such as
IDNA).

Examples:

>>> import unicodedata
>>> unicodedata.lookup('LEFT CURLY BRACKET')
'{'
>>> unicodedata.name('/')
'SOLIDUS'
>>> unicodedata.decimal('9')
9
>>> unicodedata.decimal('a')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: not a decimal
>>> unicodedata.category('A') # 'L'etter, 'u'ppercase

(continues on next page)

138 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

'Lu'
>>> unicodedata.bidirectional('\u0660') # 'A'rabic, 'N'umber
'AN'

6.6 stringprep — Internet String Preparation

Source code: Lib/stringprep.py

When identifying things (such as host names) in the internet, it is often necessary to compare such identifi-
cations for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g.
whether it should be case-insensitive or not. It may be also necessary to restrict the possible identifications,
to allow only identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings
onto the wire, they are processed with the preparation procedure, after which they have a certain normalized
form. The RFC defines a set of tables, which can be combined into profiles. Each profile must define which
tables it uses, and what other optional parts of the stringprep procedure are part of the profile. One example
of a stringprep profile is nameprep, which is used for internationalized domain names.

The module stringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The
module source code itself was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in
the RFC: sets and mappings. For a set, stringprep provides the “characteristic function”, i.e. a function that
returns true if the parameter is part of the set. For mappings, it provides the mapping function: given the
key, it returns the associated value. Below is a list of all functions available in the module.

stringprep.in_table_a1(code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_b1(code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_b2(code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_b3(code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no
normalization).

stringprep.in_table_c11(code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_c12(code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_c11_c12(code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21(code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22(code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

6.6. stringprep — Internet String Preparation 139

https://github.com/python/cpython/tree/3.5/Lib/stringprep.py
https://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 3.5.7

stringprep.in_table_c21_c22(code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3(code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4(code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5(code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6(code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7(code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8(code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9(code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1(code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2(code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline — GNU readline interface

The readline module defines a number of functions to facilitate completion and reading/writing of history
files from the Python interpreter. This module can be used directly, or via the rlcompleter module, which
supports completion of Python identifiers at the interactive prompt. Settings made using this module affect
the behaviour of both the interpreter’s interactive prompt and the prompts offered by the built-in input()
function.

Note: The underlying Readline library API may be implemented by the libedit library instead of GNU
readline. On MacOS X the readline module detects which library is being used at run time.

The configuration file for libedit is different from that of GNU readline. If you programmatically load
configuration strings you can check for the text “libedit” in readline.__doc__ to differentiate between GNU
readline and libedit.

Readline keybindings may be configured via an initialization file, typically .inputrc in your home directory.
See Readline Init File in the GNU Readline manual for information about the format and allowable constructs
of that file, and the capabilities of the Readline library in general.

6.7.1 Init file

The following functions relate to the init file and user configuration:

140 Chapter 6. Text Processing Services

https://cnswww.cns.cwru.edu/php/chet/readline/rluserman.html#SEC9

The Python Library Reference, Release 3.5.7

readline.parse_and_bind(string)
Execute the init line provided in the string argument. This calls rl_parse_and_bind() in the under-
lying library.

readline.read_init_file([filename])
Execute a readline initialization file. The default filename is the last filename used. This calls
rl_read_init_file() in the underlying library.

6.7.2 Line buffer

The following functions operate on the line buffer:

readline.get_line_buffer()
Return the current contents of the line buffer (rl_line_buffer in the underlying library).

readline.insert_text(string)
Insert text into the line buffer at the cursor position. This calls rl_insert_text() in the underlying
library, but ignores the return value.

readline.redisplay()
Change what’s displayed on the screen to reflect the current contents of the line buffer. This calls
rl_redisplay() in the underlying library.

6.7.3 History file

The following functions operate on a history file:

readline.read_history_file([filename])
Load a readline history file, and append it to the history list. The default filename is ~/.history. This
calls read_history() in the underlying library.

readline.write_history_file([filename])
Save the history list to a readline history file, overwriting any existing file. The default filename is
~/.history. This calls write_history() in the underlying library.

readline.append_history_file(nelements[, filename])
Append the last nelements items of history to a file. The default filename is ~/.history. The file
must already exist. This calls append_history() in the underlying library. This function only exists if
Python was compiled for a version of the library that supports it.

New in version 3.5.

readline.get_history_length()
readline.set_history_length(length)

Set or return the desired number of lines to save in the history file. The write_history_file() function
uses this value to truncate the history file, by calling history_truncate_file() in the underlying library.
Negative values imply unlimited history file size.

6.7.4 History list

The following functions operate on a global history list:

readline.clear_history()
Clear the current history. This calls clear_history() in the underlying library. The Python function
only exists if Python was compiled for a version of the library that supports it.

6.7. readline — GNU readline interface 141

The Python Library Reference, Release 3.5.7

readline.get_current_history_length()
Return the number of items currently in the history. (This is different from get_history_length(),
which returns the maximum number of lines that will be written to a history file.)

readline.get_history_item(index)
Return the current contents of history item at index. The item index is one-based. This calls his-
tory_get() in the underlying library.

readline.remove_history_item(pos)
Remove history item specified by its position from the history. The position is zero-based. This calls
remove_history() in the underlying library.

readline.replace_history_item(pos, line)
Replace history item specified by its position with line. The position is zero-based. This calls re-
place_history_entry() in the underlying library.

readline.add_history(line)
Append line to the history buffer, as if it was the last line typed. This calls add_history() in the
underlying library.

6.7.5 Startup hooks

readline.set_startup_hook([function])
Set or remove the function invoked by the rl_startup_hook callback of the underlying library. If
function is specified, it will be used as the new hook function; if omitted or None, any function already
installed is removed. The hook is called with no arguments just before readline prints the first prompt.

readline.set_pre_input_hook([function])
Set or remove the function invoked by the rl_pre_input_hook callback of the underlying library. If
function is specified, it will be used as the new hook function; if omitted or None, any function already
installed is removed. The hook is called with no arguments after the first prompt has been printed and
just before readline starts reading input characters. This function only exists if Python was compiled
for a version of the library that supports it.

6.7.6 Completion

The following functions relate to implementing a custom word completion function. This is typically operated
by the Tab key, and can suggest and automatically complete a word being typed. By default, Readline is set
up to be used by rlcompleter to complete Python identifiers for the interactive interpreter. If the readline
module is to be used with a custom completer, a different set of word delimiters should be set.

readline.set_completer([function])
Set or remove the completer function. If function is specified, it will be used as the new completer
function; if omitted or None, any completer function already installed is removed. The completer
function is called as function(text, state), for state in 0, 1, 2, . . . , until it returns a non-string value.
It should return the next possible completion starting with text.

The installed completer function is invoked by the entry_func callback passed to
rl_completion_matches() in the underlying library. The text string comes from the first pa-
rameter to the rl_attempted_completion_function callback of the underlying library.

readline.get_completer()
Get the completer function, or None if no completer function has been set.

142 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.7

readline.get_completion_type()
Get the type of completion being attempted. This returns the rl_completion_type variable in the
underlying library as an integer.

readline.get_begidx()
readline.get_endidx()

Get the beginning or ending index of the completion scope. These indexes are the start and end
arguments passed to the rl_attempted_completion_function callback of the underlying library.

readline.set_completer_delims(string)
readline.get_completer_delims()

Set or get the word delimiters for completion. These determine the start of the word to be considered for
completion (the completion scope). These functions access the rl_completer_word_break_characters
variable in the underlying library.

readline.set_completion_display_matches_hook([function])
Set or remove the completion display function. If function is specified, it will be used as the new comple-
tion display function; if omitted or None, any completion display function already installed is removed.
This sets or clears the rl_completion_display_matches_hook callback in the underlying library. The
completion display function is called as function(substitution, [matches], longest_match_length) once
each time matches need to be displayed.

6.7.7 Example

The following example demonstrates how to use the readline module’s history reading and writing functions
to automatically load and save a history file named .python_history from the user’s home directory. The
code below would normally be executed automatically during interactive sessions from the user’s PYTHON-
STARTUP file.

import atexit
import os
import readline

histfile = os.path.join(os.path.expanduser("~"), ".python_history")
try:

readline.read_history_file(histfile)
default history len is -1 (infinite), which may grow unruly
readline.set_history_length(1000)

except FileNotFoundError:
pass

atexit.register(readline.write_history_file, histfile)

This code is actually automatically run when Python is run in interactive mode (see Readline configuration).

The following example achieves the same goal but supports concurrent interactive sessions, by only appending
the new history.

import atexit
import os
import readline
histfile = os.path.join(os.path.expanduser("~"), ".python_history")

try:
readline.read_history_file(histfile)
h_len = readline.get_history_length()

(continues on next page)

6.7. readline — GNU readline interface 143

The Python Library Reference, Release 3.5.7

(continued from previous page)

except FileNotFoundError:
open(histfile, 'wb').close()
h_len = 0

def save(prev_h_len, histfile):
new_h_len = readline.get_history_length()
readline.set_history_length(1000)
readline.append_history_file(new_h_len - prev_h_len, histfile)

atexit.register(save, h_len, histfile)

The following example extends the code.InteractiveConsole class to support history save/restore.

import atexit
import code
import os
import readline

class HistoryConsole(code.InteractiveConsole):
def __init__(self, locals=None, filename="<console>",

histfile=os.path.expanduser("~/.console-history")):
code.InteractiveConsole.__init__(self, locals, filename)
self.init_history(histfile)

def init_history(self, histfile):
readline.parse_and_bind("tab: complete")
if hasattr(readline, "read_history_file"):

try:
readline.read_history_file(histfile)

except FileNotFoundError:
pass

atexit.register(self.save_history, histfile)

def save_history(self, histfile):
readline.set_history_length(1000)
readline.write_history_file(histfile)

6.8 rlcompleter — Completion function for GNU readline

Source code: Lib/rlcompleter.py

The rlcompleter module defines a completion function suitable for the readline module by completing valid
Python identifiers and keywords.

When this module is imported on a Unix platform with the readline module available, an instance of the
Completer class is automatically created and its complete() method is set as the readline completer.

Example:

>>> import rlcompleter
>>> import readline
>>> readline.parse_and_bind("tab: complete")
>>> readline. <TAB PRESSED>
readline.__doc__ readline.get_line_buffer(readline.read_init_file(

(continues on next page)

144 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.5/Lib/rlcompleter.py

The Python Library Reference, Release 3.5.7

(continued from previous page)

readline.__file__ readline.insert_text(readline.set_completer(
readline.__name__ readline.parse_and_bind(
>>> readline.

The rlcompleter module is designed for use with Python’s interactive mode. Unless Python is run with the
-S option, the module is automatically imported and configured (see Readline configuration).

On platforms without readline, the Completer class defined by this module can still be used for custom
purposes.

6.8.1 Completer Objects

Completer objects have the following method:

Completer.complete(text, state)
Return the stateth completion for text.

If called for text that doesn’t include a period character ('.'), it will complete from names currently
defined in __main__, builtins and keywords (as defined by the keyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will
not be evaluated, but it can generate calls to __getattr__()) up to the last part, and find matches for
the rest via the dir() function. Any exception raised during the evaluation of the expression is caught,
silenced and None is returned.

6.8. rlcompleter — Completion function for GNU readline 145

The Python Library Reference, Release 3.5.7

146 Chapter 6. Text Processing Services

CHAPTER

SEVEN

BINARY DATA SERVICES

The modules described in this chapter provide some basic services operations for manipulation of binary
data. Other operations on binary data, specifically in relation to file formats and network protocols, are
described in the relevant sections.

Some libraries described under Text Processing Services also work with either ASCII-compatible binary
formats (for example, re) or all binary data (for example, difflib).

In addition, see the documentation for Python’s built-in binary data types in Binary Sequence Types —
bytes, bytearray, memoryview.

7.1 struct — Interpret bytes as packed binary data

Source code: Lib/struct.py

This module performs conversions between Python values and C structs represented as Python bytes objects.
This can be used in handling binary data stored in files or from network connections, among other sources.
It uses Format Strings as compact descriptions of the layout of the C structs and the intended conversion
to/from Python values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper
alignment for the C types involved; similarly, alignment is taken into account when unpacking. This behavior
is chosen so that the bytes of a packed struct correspond exactly to the layout in memory of the corresponding
C struct. To handle platform-independent data formats or omit implicit pad bytes, use standard size and
alignment instead of native size and alignment: see Byte Order, Size, and Alignment for details.

Several struct functions (and methods of Struct) take a buffer argument. This refers to objects that im-
plement the bufferobjects and provide either a readable or read-writable buffer. The most common types
used for that purpose are bytes and bytearray, but many other types that can be viewed as an array of
bytes implement the buffer protocol, so that they can be read/filled without additional copying from a bytes
object.

7.1.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct.error
Exception raised on various occasions; argument is a string describing what is wrong.

147

https://github.com/python/cpython/tree/3.5/Lib/struct.py

The Python Library Reference, Release 3.5.7

struct.pack(fmt, v1, v2, ...)
Return a bytes object containing the values v1, v2, . . . packed according to the format string fmt.
The arguments must match the values required by the format exactly.

struct.pack_into(fmt, buffer, offset, v1, v2, ...)
Pack the values v1, v2, . . . according to the format string fmt and write the packed bytes into the
writable buffer buffer starting at position offset. Note that offset is a required argument.

struct.unpack(fmt, buffer)
Unpack from the buffer buffer (presumably packed by pack(fmt, ...)) according to the format string
fmt. The result is a tuple even if it contains exactly one item. The buffer’s size in bytes must match
the size required by the format, as reflected by calcsize().

struct.unpack_from(fmt, buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string fmt. The result is a tuple
even if it contains exactly one item. The buffer’s size in bytes, minus offset, must be at least the size
required by the format, as reflected by calcsize().

struct.iter_unpack(fmt, buffer)
Iteratively unpack from the buffer buffer according to the format string fmt. This function returns an
iterator which will read equally-sized chunks from the buffer until all its contents have been consumed.
The buffer’s size in bytes must be a multiple of the size required by the format, as reflected by calcsize().

Each iteration yields a tuple as specified by the format string.

New in version 3.4.

struct.calcsize(fmt)
Return the size of the struct (and hence of the bytes object produced by pack(fmt, ...)) corresponding
to the format string fmt.

7.1.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data.
They are built up from Format Characters, which specify the type of data being packed/unpacked. In
addition, there are special characters for controlling the Byte Order, Size, and Alignment.

Byte Order, Size, and Alignment

By default, C types are represented in the machine’s native format and byte order, and properly aligned by
skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment
of the packed data, according to the following table:

Character Byte order Size Alignment
@ native native native
= native standard none
< little-endian standard none
> big-endian standard none
! network (= big-endian) standard none

If the first character is not one of these, '@' is assumed.

148 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.7

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and
AMD64 (x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium
feature switchable endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined
with native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between '@' and '=': both use native byte order, but the size and alignment of the
latter is standardized.

The form '!' is available for those poor souls who claim they can’t remember whether network byte order
is big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of '<'
or '>'.

Notes:

(1) Padding is only automatically added between successive structure members. No padding is added at
the beginning or the end of the encoded struct.

(2) No padding is added when using non-native size and alignment, e.g. with ‘<’, ‘>’, ‘=’, and ‘ !’.

(3) To align the end of a structure to the alignment requirement of a particular type, end the format with
the code for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be
obvious given their types. The ‘Standard size’ column refers to the size of the packed value in bytes when
using standard size; that is, when the format string starts with one of '<', '>', '!' or '='. When using
native size, the size of the packed value is platform-dependent.

Format C Type Python type Standard size Notes
x pad byte no value
c char bytes of length 1 1
b signed char integer 1 (1),(3)
B unsigned char integer 1 (3)
? _Bool bool 1 (1)
h short integer 2 (3)
H unsigned short integer 2 (3)
i int integer 4 (3)
I unsigned int integer 4 (3)
l long integer 4 (3)
L unsigned long integer 4 (3)
q long long integer 8 (2), (3)
Q unsigned long long integer 8 (2), (3)
n ssize_t integer (4)
N size_t integer (4)
f float float 4 (5)
d double float 8 (5)
s char[] bytes
p char[] bytes
P void * integer (6)

7.1. struct — Interpret bytes as packed binary data 149

The Python Library Reference, Release 3.5.7

Changed in version 3.3: Added support for the 'n' and 'N' formats.

Notes:

(1) The '?' conversion code corresponds to the _Bool type defined by C99. If this type is not available,
it is simulated using a char. In standard mode, it is always represented by one byte.

(2) The 'q' and 'Q' conversion codes are available in native mode only if the platform C compiler
supports C long long, or, on Windows, __int64. They are always available in standard modes.

(3) When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer
has a __index__() method then that method is called to convert the argument to an integer before
packing.

Changed in version 3.2: Use of the __index__() method for non-integers is new in 3.2.

(4) The 'n' and 'N' conversion codes are only available for the native size (selected as the default or
with the '@' byte order character). For the standard size, you can use whichever of the other integer
formats fits your application.

(5) For the 'f' and 'd' conversion codes, the packed representation uses the IEEE 754 binary32 (for 'f')
or binary64 (for 'd') format, regardless of the floating-point format used by the platform.

(6) The 'P' format character is only available for the native byte ordering (selected as the default or
with the '@' byte order character). The byte order character '=' chooses to use little- or big-endian
ordering based on the host system. The struct module does not interpret this as native ordering, so
the 'P' format is not available.

A format character may be preceded by an integral repeat count. For example, the format string '4h'
means exactly the same as 'hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace
though.

For the 's' format character, the count is interpreted as the length of the bytes, not a repeat count like
for the other format characters; for example, '10s' means a single 10-byte string, while '10c' means 10
characters. If a count is not given, it defaults to 1. For packing, the string is truncated or padded with null
bytes as appropriate to make it fit. For unpacking, the resulting bytes object always has exactly the specified
number of bytes. As a special case, '0s' means a single, empty string (while '0c' means 0 characters).

When packing a value x using one of the integer formats ('b', 'B', 'h', 'H', 'i', 'I', 'l', 'L', 'q',
'Q'), if x is outside the valid range for that format then struct.error is raised.

Changed in version 3.1: In 3.0, some of the integer formats wrapped out-of-range values and raised Depre-
cationWarning instead of struct.error.

The 'p' format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed
number of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is
smaller. The bytes of the string follow. If the string passed in to pack() is too long (longer than the count
minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it is
padded with null bytes so that exactly count bytes in all are used. Note that for unpack(), the 'p' format
character consumes count bytes, but that the string returned can never contain more than 255 bytes.

For the '?' format character, the return value is either True or False. When packing, the truth value of the
argument object is used. Either 0 or 1 in the native or standard bool representation will be packed, and any
non-zero value will be True when unpacking.

Examples

150 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.7

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import *
>>> pack('hhl', 1, 2, 3)
b'\x00\x01\x00\x02\x00\x00\x00\x03'
>>> unpack('hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03')
(1, 2, 3)
>>> calcsize('hhl')
8

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = b'raymond \x32\x12\x08\x01\x08'
>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)

>>> from collections import namedtuple
>>> Student = namedtuple('Student', 'name serialnum school gradelevel')
>>> Student._make(unpack('<10sHHb', record))
Student(name=b'raymond ', serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment
requirements is different:

>>> pack('ci', b'*', 0x12131415)
b'*\x00\x00\x00\x12\x13\x14\x15'
>>> pack('ic', 0x12131415, b'*')
b'\x12\x13\x14\x15*'
>>> calcsize('ci')
8
>>> calcsize('ic')
5

The following format 'llh0l' specifies two pad bytes at the end, assuming longs are aligned on 4-byte
boundaries:

>>> pack('llh0l', 1, 2, 3)
b'\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00'

This only works when native size and alignment are in effect; standard size and alignment does not enforce
any alignment.

See also:

Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

7.1.3 Classes

The struct module also defines the following type:

class struct.Struct(format)
Return a new Struct object which writes and reads binary data according to the format string format.
Creating a Struct object once and calling its methods is more efficient than calling the struct functions
with the same format since the format string only needs to be compiled once.

7.1. struct — Interpret bytes as packed binary data 151

The Python Library Reference, Release 3.5.7

Compiled Struct objects support the following methods and attributes:

pack(v1, v2, ...)
Identical to the pack() function, using the compiled format. (len(result) will equal size.)

pack_into(buffer, offset, v1, v2, ...)
Identical to the pack_into() function, using the compiled format.

unpack(buffer)
Identical to the unpack() function, using the compiled format. The buffer’s size in bytes must
equal size.

unpack_from(buffer, offset=0)
Identical to the unpack_from() function, using the compiled format. The buffer’s size in bytes,
minus offset, must be at least size.

iter_unpack(buffer)
Identical to the iter_unpack() function, using the compiled format. The buffer’s size in bytes
must be a multiple of size.

New in version 3.4.

format
The format string used to construct this Struct object.

size
The calculated size of the struct (and hence of the bytes object produced by the pack() method)
corresponding to format.

7.2 codecs — Codec registry and base classes

Source code: Lib/codecs.py

This module defines base classes for standard Python codecs (encoders and decoders) and provides access
to the internal Python codec registry, which manages the codec and error handling lookup process. Most
standard codecs are text encodings, which encode text to bytes, but there are also codecs provided that
encode text to text, and bytes to bytes. Custom codecs may encode and decode between arbitrary types,
but some module features are restricted to use specifically with text encodings, or with codecs that encode
to bytes.

The module defines the following functions for encoding and decoding with any codec:

codecs.encode(obj, encoding=’utf-8’, errors=’strict’)
Encodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handler is 'strict'
meaning that encoding errors raise ValueError (or a more codec specific subclass, such as UnicodeEn-
codeError). Refer to Codec Base Classes for more information on codec error handling.

codecs.decode(obj, encoding=’utf-8’, errors=’strict’)
Decodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handler is 'strict'
meaning that decoding errors raise ValueError (or a more codec specific subclass, such as UnicodeDe-
codeError). Refer to Codec Base Classes for more information on codec error handling.

The full details for each codec can also be looked up directly:

152 Chapter 7. Binary Data Services

https://github.com/python/cpython/tree/3.5/Lib/codecs.py

The Python Library Reference, Release 3.5.7

codecs.lookup(encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined below.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions
is scanned. If no CodecInfo object is found, a LookupError is raised. Otherwise, the CodecInfo object
is stored in the cache and returned to the caller.

class codecs.CodecInfo(encode, decode, streamreader=None, streamwriter=None, incrementalen-
coder=None, incrementaldecoder=None, name=None)

Codec details when looking up the codec registry. The constructor arguments are stored in attributes
of the same name:

name
The name of the encoding.

encode
decode

The stateless encoding and decoding functions. These must be functions or methods which have
the same interface as the encode() and decode() methods of Codec instances (see Codec Interface).
The functions or methods are expected to work in a stateless mode.

incrementalencoder
incrementaldecoder

Incremental encoder and decoder classes or factory functions. These have to provide the interface
defined by the base classes IncrementalEncoder and IncrementalDecoder, respectively. Incremen-
tal codecs can maintain state.

streamwriter
streamreader

Stream writer and reader classes or factory functions. These have to provide the interface defined
by the base classes StreamWriter and StreamReader, respectively. Stream codecs can maintain
state.

To simplify access to the various codec components, the module provides these additional functions which
use lookup() for the codec lookup:

codecs.getencoder(encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getdecoder(encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder(encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

codecs.getincrementaldecoder(encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

codecs.getreader(encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

7.2. codecs — Codec registry and base classes 153

The Python Library Reference, Release 3.5.7

codecs.getwriter(encoding)
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.

Custom codecs are made available by registering a suitable codec search function:

codecs.register(search_function)
Register a codec search function. Search functions are expected to take one argument, being the
encoding name in all lower case letters, and return a CodecInfo object. In case a search function
cannot find a given encoding, it should return None.

Note: Search function registration is not currently reversible, which may cause problems in some
cases, such as unit testing or module reloading.

While the builtin open() and the associated io module are the recommended approach for working with
encoded text files, this module provides additional utility functions and classes that allow the use of a wider
range of codecs when working with binary files:

codecs.open(filename, mode=’r’, encoding=None, errors=’strict’, buffering=1)
Open an encoded file using the given mode and return an instance of StreamReaderWriter, providing
transparent encoding/decoding. The default file mode is 'r', meaning to open the file in read mode.

Note: Underlying encoded files are always opened in binary mode. No automatic conversion of '\n'
is done on reading and writing. The mode argument may be any binary mode acceptable to the built-in
open() function; the 'b' is automatically added.

encoding specifies the encoding which is to be used for the file. Any encoding that encodes to and
decodes from bytes is allowed, and the data types supported by the file methods depend on the codec
used.

errors may be given to define the error handling. It defaults to 'strict' which causes a ValueError to
be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open() function. It defaults to line buffered.

codecs.EncodedFile(file, data_encoding, file_encoding=None, errors=’strict’)
Return a StreamRecoder instance, a wrapped version of file which provides transparent transcoding.
The original file is closed when the wrapped version is closed.

Data written to the wrapped file is decoded according to the given data_encoding and then written to
the original file as bytes using file_encoding. Bytes read from the original file are decoded according
to file_encoding, and the result is encoded using data_encoding.

If file_encoding is not given, it defaults to data_encoding.

errors may be given to define the error handling. It defaults to 'strict', which causes ValueError to
be raised in case an encoding error occurs.

codecs.iterencode(iterator, encoding, errors=’strict’, **kwargs)
Uses an incremental encoder to iteratively encode the input provided by iterator. This function is a
generator. The errors argument (as well as any other keyword argument) is passed through to the
incremental encoder.

This function requires that the codec accept text str objects to encode. Therefore it does not support
bytes-to-bytes encoders such as base64_codec.

154 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.7

codecs.iterdecode(iterator, encoding, errors=’strict’, **kwargs)
Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a
generator. The errors argument (as well as any other keyword argument) is passed through to the
incremental decoder.

This function requires that the codec accept bytes objects to decode. Therefore it does not support
text-to-text encoders such as rot_13, although rot_13 may be used equivalently with iterencode().

The module also provides the following constants which are useful for reading and writing to platform
dependent files:

codecs.BOM
codecs.BOM_BE
codecs.BOM_LE
codecs.BOM_UTF8
codecs.BOM_UTF16
codecs.BOM_UTF16_BE
codecs.BOM_UTF16_LE
codecs.BOM_UTF32
codecs.BOM_UTF32_BE
codecs.BOM_UTF32_LE

These constants define various byte sequences, being Unicode byte order marks (BOMs) for several
encodings. They are used in UTF-16 and UTF-32 data streams to indicate the byte order used, and
in UTF-8 as a Unicode signature. BOM_UTF16 is either BOM_UTF16_BE or BOM_UTF16_LE
depending on the platform’s native byte order, BOM is an alias for BOM_UTF16, BOM_LE for
BOM_UTF16_LE and BOM_BE for BOM_UTF16_BE. The others represent the BOM in UTF-8
and UTF-32 encodings.

7.2.1 Codec Base Classes

The codecs module defines a set of base classes which define the interfaces for working with codec objects,
and can also be used as the basis for custom codec implementations.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless
decoder, stream reader and stream writer. The stream reader and writers typically reuse the stateless
encoder/decoder to implement the file protocols. Codec authors also need to define how the codec will
handle encoding and decoding errors.

Error Handlers

To simplify and standardize error handling, codecs may implement different error handling schemes by
accepting the errors string argument. The following string values are defined and implemented by all standard
Python codecs:

Value Meaning
'strict' Raise UnicodeError (or a subclass); this is the default. Implemented in strict_errors().
'ignore' Ignore the malformed data and continue without further notice. Implemented in

ignore_errors().

The following error handlers are only applicable to text encodings:

7.2. codecs — Codec registry and base classes 155

The Python Library Reference, Release 3.5.7

Value Meaning
're-
place'

Replace with a suitable replacement marker; Python will use the official U+FFFD REPLACE-
MENT CHARACTER for the built-in codecs on decoding, and ‘?’ on encoding. Implemented
in replace_errors().

'xmlchar-
refre-
place'

Replace with the appropriate XML character reference (only for encoding). Implemented in
xmlcharrefreplace_errors().

'back-
slashre-
place'

Replace with backslashed escape sequences. Implemented in backslashreplace_errors().

'namere-
place'

Replace with \N{...} escape sequences (only for encoding). Implemented in namere-
place_errors().

'sur-
roga-
teescape'

On decoding, replace byte with individual surrogate code ranging from U+DC80 to U+DCFF.
This code will then be turned back into the same byte when the 'surrogateescape' error handler
is used when encoding the data. (See PEP 383 for more.)

In addition, the following error handler is specific to the given codecs:

Value Codecs Meaning
'surro-
gatepass'

utf-8, utf-16, utf-32, utf-16-be,
utf-16-le, utf-32-be, utf-32-le

Allow encoding and decoding of surrogate codes. These
codecs normally treat the presence of surrogates as an er-
ror.

New in version 3.1: The 'surrogateescape' and 'surrogatepass' error handlers.

Changed in version 3.4: The 'surrogatepass' error handlers now works with utf-16* and utf-32* codecs.

New in version 3.5: The 'namereplace' error handler.

Changed in version 3.5: The 'backslashreplace' error handlers now works with decoding and translating.

The set of allowed values can be extended by registering a new named error handler:

codecs.register_error(name, error_handler)
Register the error handling function error_handler under the name name. The error_handler argument
will be called during encoding and decoding in case of an error, when name is specified as the errors
parameter.

For encoding, error_handler will be called with a UnicodeEncodeError instance, which contains in-
formation about the location of the error. The error handler must either raise this or a different
exception, or return a tuple with a replacement for the unencodable part of the input and a position
where encoding should continue. The replacement may be either str or bytes. If the replacement is
bytes, the encoder will simply copy them into the output buffer. If the replacement is a string, the
encoder will encode the replacement. Encoding continues on original input at the specified position.
Negative position values will be treated as being relative to the end of the input string. If the resulting
position is out of bound an IndexError will be raised.

Decoding and translating works similarly, except UnicodeDecodeError or UnicodeTranslateError will
be passed to the handler and that the replacement from the error handler will be put into the output
directly.

Previously registered error handlers (including the standard error handlers) can be looked up by name:

codecs.lookup_error(name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

156 Chapter 7. Binary Data Services

https://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.5.7

The following standard error handlers are also made available as module level functions:

codecs.strict_errors(exception)
Implements the 'strict' error handling: each encoding or decoding error raises a UnicodeError.

codecs.replace_errors(exception)
Implements the 'replace' error handling (for text encodings only): substitutes '?' for encoding errors
(to be encoded by the codec), and '\ufffd' (the Unicode replacement character) for decoding errors.

codecs.ignore_errors(exception)
Implements the 'ignore' error handling: malformed data is ignored and encoding or decoding is
continued without further notice.

codecs.xmlcharrefreplace_errors(exception)
Implements the 'xmlcharrefreplace' error handling (for encoding with text encodings only): the un-
encodable character is replaced by an appropriate XML character reference.

codecs.backslashreplace_errors(exception)
Implements the 'backslashreplace' error handling (for text encodings only): malformed data is re-
placed by a backslashed escape sequence.

codecs.namereplace_errors(exception)
Implements the 'namereplace' error handling (for encoding with text encodings only): the unencod-
able character is replaced by a \N{...} escape sequence.

New in version 3.5.

Stateless Encoding and Decoding

The base Codec class defines these methods which also define the function interfaces of the stateless encoder
and decoder:

Codec.encode(input[, errors])
Encodes the object input and returns a tuple (output object, length consumed). For instance, text
encoding converts a string object to a bytes object using a particular character set encoding (e.g.,
cp1252 or iso-8859-1).

The errors argument defines the error handling to apply. It defaults to 'strict' handling.

The method may not store state in the Codec instance. Use StreamWriter for codecs which have to
keep state in order to make encoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object
type in this situation.

Codec.decode(input[, errors])
Decodes the object input and returns a tuple (output object, length consumed). For instance, for a
text encoding, decoding converts a bytes object encoded using a particular character set encoding to
a string object.

For text encodings and bytes-to-bytes codecs, input must be a bytes object or one which provides the
read-only buffer interface – for example, buffer objects and memory mapped files.

The errors argument defines the error handling to apply. It defaults to 'strict' handling.

The method may not store state in the Codec instance. Use StreamReader for codecs which have to
keep state in order to make decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object
type in this situation.

7.2. codecs — Codec registry and base classes 157

The Python Library Reference, Release 3.5.7

Incremental Encoding and Decoding

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental encod-
ing and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder
function, but with multiple calls to the encode()/decode() method of the incremental encoder/decoder. The
incremental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode()/decode() method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following
methods which every incremental encoder must define in order to be compatible with the Python codec
registry.

class codecs.IncrementalEncoder(errors=’strict’)
Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional
keyword arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors key-
word argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the Incre-
mentalEncoder object.

encode(object[, final])
Encodes object (taking the current state of the encoder into account) and returns the resulting
encoded object. If this is the last call to encode() final must be true (the default is false).

reset()
Reset the encoder to the initial state. The output is discarded: call .encode(object, final=True),
passing an empty byte or text string if necessary, to reset the encoder and to get the output.

IncrementalEncoder.getstate()
Return the current state of the encoder which must be an integer. The implementation should make
sure that 0 is the most common state. (States that are more complicated than integers can be converted
into an integer by marshaling/pickling the state and encoding the bytes of the resulting string into an
integer).

IncrementalEncoder.setstate(state)
Set the state of the encoder to state. state must be an encoder state returned by getstate().

IncrementalDecoder Objects

The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following
methods which every incremental decoder must define in order to be compatible with the Python codec
registry.

class codecs.IncrementalDecoder(errors=’strict’)
Constructor for an IncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional
keyword arguments, but only the ones defined here are used by the Python codec registry.

158 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.7

The IncrementalDecoder may implement different error handling schemes by providing the errors key-
word argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the Incre-
mentalDecoder object.

decode(object[, final])
Decodes object (taking the current state of the decoder into account) and returns the resulting
decoded object. If this is the last call to decode() final must be true (the default is false). If
final is true the decoder must decode the input completely and must flush all buffers. If this isn’t
possible (e.g. because of incomplete byte sequences at the end of the input) it must initiate error
handling just like in the stateless case (which might raise an exception).

reset()
Reset the decoder to the initial state.

getstate()
Return the current state of the decoder. This must be a tuple with two items, the first must be the
buffer containing the still undecoded input. The second must be an integer and can be additional
state info. (The implementation should make sure that 0 is the most common additional state
info.) If this additional state info is 0 it must be possible to set the decoder to the state which has
no input buffered and 0 as the additional state info, so that feeding the previously buffered input to
the decoder returns it to the previous state without producing any output. (Additional state info
that is more complicated than integers can be converted into an integer by marshaling/pickling
the info and encoding the bytes of the resulting string into an integer.)

setstate(state)
Set the state of the encoder to state. state must be a decoder state returned by getstate().

Stream Encoding and Decoding

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to imple-
ment new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects

The StreamWriter class is a subclass of Codec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.

class codecs.StreamWriter(stream, errors=’strict’)
Constructor for a StreamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for writing text or binary data, as appropriate
for the specific codec.

The StreamWriter may implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for the standard error handlers the underlying stream codec may
support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
StreamWriter object.

7.2. codecs — Codec registry and base classes 159

The Python Library Reference, Release 3.5.7

write(object)
Writes the object’s contents encoded to the stream.

writelines(list)
Writes the concatenated list of strings to the stream (possibly by reusing the write() method).
The standard bytes-to-bytes codecs do not support this method.

reset()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows
appending of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the StreamWriter must also inherit all other methods and attributes from
the underlying stream.

StreamReader Objects

The StreamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class codecs.StreamReader(stream, errors=’strict’)
Constructor for a StreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for reading text or binary data, as appropriate
for the specific codec.

The StreamReader may implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for the standard error handlers the underlying stream codec may
support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the Stream-
Reader object.

The set of allowed values for the errors argument can be extended with register_error().

read([size[, chars[, firstline]]])
Decodes data from the stream and returns the resulting object.

The chars argument indicates the number of decoded code points or bytes to return. The read()
method will never return more data than requested, but it might return less, if there is not enough
available.

The size argument indicates the approximate maximum number of encoded bytes or code points
to read for decoding. The decoder can modify this setting as appropriate. The default value -1
indicates to read and decode as much as possible. This parameter is intended to prevent having
to decode huge files in one step.

The firstline flag indicates that it would be sufficient to only return the first line, if there are
decoding errors on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is
allowed within the definition of the encoding and the given size, e.g. if optional encoding endings
or state markers are available on the stream, these should be read too.

160 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.7

readline([size[, keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s read() method.

If keepends is false line-endings will be stripped from the lines returned.

readlines([sizehint[, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries
if keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read() method.

reset()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be
able to recover from decoding errors.

In addition to the above methods, the StreamReader must also inherit all other methods and attributes from
the underlying stream.

StreamReaderWriter Objects

The StreamReaderWriter is a convenience class that allows wrapping streams which work in both read and
write modes.

The design is such that one can use the factory functions returned by the lookup() function to construct the
instance.

class codecs.StreamReaderWriter(stream, Reader, Writer, errors)
Creates a StreamReaderWriter instance. stream must be a file-like object. Reader and Writer must
be factory functions or classes providing the StreamReader and StreamWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of StreamReader and StreamWriter classes.
They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The StreamRecoder translates data from one encoding to another, which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned by the lookup() function to construct the
instance.

class codecs.StreamRecoder(stream, encode, decode, Reader, Writer, errors)
Creates a StreamRecoder instance which implements a two-way conversion: encode and decode work
on the frontend — the data visible to code calling read() and write(), while Reader and Writer work
on the backend — the data in stream.

You can use these objects to do transparent transcodings from e.g. Latin-1 to UTF-8 and back.

The stream argument must be a file-like object.

The encode and decode arguments must adhere to the Codec interface. Reader and Writer must
be factory functions or classes providing objects of the StreamReader and StreamWriter interface
respectively.

7.2. codecs — Codec registry and base classes 161

The Python Library Reference, Release 3.5.7

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of StreamReader and StreamWriter classes. They
inherit all other methods and attributes from the underlying stream.

7.2.2 Encodings and Unicode

Strings are stored internally as sequences of code points in range 0x0–0x10FFFF. (See PEP 393 for more
details about the implementation.) Once a string object is used outside of CPU and memory, endianness
and how these arrays are stored as bytes become an issue. As with other codecs, serialising a string into a
sequence of bytes is known as encoding, and recreating the string from the sequence of bytes is known as
decoding. There are a variety of different text serialisation codecs, which are collectivity referred to as text
encodings.

The simplest text encoding (called 'latin-1' or 'iso-8859-1') maps the code points 0–255 to the bytes
0x0–0xff, which means that a string object that contains code points above U+00FF can’t be encoded with
this codec. Doing so will raise a UnicodeEncodeError that looks like the following (although the details of
the error message may differ): UnicodeEncodeError: 'latin-1' codec can't encode character '\u1234' in
position 3: ordinal not in range(256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all
Unicode code points and how these code points are mapped to the bytes 0x0–0xff. To see how this is done
simply open e.g. encodings/cp1252.py (which is an encoding that is used primarily on Windows). There’s a
string constant with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 code points defined in Unicode. A simple and
straightforward way that can store each Unicode code point, is to store each code point as four consecutive
bytes. There are two possibilities: store the bytes in big endian or in little endian order. These two encodings
are called UTF-32-BE and UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF-32-BE
on a little endian machine you will always have to swap bytes on encoding and decoding. UTF-32 avoids this
problem: bytes will always be in natural endianness. When these bytes are read by a CPU with a different
endianness, then bytes have to be swapped though. To be able to detect the endianness of a UTF-16 or
UTF-32 byte sequence, there’s the so called BOM (“Byte Order Mark”). This is the Unicode character
U+FEFF. This character can be prepended to every UTF-16 or UTF-32 byte sequence. The byte swapped
version of this character (0xFFFE) is an illegal character that may not appear in a Unicode text. So when
the first character in an UTF-16 or UTF-32 byte sequence appears to be a U+FFFE the bytes have to be
swapped on decoding. Unfortunately the character U+FEFF had a second purpose as a ZERO WIDTH
NO-BREAK SPACE: a character that has no width and doesn’t allow a word to be split. It can e.g. be used
to give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a ZERO WIDTH NO-BREAK
SPACE has been deprecated (with U+2060 (WORD JOINER) assuming this role). Nevertheless Unicode
software still must be able to handle U+FEFF in both roles: as a BOM it’s a device to determine the storage
layout of the encoded bytes, and vanishes once the byte sequence has been decoded into a string; as a ZERO
WIDTH NO-BREAK SPACE it’s a normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is
an 8-bit encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte
sequence consists of two parts: marker bits (the most significant bits) and payload bits. The marker bits are
a sequence of zero to four 1 bits followed by a 0 bit. Unicode characters are encoded like this (with x being
payload bits, which when concatenated give the Unicode character):

Range Encoding
U-00000000 . . . U-0000007F 0xxxxxxx
U-00000080 . . . U-000007FF 110xxxxx 10xxxxxx
U-00000800 . . . U-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
U-00010000 . . . U-0010FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

162 Chapter 7. Binary Data Services

https://www.python.org/dev/peps/pep-0393

The Python Library Reference, Release 3.5.7

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even
if it’s the first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a
string. Each charmap encoding can decode any random byte sequence. However that’s not possible with
UTF-8, as UTF-8 byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase
the reliability with which a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that
Python 2.5 calls "utf-8-sig") for its Notepad program: Before any of the Unicode characters is written to the
file, a UTF-8 encoded BOM (which looks like this as a byte sequence: 0xef, 0xbb, 0xbf) is written. As it’s
rather improbable that any charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS

RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK

INVERTED QUESTION MARK

in iso-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte
sequence, but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write
0xef, 0xbb, 0xbf as the first three bytes to the file. On decoding utf-8-sig will skip those three bytes if they
appear as the first three bytes in the file. In UTF-8, the use of the BOM is discouraged and should generally
be avoided.

7.2.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as
mapping tables. The following table lists the codecs by name, together with a few common aliases, and the
languages for which the encoding is likely used. Neither the list of aliases nor the list of languages is meant
to be exhaustive. Notice that spelling alternatives that only differ in case or use a hyphen instead of an
underscore are also valid aliases; therefore, e.g. 'utf-8' is a valid alias for the 'utf_8' codec.

CPython implementation detail: Some common encodings can bypass the codecs lookup machinery to im-
prove performance. These optimization opportunities are only recognized by CPython for a limited set
of aliases: utf-8, utf8, latin-1, latin1, iso-8859-1, mbcs (Windows only), ascii, utf-16, and utf-32. Using
alternative spellings for these encodings may result in slower execution.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the
EURO SIGN is supported or not), and in the assignment of characters to code positions. For the European
languages in particular, the following variants typically exist:

• an ISO 8859 codeset

• a Microsoft Windows code page, which is typically derived from an 8859 codeset, but replaces control
characters with additional graphic characters

• an IBM EBCDIC code page

• an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chinese
big5hkscs big5-hkscs, hkscs Traditional Chinese
cp037 IBM037, IBM039 English

Continued on next page

7.2. codecs — Codec registry and base classes 163

The Python Library Reference, Release 3.5.7

Table 1 – continued from previous page
Codec Aliases Languages
cp273 273, IBM273, csIBM273 German

New in version 3.4.
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-

CH, IBM500
Western Europe

cp720 Arabic
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Mace-

donian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM857 Turkish
cp858 858, IBM858 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chinese
cp1006 Urdu
cp1026 ibm1026 Turkish
cp1125 1125, ibm1125, cp866u, ruscii Ukrainian

New in version 3.4.
cp1140 ibm1140 Western Europe
cp1250 windows-1250 Central and Eastern Europe
cp1251 windows-1251 Bulgarian, Byelorussian, Mace-

donian, Russian, Serbian
cp1252 windows-1252 Western Europe
cp1253 windows-1253 Greek
cp1254 windows-1254 Turkish
cp1255 windows-1255 Hebrew
cp1256 windows-1256 Arabic
cp1257 windows-1257 Baltic languages
cp1258 windows-1258 Vietnamese
cp65001 Windows only: Windows UTF-8

(CP_UTF8)
New in version 3.3.

euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese

Continued on next page

164 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.7

Table 1 – continued from previous page
Codec Aliases Languages
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c-

5601, ks_c-5601-1987, ksx1001,
ks_x-1001

Korean

gb2312 chinese, csiso58gb231280,
euc- cn, euccn, eucgb2312-cn,
gb2312-1980, gb2312-80, iso-
ir-58

Simplified Chinese

gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
iso2022_jp csiso2022jp, iso2022jp, iso-2022-

jp
Japanese

iso2022_jp_1 iso2022jp-1, iso-2022-jp-1 Japanese
iso2022_jp_2 iso2022jp-2, iso-2022-jp-2 Japanese, Korean, Simplified

Chinese, Western Europe, Greek
iso2022_jp_2004 iso2022jp-2004, iso-2022-jp-2004 Japanese
iso2022_jp_3 iso2022jp-3, iso-2022-jp-3 Japanese
iso2022_jp_ext iso2022jp-ext, iso-2022-jp-ext Japanese
iso2022_kr csiso2022kr, iso2022kr, iso-2022-

kr
Korean

latin_1 iso-8859-1, iso8859-1, 8859,
cp819, latin, latin1, L1

West Europe

iso8859_2 iso-8859-2, latin2, L2 Central and Eastern Europe
iso8859_3 iso-8859-3, latin3, L3 Esperanto, Maltese
iso8859_4 iso-8859-4, latin4, L4 Baltic languages
iso8859_5 iso-8859-5, cyrillic Bulgarian, Byelorussian, Mace-

donian, Russian, Serbian
iso8859_6 iso-8859-6, arabic Arabic
iso8859_7 iso-8859-7, greek, greek8 Greek
iso8859_8 iso-8859-8, hebrew Hebrew
iso8859_9 iso-8859-9, latin5, L5 Turkish
iso8859_10 iso-8859-10, latin6, L6 Nordic languages
iso8859_11 iso-8859-11, thai Thai languages
iso8859_13 iso-8859-13, latin7, L7 Baltic languages
iso8859_14 iso-8859-14, latin8, L8 Celtic languages
iso8859_15 iso-8859-15, latin9, L9 Western Europe
iso8859_16 iso-8859-16, latin10, L10 South-Eastern Europe
johab cp1361, ms1361 Korean
koi8_r Russian
koi8_t Tajik

New in version 3.5.
koi8_u Ukrainian
kz1048 kz_1048, strk1048_2002,

rk1048
Kazakh
New in version 3.5.

mac_cyrillic maccyrillic Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian

mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope Central and Eastern Europe

Continued on next page

7.2. codecs — Codec registry and base classes 165

The Python Library Reference, Release 3.5.7

Table 1 – continued from previous page
Codec Aliases Languages
mac_roman macroman, macintosh Western Europe
mac_turkish macturkish Turkish
ptcp154 csptcp154, pt154, cp154, cyrillic-

asian
Kazakh

shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213,

s_jisx0213
Japanese

utf_32 U32, utf32 all languages
utf_32_be UTF-32BE all languages
utf_32_le UTF-32LE all languages
utf_16 U16, utf16 all languages
utf_16_be UTF-16BE all languages
utf_16_le UTF-16LE all languages
utf_7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8 all languages
utf_8_sig all languages

Changed in version 3.4: The utf-16* and utf-32* encoders no longer allow surrogate code points
(U+D800–U+DFFF) to be encoded. The utf-32* decoders no longer decode byte sequences that corre-
spond to surrogate code points.

7.2.4 Python Specific Encodings

A number of predefined codecs are specific to Python, so their codec names have no meaning outside Python.
These are listed in the tables below based on the expected input and output types (note that while text
encodings are the most common use case for codecs, the underlying codec infrastructure supports arbitrary
data transforms rather than just text encodings). For asymmetric codecs, the stated purpose describes the
encoding direction.

Text Encodings

The following codecs provide str to bytes encoding and bytes-like object to str decoding, similar to the
Unicode text encodings.

166 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.7

Codec Aliases Purpose
idna Implements RFC 3490, see

also encodings.idna. Only
errors='strict' is supported.

mbcs dbcs Windows only: Encode operand
according to the ANSI codepage
(CP_ACP)

palmos Encoding of PalmOS 3.5
punycode Implements RFC 3492. Stateful

codecs are not supported.
raw_unicode_escape Latin-1 encoding with \uXXXX

and \UXXXXXXXX for other
code points. Existing back-
slashes are not escaped in any
way. It is used in the Python
pickle protocol.

undefined Raise an exception for all conver-
sions, even empty strings. The
error handler is ignored.

unicode_escape Encoding suitable as the con-
tents of a Unicode literal in
ASCII-encoded Python source
code, except that quotes are not
escaped. Decodes from Latin-
1 source code. Beware that
Python source code actually uses
UTF-8 by default.

unicode_internal Return the internal representa-
tion of the operand. Stateful
codecs are not supported.
Deprecated since version 3.3:
This representation is obsoleted
by PEP 393.

Binary Transforms

The following codecs provide binary transforms: bytes-like object to bytes mappings. They are not supported
by bytes.decode() (which only produces str output).

7.2. codecs — Codec registry and base classes 167

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3492.html
https://www.python.org/dev/peps/pep-0393

The Python Library Reference, Release 3.5.7

Codec Aliases Purpose Encoder /
decoder

base64_codec1 base64,
base_64

Convert operand to multiline MIME base64 (the
result always includes a trailing '\n')
Changed in version 3.4: accepts any bytes-like
object as input for encoding and decoding

base64.
encodebytes() /
base64.
decodebytes()

bz2_codec bz2 Compress the operand using bz2 bz2.compress()
/ bz2.
decompress()

hex_codec hex Convert operand to hexadecimal representation,
with two digits per byte

binascii.
b2a_hex() /
binascii.
a2b_hex()

quopri_codec quopri,
quoted-
printable,
quoted_printable

Convert operand to MIME quoted printable quopri.encode()
with
quotetabs=True
/
quopri.decode()

uu_codec uu Convert the operand using uuencode uu.encode() /
uu.decode()

zlib_codec zip, zlib Compress the operand using gzip zlib.compress()
/ zlib.
decompress()

New in version 3.2: Restoration of the binary transforms.

Changed in version 3.4: Restoration of the aliases for the binary transforms.

Text Transforms

The following codec provides a text transform: a str to str mapping. It is not supported by str.encode()
(which only produces bytes output).

Codec Aliases Purpose
rot_13 rot13 Returns the Caesar-cypher encryption of the operand

New in version 3.2: Restoration of the rot_13 text transform.

Changed in version 3.4: Restoration of the rot13 alias.

7.2.5 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492
(Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the puny-
code encoding and stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name
containing non-ASCII characters (such as www.Alliancefrançaise.nu) is converted into an ASCII-compatible
encoding (ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the domain name is then used
in all places where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host
fields, and so on. This conversion is carried out in the application; if possible invisible to the user: The

1 In addition to bytes-like objects, 'base64_codec' also accepts ASCII-only instances of str for decoding

168 Chapter 7. Binary Data Services

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 3.5.7

application should transparently convert Unicode domain labels to IDNA on the wire, and convert back
ACE labels to Unicode before presenting them to the user.

Python supports this conversion in several ways: the idna codec performs conversion between Unicode
and ACE, separating an input string into labels based on the separator characters defined in section 3.1
(1) of RFC 3490 and converting each label to ACE as required, and conversely separating an input byte
string into labels based on the . separator and converting any ACE labels found into unicode. Furthermore,
the socket module transparently converts Unicode host names to ACE, so that applications need not be
concerned about converting host names themselves when they pass them to the socket module. On top of
that, modules that have host names as function parameters, such as http.client and ftplib, accept Unicode
host names (http.client then also transparently sends an IDNA hostname in the Host field if it sends that
field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to
Unicode is performed: Applications wishing to present such host names to the user should decode them to
Unicode.

The module encodings.idna also implements the nameprep procedure, which performs certain normalizations
on host names, to achieve case-insensitivity of international domain names, and to unify similar characters.
The nameprep functions can be used directly if desired.

encodings.idna.nameprep(label)
Return the nameprepped version of label. The implementation currently assumes query strings, so
AllowUnassigned is true.

encodings.idna.ToASCII(label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode(label)
Convert a label to Unicode, as specified in RFC 3490.

7.2.6 encodings.mbcs — Windows ANSI codepage

Encode operand according to the ANSI codepage (CP_ACP).

Availability: Windows only.

Changed in version 3.3: Support any error handler.

Changed in version 3.2: Before 3.2, the errors argument was ignored; 'replace' was always used to encode,
and 'ignore' to decode.

7.2.7 encodings.utf_8_sig — UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will be
prepended to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to
the byte stream). For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

7.2. codecs — Codec registry and base classes 169

https://tools.ietf.org/html/rfc3490#section-3.1
https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3490.html

The Python Library Reference, Release 3.5.7

170 Chapter 7. Binary Data Services

CHAPTER

EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times,
fixed-type arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, dict, list, set and frozenset, and tuple. The str
class is used to hold Unicode strings, and the bytes class is used to hold binary data.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

Source code: Lib/datetime.py

The datetime module supplies classes for manipulating dates and times in both simple and complex ways.
While date and time arithmetic is supported, the focus of the implementation is on efficient attribute
extraction for output formatting and manipulation. For related functionality, see also the time and calendar
modules.

There are two kinds of date and time objects: “naive” and “aware”.

An aware object has sufficient knowledge of applicable algorithmic and political time adjustments, such as
time zone and daylight saving time information, to locate itself relative to other aware objects. An aware
object is used to represent a specific moment in time that is not open to interpretation1.

A naive object does not contain enough information to unambiguously locate itself relative to other date/time
objects. Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some
other timezone is purely up to the program, just like it is up to the program whether a particular number
represents metres, miles, or mass. Naive objects are easy to understand and to work with, at the cost of
ignoring some aspects of reality.

For applications requiring aware objects, datetime and time objects have an optional time zone information
attribute, tzinfo, that can be set to an instance of a subclass of the abstract tzinfo class. These tzinfo
objects capture information about the offset from UTC time, the time zone name, and whether Daylight
Saving Time is in effect. Note that only one concrete tzinfo class, the timezone class, is supplied by the
datetime module. The timezone class can represent simple timezones with fixed offset from UTC, such as
UTC itself or North American EST and EDT timezones. Supporting timezones at deeper levels of detail
is up to the application. The rules for time adjustment across the world are more political than rational,
change frequently, and there is no standard suitable for every application aside from UTC.

The datetime module exports the following constants:

1 If, that is, we ignore the effects of Relativity

171

https://github.com/python/cpython/tree/3.5/Lib/datetime.py

The Python Library Reference, Release 3.5.7

datetime.MINYEAR
The smallest year number allowed in a date or datetime object. MINYEAR is 1.

datetime.MAXYEAR
The largest year number allowed in a date or datetime object. MAXYEAR is 9999.

See also:

Module calendar General calendar related functions.

Module time Time access and conversions.

8.1.1 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in
effect. Attributes: year, month, and day.

class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60
seconds (there is no notion of “leap seconds” here). Attributes: hour, minute, second, microsecond,
and tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second, microsecond,
and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, time, or datetime instances to microsecond
resolution.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the datetime and time
classes to provide a customizable notion of time adjustment (for example, to account for time zone
and/or daylight saving time).

class datetime.timezone
A class that implements the tzinfo abstract base class as a fixed offset from the UTC.

New in version 3.2.

Objects of these types are immutable.

Objects of the date type are always naive.

An object of type time or datetime may be naive or aware. A datetime object d is aware if d.tzinfo is
not None and d.tzinfo.utcoffset(d) does not return None. If d.tzinfo is None, or if d.tzinfo is not None
but d.tzinfo.utcoffset(d) returns None, d is naive. A time object t is aware if t.tzinfo is not None and
t.tzinfo.utcoffset(None) does not return None. Otherwise, t is naive.

The distinction between naive and aware doesn’t apply to timedelta objects.

Subclass relationships:

object
timedelta
tzinfo

timezone
time
date

datetime

172 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

8.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0,
weeks=0)

All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive
or negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:

• A millisecond is converted to 1000 microseconds.

• A minute is converted to 60 seconds.

• An hour is converted to 3600 seconds.

• A week is converted to 7 days.

and days, seconds and microseconds are then normalized so that the representation is unique, with

• 0 <= microseconds < 1000000

• 0 <= seconds < 3600*24 (the number of seconds in one day)

• -999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over
from all arguments are combined and their sum is rounded to the nearest microsecond using round-
half-to-even tiebreaker. If no argument is a float, the conversion and normalization processes are exact
(no information is lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example,

>>> from datetime import timedelta
>>> d = timedelta(microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes are:

timedelta.min
The most negative timedelta object, timedelta(-999999999).

timedelta.max
The most positive timedelta object, timedelta(days=999999999, hours=23, minutes=59, seconds=59,
microseconds=999999).

timedelta.resolution
The smallest possible difference between non-equal timedelta objects, timedelta(microseconds=1).

Note that, because of normalization, timedelta.max > -timedelta.min. -timedelta.max is not representable
as a timedelta object.

Instance attributes (read-only):

Attribute Value
days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds Between 0 and 999999 inclusive

8.1. datetime — Basic date and time types 173

The Python Library Reference, Release 3.5.7

Supported operations:

Operation Result
t1 = t2 + t3 Sum of t2 and t3. Afterwards t1-t2 == t3 and t1-t3 == t2 are true. (1)
t1 = t2 - t3 Difference of t2 and t3. Afterwards t1 == t2 - t3 and t2 == t1 + t3 are true. (1)
t1 = t2 * i or t1 =
i * t2

Delta multiplied by an integer. Afterwards t1 // i == t2 is true, provided i != 0.

In general, t1 * i == t1 * (i-1) + t1 is true. (1)
t1 = t2 * f or t1 =
f * t2

Delta multiplied by a float. The result is rounded to the nearest multiple of
timedelta.resolution using round-half-to-even.

f = t2 / t3 Division (3) of t2 by t3. Returns a float object.
t1 = t2 / f or t1 =
t2 / i

Delta divided by a float or an int. The result is rounded to the nearest multiple of
timedelta.resolution using round-half-to-even.

t1 = t2 // i or t1
= t2 // t3

The floor is computed and the remainder (if any) is thrown away. In the second
case, an integer is returned. (3)

t1 = t2 % t3 The remainder is computed as a timedelta object. (3)
q, r = divmod(t1,
t2)

Computes the quotient and the remainder: q = t1 // t2 (3) and r = t1 % t2. q is
an integer and r is a timedelta object.

+t1 Returns a timedelta object with the same value. (2)
-t1 equivalent to timedelta(-t1.days, -t1.seconds, -t1.microseconds), and to t1* -1. (1)(4)
abs(t) equivalent to +t when t.days >= 0, and to -t when t.days < 0. (2)
str(t) Returns a string in the form [D day[s],][H]H:MM:SS[.UUUUUU], where D is negative

for negative t. (5)
repr(t) Returns a string in the form datetime.timedelta(D[, S[, U]]), where D is negative for

negative t. (5)

Notes:

(1) This is exact, but may overflow.

(2) This is exact, and cannot overflow.

(3) Division by 0 raises ZeroDivisionError.

(4) -timedelta.max is not representable as a timedelta object.

(5) String representations of timedelta objects are normalized similarly to their internal representation.
This leads to somewhat unusual results for negative timedeltas. For example:

>>> timedelta(hours=-5)
datetime.timedelta(-1, 68400)
>>> print(_)
-1 day, 19:00:00

In addition to the operations listed above timedelta objects support certain additions and subtractions with
date and datetime objects (see below).

Changed in version 3.2: Floor division and true division of a timedelta object by another timedelta object
are now supported, as are remainder operations and the divmod() function. True division and multiplication
of a timedelta object by a float object are now supported.

Comparisons of timedelta objects are supported with the timedelta object representing the smaller duration
considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the
default comparison by object address, when a timedelta object is compared to an object of a different type,
TypeError is raised unless the comparison is == or !=. The latter cases return False or True, respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts,
a timedelta object is considered to be true if and only if it isn’t equal to timedelta(0).

174 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

Instance methods:

timedelta.total_seconds()
Return the total number of seconds contained in the duration. Equivalent to td / timedelta(seconds=1).

Note that for very large time intervals (greater than 270 years on most platforms) this method will
lose microsecond accuracy.

New in version 3.2.

Example usage:

>>> from datetime import timedelta
>>> year = timedelta(days=365)
>>> another_year = timedelta(weeks=40, days=84, hours=23,
... minutes=50, seconds=600) # adds up to 365 days
>>> year.total_seconds()
31536000.0
>>> year == another_year
True
>>> ten_years = 10 * year
>>> ten_years, ten_years.days // 365
(datetime.timedelta(3650), 10)
>>> nine_years = ten_years - year
>>> nine_years, nine_years.days // 365
(datetime.timedelta(3285), 9)
>>> three_years = nine_years // 3;
>>> three_years, three_years.days // 365
(datetime.timedelta(1095), 3)
>>> abs(three_years - ten_years) == 2 * three_years + year
True

8.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian
calendar indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of
year 1 is called day number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in
Dershowitz and Reingold’s book Calendrical Calculations, where it’s the base calendar for all computations.
See the book for algorithms for converting between proleptic Gregorian ordinals and many other calendar
systems.

class datetime.date(year, month, day)
All arguments are required. Arguments may be integers, in the following ranges:

• MINYEAR <= year <= MAXYEAR

• 1 <= month <= 12

• 1 <= day <= number of days in the given month and year

If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

classmethod date.today()
Return the current local date. This is equivalent to date.fromtimestamp(time.time()).

classmethod date.fromtimestamp(timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by time.time(). This
may raise OverflowError, if the timestamp is out of the range of values supported by the platform C

8.1. datetime — Basic date and time types 175

The Python Library Reference, Release 3.5.7

localtime() function, and OSError on localtime() failure. It’s common for this to be restricted to years
from 1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion
of a timestamp, leap seconds are ignored by fromtimestamp().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C localtime() function. Raise OSError instead of ValueError on
localtime() failure.

classmethod date.fromordinal(ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1. ValueError is raised unless 1 <= ordinal <= date.max.toordinal(). For any date d, date.
fromordinal(d.toordinal()) == d.

Class attributes:

date.min
The earliest representable date, date(MINYEAR, 1, 1).

date.max
The latest representable date, date(MAXYEAR, 12, 31).

date.resolution
The smallest possible difference between non-equal date objects, timedelta(days=1).

Instance attributes (read-only):

date.year
Between MINYEAR and MAXYEAR inclusive.

date.month
Between 1 and 12 inclusive.

date.day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result
date2 = date1 + timedelta date2 is timedelta.days days removed from date1. (1)
date2 = date1 - timedelta Computes date2 such that date2 + timedelta == date1. (2)
timedelta = date1 - date2 (3)
date1 < date2 date1 is considered less than date2 when date1 precedes date2 in time. (4)

Notes:

(1) date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days < 0. After-
ward date2 - date1 == timedelta.days. timedelta.seconds and timedelta.microseconds are ignored.
OverflowError is raised if date2.year would be smaller than MINYEAR or larger than MAXYEAR.

(2) This isn’t quite equivalent to date1 + (-timedelta), because -timedelta in isolation can overflow in cases
where date1 - timedelta does not. timedelta.seconds and timedelta.microseconds are ignored.

(3) This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 +
timedelta == date1 after.

(4) In other words, date1 < date2 if and only if date1.toordinal() < date2.toordinal(). In order to stop
comparison from falling back to the default scheme of comparing object addresses, date comparison
normally raises TypeError if the other comparand isn’t also a date object. However, NotImplemented
is returned instead if the other comparand has a timetuple() attribute. This hook gives other kinds of
date objects a chance at implementing mixed-type comparison. If not, when a date object is compared

176 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

to an object of a different type, TypeError is raised unless the comparison is == or !=. The latter
cases return False or True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date objects are considered to be true.

Instance methods:

date.replace(year, month, day)
Return a date with the same value, except for those parameters given new values by whichever key-
word arguments are specified. For example, if d == date(2002, 12, 31), then d.replace(day=26) ==
date(2002, 12, 26).

date.timetuple()
Return a time.struct_time such as returned by time.localtime(). The hours, minutes and seconds are
0, and the DST flag is -1. d.timetuple() is equivalent to time.struct_time((d.year, d.month, d.day, 0,
0, 0, d.weekday(), yday, -1)), where yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1 is the day
number within the current year starting with 1 for January 1st.

date.toordinal()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any
date object d, date.fromordinal(d.toordinal()) == d.

date.weekday()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date(2002,
12, 4).weekday() == 2, a Wednesday. See also isoweekday().

date.isoweekday()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date(2002,
12, 4).isoweekday() == 3, a Wednesday. See also weekday(), isocalendar().

date.isocalendar()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See https://www.staff.science.
uu.nl/~gent0113/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a
Sunday. The first week of an ISO year is the first (Gregorian) calendar week of a year containing a
Thursday. This is called week number 1, and the ISO year of that Thursday is the same as its Gregorian
year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec
2003 and ends on Sunday, 4 Jan 2004, so that date(2003, 12, 29).isocalendar() == (2004, 1, 1) and
date(2004, 1, 4).isocalendar() == (2004, 1, 7).

date.isoformat()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD’. For example, date(2002,
12, 4).isoformat() == '2002-12-04'.

date.__str__()
For a date d, str(d) is equivalent to d.isoformat().

date.ctime()
Return a string representing the date, for example date(2002, 12, 4).ctime() == 'Wed Dec 4 00:00:00
2002'. d.ctime() is equivalent to time.ctime(time.mktime(d.timetuple())) on platforms where the na-
tive C ctime() function (which time.ctime() invokes, but which date.ctime() does not invoke) conforms
to the C standard.

date.strftime(format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to

8.1. datetime — Basic date and time types 177

https://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm
https://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm

The Python Library Reference, Release 3.5.7

hours, minutes or seconds will see 0 values. For a complete list of formatting directives, see strftime()
and strptime() Behavior.

date.__format__(format)
Same as date.strftime(). This makes it possible to specify a format string for a date object when using
str.format(). For a complete list of formatting directives, see strftime() and strptime() Behavior.

Example of counting days to an event:

>>> import time
>>> from datetime import date
>>> today = date.today()
>>> today
datetime.date(2007, 12, 5)
>>> today == date.fromtimestamp(time.time())
True
>>> my_birthday = date(today.year, 6, 24)
>>> if my_birthday < today:
... my_birthday = my_birthday.replace(year=today.year + 1)
>>> my_birthday
datetime.date(2008, 6, 24)
>>> time_to_birthday = abs(my_birthday - today)
>>> time_to_birthday.days
202

Example of working with date:

>>> from datetime import date
>>> d = date.fromordinal(730920) # 730920th day after 1. 1. 0001
>>> d
datetime.date(2002, 3, 11)
>>> t = d.timetuple()
>>> for i in t:
... print(i)
2002 # year
3 # month
11 # day
0
0
0
0 # weekday (0 = Monday)
70 # 70th day in the year
-1
>>> ic = d.isocalendar()
>>> for i in ic:
... print(i)
2002 # ISO year
11 # ISO week number
1 # ISO day number (1 = Monday)
>>> d.isoformat()
'2002-03-11'
>>> d.strftime("%d/%m/%y")
'11/03/02'
>>> d.strftime("%A %d. %B %Y")
'Monday 11. March 2002'
>>> 'The {1} is {0:%d}, the {2} is {0:%B}.'.format(d, "day", "month")
'The day is 11, the month is March.'

178 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

8.1.4 datetime Objects

A datetime object is a single object containing all the information from a date object and a time object.
Like a date object, datetime assumes the current Gregorian calendar extended in both directions; like a time
object, datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

class datetime.datetime(year, month, day, hour=0, minute=0, second=0, microsecond=0, tz-
info=None)

The year, month and day arguments are required. tzinfo may be None, or an instance of a tzinfo
subclass. The remaining arguments may be integers, in the following ranges:

• MINYEAR <= year <= MAXYEAR

• 1 <= month <= 12

• 1 <= day <= number of days in the given month and year

• 0 <= hour < 24

• 0 <= minute < 60

• 0 <= second < 60

• 0 <= microsecond < 1000000

If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

classmethod datetime.today()
Return the current local datetime, with tzinfo None. This is equivalent to datetime.
fromtimestamp(time.time()). See also now(), fromtimestamp().

classmethod datetime.now(tz=None)
Return the current local date and time. If optional argument tz is None or not specified, this is like
today(), but, if possible, supplies more precision than can be gotten from going through a time.time()
timestamp (for example, this may be possible on platforms supplying the C gettimeofday() function).

If tz is not None, it must be an instance of a tzinfo subclass, and the current date and time are
converted to tz’s time zone. In this case the result is equivalent to tz.fromutc(datetime.utcnow().
replace(tzinfo=tz)). See also today(), utcnow().

classmethod datetime.utcnow()
Return the current UTC date and time, with tzinfo None. This is like now(), but returns the current
UTC date and time, as a naive datetime object. An aware current UTC datetime can be obtained by
calling datetime.now(timezone.utc). See also now().

classmethod datetime.fromtimestamp(timestamp, tz=None)
Return the local date and time corresponding to the POSIX timestamp, such as is returned by time.
time(). If optional argument tz is None or not specified, the timestamp is converted to the platform’s
local date and time, and the returned datetime object is naive.

If tz is not None, it must be an instance of a tzinfo subclass, and the timestamp is converted to tz’s
time zone. In this case the result is equivalent to tz.fromutc(datetime.utcfromtimestamp(timestamp).
replace(tzinfo=tz)).

fromtimestamp() may raise OverflowError, if the timestamp is out of the range of values supported by
the platform C localtime() or gmtime() functions, and OSError on localtime() or gmtime() failure. It’s
common for this to be restricted to years in 1970 through 2038. Note that on non-POSIX systems that
include leap seconds in their notion of a timestamp, leap seconds are ignored by fromtimestamp(), and

8.1. datetime — Basic date and time types 179

The Python Library Reference, Release 3.5.7

then it’s possible to have two timestamps differing by a second that yield identical datetime objects.
See also utcfromtimestamp().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C localtime() or gmtime() functions. Raise OSError instead of
ValueError on localtime() or gmtime() failure.

classmethod datetime.utcfromtimestamp(timestamp)
Return the UTC datetime corresponding to the POSIX timestamp, with tzinfo None. This may raise
OverflowError, if the timestamp is out of the range of values supported by the platform C gmtime()
function, and OSError on gmtime() failure. It’s common for this to be restricted to years in 1970
through 2038.

To get an aware datetime object, call fromtimestamp():

datetime.fromtimestamp(timestamp, timezone.utc)

On the POSIX compliant platforms, it is equivalent to the following expression:

datetime(1970, 1, 1, tzinfo=timezone.utc) + timedelta(seconds=timestamp)

except the latter formula always supports the full years range: between MINYEAR and MAXYEAR
inclusive.

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the range
of values supported by the platform C gmtime() function. Raise OSError instead of ValueError on
gmtime() failure.

classmethod datetime.fromordinal(ordinal)
Return the datetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1. ValueError is raised unless 1 <= ordinal <= datetime.max.toordinal(). The hour, minute,
second and microsecond of the result are all 0, and tzinfo is None.

classmethod datetime.combine(date, time)
Return a new datetime object whose date components are equal to the given date object’s, and whose
time components and tzinfo attributes are equal to the given time object’s. For any datetime object
d, d == datetime.combine(d.date(), d.timetz()). If date is a datetime object, its time components and
tzinfo attributes are ignored.

classmethod datetime.strptime(date_string, format)
Return a datetime corresponding to date_string, parsed according to format. This is equivalent to
datetime(*(time.strptime(date_string, format)[0:6])). ValueError is raised if the date_string and for-
mat can’t be parsed by time.strptime() or if it returns a value which isn’t a time tuple. For a complete
list of formatting directives, see strftime() and strptime() Behavior.

Class attributes:

datetime.min
The earliest representable datetime, datetime(MINYEAR, 1, 1, tzinfo=None).

datetime.max
The latest representable datetime, datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999, tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal datetime objects, timedelta(microseconds=1).

Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

180 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

datetime.month
Between 1 and 12 inclusive.

datetime.day
Between 1 and the number of days in the given month of the given year.

datetime.hour
In range(24).

datetime.minute
In range(60).

datetime.second
In range(60).

datetime.microsecond
In range(1000000).

datetime.tzinfo
The object passed as the tzinfo argument to the datetime constructor, or None if none was passed.

Supported operations:

Operation Result
datetime2 = datetime1 + timedelta (1)
datetime2 = datetime1 - timedelta (2)
timedelta = datetime1 - datetime2 (3)
datetime1 < datetime2 Compares datetime to datetime. (4)

(1) datetime2 is a duration of timedelta removed from datetime1, moving forward in time if timedelta.
days > 0, or backward if timedelta.days < 0. The result has the same tzinfo attribute as the input
datetime, and datetime2 - datetime1 == timedelta after. OverflowError is raised if datetime2.year
would be smaller than MINYEAR or larger than MAXYEAR. Note that no time zone adjustments are
done even if the input is an aware object.

(2) Computes the datetime2 such that datetime2 + timedelta == datetime1. As for addition, the result
has the same tzinfo attribute as the input datetime, and no time zone adjustments are done even if the
input is aware. This isn’t quite equivalent to datetime1 + (-timedelta), because -timedelta in isolation
can overflow in cases where datetime1 - timedelta does not.

(3) Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same tzinfo attribute, the tzinfo attributes are
ignored, and the result is a timedelta object t such that datetime2 + t == datetime1. No time zone
adjustments are done in this case.

If both are aware and have different tzinfo attributes, a-b acts as if a and b were first converted to naive
UTC datetimes first. The result is (a.replace(tzinfo=None) - a.utcoffset()) - (b.replace(tzinfo=None) -
b.utcoffset()) except that the implementation never overflows.

(4) datetime1 is considered less than datetime2 when datetime1 precedes datetime2 in time.

If one comparand is naive and the other is aware, TypeError is raised if an order comparison is
attempted. For equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same tzinfo attribute, the common tzinfo attribute is
ignored and the base datetimes are compared. If both comparands are aware and have different tzinfo
attributes, the comparands are first adjusted by subtracting their UTC offsets (obtained from self.
utcoffset()).

8.1. datetime — Basic date and time types 181

The Python Library Reference, Release 3.5.7

Changed in version 3.3: Equality comparisons between naive and aware datetime instances don’t raise
TypeError.

Note: In order to stop comparison from falling back to the default scheme of comparing object ad-
dresses, datetime comparison normally raises TypeError if the other comparand isn’t also a datetime
object. However, NotImplemented is returned instead if the other comparand has a timetuple() at-
tribute. This hook gives other kinds of date objects a chance at implementing mixed-type comparison.
If not, when a datetime object is compared to an object of a different type, TypeError is raised unless
the comparison is == or !=. The latter cases return False or True, respectively.

datetime objects can be used as dictionary keys. In Boolean contexts, all datetime objects are considered to
be true.

Instance methods:

datetime.date()
Return date object with same year, month and day.

datetime.time()
Return time object with same hour, minute, second and microsecond. tzinfo is None. See also method
timetz().

datetime.timetz()
Return time object with same hour, minute, second, microsecond, and tzinfo attributes. See also
method time().

datetime.replace([year[, month[, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]]]]])
Return a datetime with the same attributes, except for those attributes given new values by whichever
keyword arguments are specified. Note that tzinfo=None can be specified to create a naive datetime
from an aware datetime with no conversion of date and time data.

datetime.astimezone(tz=None)
Return a datetime object with new tzinfo attribute tz, adjusting the date and time data so the result
is the same UTC time as self, but in tz’s local time.

If provided, tz must be an instance of a tzinfo subclass, and its utcoffset() and dst() methods must not
return None. self must be aware (self.tzinfo must not be None, and self.utcoffset() must not return
None).

If called without arguments (or with tz=None) the system local timezone is assumed. The .tzinfo
attribute of the converted datetime instance will be set to an instance of timezone with the zone name
and offset obtained from the OS.

If self.tzinfo is tz, self.astimezone(tz) is equal to self: no adjustment of date or time data is performed.
Else the result is local time in time zone tz, representing the same UTC time as self: after astz
= dt.astimezone(tz), astz - astz.utcoffset() will usually have the same date and time data as dt -
dt.utcoffset(). The discussion of class tzinfo explains the cases at Daylight Saving Time transition
boundaries where this cannot be achieved (an issue only if tz models both standard and daylight
time).

If you merely want to attach a time zone object tz to a datetime dt without adjustment of date and
time data, use dt.replace(tzinfo=tz). If you merely want to remove the time zone object from an aware
datetime dt without conversion of date and time data, use dt.replace(tzinfo=None).

Note that the default tzinfo.fromutc() method can be overridden in a tzinfo subclass to affect the result
returned by astimezone(). Ignoring error cases, astimezone() acts like:

182 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

def astimezone(self, tz):
if self.tzinfo is tz:

return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz's local time.
return tz.fromutc(utc)

Changed in version 3.3: tz now can be omitted.

datetime.utcoffset()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset(self), and raises an exception if the latter
doesn’t return None, or a timedelta object representing a whole number of minutes with magnitude
less than one day.

datetime.dst()
If tzinfo is None, returns None, else returns self.tzinfo.dst(self), and raises an exception if the latter
doesn’t return None, or a timedelta object representing a whole number of minutes with magnitude
less than one day.

datetime.tzname()
If tzinfo is None, returns None, else returns self.tzinfo.tzname(self), raises an exception if the latter
doesn’t return None or a string object,

datetime.timetuple()
Return a time.struct_time such as returned by time.localtime(). d.timetuple() is equivalent to time.
struct_time((d.year, d.month, d.day, d.hour, d.minute, d.second, d.weekday(), yday, dst)), where yday
= d.toordinal() - date(d.year, 1, 1).toordinal() + 1 is the day number within the current year starting
with 1 for January 1st. The tm_isdst flag of the result is set according to the dst() method: tzinfo is
None or dst() returns None, tm_isdst is set to -1; else if dst() returns a non-zero value, tm_isdst is
set to 1; else tm_isdst is set to 0.

datetime.utctimetuple()
If datetime instance d is naive, this is the same as d.timetuple() except that tm_isdst is forced to 0
regardless of what d.dst() returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset(), and a time.struct_time for
the normalized time is returned. tm_isdst is forced to 0. Note that an OverflowError may be raised
if d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year boundary.

datetime.toordinal()
Return the proleptic Gregorian ordinal of the date. The same as self.date().toordinal().

datetime.timestamp()
Return POSIX timestamp corresponding to the datetime instance. The return value is a float similar
to that returned by time.time().

Naive datetime instances are assumed to represent local time and this method relies on the platform
C mktime() function to perform the conversion. Since datetime supports wider range of values than
mktime() on many platforms, this method may raise OverflowError for times far in the past or far in
the future.

For aware datetime instances, the return value is computed as:

(dt - datetime(1970, 1, 1, tzinfo=timezone.utc)).total_seconds()

New in version 3.3.

Note: There is no method to obtain the POSIX timestamp directly from a naive datetime instance

8.1. datetime — Basic date and time types 183

The Python Library Reference, Release 3.5.7

representing UTC time. If your application uses this convention and your system timezone is not set
to UTC, you can obtain the POSIX timestamp by supplying tzinfo=timezone.utc:

timestamp = dt.replace(tzinfo=timezone.utc).timestamp()

or by calculating the timestamp directly:

timestamp = (dt - datetime(1970, 1, 1)) / timedelta(seconds=1)

datetime.weekday()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as self.date().
weekday(). See also isoweekday().

datetime.isoweekday()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.date().
isoweekday(). See also weekday(), isocalendar().

datetime.isocalendar()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as self.date().isocalendar().

datetime.isoformat(sep=’T’)
Return a string representing the date and time in ISO 8601 format, YYYY-MM-
DDTHH:MM:SS.mmmmmm or, if microsecond is 0, YYYY-MM-DDTHH:MM:SS

If utcoffset() does not return None, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or, if microsecond is 0 YYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default 'T') is a one-character separator, placed between the date and
time portions of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):
... def utcoffset(self, dt): return timedelta(minutes=-399)
...
>>> datetime(2002, 12, 25, tzinfo=TZ()).isoformat(' ')
'2002-12-25 00:00:00-06:39'

datetime.__str__()
For a datetime instance d, str(d) is equivalent to d.isoformat(' ').

datetime.ctime()
Return a string representing the date and time, for example datetime(2002, 12, 4, 20, 30, 40).ctime()
== 'Wed Dec 4 20:30:40 2002'. d.ctime() is equivalent to time.ctime(time.mktime(d.timetuple())) on
platforms where the native C ctime() function (which time.ctime() invokes, but which datetime.ctime()
does not invoke) conforms to the C standard.

datetime.strftime(format)
Return a string representing the date and time, controlled by an explicit format string. For a complete
list of formatting directives, see strftime() and strptime() Behavior.

datetime.__format__(format)
Same as datetime.strftime(). This makes it possible to specify a format string for a datetime object
when using str.format(). For a complete list of formatting directives, see strftime() and strptime()
Behavior.

Examples of working with datetime objects:

184 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

>>> from datetime import datetime, date, time
>>> # Using datetime.combine()
>>> d = date(2005, 7, 14)
>>> t = time(12, 30)
>>> datetime.combine(d, t)
datetime.datetime(2005, 7, 14, 12, 30)
>>> # Using datetime.now() or datetime.utcnow()
>>> datetime.now()
datetime.datetime(2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime.utcnow()
datetime.datetime(2007, 12, 6, 15, 29, 43, 79060)
>>> # Using datetime.strptime()
>>> dt = datetime.strptime("21/11/06 16:30", "%d/%m/%y %H:%M")
>>> dt
datetime.datetime(2006, 11, 21, 16, 30)
>>> # Using datetime.timetuple() to get tuple of all attributes
>>> tt = dt.timetuple()
>>> for it in tt:
... print(it)
...
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1st January
-1 # dst - method tzinfo.dst() returned None
>>> # Date in ISO format
>>> ic = dt.isocalendar()
>>> for it in ic:
... print(it)
...
2006 # ISO year
47 # ISO week
2 # ISO weekday
>>> # Formatting datetime
>>> dt.strftime("%A, %d. %B %Y %I:%M%p")
'Tuesday, 21. November 2006 04:30PM'
>>> 'The {1} is {0:%d}, the {2} is {0:%B}, the {3} is {0:%I:%M%p}.'.format(dt, "day", "month", "time")
'The day is 21, the month is November, the time is 04:30PM.'

Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo
>>> class GMT1(tzinfo):
... def utcoffset(self, dt):
... return timedelta(hours=1) + self.dst(dt)
... def dst(self, dt):
... # DST starts last Sunday in March
... d = datetime(dt.year, 4, 1) # ends last Sunday in October
... self.dston = d - timedelta(days=d.weekday() + 1)
... d = datetime(dt.year, 11, 1)
... self.dstoff = d - timedelta(days=d.weekday() + 1)
... if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
... return timedelta(hours=1)

(continues on next page)

8.1. datetime — Basic date and time types 185

The Python Library Reference, Release 3.5.7

(continued from previous page)

... else:

... return timedelta(0)

... def tzname(self,dt):

... return "GMT +1"

...
>>> class GMT2(tzinfo):
... def utcoffset(self, dt):
... return timedelta(hours=2) + self.dst(dt)
... def dst(self, dt):
... d = datetime(dt.year, 4, 1)
... self.dston = d - timedelta(days=d.weekday() + 1)
... d = datetime(dt.year, 11, 1)
... self.dstoff = d - timedelta(days=d.weekday() + 1)
... if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
... return timedelta(hours=1)
... else:
... return timedelta(0)
... def tzname(self,dt):
... return "GMT +2"
...
>>> gmt1 = GMT1()
>>> # Daylight Saving Time
>>> dt1 = datetime(2006, 11, 21, 16, 30, tzinfo=gmt1)
>>> dt1.dst()
datetime.timedelta(0)
>>> dt1.utcoffset()
datetime.timedelta(0, 3600)
>>> dt2 = datetime(2006, 6, 14, 13, 0, tzinfo=gmt1)
>>> dt2.dst()
datetime.timedelta(0, 3600)
>>> dt2.utcoffset()
datetime.timedelta(0, 7200)
>>> # Convert datetime to another time zone
>>> dt3 = dt2.astimezone(GMT2())
>>> dt3 # doctest: +ELLIPSIS
datetime.datetime(2006, 6, 14, 14, 0, tzinfo=<GMT2 object at 0x...>)
>>> dt2 # doctest: +ELLIPSIS
datetime.datetime(2006, 6, 14, 13, 0, tzinfo=<GMT1 object at 0x...>)
>>> dt2.utctimetuple() == dt3.utctimetuple()
True

8.1.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment
via a tzinfo object.

class datetime.time(hour=0, minute=0, second=0, microsecond=0, tzinfo=None)
All arguments are optional. tzinfo may be None, or an instance of a tzinfo subclass. The remaining
arguments may be integers, in the following ranges:

• 0 <= hour < 24

• 0 <= minute < 60

• 0 <= second < 60

• 0 <= microsecond < 1000000.

186 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

If an argument outside those ranges is given, ValueError is raised. All default to 0 except tzinfo, which
defaults to None.

Class attributes:

time.min
The earliest representable time, time(0, 0, 0, 0).

time.max
The latest representable time, time(23, 59, 59, 999999).

time.resolution
The smallest possible difference between non-equal time objects, timedelta(microseconds=1), although
note that arithmetic on time objects is not supported.

Instance attributes (read-only):

time.hour
In range(24).

time.minute
In range(60).

time.second
In range(60).

time.microsecond
In range(1000000).

time.tzinfo
The object passed as the tzinfo argument to the time constructor, or None if none was passed.

Supported operations:

• comparison of time to time, where a is considered less than b when a precedes b in time. If one
comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted.
For equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same tzinfo attribute, the common tzinfo attribute is
ignored and the base times are compared. If both comparands are aware and have different tzinfo
attributes, the comparands are first adjusted by subtracting their UTC offsets (obtained from self.
utcoffset()). In order to stop mixed-type comparisons from falling back to the default comparison by
object address, when a time object is compared to an object of a different type, TypeError is raised
unless the comparison is == or !=. The latter cases return False or True, respectively.

Changed in version 3.3: Equality comparisons between naive and aware time instances don’t raise
TypeError.

• hash, use as dict key

• efficient pickling

In boolean contexts, a time object is always considered to be true.

Changed in version 3.5: Before Python 3.5, a time object was considered to be false if it represented midnight
in UTC. This behavior was considered obscure and error-prone and has been removed in Python 3.5. See
bpo-13936 for full details.

Instance methods:

time.replace([hour[, minute[, second[, microsecond[, tzinfo]]]]])
Return a time with the same value, except for those attributes given new values by whichever keyword
arguments are specified. Note that tzinfo=None can be specified to create a naive time from an aware
time, without conversion of the time data.

8.1. datetime — Basic date and time types 187

https://bugs.python.org/issue13936

The Python Library Reference, Release 3.5.7

time.isoformat()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset() does not return None, a 6-character string is appended, giving the UTC
offset in (signed) hours and minutes: HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is 0,
HH:MM:SS+HH:MM

time.__str__()
For a time t, str(t) is equivalent to t.isoformat().

time.strftime(format)
Return a string representing the time, controlled by an explicit format string. For a complete list of
formatting directives, see strftime() and strptime() Behavior.

time.__format__(format)
Same as time.strftime(). This makes it possible to specify a format string for a time object when using
str.format(). For a complete list of formatting directives, see strftime() and strptime() Behavior.

time.utcoffset()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset(None), and raises an exception if the
latter doesn’t return None or a timedelta object representing a whole number of minutes with magnitude
less than one day.

time.dst()
If tzinfo is None, returns None, else returns self.tzinfo.dst(None), and raises an exception if the latter
doesn’t return None, or a timedelta object representing a whole number of minutes with magnitude
less than one day.

time.tzname()
If tzinfo is None, returns None, else returns self.tzinfo.tzname(None), or raises an exception if the latter
doesn’t return None or a string object.

Example:

>>> from datetime import time, tzinfo, timedelta
>>> class GMT1(tzinfo):
... def utcoffset(self, dt):
... return timedelta(hours=1)
... def dst(self, dt):
... return timedelta(0)
... def tzname(self,dt):
... return "Europe/Prague"
...
>>> t = time(12, 10, 30, tzinfo=GMT1())
>>> t # doctest: +ELLIPSIS
datetime.time(12, 10, 30, tzinfo=<GMT1 object at 0x...>)
>>> gmt = GMT1()
>>> t.isoformat()
'12:10:30+01:00'
>>> t.dst()
datetime.timedelta(0)
>>> t.tzname()
'Europe/Prague'
>>> t.strftime("%H:%M:%S %Z")
'12:10:30 Europe/Prague'
>>> 'The {} is {:%H:%M}.'.format("time", t)
'The time is 12:10.'

188 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

8.1.6 tzinfo Objects

class datetime.tzinfo
This is an abstract base class, meaning that this class should not be instantiated directly. You need
to derive a concrete subclass, and (at least) supply implementations of the standard tzinfo methods
needed by the datetime methods you use. The datetime module supplies a simple concrete subclass
of tzinfo, timezone, which can represent timezones with fixed offset from UTC such as UTC itself or
North American EST and EDT.

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and time
objects. The latter objects view their attributes as being in local time, and the tzinfo object supports
methods revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative
to a date or time object passed to them.

Special requirement for pickling: A tzinfo subclass must have an __init__() method that can be
called with no arguments, else it can be pickled but possibly not unpickled again. This is a technical
requirement that may be relaxed in the future.

A concrete subclass of tzinfo may need to implement the following methods. Exactly which methods
are needed depends on the uses made of aware datetime objects. If in doubt, simply implement all of
them.

tzinfo.utcoffset(dt)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this
should be negative. Note that this is intended to be the total offset from UTC; for example, if a tzinfo
object represents both time zone and DST adjustments, utcoffset() should return their sum. If the
UTC offset isn’t known, return None. Else the value returned must be a timedelta object specifying
a whole number of minutes in the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the
offset must be less than one day). Most implementations of utcoffset() will probably look like one of
these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset() does not return None, dst() should not return None either.

The default implementation of utcoffset() raises NotImplementedError.

tzinfo.dst(dt)
Return the daylight saving time (DST) adjustment, in minutes east of UTC, or None if DST information
isn’t known. Return timedelta(0) if DST is not in effect. If DST is in effect, return the offset as a
timedelta object (see utcoffset() for details). Note that DST offset, if applicable, has already been added
to the UTC offset returned by utcoffset(), so there’s no need to consult dst() unless you’re interested
in obtaining DST info separately. For example, datetime.timetuple() calls its tzinfo attribute’s dst()
method to determine how the tm_isdst flag should be set, and tzinfo.fromutc() calls dst() to account
for DST changes when crossing time zones.

An instance tz of a tzinfo subclass that models both standard and daylight times must be consistent
in this sense:

tz.utcoffset(dt) - tz.dst(dt)

must return the same result for every datetime dt with dt.tzinfo == tz For sane tzinfo subclasses,
this expression yields the time zone’s “standard offset”, which should not depend on the date or the
time, but only on geographic location. The implementation of datetime.astimezone() relies on this,
but cannot detect violations; it’s the programmer’s responsibility to ensure it. If a tzinfo subclass
cannot guarantee this, it may be able to override the default implementation of tzinfo.fromutc() to
work correctly with astimezone() regardless.

8.1. datetime — Basic date and time types 189

The Python Library Reference, Release 3.5.7

Most implementations of dst() will probably look like one of these two:

def dst(self, dt):
a fixed-offset class: doesn't account for DST
return timedelta(0)

or

def dst(self, dt):
Code to set dston and dstoff to the time zone's DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta(hours=1)

else:
return timedelta(0)

The default implementation of dst() raises NotImplementedError.

tzinfo.tzname(dt)
Return the time zone name corresponding to the datetime object dt, as a string. Nothing about
string names is defined by the datetime module, and there’s no requirement that it mean anything in
particular. For example, “GMT”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New York”
are all valid replies. Return None if a string name isn’t known. Note that this is a method rather than
a fixed string primarily because some tzinfo subclasses will wish to return different names depending
on the specific value of dt passed, especially if the tzinfo class is accounting for daylight time.

The default implementation of tzname() raises NotImplementedError.

These methods are called by a datetime or time object, in response to their methods of the same names.
A datetime object passes itself as the argument, and a time object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a dt argument of None, or of class datetime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None
is appropriate if the class wishes to say that time objects don’t participate in the tzinfo protocols. It may
be more useful for utcoffset(None) to return the standard UTC offset, as there is no other convention for
discovering the standard offset.

When a datetime object is passed in response to a datetime method, dt.tzinfo is the same object as self.
tzinfo methods can rely on this, unless user code calls tzinfo methods directly. The intent is that the tzinfo
methods interpret dt as being in local time, and not need worry about objects in other timezones.

There is one more tzinfo method that a subclass may wish to override:

tzinfo.fromutc(dt)
This is called from the default datetime.astimezone() implementation. When called from that, dt.
tzinfo is self, and dt’s date and time data are to be viewed as expressing a UTC time. The purpose of
fromutc() is to adjust the date and time data, returning an equivalent datetime in self’s local time.

Most tzinfo subclasses should be able to inherit the default fromutc() implementation without problems.
It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard and
daylight time, and the latter even if the DST transition times differ in different years. An example of
a time zone the default fromutc() implementation may not handle correctly in all cases is one where
the standard offset (from UTC) depends on the specific date and time passed, which can happen for
political reasons. The default implementations of astimezone() and fromutc() may not produce the
result you want if the result is one of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc() implementation acts like:

190 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

def fromutc(self, dt):
raise ValueError error if dt.tzinfo is not self
dtoff = dt.utcoffset()
dtdst = dt.dst()
raise ValueError if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self's standard offset
if delta:

dt += delta # convert to standard local time
dtdst = dt.dst()
raise ValueError if dtdst is None

if dtdst:
return dt + dtdst

else:
return dt

Example tzinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta(0)
HOUR = timedelta(hours=1)

A UTC class.

class UTC(tzinfo):
"""UTC"""

def utcoffset(self, dt):
return ZERO

def tzname(self, dt):
return "UTC"

def dst(self, dt):
return ZERO

utc = UTC()

A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset(0, "UTC") is a different way to build a
UTC tzinfo object.

class FixedOffset(tzinfo):
"""Fixed offset in minutes east from UTC."""

def __init__(self, offset, name):
self.__offset = timedelta(minutes=offset)
self.__name = name

def utcoffset(self, dt):
return self.__offset

def tzname(self, dt):
return self.__name

def dst(self, dt):
return ZERO

(continues on next page)

8.1. datetime — Basic date and time types 191

The Python Library Reference, Release 3.5.7

(continued from previous page)

A class capturing the platform's idea of local time.

import time as _time

STDOFFSET = timedelta(seconds = -_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = -_time.altzone)
else:

DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET

class LocalTimezone(tzinfo):

def utcoffset(self, dt):
if self._isdst(dt):

return DSTOFFSET
else:

return STDOFFSET

def dst(self, dt):
if self._isdst(dt):

return DSTDIFF
else:

return ZERO

def tzname(self, dt):
return _time.tzname[self._isdst(dt)]

def _isdst(self, dt):
tt = (dt.year, dt.month, dt.day,

dt.hour, dt.minute, dt.second,
dt.weekday(), 0, 0)

stamp = _time.mktime(tt)
tt = _time.localtime(stamp)
return tt.tm_isdst > 0

Local = LocalTimezone()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
days_to_go = 6 - dt.weekday()
if days_to_go:

dt += timedelta(days_to_go)
return dt

US DST Rules
#
This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz-link.htm

(continues on next page)

192 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

(continued from previous page)

http://sourceforge.net/projects/pytz/ (might not be up-to-date)
#
In the US, since 2007, DST starts at 2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.
DSTSTART_2007 = datetime(1, 3, 8, 2)
and ends at 2am (DST time; 1am standard time) on the first Sunday of Nov.
DSTEND_2007 = datetime(1, 11, 1, 1)
From 1987 to 2006, DST used to start at 2am (standard time) on the first
Sunday in April and to end at 2am (DST time; 1am standard time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime(1, 4, 1, 2)
DSTEND_1987_2006 = datetime(1, 10, 25, 1)
From 1967 to 1986, DST used to start at 2am (standard time) on the last
Sunday in April (the one on or after April 24) and to end at 2am (DST time;
1am standard time) on the last Sunday of October, which is the first Sunday
on or after Oct 25.
DSTSTART_1967_1986 = datetime(1, 4, 24, 2)
DSTEND_1967_1986 = DSTEND_1987_2006

class USTimeZone(tzinfo):

def __init__(self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta(hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dstname = dstname

def __repr__(self):
return self.reprname

def tzname(self, dt):
if self.dst(dt):

return self.dstname
else:

return self.stdname

def utcoffset(self, dt):
return self.stdoffset + self.dst(dt)

def dst(self, dt):
if dt is None or dt.tzinfo is None:

An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc() implementation (called by the default astimezone()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find start and end times for US DST. For years before 1967, return
ZERO for no DST.
if 2006 < dt.year:

dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < dt.year < 2007:

dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
elif 1966 < dt.year < 1987:

dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986

(continues on next page)

8.1. datetime — Basic date and time types 193

The Python Library Reference, Release 3.5.7

(continued from previous page)

else:
return ZERO

start = first_sunday_on_or_after(dststart.replace(year=dt.year))
end = first_sunday_on_or_after(dstend.replace(year=dt.year))

Can't compare naive to aware objects, so strip the timezone from
dt first.
if start <= dt.replace(tzinfo=None) < end:

return HOUR
else:

return ZERO

Eastern = USTimeZone(-5, "Eastern", "EST", "EDT")
Central = USTimeZone(-6, "Central", "CST", "CDT")
Mountain = USTimeZone(-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone(-8, "Pacific", "PST", "PDT")

Note that there are unavoidable subtleties twice per year in a tzinfo subclass accounting for both standard
and daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where
EDT begins the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59
(EDT) on the first Sunday in November:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM 0:MM 1:MM 2:MM 3:MM
EDT 23:MM 0:MM 1:MM 2:MM 3:MM 4:MM

start 22:MM 23:MM 0:MM 1:MM 3:MM 4:MM

end 23:MM 0:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form
2:MM doesn’t really make sense on that day, so astimezone(Eastern) won’t deliver a result with hour ==
2 on the day DST begins. In order for astimezone() to make this guarantee, the tzinfo.dst() method must
consider times in the “missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled
unambiguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM
UTC on the day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00
(standard time) again. Local times of the form 1:MM are ambiguous. astimezone() mimics the local clock’s
behavior by mapping two adjacent UTC hours into the same local hour then. In the Eastern example, UTC
times of the form 5:MM and 6:MM both map to 1:MM when converted to Eastern. In order for astimezone()
to make this guarantee, the tzinfo.dst() method must consider times in the “repeated hour” to be in standard
time. This is easily arranged, as in the example, by expressing DST switch times in the time zone’s standard
local time.

Applications that can’t bear such ambiguities should avoid using hybrid tzinfo subclasses; there are no
ambiguities when using timezone, or any other fixed-offset tzinfo subclass (such as a class representing only
EST (fixed offset -5 hours), or only EDT (fixed offset -4 hours)).

See also:

pytz The standard library has timezone class for handling arbitrary fixed offsets from UTC and timezone.utc
as UTC timezone instance.

pytz library brings the IANA timezone database (also known as the Olson database) to Python and
its usage is recommended.

194 Chapter 8. Data Types

https://pypi.python.org/pypi/pytz/

The Python Library Reference, Release 3.5.7

IANA timezone database The Time Zone Database (often called tz or zoneinfo) contains code and data that
represent the history of local time for many representative locations around the globe. It is updated
periodically to reflect changes made by political bodies to time zone boundaries, UTC offsets, and
daylight-saving rules.

8.1.7 timezone Objects

The timezone class is a subclass of tzinfo, each instance of which represents a timezone defined by a fixed
offset from UTC. Note that objects of this class cannot be used to represent timezone information in the
locations where different offsets are used in different days of the year or where historical changes have been
made to civil time.

class datetime.timezone(offset[, name])
The offset argument must be specified as a timedelta object representing the difference between the
local time and UTC. It must be strictly between -timedelta(hours=24) and timedelta(hours=24) and
represent a whole number of minutes, otherwise ValueError is raised.

The name argument is optional. If specified it must be a string that is used as the value returned by
the tzname(dt) method. Otherwise, tzname(dt) returns a string ‘UTCsHH:MM’, where s is the sign
of offset, HH and MM are two digits of offset.hours and offset.minutes respectively.

New in version 3.2.

timezone.utcoffset(dt)
Return the fixed value specified when the timezone instance is constructed. The dt argument is ignored.
The return value is a timedelta instance equal to the difference between the local time and UTC.

timezone.tzname(dt)
Return the fixed value specified when the timezone instance is constructed or a string ‘UTCsHH:MM’,
where s is the sign of offset, HH and MM are two digits of offset.hours and offset.minutes respectively.

timezone.dst(dt)
Always returns None.

timezone.fromutc(dt)
Return dt + offset. The dt argument must be an aware datetime instance, with tzinfo set to self.

Class attributes:

timezone.utc
The UTC timezone, timezone(timedelta(0)).

8.1.8 strftime() and strptime() Behavior

date, datetime, and time objects all support a strftime(format) method, to create a string representing the
time under the control of an explicit format string. Broadly speaking, d.strftime(fmt) acts like the time
module’s time.strftime(fmt, d.timetuple()) although not all objects support a timetuple() method.

Conversely, the datetime.strptime() class method creates a datetime object from a string representing a
date and time and a corresponding format string. datetime.strptime(date_string, format) is equivalent to
datetime(*(time.strptime(date_string, format)[0:6])).

For time objects, the format codes for year, month, and day should not be used, as time objects have no
such values. If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as
date objects have no such values. If they’re used anyway, 0 is substituted for them.

8.1. datetime — Basic date and time types 195

https://www.iana.org/time-zones

The Python Library Reference, Release 3.5.7

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime() function, and platform variations are common. To see the full set of format codes supported on
your platform, consult the strftime(3) documentation.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work
on all platforms with a standard C implementation. Note that the 1999 version of the C standard added
additional format codes.

196 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

Directive Meaning Example Notes
%a Weekday as locale’s ab-

breviated name.
Sun, Mon, . . . , Sat
(en_US);

So, Mo, . . . , Sa
(de_DE)

(1)

%A Weekday as locale’s full
name.

Sunday, Monday, . . . ,
Saturday (en_US);

Sonntag, Montag, . . . ,
Samstag (de_DE)

(1)

%w Weekday as a decimal
number, where 0 is Sun-
day and 6 is Saturday.

0, 1, . . . , 6

%d Day of the month as
a zero-padded decimal
number.

01, 02, . . . , 31

%b Month as locale’s abbre-
viated name.

Jan, Feb, . . . , Dec
(en_US);

Jan, Feb, . . . , Dez
(de_DE)

(1)

%B Month as locale’s full
name.

January, February, . . . ,
December (en_US);

Januar, Februar, . . . ,
Dezember (de_DE)

(1)

%m Month as a zero-padded
decimal number.

01, 02, . . . , 12

%y Year without century as
a zero-padded decimal
number.

00, 01, . . . , 99

%Y Year with century as a
decimal number.

0001, 0002, . . . , 2013,
2014, . . . , 9998, 9999

(2)

%H Hour (24-hour clock) as
a zero-padded decimal
number.

00, 01, . . . , 23

%I Hour (12-hour clock) as
a zero-padded decimal
number.

01, 02, . . . , 12

%p Locale’s equivalent of ei-
ther AM or PM.

AM, PM (en_US);

am, pm (de_DE)

(1), (3)

%M Minute as a zero-padded
decimal number.

00, 01, . . . , 59

%S Second as a zero-padded
decimal number.

00, 01, . . . , 59 (4)

%f Microsecond as a
decimal number, zero-
padded on the left.

000000, 000001, . . . ,
999999

(5)

%z UTC offset in the form
+HHMM or -HHMM
(empty string if the ob-
ject is naive).

(empty), +0000, -0400,
+1030

(6)

%Z Time zone name (empty
string if the object is
naive).

(empty), UTC, EST,
CST

%j Day of the year as
a zero-padded decimal
number.

001, 002, . . . , 366

%U Week number of the
year (Sunday as the first
day of the week) as
a zero padded decimal
number. All days in a
new year preceding the
first Sunday are consid-
ered to be in week 0.

00, 01, . . . , 53 (7)

%W Week number of the
year (Monday as the
first day of the week) as
a decimal number. All
days in a new year pre-
ceding the first Monday
are considered to be in
week 0.

00, 01, . . . , 53 (7)

%c Locale’s appropriate
date and time represen-
tation.

Tue Aug 16 21:30:00
1988 (en_US);

Di 16 Aug 21:30:00
1988 (de_DE)

(1)

%x Locale’s appropriate
date representation.

08/16/88 (None);

08/16/1988 (en_US);

16.08.1988 (de_DE)

(1)

%X Locale’s appropriate
time representation.

21:30:00 (en_US);

21:30:00 (de_DE)

(1)

%% A literal '%' character. %

8.1. datetime — Basic date and time types 197

The Python Library Reference, Release 3.5.7

Notes:

(1) Because the format depends on the current locale, care should be taken when making assumptions about
the output value. Field orderings will vary (for example, “month/day/year” versus “day/month/year”),
and the output may contain Unicode characters encoded using the locale’s default encoding (for ex-
ample, if the current locale is ja_JP, the default encoding could be any one of eucJP, SJIS, or utf-8;
use locale.getlocale() to determine the current locale’s encoding).

(2) The strptime() method can parse years in the full [1, 9999] range, but years < 1000 must be zero-filled
to 4-digit width.

Changed in version 3.2: In previous versions, strftime() method was restricted to years >= 1900.

Changed in version 3.3: In version 3.2, strftime() method was restricted to years >= 1000.

(3) When used with the strptime() method, the %p directive only affects the output hour field if the %I
directive is used to parse the hour.

(4) Unlike the time module, the datetime module does not support leap seconds.

(5) When used with the strptime() method, the %f directive accepts from one to six digits and zero pads
on the right. %f is an extension to the set of format characters in the C standard (but implemented
separately in datetime objects, and therefore always available).

(6) For a naive object, the %z and %Z format codes are replaced by empty strings.

For an aware object:

%z utcoffset() is transformed into a 5-character string of the form +HHMM or -HHMM, where HH is a
2-digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number
of UTC offset minutes. For example, if utcoffset() returns timedelta(hours=-3, minutes=-30), %z
is replaced with the string '-0330'.

%Z If tzname() returns None, %Z is replaced by an empty string. Otherwise %Z is replaced by the
returned value, which must be a string.

Changed in version 3.2: When the %z directive is provided to the strptime() method, an aware datetime
object will be produced. The tzinfo of the result will be set to a timezone instance.

(7) When used with the strptime() method, %U and %W are only used in calculations when the day of
the week and the year are specified.

8.2 calendar — General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful
functions related to the calendar. By default, these calendars have Monday as the first day of the week,
and Sunday as the last (the European convention). Use setfirstweekday() to set the first day of the week
to Sunday (6) or to any other weekday. Parameters that specify dates are given as integers. For related
functionality, see also the datetime and time modules.

Most of these functions and classes rely on the datetime module which uses an idealized calendar, the current
Gregorian calendar extended in both directions. This matches the definition of the “proleptic Gregorian”
calendar in Dershowitz and Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all
computations.

198 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.5/Lib/calendar.py

The Python Library Reference, Release 3.5.7

class calendar.Calendar(firstweekday=0)
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. 0 is Monday
(the default), 6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for
formatting. This class doesn’t do any formatting itself. This is the job of subclasses.

Calendar instances have the following methods:

iterweekdays()
Return an iterator for the week day numbers that will be used for one week. The first value from
the iterator will be the same as the value of the firstweekday property.

itermonthdates(year, month)
Return an iterator for the month month (1–12) in the year year. This iterator will return all days
(as datetime.date objects) for the month and all days before the start of the month or after the
end of the month that are required to get a complete week.

itermonthdays2(year, month)
Return an iterator for the month month in the year year similar to itermonthdates(). Days
returned will be tuples consisting of a day number and a week day number.

itermonthdays(year, month)
Return an iterator for the month month in the year year similar to itermonthdates(). Days
returned will simply be day numbers.

monthdatescalendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
tuples of day numbers and weekday numbers.

monthdayscalendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
day numbers.

yeardatescalendar(year, width=3)
Return the data for the specified year ready for formatting. The return value is a list of month
rows. Each month row contains up to width months (defaulting to 3). Each month contains
between 4 and 6 weeks and each week contains 1–7 days. Days are datetime.date objects.

yeardays2calendar(year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar()). En-
tries in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this
month are zero.

yeardayscalendar(year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar()). En-
tries in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar(firstweekday=0)
This class can be used to generate plain text calendars.

TextCalendar instances have the following methods:

formatmonth(theyear, themonth, w=0, l=0)
Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the
date columns, which are centered. If l is given, it specifies the number of lines that each week will

8.2. calendar — General calendar-related functions 199

The Python Library Reference, Release 3.5.7

use. Depends on the first weekday as specified in the constructor or set by the setfirstweekday()
method.

prmonth(theyear, themonth, w=0, l=0)
Print a month’s calendar as returned by formatmonth().

formatyear(theyear, w=2, l=1, c=6, m=3)
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, l,
and c are for date column width, lines per week, and number of spaces between month columns,
respectively. Depends on the first weekday as specified in the constructor or set by the setfirst-
weekday() method. The earliest year for which a calendar can be generated is platform-dependent.

pryear(theyear, w=2, l=1, c=6, m=3)
Print the calendar for an entire year as returned by formatyear().

class calendar.HTMLCalendar(firstweekday=0)
This class can be used to generate HTML calendars.

HTMLCalendar instances have the following methods:

formatmonth(theyear, themonth, withyear=True)
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the
header, otherwise just the month name will be used.

formatyear(theyear, width=3)
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of
months per row.

formatyearpage(theyear, width=3, css=’calendar.css’, encoding=None)
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number
of months per row. css is the name for the cascading style sheet to be used. None can be passed if
no style sheet should be used. encoding specifies the encoding to be used for the output (defaulting
to the system default encoding).

class calendar.LocaleTextCalendar(firstweekday=0, locale=None)
This subclass of TextCalendar can be passed a locale name in the constructor and will return month
and weekday names in the specified locale. If this locale includes an encoding all strings containing
month and weekday names will be returned as unicode.

class calendar.LocaleHTMLCalendar(firstweekday=0, locale=None)
This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month
and weekday names in the specified locale. If this locale includes an encoding all strings containing
month and weekday names will be returned as unicode.

Note: The formatweekday() and formatmonthname() methods of these two classes temporarily change
the current locale to the given locale. Because the current locale is a process-wide setting, they are not
thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday(weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience.
For example, to set the first weekday to Sunday:

import calendar
calendar.setfirstweekday(calendar.SUNDAY)

200 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

calendar.firstweekday()
Returns the current setting for the weekday to start each week.

calendar.isleap(year)
Returns True if year is a leap year, otherwise False.

calendar.leapdays(y1, y2)
Returns the number of leap years in the range from y1 to y2 (exclusive), where y1 and y2 are years.

This function works for ranges spanning a century change.

calendar.weekday(year, month, day)
Returns the day of the week (0 is Monday) for year (1970–. . .), month (1–12), day (1–31).

calendar.weekheader(n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one
weekday.

calendar.monthrange(year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and
month.

calendar.monthcalendar(year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the
month a represented by zeros. Each week begins with Monday unless set by setfirstweekday().

calendar.prmonth(theyear, themonth, w=0, l=0)
Prints a month’s calendar as returned by month().

calendar.month(theyear, themonth, w=0, l=0)
Returns a month’s calendar in a multi-line string using the formatmonth() of the TextCalendar class.

calendar.prcal(year, w=0, l=0, c=6, m=3)
Prints the calendar for an entire year as returned by calendar().

calendar.calendar(year, w=2, l=1, c=6, m=3)
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear() of the
TextCalendar class.

calendar.timegm(tuple)
An unrelated but handy function that takes a time tuple such as returned by the gmtime() function
in the time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970,
and the POSIX encoding. In fact, time.gmtime() and timegm() are each others’ inverse.

The calendar module exports the following data attributes:

calendar.day_name
An array that represents the days of the week in the current locale.

calendar.day_abbr
An array that represents the abbreviated days of the week in the current locale.

calendar.month_name
An array that represents the months of the year in the current locale. This follows normal convention
of January being month number 1, so it has a length of 13 and month_name[0] is the empty string.

calendar.month_abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal
convention of January being month number 1, so it has a length of 13 and month_abbr[0] is the empty
string.

See also:

8.2. calendar — General calendar-related functions 201

The Python Library Reference, Release 3.5.7

Module datetime Object-oriented interface to dates and times with similar functionality to the time module.

Module time Low-level time related functions.

8.3 collections — Container datatypes

Source code: Lib/collections/__init__.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose
built-in containers, dict, list, set, and tuple.

namedtuple() factory function for creating tuple subclasses with named fields
deque list-like container with fast appends and pops on either end
ChainMap dict-like class for creating a single view of multiple mappings
Counter dict subclass for counting hashable objects
OrderedDict dict subclass that remembers the order entries were added
defaultdict dict subclass that calls a factory function to supply missing values
UserDict wrapper around dictionary objects for easier dict subclassing
UserList wrapper around list objects for easier list subclassing
UserString wrapper around string objects for easier string subclassing

Changed in version 3.3: Moved Collections Abstract Base Classes to the collections.abc module. For back-
wards compatibility, they continue to be visible in this module as well.

8.3.1 ChainMap objects

New in version 3.3.

A ChainMap class is provided for quickly linking a number of mappings so they can be treated as a single
unit. It is often much faster than creating a new dictionary and running multiple update() calls.

The class can be used to simulate nested scopes and is useful in templating.

class collections.ChainMap(*maps)
A ChainMap groups multiple dicts or other mappings together to create a single, updateable view. If
no maps are specified, a single empty dictionary is provided so that a new chain always has at least
one mapping.

The underlying mappings are stored in a list. That list is public and can be accessed or updated using
the maps attribute. There is no other state.

Lookups search the underlying mappings successively until a key is found. In contrast, writes, updates,
and deletions only operate on the first mapping.

A ChainMap incorporates the underlying mappings by reference. So, if one of the underlying mappings
gets updated, those changes will be reflected in ChainMap.

All of the usual dictionary methods are supported. In addition, there is a maps attribute, a method
for creating new subcontexts, and a property for accessing all but the first mapping:

maps
A user updateable list of mappings. The list is ordered from first-searched to last-searched. It
is the only stored state and can be modified to change which mappings are searched. The list
should always contain at least one mapping.

202 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.5/Lib/collections/__init__.py

The Python Library Reference, Release 3.5.7

new_child(m=None)
Returns a new ChainMap containing a new map followed by all of the maps in the current instance.
If m is specified, it becomes the new map at the front of the list of mappings; if not specified,
an empty dict is used, so that a call to d.new_child() is equivalent to: ChainMap({}, *d.maps).
This method is used for creating subcontexts that can be updated without altering values in any
of the parent mappings.

Changed in version 3.4: The optional m parameter was added.

parents
Property returning a new ChainMap containing all of the maps in the current instance except the
first one. This is useful for skipping the first map in the search. Use cases are similar to those
for the nonlocal keyword used in nested scopes. The use cases also parallel those for the built-in
super() function. A reference to d.parents is equivalent to: ChainMap(*d.maps[1:]).

See also:

• The MultiContext class in the Enthought CodeTools package has options to support writing to any
mapping in the chain.

• Django’s Context class for templating is a read-only chain of mappings. It also features pushing and
popping of contexts similar to the new_child() method and the parents() property.

• The Nested Contexts recipe has options to control whether writes and other mutations apply only to
the first mapping or to any mapping in the chain.

• A greatly simplified read-only version of Chainmap.

ChainMap Examples and Recipes

This section shows various approaches to working with chained maps.

Example of simulating Python’s internal lookup chain:

import builtins
pylookup = ChainMap(locals(), globals(), vars(builtins))

Example of letting user specified command-line arguments take precedence over environment variables which
in turn take precedence over default values:

import os, argparse

defaults = {'color': 'red', 'user': 'guest'}

parser = argparse.ArgumentParser()
parser.add_argument('-u', '--user')
parser.add_argument('-c', '--color')
namespace = parser.parse_args()
command_line_args = {k:v for k, v in vars(namespace).items() if v}

combined = ChainMap(command_line_args, os.environ, defaults)
print(combined['color'])
print(combined['user'])

Example patterns for using the ChainMap class to simulate nested contexts:

c = ChainMap() # Create root context
d = c.new_child() # Create nested child context

(continues on next page)

8.3. collections — Container datatypes 203

https://github.com/enthought/codetools/blob/4.0.0/codetools/contexts/multi_context.py
https://github.com/enthought/codetools
https://github.com/django/django/blob/master/django/template/context.py
https://code.activestate.com/recipes/577434/
https://code.activestate.com/recipes/305268/

The Python Library Reference, Release 3.5.7

(continued from previous page)

e = c.new_child() # Child of c, independent from d
e.maps[0] # Current context dictionary -- like Python's locals()
e.maps[-1] # Root context -- like Python's globals()
e.parents # Enclosing context chain -- like Python's nonlocals

d['x'] # Get first key in the chain of contexts
d['x'] = 1 # Set value in current context
del d['x'] # Delete from current context
list(d) # All nested values
k in d # Check all nested values
len(d) # Number of nested values
d.items() # All nested items
dict(d) # Flatten into a regular dictionary

The ChainMap class only makes updates (writes and deletions) to the first mapping in the chain while
lookups will search the full chain. However, if deep writes and deletions are desired, it is easy to make a
subclass that updates keys found deeper in the chain:

class DeepChainMap(ChainMap):
'Variant of ChainMap that allows direct updates to inner scopes'

def __setitem__(self, key, value):
for mapping in self.maps:

if key in mapping:
mapping[key] = value
return

self.maps[0][key] = value

def __delitem__(self, key):
for mapping in self.maps:

if key in mapping:
del mapping[key]
return

raise KeyError(key)

>>> d = DeepChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
>>> d['lion'] = 'orange' # update an existing key two levels down
>>> d['snake'] = 'red' # new keys get added to the topmost dict
>>> del d['elephant'] # remove an existing key one level down
DeepChainMap({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

8.3.2 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

>>> # Tally occurrences of words in a list
>>> cnt = Counter()
>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
... cnt[word] += 1
>>> cnt
Counter({'blue': 3, 'red': 2, 'green': 1})

>>> # Find the ten most common words in Hamlet
>>> import re
>>> words = re.findall(r'\w+', open('hamlet.txt').read().lower())

(continues on next page)

204 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> Counter(words).most_common(10)
[('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

class collections.Counter([iterable-or-mapping])
A Counter is a dict subclass for counting hashable objects. It is an unordered collection where elements
are stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be
any integer value including zero or negative counts. The Counter class is similar to bags or multisets
in other languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> c = Counter() # a new, empty counter
>>> c = Counter('gallahad') # a new counter from an iterable
>>> c = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping
>>> c = Counter(cats=4, dogs=8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items
instead of raising a KeyError:

>>> c = Counter(['eggs', 'ham'])
>>> c['bacon'] # count of a missing element is zero
0

Setting a count to zero does not remove an element from a counter. Use del to remove it entirely:

>>> c['sausage'] = 0 # counter entry with a zero count
>>> del c['sausage'] # del actually removes the entry

New in version 3.1.

Counter objects support three methods beyond those available for all dictionaries:

elements()
Return an iterator over elements repeating each as many times as its count. Elements are returned
in arbitrary order. If an element’s count is less than one, elements() will ignore it.

>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> sorted(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']

most_common([n])
Return a list of the n most common elements and their counts from the most common to the
least. If n is omitted or None, most_common() returns all elements in the counter. Elements
with equal counts are ordered arbitrarily:

>>> Counter('abracadabra').most_common(3) # doctest: +SKIP
[('a', 5), ('r', 2), ('b', 2)]

subtract([iterable-or-mapping])
Elements are subtracted from an iterable or from another mapping (or counter). Like dict.update()
but subtracts counts instead of replacing them. Both inputs and outputs may be zero or negative.

>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> d = Counter(a=1, b=2, c=3, d=4)
>>> c.subtract(d)

(continues on next page)

8.3. collections — Container datatypes 205

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> c
Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

New in version 3.2.

The usual dictionary methods are available for Counter objects except for two which work differently
for counters.

fromkeys(iterable)
This class method is not implemented for Counter objects.

update([iterable-or-mapping])
Elements are counted from an iterable or added-in from another mapping (or counter). Like
dict.update() but adds counts instead of replacing them. Also, the iterable is expected to be a
sequence of elements, not a sequence of (key, value) pairs.

Common patterns for working with Counter objects:

sum(c.values()) # total of all counts
c.clear() # reset all counts
list(c) # list unique elements
set(c) # convert to a set
dict(c) # convert to a regular dictionary
c.items() # convert to a list of (elem, cnt) pairs
Counter(dict(list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common()[:-n-1:-1] # n least common elements
+c # remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters
that have counts greater than zero). Addition and subtraction combine counters by adding or subtracting
the counts of corresponding elements. Intersection and union return the minimum and maximum of corre-
sponding counts. Each operation can accept inputs with signed counts, but the output will exclude results
with counts of zero or less.

>>> c = Counter(a=3, b=1)
>>> d = Counter(a=1, b=2)
>>> c + d # add two counters together: c[x] + d[x]
Counter({'a': 4, 'b': 3})
>>> c - d # subtract (keeping only positive counts)
Counter({'a': 2})
>>> c & d # intersection: min(c[x], d[x]) # doctest: +SKIP
Counter({'a': 1, 'b': 1})
>>> c | d # union: max(c[x], d[x])
Counter({'a': 3, 'b': 2})

Unary addition and subtraction are shortcuts for adding an empty counter or subtracting from an empty
counter.

>>> c = Counter(a=2, b=-4)
>>> +c
Counter({'a': 2})
>>> -c
Counter({'b': 4})

New in version 3.3: Added support for unary plus, unary minus, and in-place multiset operations.

Note: Counters were primarily designed to work with positive integers to represent running counts; however,

206 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

care was taken to not unnecessarily preclude use cases needing other types or negative values. To help with
those use cases, this section documents the minimum range and type restrictions.

• The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values
are intended to be numbers representing counts, but you could store anything in the value field.

• The most_common() method requires only that the values be orderable.

• For in-place operations such as c[key] += 1, the value type need only support addition and subtraction.
So fractions, floats, and decimals would work and negative values are supported. The same is also true
for update() and subtract() which allow negative and zero values for both inputs and outputs.

• The multiset methods are designed only for use cases with positive values. The inputs may be negative
or zero, but only outputs with positive values are created. There are no type restrictions, but the value
type needs to support addition, subtraction, and comparison.

• The elements() method requires integer counts. It ignores zero and negative counts.

See also:

• Bag class in Smalltalk.

• Wikipedia entry for Multisets.

• C++ multisets tutorial with examples.

• For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer
Programming Volume II, Section 4.6.3, Exercise 19.

• To enumerate all distinct multisets of a given size over a given set of elements, see itertools.
combinations_with_replacement():

map(Counter, combinations_with_replacement(‘ABC’, 2)) –> AA AB AC BB BC CC

8.3.3 deque objects

class collections.deque([iterable[, maxlen]])
Returns a new deque object initialized left-to-right (using append()) with data from iterable. If iterable
is not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for
“double-ended queue”). Deques support thread-safe, memory efficient appends and pops from either
side of the deque with approximately the same O(1) performance in either direction.

Though list objects support similar operations, they are optimized for fast fixed-length operations and
incur O(n) memory movement costs for pop(0) and insert(0, v) operations which change both the size
and position of the underlying data representation.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is
bounded to the specified maximum length. Once a bounded length deque is full, when new items are
added, a corresponding number of items are discarded from the opposite end. Bounded length deques
provide functionality similar to the tail filter in Unix. They are also useful for tracking transactions
and other pools of data where only the most recent activity is of interest.

Deque objects support the following methods:

append(x)
Add x to the right side of the deque.

appendleft(x)
Add x to the left side of the deque.

8.3. collections — Container datatypes 207

https://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
https://en.wikipedia.org/wiki/Multiset
http://www.java2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 3.5.7

clear()
Remove all elements from the deque leaving it with length 0.

copy()
Create a shallow copy of the deque.

New in version 3.5.

count(x)
Count the number of deque elements equal to x.

New in version 3.2.

extend(iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft(iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left
appends results in reversing the order of elements in the iterable argument.

index(x[, start[, stop]])
Return the position of x in the deque (at or after index start and before index stop). Returns the
first match or raises ValueError if not found.

New in version 3.5.

insert(i, x)
Insert x into the deque at position i.

If the insertion would cause a bounded deque to grow beyond maxlen, an IndexError is raised.

New in version 3.5.

pop()
Remove and return an element from the right side of the deque. If no elements are present, raises
an IndexError.

popleft()
Remove and return an element from the left side of the deque. If no elements are present, raises
an IndexError.

remove(value)
Remove the first occurrence of value. If not found, raises a ValueError.

reverse()
Reverse the elements of the deque in-place and then return None.

New in version 3.2.

rotate(n)
Rotate the deque n steps to the right. If n is negative, rotate to the left. Rotating one step to
the right is equivalent to: d.appendleft(d.pop()).

Deque objects also provide one read-only attribute:

maxlen
Maximum size of a deque or None if unbounded.

New in version 3.1.

In addition to the above, deques support iteration, pickling, len(d), reversed(d), copy.copy(d), copy.
deepcopy(d), membership testing with the in operator, and subscript references such as d[-1]. Indexed
access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Starting in version 3.5, deques support __add__(), __mul__(), and __imul__().

208 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

Example:

>>> from collections import deque
>>> d = deque('ghi') # make a new deque with three items
>>> for elem in d: # iterate over the deque's elements
... print(elem.upper())
G
H
I

>>> d.append('j') # add a new entry to the right side
>>> d.appendleft('f') # add a new entry to the left side
>>> d # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])

>>> d.pop() # return and remove the rightmost item
'j'
>>> d.popleft() # return and remove the leftmost item
'f'
>>> list(d) # list the contents of the deque
['g', 'h', 'i']
>>> d[0] # peek at leftmost item
'g'
>>> d[-1] # peek at rightmost item
'i'

>>> list(reversed(d)) # list the contents of a deque in reverse
['i', 'h', 'g']
>>> 'h' in d # search the deque
True
>>> d.extend('jkl') # add multiple elements at once
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])
>>> d.rotate(1) # right rotation
>>> d
deque(['l', 'g', 'h', 'i', 'j', 'k'])
>>> d.rotate(-1) # left rotation
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])

>>> deque(reversed(d)) # make a new deque in reverse order
deque(['l', 'k', 'j', 'i', 'h', 'g'])
>>> d.clear() # empty the deque
>>> d.pop() # cannot pop from an empty deque
Traceback (most recent call last):

File "<pyshell#6>", line 1, in -toplevel-
d.pop()

IndexError: pop from an empty deque

>>> d.extendleft('abc') # extendleft() reverses the input order
>>> d
deque(['c', 'b', 'a'])

deque Recipes

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter in Unix:

8.3. collections — Container datatypes 209

The Python Library Reference, Release 3.5.7

def tail(filename, n=10):
'Return the last n lines of a file'
with open(filename) as f:

return deque(f, n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the
right and popping to the left:

def moving_average(iterable, n=3):
moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
http://en.wikipedia.org/wiki/Moving_average
it = iter(iterable)
d = deque(itertools.islice(it, n-1))
d.appendleft(0)
s = sum(d)
for elem in it:

s += elem - d.popleft()
d.append(elem)
yield s / n

The rotate() method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate() method to position elements to be popped:

def delete_nth(d, n):
d.rotate(-n)
d.popleft()
d.rotate(n)

To implement deque slicing, use a similar approach applying rotate() to bring a target element to the left
side of the deque. Remove old entries with popleft(), add new entries with extend(), and then reverse the
rotation. With minor variations on that approach, it is easy to implement Forth style stack manipulations
such as dup, drop, swap, over, pick, rot, and roll.

8.3.4 defaultdict objects

class collections.defaultdict([default_factory[, ...]])
Returns a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides
one method and adds one writable instance variable. The remaining functionality is the same as for
the dict class and is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None. All
remaining arguments are treated the same as if they were passed to the dict constructor, including
keyword arguments.

defaultdict objects support the following method in addition to the standard dict operations:

__missing__(key)
If the default_factory attribute is None, this raises a KeyError exception with the key as argument.

If default_factory is not None, it is called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem__() method of the dict class when the requested key is
not found; whatever it returns or raises is then returned or raised by __getitem__().

210 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

Note that __missing__() is not called for any operations besides __getitem__(). This
means that get() will, like normal dictionaries, return None as a default rather than using de-
fault_factory.

defaultdict objects support the following instance variable:

default_factory
This attribute is used by the __missing__() method; it is initialized from the first argument to
the constructor, if present, or to None, if absent.

defaultdict Examples

Using list as the default_factory, it is easy to group a sequence of key-value pairs into a dictionary of lists:

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict(list)
>>> for k, v in s:
... d[k].append(v)
...
>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically
created using the default_factory function which returns an empty list. The list.append() operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (re-
turning the list for that key) and the list.append() operation adds another value to the list. This technique
is simpler and faster than an equivalent technique using dict.setdefault():

>>> d = {}
>>> for k, v in s:
... d.setdefault(k, []).append(v)
...
>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

Setting the default_factory to int makes the defaultdict useful for counting (like a bag or multiset in other
languages):

>>> s = 'mississippi'
>>> d = defaultdict(int)
>>> for k in s:
... d[k] += 1
...
>>> sorted(d.items())
[('i', 4), ('m', 1), ('p', 2), ('s', 4)]

When a letter is first encountered, it is missing from the mapping, so the default_factory function calls int()
to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int() which always returns zero is just a special case of constant functions. A faster and more
flexible way to create constant functions is to use a lambda function which can supply any constant value
(not just zero):

>>> def constant_factory(value):
... return lambda: value
>>> d = defaultdict(constant_factory('<missing>'))
>>> d.update(name='John', action='ran')

(continues on next page)

8.3. collections — Container datatypes 211

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> '%(name)s %(action)s to %(object)s' % d
'John ran to <missing>'

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> d = defaultdict(set)
>>> for k, v in s:
... d[k].add(v)
...
>>> sorted(d.items())
[('blue', {2, 4}), ('red', {1, 3})]

8.3.5 namedtuple() Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code.
They can be used wherever regular tuples are used, and they add the ability to access fields by name instead
of position index.

collections.namedtuple(typename, field_names, verbose=False, rename=False)
Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects
that have fields accessible by attribute lookup as well as being indexable and iterable. Instances of the
subclass also have a helpful docstring (with typename and field_names) and a helpful __repr__()
method which lists the tuple contents in a name=value format.

The field_names are a single string with each fieldname separated by whitespace and/or commas, for
example 'x y' or 'x, y'. Alternatively, field_names can be a sequence of strings such as ['x', 'y'].

Any valid Python identifier may be used for a fieldname except for names starting with an underscore.
Valid identifiers consist of letters, digits, and underscores but do not start with a digit or underscore
and cannot be a keyword such as class, for, return, global, pass, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example,
['abc', 'def', 'ghi', 'abc'] is converted to ['abc', '_1', 'ghi', '_3'], eliminating the keyword
def and the duplicate fieldname abc.

If verbose is true, the class definition is printed after it is built. This option is outdated; instead, it is
simpler to print the _source attribute.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no
more memory than regular tuples.

Changed in version 3.1: Added support for rename.

>>> # Basic example
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(11, y=22) # instantiate with positional or keyword arguments
>>> p[0] + p[1] # indexable like the plain tuple (11, 22)
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> p # readable __repr__ with a name=value style
Point(x=11, y=22)

212 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sqlite3
modules:

EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')

import csv
for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):

print(emp.name, emp.title)

import sqlite3
conn = sqlite3.connect('/companydata')
cursor = conn.cursor()
cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
for emp in map(EmployeeRecord._make, cursor.fetchall()):

print(emp.name, emp.title)

In addition to the methods inherited from tuples, named tuples support three additional methods and two
attributes. To prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make(iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make(t)
Point(x=11, y=22)

somenamedtuple._asdict()
Return a new OrderedDict which maps field names to their corresponding values:

>>> p = Point(x=11, y=22)
>>> p._asdict()
OrderedDict([('x', 11), ('y', 22)])

Changed in version 3.1: Returns an OrderedDict instead of a regular dict.

somenamedtuple._replace(**kwargs)
Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point(x=11, y=22)
>>> p._replace(x=33)
Point(x=33, y=22)

>>> for partnum, record in inventory.items():
... inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())

somenamedtuple._source
A string with the pure Python source code used to create the named tuple class. The source makes
the named tuple self-documenting. It can be printed, executed using exec(), or saved to a file and
imported.

New in version 3.3.

somenamedtuple._fields
Tuple of strings listing the field names. Useful for introspection and for creating new named tuple
types from existing named tuples.

8.3. collections — Container datatypes 213

The Python Library Reference, Release 3.5.7

>>> p._fields # view the field names
('x', 'y')

>>> Color = namedtuple('Color', 'red green blue')
>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
>>> Pixel(11, 22, 128, 255, 0)
Pixel(x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, use the getattr() function:

>>> getattr(p, 'x')
11

To convert a dictionary to a named tuple, use the double-star-operator (as described in tut-unpacking-
arguments):

>>> d = {'x': 11, 'y': 22}
>>> Point(**d)
Point(x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here
is how to add a calculated field and a fixed-width print format:

>>> class Point(namedtuple('Point', 'x y')):
... __slots__ = ()
... @property
... def hypot(self):
... return (self.x ** 2 + self.y ** 2) ** 0.5
... def __str__(self):
... return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot)

>>> for p in Point(3, 4), Point(14, 5/7):
... print(p)
Point: x= 3.000 y= 4.000 hypot= 5.000
Point: x=14.000 y= 0.714 hypot=14.018

The subclass shown above sets __slots__ to an empty tuple. This helps keep memory requirements low
by preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from
the _fields attribute:

>>> Point3D = namedtuple('Point3D', Point._fields + ('z',))

Docstrings can be customized by making direct assignments to the __doc__ fields:

>>> Book = namedtuple('Book', ['id', 'title', 'authors'])
>>> Book.__doc__ += ': Hardcover book in active collection'
>>> Book.id.__doc__ = '13-digit ISBN'
>>> Book.title.__doc__ = 'Title of first printing'
>>> Book.authors.__doc__ = 'List of authors sorted by last name'

Changed in version 3.5: Property docstrings became writeable.

Default values can be implemented by using _replace() to customize a prototype instance:

214 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

>>> Account = namedtuple('Account', 'owner balance transaction_count')
>>> default_account = Account('<owner name>', 0.0, 0)
>>> johns_account = default_account._replace(owner='John')
>>> janes_account = default_account._replace(owner='Jane')

See also:

• Recipe for named tuple abstract base class with a metaclass mix-in by Jan Kaliszewski. Besides provid-
ing an abstract base class for named tuples, it also supports an alternate metaclass-based constructor
that is convenient for use cases where named tuples are being subclassed.

8.3.6 OrderedDict objects

Ordered dictionaries are just like regular dictionaries but they remember the order that items were inserted.
When iterating over an ordered dictionary, the items are returned in the order their keys were first added.

class collections.OrderedDict([items])
Return an instance of a dict subclass, supporting the usual dict methods. An OrderedDict is a dict
that remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the
original insertion position is left unchanged. Deleting an entry and reinserting it will move it to the
end.

New in version 3.1.

popitem(last=True)
The popitem() method for ordered dictionaries returns and removes a (key, value) pair. The pairs
are returned in LIFO order if last is true or FIFO order if false.

move_to_end(key, last=True)
Move an existing key to either end of an ordered dictionary. The item is moved to the right end
if last is true (the default) or to the beginning if last is false. Raises KeyError if the key does not
exist:

>>> d = OrderedDict.fromkeys('abcde')
>>> d.move_to_end('b')
>>> ''.join(d.keys())
'acdeb'
>>> d.move_to_end('b', last=False)
>>> ''.join(d.keys())
'bacde'

New in version 3.2.

In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed().

Equality tests between OrderedDict objects are order-sensitive and are implemented as list(od1.
items())==list(od2.items()). Equality tests between OrderedDict objects and other Mapping objects are
order-insensitive like regular dictionaries. This allows OrderedDict objects to be substituted anywhere a
regular dictionary is used.

The OrderedDict constructor and update() method both accept keyword arguments, but their order is lost
because Python’s function call semantics pass in keyword arguments using a regular unordered dictionary.

Changed in version 3.5: The items, keys, and values views of OrderedDict now support reverse iteration
using reversed().

8.3. collections — Container datatypes 215

https://code.activestate.com/recipes/577629-namedtupleabc-abstract-base-class-mix-in-for-named/

The Python Library Reference, Release 3.5.7

OrderedDict Examples and Recipes

Since an ordered dictionary remembers its insertion order, it can be used in conjunction with sorting to make
a sorted dictionary:

>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}

>>> # dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])

>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])

>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

The new sorted dictionaries maintain their sort order when entries are deleted. But when new keys are
added, the keys are appended to the end and the sort is not maintained.

It is also straight-forward to create an ordered dictionary variant that remembers the order the keys were last
inserted. If a new entry overwrites an existing entry, the original insertion position is changed and moved to
the end:

class LastUpdatedOrderedDict(OrderedDict):
'Store items in the order the keys were last added'

def __setitem__(self, key, value):
if key in self:

del self[key]
OrderedDict.__setitem__(self, key, value)

An ordered dictionary can be combined with the Counter class so that the counter remembers the order
elements are first encountered:

class OrderedCounter(Counter, OrderedDict):
'Counter that remembers the order elements are first encountered'

def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, OrderedDict(self))

def __reduce__(self):
return self.__class__, (OrderedDict(self),)

8.3.7 UserDict objects

The class, UserDict acts as a wrapper around dictionary objects. The need for this class has been partially
supplanted by the ability to subclass directly from dict; however, this class can be easier to work with because
the underlying dictionary is accessible as an attribute.

class collections.UserDict([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is
accessible via the data attribute of UserDict instances. If initialdata is provided, data is initialized

216 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

with its contents; note that a reference to initialdata will not be kept, allowing it be used for other
purposes.

In addition to supporting the methods and operations of mappings, UserDict instances provide the
following attribute:

data
A real dictionary used to store the contents of the UserDict class.

8.3.8 UserList objects

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which
can inherit from them and override existing methods or add new ones. In this way, one can add new behaviors
to lists.

The need for this class has been partially supplanted by the ability to subclass directly from list; however,
this class can be easier to work with because the underlying list is accessible as an attribute.

class collections.UserList([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via
the data attribute of UserList instances. The instance’s contents are initially set to a copy of list,
defaulting to the empty list []. list can be any iterable, for example a real Python list or a UserList
object.

In addition to supporting the methods and operations of mutable sequences, UserList instances provide
the following attribute:

data
A real list object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expected to offer a constructor which can be called
with either no arguments or one argument. List operations which return a new sequence attempt to create
an instance of the actual implementation class. To do so, it assumes that the constructor can be called with
a single parameter, which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by
this class will need to be overridden; please consult the sources for information about the methods which
need to be provided in that case.

8.3.9 UserString objects

The class, UserString acts as a wrapper around string objects. The need for this class has been partially
supplanted by the ability to subclass directly from str; however, this class can be easier to work with because
the underlying string is accessible as an attribute.

class collections.UserString([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular
string object, which is accessible via the data attribute of UserString instances. The instance’s contents
are initially set to a copy of sequence. The sequence can be an instance of bytes, str, UserString (or a
subclass) or an arbitrary sequence which can be converted into a string using the built-in str() function.

Changed in version 3.5: New methods __getnewargs__, __rmod__, casefold, format_map, isprint-
able, and maketrans.

8.3. collections — Container datatypes 217

The Python Library Reference, Release 3.5.7

8.4 collections.abc — Abstract Base Classes for Containers

New in version 3.3: Formerly, this module was part of the collections module.

Source code: Lib/_collections_abc.py

This module provides abstract base classes that can be used to test whether a class provides a particular
interface; for example, whether it is hashable or whether it is a mapping.

8.4.1 Collections Abstract Base Classes

The collections module offers the following ABCs:

218 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.5/Lib/_collections_abc.py

The Python Library Reference, Release 3.5.7

ABC Inherits
from

Abstract Methods Mixin Methods

Container __contains__
Hashable __hash__
Iterable __iter__
Iterator Iterable __next__ __iter__
Generator Iterator send, throw close, __iter__, __next__
Sized __len__
Callable __call__
Sequence Sized,

Iterable,
Con-
tainer

__getitem__,
__len__

__contains__, __iter__,
__reversed__, index, and count

MutableSequence Sequence __getitem__,
__setitem__,
__delitem__,
__len__, insert

Inherited Sequence methods and append,
reverse, extend, pop, remove, and
__iadd__

ByteString Sequence __getitem__,
__len__

Inherited Sequence methods

Set Sized,
Iterable,
Con-
tainer

__contains__,
__iter__, __len__

__le__, __lt__, __eq__, __ne__,
__gt__, __ge__, __and__, __or__,
__sub__, __xor__, and isdisjoint

MutableSet Set __contains__,
__iter__, __len__,
add, discard

Inherited Set methods and clear, pop,
remove, __ior__, __iand__, __ixor__,
and __isub__

Mapping Sized,
Iterable,
Con-
tainer

__getitem__,
__iter__, __len__

__contains__, keys, items, values, get,
__eq__, and __ne__

MutableMapping Mapping __getitem__,
__setitem__,
__delitem__,
__iter__, __len__

Inherited Mapping methods and pop,
popitem, clear, update, and setdefault

MappingView Sized __len__
ItemsView Map-

pingView,
Set

__contains__, __iter__

KeysView Map-
pingView,
Set

__contains__, __iter__

ValuesView Map-
pingView

__contains__, __iter__

Awaitable __await__
Coroutine Await-

able
send, throw close

AsyncIterable __aiter__
AsyncIterator AsyncIt-

erable
__anext__ __aiter__

class collections.abc.Container
class collections.abc.Hashable

8.4. collections.abc — Abstract Base Classes for Containers 219

The Python Library Reference, Release 3.5.7

class collections.abc.Sized
class collections.abc.Callable

ABCs for classes that provide respectively the methods __contains__(), __hash__(), __len__(),
and __call__().

class collections.abc.Iterable
ABC for classes that provide the __iter__() method. See also the definition of iterable.

class collections.abc.Iterator
ABC for classes that provide the __iter__() and __next__() methods. See also the definition of
iterator.

class collections.abc.Generator
ABC for generator classes that implement the protocol defined in PEP 342 that extends iterators with
the send(), throw() and close() methods. See also the definition of generator.

New in version 3.5.

class collections.abc.Sequence
class collections.abc.MutableSequence
class collections.abc.ByteString

ABCs for read-only and mutable sequences.

Implementation note: Some of the mixin methods, such as __iter__(), __reversed__() and index(),
make repeated calls to the underlying __getitem__() method. Consequently, if __getitem__() is
implemented with constant access speed, the mixin methods will have linear performance; however,
if the underlying method is linear (as it would be with a linked list), the mixins will have quadratic
performance and will likely need to be overridden.

Changed in version 3.5: The index() method added support for stop and start arguments.

class collections.abc.Set
class collections.abc.MutableSet

ABCs for read-only and mutable sets.

class collections.abc.Mapping
class collections.abc.MutableMapping

ABCs for read-only and mutable mappings.

class collections.abc.MappingView
class collections.abc.ItemsView
class collections.abc.KeysView
class collections.abc.ValuesView

ABCs for mapping, items, keys, and values views.

class collections.abc.Awaitable
ABC for awaitable objects, which can be used in await expressions. Custom implementations must
provide the __await__() method.

Coroutine objects and instances of the Coroutine ABC are all instances of this ABC.

Note: In CPython, generator-based coroutines (generators decorated with types.coroutine() or
asyncio.coroutine()) are awaitables, even though they do not have an __await__() method. Using
isinstance(gencoro, Awaitable) for them will return False. Use inspect.isawaitable() to detect them.

New in version 3.5.

class collections.abc.Coroutine
ABC for coroutine compatible classes. These implement the following methods, defined in coroutine-

220 Chapter 8. Data Types

https://www.python.org/dev/peps/pep-0342

The Python Library Reference, Release 3.5.7

objects: send(), throw(), and close(). Custom implementations must also implement __await__().
All Coroutine instances are also instances of Awaitable. See also the definition of coroutine.

Note: In CPython, generator-based coroutines (generators decorated with types.coroutine() or
asyncio.coroutine()) are awaitables, even though they do not have an __await__() method. Using
isinstance(gencoro, Coroutine) for them will return False. Use inspect.isawaitable() to detect them.

New in version 3.5.

class collections.abc.AsyncIterable
ABC for classes that provide __aiter__ method. See also the definition of asynchronous iterable.

New in version 3.5.

class collections.abc.AsyncIterator
ABC for classes that provide __aiter__ and __anext__ methods. See also the definition of asyn-
chronous iterator.

New in version 3.5.

These ABCs allow us to ask classes or instances if they provide particular functionality, for example:

size = None
if isinstance(myvar, collections.abc.Sized):

size = len(myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container
APIs. For example, to write a class supporting the full Set API, it is only necessary to supply the three
underlying abstract methods: __contains__(), __iter__(), and __len__(). The ABC supplies the
remaining methods such as __and__() and isdisjoint():

class ListBasedSet(collections.abc.Set):
''' Alternate set implementation favoring space over speed

and not requiring the set elements to be hashable. '''
def __init__(self, iterable):

self.elements = lst = []
for value in iterable:

if value not in lst:
lst.append(value)

def __iter__(self):
return iter(self.elements)

def __contains__(self, value):
return value in self.elements

def __len__(self):
return len(self.elements)

s1 = ListBasedSet('abcdef')
s2 = ListBasedSet('defghi')
overlap = s1 & s2 # The __and__() method is supported automatically

Notes on using Set and MutableSet as a mixin:

(1) Since some set operations create new sets, the default mixin methods need a way to create new
instances from an iterable. The class constructor is assumed to have a signature in the form Class-
Name(iterable). That assumption is factored-out to an internal classmethod called _from_iterable()

8.4. collections.abc — Abstract Base Classes for Containers 221

The Python Library Reference, Release 3.5.7

which calls cls(iterable) to produce a new set. If the Set mixin is being used in a class with a dif-
ferent constructor signature, you will need to override _from_iterable() with a classmethod that can
construct new instances from an iterable argument.

(2) To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le__()
and __ge__(), then the other operations will automatically follow suit.

(3) The Set mixin provides a _hash() method to compute a hash value for the set; however, __hash__()
is not defined because not all sets are hashable or immutable. To add set hashability using mixins,
inherit from both Set() and Hashable(), then define __hash__ = Set._hash.

See also:

• OrderedSet recipe for an example built on MutableSet.

• For more about ABCs, see the abc module and PEP 3119.

8.5 heapq — Heap queue algorithm

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue
algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children.
This implementation uses arrays for which heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for all k,
counting elements from zero. For the sake of comparison, non-existing elements are considered to be infinite.
The interesting property of a heap is that its smallest element is always the root, heap[0].

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This
makes the relationship between the index for a node and the indexes for its children slightly less obvious,
but is more suitable since Python uses zero-based indexing. (b) Our pop method returns the smallest item,
not the largest (called a “min heap” in textbooks; a “max heap” is more common in texts because of its
suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap[0] is the smallest
item, and heap.sort() maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function
heapify().

The following functions are provided:

heapq.heappush(heap, item)
Push the value item onto the heap, maintaining the heap invariant.

heapq.heappop(heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised. To access the smallest item without popping it, use heap[0].

heapq.heappushpop(heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action
runs more efficiently than heappush() followed by a separate call to heappop().

heapq.heapify(x)
Transform list x into a heap, in-place, in linear time.

222 Chapter 8. Data Types

https://code.activestate.com/recipes/576694/
https://www.python.org/dev/peps/pep-3119
https://github.com/python/cpython/tree/3.5/Lib/heapq.py

The Python Library Reference, Release 3.5.7

heapq.heapreplace(heap, item)
Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t
change. If the heap is empty, IndexError is raised.

This one step operation is more efficient than a heappop() followed by heappush() and can be more
appropriate when using a fixed-size heap. The pop/push combination always returns an element from
the heap and replaces it with item.

The value returned may be larger than the item added. If that isn’t desired, consider using heappush-
pop() instead. Its push/pop combination returns the smaller of the two values, leaving the larger value
on the heap.

The module also offers three general purpose functions based on heaps.

heapq.merge(*iterables, key=None, reverse=False)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from
multiple log files). Returns an iterator over the sorted values.

Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data into memory
all at once, and assumes that each of the input streams is already sorted (smallest to largest).

Has two optional arguments which must be specified as keyword arguments.

key specifies a key function of one argument that is used to extract a comparison key from each input
element. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the input elements are merged as if each comparison
were reversed.

Changed in version 3.5: Added the optional key and reverse parameters.

heapq.nlargest(n, iterable, key=None)
Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted(iterable, key=key, reverse=True)[:n]

heapq.nsmallest(n, iterable, key=None)
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided,
specifies a function of one argument that is used to extract a comparison key from each element in the
iterable: key=str.lower Equivalent to: sorted(iterable, key=key)[:n]

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use
the sorted() function. Also, when n==1, it is more efficient to use the built-in min() and max() functions.
If repeated usage of these functions is required, consider turning the iterable into an actual heap.

8.5.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values
one at a time:

>>> def heapsort(iterable):
... h = []
... for value in iterable:
... heappush(h, value)
... return [heappop(h) for i in range(len(h))]
...
>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

8.5. heapq — Heap queue algorithm 223

https://en.wikipedia.org/wiki/Heapsort

The Python Library Reference, Release 3.5.7

This is similar to sorted(iterable), but unlike sorted(), this implementation is not stable.

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside
the main record being tracked:

>>> h = []
>>> heappush(h, (5, 'write code'))
>>> heappush(h, (7, 'release product'))
>>> heappush(h, (1, 'write spec'))
>>> heappush(h, (3, 'create tests'))
>>> heappop(h)
(1, 'write spec')

8.5.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:

• Sort stability: how do you get two tasks with equal priorities to be returned in the order they were
originally added?

• Tuple comparison breaks for (priority, task) pairs if the priorities are equal and the tasks do not have
a default comparison order.

• If the priority of a task changes, how do you move it to a new position in the heap?

• Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry
count, and the task. The entry count serves as a tie-breaker so that two tasks with the same priority are
returned in the order they were added. And since no two entry counts are the same, the tuple comparison
will never attempt to directly compare two tasks.

The remaining challenges revolve around finding a pending task and making changes to its priority or
removing it entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure
invariants. So, a possible solution is to mark the entry as removed and add a new entry with the revised
priority:

pq = [] # list of entries arranged in a heap
entry_finder = {} # mapping of tasks to entries
REMOVED = '<removed-task>' # placeholder for a removed task
counter = itertools.count() # unique sequence count

def add_task(task, priority=0):
'Add a new task or update the priority of an existing task'
if task in entry_finder:

remove_task(task)
count = next(counter)
entry = [priority, count, task]
entry_finder[task] = entry
heappush(pq, entry)

def remove_task(task):
'Mark an existing task as REMOVED. Raise KeyError if not found.'
entry = entry_finder.pop(task)
entry[-1] = REMOVED

(continues on next page)

224 Chapter 8. Data Types

https://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 3.5.7

(continued from previous page)

def pop_task():
'Remove and return the lowest priority task. Raise KeyError if empty.'
while pq:

priority, count, task = heappop(pq)
if task is not REMOVED:

del entry_finder[task]
return task

raise KeyError('pop from an empty priority queue')

8.5.3 Theory

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for all k, counting elements from 0. For
the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a
heap is that a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The
numbers below are k, not a[k]:

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell k is topping 2*k+1 and 2*k+2. In a usual binary tournament we see in sports,
each cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all
opponents s/he had. However, in many computer applications of such tournaments, we do not need to trace
the history of a winner. To be more memory efficient, when a winner is promoted, we try to replace it by
something else at a lower level, and the rule becomes that a cell and the two cells it tops contain three
different items, but the top cell “wins” over the two topped cells.

If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic
way to remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above)
into the 0 position, and then percolate this new 0 down the tree, exchanging values, until the invariant is
re-established. This is clearly logarithmic on the total number of items in the tree. By iterating over all
items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided
that the inserted items are not “better” than the last 0’th element you extracted. This is especially useful in
simulation contexts, where the tree holds all incoming events, and the “win” condition means the smallest
scheduled time. When an event schedules other events for execution, they are scheduled into the future, so
they can easily go into the heap. So, a heap is a good structure for implementing schedulers (this is what I
used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this,
as they are reasonably speedy, the speed is almost constant, and the worst case is not much different than
the average case. However, there are other representations which are more efficient overall, yet the worst
cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing
“runs” (which are pre-sorted sequences, whose size is usually related to the amount of CPU memory), followed

8.5. heapq — Heap queue algorithm 225

The Python Library Reference, Release 3.5.7

by a merging passes for these runs, which merging is often very cleverly organised1. It is very important
that the initial sort produces the longest runs possible. Tournaments are a good way to achieve that. If,
using all the memory available to hold a tournament, you replace and percolate items that happen to fit the
current run, you’ll produce runs which are twice the size of the memory for random input, and much better
for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament
(because the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap
decreases. The freed memory could be cleverly reused immediately for progressively building a second heap,
which grows at exactly the same rate the first heap is melting. When the first heap completely vanishes, you
switch heaps and start a new run. Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is
good to keep a ‘heap’ module around. :-)

8.6 bisect — Array bisection algorithm

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each
insertion. For long lists of items with expensive comparison operations, this can be an improvement over the
more common approach. The module is called bisect because it uses a basic bisection algorithm to do its
work. The source code may be most useful as a working example of the algorithm (the boundary conditions
are already right!).

The following functions are provided:

bisect.bisect_left(a, x, lo=0, hi=len(a))
Locate the insertion point for x in a to maintain sorted order. The parameters lo and hi may be used
to specify a subset of the list which should be considered; by default the entire list is used. If x is
already present in a, the insertion point will be before (to the left of) any existing entries. The return
value is suitable for use as the first parameter to list.insert() assuming that a is already sorted.

The returned insertion point i partitions the array a into two halves so that all(val < x for val in a[lo:i])
for the left side and all(val >= x for val in a[i:hi]) for the right side.

bisect.bisect_right(a, x, lo=0, hi=len(a))
bisect.bisect(a, x, lo=0, hi=len(a))

Similar to bisect_left(), but returns an insertion point which comes after (to the right of) any existing
entries of x in a.

The returned insertion point i partitions the array a into two halves so that all(val <= x for val in
a[lo:i]) for the left side and all(val > x for val in a[i:hi]) for the right side.

bisect.insort_left(a, x, lo=0, hi=len(a))
Insert x in a in sorted order. This is equivalent to a.insert(bisect.bisect_left(a, x, lo, hi), x) assuming
that a is already sorted. Keep in mind that the O(log n) search is dominated by the slow O(n) insertion
step.

bisect.insort_right(a, x, lo=0, hi=len(a))

1 The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of
the seeking capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one
had to be very clever to ensure (far in advance) that each tape movement will be the most effective possible (that is, will best
participate at “progressing” the merge). Some tapes were even able to read backwards, and this was also used to avoid the
rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all times, sorting has always been a
Great Art! :-)

226 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.5/Lib/bisect.py

The Python Library Reference, Release 3.5.7

bisect.insort(a, x, lo=0, hi=len(a))
Similar to insort_left(), but inserting x in a after any existing entries of x.

See also:

SortedCollection recipe that uses bisect to build a full-featured collection class with straight-forward search
methods and support for a key-function. The keys are precomputed to save unnecessary calls to the key
function during searches.

8.6.1 Searching Sorted Lists

The above bisect() functions are useful for finding insertion points but can be tricky or awkward to use for
common searching tasks. The following five functions show how to transform them into the standard lookups
for sorted lists:

def index(a, x):
'Locate the leftmost value exactly equal to x'
i = bisect_left(a, x)
if i != len(a) and a[i] == x:

return i
raise ValueError

def find_lt(a, x):
'Find rightmost value less than x'
i = bisect_left(a, x)
if i:

return a[i-1]
raise ValueError

def find_le(a, x):
'Find rightmost value less than or equal to x'
i = bisect_right(a, x)
if i:

return a[i-1]
raise ValueError

def find_gt(a, x):
'Find leftmost value greater than x'
i = bisect_right(a, x)
if i != len(a):

return a[i]
raise ValueError

def find_ge(a, x):
'Find leftmost item greater than or equal to x'
i = bisect_left(a, x)
if i != len(a):

return a[i]
raise ValueError

8.6.2 Other Examples

The bisect() function can be useful for numeric table lookups. This example uses bisect() to look up a letter
grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89
is a ‘B’, and so on:

8.6. bisect — Array bisection algorithm 227

https://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 3.5.7

>>> def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):
... i = bisect(breakpoints, score)
... return grades[i]
...
>>> [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]
['F', 'A', 'C', 'C', 'B', 'A', 'A']

Unlike the sorted() function, it does not make sense for the bisect() functions to have key or reversed
arguments because that would lead to an inefficient design (successive calls to bisect functions would not
“remember” all of the previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

>>> data = [('red', 5), ('blue', 1), ('yellow', 8), ('black', 0)]
>>> data.sort(key=lambda r: r[1])
>>> keys = [r[1] for r in data] # precomputed list of keys
>>> data[bisect_left(keys, 0)]
('black', 0)
>>> data[bisect_left(keys, 1)]
('blue', 1)
>>> data[bisect_left(keys, 5)]
('red', 5)
>>> data[bisect_left(keys, 8)]
('yellow', 8)

8.7 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters,
integers, floating point numbers. Arrays are sequence types and behave very much like lists, except that the
type of objects stored in them is constrained. The type is specified at object creation time by using a type
code, which is a single character. The following type codes are defined:

Type code C Type Python Type Minimum size in bytes Notes
'b' signed char int 1
'B' unsigned char int 1
'u' Py_UNICODE Unicode character 2 (1)
'h' signed short int 2
'H' unsigned short int 2
'i' signed int int 2
'I' unsigned int int 2
'l' signed long int 4
'L' unsigned long int 4
'q' signed long long int 8 (2)
'Q' unsigned long long int 8 (2)
'f' float float 4
'd' double float 8

Notes:

(1) The 'u' type code corresponds to Python’s obsolete unicode character (Py_UNICODE which is
wchar_t). Depending on the platform, it can be 16 bits or 32 bits.

228 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

'u' will be removed together with the rest of the Py_UNICODE API.

Deprecated since version 3.3, will be removed in version 4.0.

(2) The 'q' and 'Q' type codes are available only if the platform C compiler used to build Python
supports C long long, or, on Windows, __int64.

New in version 3.3.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C
implementation). The actual size can be accessed through the itemsize attribute.

The module defines the following type:

class array.array(typecode[, initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value,
which must be a list, a bytes-like object, or iterable over elements of the appropriate type.

If given a list or string, the initializer is passed to the new array’s fromlist(), frombytes(), or fromuni-
code() method (see below) to add initial items to the array. Otherwise, the iterable initializer is passed
to the extend() method.

array.typecodes
A string with all available type codes.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplica-
tion. When using slice assignment, the assigned value must be an array object with the same type code;
in all other cases, TypeError is raised. Array objects also implement the buffer interface, and may be used
wherever bytes-like objects are supported.

The following data items and methods are also supported:

array.typecode
The typecode character used to create the array.

array.itemsize
The length in bytes of one array item in the internal representation.

array.append(x)
Append a new item with value x to the end of the array.

array.buffer_info()
Return a tuple (address, length) giving the current memory address and the length in elements of
the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
array.buffer_info()[1] * array.itemsize. This is occasionally useful when working with low-level (and
inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl() operations.
The returned numbers are valid as long as the array exists and no length-changing operations are
applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make
use of this information), it makes more sense to use the buffer interface supported by array objects.
This method is maintained for backward compatibility and should be avoided in new code. The buffer
interface is documented in bufferobjects.

array.byteswap()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of values, RuntimeError is raised. It is useful when reading data from a file written on
a machine with a different byte order.

8.7. array — Efficient arrays of numeric values 229

The Python Library Reference, Release 3.5.7

array.count(x)
Return the number of occurrences of x in the array.

array.extend(iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly
the same type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable
and its elements must be the right type to be appended to the array.

array.frombytes(s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been
read from a file using the fromfile() method).

New in version 3.2: fromstring() is renamed to frombytes() for clarity.

array.fromfile(f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If
less than n items are available, EOFError is raised, but the items that were available are still inserted
into the array. f must be a real built-in file object; something else with a read() method won’t do.

array.fromlist(list)
Append items from the list. This is equivalent to for x in list: a.append(x) except that if there is a
type error, the array is unchanged.

array.fromstring()
Deprecated alias for frombytes().

array.fromunicode(s)
Extends this array with data from the given unicode string. The array must be a type 'u' array;
otherwise a ValueError is raised. Use array.frombytes(unicodestring.encode(enc)) to append Unicode
data to an array of some other type.

array.index(x)
Return the smallest i such that i is the index of the first occurrence of x in the array.

array.insert(i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being
relative to the end of the array.

array.pop([i])
Removes the item with the index i from the array and returns it. The optional argument defaults to
-1, so that by default the last item is removed and returned.

array.remove(x)
Remove the first occurrence of x from the array.

array.reverse()
Reverse the order of the items in the array.

array.tobytes()
Convert the array to an array of machine values and return the bytes representation (the same sequence
of bytes that would be written to a file by the tofile() method.)

New in version 3.2: tostring() is renamed to tobytes() for clarity.

array.tofile(f)
Write all items (as machine values) to the file object f.

array.tolist()
Convert the array to an ordinary list with the same items.

array.tostring()
Deprecated alias for tobytes().

230 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

array.tounicode()
Convert the array to a unicode string. The array must be a type 'u' array; otherwise a ValueError is
raised. Use array.tobytes().decode(enc) to obtain a unicode string from an array of some other type.

When an array object is printed or converted to a string, it is represented as array(typecode, initializer).
The initializer is omitted if the array is empty, otherwise it is a string if the typecode is 'u', otherwise it
is a list of numbers. The string is guaranteed to be able to be converted back to an array with the same
type and value using eval(), so long as the array class has been imported using from array import array.
Examples:

array('l')
array('u', 'hello \u2641')
array('l', [1, 2, 3, 4, 5])
array('d', [1.0, 2.0, 3.14])

See also:

Module struct Packing and unpacking of heterogeneous binary data.

Module xdrlib Packing and unpacking of External Data Representation (XDR) data as used in some remote
procedure call systems.

The Numerical Python Documentation The Numeric Python extension (NumPy) defines another array
type; see http://www.numpy.org/ for further information about Numerical Python.

8.8 weakref — Weak references

Source code: Lib/weakref.py

The weakref module allows the Python programmer to create weak references to objects.

In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references
to a referent are weak references, garbage collection is free to destroy the referent and reuse its memory for
something else. However, until the object is actually destroyed the weak reference may return the object
even if there are no strong references to it.

A primary use for weak references is to implement caches or mappings holding large objects, where it’s
desired that a large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with
each. If you used a Python dictionary to map names to images, or images to names, the image objects would
remain alive just because they appeared as values or keys in the dictionaries. The WeakKeyDictionary and
WeakValueDictionary classes supplied by the weakref module are an alternative, using weak references to
construct mappings that don’t keep objects alive solely because they appear in the mapping objects. If, for
example, an image object is a value in a WeakValueDictionary, then when the last remaining references to
that image object are the weak references held by weak mappings, garbage collection can reclaim the object,
and its corresponding entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up call-
back functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed
by garbage collection. WeakSet implements the set interface, but keeps weak references to its elements, just
like a WeakKeyDictionary does.

8.8. weakref — Weak references 231

https://docs.scipy.org/doc/
http://www.numpy.org/
https://github.com/python/cpython/tree/3.5/Lib/weakref.py

The Python Library Reference, Release 3.5.7

finalize provides a straight forward way to register a cleanup function to be called when an object is garbage
collected. This is simpler to use than setting up a callback function on a raw weak reference, since the
module automatically ensures that the finalizer remains alive until the object is collected.

Most programs should find that using one of these weak container types or finalize is all they need – it’s not
usually necessary to create your own weak references directly. The low-level machinery is exposed by the
weakref module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written
in Python (but not in C), instance methods, sets, frozensets, some file objects, generators, type objects,
sockets, arrays, deques, regular expression pattern objects, and code objects.

Changed in version 3.2: Added support for thread.lock, threading.Lock, and code objects.

Several built-in types such as list and dict do not directly support weak references but can add support
through subclassing:

class Dict(dict):
pass

obj = Dict(red=1, green=2, blue=3) # this object is weak referenceable

Other built-in types such as tuple and int do not support weak references even when subclassed (This is an
implementation detail and may be different across various Python implementations.).

Extension types can easily be made to support weak references; see weakref-support.

class weakref.ref(object[, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object
if the referent is still alive; if the referent is no longer alive, calling the reference object will cause None
to be returned. If callback is provided and not None, and the returned weakref object is still alive,
the callback will be called when the object is about to be finalized; the weak reference object will be
passed as the only parameter to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for
each weak reference will be called from the most recently registered callback to the oldest registered
callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated;
they are handled in exactly the same way as exceptions raised from an object’s __del__() method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after
the object was deleted. If hash() is called the first time only after the object was deleted, the call will
raise TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardless of the callback). If either referent has
been deleted, the references are equal only if the reference objects are the same object.

This is a subclassable type rather than a factory function.

__callback__
This read-only attribute returns the callback currently associated to the weakref. If there is no
callback or if the referent of the weakref is no longer alive then this attribute will have value None.

Changed in version 3.4: Added the __callback__ attribute.

weakref.proxy(object[, callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object
will have a type of either ProxyType or CallableProxyType, depending on whether object is callable.

232 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to
their fundamentally mutable nature, and prevent their use as dictionary keys. callback is the same as
the parameter of the same name to the ref() function.

weakref.getweakrefcount(object)
Return the number of weak references and proxies which refer to object.

weakref.getweakrefs(object)
Return a list of all weak reference and proxy objects which refer to object.

class weakref.WeakKeyDictionary([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned
by other parts of an application without adding attributes to those objects. This can be especially
useful with objects that override attribute accesses.

Note: Caution: Because a WeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakKeyDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by
magic” (as a side effect of garbage collection).

WeakKeyDictionary objects have an additional method that exposes the internal references directly. The
references are not guaranteed to be “live” at the time they are used, so the result of calling the references
needs to be checked before being used. This can be used to avoid creating references that will cause the
garbage collector to keep the keys around longer than needed.

WeakKeyDictionary.keyrefs()
Return an iterable of the weak references to the keys.

class weakref.WeakValueDictionary([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

Note: Caution: Because a WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by
magic” (as a side effect of garbage collection).

WeakValueDictionary objects have an additional method that has the same issues as the keyrefs() method
of WeakKeyDictionary objects.

WeakValueDictionary.valuerefs()
Return an iterable of the weak references to the values.

class weakref.WeakSet([elements])
Set class that keeps weak references to its elements. An element will be discarded when no strong
reference to it exists any more.

class weakref.WeakMethod(method)
A custom ref subclass which simulates a weak reference to a bound method (i.e., a method defined on
a class and looked up on an instance). Since a bound method is ephemeral, a standard weak reference
cannot keep hold of it. WeakMethod has special code to recreate the bound method until either the
object or the original function dies:

8.8. weakref — Weak references 233

The Python Library Reference, Release 3.5.7

>>> class C:
... def method(self):
... print("method called!")
...
>>> c = C()
>>> r = weakref.ref(c.method)
>>> r()
>>> r = weakref.WeakMethod(c.method)
>>> r()
<bound method C.method of <__main__.C object at 0x7fc859830220>>
>>> r()()
method called!
>>> del c
>>> gc.collect()
0
>>> r()
>>>

New in version 3.4.

class weakref.finalize(obj, func, *args, **kwargs)
Return a callable finalizer object which will be called when obj is garbage collected. Unlike an ordinary
weak reference, a finalizer will always survive until the reference object is collected, greatly simplifying
lifecycle management.

A finalizer is considered alive until it is called (either explicitly or at garbage collection), and after that
it is dead. Calling a live finalizer returns the result of evaluating func(*arg, **kwargs), whereas calling
a dead finalizer returns None.

Exceptions raised by finalizer callbacks during garbage collection will be shown on the standard error
output, but cannot be propagated. They are handled in the same way as exceptions raised from an
object’s __del__() method or a weak reference’s callback.

When the program exits, each remaining live finalizer is called unless its atexit attribute has been set
to false. They are called in reverse order of creation.

A finalizer will never invoke its callback during the later part of the interpreter shutdown when module
globals are liable to have been replaced by None.

__call__()
If self is alive then mark it as dead and return the result of calling func(*args, **kwargs). If self
is dead then return None.

detach()
If self is alive then mark it as dead and return the tuple (obj, func, args, kwargs). If self is dead
then return None.

peek()
If self is alive then return the tuple (obj, func, args, kwargs). If self is dead then return None.

alive
Property which is true if the finalizer is alive, false otherwise.

atexit
A writable boolean property which by default is true. When the program exits, it calls all
remaining live finalizers for which atexit is true. They are called in reverse order of creation.

Note: It is important to ensure that func, args and kwargs do not own any references to obj, either
directly or indirectly, since otherwise obj will never be garbage collected. In particular, func should

234 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

not be a bound method of obj.

New in version 3.4.

weakref.ReferenceType
The type object for weak references objects.

weakref.ProxyType
The type object for proxies of objects which are not callable.

weakref.CallableProxyType
The type object for proxies of callable objects.

weakref.ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a
proxy without being dependent on naming both proxy types.

exception weakref.ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the
same as the standard ReferenceError exception.

See also:

PEP 205 - Weak References The proposal and rationale for this feature, including links to earlier implemen-
tations and information about similar features in other languages.

8.8.1 Weak Reference Objects

Weak reference objects have no methods and no attributes besides ref.__callback__. A weak reference
object allows the referent to be obtained, if it still exists, by calling it:

>>> import weakref
>>> class Object:
... pass
...
>>> o = Object()
>>> r = weakref.ref(o)
>>> o2 = r()
>>> o is o2
True

If the referent no longer exists, calling the reference object returns None:

>>> del o, o2
>>> print(r())
None

Testing that a weak reference object is still live should be done using the expression ref() is not None.
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o = r()
if o is None:

referent has been garbage collected
print("Object has been deallocated; can't frobnicate.")

else:
print("Object is still live!")
o.do_something_useful()

8.8. weakref — Weak references 235

https://www.python.org/dev/peps/pep-0205

The Python Library Reference, Release 3.5.7

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation
of the WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be
most useful to associate additional information with a reference, but could also be used to insert additional
processing on calls to retrieve the referent.

This example shows how a subclass of ref can be used to store additional information about an object and
affect the value that’s returned when the referent is accessed:

import weakref

class ExtendedRef(weakref.ref):
def __init__(self, ob, callback=None, **annotations):

super(ExtendedRef, self).__init__(ob, callback)
self.__counter = 0
for k, v in annotations.items():

setattr(self, k, v)

def __call__(self):
"""Return a pair containing the referent and the number of
times the reference has been called.
"""
ob = super(ExtendedRef, self).__call__()
if ob is not None:

self.__counter += 1
ob = (ob, self.__counter)

return ob

8.8.2 Example

This simple example shows how an application can use object IDs to retrieve objects that it has seen before.
The IDs of the objects can then be used in other data structures without forcing the objects to remain alive,
but the objects can still be retrieved by ID if they do.

import weakref

_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

8.8.3 Finalizer Objects

The main benefit of using finalize is that it makes it simple to register a callback without needing to preserve
the returned finalizer object. For instance

236 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

>>> import weakref
>>> class Object:
... pass
...
>>> kenny = Object()
>>> weakref.finalize(kenny, print, "You killed Kenny!") #doctest:+ELLIPSIS
<finalize object at ...; for 'Object' at ...>
>>> del kenny
You killed Kenny!

The finalizer can be called directly as well. However the finalizer will invoke the callback at most once.

>>> def callback(x, y, z):
... print("CALLBACK")
... return x + y + z
...
>>> obj = Object()
>>> f = weakref.finalize(obj, callback, 1, 2, z=3)
>>> assert f.alive
>>> assert f() == 6
CALLBACK
>>> assert not f.alive
>>> f() # callback not called because finalizer dead
>>> del obj # callback not called because finalizer dead

You can unregister a finalizer using its detach() method. This kills the finalizer and returns the arguments
passed to the constructor when it was created.

>>> obj = Object()
>>> f = weakref.finalize(obj, callback, 1, 2, z=3)
>>> f.detach() #doctest:+ELLIPSIS
(<__main__.Object object ...>, <function callback ...>, (1, 2), {'z': 3})
>>> newobj, func, args, kwargs = _
>>> assert not f.alive
>>> assert newobj is obj
>>> assert func(*args, **kwargs) == 6
CALLBACK

Unless you set the atexit attribute to False, a finalizer will be called when the program exits if it is still alive.
For instance

>>> obj = Object()
>>> weakref.finalize(obj, print, "obj dead or exiting") #doctest:+ELLIPSIS
<finalize object at ...; for 'Object' at ...>
>>> exit() #doctest:+SKIP
obj dead or exiting

8.8.4 Comparing finalizers with __del__() methods

Suppose we want to create a class whose instances represent temporary directories. The directories should
be deleted with their contents when the first of the following events occurs:

• the object is garbage collected,

• the object’s remove() method is called, or

• the program exits.

8.8. weakref — Weak references 237

The Python Library Reference, Release 3.5.7

We might try to implement the class using a __del__() method as follows:

class TempDir:
def __init__(self):

self.name = tempfile.mkdtemp()

def remove(self):
if self.name is not None:

shutil.rmtree(self.name)
self.name = None

@property
def removed(self):

return self.name is None

def __del__(self):
self.remove()

Starting with Python 3.4, __del__() methods no longer prevent reference cycles from being garbage col-
lected, and module globals are no longer forced to None during interpreter shutdown. So this code should
work without any issues on CPython.

However, handling of __del__() methods is notoriously implementation specific, since it depends on internal
details of the interpreter’s garbage collector implementation.

A more robust alternative can be to define a finalizer which only references the specific functions and objects
that it needs, rather than having access to the full state of the object:

class TempDir:
def __init__(self):

self.name = tempfile.mkdtemp()
self._finalizer = weakref.finalize(self, shutil.rmtree, self.name)

def remove(self):
self._finalizer()

@property
def removed(self):

return not self._finalizer.alive

Defined like this, our finalizer only receives a reference to the details it needs to clean up the directory
appropriately. If the object never gets garbage collected the finalizer will still be called at exit.

The other advantage of weakref based finalizers is that they can be used to register finalizers for classes
where the definition is controlled by a third party, such as running code when a module is unloaded:

import weakref, sys
def unloading_module():

implicit reference to the module globals from the function body
weakref.finalize(sys.modules[__name__], unloading_module)

Note: If you create a finalizer object in a daemonic thread just as the program exits then there is the
possibility that the finalizer does not get called at exit. However, in a daemonic thread atexit.register(), try:
... finally: ... and with: ... do not guarantee that cleanup occurs either.

238 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

8.9 types — Dynamic type creation and names for built-in types

Source code: Lib/types.py

This module defines utility function to assist in dynamic creation of new types.

It also defines names for some object types that are used by the standard Python interpreter, but not exposed
as builtins like int or str are.

Finally, it provides some additional type-related utility classes and functions that are not fundamental enough
to be builtins.

8.9.1 Dynamic Type Creation

types.new_class(name, bases=(), kwds=None, exec_body=None)
Creates a class object dynamically using the appropriate metaclass.

The first three arguments are the components that make up a class definition header: the class name,
the base classes (in order), the keyword arguments (such as metaclass).

The exec_body argument is a callback that is used to populate the freshly created class namespace.
It should accept the class namespace as its sole argument and update the namespace directly with the
class contents. If no callback is provided, it has the same effect as passing in lambda ns: ns.

New in version 3.3.

types.prepare_class(name, bases=(), kwds=None)
Calculates the appropriate metaclass and creates the class namespace.

The arguments are the components that make up a class definition header: the class name, the base
classes (in order) and the keyword arguments (such as metaclass).

The return value is a 3-tuple: metaclass, namespace, kwds

metaclass is the appropriate metaclass, namespace is the prepared class namespace and kwds is an
updated copy of the passed in kwds argument with any 'metaclass' entry removed. If no kwds
argument is passed in, this will be an empty dict.

New in version 3.3.

See also:

metaclasses Full details of the class creation process supported by these functions

PEP 3115 - Metaclasses in Python 3000 Introduced the __prepare__ namespace hook

8.9.2 Standard Interpreter Types

This module provides names for many of the types that are required to implement a Python interpreter.
It deliberately avoids including some of the types that arise only incidentally during processing such as the
listiterator type.

Typical use of these names is for isinstance() or issubclass() checks.

Standard names are defined for the following types:

types.FunctionType

8.9. types — Dynamic type creation and names for built-in types 239

https://github.com/python/cpython/tree/3.5/Lib/types.py
https://www.python.org/dev/peps/pep-3115

The Python Library Reference, Release 3.5.7

types.LambdaType
The type of user-defined functions and functions created by lambda expressions.

types.GeneratorType
The type of generator-iterator objects, created by generator functions.

types.CoroutineType
The type of coroutine objects, created by async def functions.

New in version 3.5.

types.CodeType
The type for code objects such as returned by compile().

types.MethodType
The type of methods of user-defined class instances.

types.BuiltinFunctionType
types.BuiltinMethodType

The type of built-in functions like len() or sys.exit(), and methods of built-in classes. (Here, the term
“built-in” means “written in C”.)

class types.ModuleType(name, doc=None)
The type of modules. Constructor takes the name of the module to be created and optionally its
docstring.

Note: Use importlib.util.module_from_spec() to create a new module if you wish to set the various
import-controlled attributes.

__doc__
The docstring of the module. Defaults to None.

__loader__
The loader which loaded the module. Defaults to None.

Changed in version 3.4: Defaults to None. Previously the attribute was optional.

__name__
The name of the module.

__package__
Which package a module belongs to. If the module is top-level (i.e. not a part of any specific
package) then the attribute should be set to '', else it should be set to the name of the package
(which can be __name__ if the module is a package itself). Defaults to None.

Changed in version 3.4: Defaults to None. Previously the attribute was optional.

types.TracebackType
The type of traceback objects such as found in sys.exc_info()[2].

types.FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

types.GetSetDescriptorType
The type of objects defined in extension modules with PyGetSetDef, such as FrameType.f_locals or
array.array.typecode. This type is used as descriptor for object attributes; it has the same purpose as
the property type, but for classes defined in extension modules.

types.MemberDescriptorType
The type of objects defined in extension modules with PyMemberDef, such as datetime.timedelta.days.

240 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

This type is used as descriptor for simple C data members which use standard conversion functions; it
has the same purpose as the property type, but for classes defined in extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to
GetSetDescriptorType.

class types.MappingProxyType(mapping)
Read-only proxy of a mapping. It provides a dynamic view on the mapping’s entries, which means
that when the mapping changes, the view reflects these changes.

New in version 3.3.

key in proxy
Return True if the underlying mapping has a key key, else False.

proxy[key]
Return the item of the underlying mapping with key key. Raises a KeyError if key is not in the
underlying mapping.

iter(proxy)
Return an iterator over the keys of the underlying mapping. This is a shortcut for iter(proxy.
keys()).

len(proxy)
Return the number of items in the underlying mapping.

copy()
Return a shallow copy of the underlying mapping.

get(key[, default])
Return the value for key if key is in the underlying mapping, else default. If default is not given,
it defaults to None, so that this method never raises a KeyError.

items()
Return a new view of the underlying mapping’s items ((key, value) pairs).

keys()
Return a new view of the underlying mapping’s keys.

values()
Return a new view of the underlying mapping’s values.

8.9.3 Additional Utility Classes and Functions

class types.SimpleNamespace
A simple object subclass that provides attribute access to its namespace, as well as a meaningful repr.

Unlike object, with SimpleNamespace you can add and remove attributes. If a SimpleNamespace object
is initialized with keyword arguments, those are directly added to the underlying namespace.

The type is roughly equivalent to the following code:

class SimpleNamespace:
def __init__(self, **kwargs):

self.__dict__.update(kwargs)

def __repr__(self):
keys = sorted(self.__dict__)
items = ("{}={!r}".format(k, self.__dict__[k]) for k in keys)
return "{}({})".format(type(self).__name__, ", ".join(items))

(continues on next page)

8.9. types — Dynamic type creation and names for built-in types 241

The Python Library Reference, Release 3.5.7

(continued from previous page)

def __eq__(self, other):
return self.__dict__ == other.__dict__

SimpleNamespace may be useful as a replacement for class NS: pass. However, for a structured record
type use namedtuple() instead.

New in version 3.3.

types.DynamicClassAttribute(fget=None, fset=None, fdel=None, doc=None)
Route attribute access on a class to __getattr__.

This is a descriptor, used to define attributes that act differently when accessed through an instance
and through a class. Instance access remains normal, but access to an attribute through a class will
be routed to the class’s __getattr__ method; this is done by raising AttributeError.

This allows one to have properties active on an instance, and have virtual attributes on the class with
the same name (see Enum for an example).

New in version 3.4.

8.9.4 Coroutine Utility Functions

types.coroutine(gen_func)
This function transforms a generator function into a coroutine function which returns a generator-
based coroutine. The generator-based coroutine is still a generator iterator, but is also considered to
be a coroutine object and is awaitable. However, it may not necessarily implement the __await__()
method.

If gen_func is a generator function, it will be modified in-place.

If gen_func is not a generator function, it will be wrapped. If it returns an instance of collections.abc.
Generator, the instance will be wrapped in an awaitable proxy object. All other types of objects will
be returned as is.

New in version 3.5.

8.10 copy — Shallow and deep copy operations

Source code: Lib/copy.py

Assignment statements in Python do not copy objects, they create bindings between a target and an object.
For collections that are mutable or contain mutable items, a copy is sometimes needed so one can change one
copy without changing the other. This module provides generic shallow and deep copy operations (explained
below).

Interface summary:

copy.copy(x)
Return a shallow copy of x.

copy.deepcopy(x)
Return a deep copy of x.

242 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.5/Lib/copy.py

The Python Library Reference, Release 3.5.7

exception copy.error
Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

• A shallow copy constructs a new compound object and then (to the extent possible) inserts references
into it to the objects found in the original.

• A deep copy constructs a new compound object and then, recursively, inserts copies into it of the
objects found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

• Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves)
may cause a recursive loop.

• Because deep copy copies everything it may copy too much, such as data which is intended to be shared
between copies.

The deepcopy() function avoids these problems by:

• keeping a “memo” dictionary of objects already copied during the current copying pass; and

• letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array,
or any similar types. It does “copy” functions and classes (shallow and deeply), by returning the original
object unchanged; this is compatible with the way these are treated by the pickle module.

Shallow copies of dictionaries can be made using dict.copy(), and of lists by assigning a slice of the entire
list, for example, copied_list = original_list[:].

Classes can use the same interfaces to control copying that they use to control pickling. See the description
of module pickle for information on these methods. In fact, the copy module uses the registered pickle
functions from the copyreg module.

In order for a class to define its own copy implementation, it can define special methods __copy__() and
__deepcopy__(). The former is called to implement the shallow copy operation; no additional arguments
are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the __deepcopy__() implementation needs to make a deep copy of a component, it should call
the deepcopy() function with the component as first argument and the memo dictionary as second argument.

See also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

8.11 pprint — Data pretty printer

Source code: Lib/pprint.py

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which
can be used as input to the interpreter. If the formatted structures include objects which are not fundamental
Python types, the representation may not be loadable. This may be the case if objects such as files, sockets
or classes are included, as well as many other objects which are not representable as Python literals.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if
they don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust the
width constraint.

8.11. pprint — Data pretty printer 243

https://github.com/python/cpython/tree/3.5/Lib/pprint.py

The Python Library Reference, Release 3.5.7

Dictionaries are sorted by key before the display is computed.

The pprint module defines one class:

class pprint.PrettyPrinter(indent=1, width=80, depth=None, stream=None, *, compact=False)
Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using the stream keyword; the only method used on the stream object is the
file protocol’s write() method. If not specified, the PrettyPrinter adopts sys.stdout. The amount of
indentation added for each recursive level is specified by indent; the default is one. Other values can
cause output to look a little odd, but can make nesting easier to spot. The number of levels which may
be printed is controlled by depth; if the data structure being printed is too deep, the next contained
level is replaced by By default, there is no constraint on the depth of the objects being formatted.
The desired output width is constrained using the width parameter; the default is 80 characters. If a
structure cannot be formatted within the constrained width, a best effort will be made. If compact
is false (the default) each item of a long sequence will be formatted on a separate line. If compact is
true, as many items as will fit within the width will be formatted on each output line.

Changed in version 3.4: Added the compact parameter.

>>> import pprint
>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert(0, stuff[:])
>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)
[['spam', 'eggs', 'lumberjack', 'knights', 'ni'],

'spam',
'eggs',
'lumberjack',
'knights',
'ni']

>>> pp = pprint.PrettyPrinter(width=41, compact=True)
>>> pp.pprint(stuff)
[['spam', 'eggs', 'lumberjack',
'knights', 'ni'],
'spam', 'eggs', 'lumberjack', 'knights',
'ni']
>>> tup = ('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead',
... ('parrot', ('fresh fruit',))))))))
>>> pp = pprint.PrettyPrinter(depth=6)
>>> pp.pprint(tup)
('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead', (...)))))))

The pprint module also provides several shortcut functions:

pprint.pformat(object, indent=1, width=80, depth=None, *, compact=False)
Return the formatted representation of object as a string. indent, width, depth and compact will be
passed to the PrettyPrinter constructor as formatting parameters.

Changed in version 3.4: Added the compact parameter.

pprint.pprint(object, stream=None, indent=1, width=80, depth=None, *, compact=False)
Prints the formatted representation of object on stream, followed by a newline. If stream is None,
sys.stdout is used. This may be used in the interactive interpreter instead of the print() function for
inspecting values (you can even reassign print = pprint.pprint for use within a scope). indent, width,
depth and compact will be passed to the PrettyPrinter constructor as formatting parameters.

Changed in version 3.4: Added the compact parameter.

244 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

>>> import pprint
>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert(0, stuff)
>>> pprint.pprint(stuff)
[<Recursion on list with id=...>,
'spam',
'eggs',
'lumberjack',
'knights',
'ni']

pprint.isreadable(object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct the
value using eval(). This always returns False for recursive objects.

>>> pprint.isreadable(stuff)
False

pprint.isrecursive(object)
Determine if object requires a recursive representation.

One more support function is also defined:

pprint.saferepr(object)
Return a string representation of object, protected against recursive data structures. If the represen-
tation of object exposes a recursive entry, the recursive reference will be represented as <Recursion on
typename with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)
"[<Recursion on list with id=...>, 'spam', 'eggs', 'lumberjack', 'knights', 'ni']"

8.11.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

PrettyPrinter.pformat(object)
Return the formatted representation of object. This takes into account the options passed to the
PrettyPrinter constructor.

PrettyPrinter.pprint(object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names.
Using these methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need to
be created.

PrettyPrinter.isreadable(object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct
the value using eval(). Note that this returns False for recursive objects. If the depth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns False.

PrettyPrinter.isrecursive(object)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings.
The default implementation uses the internals of the saferepr() implementation.

8.11. pprint — Data pretty printer 245

The Python Library Reference, Release 3.5.7

PrettyPrinter.format(object, context, maxlevels, level)
Returns three values: the formatted version of object as a string, a flag indicating whether the result
is readable, and a flag indicating whether recursion was detected. The first argument is the object to
be presented. The second is a dictionary which contains the id() of objects that are part of the current
presentation context (direct and indirect containers for object that are affecting the presentation) as the
keys; if an object needs to be presented which is already represented in context, the third return value
should be True. Recursive calls to the format() method should add additional entries for containers to
this dictionary. The third argument, maxlevels, gives the requested limit to recursion; this will be 0 if
there is no requested limit. This argument should be passed unmodified to recursive calls. The fourth
argument, level, gives the current level; recursive calls should be passed a value less than that of the
current call.

8.11.2 Example

To demonstrate several uses of the pprint() function and its parameters, let’s fetch information about a
project from PyPI:

>>> import json
>>> import pprint
>>> from urllib.request import urlopen
>>> with urlopen('http://pypi.python.org/pypi/Twisted/json') as url:
... http_info = url.info()
... raw_data = url.read().decode(http_info.get_content_charset())
>>> project_info = json.loads(raw_data)

In its basic form, pprint() shows the whole object:

>>> pprint.pprint(project_info)
{'info': {'_pypi_hidden': False,

'_pypi_ordering': 125,
'author': 'Glyph Lefkowitz',
'author_email': 'glyph@twistedmatrix.com',
'bugtrack_url': '',
'cheesecake_code_kwalitee_id': None,
'cheesecake_documentation_id': None,
'cheesecake_installability_id': None,
'classifiers': ['Programming Language :: Python :: 2.6',

'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 2 :: Only'],

'description': 'An extensible framework for Python programming, with '
'special focus\r\n'
'on event-based network programming and multiprotocol '
'integration.',

'docs_url': '',
'download_url': 'UNKNOWN',
'home_page': 'http://twistedmatrix.com/',
'keywords': '',
'license': 'MIT',
'maintainer': '',
'maintainer_email': '',
'name': 'Twisted',
'package_url': 'http://pypi.python.org/pypi/Twisted',
'platform': 'UNKNOWN',
'release_url': 'http://pypi.python.org/pypi/Twisted/12.3.0',
'requires_python': None,
'stable_version': None,

(continues on next page)

246 Chapter 8. Data Types

https://pypi.python.org/pypi

The Python Library Reference, Release 3.5.7

(continued from previous page)

'summary': 'An asynchronous networking framework written in Python',
'version': '12.3.0'},

'urls': [{'comment_text': '',
'downloads': 71844,
'filename': 'Twisted-12.3.0.tar.bz2',
'has_sig': False,
'md5_digest': '6e289825f3bf5591cfd670874cc0862d',
'packagetype': 'sdist',
'python_version': 'source',
'size': 2615733,
'upload_time': '2012-12-26T12:47:03',
'url': 'https://pypi.python.org/packages/source/T/Twisted/Twisted-12.3.0.tar.bz2'},
{'comment_text': '',
'downloads': 5224,
'filename': 'Twisted-12.3.0.win32-py2.7.msi',
'has_sig': False,
'md5_digest': '6b778f5201b622a5519a2aca1a2fe512',
'packagetype': 'bdist_msi',
'python_version': '2.7',
'size': 2916352,
'upload_time': '2012-12-26T12:48:15',
'url': 'https://pypi.python.org/packages/2.7/T/Twisted/Twisted-12.3.0.win32-py2.7.msi'}]}

The result can be limited to a certain depth (ellipsis is used for deeper contents):

>>> pprint.pprint(project_info, depth=2)
{'info': {'_pypi_hidden': False,

'_pypi_ordering': 125,
'author': 'Glyph Lefkowitz',
'author_email': 'glyph@twistedmatrix.com',
'bugtrack_url': '',
'cheesecake_code_kwalitee_id': None,
'cheesecake_documentation_id': None,
'cheesecake_installability_id': None,
'classifiers': [...],
'description': 'An extensible framework for Python programming, with '

'special focus\r\n'
'on event-based network programming and multiprotocol '
'integration.',

'docs_url': '',
'download_url': 'UNKNOWN',
'home_page': 'http://twistedmatrix.com/',
'keywords': '',
'license': 'MIT',
'maintainer': '',
'maintainer_email': '',
'name': 'Twisted',
'package_url': 'http://pypi.python.org/pypi/Twisted',
'platform': 'UNKNOWN',
'release_url': 'http://pypi.python.org/pypi/Twisted/12.3.0',
'requires_python': None,
'stable_version': None,
'summary': 'An asynchronous networking framework written in Python',
'version': '12.3.0'},

'urls': [{...}, {...}]}

Additionally, maximum character width can be suggested. If a long object cannot be split, the specified

8.11. pprint — Data pretty printer 247

The Python Library Reference, Release 3.5.7

width will be exceeded:

>>> pprint.pprint(project_info, depth=2, width=50)
{'info': {'_pypi_hidden': False,

'_pypi_ordering': 125,
'author': 'Glyph Lefkowitz',
'author_email': 'glyph@twistedmatrix.com',
'bugtrack_url': '',
'cheesecake_code_kwalitee_id': None,
'cheesecake_documentation_id': None,
'cheesecake_installability_id': None,
'classifiers': [...],
'description': 'An extensible '

'framework for Python '
'programming, with '
'special focus\r\n'
'on event-based network '
'programming and '
'multiprotocol '
'integration.',

'docs_url': '',
'download_url': 'UNKNOWN',
'home_page': 'http://twistedmatrix.com/',
'keywords': '',
'license': 'MIT',
'maintainer': '',
'maintainer_email': '',
'name': 'Twisted',
'package_url': 'http://pypi.python.org/pypi/Twisted',
'platform': 'UNKNOWN',
'release_url': 'http://pypi.python.org/pypi/Twisted/12.3.0',
'requires_python': None,
'stable_version': None,
'summary': 'An asynchronous networking '

'framework written in '
'Python',

'version': '12.3.0'},
'urls': [{...}, {...}]}

8.12 reprlib — Alternate repr() implementation

Source code: Lib/reprlib.py

The reprlib module provides a means for producing object representations with limits on the size of the
resulting strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class reprlib.Repr
Class which provides formatting services useful in implementing functions similar to the built-in repr();
size limits for different object types are added to avoid the generation of representations which are
excessively long.

reprlib.aRepr
This is an instance of Repr which is used to provide the repr() function described below. Changing
the attributes of this object will affect the size limits used by repr() and the Python debugger.

248 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.5/Lib/reprlib.py

The Python Library Reference, Release 3.5.7

reprlib.repr(obj)
This is the repr() method of aRepr. It returns a string similar to that returned by the built-in function
of the same name, but with limits on most sizes.

In addition to size-limiting tools, the module also provides a decorator for detecting recursive calls to
__repr__() and substituting a placeholder string instead.

@reprlib.recursive_repr(fillvalue="...")
Decorator for __repr__() methods to detect recursive calls within the same thread. If a recursive
call is made, the fillvalue is returned, otherwise, the usual __repr__() call is made. For example:

>>> class MyList(list):
... @recursive_repr()
... def __repr__(self):
... return '<' + '|'.join(map(repr, self)) + '>'
...
>>> m = MyList('abc')
>>> m.append(m)
>>> m.append('x')
>>> print(m)
<'a'|'b'|'c'|...|'x'>

New in version 3.2.

8.12.1 Repr Objects

Repr instances provide several attributes which can be used to provide size limits for the representations of
different object types, and methods which format specific object types.

Repr.maxlevel
Depth limit on the creation of recursive representations. The default is 6.

Repr.maxdict
Repr.maxlist
Repr.maxtuple
Repr.maxset
Repr.maxfrozenset
Repr.maxdeque
Repr.maxarray

Limits on the number of entries represented for the named object type. The default is 4 for maxdict,
5 for maxarray, and 6 for the others.

Repr.maxlong
Maximum number of characters in the representation for an integer. Digits are dropped from the
middle. The default is 40.

Repr.maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” represen-
tation of the string is used as the character source: if escape sequences are needed in the representation,
these may be mangled when the representation is shortened. The default is 30.

Repr.maxother
This limit is used to control the size of object types for which no specific formatting method is available
on the Repr object. It is applied in a similar manner as maxstring. The default is 20.

Repr.repr(obj)
The equivalent to the built-in repr() that uses the formatting imposed by the instance.

8.12. reprlib — Alternate repr() implementation 249

The Python Library Reference, Release 3.5.7

Repr.repr1(obj, level)
Recursive implementation used by repr(). This uses the type of obj to determine which formatting
method to call, passing it obj and level. The type-specific methods should call repr1() to perform
recursive formatting, with level - 1 for the value of level in the recursive call.

Repr.repr_TYPE(obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type
name. In the method name, TYPE is replaced by '_'.join(type(obj).__name__.split()). Dispatch
to these methods is handled by repr1(). Type-specific methods which need to recursively format a
value should call self.repr1(subobj, level - 1).

8.12.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.repr1() allows subclasses of Repr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how special
support for file objects could be added:

import reprlib
import sys

class MyRepr(reprlib.Repr):

def repr_TextIOWrapper(self, obj, level):
if obj.name in {'<stdin>', '<stdout>', '<stderr>'}:

return obj.name
return repr(obj)

aRepr = MyRepr()
print(aRepr.repr(sys.stdin)) # prints '<stdin>'

8.13 enum — Support for enumerations

New in version 3.4.

Source code: Lib/enum.py

An enumeration is a set of symbolic names (members) bound to unique, constant values. Within an enu-
meration, the members can be compared by identity, and the enumeration itself can be iterated over.

8.13.1 Module Contents

This module defines two enumeration classes that can be used to define unique sets of names and values:
Enum and IntEnum. It also defines one decorator, unique().

class enum.Enum
Base class for creating enumerated constants. See section Functional API for an alternate construction
syntax.

class enum.IntEnum
Base class for creating enumerated constants that are also subclasses of int.

enum.unique()
Enum class decorator that ensures only one name is bound to any one value.

250 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.5/Lib/enum.py

The Python Library Reference, Release 3.5.7

8.13.2 Creating an Enum

Enumerations are created using the class syntax, which makes them easy to read and write. An alternative
creation method is described in Functional API. To define an enumeration, subclass Enum as follows:

>>> from enum import Enum
>>> class Color(Enum):
... red = 1
... green = 2
... blue = 3
...

Note: Nomenclature

• The class Color is an enumeration (or enum)

• The attributes Color.red, Color.green, etc., are enumeration members (or enum members).

• The enum members have names and values (the name of Color.red is red, the value of Color.blue is 3,
etc.)

Note: Even though we use the class syntax to create Enums, Enums are not normal Python classes. See
How are Enums different? for more details.

Enumeration members have human readable string representations:

>>> print(Color.red)
Color.red

. . . while their repr has more information:

>>> print(repr(Color.red))
<Color.red: 1>

The type of an enumeration member is the enumeration it belongs to:

>>> type(Color.red)
<enum 'Color'>
>>> isinstance(Color.green, Color)
True
>>>

Enum members also have a property that contains just their item name:

>>> print(Color.red.name)
red

Enumerations support iteration, in definition order:

>>> class Shake(Enum):
... vanilla = 7
... chocolate = 4
... cookies = 9
... mint = 3
...

(continues on next page)

8.13. enum — Support for enumerations 251

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> for shake in Shake:
... print(shake)
...
Shake.vanilla
Shake.chocolate
Shake.cookies
Shake.mint

Enumeration members are hashable, so they can be used in dictionaries and sets:

>>> apples = {}
>>> apples[Color.red] = 'red delicious'
>>> apples[Color.green] = 'granny smith'
>>> apples == {Color.red: 'red delicious', Color.green: 'granny smith'}
True

8.13.3 Programmatic access to enumeration members and their attributes

Sometimes it’s useful to access members in enumerations programmatically (i.e. situations where Color.red
won’t do because the exact color is not known at program-writing time). Enum allows such access:

>>> Color(1)
<Color.red: 1>
>>> Color(3)
<Color.blue: 3>

If you want to access enum members by name, use item access:

>>> Color['red']
<Color.red: 1>
>>> Color['green']
<Color.green: 2>

If you have an enum member and need its name or value:

>>> member = Color.red
>>> member.name
'red'
>>> member.value
1

8.13.4 Duplicating enum members and values

Having two enum members with the same name is invalid:

>>> class Shape(Enum):
... square = 2
... square = 3
...
Traceback (most recent call last):
...
TypeError: Attempted to reuse key: 'square'

252 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

However, two enum members are allowed to have the same value. Given two members A and B with the
same value (and A defined first), B is an alias to A. By-value lookup of the value of A and B will return A.
By-name lookup of B will also return A:

>>> class Shape(Enum):
... square = 2
... diamond = 1
... circle = 3
... alias_for_square = 2
...
>>> Shape.square
<Shape.square: 2>
>>> Shape.alias_for_square
<Shape.square: 2>
>>> Shape(2)
<Shape.square: 2>

Note: Attempting to create a member with the same name as an already defined attribute (another member,
a method, etc.) or attempting to create an attribute with the same name as a member is not allowed.

8.13.5 Ensuring unique enumeration values

By default, enumerations allow multiple names as aliases for the same value. When this behavior isn’t
desired, the following decorator can be used to ensure each value is used only once in the enumeration:

@enum.unique

A class decorator specifically for enumerations. It searches an enumeration’s __members__ gathering any
aliases it finds; if any are found ValueError is raised with the details:

>>> from enum import Enum, unique
>>> @unique
... class Mistake(Enum):
... one = 1
... two = 2
... three = 3
... four = 3
...
Traceback (most recent call last):
...
ValueError: duplicate values found in <enum 'Mistake'>: four -> three

8.13.6 Iteration

Iterating over the members of an enum does not provide the aliases:

>>> list(Shape)
[<Shape.square: 2>, <Shape.diamond: 1>, <Shape.circle: 3>]

The special attribute __members__ is an ordered dictionary mapping names to members. It includes all
names defined in the enumeration, including the aliases:

8.13. enum — Support for enumerations 253

The Python Library Reference, Release 3.5.7

>>> for name, member in Shape.__members__.items():
... name, member
...
('square', <Shape.square: 2>)
('diamond', <Shape.diamond: 1>)
('circle', <Shape.circle: 3>)
('alias_for_square', <Shape.square: 2>)

The __members__ attribute can be used for detailed programmatic access to the enumeration members.
For example, finding all the aliases:

>>> [name for name, member in Shape.__members__.items() if member.name != name]
['alias_for_square']

8.13.7 Comparisons

Enumeration members are compared by identity:

>>> Color.red is Color.red
True
>>> Color.red is Color.blue
False
>>> Color.red is not Color.blue
True

Ordered comparisons between enumeration values are not supported. Enum members are not integers (but
see IntEnum below):

>>> Color.red < Color.blue
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unorderable types: Color() < Color()

Equality comparisons are defined though:

>>> Color.blue == Color.red
False
>>> Color.blue != Color.red
True
>>> Color.blue == Color.blue
True

Comparisons against non-enumeration values will always compare not equal (again, IntEnum was explicitly
designed to behave differently, see below):

>>> Color.blue == 2
False

8.13.8 Allowed members and attributes of enumerations

The examples above use integers for enumeration values. Using integers is short and handy (and provided by
default by the Functional API), but not strictly enforced. In the vast majority of use-cases, one doesn’t care
what the actual value of an enumeration is. But if the value is important, enumerations can have arbitrary
values.

254 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

Enumerations are Python classes, and can have methods and special methods as usual. If we have this
enumeration:

>>> class Mood(Enum):
... funky = 1
... happy = 3
...
... def describe(self):
... # self is the member here
... return self.name, self.value
...
... def __str__(self):
... return 'my custom str! {0}'.format(self.value)
...
... @classmethod
... def favorite_mood(cls):
... # cls here is the enumeration
... return cls.happy
...

Then:

>>> Mood.favorite_mood()
<Mood.happy: 3>
>>> Mood.happy.describe()
('happy', 3)
>>> str(Mood.funky)
'my custom str! 1'

The rules for what is allowed are as follows: names that start and end with a single underscore are reserved
by enum and cannot be used; all other attributes defined within an enumeration will become members of
this enumeration, with the exception of special methods (__str__(), __add__(), etc.) and descriptors
(methods are also descriptors).

Note: if your enumeration defines __new__() and/or __init__() then whatever value(s) were given to
the enum member will be passed into those methods. See Planet for an example.

8.13.9 Restricted subclassing of enumerations

Subclassing an enumeration is allowed only if the enumeration does not define any members. So this is
forbidden:

>>> class MoreColor(Color):
... pink = 17
...
Traceback (most recent call last):
...
TypeError: Cannot extend enumerations

But this is allowed:

>>> class Foo(Enum):
... def some_behavior(self):
... pass
...
>>> class Bar(Foo):

(continues on next page)

8.13. enum — Support for enumerations 255

The Python Library Reference, Release 3.5.7

(continued from previous page)

... happy = 1

... sad = 2

...

Allowing subclassing of enums that define members would lead to a violation of some important invariants
of types and instances. On the other hand, it makes sense to allow sharing some common behavior between
a group of enumerations. (See OrderedEnum for an example.)

8.13.10 Pickling

Enumerations can be pickled and unpickled:

>>> from test.test_enum import Fruit
>>> from pickle import dumps, loads
>>> Fruit.tomato is loads(dumps(Fruit.tomato))
True

The usual restrictions for pickling apply: picklable enums must be defined in the top level of a module, since
unpickling requires them to be importable from that module.

Note: With pickle protocol version 4 it is possible to easily pickle enums nested in other classes.

It is possible to modify how Enum members are pickled/unpickled by defining __reduce_ex__() in the
enumeration class.

8.13.11 Functional API

The Enum class is callable, providing the following functional API:

>>> Animal = Enum('Animal', 'ant bee cat dog')
>>> Animal
<enum 'Animal'>
>>> Animal.ant
<Animal.ant: 1>
>>> Animal.ant.value
1
>>> list(Animal)
[<Animal.ant: 1>, <Animal.bee: 2>, <Animal.cat: 3>, <Animal.dog: 4>]

The semantics of this API resemble namedtuple. The first argument of the call to Enum is the name of the
enumeration.

The second argument is the source of enumeration member names. It can be a whitespace-separated string
of names, a sequence of names, a sequence of 2-tuples with key/value pairs, or a mapping (e.g. dictionary)
of names to values. The last two options enable assigning arbitrary values to enumerations; the others auto-
assign increasing integers starting with 1 (use the start parameter to specify a different starting value). A
new class derived from Enum is returned. In other words, the above assignment to Animal is equivalent to:

>>> class Animal(Enum):
... ant = 1
... bee = 2
... cat = 3

(continues on next page)

256 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

(continued from previous page)

... dog = 4

...

The reason for defaulting to 1 as the starting number and not 0 is that 0 is False in a boolean sense, but
enum members all evaluate to True.

Pickling enums created with the functional API can be tricky as frame stack implementation details are used
to try and figure out which module the enumeration is being created in (e.g. it will fail if you use a utility
function in separate module, and also may not work on IronPython or Jython). The solution is to specify
the module name explicitly as follows:

>>> Animal = Enum('Animal', 'ant bee cat dog', module=__name__)

Warning: If module is not supplied, and Enum cannot determine what it is, the new Enum members
will not be unpicklable; to keep errors closer to the source, pickling will be disabled.

The new pickle protocol 4 also, in some circumstances, relies on __qualname__ being set to the location
where pickle will be able to find the class. For example, if the class was made available in class SomeData
in the global scope:

>>> Animal = Enum('Animal', 'ant bee cat dog', qualname='SomeData.Animal')

The complete signature is:

Enum(value='NewEnumName', names=<...>, *, module='...', qualname='...', type=<mixed-in class>,␣
→˓start=1)

value What the new Enum class will record as its name.

names The Enum members. This can be a whitespace or comma separated string (values will
start at 1 unless otherwise specified):

'red green blue' | 'red,green,blue' | 'red, green, blue'

or an iterator of names:

['red', 'green', 'blue']

or an iterator of (name, value) pairs:

[('cyan', 4), ('magenta', 5), ('yellow', 6)]

or a mapping:

{'chartreuse': 7, 'sea_green': 11, 'rosemary': 42}

module name of module where new Enum class can be found.

qualname where in module new Enum class can be found.

type type to mix in to new Enum class.

start number to start counting at if only names are passed in.

Changed in version 3.5: The start parameter was added.

8.13. enum — Support for enumerations 257

The Python Library Reference, Release 3.5.7

8.13.12 Derived Enumerations

IntEnum

A variation of Enum is provided which is also a subclass of int. Members of an IntEnum can be compared
to integers; by extension, integer enumerations of different types can also be compared to each other:

>>> from enum import IntEnum
>>> class Shape(IntEnum):
... circle = 1
... square = 2
...
>>> class Request(IntEnum):
... post = 1
... get = 2
...
>>> Shape == 1
False
>>> Shape.circle == 1
True
>>> Shape.circle == Request.post
True

However, they still can’t be compared to standard Enum enumerations:

>>> class Shape(IntEnum):
... circle = 1
... square = 2
...
>>> class Color(Enum):
... red = 1
... green = 2
...
>>> Shape.circle == Color.red
False

IntEnum values behave like integers in other ways you’d expect:

>>> int(Shape.circle)
1
>>> ['a', 'b', 'c'][Shape.circle]
'b'
>>> [i for i in range(Shape.square)]
[0, 1]

For the vast majority of code, Enum is strongly recommended, since IntEnum breaks some semantic promises
of an enumeration (by being comparable to integers, and thus by transitivity to other unrelated enumer-
ations). It should be used only in special cases where there’s no other choice; for example, when integer
constants are replaced with enumerations and backwards compatibility is required with code that still expects
integers.

Others

While IntEnum is part of the enum module, it would be very simple to implement independently:

258 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

class IntEnum(int, Enum):
pass

This demonstrates how similar derived enumerations can be defined; for example a StrEnum that mixes in
str instead of int.

Some rules:

1. When subclassing Enum, mix-in types must appear before Enum itself in the sequence of bases, as in
the IntEnum example above.

2. While Enum can have members of any type, once you mix in an additional type, all the members must
have values of that type, e.g. int above. This restriction does not apply to mix-ins which only add
methods and don’t specify another data type such as int or str.

3. When another data type is mixed in, the value attribute is not the same as the enum member itself,
although it is equivalent and will compare equal.

4. %-style formatting: %s and %r call the Enum class’s __str__() and __repr__() respectively; other
codes (such as %i or %h for IntEnum) treat the enum member as its mixed-in type.

5. str.format() (or format()) will use the mixed-in type’s __format__(). If the Enum class’s str() or
repr() is desired, use the !s or !r format codes.

8.13.13 Interesting examples

While Enum and IntEnum are expected to cover the majority of use-cases, they cannot cover them all. Here
are recipes for some different types of enumerations that can be used directly, or as examples for creating
one’s own.

AutoNumber

Avoids having to specify the value for each enumeration member:

>>> class AutoNumber(Enum):
... def __new__(cls):
... value = len(cls.__members__) + 1
... obj = object.__new__(cls)
... obj._value_ = value
... return obj
...
>>> class Color(AutoNumber):
... red = ()
... green = ()
... blue = ()
...
>>> Color.green.value == 2
True

Note: The __new__() method, if defined, is used during creation of the Enum members; it is then replaced
by Enum’s __new__() which is used after class creation for lookup of existing members.

8.13. enum — Support for enumerations 259

The Python Library Reference, Release 3.5.7

OrderedEnum

An ordered enumeration that is not based on IntEnum and so maintains the normal Enum invariants (such
as not being comparable to other enumerations):

>>> class OrderedEnum(Enum):
... def __ge__(self, other):
... if self.__class__ is other.__class__:
... return self.value >= other.value
... return NotImplemented
... def __gt__(self, other):
... if self.__class__ is other.__class__:
... return self.value > other.value
... return NotImplemented
... def __le__(self, other):
... if self.__class__ is other.__class__:
... return self.value <= other.value
... return NotImplemented
... def __lt__(self, other):
... if self.__class__ is other.__class__:
... return self.value < other.value
... return NotImplemented
...
>>> class Grade(OrderedEnum):
... A = 5
... B = 4
... C = 3
... D = 2
... F = 1
...
>>> Grade.C < Grade.A
True

DuplicateFreeEnum

Raises an error if a duplicate member name is found instead of creating an alias:

>>> class DuplicateFreeEnum(Enum):
... def __init__(self, *args):
... cls = self.__class__
... if any(self.value == e.value for e in cls):
... a = self.name
... e = cls(self.value).name
... raise ValueError(
... "aliases not allowed in DuplicateFreeEnum: %r --> %r"
... % (a, e))
...
>>> class Color(DuplicateFreeEnum):
... red = 1
... green = 2
... blue = 3
... grene = 2
...
Traceback (most recent call last):
...
ValueError: aliases not allowed in DuplicateFreeEnum: 'grene' --> 'green'

260 Chapter 8. Data Types

The Python Library Reference, Release 3.5.7

Note: This is a useful example for subclassing Enum to add or change other behaviors as well as disallowing
aliases. If the only desired change is disallowing aliases, the unique() decorator can be used instead.

Planet

If __new__() or __init__() is defined the value of the enum member will be passed to those methods:

>>> class Planet(Enum):
... MERCURY = (3.303e+23, 2.4397e6)
... VENUS = (4.869e+24, 6.0518e6)
... EARTH = (5.976e+24, 6.37814e6)
... MARS = (6.421e+23, 3.3972e6)
... JUPITER = (1.9e+27, 7.1492e7)
... SATURN = (5.688e+26, 6.0268e7)
... URANUS = (8.686e+25, 2.5559e7)
... NEPTUNE = (1.024e+26, 2.4746e7)
... def __init__(self, mass, radius):
... self.mass = mass # in kilograms
... self.radius = radius # in meters
... @property
... def surface_gravity(self):
... # universal gravitational constant (m3 kg-1 s-2)
... G = 6.67300E-11
... return G * self.mass / (self.radius * self.radius)
...
>>> Planet.EARTH.value
(5.976e+24, 6378140.0)
>>> Planet.EARTH.surface_gravity
9.802652743337129

8.13.14 How are Enums different?

Enums have a custom metaclass that affects many aspects of both derived Enum classes and their instances
(members).

Enum Classes

The EnumMeta metaclass is responsible for providing the __contains__(), __dir__(), __iter__() and
other methods that allow one to do things with an Enum class that fail on a typical class, such as list(Color)
or some_var in Color. EnumMeta is responsible for ensuring that various other methods on the final Enum
class are correct (such as __new__(), __getnewargs__(), __str__() and __repr__()).

Enum Members (aka instances)

The most interesting thing about Enum members is that they are singletons. EnumMeta creates them all
while it is creating the Enum class itself, and then puts a custom __new__() in place to ensure that no
new ones are ever instantiated by returning only the existing member instances.

8.13. enum — Support for enumerations 261

The Python Library Reference, Release 3.5.7

Finer Points

Enum members are instances of an Enum class, and even though they are accessible as EnumClass.member,
they should not be accessed directly from the member as that lookup may fail or, worse, return something
besides the Enum member you looking for:

>>> class FieldTypes(Enum):
... name = 0
... value = 1
... size = 2
...
>>> FieldTypes.value.size
<FieldTypes.size: 2>
>>> FieldTypes.size.value
2

Changed in version 3.5.

The __members__ attribute is only available on the class.

If you give your Enum subclass extra methods, like the Planet class above, those methods will show up in a
dir() of the member, but not of the class:

>>> dir(Planet)
['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS', 'VENUS', '__
→˓class__', '__doc__', '__members__', '__module__']
>>> dir(Planet.EARTH)
['__class__', '__doc__', '__module__', 'name', 'surface_gravity', 'value']

The __new__() method will only be used for the creation of the Enum members – after that it is replaced.
Any custom __new__() method must create the object and set the _value_ attribute appropriately.

If you wish to change how Enum members are looked up you should either write a helper function or a
classmethod() for the Enum subclass.

262 Chapter 8. Data Types

CHAPTER

NINE

NUMERIC AND MATHEMATICAL MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The
numbers module defines an abstract hierarchy of numeric types. The math and cmath modules contain
various mathematical functions for floating-point and complex numbers. The decimal module supports
exact representations of decimal numbers, using arbitrary precision arithmetic.

The following modules are documented in this chapter:

9.1 numbers — Numeric abstract base classes

Source code: Lib/numbers.py

The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which progressively
define more operations. None of the types defined in this module can be instantiated.

class numbers.Number
The root of the numeric hierarchy. If you just want to check if an argument x is a number, without
caring what kind, use isinstance(x, Number).

9.1.1 The numeric tower

class numbers.Complex
Subclasses of this type describe complex numbers and include the operations that work on the built-in
complex type. These are: conversions to complex and bool, real, imag, +, -, *, /, abs(), conjugate(),
==, and !=. All except - and != are abstract.

real
Abstract. Retrieves the real component of this number.

imag
Abstract. Retrieves the imaginary component of this number.

abstractmethod conjugate()
Abstract. Returns the complex conjugate. For example, (1+3j).conjugate() == (1-3j).

class numbers.Real
To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, math.trunc(), round(), math.floor(), math.ceil(), divmod(),
//, %, <, <=, >, and >=.

Real also provides defaults for complex(), real, imag, and conjugate().

263

https://github.com/python/cpython/tree/3.5/Lib/numbers.py
https://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 3.5.7

class numbers.Rational
Subtypes Real and adds numerator and denominator properties, which should be in lowest terms. With
these, it provides a default for float().

numerator
Abstract.

denominator
Abstract.

class numbers.Integral
Subtypes Rational and adds a conversion to int. Provides defaults for float(), numerator, and denom-
inator. Adds abstract methods for ** and bit-string operations: <<, >>, &, ^, |, ~.

9.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may be
subtle if there are two different extensions of the real numbers. For example, fractions.Fraction implements
hash() as follows:

def __hash__(self):
if self.denominator == 1:

Get integers right.
return hash(self.numerator)

Expensive check, but definitely correct.
if self == float(self):

return hash(float(self))
else:

Use tuple's hash to avoid a high collision rate on
simple fractions.
return hash((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded
the possibility of adding those. You can add MyFoo between Complex and Real with:

class MyFoo(Complex): ...
MyFoo.register(Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation
whose author knew about the types of both arguments, or convert both to the nearest built in type and
do the operation there. For subtypes of Integral, this means that __add__() and __radd__() should be
defined as:

class MyIntegral(Integral):

def __add__(self, other):
if isinstance(other, MyIntegral):

return do_my_adding_stuff(self, other)
elif isinstance(other, OtherTypeIKnowAbout):

return do_my_other_adding_stuff(self, other)

(continues on next page)

264 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

(continued from previous page)

else:
return NotImplemented

def __radd__(self, other):
if isinstance(other, MyIntegral):

return do_my_adding_stuff(other, self)
elif isinstance(other, OtherTypeIKnowAbout):

return do_my_other_adding_stuff(other, self)
elif isinstance(other, Integral):

return int(other) + int(self)
elif isinstance(other, Real):

return float(other) + float(self)
elif isinstance(other, Complex):

return complex(other) + complex(self)
else:

return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complex. I’ll refer to all of the above
code that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance of
A, which is a subtype of Complex (a : A <: Complex), and b : B <: Complex. I’ll consider a + b:

1. If A defines an __add__() which accepts b, all is well.

2. If A falls back to the boilerplate code, and it were to return a value from __add__(), we’d miss the
possibility that B defines a more intelligent __radd__(), so the boilerplate should return NotImple-
mented from __add__(). (Or A may not implement __add__() at all.)

3. Then B’s __radd__() gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default
implementation should live.

5. If B <: A, Python tries B.__radd__ before A.__add__. This is ok, because it was implemented
with knowledge of A, so it can handle those instances before delegating to Complex.

If A <: Complex and B <: Real without sharing any other knowledge, then the appropriate shared operation
is the one involving the built in complex, and both __radd__() s land there, so a+b == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper
function which generates the forward and reverse instances of any given operator. For example, fractions.
Fraction uses:

def _operator_fallbacks(monomorphic_operator, fallback_operator):
def forward(a, b):

if isinstance(b, (int, Fraction)):
return monomorphic_operator(a, b)

elif isinstance(b, float):
return fallback_operator(float(a), b)

elif isinstance(b, complex):
return fallback_operator(complex(a), b)

else:
return NotImplemented

forward.__name__ = '__' + fallback_operator.__name__ + '__'
forward.__doc__ = monomorphic_operator.__doc__

def reverse(b, a):
if isinstance(a, Rational):

Includes ints.

(continues on next page)

9.1. numbers — Numeric abstract base classes 265

The Python Library Reference, Release 3.5.7

(continued from previous page)

return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real):

return fallback_operator(float(a), float(b))
elif isinstance(a, numbers.Complex):

return fallback_operator(complex(a), complex(b))
else:

return NotImplemented
reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
reverse.__doc__ = monomorphic_operator.__doc__

return forward, reverse

def _add(a, b):
"""a + b"""
return Fraction(a.numerator * b.denominator +

b.numerator * a.denominator,
a.denominator * b.denominator)

__add__, __radd__ = _operator_fallbacks(_add, operator.add)

...

9.2 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath
module if you require support for complex numbers. The distinction between functions which support
complex numbers and those which don’t is made since most users do not want to learn quite as much
mathematics as required to understand complex numbers. Receiving an exception instead of a complex result
allows earlier detection of the unexpected complex number used as a parameter, so that the programmer
can determine how and why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return
values are floats.

9.2.1 Number-theoretic and representation functions

math.ceil(x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to
x.__ceil__(), which should return an Integral value.

math.copysign(x, y)
Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support
signed zeros, copysign(1.0, -0.0) returns -1.0.

math.fabs(x)
Return the absolute value of x.

math.factorial(x)
Return x factorial. Raises ValueError if x is not integral or is negative.

266 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

math.floor(x)
Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to
x.__floor__(), which should return an Integral value.

math.fmod(x, y)
Return fmod(x, y), as defined by the platform C library. Note that the Python expression x % y may
not return the same result. The intent of the C standard is that fmod(x, y) be exactly (mathematically;
to infinite precision) equal to x - n*y for some integer n such that the result has the same sign as x
and magnitude less than abs(y). Python’s x % y returns a result with the sign of y instead, and may
not be exactly computable for float arguments. For example, fmod(-1e-100, 1e100) is -1e-100, but the
result of Python’s -1e-100 % 1e100 is 1e100-1e-100, which cannot be represented exactly as a float, and
rounds to the surprising 1e100. For this reason, function fmod() is generally preferred when working
with floats, while Python’s x % y is preferred when working with integers.

math.frexp(x)
Return the mantissa and exponent of x as the pair (m, e). m is a float and e is an integer such that
x == m * 2**e exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used to
“pick apart” the internal representation of a float in a portable way.

math.fsum(iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking
multiple intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
0.9999999999999999
>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the
rounding mode is half-even. On some non-Windows builds, the underlying C library uses extended
precision addition and may occasionally double-round an intermediate sum causing it to be off in its
least significant bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate
floating point summation.

math.gcd(a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the value
of gcd(a, b) is the largest positive integer that divides both a and b. gcd(0, 0) returns 0.

New in version 3.5.

math.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative
tolerances.

rel_tol is the relative tolerance – it is the maximum allowed difference between a and b, relative to
the larger absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The
default tolerance is 1e-09, which assures that the two values are the same within about 9 decimal digits.
rel_tol must be greater than zero.

abs_tol is the minimum absolute tolerance – useful for comparisons near zero. abs_tol must be at
least zero.

If no errors occur, the result will be: abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol).

The IEEE 754 special values of NaN, inf, and -inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and -inf are only considered close

9.2. math — Mathematical functions 267

https://code.activestate.com/recipes/393090/
https://code.activestate.com/recipes/393090/

The Python Library Reference, Release 3.5.7

to themselves.

New in version 3.5.

See also:

PEP 485 – A function for testing approximate equality

math.isfinite(x)
Return True if x is neither an infinity nor a NaN, and False otherwise. (Note that 0.0 is considered
finite.)

New in version 3.2.

math.isinf(x)
Return True if x is a positive or negative infinity, and False otherwise.

math.isnan(x)
Return True if x is a NaN (not a number), and False otherwise.

math.ldexp(x, i)
Return x * (2**i). This is essentially the inverse of function frexp().

math.modf(x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

math.trunc(x)
Return the Real value x truncated to an Integral (usually an integer). Delegates to x.__trunc__().

Note that frexp() and modf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output
parameter’ (there is no such thing in Python).

For the ceil(), floor(), and modf() functions, note that all floating-point numbers of sufficiently large mag-
nitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float x with abs(x) >= 2**52 necessarily has no fractional bits.

9.2.2 Power and logarithmic functions

math.exp(x)
Return e**x.

math.expm1(x)
Return e**x - 1. For small floats x, the subtraction in exp(x) - 1 can result in a significant loss of
precision; the expm1() function provides a way to compute this quantity to full precision:

>>> from math import exp, expm1
>>> exp(1e-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expm1(1e-5) # result accurate to full precision
1.0000050000166668e-05

New in version 3.2.

math.log(x[, base])
With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as log(x)/log(base).

math.log1p(x)
Return the natural logarithm of 1+x (base e). The result is calculated in a way which is accurate for
x near zero.

268 Chapter 9. Numeric and Mathematical Modules

https://www.python.org/dev/peps/pep-0485
https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Loss_of_significance

The Python Library Reference, Release 3.5.7

math.log2(x)
Return the base-2 logarithm of x. This is usually more accurate than log(x, 2).

New in version 3.3.

See also:

int.bit_length() returns the number of bits necessary to represent an integer in binary, excluding the
sign and leading zeros.

math.log10(x)
Return the base-10 logarithm of x. This is usually more accurate than log(x, 10).

math.pow(x, y)
Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as
possible. In particular, pow(1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN.
If both x and y are finite, x is negative, and y is not an integer then pow(x, y) is undefined, and raises
ValueError.

Unlike the built-in ** operator, math.pow() converts both its arguments to type float. Use ** or the
built-in pow() function for computing exact integer powers.

math.sqrt(x)
Return the square root of x.

9.2.3 Trigonometric functions

math.acos(x)
Return the arc cosine of x, in radians.

math.asin(x)
Return the arc sine of x, in radians.

math.atan(x)
Return the arc tangent of x, in radians.

math.atan2(y, x)
Return atan(y / x), in radians. The result is between -pi and pi. The vector in the plane from the
origin to point (x, y) makes this angle with the positive X axis. The point of atan2() is that the signs
of both inputs are known to it, so it can compute the correct quadrant for the angle. For example,
atan(1) and atan2(1, 1) are both pi/4, but atan2(-1, -1) is -3*pi/4.

math.cos(x)
Return the cosine of x radians.

math.hypot(x, y)
Return the Euclidean norm, sqrt(x*x + y*y). This is the length of the vector from the origin to point
(x, y).

math.sin(x)
Return the sine of x radians.

math.tan(x)
Return the tangent of x radians.

9.2.4 Angular conversion

math.degrees(x)
Convert angle x from radians to degrees.

9.2. math — Mathematical functions 269

The Python Library Reference, Release 3.5.7

math.radians(x)
Convert angle x from degrees to radians.

9.2.5 Hyperbolic functions

Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.

math.acosh(x)
Return the inverse hyperbolic cosine of x.

math.asinh(x)
Return the inverse hyperbolic sine of x.

math.atanh(x)
Return the inverse hyperbolic tangent of x.

math.cosh(x)
Return the hyperbolic cosine of x.

math.sinh(x)
Return the hyperbolic sine of x.

math.tanh(x)
Return the hyperbolic tangent of x.

9.2.6 Special functions

math.erf(x)
Return the error function at x.

The erf() function can be used to compute traditional statistical functions such as the cumulative
standard normal distribution:

def phi(x):
'Cumulative distribution function for the standard normal distribution'
return (1.0 + erf(x / sqrt(2.0))) / 2.0

New in version 3.2.

math.erfc(x)
Return the complementary error function at x. The complementary error function is defined as 1.0 -
erf(x). It is used for large values of x where a subtraction from one would cause a loss of significance.

New in version 3.2.

math.gamma(x)
Return the Gamma function at x.

New in version 3.2.

math.lgamma(x)
Return the natural logarithm of the absolute value of the Gamma function at x.

New in version 3.2.

270 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Hyperbolic_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Gamma_function

The Python Library Reference, Release 3.5.7

9.2.7 Constants

math.pi
The mathematical constant 𝜋 = 3.141592. . . , to available precision.

math.e
The mathematical constant e = 2.718281. . . , to available precision.

math.inf
A floating-point positive infinity. (For negative infinity, use -math.inf.) Equivalent to the output of
float('inf').

New in version 3.5.

math.nan
A floating-point “not a number” (NaN) value. Equivalent to the output of float('nan').

New in version 3.5.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C
math library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate.
The current implementation will raise ValueError for invalid operations like sqrt(-1.0) or log(0.0) (where
C99 Annex F recommends signaling invalid operation or divide-by-zero), and OverflowError for results that
overflow (for example, exp(1000.0)). A NaN will not be returned from any of the functions above unless
one or more of the input arguments was a NaN; in that case, most functions will return a NaN, but (again
following C99 Annex F) there are some exceptions to this rule, for example pow(float('nan'), 0.0) or
hypot(float('nan'), float('inf')).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling
NaNs remains unspecified. Typical behavior is to treat all NaNs as though they were quiet.

See also:

Module cmath Complex number versions of many of these functions.

9.3 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The
functions in this module accept integers, floating-point numbers or complex numbers as arguments. They
will also accept any Python object that has either a __complex__() or a __float__() method: these
methods are used to convert the object to a complex or floating-point number, respectively, and the function
is then applied to the result of the conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch
cuts are continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch
cut from the other. On platforms that do not support signed zeros the continuity is as specified below.

9.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely
determined by its real part z.real and its imaginary part z.imag. In other words:

9.3. cmath — Mathematical functions for complex numbers 271

The Python Library Reference, Release 3.5.7

z == z.real + z.imag*1j

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex
number z is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the
origin, while the phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to
the line segment that joins the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates
and back.

cmath.phase(x)
Return the phase of x (also known as the argument of x), as a float. phase(x) is equivalent to math.
atan2(x.imag, x.real). The result lies in the range [-𝜋, 𝜋], and the branch cut for this operation lies
along the negative real axis, continuous from above. On systems with support for signed zeros (which
includes most systems in current use), this means that the sign of the result is the same as the sign of
x.imag, even when x.imag is zero:

>>> phase(complex(-1.0, 0.0))
3.141592653589793
>>> phase(complex(-1.0, -0.0))
-3.141592653589793

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs()
function. There is no separate cmath module function for this operation.

cmath.polar(x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of
x and phi is the phase of x. polar(x) is equivalent to (abs(x), phase(x)).

cmath.rect(r, phi)
Return the complex number x with polar coordinates r and phi. Equivalent to r * (math.cos(phi) +
math.sin(phi)*1j).

9.3.2 Power and logarithmic functions

cmath.exp(x)
Return the exponential value e**x.

cmath.log(x[, base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm
of x. There is one branch cut, from 0 along the negative real axis to -∞, continuous from above.

cmath.log10(x)
Return the base-10 logarithm of x. This has the same branch cut as log().

cmath.sqrt(x)
Return the square root of x. This has the same branch cut as log().

9.3.3 Trigonometric functions

cmath.acos(x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to
∞, continuous from below. The other extends left from -1 along the real axis to -∞, continuous from
above.

272 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

cmath.asin(x)
Return the arc sine of x. This has the same branch cuts as acos().

cmath.atan(x)
Return the arc tangent of x. There are two branch cuts: One extends from 1j along the imaginary
axis to ∞j, continuous from the right. The other extends from -1j along the imaginary axis to -∞j,
continuous from the left.

cmath.cos(x)
Return the cosine of x.

cmath.sin(x)
Return the sine of x.

cmath.tan(x)
Return the tangent of x.

9.3.4 Hyperbolic functions

cmath.acosh(x)
Return the inverse hyperbolic cosine of x. There is one branch cut, extending left from 1 along the
real axis to -∞, continuous from above.

cmath.asinh(x)
Return the inverse hyperbolic sine of x. There are two branch cuts: One extends from 1j along the
imaginary axis to ∞j, continuous from the right. The other extends from -1j along the imaginary axis
to -∞j, continuous from the left.

cmath.atanh(x)
Return the inverse hyperbolic tangent of x. There are two branch cuts: One extends from 1 along the
real axis to ∞, continuous from below. The other extends from -1 along the real axis to -∞, continuous
from above.

cmath.cosh(x)
Return the hyperbolic cosine of x.

cmath.sinh(x)
Return the hyperbolic sine of x.

cmath.tanh(x)
Return the hyperbolic tangent of x.

9.3.5 Classification functions

cmath.isfinite(x)
Return True if both the real and imaginary parts of x are finite, and False otherwise.

New in version 3.2.

cmath.isinf(x)
Return True if either the real or the imaginary part of x is an infinity, and False otherwise.

cmath.isnan(x)
Return True if either the real or the imaginary part of x is a NaN, and False otherwise.

cmath.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

9.3. cmath — Mathematical functions for complex numbers 273

The Python Library Reference, Release 3.5.7

Whether or not two values are considered close is determined according to given absolute and relative
tolerances.

rel_tol is the relative tolerance – it is the maximum allowed difference between a and b, relative to
the larger absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The
default tolerance is 1e-09, which assures that the two values are the same within about 9 decimal digits.
rel_tol must be greater than zero.

abs_tol is the minimum absolute tolerance – useful for comparisons near zero. abs_tol must be at
least zero.

If no errors occur, the result will be: abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol).

The IEEE 754 special values of NaN, inf, and -inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and -inf are only considered close
to themselves.

New in version 3.5.

See also:

PEP 485 – A function for testing approximate equality

9.3.6 Constants

cmath.pi
The mathematical constant 𝜋, as a float.

cmath.e
The mathematical constant e, as a float.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for
having two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know
what they are. They would rather have math.sqrt(-1) raise an exception than return a complex number.
Also note that the functions defined in cmath always return a complex number, even if the answer can be
expressed as a real number (in which case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are
a necessary feature of many complex functions. It is assumed that if you need to compute with complex
functions, you will understand about branch cuts. Consult almost any (not too elementary) book on complex
variables for enlightenment. For information of the proper choice of branch cuts for numerical purposes, a
good reference should be the following:

See also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles,
A., and Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165–211.

9.4 decimal — Decimal fixed point and floating point arithmetic

Source code: Lib/decimal.py

The decimal module provides support for fast correctly-rounded decimal floating point arithmetic. It offers
several advantages over the float datatype:

274 Chapter 9. Numeric and Mathematical Modules

https://www.python.org/dev/peps/pep-0485
https://github.com/python/cpython/tree/3.5/Lib/decimal.py

The Python Library Reference, Release 3.5.7

• Decimal “is based on a floating-point model which was designed with people in mind, and necessarily
has a paramount guiding principle – computers must provide an arithmetic that works in the same
way as the arithmetic that people learn at school.” – excerpt from the decimal arithmetic specification.

• Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2.2 do not have exact
representations in binary floating point. End users typically would not expect 1.1 + 2.2 to display as
3.3000000000000003 as it does with binary floating point.

• The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 is exactly
equal to zero. In binary floating point, the result is 5.5511151231257827e-017. While near to zero, the
differences prevent reliable equality testing and differences can accumulate. For this reason, decimal is
preferred in accounting applications which have strict equality invariants.

• The decimal module incorporates a notion of significant places so that 1.30 + 1.20 is 2.50. The trailing
zero is kept to indicate significance. This is the customary presentation for monetary applications. For
multiplication, the “schoolbook” approach uses all the figures in the multiplicands. For instance, 1.3 *
1.2 gives 1.56 while 1.30 * 1.20 gives 1.5600.

• Unlike hardware based binary floating point, the decimal module has a user alterable precision (de-
faulting to 28 places) which can be as large as needed for a given problem:

>>> from decimal import *
>>> getcontext().prec = 6
>>> Decimal(1) / Decimal(7)
Decimal('0.142857')
>>> getcontext().prec = 28
>>> Decimal(1) / Decimal(7)
Decimal('0.1428571428571428571428571429')

• Both binary and decimal floating point are implemented in terms of published standards. While the
built-in float type exposes only a modest portion of its capabilities, the decimal module exposes all
required parts of the standard. When needed, the programmer has full control over rounding and
signal handling. This includes an option to enforce exact arithmetic by using exceptions to block any
inexact operations.

• The decimal module was designed to support “without prejudice, both exact unrounded decimal arith-
metic (sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” – excerpt from
the decimal arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and
signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance,
the coefficient digits do not truncate trailing zeros. Decimals also include special values such as Infinity,
-Infinity, and NaN. The standard also differentiates -0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents,
flags indicating the results of operations, and trap enablers which determine whether signals are treated
as exceptions. Rounding options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR,
ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, ROUND_UP, and
ROUND_05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the
needs of the application, signals may be ignored, considered as informational, or treated as exceptions.
The signals in the decimal module are: Clamped, InvalidOperation, DivisionByZero, Inexact, Rounded,
Subnormal, Overflow, Underflow and FloatOperation.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if
the trap enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before
monitoring a calculation.

9.4. decimal — Decimal fixed point and floating point arithmetic 275

The Python Library Reference, Release 3.5.7

See also:

• IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

9.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with getcontext()
and, if necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import *
>>> getcontext()
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,

capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])

>>> getcontext().prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, floats, or tuples. Construction from an integer
or a float performs an exact conversion of the value of that integer or float. Decimal numbers include special
values such as NaN which stands for “Not a number”, positive and negative Infinity, and -0:

>>> getcontext().prec = 28
>>> Decimal(10)
Decimal('10')
>>> Decimal('3.14')
Decimal('3.14')
>>> Decimal(3.14)
Decimal('3.140000000000000124344978758017532527446746826171875')
>>> Decimal((0, (3, 1, 4), -2))
Decimal('3.14')
>>> Decimal(str(2.0 ** 0.5))
Decimal('1.4142135623730951')
>>> Decimal(2) ** Decimal('0.5')
Decimal('1.414213562373095048801688724')
>>> Decimal('NaN')
Decimal('NaN')
>>> Decimal('-Infinity')
Decimal('-Infinity')

If the FloatOperation signal is trapped, accidental mixing of decimals and floats in constructors or ordering
comparisons raises an exception:

>>> c = getcontext()
>>> c.traps[FloatOperation] = True
>>> Decimal(3.14)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') < 3.7
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') == 3.5
True

New in version 3.3.

276 Chapter 9. Numeric and Mathematical Modules

http://speleotrove.com/decimal/decarith.html

The Python Library Reference, Release 3.5.7

The significance of a new Decimal is determined solely by the number of digits input. Context precision and
rounding only come into play during arithmetic operations.

>>> getcontext().prec = 6
>>> Decimal('3.0')
Decimal('3.0')
>>> Decimal('3.1415926535')
Decimal('3.1415926535')
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal('5.85987')
>>> getcontext().rounding = ROUND_UP
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal('5.85988')

If the internal limits of the C version are exceeded, constructing a decimal raises InvalidOperation:

>>> Decimal("1e9999999999999999999")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]

Changed in version 3.3.

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
>>> max(data)
Decimal('9.25')
>>> min(data)
Decimal('0.03')
>>> sorted(data)
[Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
>>> sum(data)
Decimal('19.29')
>>> a,b,c = data[:3]
>>> str(a)
'1.34'
>>> float(a)
1.34
>>> round(a, 1)
Decimal('1.3')
>>> int(a)
1
>>> a * 5
Decimal('6.70')
>>> a * b
Decimal('2.5058')
>>> c % a
Decimal('0.77')

And some mathematical functions are also available to Decimal:

>>> getcontext().prec = 28
>>> Decimal(2).sqrt()
Decimal('1.414213562373095048801688724')
>>> Decimal(1).exp()
Decimal('2.718281828459045235360287471')

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic 277

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> Decimal('10').ln()
Decimal('2.302585092994045684017991455')
>>> Decimal('10').log10()
Decimal('1')

The quantize() method rounds a number to a fixed exponent. This method is useful for monetary applications
that often round results to a fixed number of places:

>>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Decimal('7.32')
>>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Decimal('8')

As shown above, the getcontext() function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To
make an alternate active, use the setcontext() function.

In accordance with the standard, the decimal module provides two ready to use standard contexts, Basic-
Context and ExtendedContext. The former is especially useful for debugging because many of the traps are
enabled:

>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
>>> setcontext(myothercontext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857142857142857142857142857')

>>> ExtendedContext
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,

capitals=1, clamp=0, flags=[], traps=[])
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857143')
>>> Decimal(42) / Decimal(0)
Decimal('Infinity')

>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal(42) / Decimal(0)

DivisionByZero: x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations.
The flags remain set until explicitly cleared, so it is best to clear the flags before each set of monitored
computations by using the clear_flags() method.

>>> setcontext(ExtendedContext)
>>> getcontext().clear_flags()
>>> Decimal(355) / Decimal(113)
Decimal('3.14159292')
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,

capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])

The flags entry shows that the rational approximation to Pi was rounded (digits beyond the context precision

278 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

were thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the traps field of a context:

>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(0)
Decimal('Infinity')
>>> getcontext().traps[DivisionByZero] = 1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in -toplevel-
Decimal(1) / Decimal(0)

DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many
applications, data is converted to Decimal with a single cast inside a loop. With context set and decimals
created, the bulk of the program manipulates the data no differently than with other Python numeric types.

9.4.2 Decimal objects

class decimal.Decimal(value="0", context=None)
Construct a new Decimal object based from value.

value can be an integer, string, tuple, float, or another Decimal object. If no value is given, returns
Decimal('0'). If value is a string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters are removed:

sign ::= '+' | '-'
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
indicator ::= 'e' | 'E'
digits ::= digit [digit]...
decimal-part ::= digits '.' [digits] | ['.'] digits
exponent-part ::= indicator [sign] digits
infinity ::= 'Infinity' | 'Inf'
nan ::= 'NaN' [digits] | 'sNaN' [digits]
numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

Other Unicode decimal digits are also permitted where digit appears above. These include decimal
digits from various other alphabets (for example, Arabic-Indic and Devanāgar̄ı digits) along with the
fullwidth digits '\uff10' through '\uff19'.

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a tuple of
digits, and an integer exponent. For example, Decimal((0, (1, 4, 1, 4), -3)) returns Decimal('1.414').

If value is a float, the binary floating point value is losslessly converted to its exact decimal equivalent.
This conversion can often require 53 or more digits of precision. For example, Decimal(float('1.1'))
converts to Decimal('1.100000000000000088817841970012523233890533447265625').

The context precision does not affect how many digits are stored. That is determined exclusively by the
number of digits in value. For example, Decimal('3.00000') records all five zeros even if the context
precision is only three.

The purpose of the context argument is determining what to do if value is a malformed string. If
the context traps InvalidOperation, an exception is raised; otherwise, the constructor returns a new
Decimal with the value of NaN.

Once constructed, Decimal objects are immutable.

9.4. decimal — Decimal fixed point and floating point arithmetic 279

The Python Library Reference, Release 3.5.7

Changed in version 3.2: The argument to the constructor is now permitted to be a float instance.

Changed in version 3.3: float arguments raise an exception if the FloatOperation trap is set. By default
the trap is off.

Decimal floating point objects share many properties with the other built-in numeric types such as
float and int. All of the usual math operations and special methods apply. Likewise, decimal objects
can be copied, pickled, printed, used as dictionary keys, used as set elements, compared, sorted, and
coerced to another type (such as float or int).

There are some small differences between arithmetic on Decimal objects and arithmetic on integers
and floats. When the remainder operator % is applied to Decimal objects, the sign of the result is the
sign of the dividend rather than the sign of the divisor:

>>> (-7) % 4
1
>>> Decimal(-7) % Decimal(4)
Decimal('-3')

The integer division operator // behaves analogously, returning the integer part of the true quotient
(truncating towards zero) rather than its floor, so as to preserve the usual identity x == (x // y) * y
+ x % y:

>>> -7 // 4
-2
>>> Decimal(-7) // Decimal(4)
Decimal('-1')

The % and // operators implement the remainder and divide-integer operations (respectively) as
described in the specification.

Decimal objects cannot generally be combined with floats or instances of fractions.Fraction in arithmetic
operations: an attempt to add a Decimal to a float, for example, will raise a TypeError. However, it is
possible to use Python’s comparison operators to compare a Decimal instance x with another number
y. This avoids confusing results when doing equality comparisons between numbers of different types.

Changed in version 3.2: Mixed-type comparisons between Decimal instances and other numeric types
are now fully supported.

In addition to the standard numeric properties, decimal floating point objects also have a number of
specialized methods:

adjusted()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead
digit remains: Decimal('321e+5').adjusted() returns seven. Used for determining the position
of the most significant digit with respect to the decimal point.

as_tuple()
Return a named tuple representation of the number: DecimalTuple(sign, digits, exponent).

canonical()
Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is
always canonical, so this operation returns its argument unchanged.

compare(other, context=None)
Compare the values of two Decimal instances. compare() returns a Decimal instance, and if either
operand is a NaN then the result is a NaN:

280 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

a or b is a NaN ==> Decimal('NaN')
a < b ==> Decimal('-1')
a == b ==> Decimal('0')
a > b ==> Decimal('1')

compare_signal(other, context=None)
This operation is identical to the compare() method, except that all NaNs signal. That is, if
neither operand is a signaling NaN then any quiet NaN operand is treated as though it were a
signaling NaN.

compare_total(other, context=None)
Compare two operands using their abstract representation rather than their numerical value.
Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two
Decimal instances with the same numeric value but different representations compare unequal in
this ordering:

>>> Decimal('12.0').compare_total(Decimal('12'))
Decimal('-1')

Quiet and signaling NaNs are also included in the total ordering. The result of this function is
Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand
is lower in the total order than the second, and Decimal('1') if the first operand is higher in the
total order than the second operand. See the specification for details of the total order.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is
performed. As an exception, the C version may raise InvalidOperation if the second operand
cannot be converted exactly.

compare_total_mag(other, context=None)
Compare two operands using their abstract representation rather than their value as in com-
pare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to
x.copy_abs().compare_total(y.copy_abs()).

This operation is unaffected by context and is quiet: no flags are changed and no rounding is
performed. As an exception, the C version may raise InvalidOperation if the second operand
cannot be converted exactly.

conjugate()
Just returns self, this method is only to comply with the Decimal Specification.

copy_abs()
Return the absolute value of the argument. This operation is unaffected by the context and is
quiet: no flags are changed and no rounding is performed.

copy_negate()
Return the negation of the argument. This operation is unaffected by the context and is quiet:
no flags are changed and no rounding is performed.

copy_sign(other, context=None)
Return a copy of the first operand with the sign set to be the same as the sign of the second
operand. For example:

>>> Decimal('2.3').copy_sign(Decimal('-1.5'))
Decimal('-2.3')

This operation is unaffected by context and is quiet: no flags are changed and no rounding is
performed. As an exception, the C version may raise InvalidOperation if the second operand
cannot be converted exactly.

9.4. decimal — Decimal fixed point and floating point arithmetic 281

The Python Library Reference, Release 3.5.7

exp(context=None)
Return the value of the (natural) exponential function e**x at the given number. The result is
correctly rounded using the ROUND_HALF_EVEN rounding mode.

>>> Decimal(1).exp()
Decimal('2.718281828459045235360287471')
>>> Decimal(321).exp()
Decimal('2.561702493119680037517373933E+139')

from_float(f)
Classmethod that converts a float to a decimal number, exactly.

Note Decimal.from_float(0.1) is not the same as Decimal(‘0.1’). Since 0.1 is not ex-
actly representable in binary floating point, the value is stored as the nearest rep-
resentable value which is 0x1.999999999999ap-4. That equivalent value in decimal is
0.1000000000000000055511151231257827021181583404541015625.

Note: From Python 3.2 onwards, a Decimal instance can also be constructed directly from a
float.

>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> Decimal.from_float(float('nan'))
Decimal('NaN')
>>> Decimal.from_float(float('inf'))
Decimal('Infinity')
>>> Decimal.from_float(float('-inf'))
Decimal('-Infinity')

New in version 3.1.

fma(other, third, context=None)
Fused multiply-add. Return self*other+third with no rounding of the intermediate product
self*other.

>>> Decimal(2).fma(3, 5)
Decimal('11')

is_canonical()
Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is
always canonical, so this operation always returns True.

is_finite()
Return True if the argument is a finite number, and False if the argument is an infinity or a NaN.

is_infinite()
Return True if the argument is either positive or negative infinity and False otherwise.

is_nan()
Return True if the argument is a (quiet or signaling) NaN and False otherwise.

is_normal(context=None)
Return True if the argument is a normal finite number. Return False if the argument is zero,
subnormal, infinite or a NaN.

is_qnan()
Return True if the argument is a quiet NaN, and False otherwise.

282 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

is_signed()
Return True if the argument has a negative sign and False otherwise. Note that zeros and NaNs
can both carry signs.

is_snan()
Return True if the argument is a signaling NaN and False otherwise.

is_subnormal(context=None)
Return True if the argument is subnormal, and False otherwise.

is_zero()
Return True if the argument is a (positive or negative) zero and False otherwise.

ln(context=None)
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

log10(context=None)
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

logb(context=None)
For a nonzero number, return the adjusted exponent of its operand as a Decimal instance. If the
operand is a zero then Decimal('-Infinity') is returned and the DivisionByZero flag is raised. If
the operand is an infinity then Decimal('Infinity') is returned.

logical_and(other, context=None)
logical_and() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise and of the two operands.

logical_invert(context=None)
logical_invert() is a logical operation. The result is the digit-wise inversion of the operand.

logical_or(other, context=None)
logical_or() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise or of the two operands.

logical_xor(other, context=None)
logical_xor() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise exclusive or of the two operands.

max(other, context=None)
Like max(self, other) except that the context rounding rule is applied before returning and that
NaN values are either signaled or ignored (depending on the context and whether they are signaling
or quiet).

max_mag(other, context=None)
Similar to the max() method, but the comparison is done using the absolute values of the operands.

min(other, context=None)
Like min(self, other) except that the context rounding rule is applied before returning and that
NaN values are either signaled or ignored (depending on the context and whether they are signaling
or quiet).

min_mag(other, context=None)
Similar to the min() method, but the comparison is done using the absolute values of the operands.

next_minus(context=None)
Return the largest number representable in the given context (or in the current thread’s context
if no context is given) that is smaller than the given operand.

9.4. decimal — Decimal fixed point and floating point arithmetic 283

The Python Library Reference, Release 3.5.7

next_plus(context=None)
Return the smallest number representable in the given context (or in the current thread’s context
if no context is given) that is larger than the given operand.

next_toward(other, context=None)
If the two operands are unequal, return the number closest to the first operand in the direction
of the second operand. If both operands are numerically equal, return a copy of the first operand
with the sign set to be the same as the sign of the second operand.

normalize(context=None)
Normalize the number by stripping the rightmost trailing zeros and converting any result equal
to Decimal('0') to Decimal('0e0'). Used for producing canonical values for attributes of an
equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize
to the equivalent value Decimal('32.1').

number_class(context=None)
Return a string describing the class of the operand. The returned value is one of the following
ten strings.

• "-Infinity", indicating that the operand is negative infinity.

• "-Normal", indicating that the operand is a negative normal number.

• "-Subnormal", indicating that the operand is negative and subnormal.

• "-Zero", indicating that the operand is a negative zero.

• "+Zero", indicating that the operand is a positive zero.

• "+Subnormal", indicating that the operand is positive and subnormal.

• "+Normal", indicating that the operand is a positive normal number.

• "+Infinity", indicating that the operand is positive infinity.

• "NaN", indicating that the operand is a quiet NaN (Not a Number).

• "sNaN", indicating that the operand is a signaling NaN.

quantize(exp, rounding=None, context=None)
Return a value equal to the first operand after rounding and having the exponent of the second
operand.

>>> Decimal('1.41421356').quantize(Decimal('1.000'))
Decimal('1.414')

Unlike other operations, if the length of the coefficient after the quantize operation would be
greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there
is an error condition, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal
and inexact.

If the exponent of the second operand is larger than that of the first then rounding may be
necessary. In this case, the rounding mode is determined by the rounding argument if given, else
by the given context argument; if neither argument is given the rounding mode of the current
thread’s context is used.

An error is returned whenever the resulting exponent is greater than Emax or less than Etiny.

radix()
Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included
for compatibility with the specification.

284 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

remainder_near(other, context=None)
Return the remainder from dividing self by other. This differs from self % other in that the sign
of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is
self - n * other where n is the integer nearest to the exact value of self / other, and if two integers
are equally near then the even one is chosen.

If the result is zero then its sign will be the sign of self.

>>> Decimal(18).remainder_near(Decimal(10))
Decimal('-2')
>>> Decimal(25).remainder_near(Decimal(10))
Decimal('5')
>>> Decimal(35).remainder_near(Decimal(10))
Decimal('-5')

rotate(other, context=None)
Return the result of rotating the digits of the first operand by an amount specified by the second
operand. The second operand must be an integer in the range -precision through precision. The
absolute value of the second operand gives the number of places to rotate. If the second operand
is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first
operand is padded on the left with zeros to length precision if necessary. The sign and exponent
of the first operand are unchanged.

same_quantum(other, context=None)
Test whether self and other have the same exponent or whether both are NaN.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is
performed. As an exception, the C version may raise InvalidOperation if the second operand
cannot be converted exactly.

scaleb(other, context=None)
Return the first operand with exponent adjusted by the second. Equivalently, return the first
operand multiplied by 10**other. The second operand must be an integer.

shift(other, context=None)
Return the result of shifting the digits of the first operand by an amount specified by the second
operand. The second operand must be an integer in the range -precision through precision. The
absolute value of the second operand gives the number of places to shift. If the second operand
is positive then the shift is to the left; otherwise the shift is to the right. Digits shifted into the
coefficient are zeros. The sign and exponent of the first operand are unchanged.

sqrt(context=None)
Return the square root of the argument to full precision.

to_eng_string(context=None)
Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to
the left of the decimal place and may require the addition of either one or two trailing zeros.

For example, this converts Decimal('123E+1') to Decimal('1.23E+3').

to_integral(rounding=None, context=None)
Identical to the to_integral_value() method. The to_integral name has been kept for compati-
bility with older versions.

to_integral_exact(rounding=None, context=None)
Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs.
The rounding mode is determined by the rounding parameter if given, else by the given context.
If neither parameter is given then the rounding mode of the current context is used.

9.4. decimal — Decimal fixed point and floating point arithmetic 285

The Python Library Reference, Release 3.5.7

to_integral_value(rounding=None, context=None)
Round to the nearest integer without signaling Inexact or Rounded. If given, applies rounding;
otherwise, uses the rounding method in either the supplied context or the current context.

Logical operands

The logical_and(), logical_invert(), logical_or(), and logical_xor() methods expect their arguments to be
logical operands. A logical operand is a Decimal instance whose exponent and sign are both zero, and whose
digits are all either 0 or 1.

9.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine
which signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the getcontext() and setcontext()
functions:

decimal.getcontext()
Return the current context for the active thread.

decimal.setcontext(c)
Set the current context for the active thread to c.

You can also use the with statement and the localcontext() function to temporarily change the active context.

decimal.localcontext(ctx=None)
Return a context manager that will set the current context for the active thread to a copy of ctx on
entry to the with-statement and restore the previous context when exiting the with-statement. If no
context is specified, a copy of the current context is used.

For example, the following code sets the current decimal precision to 42 places, performs a calculation,
and then automatically restores the previous context:

from decimal import localcontext

with localcontext() as ctx:
ctx.prec = 42 # Perform a high precision calculation
s = calculate_something()

s = +s # Round the final result back to the default precision

New contexts can also be created using the Context constructor described below. In addition, the module
provides three pre-made contexts:

class decimal.BasicContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set
to nine. Rounding is set to ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated
as exceptions) except Inexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

class decimal.ExtendedContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set
to nine. Rounding is set to ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so
that exceptions are not raised during computations).

286 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

Because the traps are disabled, this context is useful for applications that prefer to have result value
of NaN or Infinity instead of raising exceptions. This allows an application to complete a run in the
presence of conditions that would otherwise halt the program.

class decimal.DefaultContext
This context is used by the Context constructor as a prototype for new contexts. Changing a field (such
a precision) has the effect of changing the default for new contexts created by the Context constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads
are started has the effect of setting system-wide defaults. Changing the fields after threads have started
is not recommended as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create
contexts explicitly as described below.

The default values are prec=28, rounding=ROUND_HALF_EVEN, and enabled traps for Overflow,
InvalidOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

class decimal.Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None,
clamp=None, flags=None, traps=None)

Creates a new context. If a field is not specified or is None, the default values are copied from the
DefaultContext. If the flags field is not specified or is None, all flags are cleared.

prec is an integer in the range [1, MAX_PREC] that sets the precision for arithmetic operations in
the context.

The rounding option is one of the constants listed in the section Rounding Modes.

The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and
leave the flags clear.

The Emin and Emax fields are integers specifying the outer limits allowable for exponents. Emin must
be in the range [MIN_EMIN, 0], Emax in the range [0, MAX_EMAX].

The capitals field is either 0 or 1 (the default). If set to 1, exponents are printed with a capital E;
otherwise, a lowercase e is used: Decimal('6.02e+23').

The clamp field is either 0 (the default) or 1. If set to 1, the exponent e of a Decimal instance
representable in this context is strictly limited to the range Emin - prec + 1 <= e <= Emax - prec +
1. If clamp is 0 then a weaker condition holds: the adjusted exponent of the Decimal instance is at most
Emax. When clamp is 1, a large normal number will, where possible, have its exponent reduced and
a corresponding number of zeros added to its coefficient, in order to fit the exponent constraints; this
preserves the value of the number but loses information about significant trailing zeros. For example:

>>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
Decimal('1.23000E+999')

A clamp value of 1 allows compatibility with the fixed-width decimal interchange formats specified in
IEEE 754.

The Context class defines several general purpose methods as well as a large number of methods for
doing arithmetic directly in a given context. In addition, for each of the Decimal methods described
above (with the exception of the adjusted() and as_tuple() methods) there is a corresponding Context
method. For example, for a Context instance C and Decimal instance x, C.exp(x) is equivalent to
x.exp(context=C). Each Context method accepts a Python integer (an instance of int) anywhere that
a Decimal instance is accepted.

clear_flags()
Resets all of the flags to 0.

9.4. decimal — Decimal fixed point and floating point arithmetic 287

The Python Library Reference, Release 3.5.7

clear_traps()
Resets all of the traps to 0.

New in version 3.3.

copy()
Return a duplicate of the context.

copy_decimal(num)
Return a copy of the Decimal instance num.

create_decimal(num)
Creates a new Decimal instance from num but using self as context. Unlike the Decimal con-
structor, the context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the
application. Another benefit is that rounding immediately eliminates unintended effects from
digits beyond the current precision. In the following example, using unrounded inputs means that
adding zero to a sum can change the result:

>>> getcontext().prec = 3
>>> Decimal('3.4445') + Decimal('1.0023')
Decimal('4.45')
>>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
Decimal('4.44')

This method implements the to-number operation of the IBM specification. If the argument is a
string, no leading or trailing whitespace is permitted.

create_decimal_from_float(f)
Creates a new Decimal instance from a float f but rounding using self as the context. Unlike the
Decimal.from_float() class method, the context precision, rounding method, flags, and traps are
applied to the conversion.

>>> context = Context(prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_from_float(math.pi)
Decimal('3.1415')
>>> context = Context(prec=5, traps=[Inexact])
>>> context.create_decimal_from_float(math.pi)
Traceback (most recent call last):

...
decimal.Inexact: None

New in version 3.1.

Etiny()
Returns a value equal to Emin - prec + 1 which is the minimum exponent value for subnormal
results. When underflow occurs, the exponent is set to Etiny.

Etop()
Returns a value equal to Emax - prec + 1.

The usual approach to working with decimals is to create Decimal instances and then apply arithmetic
operations which take place within the current context for the active thread. An alternative approach
is to use context methods for calculating within a specific context. The methods are similar to those
for the Decimal class and are only briefly recounted here.

abs(x)
Returns the absolute value of x.

288 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

add(x, y)
Return the sum of x and y.

canonical(x)
Returns the same Decimal object x.

compare(x, y)
Compares x and y numerically.

compare_signal(x, y)
Compares the values of the two operands numerically.

compare_total(x, y)
Compares two operands using their abstract representation.

compare_total_mag(x, y)
Compares two operands using their abstract representation, ignoring sign.

copy_abs(x)
Returns a copy of x with the sign set to 0.

copy_negate(x)
Returns a copy of x with the sign inverted.

copy_sign(x, y)
Copies the sign from y to x.

divide(x, y)
Return x divided by y.

divide_int(x, y)
Return x divided by y, truncated to an integer.

divmod(x, y)
Divides two numbers and returns the integer part of the result.

exp(x)
Returns e ** x.

fma(x, y, z)
Returns x multiplied by y, plus z.

is_canonical(x)
Returns True if x is canonical; otherwise returns False.

is_finite(x)
Returns True if x is finite; otherwise returns False.

is_infinite(x)
Returns True if x is infinite; otherwise returns False.

is_nan(x)
Returns True if x is a qNaN or sNaN; otherwise returns False.

is_normal(x)
Returns True if x is a normal number; otherwise returns False.

is_qnan(x)
Returns True if x is a quiet NaN; otherwise returns False.

is_signed(x)
Returns True if x is negative; otherwise returns False.

9.4. decimal — Decimal fixed point and floating point arithmetic 289

The Python Library Reference, Release 3.5.7

is_snan(x)
Returns True if x is a signaling NaN; otherwise returns False.

is_subnormal(x)
Returns True if x is subnormal; otherwise returns False.

is_zero(x)
Returns True if x is a zero; otherwise returns False.

ln(x)
Returns the natural (base e) logarithm of x.

log10(x)
Returns the base 10 logarithm of x.

logb(x)
Returns the exponent of the magnitude of the operand’s MSD.

logical_and(x, y)
Applies the logical operation and between each operand’s digits.

logical_invert(x)
Invert all the digits in x.

logical_or(x, y)
Applies the logical operation or between each operand’s digits.

logical_xor(x, y)
Applies the logical operation xor between each operand’s digits.

max(x, y)
Compares two values numerically and returns the maximum.

max_mag(x, y)
Compares the values numerically with their sign ignored.

min(x, y)
Compares two values numerically and returns the minimum.

min_mag(x, y)
Compares the values numerically with their sign ignored.

minus(x)
Minus corresponds to the unary prefix minus operator in Python.

multiply(x, y)
Return the product of x and y.

next_minus(x)
Returns the largest representable number smaller than x.

next_plus(x)
Returns the smallest representable number larger than x.

next_toward(x, y)
Returns the number closest to x, in direction towards y.

normalize(x)
Reduces x to its simplest form.

number_class(x)
Returns an indication of the class of x.

290 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

plus(x)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context
precision and rounding, so it is not an identity operation.

power(x, y, modulo=None)
Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x**y. If x is negative then y must be integral. The result will
be inexact unless y is integral and the result is finite and can be expressed exactly in ‘precision’
digits. The rounding mode of the context is used. Results are always correctly-rounded in the
Python version.

Changed in version 3.3: The C module computes power() in terms of the correctly-rounded exp()
and ln() functions. The result is well-defined but only “almost always correctly-rounded”.

With three arguments, compute (x**y) % modulo. For the three argument form, the following
restrictions on the arguments hold:

• all three arguments must be integral

• y must be nonnegative

• at least one of x or y must be nonzero

• modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context.power(x, y, modulo) is equal to the value that would be obtained
by computing (x**y) % modulo with unbounded precision, but is computed more efficiently. The
exponent of the result is zero, regardless of the exponents of x, y and modulo. The result is always
exact.

quantize(x, y)
Returns a value equal to x (rounded), having the exponent of y.

radix()
Just returns 10, as this is Decimal, :)

remainder(x, y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near(x, y)
Returns x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then
its sign will be the sign of x).

rotate(x, y)
Returns a rotated copy of x, y times.

same_quantum(x, y)
Returns True if the two operands have the same exponent.

scaleb(x, y)
Returns the first operand after adding the second value its exp.

shift(x, y)
Returns a shifted copy of x, y times.

sqrt(x)
Square root of a non-negative number to context precision.

subtract(x, y)
Return the difference between x and y.

9.4. decimal — Decimal fixed point and floating point arithmetic 291

The Python Library Reference, Release 3.5.7

to_eng_string(x)
Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to
the left of the decimal place and may require the addition of either one or two trailing zeros.

to_integral_exact(x)
Rounds to an integer.

to_sci_string(x)
Converts a number to a string using scientific notation.

9.4.4 Constants

The constants in this section are only relevant for the C module. They are also included in the pure Python
version for compatibility.

32-bit 64-bit

decimal.MAX_PREC
425000000 999999999999999999

decimal.MAX_EMAX
425000000 999999999999999999

decimal.MIN_EMIN
-425000000 -999999999999999999

decimal.MIN_ETINY
-849999999 -1999999999999999997

decimal.HAVE_THREADS
The default value is True. If Python is compiled without threads, the C version automatically disables
the expensive thread local context machinery. In this case, the value is False.

9.4.5 Rounding modes

decimal.ROUND_CEILING
Round towards Infinity.

decimal.ROUND_DOWN
Round towards zero.

decimal.ROUND_FLOOR
Round towards -Infinity.

decimal.ROUND_HALF_DOWN
Round to nearest with ties going towards zero.

decimal.ROUND_HALF_EVEN
Round to nearest with ties going to nearest even integer.

decimal.ROUND_HALF_UP
Round to nearest with ties going away from zero.

decimal.ROUND_UP
Round away from zero.

292 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

decimal.ROUND_05UP
Round away from zero if last digit after rounding towards zero would have been 0 or 5; otherwise round
towards zero.

9.4.6 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one
context trap enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked
for informational purposes (for instance, to determine whether a computation was exact). After checking
the flags, be sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised.
For example, if the DivisionByZero trap is set, then a DivisionByZero exception is raised upon encountering
the condition.

class decimal.Clamped
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If
possible, the exponent is reduced to fit by adding zeros to the coefficient.

class decimal.DecimalException
Base class for other signals and a subclass of ArithmeticError.

class decimal.DivisionByZero
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal
is not trapped, returns Infinity or -Infinity with the sign determined by the inputs to the calculation.

class decimal.Inexact
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The
signal flag or trap is used to detect when results are inexact.

class decimal.InvalidOperation
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN.
Possible causes include:

Infinity - Infinity
0 * Infinity
Infinity / Infinity
x % 0
Infinity % x
sqrt(-x) and x > 0
0 ** 0
x ** (non-integer)
x ** Infinity

class decimal.Overflow
Numerical overflow.

Indicates the exponent is larger than Emax after rounding has occurred. If not trapped, the result
depends on the rounding mode, either pulling inward to the largest representable finite number or
rounding outward to Infinity. In either case, Inexact and Rounded are also signaled.

9.4. decimal — Decimal fixed point and floating point arithmetic 293

The Python Library Reference, Release 3.5.7

class decimal.Rounded
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5.0).
If not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

class decimal.Subnormal
Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the
result unchanged.

class decimal.Underflow
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Inexact and Subnormal are also
signaled.

class decimal.FloatOperation
Enable stricter semantics for mixing floats and Decimals.

If the signal is not trapped (default), mixing floats and Decimals is permitted in the Decimal construc-
tor, create_decimal() and all comparison operators. Both conversion and comparisons are exact. Any
occurrence of a mixed operation is silently recorded by setting FloatOperation in the context flags.
Explicit conversions with from_float() or create_decimal_from_float() do not set the flag.

Otherwise (the signal is trapped), only equality comparisons and explicit conversions are silent. All
other mixed operations raise FloatOperation.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError(exceptions.Exception)
DecimalException

Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact

Overflow(Inexact, Rounded)
Underflow(Inexact, Rounded, Subnormal)

InvalidOperation
Rounded
Subnormal
FloatOperation(DecimalException, exceptions.TypeError)

9.4.7 Floating Point Notes

Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent
0.1 exactly); however, some operations can still incur round-off error when non-zero digits exceed the fixed
precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities
resulting in loss of significance. Knuth provides two instructive examples where rounded floating point
arithmetic with insufficient precision causes the breakdown of the associative and distributive properties of
addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext

(continues on next page)

294 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> getcontext().prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
>>> (u + v) + w
Decimal('9.5111111')
>>> u + (v + w)
Decimal('10')

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
>>> (u*v) + (u*w)
Decimal('0.01')
>>> u * (v+w)
Decimal('0.0060000')

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to
avoid loss of significance:

>>> getcontext().prec = 20
>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
>>> (u + v) + w
Decimal('9.51111111')
>>> u + (v + w)
Decimal('9.51111111')
>>>
>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
>>> (u*v) + (u*w)
Decimal('0.0060000')
>>> u * (v+w)
Decimal('0.0060000')

Special values

The number system for the decimal module provides special values including NaN, sNaN, -Infinity, Infinity,
and two zeros, +0 and -0.

Infinities can be constructed directly with: Decimal('Infinity'). Also, they can arise from dividing by zero
when the DivisionByZero signal is not trapped. Likewise, when the Overflow signal is not trapped, infinity
can result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very
large, indeterminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the InvalidOperation signal is trapped, raise an
exception. For example, 0/0 returns NaN which means “not a number”. This variety of NaN is quiet and,
once created, will flow through other computations always resulting in another NaN. This behavior can
be useful for a series of computations that occasionally have missing inputs — it allows the calculation to
proceed while flagging specific results as invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return
value when an invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a NaN is involved. A
test for equality where one of the operands is a quiet or signaling NaN always returns False (even when
doing Decimal('NaN')==Decimal('NaN')), while a test for inequality always returns True. An attempt
to compare two Decimals using any of the <, <=, > or >= operators will raise the InvalidOperation signal
if either operand is a NaN, and return False if this signal is not trapped. Note that the General Decimal

9.4. decimal — Decimal fixed point and floating point arithmetic 295

The Python Library Reference, Release 3.5.7

Arithmetic specification does not specify the behavior of direct comparisons; these rules for comparisons
involving a NaN were taken from the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict
standards-compliance, use the compare() and compare-signal() methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted
if the calculation had been carried out to greater precision. Since their magnitude is zero, both positive and
negative zeros are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero
with differing precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed
to normalized floating point representations, it is not immediately obvious that the following calculation
returns a value equal to zero:

>>> 1 / Decimal('Infinity')
Decimal('0E-1000026')

9.4.8 Working with threads

The getcontext() function accesses a different Context object for each thread. Having separate thread
contexts means that threads may make changes (such as getcontext().prec=10) without interfering with
other threads.

Likewise, the setcontext() function automatically assigns its target to the current thread.

If setcontext() has not been called before getcontext(), then getcontext() will automatically create a new
context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that
each thread will use the same values throughout the application, directly modify the DefaultContext object.
This should be done before any threads are started so that there won’t be a race condition between threads
calling getcontext(). For example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12
DefaultContext.rounding = ROUND_DOWN
DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1
setcontext(DefaultContext)

Afterwards, the threads can be started
t1.start()
t2.start()
t3.start()
. . .

9.4.9 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal
class:

def moneyfmt(value, places=2, curr='', sep=',', dp='.',
pos='', neg='-', trailneg=''):

"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point

(continues on next page)

296 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

(continued from previous page)

curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)

only specify as blank when places is zero
pos: optional sign for positive numbers: '+', space or blank
neg: optional sign for negative numbers: '-', '(', space or blank
trailneg:optional trailing minus indicator: '-', ')', space or blank

>>> d = Decimal('-1234567.8901')
>>> moneyfmt(d, curr='$')
'-$1,234,567.89'
>>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
'1.234.568-'
>>> moneyfmt(d, curr='$', neg='(', trailneg=')')
'($1,234,567.89)'
>>> moneyfmt(Decimal(123456789), sep=' ')
'123 456 789.00'
>>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
'<0.02>'

"""
q = Decimal(10) ** -places # 2 places --> '0.01'
sign, digits, exp = value.quantize(q).as_tuple()
result = []
digits = list(map(str, digits))
build, next = result.append, digits.pop
if sign:

build(trailneg)
for i in range(places):

build(next() if digits else '0')
if places:

build(dp)
if not digits:

build('0')
i = 0
while digits:

build(next())
i += 1
if i == 3 and digits:

i = 0
build(sep)

build(curr)
build(neg if sign else pos)
return ''.join(reversed(result))

def pi():
"""Compute Pi to the current precision.

>>> print(pi())
3.141592653589793238462643383

"""
getcontext().prec += 2 # extra digits for intermediate steps
three = Decimal(3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic 297

The Python Library Reference, Release 3.5.7

(continued from previous page)

lasts = s
n, na = n+na, na+8
d, da = d+da, da+32
t = (t * n) / d
s += t

getcontext().prec -= 2
return +s # unary plus applies the new precision

def exp(x):
"""Return e raised to the power of x. Result type matches input type.

>>> print(exp(Decimal(1)))
2.718281828459045235360287471
>>> print(exp(Decimal(2)))
7.389056098930650227230427461
>>> print(exp(2.0))
7.38905609893
>>> print(exp(2+0j))
(7.38905609893+0j)

"""
getcontext().prec += 2
i, lasts, s, fact, num = 0, 0, 1, 1, 1
while s != lasts:

lasts = s
i += 1
fact *= i
num *= x
s += num / fact

getcontext().prec -= 2
return +s

def cos(x):
"""Return the cosine of x as measured in radians.

The Taylor series approximation works best for a small value of x.
For larger values, first compute x = x % (2 * pi).

>>> print(cos(Decimal('0.5')))
0.8775825618903727161162815826
>>> print(cos(0.5))
0.87758256189
>>> print(cos(0.5+0j))
(0.87758256189+0j)

"""
getcontext().prec += 2
i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
while s != lasts:

lasts = s
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
s += num / fact * sign

getcontext().prec -= 2

(continues on next page)

298 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

(continued from previous page)

return +s

def sin(x):
"""Return the sine of x as measured in radians.

The Taylor series approximation works best for a small value of x.
For larger values, first compute x = x % (2 * pi).

>>> print(sin(Decimal('0.5')))
0.4794255386042030002732879352
>>> print(sin(0.5))
0.479425538604
>>> print(sin(0.5+0j))
(0.479425538604+0j)

"""
getcontext().prec += 2
i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
while s != lasts:

lasts = s
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
s += num / fact * sign

getcontext().prec -= 2
return +s

9.4.10 Decimal FAQ

Q. It is cumbersome to type decimal.Decimal('1234.5'). Is there a way to minimize typing when using the
interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D('1.23') + D('3.45')
Decimal('4.68')

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be
rounded. Others are not supposed to have excess digits and need to be validated. What methods should be
used?

A. The quantize() method rounds to a fixed number of decimal places. If the Inexact trap is set, it is also
useful for validation:

>>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')

>>> # Round to two places
>>> Decimal('3.214').quantize(TWOPLACES)
Decimal('3.21')

>>> # Validate that a number does not exceed two places
>>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Decimal('3.21')

9.4. decimal — Decimal fixed point and floating point arithmetic 299

The Python Library Reference, Release 3.5.7

>>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Traceback (most recent call last):
...

Inexact: None

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve
fixed point. Others operations, like division and non-integer multiplication, will change the number of
decimal places and need to be followed-up with a quantize() step:

>>> a = Decimal('102.72') # Initial fixed-point values
>>> b = Decimal('3.17')
>>> a + b # Addition preserves fixed-point
Decimal('105.89')
>>> a - b
Decimal('99.55')
>>> a * 42 # So does integer multiplication
Decimal('4314.24')
>>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
Decimal('325.62')
>>> (b / a).quantize(TWOPLACES) # And quantize division
Decimal('0.03')

In developing fixed-point applications, it is convenient to define functions to handle the quantize() step:

>>> def mul(x, y, fp=TWOPLACES):
... return (x * y).quantize(fp)
>>> def div(x, y, fp=TWOPLACES):
... return (x / y).quantize(fp)

>>> mul(a, b) # Automatically preserve fixed-point
Decimal('325.62')
>>> div(b, a)
Decimal('0.03')

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and 02E+4 all have the
same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. The normalize() method maps all equivalent values to a single representative:

>>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
>>> [v.normalize() for v in values]
[Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential
representation?

A. For some values, exponential notation is the only way to express the number of significant places in the
coefficient. For example, expressing 5.0E+3 as 5000 keeps the value constant but cannot show the original’s
two-place significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing
zeroes, losing significance, but keeping the value unchanged:

>>> def remove_exponent(d):
... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()

300 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

>>> remove_exponent(Decimal('5E+3'))
Decimal('5000')

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, any binary floating point number can be exactly expressed as a Decimal though an exact conversion
may take more precision than intuition would suggest:

>>> Decimal(math.pi)
Decimal('3.141592653589793115997963468544185161590576171875')

Q. Within a complex calculation, how can I make sure that I haven’t gotten a spurious result because of
insufficient precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater
precision and with various rounding modes. Widely differing results indicate insufficient precision, rounding
mode issues, ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there
anything to watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values.
Only the results are rounded. The advantage for inputs is that “what you type is what you get”. A
disadvantage is that the results can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext().prec = 3
>>> Decimal('3.104') + Decimal('2.104')
Decimal('5.21')
>>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Decimal('5.20')

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext().prec = 3
>>> +Decimal('1.23456789') # unary plus triggers rounding
Decimal('1.23')

Alternatively, inputs can be rounded upon creation using the Context.create_decimal() method:

>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Decimal('1.2345')

9.5 fractions — Rational numbers

Source code: Lib/fractions.py

The fractions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a
string.

class fractions.Fraction(numerator=0, denominator=1)
class fractions.Fraction(other_fraction)
class fractions.Fraction(float)
class fractions.Fraction(decimal)

9.5. fractions — Rational numbers 301

https://github.com/python/cpython/tree/3.5/Lib/fractions.py

The Python Library Reference, Release 3.5.7

class fractions.Fraction(string)
The first version requires that numerator and denominator are instances of numbers.Rational and
returns a new Fraction instance with value numerator/denominator. If denominator is 0, it raises a
ZeroDivisionError. The second version requires that other_fraction is an instance of numbers.Rational
and returns a Fraction instance with the same value. The next two versions accept either a float or a
decimal.Decimal instance, and return a Fraction instance with exactly the same value. Note that due
to the usual issues with binary floating-point (see tut-fp-issues), the argument to Fraction(1.1) is not
exactly equal to 11/10, and so Fraction(1.1) does not return Fraction(11, 10) as one might expect. (But
see the documentation for the limit_denominator() method below.) The last version of the constructor
expects a string or unicode instance. The usual form for this instance is:

[sign] numerator ['/' denominator]

where the optional sign may be either ‘+’ or ‘-‘ and numerator and denominator (if present) are strings
of decimal digits. In addition, any string that represents a finite value and is accepted by the float
constructor is also accepted by the Fraction constructor. In either form the input string may also have
leading and/or trailing whitespace. Here are some examples:

>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)
>>> Fraction(123)
Fraction(123, 1)
>>> Fraction()
Fraction(0, 1)
>>> Fraction('3/7')
Fraction(3, 7)
>>> Fraction(' -3/7 ')
Fraction(-3, 7)
>>> Fraction('1.414213 \t\n')
Fraction(1414213, 1000000)
>>> Fraction('-.125')
Fraction(-1, 8)
>>> Fraction('7e-6')
Fraction(7, 1000000)
>>> Fraction(2.25)
Fraction(9, 4)
>>> Fraction(1.1)
Fraction(2476979795053773, 2251799813685248)
>>> from decimal import Decimal
>>> Fraction(Decimal('1.1'))
Fraction(11, 10)

The Fraction class inherits from the abstract base class numbers.Rational, and implements all of the
methods and operations from that class. Fraction instances are hashable, and should be treated as
immutable. In addition, Fraction has the following properties and methods:

Changed in version 3.2: The Fraction constructor now accepts float and decimal.Decimal instances.

numerator
Numerator of the Fraction in lowest term.

denominator
Denominator of the Fraction in lowest term.

from_float(flt)
This class method constructs a Fraction representing the exact value of flt, which must be a float.
Beware that Fraction.from_float(0.3) is not the same value as Fraction(3, 10).

302 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

Note: From Python 3.2 onwards, you can also construct a Fraction instance directly from a float.

from_decimal(dec)
This class method constructs a Fraction representing the exact value of dec, which must be a
decimal.Decimal instance.

Note: From Python 3.2 onwards, you can also construct a Fraction instance directly from a
decimal.Decimal instance.

limit_denominator(max_denominator=1000000)
Finds and returns the closest Fraction to self that has denominator at most max_denominator.
This method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos
>>> Fraction(cos(pi/3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction(cos(pi/3)).limit_denominator()
Fraction(1, 2)
>>> Fraction(1.1).limit_denominator()
Fraction(11, 10)

__floor__()
Returns the greatest int <= self. This method can also be accessed through the math.floor()
function:

>>> from math import floor
>>> floor(Fraction(355, 113))
3

__ceil__()
Returns the least int >= self. This method can also be accessed through the math.ceil() function.

__round__()
__round__(ndigits)

The first version returns the nearest int to self, rounding half to even. The second version rounds
self to the nearest multiple of Fraction(1, 10**ndigits) (logically, if ndigits is negative), again
rounding half toward even. This method can also be accessed through the round() function.

fractions.gcd(a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the
absolute value of gcd(a, b) is the largest integer that divides both a and b. gcd(a,b) has the same sign
as b if b is nonzero; otherwise it takes the sign of a. gcd(0, 0) returns 0.

Deprecated since version 3.5: Use math.gcd() instead.

See also:

Module numbers The abstract base classes making up the numeric tower.

9.5. fractions — Rational numbers 303

The Python Library Reference, Release 3.5.7

9.6 random — Generate pseudo-random numbers

Source code: Lib/random.py

This module implements pseudo-random number generators for various distributions.

For integers, there is uniform selection from a range. For sequences, there is uniform selection of a random
element, a function to generate a random permutation of a list in-place, and a function for random sampling
without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential,
gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random(), which generates a random float uni-
formly in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It
produces 53-bit precision floats and has a period of 2**19937-1. The underlying implementation in C is both
fast and threadsafe. The Mersenne Twister is one of the most extensively tested random number generators
in existence. However, being completely deterministic, it is not suitable for all purposes, and is completely
unsuitable for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random.
Random class. You can instantiate your own instances of Random to get generators that don’t share state.

Class Random can also be subclassed if you want to use a different basic generator of your own devising:
in that case, override the random(), seed(), getstate(), and setstate() methods. Optionally, a new generator
can supply a getrandbits() method — this allows randrange() to produce selections over an arbitrarily large
range.

The random module also provides the SystemRandom class which uses the system function os.urandom() to
generate random numbers from sources provided by the operating system.

Warning: The pseudo-random generators of this module should not be used for security purposes.

Bookkeeping functions:

random.seed(a=None, version=2)
Initialize the random number generator.

If a is omitted or None, the current system time is used. If randomness sources are provided by the
operating system, they are used instead of the system time (see the os.urandom() function for details
on availability).

If a is an int, it is used directly.

With version 2 (the default), a str, bytes, or bytearray object gets converted to an int and all of its
bits are used.

With version 1 (provided for reproducing random sequences from older versions of Python), the algo-
rithm for str and bytes generates a narrower range of seeds.

Changed in version 3.2: Moved to the version 2 scheme which uses all of the bits in a string seed.

random.getstate()
Return an object capturing the current internal state of the generator. This object can be passed to
setstate() to restore the state.

304 Chapter 9. Numeric and Mathematical Modules

https://github.com/python/cpython/tree/3.5/Lib/random.py

The Python Library Reference, Release 3.5.7

random.setstate(state)
state should have been obtained from a previous call to getstate(), and setstate() restores the internal
state of the generator to what it was at the time getstate() was called.

random.getrandbits(k)
Returns a Python integer with k random bits. This method is supplied with the MersenneTwister
generator and some other generators may also provide it as an optional part of the API. When available,
getrandbits() enables randrange() to handle arbitrarily large ranges.

Functions for integers:

random.randrange(stop)

random.randrange(start, stop[, step])
Return a randomly selected element from range(start, stop, step). This is equivalent to
choice(range(start, stop, step)), but doesn’t actually build a range object.

The positional argument pattern matches that of range(). Keyword arguments should not be used
because the function may use them in unexpected ways.

Changed in version 3.2: randrange() is more sophisticated about producing equally distributed values.
Formerly it used a style like int(random()*n) which could produce slightly uneven distributions.

random.randint(a, b)
Return a random integer N such that a <= N <= b. Alias for randrange(a, b+1).

Functions for sequences:

random.choice(seq)
Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

random.shuffle(x[, random])
Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a
random float in [0.0, 1.0); by default, this is the function random().

Note that for even rather small len(x), the total number of permutations of x is larger than the period
of most random number generators; this implies that most permutations of a long sequence can never
be generated.

random.sample(population, k)
Return a k length list of unique elements chosen from the population sequence or set. Used for random
sampling without replacement.

Returns a new list containing elements from the population while leaving the original population
unchanged. The resulting list is in selection order so that all sub-slices will also be valid random
samples. This allows raffle winners (the sample) to be partitioned into grand prize and second place
winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then
each occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use an range() object as an argument. This is especially
fast and space efficient for sampling from a large population: sample(range(10000000), 60).

If the sample size is larger than the population size, a ValueError is raised.

The following functions generate specific real-valued distributions. Function parameters are named after the
corresponding variables in the distribution’s equation, as used in common mathematical practice; most of
these equations can be found in any statistics text.

random.random()
Return the next random floating point number in the range [0.0, 1.0).

9.6. random — Generate pseudo-random numbers 305

The Python Library Reference, Release 3.5.7

random.uniform(a, b)
Return a random floating point number N such that a <= N <= b for a <= b and b <= N <= a for
b < a.

The end-point value b may or may not be included in the range depending on floating-point rounding
in the equation a + (b-a) * random().

random.triangular(low, high, mode)
Return a random floating point number N such that low <= N <= high and with the specified mode
between those bounds. The low and high bounds default to zero and one. The mode argument defaults
to the midpoint between the bounds, giving a symmetric distribution.

random.betavariate(alpha, beta)
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range
between 0 and 1.

random.expovariate(lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The
parameter would be called “lambda”, but that is a reserved word in Python.) Returned values range
from 0 to positive infinity if lambd is positive, and from negative infinity to 0 if lambd is negative.

random.gammavariate(alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and
beta > 0.

The probability distribution function is:

x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) = --------------------------------------

math.gamma(alpha) * beta ** alpha

random.gauss(mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster
than the normalvariate() function defined below.

random.lognormvariate(mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal
distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must be
greater than zero.

random.normalvariate(mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

random.vonmisesvariate(mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration
parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution
reduces to a uniform random angle over the range 0 to 2*pi.

random.paretovariate(alpha)
Pareto distribution. alpha is the shape parameter.

random.weibullvariate(alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

Alternative Generator:

class random.SystemRandom([seed])
Class that uses the os.urandom() function for generating random numbers from sources provided by
the operating system. Not available on all systems. Does not rely on software state, and sequences
are not reproducible. Accordingly, the seed() method has no effect and is ignored. The getstate() and
setstate() methods raise NotImplementedError if called.

306 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

See also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseu-
dorandom number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1,
January pp.3–30 1998.

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a
long period and comparatively simple update operations.

9.6.1 Notes on Reproducibility

Sometimes it is useful to be able to reproduce the sequences given by a pseudo random number generator.
By re-using a seed value, the same sequence should be reproducible from run to run as long as multiple
threads are not running.

Most of the random module’s algorithms and seeding functions are subject to change across Python versions,
but two aspects are guaranteed not to change:

• If a new seeding method is added, then a backward compatible seeder will be offered.

• The generator’s random() method will continue to produce the same sequence when the compatible
seeder is given the same seed.

9.6.2 Examples and Recipes

Basic usage:

>>> random.random() # Random float x, 0.0 <= x < 1.0
0.37444887175646646

>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523

>>> random.randrange(10) # Integer from 0 to 9
7

>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
26

>>> random.choice('abcdefghij') # Single random element
'c'

>>> items = [1, 2, 3, 4, 5, 6, 7]
>>> random.shuffle(items)
>>> items
[7, 3, 2, 5, 6, 4, 1]

>>> random.sample([1, 2, 3, 4, 5], 3) # Three samples without replacement
[4, 1, 5]

A common task is to make a random.choice() with weighted probabilities.

If the weights are small integer ratios, a simple technique is to build a sample population with repeats:

>>> weighted_choices = [('Red', 3), ('Blue', 2), ('Yellow', 1), ('Green', 4)]
>>> population = [val for val, cnt in weighted_choices for i in range(cnt)]
>>> population

(continues on next page)

9.6. random — Generate pseudo-random numbers 307

https://code.activestate.com/recipes/576707/

The Python Library Reference, Release 3.5.7

(continued from previous page)

['Red', 'Red', 'Red', 'Blue', 'Blue', 'Yellow', 'Green', 'Green', 'Green', 'Green']

>>> random.choice(population)
'Green'

A more general approach is to arrange the weights in a cumulative distribution with itertools.accumulate(),
and then locate the random value with bisect.bisect():

>>> choices, weights = zip(*weighted_choices)
>>> cumdist = list(itertools.accumulate(weights))
>>> cumdist # [3, 3+2, 3+2+1, 3+2+1+4]
[3, 5, 6, 10]

>>> x = random.random() * cumdist[-1]
>>> choices[bisect.bisect(cumdist, x)]
'Blue'

9.7 statistics — Mathematical statistics functions

New in version 3.4.

Source code: Lib/statistics.py

This module provides functions for calculating mathematical statistics of numeric (Real-valued) data.

Note: Unless explicitly noted otherwise, these functions support int, float, decimal.Decimal and fractions.
Fraction. Behaviour with other types (whether in the numeric tower or not) is currently unsupported. Mixed
types are also undefined and implementation-dependent. If your input data consists of mixed types, you
may be able to use map() to ensure a consistent result, e.g. map(float, input_data).

9.7.1 Averages and measures of central location

These functions calculate an average or typical value from a population or sample.

mean() Arithmetic mean (“average”) of data.
median() Median (middle value) of data.
median_low() Low median of data.
median_high() High median of data.
median_grouped() Median, or 50th percentile, of grouped data.
mode() Mode (most common value) of discrete data.

9.7.2 Measures of spread

These functions calculate a measure of how much the population or sample tends to deviate from the typical
or average values.

308 Chapter 9. Numeric and Mathematical Modules

https://github.com/python/cpython/tree/3.5/Lib/statistics.py

The Python Library Reference, Release 3.5.7

pstdev() Population standard deviation of data.
pvariance() Population variance of data.
stdev() Sample standard deviation of data.
variance() Sample variance of data.

9.7.3 Function details

Note: The functions do not require the data given to them to be sorted. However, for reading convenience,
most of the examples show sorted sequences.

statistics.mean(data)
Return the sample arithmetic mean of data, a sequence or iterator of real-valued numbers.

The arithmetic mean is the sum of the data divided by the number of data points. It is commonly
called “the average”, although it is only one of many different mathematical averages. It is a measure
of the central location of the data.

If data is empty, StatisticsError will be raised.

Some examples of use:

>>> mean([1, 2, 3, 4, 4])
2.8
>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625

>>> from fractions import Fraction as F
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
Fraction(13, 21)

>>> from decimal import Decimal as D
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
Decimal('0.5625')

Note: The mean is strongly affected by outliers and is not a robust estimator for central location: the
mean is not necessarily a typical example of the data points. For more robust, although less efficient,
measures of central location, see median() and mode(). (In this case, “efficient” refers to statistical
efficiency rather than computational efficiency.)

The sample mean gives an unbiased estimate of the true population mean, which means that, taken
on average over all the possible samples, mean(sample) converges on the true mean of the entire
population. If data represents the entire population rather than a sample, then mean(data) is equivalent
to calculating the true population mean 𝜇.

statistics.median(data)
Return the median (middle value) of numeric data, using the common “mean of middle two” method.
If data is empty, StatisticsError is raised.

The median is a robust measure of central location, and is less affected by the presence of outliers in
your data. When the number of data points is odd, the middle data point is returned:

>>> median([1, 3, 5])
3

9.7. statistics — Mathematical statistics functions 309

The Python Library Reference, Release 3.5.7

When the number of data points is even, the median is interpolated by taking the average of the two
middle values:

>>> median([1, 3, 5, 7])
4.0

This is suited for when your data is discrete, and you don’t mind that the median may not be an actual
data point.

See also:

median_low(), median_high(), median_grouped()

statistics.median_low(data)
Return the low median of numeric data. If data is empty, StatisticsError is raised.

The low median is always a member of the data set. When the number of data points is odd, the
middle value is returned. When it is even, the smaller of the two middle values is returned.

>>> median_low([1, 3, 5])
3
>>> median_low([1, 3, 5, 7])
3

Use the low median when your data are discrete and you prefer the median to be an actual data point
rather than interpolated.

statistics.median_high(data)
Return the high median of data. If data is empty, StatisticsError is raised.

The high median is always a member of the data set. When the number of data points is odd, the
middle value is returned. When it is even, the larger of the two middle values is returned.

>>> median_high([1, 3, 5])
3
>>> median_high([1, 3, 5, 7])
5

Use the high median when your data are discrete and you prefer the median to be an actual data point
rather than interpolated.

statistics.median_grouped(data, interval=1)
Return the median of grouped continuous data, calculated as the 50th percentile, using interpolation.
If data is empty, StatisticsError is raised.

>>> median_grouped([52, 52, 53, 54])
52.5

In the following example, the data are rounded, so that each value represents the midpoint of data
classes, e.g. 1 is the midpoint of the class 0.5–1.5, 2 is the midpoint of 1.5–2.5, 3 is the midpoint
of 2.5–3.5, etc. With the data given, the middle value falls somewhere in the class 3.5–4.5, and
interpolation is used to estimate it:

>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
3.7

Optional argument interval represents the class interval, and defaults to 1. Changing the class interval
naturally will change the interpolation:

310 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

>>> median_grouped([1, 3, 3, 5, 7], interval=1)
3.25
>>> median_grouped([1, 3, 3, 5, 7], interval=2)
3.5

This function does not check whether the data points are at least interval apart.

CPython implementation detail: Under some circumstances, median_grouped() may coerce data points
to floats. This behaviour is likely to change in the future.

See also:

• “Statistics for the Behavioral Sciences”, Frederick J Gravetter and Larry B Wallnau (8th Edition).

• Calculating the median.

• The SSMEDIAN function in the Gnome Gnumeric spreadsheet, including this discussion.

statistics.mode(data)
Return the most common data point from discrete or nominal data. The mode (when it exists) is the
most typical value, and is a robust measure of central location.

If data is empty, or if there is not exactly one most common value, StatisticsError is raised.

mode assumes discrete data, and returns a single value. This is the standard treatment of the mode
as commonly taught in schools:

>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
3

The mode is unique in that it is the only statistic which also applies to nominal (non-numeric) data:

>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
'red'

statistics.pstdev(data, mu=None)
Return the population standard deviation (the square root of the population variance). See pvariance()
for arguments and other details.

>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
0.986893273527251

statistics.pvariance(data, mu=None)
Return the population variance of data, a non-empty iterable of real-valued numbers. Variance, or
second moment about the mean, is a measure of the variability (spread or dispersion) of data. A large
variance indicates that the data is spread out; a small variance indicates it is clustered closely around
the mean.

If the optional second argument mu is given, it should be the mean of data. If it is missing or None
(the default), the mean is automatically calculated.

Use this function to calculate the variance from the entire population. To estimate the variance from
a sample, the variance() function is usually a better choice.

Raises StatisticsError if data is empty.

Examples:

9.7. statistics — Mathematical statistics functions 311

https://www.ualberta.ca/~opscan/median.html
https://help.gnome.org/users/gnumeric/stable/gnumeric.html#gnumeric-function-SSMEDIAN
https://mail.gnome.org/archives/gnumeric-list/2011-April/msg00018.html

The Python Library Reference, Release 3.5.7

>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
>>> pvariance(data)
1.25

If you have already calculated the mean of your data, you can pass it as the optional second argument
mu to avoid recalculation:

>>> mu = mean(data)
>>> pvariance(data, mu)
1.25

This function does not attempt to verify that you have passed the actual mean as mu. Using arbitrary
values for mu may lead to invalid or impossible results.

Decimals and Fractions are supported:

>>> from decimal import Decimal as D
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('24.815')

>>> from fractions import Fraction as F
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
Fraction(13, 72)

Note: When called with the entire population, this gives the population variance 𝜎2. When called
on a sample instead, this is the biased sample variance s2, also known as variance with N degrees of
freedom.

If you somehow know the true population mean 𝜇, you may use this function to calculate the variance
of a sample, giving the known population mean as the second argument. Provided the data points are
representative (e.g. independent and identically distributed), the result will be an unbiased estimate
of the population variance.

statistics.stdev(data, xbar=None)
Return the sample standard deviation (the square root of the sample variance). See variance() for
arguments and other details.

>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
1.0810874155219827

statistics.variance(data, xbar=None)
Return the sample variance of data, an iterable of at least two real-valued numbers. Variance, or
second moment about the mean, is a measure of the variability (spread or dispersion) of data. A large
variance indicates that the data is spread out; a small variance indicates it is clustered closely around
the mean.

If the optional second argument xbar is given, it should be the mean of data. If it is missing or None
(the default), the mean is automatically calculated.

Use this function when your data is a sample from a population. To calculate the variance from the
entire population, see pvariance().

Raises StatisticsError if data has fewer than two values.

Examples:

312 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.7

>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> variance(data)
1.3720238095238095

If you have already calculated the mean of your data, you can pass it as the optional second argument
xbar to avoid recalculation:

>>> m = mean(data)
>>> variance(data, m)
1.3720238095238095

This function does not attempt to verify that you have passed the actual mean as xbar. Using arbitrary
values for xbar can lead to invalid or impossible results.

Decimal and Fraction values are supported:

>>> from decimal import Decimal as D
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('31.01875')

>>> from fractions import Fraction as F
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
Fraction(67, 108)

Note: This is the sample variance s2 with Bessel’s correction, also known as variance with N-1
degrees of freedom. Provided that the data points are representative (e.g. independent and identically
distributed), the result should be an unbiased estimate of the true population variance.

If you somehow know the actual population mean 𝜇 you should pass it to the pvariance() function as
the mu parameter to get the variance of a sample.

9.7.4 Exceptions

A single exception is defined:

exception statistics.StatisticsError
Subclass of ValueError for statistics-related exceptions.

9.7. statistics — Mathematical statistics functions 313

The Python Library Reference, Release 3.5.7

314 Chapter 9. Numeric and Mathematical Modules

CHAPTER

TEN

FUNCTIONAL PROGRAMMING MODULES

The modules described in this chapter provide functions and classes that support a functional programming
style, and general operations on callables.

The following modules are documented in this chapter:

10.1 itertools — Functions creating iterators for efficient looping

This module implements a number of iterator building blocks inspired by constructs from APL, Haskell, and
SML. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in
combination. Together, they form an “iterator algebra” making it possible to construct specialized tools
succinctly and efficiently in pure Python.

For instance, SML provides a tabulation tool: tabulate(f) which produces a sequence f(0), f(1), The same
effect can be achieved in Python by combining map() and count() to form map(f, count()).

These tools and their built-in counterparts also work well with the high-speed functions in the operator
module. For example, the multiplication operator can be mapped across two vectors to form an efficient
dot-product: sum(map(operator.mul, vector1, vector2)).

Infinite Iterators:

Itera-
tor

Argu-
ments

Results Example

count() start,
[step]

start, start+step, start+2*step, . . . count(10) --> 10 11 12 13 14 ...

cycle() p p0, p1, . . . plast, p0, p1, . . . cycle('ABCD') --> A B C D A B C
D ...

re-
peat()

elem [,n] elem, elem, elem, . . . endlessly or up to n
times

repeat(10, 3) --> 10 10 10

Iterators terminating on the shortest input sequence:

315

The Python Library Reference, Release 3.5.7

Iterator Arguments Results Example
accumulate() p [,func] p0, p0+p1, p0+p1+p2, . . . accumulate([1,2,3,4,5]) --> 1 3 6 10 15
chain() p, q, . . . p0, p1, . . . plast, q0, q1, . . . chain('ABC', 'DEF') --> A B C D E

F
chain.
from_iterable()

iterable p0, p1, . . . plast, q0, q1, . . . chain.from_iterable(['ABC',
'DEF']) --> A B C D E F

compress() data, selectors (d[0] if s[0]), (d[1] if s[1]), . . . compress('ABCDEF', [1,0,1,0,1,1]) --
> A C E F

dropwhile() pred, seq seq[n], seq[n+1], starting
when pred fails

dropwhile(lambda x: x<5, [1,4,6,4,1]) -
-> 6 4 1

filterfalse() pred, seq elements of seq where
pred(elem) is false

filterfalse(lambda x: x%2, range(10)) -
-> 0 2 4 6 8

groupby() iterable[, key-
func]

sub-iterators grouped by
value of keyfunc(v)

islice() seq, [start,]
stop [, step]

elements from
seq[start:stop:step]

islice('ABCDEFG', 2, None) --> C D
E F G

starmap() func, seq func(*seq[0]), func(*seq[1]),
. . .

starmap(pow, [(2,5), (3,2), (10,3)]) -->
32 9 1000

takewhile() pred, seq seq[0], seq[1], until pred fails takewhile(lambda x: x<5, [1,4,6,4,1]) -
-> 1 4

tee() it, n it1, it2, . . . itn splits one it-
erator into n

zip_longest() p, q, . . . (p[0], q[0]), (p[1], q[1]), . . . zip_longest('ABCD', 'xy', fill-
value='-') --> Ax By C- D-

Combinatoric generators:

Iterator Arguments Results
product() p, q, . . . [re-

peat=1]
cartesian product, equivalent to a nested for-loop

permutations() p[, r] r-length tuples, all possible orderings, no repeated
elements

combinations() p, r r-length tuples, in sorted order, no repeated ele-
ments

combinations_with_replacement() p, r r-length tuples, in sorted order, with repeated el-
ements

product('ABCD', repeat=2) AA AB AC AD BA BB BC BD CA CB CC CD
DA DB DC DD

permutations('ABCD', 2) AB AC AD BA BC BD CA CB CD DA DB DC
combinations('ABCD', 2) AB AC AD BC BD CD
combinations_with_replacement('ABCD',
2)

AA AB AC AD BB BC BD CC CD DD

10.1.1 Itertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length,
so they should only be accessed by functions or loops that truncate the stream.

itertools.accumulate(iterable[, func])
Make an iterator that returns accumulated sums, or accumulated results of other binary functions
(specified via the optional func argument). If func is supplied, it should be a function of two arguments.

316 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.5.7

Elements of the input iterable may be any type that can be accepted as arguments to func. (For
example, with the default operation of addition, elements may be any addable type including Decimal
or Fraction.) If the input iterable is empty, the output iterable will also be empty.

Roughly equivalent to:

def accumulate(iterable, func=operator.add):
'Return running totals'
accumulate([1,2,3,4,5]) --> 1 3 6 10 15
accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120
it = iter(iterable)
try:

total = next(it)
except StopIteration:

return
yield total
for element in it:

total = func(total, element)
yield total

There are a number of uses for the func argument. It can be set to min() for a running minimum,
max() for a running maximum, or operator.mul() for a running product. Amortization tables can be
built by accumulating interest and applying payments. First-order recurrence relations can be modeled
by supplying the initial value in the iterable and using only the accumulated total in func argument:

>>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
>>> list(accumulate(data, operator.mul)) # running product
[3, 12, 72, 144, 144, 1296, 0, 0, 0, 0]
>>> list(accumulate(data, max)) # running maximum
[3, 4, 6, 6, 6, 9, 9, 9, 9, 9]

Amortize a 5% loan of 1000 with 4 annual payments of 90
>>> cashflows = [1000, -90, -90, -90, -90]
>>> list(accumulate(cashflows, lambda bal, pmt: bal*1.05 + pmt))
[1000, 960.0, 918.0, 873.9000000000001, 827.5950000000001]

Chaotic recurrence relation https://en.wikipedia.org/wiki/Logistic_map
>>> logistic_map = lambda x, _: r * x * (1 - x)
>>> r = 3.8
>>> x0 = 0.4
>>> inputs = repeat(x0, 36) # only the initial value is used
>>> [format(x, '.2f') for x in accumulate(inputs, logistic_map)]
['0.40', '0.91', '0.30', '0.81', '0.60', '0.92', '0.29', '0.79', '0.63',
'0.88', '0.39', '0.90', '0.33', '0.84', '0.52', '0.95', '0.18', '0.57',
'0.93', '0.25', '0.71', '0.79', '0.63', '0.88', '0.39', '0.91', '0.32',
'0.83', '0.54', '0.95', '0.20', '0.60', '0.91', '0.30', '0.80', '0.60']

See functools.reduce() for a similar function that returns only the final accumulated value.

New in version 3.2.

Changed in version 3.3: Added the optional func parameter.

itertools.chain(*iterables)
Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to
the next iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a
single sequence. Roughly equivalent to:

10.1. itertools — Functions creating iterators for efficient looping 317

https://en.wikipedia.org/wiki/Recurrence_relation

The Python Library Reference, Release 3.5.7

def chain(*iterables):
chain('ABC', 'DEF') --> A B C D E F
for it in iterables:

for element in it:
yield element

classmethod chain.from_iterable(iterable)
Alternate constructor for chain(). Gets chained inputs from a single iterable argument that is evaluated
lazily. Roughly equivalent to:

def from_iterable(iterables):
chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
for it in iterables:

for element in it:
yield element

itertools.combinations(iterable, r)
Return r length subsequences of elements from the input iterable.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements
are unique, there will be no repeat values in each combination.

Roughly equivalent to:

def combinations(iterable, r):
combinations('ABCD', 2) --> AB AC AD BC BD CD
combinations(range(4), 3) --> 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:

return
indices = list(range(r))
yield tuple(pool[i] for i in indices)
while True:

for i in reversed(range(r)):
if indices[i] != i + n - r:

break
else:

return
indices[i] += 1
for j in range(i+1, r):

indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)

The code for combinations() can be also expressed as a subsequence of permutations() after filtering
entries where the elements are not in sorted order (according to their position in the input pool):

def combinations(iterable, r):
pool = tuple(iterable)
n = len(pool)
for indices in permutations(range(n), r):

if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)

The number of items returned is n! / r! / (n-r)! when 0 <= r <= n or zero when r > n.

318 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.5.7

itertools.combinations_with_replacement(iterable, r)
Return r length subsequences of elements from the input iterable allowing individual elements to be
repeated more than once.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements
are unique, the generated combinations will also be unique.

Roughly equivalent to:

def combinations_with_replacement(iterable, r):
combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
pool = tuple(iterable)
n = len(pool)
if not n and r:

return
indices = [0] * r
yield tuple(pool[i] for i in indices)
while True:

for i in reversed(range(r)):
if indices[i] != n - 1:

break
else:

return
indices[i:] = [indices[i] + 1] * (r - i)
yield tuple(pool[i] for i in indices)

The code for combinations_with_replacement() can be also expressed as a subsequence of product()
after filtering entries where the elements are not in sorted order (according to their position in the
input pool):

def combinations_with_replacement(iterable, r):
pool = tuple(iterable)
n = len(pool)
for indices in product(range(n), repeat=r):

if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)

The number of items returned is (n+r-1)! / r! / (n-1)! when n > 0.

New in version 3.1.

itertools.compress(data, selectors)
Make an iterator that filters elements from data returning only those that have a corresponding element
in selectors that evaluates to True. Stops when either the data or selectors iterables has been exhausted.
Roughly equivalent to:

def compress(data, selectors):
compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
return (d for d, s in zip(data, selectors) if s)

New in version 3.1.

itertools.count(start=0, step=1)
Make an iterator that returns evenly spaced values starting with number start. Often used as an
argument to map() to generate consecutive data points. Also, used with zip() to add sequence numbers.
Roughly equivalent to:

10.1. itertools — Functions creating iterators for efficient looping 319

The Python Library Reference, Release 3.5.7

def count(start=0, step=1):
count(10) --> 10 11 12 13 14 ...
count(2.5, 0.5) -> 2.5 3.0 3.5 ...
n = start
while True:

yield n
n += step

When counting with floating point numbers, better accuracy can sometimes be achieved by substituting
multiplicative code such as: (start + step * i for i in count()).

Changed in version 3.1: Added step argument and allowed non-integer arguments.

itertools.cycle(iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is
exhausted, return elements from the saved copy. Repeats indefinitely. Roughly equivalent to:

def cycle(iterable):
cycle('ABCD') --> A B C D A B C D A B C D ...
saved = []
for element in iterable:

yield element
saved.append(element)

while saved:
for element in saved:

yield element

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of
the iterable).

itertools.dropwhile(predicate, iterable)
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards,
returns every element. Note, the iterator does not produce any output until the predicate first becomes
false, so it may have a lengthy start-up time. Roughly equivalent to:

def dropwhile(predicate, iterable):
dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
iterable = iter(iterable)
for x in iterable:

if not predicate(x):
yield x
break

for x in iterable:
yield x

itertools.filterfalse(predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate is
False. If predicate is None, return the items that are false. Roughly equivalent to:

def filterfalse(predicate, iterable):
filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
if predicate is None:

predicate = bool
for x in iterable:

if not predicate(x):
yield x

itertools.groupby(iterable, key=None)

320 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.5.7

Make an iterator that returns consecutive keys and groups from the iterable. The key is a function
computing a key value for each element. If not specified or is None, key defaults to an identity function
and returns the element unchanged. Generally, the iterable needs to already be sorted on the same
key function.

The operation of groupby() is similar to the uniq filter in Unix. It generates a break or new group
every time the value of the key function changes (which is why it is usually necessary to have sorted the
data using the same key function). That behavior differs from SQL’s GROUP BY which aggregates
common elements regardless of their input order.

The returned group is itself an iterator that shares the underlying iterable with groupby(). Because
the source is shared, when the groupby() object is advanced, the previous group is no longer visible.
So, if that data is needed later, it should be stored as a list:

groups = []
uniquekeys = []
data = sorted(data, key=keyfunc)
for k, g in groupby(data, keyfunc):

groups.append(list(g)) # Store group iterator as a list
uniquekeys.append(k)

groupby() is roughly equivalent to:

class groupby:
[k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
[list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
def __init__(self, iterable, key=None):

if key is None:
key = lambda x: x

self.keyfunc = key
self.it = iter(iterable)
self.tgtkey = self.currkey = self.currvalue = object()

def __iter__(self):
return self

def __next__(self):
while self.currkey == self.tgtkey:

self.currvalue = next(self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)

self.tgtkey = self.currkey
return (self.currkey, self._grouper(self.tgtkey))

def _grouper(self, tgtkey):
while self.currkey == tgtkey:

yield self.currvalue
try:

self.currvalue = next(self.it)
except StopIteration:

return
self.currkey = self.keyfunc(self.currvalue)

itertools.islice(iterable, stop)

itertools.islice(iterable, start, stop[, step])
Make an iterator that returns selected elements from the iterable. If start is non-zero, then elements
from the iterable are skipped until start is reached. Afterward, elements are returned consecutively
unless step is set higher than one which results in items being skipped. If stop is None, then iteration
continues until the iterator is exhausted, if at all; otherwise, it stops at the specified position. Unlike
regular slicing, islice() does not support negative values for start, stop, or step. Can be used to extract
related fields from data where the internal structure has been flattened (for example, a multi-line report
may list a name field on every third line). Roughly equivalent to:

10.1. itertools — Functions creating iterators for efficient looping 321

The Python Library Reference, Release 3.5.7

def islice(iterable, *args):
islice('ABCDEFG', 2) --> A B
islice('ABCDEFG', 2, 4) --> C D
islice('ABCDEFG', 2, None) --> C D E F G
islice('ABCDEFG', 0, None, 2) --> A C E G
s = slice(*args)
it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
try:

nexti = next(it)
except StopIteration:

return
for i, element in enumerate(iterable):

if i == nexti:
yield element
nexti = next(it)

If start is None, then iteration starts at zero. If step is None, then the step defaults to one.

itertools.permutations(iterable, r=None)
Return successive r length permutations of elements in the iterable.

If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length
permutations are generated.

Permutations are emitted in lexicographic sort order. So, if the input iterable is sorted, the permutation
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements
are unique, there will be no repeat values in each permutation.

Roughly equivalent to:

def permutations(iterable, r=None):
permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
permutations(range(3)) --> 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:

return
indices = list(range(n))
cycles = list(range(n, n-r, -1))
yield tuple(pool[i] for i in indices[:r])
while n:

for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:

indices[i:] = indices[i+1:] + indices[i:i+1]
cycles[i] = n - i

else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break

else:
return

The code for permutations() can be also expressed as a subsequence of product(), filtered to exclude
entries with repeated elements (those from the same position in the input pool):

322 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.5.7

def permutations(iterable, r=None):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product(range(n), repeat=r):

if len(set(indices)) == r:
yield tuple(pool[i] for i in indices)

The number of items returned is n! / (n-r)! when 0 <= r <= n or zero when r > n.

itertools.product(*iterables, repeat=1)
Cartesian product of input iterables.

Roughly equivalent to nested for-loops in a generator expression. For example, product(A, B) returns
the same as ((x,y) for x in A for y in B).

The nested loops cycle like an odometer with the rightmost element advancing on every iteration. This
pattern creates a lexicographic ordering so that if the input’s iterables are sorted, the product tuples
are emitted in sorted order.

To compute the product of an iterable with itself, specify the number of repetitions with the optional
repeat keyword argument. For example, product(A, repeat=4) means the same as product(A, A, A,
A).

This function is roughly equivalent to the following code, except that the actual implementation does
not build up intermediate results in memory:

def product(*args, repeat=1):
product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
pools = [tuple(pool) for pool in args] * repeat
result = [[]]
for pool in pools:

result = [x+[y] for x in result for y in pool]
for prod in result:

yield tuple(prod)

itertools.repeat(object[, times])
Make an iterator that returns object over and over again. Runs indefinitely unless the times argument
is specified. Used as argument to map() for invariant parameters to the called function. Also used
with zip() to create an invariant part of a tuple record.

Roughly equivalent to:

def repeat(object, times=None):
repeat(10, 3) --> 10 10 10
if times is None:

while True:
yield object

else:
for i in range(times):

yield object

A common use for repeat is to supply a stream of constant values to map or zip:

>>> list(map(pow, range(10), repeat(2)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

10.1. itertools — Functions creating iterators for efficient looping 323

The Python Library Reference, Release 3.5.7

itertools.starmap(function, iterable)
Make an iterator that computes the function using arguments obtained from the iterable. Used instead
of map() when argument parameters are already grouped in tuples from a single iterable (the data
has been “pre-zipped”). The difference between map() and starmap() parallels the distinction between
function(a,b) and function(*c). Roughly equivalent to:

def starmap(function, iterable):
starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
for args in iterable:

yield function(*args)

itertools.takewhile(predicate, iterable)
Make an iterator that returns elements from the iterable as long as the predicate is true. Roughly
equivalent to:

def takewhile(predicate, iterable):
takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
for x in iterable:

if predicate(x):
yield x

else:
break

itertools.tee(iterable, n=2)
Return n independent iterators from a single iterable. Roughly equivalent to:

def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen(mydeque):

while True:
if not mydeque: # when the local deque is empty

try:
newval = next(it) # fetch a new value and

except StopIteration:
return

for d in deques: # load it to all the deques
d.append(newval)

yield mydeque.popleft()
return tuple(gen(d) for d in deques)

Once tee() has made a split, the original iterable should not be used anywhere else; otherwise, the
iterable could get advanced without the tee objects being informed.

This itertool may require significant auxiliary storage (depending on how much temporary data needs
to be stored). In general, if one iterator uses most or all of the data before another iterator starts, it
is faster to use list() instead of tee().

itertools.zip_longest(*iterables, fillvalue=None)
Make an iterator that aggregates elements from each of the iterables. If the iterables are of uneven
length, missing values are filled-in with fillvalue. Iteration continues until the longest iterable is ex-
hausted. Roughly equivalent to:

class ZipExhausted(Exception):
pass

def zip_longest(*args, **kwds):

(continues on next page)

324 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.5.7

(continued from previous page)

zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
fillvalue = kwds.get('fillvalue')
counter = len(args) - 1
def sentinel():

nonlocal counter
if not counter:

raise ZipExhausted
counter -= 1
yield fillvalue

fillers = repeat(fillvalue)
iterators = [chain(it, sentinel(), fillers) for it in args]
try:

while iterators:
yield tuple(map(next, iterators))

except ZipExhausted:
pass

If one of the iterables is potentially infinite, then the zip_longest() function should be wrapped with
something that limits the number of calls (for example islice() or takewhile()). If not specified, fillvalue
defaults to None.

10.1.2 Itertools Recipes

This section shows recipes for creating an extended toolset using the existing itertools as building blocks.

The extended tools offer the same high performance as the underlying toolset. The superior memory per-
formance is kept by processing elements one at a time rather than bringing the whole iterable into memory
all at once. Code volume is kept small by linking the tools together in a functional style which helps elim-
inate temporary variables. High speed is retained by preferring “vectorized” building blocks over the use of
for-loops and generators which incur interpreter overhead.

def take(n, iterable):
"Return first n items of the iterable as a list"
return list(islice(iterable, n))

def tabulate(function, start=0):
"Return function(0), function(1), ..."
return map(function, count(start))

def tail(n, iterable):
"Return an iterator over the last n items"
tail(3, 'ABCDEFG') --> E F G
return iter(collections.deque(iterable, maxlen=n))

def consume(iterator, n):
"Advance the iterator n-steps ahead. If n is none, consume entirely."
Use functions that consume iterators at C speed.
if n is None:

feed the entire iterator into a zero-length deque
collections.deque(iterator, maxlen=0)

else:
advance to the empty slice starting at position n
next(islice(iterator, n, n), None)

def nth(iterable, n, default=None):

(continues on next page)

10.1. itertools — Functions creating iterators for efficient looping 325

The Python Library Reference, Release 3.5.7

(continued from previous page)

"Returns the nth item or a default value"
return next(islice(iterable, n, None), default)

def all_equal(iterable):
"Returns True if all the elements are equal to each other"
g = groupby(iterable)
return next(g, True) and not next(g, False)

def quantify(iterable, pred=bool):
"Count how many times the predicate is true"
return sum(map(pred, iterable))

def padnone(iterable):
"""Returns the sequence elements and then returns None indefinitely.

Useful for emulating the behavior of the built-in map() function.
"""
return chain(iterable, repeat(None))

def ncycles(iterable, n):
"Returns the sequence elements n times"
return chain.from_iterable(repeat(tuple(iterable), n))

def dotproduct(vec1, vec2):
return sum(map(operator.mul, vec1, vec2))

def flatten(listOfLists):
"Flatten one level of nesting"
return chain.from_iterable(listOfLists)

def repeatfunc(func, times=None, *args):
"""Repeat calls to func with specified arguments.

Example: repeatfunc(random.random)
"""
if times is None:

return starmap(func, repeat(args))
return starmap(func, repeat(args, times))

def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)

def grouper(iterable, n, fillvalue=None):
"Collect data into fixed-length chunks or blocks"
grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx"
args = [iter(iterable)] * n
return zip_longest(*args, fillvalue=fillvalue)

def roundrobin(*iterables):
"roundrobin('ABC', 'D', 'EF') --> A D E B F C"
Recipe credited to George Sakkis
pending = len(iterables)
nexts = cycle(iter(it).__next__ for it in iterables)

(continues on next page)

326 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.5.7

(continued from previous page)

while pending:
try:

for next in nexts:
yield next()

except StopIteration:
pending -= 1
nexts = cycle(islice(nexts, pending))

def partition(pred, iterable):
'Use a predicate to partition entries into false entries and true entries'
partition(is_odd, range(10)) --> 0 2 4 6 8 and 1 3 5 7 9
t1, t2 = tee(iterable)
return filterfalse(pred, t1), filter(pred, t2)

def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

def unique_everseen(iterable, key=None):
"List unique elements, preserving order. Remember all elements ever seen."
unique_everseen('AAAABBBCCDAABBB') --> A B C D
unique_everseen('ABBCcAD', str.lower) --> A B C D
seen = set()
seen_add = seen.add
if key is None:

for element in filterfalse(seen.__contains__, iterable):
seen_add(element)
yield element

else:
for element in iterable:

k = key(element)
if k not in seen:

seen_add(k)
yield element

def unique_justseen(iterable, key=None):
"List unique elements, preserving order. Remember only the element just seen."
unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
unique_justseen('ABBCcAD', str.lower) --> A B C A D
return map(next, map(itemgetter(1), groupby(iterable, key)))

def iter_except(func, exception, first=None):
""" Call a function repeatedly until an exception is raised.

Converts a call-until-exception interface to an iterator interface.
Like builtins.iter(func, sentinel) but uses an exception instead
of a sentinel to end the loop.

Examples:
iter_except(functools.partial(heappop, h), IndexError) # priority queue iterator
iter_except(d.popitem, KeyError) # non-blocking dict iterator
iter_except(d.popleft, IndexError) # non-blocking deque iterator
iter_except(q.get_nowait, Queue.Empty) # loop over a producer Queue
iter_except(s.pop, KeyError) # non-blocking set iterator

(continues on next page)

10.1. itertools — Functions creating iterators for efficient looping 327

The Python Library Reference, Release 3.5.7

(continued from previous page)

"""
try:

if first is not None:
yield first() # For database APIs needing an initial cast to db.first()

while True:
yield func()

except exception:
pass

def first_true(iterable, default=False, pred=None):
"""Returns the first true value in the iterable.

If no true value is found, returns *default*

If *pred* is not None, returns the first item
for which pred(item) is true.

"""
first_true([a,b,c], x) --> a or b or c or x
first_true([a,b], x, f) --> a if f(a) else b if f(b) else x
return next(filter(pred, iterable), default)

def random_product(*args, repeat=1):
"Random selection from itertools.product(*args, **kwds)"
pools = [tuple(pool) for pool in args] * repeat
return tuple(random.choice(pool) for pool in pools)

def random_permutation(iterable, r=None):
"Random selection from itertools.permutations(iterable, r)"
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple(random.sample(pool, r))

def random_combination(iterable, r):
"Random selection from itertools.combinations(iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.sample(range(n), r))
return tuple(pool[i] for i in indices)

def random_combination_with_replacement(iterable, r):
"Random selection from itertools.combinations_with_replacement(iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.randrange(n) for i in range(r))
return tuple(pool[i] for i in indices)

Note, many of the above recipes can be optimized by replacing global lookups with local variables defined
as default values. For example, the dotproduct recipe can be written as:

def dotproduct(vec1, vec2, sum=sum, map=map, mul=operator.mul):
return sum(map(mul, vec1, vec2))

328 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.5.7

10.2 functools — Higher-order functions and operations on callable objects

Source code: Lib/functools.py

The functools module is for higher-order functions: functions that act on or return other functions. In
general, any callable object can be treated as a function for the purposes of this module.

The functools module defines the following functions:

functools.cmp_to_key(func)
Transform an old-style comparison function to a key function. Used with tools that accept key func-
tions (such as sorted(), min(), max(), heapq.nlargest(), heapq.nsmallest(), itertools.groupby()). This
function is primarily used as a transition tool for programs being converted from Python 2 which
supported the use of comparison functions.

A comparison function is any callable that accept two arguments, compares them, and returns a
negative number for less-than, zero for equality, or a positive number for greater-than. A key function
is a callable that accepts one argument and returns another value to be used as the sort key.

Example:

sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order

For sorting examples and a brief sorting tutorial, see sortinghowto.

New in version 3.2.

@functools.lru_cache(maxsize=128, typed=False)
Decorator to wrap a function with a memoizing callable that saves up to the maxsize most recent
calls. It can save time when an expensive or I/O bound function is periodically called with the same
arguments.

Since a dictionary is used to cache results, the positional and keyword arguments to the function must
be hashable.

If maxsize is set to None, the LRU feature is disabled and the cache can grow without bound. The
LRU feature performs best when maxsize is a power-of-two.

If typed is set to true, function arguments of different types will be cached separately. For example,
f(3) and f(3.0) will be treated as distinct calls with distinct results.

To help measure the effectiveness of the cache and tune the maxsize parameter, the wrapped function
is instrumented with a cache_info() function that returns a named tuple showing hits, misses, maxsize
and currsize. In a multi-threaded environment, the hits and misses are approximate.

The decorator also provides a cache_clear() function for clearing or invalidating the cache.

The original underlying function is accessible through the __wrapped__ attribute. This is useful for
introspection, for bypassing the cache, or for rewrapping the function with a different cache.

An LRU (least recently used) cache works best when the most recent calls are the best predictors of
upcoming calls (for example, the most popular articles on a news server tend to change each day). The
cache’s size limit assures that the cache does not grow without bound on long-running processes such
as web servers.

Example of an LRU cache for static web content:

10.2. functools — Higher-order functions and operations on callable objects 329

https://github.com/python/cpython/tree/3.5/Lib/functools.py
https://en.wikipedia.org/wiki/Cache_algorithms#Examples

The Python Library Reference, Release 3.5.7

@lru_cache(maxsize=32)
def get_pep(num):

'Retrieve text of a Python Enhancement Proposal'
resource = 'http://www.python.org/dev/peps/pep-%04d/' % num
try:

with urllib.request.urlopen(resource) as s:
return s.read()

except urllib.error.HTTPError:
return 'Not Found'

>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:
... pep = get_pep(n)
... print(n, len(pep))

>>> get_pep.cache_info()
CacheInfo(hits=3, misses=8, maxsize=32, currsize=8)

Example of efficiently computing Fibonacci numbers using a cache to implement a dynamic program-
ming technique:

@lru_cache(maxsize=None)
def fib(n):

if n < 2:
return n

return fib(n-1) + fib(n-2)

>>> [fib(n) for n in range(16)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

>>> fib.cache_info()
CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)

New in version 3.2.

Changed in version 3.3: Added the typed option.

@functools.total_ordering
Given a class defining one or more rich comparison ordering methods, this class decorator supplies the
rest. This simplifies the effort involved in specifying all of the possible rich comparison operations:

The class must define one of __lt__(), __le__(), __gt__(), or __ge__(). In addition, the class
should supply an __eq__() method.

For example:

@total_ordering
class Student:

def _is_valid_operand(self, other):
return (hasattr(other, "lastname") and

hasattr(other, "firstname"))
def __eq__(self, other):

if not self._is_valid_operand(other):
return NotImplemented

return ((self.lastname.lower(), self.firstname.lower()) ==
(other.lastname.lower(), other.firstname.lower()))

def __lt__(self, other):
if not self._is_valid_operand(other):

return NotImplemented

(continues on next page)

330 Chapter 10. Functional Programming Modules

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Dynamic_programming

The Python Library Reference, Release 3.5.7

(continued from previous page)

return ((self.lastname.lower(), self.firstname.lower()) <
(other.lastname.lower(), other.firstname.lower()))

Note: While this decorator makes it easy to create well behaved totally ordered types, it does come
at the cost of slower execution and more complex stack traces for the derived comparison methods. If
performance benchmarking indicates this is a bottleneck for a given application, implementing all six
rich comparison methods instead is likely to provide an easy speed boost.

New in version 3.2.

Changed in version 3.4: Returning NotImplemented from the underlying comparison function for
unrecognised types is now supported.

functools.partial(func, *args, **keywords)
Return a new partial object which when called will behave like func called with the positional arguments
args and keyword arguments keywords. If more arguments are supplied to the call, they are appended
to args. If additional keyword arguments are supplied, they extend and override keywords. Roughly
equivalent to:

def partial(func, *args, **keywords):
def newfunc(*fargs, **fkeywords):

newkeywords = keywords.copy()
newkeywords.update(fkeywords)
return func(*args, *fargs, **newkeywords)

newfunc.func = func
newfunc.args = args
newfunc.keywords = keywords
return newfunc

The partial() is used for partial function application which “freezes” some portion of a function’s
arguments and/or keywords resulting in a new object with a simplified signature. For example, partial()
can be used to create a callable that behaves like the int() function where the base argument defaults
to two:

>>> from functools import partial
>>> basetwo = partial(int, base=2)
>>> basetwo.__doc__ = 'Convert base 2 string to an int.'
>>> basetwo('10010')
18

class functools.partialmethod(func, *args, **keywords)
Return a new partialmethod descriptor which behaves like partial except that it is designed to be used
as a method definition rather than being directly callable.

func must be a descriptor or a callable (objects which are both, like normal functions, are handled as
descriptors).

When func is a descriptor (such as a normal Python function, classmethod(), staticmethod(), abstract-
method() or another instance of partialmethod), calls to __get__ are delegated to the underlying
descriptor, and an appropriate partial object returned as the result.

When func is a non-descriptor callable, an appropriate bound method is created dynamically. This
behaves like a normal Python function when used as a method: the self argument will be inserted
as the first positional argument, even before the args and keywords supplied to the partialmethod
constructor.

10.2. functools — Higher-order functions and operations on callable objects 331

The Python Library Reference, Release 3.5.7

Example:

>>> class Cell(object):
... def __init__(self):
... self._alive = False
... @property
... def alive(self):
... return self._alive
... def set_state(self, state):
... self._alive = bool(state)
... set_alive = partialmethod(set_state, True)
... set_dead = partialmethod(set_state, False)
...
>>> c = Cell()
>>> c.alive
False
>>> c.set_alive()
>>> c.alive
True

New in version 3.4.

functools.reduce(function, iterable[, initializer])
Apply function of two arguments cumulatively to the items of sequence, from left to right, so as to
reduce the sequence to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the
update value from the sequence. If the optional initializer is present, it is placed before the items of
the sequence in the calculation, and serves as a default when the sequence is empty. If initializer is
not given and sequence contains only one item, the first item is returned.

Roughly equivalent to:

def reduce(function, iterable, initializer=None):
it = iter(iterable)
if initializer is None:

value = next(it)
else:

value = initializer
for element in it:

value = function(value, element)
return value

@functools.singledispatch(default)
Transforms a function into a single-dispatch generic function.

To define a generic function, decorate it with the @singledispatch decorator. Note that the dispatch
happens on the type of the first argument, create your function accordingly:

>>> from functools import singledispatch
>>> @singledispatch
... def fun(arg, verbose=False):
... if verbose:
... print("Let me just say,", end=" ")
... print(arg)

To add overloaded implementations to the function, use the register() attribute of the generic function.
It is a decorator, taking a type parameter and decorating a function implementing the operation for
that type:

332 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.5.7

>>> @fun.register(int)
... def _(arg, verbose=False):
... if verbose:
... print("Strength in numbers, eh?", end=" ")
... print(arg)
...
>>> @fun.register(list)
... def _(arg, verbose=False):
... if verbose:
... print("Enumerate this:")
... for i, elem in enumerate(arg):
... print(i, elem)

To enable registering lambdas and pre-existing functions, the register() attribute can be used in a
functional form:

>>> def nothing(arg, verbose=False):
... print("Nothing.")
...
>>> fun.register(type(None), nothing)

The register() attribute returns the undecorated function which enables decorator stacking, pickling,
as well as creating unit tests for each variant independently:

>>> @fun.register(float)
... @fun.register(Decimal)
... def fun_num(arg, verbose=False):
... if verbose:
... print("Half of your number:", end=" ")
... print(arg / 2)
...
>>> fun_num is fun
False

When called, the generic function dispatches on the type of the first argument:

>>> fun("Hello, world.")
Hello, world.
>>> fun("test.", verbose=True)
Let me just say, test.
>>> fun(42, verbose=True)
Strength in numbers, eh? 42
>>> fun(['spam', 'spam', 'eggs', 'spam'], verbose=True)
Enumerate this:
0 spam
1 spam
2 eggs
3 spam
>>> fun(None)
Nothing.
>>> fun(1.23)
0.615

Where there is no registered implementation for a specific type, its method resolution order is used to
find a more generic implementation. The original function decorated with @singledispatch is registered
for the base object type, which means it is used if no better implementation is found.

To check which implementation will the generic function choose for a given type, use the dispatch()

10.2. functools — Higher-order functions and operations on callable objects 333

The Python Library Reference, Release 3.5.7

attribute:

>>> fun.dispatch(float)
<function fun_num at 0x1035a2840>
>>> fun.dispatch(dict) # note: default implementation
<function fun at 0x103fe0000>

To access all registered implementations, use the read-only registry attribute:

>>> fun.registry.keys()
dict_keys([<class 'NoneType'>, <class 'int'>, <class 'object'>,

<class 'decimal.Decimal'>, <class 'list'>,
<class 'float'>])

>>> fun.registry[float]
<function fun_num at 0x1035a2840>
>>> fun.registry[object]
<function fun at 0x103fe0000>

New in version 3.4.

functools.update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, up-
dated=WRAPPER_UPDATES)

Update a wrapper function to look like the wrapped function. The optional arguments are tuples
to specify which attributes of the original function are assigned directly to the matching attributes
on the wrapper function and which attributes of the wrapper function are updated with the corre-
sponding attributes from the original function. The default values for these arguments are the module
level constants WRAPPER_ASSIGNMENTS (which assigns to the wrapper function’s __module__,
__name__, __qualname__, __annotations__ and __doc__, the documentation string) and
WRAPPER_UPDATES (which updates the wrapper function’s __dict__, i.e. the instance dictio-
nary).

To allow access to the original function for introspection and other purposes (e.g. bypassing a caching
decorator such as lru_cache()), this function automatically adds a __wrapped__ attribute to the
wrapper that refers to the function being wrapped.

The main intended use for this function is in decorator functions which wrap the decorated function
and return the wrapper. If the wrapper function is not updated, the metadata of the returned function
will reflect the wrapper definition rather than the original function definition, which is typically less
than helpful.

update_wrapper() may be used with callables other than functions. Any attributes named in assigned
or updated that are missing from the object being wrapped are ignored (i.e. this function will not
attempt to set them on the wrapper function). AttributeError is still raised if the wrapper function
itself is missing any attributes named in updated.

New in version 3.2: Automatic addition of the __wrapped__ attribute.

New in version 3.2: Copying of the __annotations__ attribute by default.

Changed in version 3.2: Missing attributes no longer trigger an AttributeError.

Changed in version 3.4: The __wrapped__ attribute now always refers to the wrapped function, even
if that function defined a __wrapped__ attribute. (see bpo-17482)

@functools.wraps(wrapped, assigned=WRAPPER_ASSIGNMENTS, up-
dated=WRAPPER_UPDATES)

This is a convenience function for invoking update_wrapper() as a function decorator when defining a
wrapper function. It is equivalent to partial(update_wrapper, wrapped=wrapped, assigned=assigned,
updated=updated). For example:

334 Chapter 10. Functional Programming Modules

https://bugs.python.org/issue17482

The Python Library Reference, Release 3.5.7

>>> from functools import wraps
>>> def my_decorator(f):
... @wraps(f)
... def wrapper(*args, **kwds):
... print('Calling decorated function')
... return f(*args, **kwds)
... return wrapper
...
>>> @my_decorator
... def example():
... """Docstring"""
... print('Called example function')
...
>>> example()
Calling decorated function
Called example function
>>> example.__name__
'example'
>>> example.__doc__
'Docstring'

Without the use of this decorator factory, the name of the example function would have been 'wrap-
per', and the docstring of the original example() would have been lost.

10.2.1 partial Objects

partial objects are callable objects created by partial(). They have three read-only attributes:

partial.func
A callable object or function. Calls to the partial object will be forwarded to func with new arguments
and keywords.

partial.args
The leftmost positional arguments that will be prepended to the positional arguments provided to a
partial object call.

partial.keywords
The keyword arguments that will be supplied when the partial object is called.

partial objects are like function objects in that they are callable, weak referencable, and can have attributes.
There are some important differences. For instance, the __name__ and __doc__ attributes are not
created automatically. Also, partial objects defined in classes behave like static methods and do not transform
into bound methods during instance attribute look-up.

10.3 operator — Standard operators as functions

Source code: Lib/operator.py

The operator module exports a set of efficient functions corresponding to the intrinsic operators of Python.
For example, operator.add(x, y) is equivalent to the expression x+y. The function names are those used for
special class methods; variants without leading and trailing __ are also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical opera-
tions and sequence operations.

10.3. operator — Standard operators as functions 335

https://github.com/python/cpython/tree/3.5/Lib/operator.py

The Python Library Reference, Release 3.5.7

The object comparison functions are useful for all objects, and are named after the rich comparison operators
they support:

operator.lt(a, b)
operator.le(a, b)
operator.eq(a, b)
operator.ne(a, b)
operator.ge(a, b)
operator.gt(a, b)
operator.__lt__(a, b)
operator.__le__(a, b)
operator.__eq__(a, b)
operator.__ne__(a, b)
operator.__ge__(a, b)
operator.__gt__(a, b)

Perform “rich comparisons” between a and b. Specifically, lt(a, b) is equivalent to a < b, le(a, b) is
equivalent to a <= b, eq(a, b) is equivalent to a == b, ne(a, b) is equivalent to a != b, gt(a, b) is
equivalent to a > b and ge(a, b) is equivalent to a >= b. Note that these functions can return any
value, which may or may not be interpretable as a Boolean value. See comparisons for more information
about rich comparisons.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests,
and boolean operations:

operator.not_(obj)
operator.__not__(obj)

Return the outcome of not obj. (Note that there is no __not__() method for object instances; only
the interpreter core defines this operation. The result is affected by the __bool__() and __len__()
methods.)

operator.truth(obj)
Return True if obj is true, and False otherwise. This is equivalent to using the bool constructor.

operator.is_(a, b)
Return a is b. Tests object identity.

operator.is_not(a, b)
Return a is not b. Tests object identity.

The mathematical and bitwise operations are the most numerous:

operator.abs(obj)
operator.__abs__(obj)

Return the absolute value of obj.

operator.add(a, b)
operator.__add__(a, b)

Return a + b, for a and b numbers.

operator.and_(a, b)
operator.__and__(a, b)

Return the bitwise and of a and b.

operator.floordiv(a, b)
operator.__floordiv__(a, b)

Return a // b.

operator.index(a)
operator.__index__(a)

Return a converted to an integer. Equivalent to a.__index__().

336 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.5.7

operator.inv(obj)
operator.invert(obj)
operator.__inv__(obj)
operator.__invert__(obj)

Return the bitwise inverse of the number obj. This is equivalent to ~obj.

operator.lshift(a, b)
operator.__lshift__(a, b)

Return a shifted left by b.

operator.mod(a, b)
operator.__mod__(a, b)

Return a % b.

operator.mul(a, b)
operator.__mul__(a, b)

Return a * b, for a and b numbers.

operator.matmul(a, b)
operator.__matmul__(a, b)

Return a @ b.

New in version 3.5.

operator.neg(obj)
operator.__neg__(obj)

Return obj negated (-obj).

operator.or_(a, b)
operator.__or__(a, b)

Return the bitwise or of a and b.

operator.pos(obj)
operator.__pos__(obj)

Return obj positive (+obj).

operator.pow(a, b)
operator.__pow__(a, b)

Return a ** b, for a and b numbers.

operator.rshift(a, b)
operator.__rshift__(a, b)

Return a shifted right by b.

operator.sub(a, b)
operator.__sub__(a, b)

Return a - b.

operator.truediv(a, b)
operator.__truediv__(a, b)

Return a / b where 2/3 is .66 rather than 0. This is also known as “true” division.

operator.xor(a, b)
operator.__xor__(a, b)

Return the bitwise exclusive or of a and b.

Operations which work with sequences (some of them with mappings too) include:

operator.concat(a, b)
operator.__concat__(a, b)

Return a + b for a and b sequences.

10.3. operator — Standard operators as functions 337

The Python Library Reference, Release 3.5.7

operator.contains(a, b)
operator.__contains__(a, b)

Return the outcome of the test b in a. Note the reversed operands.

operator.countOf(a, b)
Return the number of occurrences of b in a.

operator.delitem(a, b)
operator.__delitem__(a, b)

Remove the value of a at index b.

operator.getitem(a, b)
operator.__getitem__(a, b)

Return the value of a at index b.

operator.indexOf(a, b)
Return the index of the first of occurrence of b in a.

operator.setitem(a, b, c)
operator.__setitem__(a, b, c)

Set the value of a at index b to c.

operator.length_hint(obj, default=0)
Return an estimated length for the object o. First try to return its actual length, then an estimate
using object.__length_hint__(), and finally return the default value.

New in version 3.4.

The operator module also defines tools for generalized attribute and item lookups. These are useful for
making fast field extractors as arguments for map(), sorted(), itertools.groupby(), or other functions that
expect a function argument.

operator.attrgetter(attr)
operator.attrgetter(*attrs)

Return a callable object that fetches attr from its operand. If more than one attribute is requested,
returns a tuple of attributes. The attribute names can also contain dots. For example:

• After f = attrgetter('name'), the call f(b) returns b.name.

• After f = attrgetter('name', 'date'), the call f(b) returns (b.name, b.date).

• After f = attrgetter('name.first', 'name.last'), the call f(b) returns (b.name.first, b.name.last).

Equivalent to:

def attrgetter(*items):
if any(not isinstance(item, str) for item in items):

raise TypeError('attribute name must be a string')
if len(items) == 1:

attr = items[0]
def g(obj):

return resolve_attr(obj, attr)
else:

def g(obj):
return tuple(resolve_attr(obj, attr) for attr in items)

return g

def resolve_attr(obj, attr):
for name in attr.split("."):

obj = getattr(obj, name)
return obj

338 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.5.7

operator.itemgetter(item)
operator.itemgetter(*items)

Return a callable object that fetches item from its operand using the operand’s __getitem__()
method. If multiple items are specified, returns a tuple of lookup values. For example:

• After f = itemgetter(2), the call f(r) returns r[2].

• After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3]).

Equivalent to:

def itemgetter(*items):
if len(items) == 1:

item = items[0]
def g(obj):

return obj[item]
else:

def g(obj):
return tuple(obj[item] for item in items)

return g

The items can be any type accepted by the operand’s __getitem__() method. Dictionaries accept
any hashable value. Lists, tuples, and strings accept an index or a slice:

>>> itemgetter(1)('ABCDEFG')
'B'
>>> itemgetter(1,3,5)('ABCDEFG')
('B', 'D', 'F')
>>> itemgetter(slice(2,None))('ABCDEFG')
'CDEFG'

Example of using itemgetter() to retrieve specific fields from a tuple record:

>>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)]
>>> getcount = itemgetter(1)
>>> list(map(getcount, inventory))
[3, 2, 5, 1]
>>> sorted(inventory, key=getcount)
[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]

operator.methodcaller(name[, args...])
Return a callable object that calls the method name on its operand. If additional arguments and/or
keyword arguments are given, they will be given to the method as well. For example:

• After f = methodcaller('name'), the call f(b) returns b.name().

• After f = methodcaller('name', 'foo', bar=1), the call f(b) returns b.name('foo', bar=1).

Equivalent to:

def methodcaller(name, *args, **kwargs):
def caller(obj):

return getattr(obj, name)(*args, **kwargs)
return caller

10.3.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the
functions in the operator module.

10.3. operator — Standard operators as functions 339

The Python Library Reference, Release 3.5.7

Operation Syntax Function
Addition a + b add(a, b)
Concatenation seq1 + seq2 concat(seq1, seq2)
Containment Test obj in seq contains(seq, obj)
Division a / b truediv(a, b)
Division a // b floordiv(a, b)
Bitwise And a & b and_(a, b)
Bitwise Exclusive Or a ^ b xor(a, b)
Bitwise Inversion ~ a invert(a)
Bitwise Or a | b or_(a, b)
Exponentiation a ** b pow(a, b)
Identity a is b is_(a, b)
Identity a is not b is_not(a, b)
Indexed Assignment obj[k] = v setitem(obj, k, v)
Indexed Deletion del obj[k] delitem(obj, k)
Indexing obj[k] getitem(obj, k)
Left Shift a << b lshift(a, b)
Modulo a % b mod(a, b)
Multiplication a * b mul(a, b)
Matrix Multiplication a @ b matmul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not_(a)
Positive + a pos(a)
Right Shift a >> b rshift(a, b)
Slice Assignment seq[i:j] = values setitem(seq, slice(i, j), values)
Slice Deletion del seq[i:j] delitem(seq, slice(i, j))
Slicing seq[i:j] getitem(seq, slice(i, j))
String Formatting s % obj mod(s, obj)
Subtraction a - b sub(a, b)
Truth Test obj truth(obj)
Ordering a < b lt(a, b)
Ordering a <= b le(a, b)
Equality a == b eq(a, b)
Difference a != b ne(a, b)
Ordering a >= b ge(a, b)
Ordering a > b gt(a, b)

10.3.2 Inplace Operators

Many operations have an “in-place” version. Listed below are functions providing a more primitive access
to in-place operators than the usual syntax does; for example, the statement x += y is equivalent to x
= operator.iadd(x, y). Another way to put it is to say that z = operator.iadd(x, y) is equivalent to the
compound statement z = x; z += y.

In those examples, note that when an in-place method is called, the computation and assignment are per-
formed in two separate steps. The in-place functions listed below only do the first step, calling the in-place
method. The second step, assignment, is not handled.

For immutable targets such as strings, numbers, and tuples, the updated value is computed, but not assigned
back to the input variable:

340 Chapter 10. Functional Programming Modules

The Python Library Reference, Release 3.5.7

>>> a = 'hello'
>>> iadd(a, ' world')
'hello world'
>>> a
'hello'

For mutable targets such as lists and dictionaries, the inplace method will perform the update, so no subse-
quent assignment is necessary:

>>> s = ['h', 'e', 'l', 'l', 'o']
>>> iadd(s, [' ', 'w', 'o', 'r', 'l', 'd'])
['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']
>>> s
['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']

operator.iadd(a, b)
operator.__iadd__(a, b)

a = iadd(a, b) is equivalent to a += b.

operator.iand(a, b)
operator.__iand__(a, b)

a = iand(a, b) is equivalent to a &= b.

operator.iconcat(a, b)
operator.__iconcat__(a, b)

a = iconcat(a, b) is equivalent to a += b for a and b sequences.

operator.ifloordiv(a, b)
operator.__ifloordiv__(a, b)

a = ifloordiv(a, b) is equivalent to a //= b.

operator.ilshift(a, b)
operator.__ilshift__(a, b)

a = ilshift(a, b) is equivalent to a <<= b.

operator.imod(a, b)
operator.__imod__(a, b)

a = imod(a, b) is equivalent to a %= b.

operator.imul(a, b)
operator.__imul__(a, b)

a = imul(a, b) is equivalent to a *= b.

operator.imatmul(a, b)
operator.__imatmul__(a, b)

a = imatmul(a, b) is equivalent to a @= b.

New in version 3.5.

operator.ior(a, b)
operator.__ior__(a, b)

a = ior(a, b) is equivalent to a |= b.

operator.ipow(a, b)
operator.__ipow__(a, b)

a = ipow(a, b) is equivalent to a **= b.

operator.irshift(a, b)
operator.__irshift__(a, b)

a = irshift(a, b) is equivalent to a >>= b.

10.3. operator — Standard operators as functions 341

The Python Library Reference, Release 3.5.7

operator.isub(a, b)
operator.__isub__(a, b)

a = isub(a, b) is equivalent to a -= b.

operator.itruediv(a, b)
operator.__itruediv__(a, b)

a = itruediv(a, b) is equivalent to a /= b.

operator.ixor(a, b)
operator.__ixor__(a, b)

a = ixor(a, b) is equivalent to a ^= b.

342 Chapter 10. Functional Programming Modules

CHAPTER

ELEVEN

FILE AND DIRECTORY ACCESS

The modules described in this chapter deal with disk files and directories. For example, there are modules
for reading the properties of files, manipulating paths in a portable way, and creating temporary files. The
full list of modules in this chapter is:

11.1 pathlib — Object-oriented filesystem paths

New in version 3.4.

Source code: Lib/pathlib.py

This module offers classes representing filesystem paths with semantics appropriate for different operating
systems. Path classes are divided between pure paths, which provide purely computational operations
without I/O, and concrete paths, which inherit from pure paths but also provide I/O operations.

343

https://github.com/python/cpython/tree/3.5/Lib/pathlib.py

The Python Library Reference, Release 3.5.7

If you’ve never used this module before or just aren’t sure which class is right for your task, Path is most
likely what you need. It instantiates a concrete path for the platform the code is running on.

Pure paths are useful in some special cases; for example:

1. If you want to manipulate Windows paths on a Unix machine (or vice versa). You cannot instantiate
a WindowsPath when running on Unix, but you can instantiate PureWindowsPath.

2. You want to make sure that your code only manipulates paths without actually accessing the OS.
In this case, instantiating one of the pure classes may be useful since those simply don’t have any
OS-accessing operations.

Note: This module has been included in the standard library on a provisional basis. Backwards incompatible
changes (up to and including removal of the package) may occur if deemed necessary by the core developers.

See also:

PEP 428: The pathlib module – object-oriented filesystem paths.

344 Chapter 11. File and Directory Access

https://www.python.org/dev/peps/pep-0428

The Python Library Reference, Release 3.5.7

See also:

For low-level path manipulation on strings, you can also use the os.path module.

11.1.1 Basic use

Importing the main class:

>>> from pathlib import Path

Listing subdirectories:

>>> p = Path('.')
>>> [x for x in p.iterdir() if x.is_dir()]
[PosixPath('.hg'), PosixPath('docs'), PosixPath('dist'),
PosixPath('__pycache__'), PosixPath('build')]

Listing Python source files in this directory tree:

>>> list(p.glob('**/*.py'))
[PosixPath('test_pathlib.py'), PosixPath('setup.py'),
PosixPath('pathlib.py'), PosixPath('docs/conf.py'),
PosixPath('build/lib/pathlib.py')]

Navigating inside a directory tree:

>>> p = Path('/etc')
>>> q = p / 'init.d' / 'reboot'
>>> q
PosixPath('/etc/init.d/reboot')
>>> q.resolve()
PosixPath('/etc/rc.d/init.d/halt')

Querying path properties:

>>> q.exists()
True
>>> q.is_dir()
False

Opening a file:

>>> with q.open() as f: f.readline()
...
'#!/bin/bash\n'

11.1.2 Pure paths

Pure path objects provide path-handling operations which don’t actually access a filesystem. There are three
ways to access these classes, which we also call flavours:

class pathlib.PurePath(*pathsegments)
A generic class that represents the system’s path flavour (instantiating it creates either a PurePosixPath
or a PureWindowsPath):

11.1. pathlib — Object-oriented filesystem paths 345

The Python Library Reference, Release 3.5.7

>>> PurePath('setup.py') # Running on a Unix machine
PurePosixPath('setup.py')

Each element of pathsegments can be either a string representing a path segment, or another path
object:

>>> PurePath('foo', 'some/path', 'bar')
PurePosixPath('foo/some/path/bar')
>>> PurePath(Path('foo'), Path('bar'))
PurePosixPath('foo/bar')

When pathsegments is empty, the current directory is assumed:

>>> PurePath()
PurePosixPath('.')

When several absolute paths are given, the last is taken as an anchor (mimicking os.path.join()’s
behaviour):

>>> PurePath('/etc', '/usr', 'lib64')
PurePosixPath('/usr/lib64')
>>> PureWindowsPath('c:/Windows', 'd:bar')
PureWindowsPath('d:bar')

However, in a Windows path, changing the local root doesn’t discard the previous drive setting:

>>> PureWindowsPath('c:/Windows', '/Program Files')
PureWindowsPath('c:/Program Files')

Spurious slashes and single dots are collapsed, but double dots ('..') are not, since this would change
the meaning of a path in the face of symbolic links:

>>> PurePath('foo//bar')
PurePosixPath('foo/bar')
>>> PurePath('foo/./bar')
PurePosixPath('foo/bar')
>>> PurePath('foo/../bar')
PurePosixPath('foo/../bar')

(a näıve approach would make PurePosixPath('foo/../bar') equivalent to PurePosixPath('bar'),
which is wrong if foo is a symbolic link to another directory)

class pathlib.PurePosixPath(*pathsegments)
A subclass of PurePath, this path flavour represents non-Windows filesystem paths:

>>> PurePosixPath('/etc')
PurePosixPath('/etc')

pathsegments is specified similarly to PurePath.

class pathlib.PureWindowsPath(*pathsegments)
A subclass of PurePath, this path flavour represents Windows filesystem paths:

>>> PureWindowsPath('c:/Program Files/')
PureWindowsPath('c:/Program Files')

pathsegments is specified similarly to PurePath.

346 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

Regardless of the system you’re running on, you can instantiate all of these classes, since they don’t provide
any operation that does system calls.

General properties

Paths are immutable and hashable. Paths of a same flavour are comparable and orderable. These properties
respect the flavour’s case-folding semantics:

>>> PurePosixPath('foo') == PurePosixPath('FOO')
False
>>> PureWindowsPath('foo') == PureWindowsPath('FOO')
True
>>> PureWindowsPath('FOO') in { PureWindowsPath('foo') }
True
>>> PureWindowsPath('C:') < PureWindowsPath('d:')
True

Paths of a different flavour compare unequal and cannot be ordered:

>>> PureWindowsPath('foo') == PurePosixPath('foo')
False
>>> PureWindowsPath('foo') < PurePosixPath('foo')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unorderable types: PureWindowsPath() < PurePosixPath()

Operators

The slash operator helps create child paths, similarly to os.path.join():

>>> p = PurePath('/etc')
>>> p
PurePosixPath('/etc')
>>> p / 'init.d' / 'apache2'
PurePosixPath('/etc/init.d/apache2')
>>> q = PurePath('bin')
>>> '/usr' / q
PurePosixPath('/usr/bin')

The string representation of a path is the raw filesystem path itself (in native form, e.g. with backslashes
under Windows), which you can pass to any function taking a file path as a string:

>>> p = PurePath('/etc')
>>> str(p)
'/etc'
>>> p = PureWindowsPath('c:/Program Files')
>>> str(p)
'c:\\Program Files'

Similarly, calling bytes on a path gives the raw filesystem path as a bytes object, as encoded by os.fsencode():

>>> bytes(p)
b'/etc'

11.1. pathlib — Object-oriented filesystem paths 347

The Python Library Reference, Release 3.5.7

Note: Calling bytes is only recommended under Unix. Under Windows, the unicode form is the canonical
representation of filesystem paths.

Accessing individual parts

To access the individual “parts” (components) of a path, use the following property:

PurePath.parts
A tuple giving access to the path’s various components:

>>> p = PurePath('/usr/bin/python3')
>>> p.parts
('/', 'usr', 'bin', 'python3')

>>> p = PureWindowsPath('c:/Program Files/PSF')
>>> p.parts
('c:\\', 'Program Files', 'PSF')

(note how the drive and local root are regrouped in a single part)

Methods and properties

Pure paths provide the following methods and properties:

PurePath.drive
A string representing the drive letter or name, if any:

>>> PureWindowsPath('c:/Program Files/').drive
'c:'
>>> PureWindowsPath('/Program Files/').drive
''
>>> PurePosixPath('/etc').drive
''

UNC shares are also considered drives:

>>> PureWindowsPath('//host/share/foo.txt').drive
'\\\\host\\share'

PurePath.root
A string representing the (local or global) root, if any:

>>> PureWindowsPath('c:/Program Files/').root
'\\'
>>> PureWindowsPath('c:Program Files/').root
''
>>> PurePosixPath('/etc').root
'/'

UNC shares always have a root:

>>> PureWindowsPath('//host/share').root
'\\'

348 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

PurePath.anchor
The concatenation of the drive and root:

>>> PureWindowsPath('c:/Program Files/').anchor
'c:\\'
>>> PureWindowsPath('c:Program Files/').anchor
'c:'
>>> PurePosixPath('/etc').anchor
'/'
>>> PureWindowsPath('//host/share').anchor
'\\\\host\\share\\'

PurePath.parents
An immutable sequence providing access to the logical ancestors of the path:

>>> p = PureWindowsPath('c:/foo/bar/setup.py')
>>> p.parents[0]
PureWindowsPath('c:/foo/bar')
>>> p.parents[1]
PureWindowsPath('c:/foo')
>>> p.parents[2]
PureWindowsPath('c:/')

PurePath.parent
The logical parent of the path:

>>> p = PurePosixPath('/a/b/c/d')
>>> p.parent
PurePosixPath('/a/b/c')

You cannot go past an anchor, or empty path:

>>> p = PurePosixPath('/')
>>> p.parent
PurePosixPath('/')
>>> p = PurePosixPath('.')
>>> p.parent
PurePosixPath('.')

Note: This is a purely lexical operation, hence the following behaviour:

>>> p = PurePosixPath('foo/..')
>>> p.parent
PurePosixPath('foo')

If you want to walk an arbitrary filesystem path upwards, it is recommended to first call Path.resolve()
so as to resolve symlinks and eliminate “..” components.

PurePath.name
A string representing the final path component, excluding the drive and root, if any:

>>> PurePosixPath('my/library/setup.py').name
'setup.py'

UNC drive names are not considered:

11.1. pathlib — Object-oriented filesystem paths 349

The Python Library Reference, Release 3.5.7

>>> PureWindowsPath('//some/share/setup.py').name
'setup.py'
>>> PureWindowsPath('//some/share').name
''

PurePath.suffix
The file extension of the final component, if any:

>>> PurePosixPath('my/library/setup.py').suffix
'.py'
>>> PurePosixPath('my/library.tar.gz').suffix
'.gz'
>>> PurePosixPath('my/library').suffix
''

PurePath.suffixes
A list of the path’s file extensions:

>>> PurePosixPath('my/library.tar.gar').suffixes
['.tar', '.gar']
>>> PurePosixPath('my/library.tar.gz').suffixes
['.tar', '.gz']
>>> PurePosixPath('my/library').suffixes
[]

PurePath.stem
The final path component, without its suffix:

>>> PurePosixPath('my/library.tar.gz').stem
'library.tar'
>>> PurePosixPath('my/library.tar').stem
'library'
>>> PurePosixPath('my/library').stem
'library'

PurePath.as_posix()
Return a string representation of the path with forward slashes (/):

>>> p = PureWindowsPath('c:\\windows')
>>> str(p)
'c:\\windows'
>>> p.as_posix()
'c:/windows'

PurePath.as_uri()
Represent the path as a file URI. ValueError is raised if the path isn’t absolute.

>>> p = PurePosixPath('/etc/passwd')
>>> p.as_uri()
'file:///etc/passwd'
>>> p = PureWindowsPath('c:/Windows')
>>> p.as_uri()
'file:///c:/Windows'

PurePath.is_absolute()
Return whether the path is absolute or not. A path is considered absolute if it has both a root and (if
the flavour allows) a drive:

350 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

>>> PurePosixPath('/a/b').is_absolute()
True
>>> PurePosixPath('a/b').is_absolute()
False

>>> PureWindowsPath('c:/a/b').is_absolute()
True
>>> PureWindowsPath('/a/b').is_absolute()
False
>>> PureWindowsPath('c:').is_absolute()
False
>>> PureWindowsPath('//some/share').is_absolute()
True

PurePath.is_reserved()
With PureWindowsPath, return True if the path is considered reserved under Windows, False other-
wise. With PurePosixPath, False is always returned.

>>> PureWindowsPath('nul').is_reserved()
True
>>> PurePosixPath('nul').is_reserved()
False

File system calls on reserved paths can fail mysteriously or have unintended effects.

PurePath.joinpath(*other)
Calling this method is equivalent to combining the path with each of the other arguments in turn:

>>> PurePosixPath('/etc').joinpath('passwd')
PurePosixPath('/etc/passwd')
>>> PurePosixPath('/etc').joinpath(PurePosixPath('passwd'))
PurePosixPath('/etc/passwd')
>>> PurePosixPath('/etc').joinpath('init.d', 'apache2')
PurePosixPath('/etc/init.d/apache2')
>>> PureWindowsPath('c:').joinpath('/Program Files')
PureWindowsPath('c:/Program Files')

PurePath.match(pattern)
Match this path against the provided glob-style pattern. Return True if matching is successful, False
otherwise.

If pattern is relative, the path can be either relative or absolute, and matching is done from the right:

>>> PurePath('a/b.py').match('*.py')
True
>>> PurePath('/a/b/c.py').match('b/*.py')
True
>>> PurePath('/a/b/c.py').match('a/*.py')
False

If pattern is absolute, the path must be absolute, and the whole path must match:

>>> PurePath('/a.py').match('/*.py')
True
>>> PurePath('a/b.py').match('/*.py')
False

As with other methods, case-sensitivity is observed:

11.1. pathlib — Object-oriented filesystem paths 351

The Python Library Reference, Release 3.5.7

>>> PureWindowsPath('b.py').match('*.PY')
True

PurePath.relative_to(*other)
Compute a version of this path relative to the path represented by other. If it’s impossible, ValueError
is raised:

>>> p = PurePosixPath('/etc/passwd')
>>> p.relative_to('/')
PurePosixPath('etc/passwd')
>>> p.relative_to('/etc')
PurePosixPath('passwd')
>>> p.relative_to('/usr')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "pathlib.py", line 694, in relative_to
.format(str(self), str(formatted)))

ValueError: '/etc/passwd' does not start with '/usr'

PurePath.with_name(name)
Return a new path with the name changed. If the original path doesn’t have a name, ValueError is
raised:

>>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz')
>>> p.with_name('setup.py')
PureWindowsPath('c:/Downloads/setup.py')
>>> p = PureWindowsPath('c:/')
>>> p.with_name('setup.py')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/antoine/cpython/default/Lib/pathlib.py", line 751, in with_name
raise ValueError("%r has an empty name" % (self,))

ValueError: PureWindowsPath('c:/') has an empty name

PurePath.with_suffix(suffix)
Return a new path with the suffix changed. If the original path doesn’t have a suffix, the new suffix is
appended instead:

>>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz')
>>> p.with_suffix('.bz2')
PureWindowsPath('c:/Downloads/pathlib.tar.bz2')
>>> p = PureWindowsPath('README')
>>> p.with_suffix('.txt')
PureWindowsPath('README.txt')

11.1.3 Concrete paths

Concrete paths are subclasses of the pure path classes. In addition to operations provided by the latter,
they also provide methods to do system calls on path objects. There are three ways to instantiate concrete
paths:

class pathlib.Path(*pathsegments)
A subclass of PurePath, this class represents concrete paths of the system’s path flavour (instantiating
it creates either a PosixPath or a WindowsPath):

352 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

>>> Path('setup.py')
PosixPath('setup.py')

pathsegments is specified similarly to PurePath.

class pathlib.PosixPath(*pathsegments)
A subclass of Path and PurePosixPath, this class represents concrete non-Windows filesystem paths:

>>> PosixPath('/etc')
PosixPath('/etc')

pathsegments is specified similarly to PurePath.

class pathlib.WindowsPath(*pathsegments)
A subclass of Path and PureWindowsPath, this class represents concrete Windows filesystem paths:

>>> WindowsPath('c:/Program Files/')
WindowsPath('c:/Program Files')

pathsegments is specified similarly to PurePath.

You can only instantiate the class flavour that corresponds to your system (allowing system calls on non-
compatible path flavours could lead to bugs or failures in your application):

>>> import os
>>> os.name
'posix'
>>> Path('setup.py')
PosixPath('setup.py')
>>> PosixPath('setup.py')
PosixPath('setup.py')
>>> WindowsPath('setup.py')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "pathlib.py", line 798, in __new__
% (cls.__name__,))

NotImplementedError: cannot instantiate 'WindowsPath' on your system

Methods

Concrete paths provide the following methods in addition to pure paths methods. Many of these methods
can raise an OSError if a system call fails (for example because the path doesn’t exist):

classmethod Path.cwd()
Return a new path object representing the current directory (as returned by os.getcwd()):

>>> Path.cwd()
PosixPath('/home/antoine/pathlib')

classmethod Path.home()
Return a new path object representing the user’s home directory (as returned by os.path.expanduser()
with ~ construct):

>>> Path.home()
PosixPath('/home/antoine')

New in version 3.5.

11.1. pathlib — Object-oriented filesystem paths 353

The Python Library Reference, Release 3.5.7

Path.stat()
Return information about this path (similarly to os.stat()). The result is looked up at each call to this
method.

>>> p = Path('setup.py')
>>> p.stat().st_size
956
>>> p.stat().st_mtime
1327883547.852554

Path.chmod(mode)
Change the file mode and permissions, like os.chmod():

>>> p = Path('setup.py')
>>> p.stat().st_mode
33277
>>> p.chmod(0o444)
>>> p.stat().st_mode
33060

Path.exists()
Whether the path points to an existing file or directory:

>>> Path('.').exists()
True
>>> Path('setup.py').exists()
True
>>> Path('/etc').exists()
True
>>> Path('nonexistentfile').exists()
False

Note: If the path points to a symlink, exists() returns whether the symlink points to an existing file
or directory.

Path.expanduser()
Return a new path with expanded ~ and ~user constructs, as returned by os.path.expanduser():

>>> p = PosixPath('~/films/Monty Python')
>>> p.expanduser()
PosixPath('/home/eric/films/Monty Python')

New in version 3.5.

Path.glob(pattern)
Glob the given pattern in the directory represented by this path, yielding all matching files (of any
kind):

>>> sorted(Path('.').glob('*.py'))
[PosixPath('pathlib.py'), PosixPath('setup.py'), PosixPath('test_pathlib.py')]
>>> sorted(Path('.').glob('*/*.py'))
[PosixPath('docs/conf.py')]

The “**” pattern means “this directory and all subdirectories, recursively”. In other words, it enables
recursive globbing:

354 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

>>> sorted(Path('.').glob('**/*.py'))
[PosixPath('build/lib/pathlib.py'),
PosixPath('docs/conf.py'),
PosixPath('pathlib.py'),
PosixPath('setup.py'),
PosixPath('test_pathlib.py')]

Note: Using the “**” pattern in large directory trees may consume an inordinate amount of time.

Path.group()
Return the name of the group owning the file. KeyError is raised if the file’s gid isn’t found in the
system database.

Path.is_dir()
Return True if the path points to a directory (or a symbolic link pointing to a directory), False if it
points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission
errors) are propagated.

Path.is_file()
Return True if the path points to a regular file (or a symbolic link pointing to a regular file), False if
it points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission
errors) are propagated.

Path.is_symlink()
Return True if the path points to a symbolic link, False otherwise.

False is also returned if the path doesn’t exist; other errors (such as permission errors) are propagated.

Path.is_socket()
Return True if the path points to a Unix socket (or a symbolic link pointing to a Unix socket), False
if it points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission
errors) are propagated.

Path.is_fifo()
Return True if the path points to a FIFO (or a symbolic link pointing to a FIFO), False if it points to
another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission
errors) are propagated.

Path.is_block_device()
Return True if the path points to a block device (or a symbolic link pointing to a block device), False
if it points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission
errors) are propagated.

Path.is_char_device()
Return True if the path points to a character device (or a symbolic link pointing to a character device),
False if it points to another kind of file.

False is also returned if the path doesn’t exist or is a broken symlink; other errors (such as permission
errors) are propagated.

11.1. pathlib — Object-oriented filesystem paths 355

The Python Library Reference, Release 3.5.7

Path.iterdir()
When the path points to a directory, yield path objects of the directory contents:

>>> p = Path('docs')
>>> for child in p.iterdir(): child
...
PosixPath('docs/conf.py')
PosixPath('docs/_templates')
PosixPath('docs/make.bat')
PosixPath('docs/index.rst')
PosixPath('docs/_build')
PosixPath('docs/_static')
PosixPath('docs/Makefile')

Path.lchmod(mode)
Like Path.chmod() but, if the path points to a symbolic link, the symbolic link’s mode is changed
rather than its target’s.

Path.lstat()
Like Path.stat() but, if the path points to a symbolic link, return the symbolic link’s information rather
than its target’s.

Path.mkdir(mode=0o777, parents=False, exist_ok=False)
Create a new directory at this given path. If mode is given, it is combined with the process’ umask
value to determine the file mode and access flags. If the path already exists, FileExistsError is raised.

If parents is true, any missing parents of this path are created as needed; they are created with the
default permissions without taking mode into account (mimicking the POSIX mkdir -p command).

If parents is false (the default), a missing parent raises FileNotFoundError.

If exist_ok is false (the default), FileExistsError is raised if the target directory already exists.

If exist_ok is true, FileExistsError exceptions will be ignored (same behavior as the POSIX mkdir -p
command), but only if the last path component is not an existing non-directory file.

Changed in version 3.5: The exist_ok parameter was added.

Path.open(mode=’r’, buffering=-1, encoding=None, errors=None, newline=None)
Open the file pointed to by the path, like the built-in open() function does:

>>> p = Path('setup.py')
>>> with p.open() as f:
... f.readline()
...
'#!/usr/bin/env python3\n'

Path.owner()
Return the name of the user owning the file. KeyError is raised if the file’s uid isn’t found in the
system database.

Path.read_bytes()
Return the binary contents of the pointed-to file as a bytes object:

>>> p = Path('my_binary_file')
>>> p.write_bytes(b'Binary file contents')
20
>>> p.read_bytes()
b'Binary file contents'

New in version 3.5.

356 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

Path.read_text(encoding=None, errors=None)
Return the decoded contents of the pointed-to file as a string:

>>> p = Path('my_text_file')
>>> p.write_text('Text file contents')
18
>>> p.read_text()
'Text file contents'

The optional parameters have the same meaning as in open().

New in version 3.5.

Path.rename(target)
Rename this file or directory to the given target. On Unix, if target exists and is a file, it will be
replaced silently if the user has permission. target can be either a string or another path object:

>>> p = Path('foo')
>>> p.open('w').write('some text')
9
>>> target = Path('bar')
>>> p.rename(target)
>>> target.open().read()
'some text'

Path.replace(target)
Rename this file or directory to the given target. If target points to an existing file or directory, it will
be unconditionally replaced.

Path.resolve()
Make the path absolute, resolving any symlinks. A new path object is returned:

>>> p = Path()
>>> p
PosixPath('.')
>>> p.resolve()
PosixPath('/home/antoine/pathlib')

“..” components are also eliminated (this is the only method to do so):

>>> p = Path('docs/../setup.py')
>>> p.resolve()
PosixPath('/home/antoine/pathlib/setup.py')

If the path doesn’t exist, FileNotFoundError is raised. If an infinite loop is encountered along the
resolution path, RuntimeError is raised.

Path.rglob(pattern)
This is like calling Path.glob() with “**” added in front of the given pattern:

>>> sorted(Path().rglob("*.py"))
[PosixPath('build/lib/pathlib.py'),
PosixPath('docs/conf.py'),
PosixPath('pathlib.py'),
PosixPath('setup.py'),
PosixPath('test_pathlib.py')]

Path.rmdir()
Remove this directory. The directory must be empty.

11.1. pathlib — Object-oriented filesystem paths 357

The Python Library Reference, Release 3.5.7

Path.samefile(other_path)
Return whether this path points to the same file as other_path, which can be either a Path object, or
a string. The semantics are similar to os.path.samefile() and os.path.samestat().

An OSError can be raised if either file cannot be accessed for some reason.

>>> p = Path('spam')
>>> q = Path('eggs')
>>> p.samefile(q)
False
>>> p.samefile('spam')
True

New in version 3.5.

Path.symlink_to(target, target_is_directory=False)
Make this path a symbolic link to target. Under Windows, target_is_directory must be true (default
False) if the link’s target is a directory. Under POSIX, target_is_directory’s value is ignored.

>>> p = Path('mylink')
>>> p.symlink_to('setup.py')
>>> p.resolve()
PosixPath('/home/antoine/pathlib/setup.py')
>>> p.stat().st_size
956
>>> p.lstat().st_size
8

Note: The order of arguments (link, target) is the reverse of os.symlink()’s.

Path.touch(mode=0o666, exist_ok=True)
Create a file at this given path. If mode is given, it is combined with the process’ umask value to
determine the file mode and access flags. If the file already exists, the function succeeds if exist_ok is
true (and its modification time is updated to the current time), otherwise FileExistsError is raised.

Path.unlink()
Remove this file or symbolic link. If the path points to a directory, use Path.rmdir() instead.

Path.write_bytes(data)
Open the file pointed to in bytes mode, write data to it, and close the file:

>>> p = Path('my_binary_file')
>>> p.write_bytes(b'Binary file contents')
20
>>> p.read_bytes()
b'Binary file contents'

An existing file of the same name is overwritten.

New in version 3.5.

Path.write_text(data, encoding=None, errors=None)
Open the file pointed to in text mode, write data to it, and close the file:

>>> p = Path('my_text_file')
>>> p.write_text('Text file contents')
18

(continues on next page)

358 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> p.read_text()
'Text file contents'

New in version 3.5.

11.2 os.path — Common pathname manipulations

Source code: Lib/posixpath.py (for POSIX), Lib/ntpath.py (for Windows NT), and Lib/macpath.py (for
Macintosh)

This module implements some useful functions on pathnames. To read or write files see open(), and for
accessing the filesystem see the os module. The path parameters can be passed as either strings, or bytes.
Applications are encouraged to represent file names as (Unicode) character strings. Unfortunately, some file
names may not be representable as strings on Unix, so applications that need to support arbitrary file names
on Unix should use bytes objects to represent path names. Vice versa, using bytes objects cannot represent
all file names on Windows (in the standard mbcs encoding), hence Windows applications should use string
objects to access all files.

Unlike a unix shell, Python does not do any automatic path expansions. Functions such as expanduser()
and expandvars() can be invoked explicitly when an application desires shell-like path expansion. (See also
the glob module.)

See also:

The pathlib module offers high-level path objects.

Note: All of these functions accept either only bytes or only string objects as their parameters. The result
is an object of the same type, if a path or file name is returned.

Note: Since different operating systems have different path name conventions, there are several versions of
this module in the standard library. The os.path module is always the path module suitable for the operating
system Python is running on, and therefore usable for local paths. However, you can also import and use
the individual modules if you want to manipulate a path that is always in one of the different formats. They
all have the same interface:

• posixpath for UNIX-style paths

• ntpath for Windows paths

• macpath for old-style MacOS paths

os.path.abspath(path)
Return a normalized absolutized version of the pathname path. On most platforms, this is equivalent
to calling the function normpath() as follows: normpath(join(os.getcwd(), path)).

os.path.basename(path)
Return the base name of pathname path. This is the second element of the pair returned by passing
path to the function split(). Note that the result of this function is different from the Unix basename
program; where basename for '/foo/bar/' returns 'bar', the basename() function returns an empty
string ('').

11.2. os.path — Common pathname manipulations 359

https://github.com/python/cpython/tree/3.5/Lib/posixpath.py
https://github.com/python/cpython/tree/3.5/Lib/ntpath.py
https://github.com/python/cpython/tree/3.5/Lib/macpath.py

The Python Library Reference, Release 3.5.7

os.path.commonpath(paths)
Return the longest common sub-path of each pathname in the sequence paths. Raise ValueError if
paths contains both absolute and relative pathnames, or if paths is empty. Unlike commonprefix(),
this returns a valid path.

Availability: Unix, Windows

New in version 3.5.

os.path.commonprefix(list)
Return the longest path prefix (taken character-by-character) that is a prefix of all paths in list. If list
is empty, return the empty string ('').

Note: This function may return invalid paths because it works a character at a time. To obtain a
valid path, see commonpath().

>>> os.path.commonprefix(['/usr/lib', '/usr/local/lib'])
'/usr/l'

>>> os.path.commonpath(['/usr/lib', '/usr/local/lib'])
'/usr'

os.path.dirname(path)
Return the directory name of pathname path. This is the first element of the pair returned by passing
path to the function split().

os.path.exists(path)
Return True if path refers to an existing path or an open file descriptor. Returns False for broken
symbolic links. On some platforms, this function may return False if permission is not granted to
execute os.stat() on the requested file, even if the path physically exists.

Changed in version 3.3: path can now be an integer: True is returned if it is an open file descriptor,
False otherwise.

os.path.lexists(path)
Return True if path refers to an existing path. Returns True for broken symbolic links. Equivalent to
exists() on platforms lacking os.lstat().

os.path.expanduser(path)
On Unix and Windows, return the argument with an initial component of ~ or ~user replaced by that
user’s home directory.

On Unix, an initial ~ is replaced by the environment variable HOME if it is set; otherwise the current
user’s home directory is looked up in the password directory through the built-in module pwd. An
initial ~user is looked up directly in the password directory.

On Windows, HOME and USERPROFILE will be used if set, otherwise a combination of HOMEPATH
and HOMEDRIVE will be used. An initial ~user is handled by stripping the last directory component
from the created user path derived above.

If the expansion fails or if the path does not begin with a tilde, the path is returned unchanged.

os.path.expandvars(path)
Return the argument with environment variables expanded. Substrings of the form $name or ${name}
are replaced by the value of environment variable name. Malformed variable names and references to
non-existing variables are left unchanged.

On Windows, %name% expansions are supported in addition to $name and ${name}.

360 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

os.path.getatime(path)
Return the time of last access of path. The return value is a number giving the number of seconds
since the epoch (see the time module). Raise OSError if the file does not exist or is inaccessible.

If os.stat_float_times() returns True, the result is a floating point number.

os.path.getmtime(path)
Return the time of last modification of path. The return value is a number giving the number of seconds
since the epoch (see the time module). Raise OSError if the file does not exist or is inaccessible.

If os.stat_float_times() returns True, the result is a floating point number.

os.path.getctime(path)
Return the system’s ctime which, on some systems (like Unix) is the time of the last metadata change,
and, on others (like Windows), is the creation time for path. The return value is a number giving the
number of seconds since the epoch (see the time module). Raise OSError if the file does not exist or
is inaccessible.

os.path.getsize(path)
Return the size, in bytes, of path. Raise OSError if the file does not exist or is inaccessible.

os.path.isabs(path)
Return True if path is an absolute pathname. On Unix, that means it begins with a slash, on Windows
that it begins with a (back)slash after chopping off a potential drive letter.

os.path.isfile(path)
Return True if path is an existing regular file. This follows symbolic links, so both islink() and isfile()
can be true for the same path.

os.path.isdir(path)
Return True if path is an existing directory. This follows symbolic links, so both islink() and isdir()
can be true for the same path.

os.path.islink(path)
Return True if path refers to a directory entry that is a symbolic link. Always False if symbolic links
are not supported by the Python runtime.

os.path.ismount(path)
Return True if pathname path is a mount point: a point in a file system where a different file system
has been mounted. On POSIX, the function checks whether path’s parent, path/.., is on a different
device than path, or whether path/.. and path point to the same i-node on the same device — this
should detect mount points for all Unix and POSIX variants. On Windows, a drive letter root and a
share UNC are always mount points, and for any other path GetVolumePathName is called to see if it
is different from the input path.

New in version 3.4: Support for detecting non-root mount points on Windows.

os.path.join(path, *paths)
Join one or more path components intelligently. The return value is the concatenation of path and any
members of *paths with exactly one directory separator (os.sep) following each non-empty part except
the last, meaning that the result will only end in a separator if the last part is empty. If a component
is an absolute path, all previous components are thrown away and joining continues from the absolute
path component.

On Windows, the drive letter is not reset when an absolute path component (e.g., r'\foo') is encoun-
tered. If a component contains a drive letter, all previous components are thrown away and the drive
letter is reset. Note that since there is a current directory for each drive, os.path.join("c:", "foo")
represents a path relative to the current directory on drive C: (c:foo), not c:\foo.

os.path.normcase(path)
Normalize the case of a pathname. On Unix and Mac OS X, this returns the path unchanged; on

11.2. os.path — Common pathname manipulations 361

The Python Library Reference, Release 3.5.7

case-insensitive filesystems, it converts the path to lowercase. On Windows, it also converts forward
slashes to backward slashes. Raise a TypeError if the type of path is not str or bytes.

os.path.normpath(path)
Normalize a pathname by collapsing redundant separators and up-level references so that A//B, A/
B/, A/./B and A/foo/../B all become A/B. This string manipulation may change the meaning of a
path that contains symbolic links. On Windows, it converts forward slashes to backward slashes. To
normalize case, use normcase().

os.path.realpath(path)
Return the canonical path of the specified filename, eliminating any symbolic links encountered in the
path (if they are supported by the operating system).

os.path.relpath(path, start=os.curdir)
Return a relative filepath to path either from the current directory or from an optional start directory.
This is a path computation: the filesystem is not accessed to confirm the existence or nature of path
or start.

start defaults to os.curdir.

Availability: Unix, Windows.

os.path.samefile(path1, path2)
Return True if both pathname arguments refer to the same file or directory. This is determined by the
device number and i-node number and raises an exception if an os.stat() call on either pathname fails.

Availability: Unix, Windows.

Changed in version 3.2: Added Windows support.

Changed in version 3.4: Windows now uses the same implementation as all other platforms.

os.path.sameopenfile(fp1, fp2)
Return True if the file descriptors fp1 and fp2 refer to the same file.

Availability: Unix, Windows.

Changed in version 3.2: Added Windows support.

os.path.samestat(stat1, stat2)
Return True if the stat tuples stat1 and stat2 refer to the same file. These structures may have been
returned by os.fstat(), os.lstat(), or os.stat(). This function implements the underlying comparison
used by samefile() and sameopenfile().

Availability: Unix, Windows.

Changed in version 3.4: Added Windows support.

os.path.split(path)
Split the pathname path into a pair, (head, tail) where tail is the last pathname component and head
is everything leading up to that. The tail part will never contain a slash; if path ends in a slash, tail
will be empty. If there is no slash in path, head will be empty. If path is empty, both head and tail
are empty. Trailing slashes are stripped from head unless it is the root (one or more slashes only). In
all cases, join(head, tail) returns a path to the same location as path (but the strings may differ). Also
see the functions dirname() and basename().

os.path.splitdrive(path)
Split the pathname path into a pair (drive, tail) where drive is either a mount point or the empty
string. On systems which do not use drive specifications, drive will always be the empty string. In all
cases, drive + tail will be the same as path.

On Windows, splits a pathname into drive/UNC sharepoint and relative path.

362 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

If the path contains a drive letter, drive will contain everything up to and including the colon. e.g.
splitdrive("c:/dir") returns ("c:", "/dir")

If the path contains a UNC path, drive will contain the host name and share, up to but not including
the fourth separator. e.g. splitdrive("//host/computer/dir") returns ("//host/computer", "/dir")

os.path.splitext(path)
Split the pathname path into a pair (root, ext) such that root + ext == path, and ext is empty or
begins with a period and contains at most one period. Leading periods on the basename are ignored;
splitext('.cshrc') returns ('.cshrc', '').

os.path.splitunc(path)
Deprecated since version 3.1: Use splitdrive instead.

Split the pathname path into a pair (unc, rest) so that unc is the UNC mount point (such as
r'\\host\mount'), if present, and rest the rest of the path (such as r'\path\file.ext'). For paths
containing drive letters, unc will always be the empty string.

Availability: Windows.

os.path.supports_unicode_filenames
True if arbitrary Unicode strings can be used as file names (within limitations imposed by the file
system).

11.3 fileinput — Iterate over lines from multiple input streams

Source code: Lib/fileinput.py

This module implements a helper class and functions to quickly write a loop over standard input or a list of
files. If you just want to read or write one file see open().

The typical use is:

import fileinput
for line in fileinput.input():

process(line)

This iterates over the lines of all files listed in sys.argv[1:], defaulting to sys.stdin if the list is empty. If a
filename is '-', it is also replaced by sys.stdin. To specify an alternative list of filenames, pass it as the first
argument to input(). A single file name is also allowed.

All files are opened in text mode by default, but you can override this by specifying the mode parameter in
the call to input() or FileInput. If an I/O error occurs during opening or reading a file, OSError is raised.

Changed in version 3.3: IOError used to be raised; it is now an alias of OSError.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for
interactive use, or if it has been explicitly reset (e.g. using sys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is
noticeable at all is when the last file opened is empty.

Lines are returned with any newlines intact, which means that the last line in a file may not have one.

You can control how files are opened by providing an opening hook via the openhook parameter to fileinput.
input() or FileInput(). The hook must be a function that takes two arguments, filename and mode, and
returns an accordingly opened file-like object. Two useful hooks are already provided by this module.

The following function is the primary interface of this module:

11.3. fileinput — Iterate over lines from multiple input streams 363

https://github.com/python/cpython/tree/3.5/Lib/fileinput.py

The Python Library Reference, Release 3.5.7

fileinput.input(files=None, inplace=False, backup=”, bufsize=0, mode=’r’, openhook=None)
Create an instance of the FileInput class. The instance will be used as global state for the functions
of this module, and is also returned to use during iteration. The parameters to this function will be
passed along to the constructor of the FileInput class.

The FileInput instance can be used as a context manager in the with statement. In this example, input
is closed after the with statement is exited, even if an exception occurs:

with fileinput.input(files=('spam.txt', 'eggs.txt')) as f:
for line in f:

process(line)

Changed in version 3.2: Can be used as a context manager.

Changed in version 3.5.2: The bufsize parameter is no longer used.

The following functions use the global state created by fileinput.input(); if there is no active state, Run-
timeError is raised.

fileinput.filename()
Return the name of the file currently being read. Before the first line has been read, returns None.

fileinput.fileno()
Return the integer “file descriptor” for the current file. When no file is opened (before the first line and
between files), returns -1.

fileinput.lineno()
Return the cumulative line number of the line that has just been read. Before the first line has been
read, returns 0. After the last line of the last file has been read, returns the line number of that line.

fileinput.filelineno()
Return the line number in the current file. Before the first line has been read, returns 0. After the last
line of the last file has been read, returns the line number of that line within the file.

fileinput.isfirstline()
Returns true if the line just read is the first line of its file, otherwise returns false.

fileinput.isstdin()
Returns true if the last line was read from sys.stdin, otherwise returns false.

fileinput.nextfile()
Close the current file so that the next iteration will read the first line from the next file (if any); lines
not read from the file will not count towards the cumulative line count. The filename is not changed
until after the first line of the next file has been read. Before the first line has been read, this function
has no effect; it cannot be used to skip the first file. After the last line of the last file has been read,
this function has no effect.

fileinput.close()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as
well:

class fileinput.FileInput(files=None, inplace=False, backup=”, bufsize=0, mode=’r’, openhook=None)
Class FileInput is the implementation; its methods filename(), fileno(), lineno(), filelineno(), isfirst-
line(), isstdin(), nextfile() and close() correspond to the functions of the same name in the module. In
addition it has a readline() method which returns the next input line, and a __getitem__() method
which implements the sequence behavior. The sequence must be accessed in strictly sequential order;
random access and readline() cannot be mixed.

364 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

With mode you can specify which file mode will be passed to open(). It must be one of 'r', 'rU',
'U' and 'rb'.

The openhook, when given, must be a function that takes two arguments, filename and mode, and
returns an accordingly opened file-like object. You cannot use inplace and openhook together.

A FileInput instance can be used as a context manager in the with statement. In this example, input
is closed after the with statement is exited, even if an exception occurs:

with FileInput(files=('spam.txt', 'eggs.txt')) as input:
process(input)

Changed in version 3.2: Can be used as a context manager.

Deprecated since version 3.4: The 'rU' and 'U' modes.

Changed in version 3.5.2: The bufsize parameter is no longer used.

Optional in-place filtering: if the keyword argument inplace=True is passed to fileinput.input() or to the
FileInput constructor, the file is moved to a backup file and standard output is directed to the input file
(if a file of the same name as the backup file already exists, it will be replaced silently). This makes it
possible to write a filter that rewrites its input file in place. If the backup parameter is given (typically as
backup='.<some extension>'), it specifies the extension for the backup file, and the backup file remains
around; by default, the extension is '.bak' and it is deleted when the output file is closed. In-place filtering
is disabled when standard input is read.

The two following opening hooks are provided by this module:

fileinput.hook_compressed(filename, mode)
Transparently opens files compressed with gzip and bzip2 (recognized by the extensions '.gz' and
'.bz2') using the gzip and bz2 modules. If the filename extension is not '.gz' or '.bz2', the file is
opened normally (ie, using open() without any decompression).

Usage example: fi = fileinput.FileInput(openhook=fileinput.hook_compressed)

fileinput.hook_encoded(encoding)
Returns a hook which opens each file with open(), using the given encoding to read the file.

Usage example: fi = fileinput.FileInput(openhook=fileinput.hook_encoded("iso-8859-1"))

11.4 stat — Interpreting stat() results

Source code: Lib/stat.py

The stat module defines constants and functions for interpreting the results of os.stat(), os.fstat() and
os.lstat() (if they exist). For complete details about the stat(), fstat() and lstat() calls, consult the docu-
mentation for your system.

Changed in version 3.4: The stat module is backed by a C implementation.

The stat module defines the following functions to test for specific file types:

stat.S_ISDIR(mode)
Return non-zero if the mode is from a directory.

stat.S_ISCHR(mode)
Return non-zero if the mode is from a character special device file.

11.4. stat — Interpreting stat() results 365

https://github.com/python/cpython/tree/3.5/Lib/stat.py

The Python Library Reference, Release 3.5.7

stat.S_ISBLK(mode)
Return non-zero if the mode is from a block special device file.

stat.S_ISREG(mode)
Return non-zero if the mode is from a regular file.

stat.S_ISFIFO(mode)
Return non-zero if the mode is from a FIFO (named pipe).

stat.S_ISLNK(mode)
Return non-zero if the mode is from a symbolic link.

stat.S_ISSOCK(mode)
Return non-zero if the mode is from a socket.

stat.S_ISDOOR(mode)
Return non-zero if the mode is from a door.

New in version 3.4.

stat.S_ISPORT(mode)
Return non-zero if the mode is from an event port.

New in version 3.4.

stat.S_ISWHT(mode)
Return non-zero if the mode is from a whiteout.

New in version 3.4.

Two additional functions are defined for more general manipulation of the file’s mode:

stat.S_IMODE(mode)
Return the portion of the file’s mode that can be set by os.chmod()—that is, the file’s permission bits,
plus the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

stat.S_IFMT(mode)
Return the portion of the file’s mode that describes the file type (used by the S_IS*() functions above).

Normally, you would use the os.path.is*() functions for testing the type of a file; the functions here are useful
when you are doing multiple tests of the same file and wish to avoid the overhead of the stat() system call
for each test. These are also useful when checking for information about a file that isn’t handled by os.path,
like the tests for block and character devices.

Example:

import os, sys
from stat import *

def walktree(top, callback):
'''recursively descend the directory tree rooted at top,
calling the callback function for each regular file'''

for f in os.listdir(top):
pathname = os.path.join(top, f)
mode = os.stat(pathname).st_mode
if S_ISDIR(mode):

It's a directory, recurse into it
walktree(pathname, callback)

elif S_ISREG(mode):
It's a file, call the callback function
callback(pathname)

(continues on next page)

366 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

(continued from previous page)

else:
Unknown file type, print a message
print('Skipping %s' % pathname)

def visitfile(file):
print('visiting', file)

if __name__ == '__main__':
walktree(sys.argv[1], visitfile)

An additional utility function is provided to convert a file’s mode in a human readable string:

stat.filemode(mode)
Convert a file’s mode to a string of the form ‘-rwxrwxrwx’.

New in version 3.3.

Changed in version 3.4: The function supports S_IFDOOR, S_IFPORT and S_IFWHT.

All the variables below are simply symbolic indexes into the 10-tuple returned by os.stat(), os.fstat() or
os.lstat().

stat.ST_MODE
Inode protection mode.

stat.ST_INO
Inode number.

stat.ST_DEV
Device inode resides on.

stat.ST_NLINK
Number of links to the inode.

stat.ST_UID
User id of the owner.

stat.ST_GID
Group id of the owner.

stat.ST_SIZE
Size in bytes of a plain file; amount of data waiting on some special files.

stat.ST_ATIME
Time of last access.

stat.ST_MTIME
Time of last modification.

stat.ST_CTIME
The “ctime” as reported by the operating system. On some systems (like Unix) is the time of the last
metadata change, and, on others (like Windows), is the creation time (see platform documentation for
details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the file
in bytes. For FIFOs and sockets under most flavors of Unix (including Linux in particular), the “size” is
the number of bytes waiting to be read at the time of the call to os.stat(), os.fstat(), or os.lstat(); this can
sometimes be useful, especially for polling one of these special files after a non-blocking open. The meaning
of the size field for other character and block devices varies more, depending on the implementation of the
underlying system call.

11.4. stat — Interpreting stat() results 367

The Python Library Reference, Release 3.5.7

The variables below define the flags used in the ST_MODE field.

Use of the functions above is more portable than use of the first set of flags:

stat.S_IFSOCK
Socket.

stat.S_IFLNK
Symbolic link.

stat.S_IFREG
Regular file.

stat.S_IFBLK
Block device.

stat.S_IFDIR
Directory.

stat.S_IFCHR
Character device.

stat.S_IFIFO
FIFO.

stat.S_IFDOOR
Door.

New in version 3.4.

stat.S_IFPORT
Event port.

New in version 3.4.

stat.S_IFWHT
Whiteout.

New in version 3.4.

Note: S_IFDOOR, S_IFPORT or S_IFWHT are defined as 0 when the platform does not have support
for the file types.

The following flags can also be used in the mode argument of os.chmod():

stat.S_ISUID
Set UID bit.

stat.S_ISGID
Set-group-ID bit. This bit has several special uses. For a directory it indicates that BSD semantics is
to be used for that directory: files created there inherit their group ID from the directory, not from
the effective group ID of the creating process, and directories created there will also get the S_ISGID
bit set. For a file that does not have the group execution bit (S_IXGRP) set, the set-group-ID bit
indicates mandatory file/record locking (see also S_ENFMT).

stat.S_ISVTX
Sticky bit. When this bit is set on a directory it means that a file in that directory can be renamed or
deleted only by the owner of the file, by the owner of the directory, or by a privileged process.

stat.S_IRWXU
Mask for file owner permissions.

368 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

stat.S_IRUSR
Owner has read permission.

stat.S_IWUSR
Owner has write permission.

stat.S_IXUSR
Owner has execute permission.

stat.S_IRWXG
Mask for group permissions.

stat.S_IRGRP
Group has read permission.

stat.S_IWGRP
Group has write permission.

stat.S_IXGRP
Group has execute permission.

stat.S_IRWXO
Mask for permissions for others (not in group).

stat.S_IROTH
Others have read permission.

stat.S_IWOTH
Others have write permission.

stat.S_IXOTH
Others have execute permission.

stat.S_ENFMT
System V file locking enforcement. This flag is shared with S_ISGID: file/record locking is enforced
on files that do not have the group execution bit (S_IXGRP) set.

stat.S_IREAD
Unix V7 synonym for S_IRUSR.

stat.S_IWRITE
Unix V7 synonym for S_IWUSR.

stat.S_IEXEC
Unix V7 synonym for S_IXUSR.

The following flags can be used in the flags argument of os.chflags():

stat.UF_NODUMP
Do not dump the file.

stat.UF_IMMUTABLE
The file may not be changed.

stat.UF_APPEND
The file may only be appended to.

stat.UF_OPAQUE
The directory is opaque when viewed through a union stack.

stat.UF_NOUNLINK
The file may not be renamed or deleted.

11.4. stat — Interpreting stat() results 369

The Python Library Reference, Release 3.5.7

stat.UF_COMPRESSED
The file is stored compressed (Mac OS X 10.6+).

stat.UF_HIDDEN
The file should not be displayed in a GUI (Mac OS X 10.5+).

stat.SF_ARCHIVED
The file may be archived.

stat.SF_IMMUTABLE
The file may not be changed.

stat.SF_APPEND
The file may only be appended to.

stat.SF_NOUNLINK
The file may not be renamed or deleted.

stat.SF_SNAPSHOT
The file is a snapshot file.

See the *BSD or Mac OS systems man page chflags(2) for more information.

On Windows, the following file attribute constants are available for use when testing bits in the
st_file_attributes member returned by os.stat(). See the Windows API documentation for more detail
on the meaning of these constants.

stat.FILE_ATTRIBUTE_ARCHIVE
stat.FILE_ATTRIBUTE_COMPRESSED
stat.FILE_ATTRIBUTE_DEVICE
stat.FILE_ATTRIBUTE_DIRECTORY
stat.FILE_ATTRIBUTE_ENCRYPTED
stat.FILE_ATTRIBUTE_HIDDEN
stat.FILE_ATTRIBUTE_INTEGRITY_STREAM
stat.FILE_ATTRIBUTE_NORMAL
stat.FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
stat.FILE_ATTRIBUTE_NO_SCRUB_DATA
stat.FILE_ATTRIBUTE_OFFLINE
stat.FILE_ATTRIBUTE_READONLY
stat.FILE_ATTRIBUTE_REPARSE_POINT
stat.FILE_ATTRIBUTE_SPARSE_FILE
stat.FILE_ATTRIBUTE_SYSTEM
stat.FILE_ATTRIBUTE_TEMPORARY
stat.FILE_ATTRIBUTE_VIRTUAL

New in version 3.5.

11.5 filecmp — File and Directory Comparisons

Source code: Lib/filecmp.py

The filecmp module defines functions to compare files and directories, with various optional time/correctness
trade-offs. For comparing files, see also the difflib module.

The filecmp module defines the following functions:

370 Chapter 11. File and Directory Access

https://msdn.microsoft.com/en-us/library/windows/desktop/gg258117.aspx
https://github.com/python/cpython/tree/3.5/Lib/filecmp.py

The Python Library Reference, Release 3.5.7

filecmp.cmp(f1, f2, shallow=True)
Compare the files named f1 and f2, returning True if they seem equal, False otherwise.

If shallow is true, files with identical os.stat() signatures are taken to be equal. Otherwise, the contents
of the files are compared.

Note that no external programs are called from this function, giving it portability and efficiency.

This function uses a cache for past comparisons and the results, with cache entries invalidated if the
os.stat() information for the file changes. The entire cache may be cleared using clear_cache().

filecmp.cmpfiles(dir1, dir2, common, shallow=True)
Compare the files in the two directories dir1 and dir2 whose names are given by common.

Returns three lists of file names: match, mismatch, errors. match contains the list of files that match,
mismatch contains the names of those that don’t, and errors lists the names of files which could not be
compared. Files are listed in errors if they don’t exist in one of the directories, the user lacks permission
to read them or if the comparison could not be done for some other reason.

The shallow parameter has the same meaning and default value as for filecmp.cmp().

For example, cmpfiles('a', 'b', ['c', 'd/e']) will compare a/c with b/c and a/d/e with b/d/e. 'c'
and 'd/e' will each be in one of the three returned lists.

filecmp.clear_cache()
Clear the filecmp cache. This may be useful if a file is compared so quickly after it is modified that it
is within the mtime resolution of the underlying filesystem.

New in version 3.4.

11.5.1 The dircmp class

class filecmp.dircmp(a, b, ignore=None, hide=None)
Construct a new directory comparison object, to compare the directories a and b. ignore is a list of
names to ignore, and defaults to filecmp.DEFAULT_IGNORES. hide is a list of names to hide, and
defaults to [os.curdir, os.pardir].

The dircmp class compares files by doing shallow comparisons as described for filecmp.cmp().

The dircmp class provides the following methods:

report()
Print (to sys.stdout) a comparison between a and b.

report_partial_closure()
Print a comparison between a and b and common immediate subdirectories.

report_full_closure()
Print a comparison between a and b and common subdirectories (recursively).

The dircmp class offers a number of interesting attributes that may be used to get various bits of
information about the directory trees being compared.

Note that via __getattr__() hooks, all attributes are computed lazily, so there is no speed penalty if
only those attributes which are lightweight to compute are used.

left
The directory a.

right
The directory b.

11.5. filecmp — File and Directory Comparisons 371

The Python Library Reference, Release 3.5.7

left_list
Files and subdirectories in a, filtered by hide and ignore.

right_list
Files and subdirectories in b, filtered by hide and ignore.

common
Files and subdirectories in both a and b.

left_only
Files and subdirectories only in a.

right_only
Files and subdirectories only in b.

common_dirs
Subdirectories in both a and b.

common_files
Files in both a and b.

common_funny
Names in both a and b, such that the type differs between the directories, or names for which
os.stat() reports an error.

same_files
Files which are identical in both a and b, using the class’s file comparison operator.

diff_files
Files which are in both a and b, whose contents differ according to the class’s file comparison
operator.

funny_files
Files which are in both a and b, but could not be compared.

subdirs
A dictionary mapping names in common_dirs to dircmp objects.

filecmp.DEFAULT_IGNORES
New in version 3.4.

List of directories ignored by dircmp by default.

Here is a simplified example of using the subdirs attribute to search recursively through two directories to
show common different files:

>>> from filecmp import dircmp
>>> def print_diff_files(dcmp):
... for name in dcmp.diff_files:
... print("diff_file %s found in %s and %s" % (name, dcmp.left,
... dcmp.right))
... for sub_dcmp in dcmp.subdirs.values():
... print_diff_files(sub_dcmp)
...
>>> dcmp = dircmp('dir1', 'dir2')
>>> print_diff_files(dcmp)

11.6 tempfile — Generate temporary files and directories

Source code: Lib/tempfile.py

372 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.5/Lib/tempfile.py

The Python Library Reference, Release 3.5.7

This module creates temporary files and directories. It works on all supported platforms. TemporaryFile,
NamedTemporaryFile, TemporaryDirectory, and SpooledTemporaryFile are high-level interfaces which pro-
vide automatic cleanup and can be used as context managers. mkstemp() and mkdtemp() are lower-level
functions which require manual cleanup.

All the user-callable functions and constructors take additional arguments which allow direct control over
the location and name of temporary files and directories. Files names used by this module include a string
of random characters which allows those files to be securely created in shared temporary directories. To
maintain backward compatibility, the argument order is somewhat odd; it is recommended to use keyword
arguments for clarity.

The module defines the following user-callable items:

tempfile.TemporaryFile(mode=’w+b’, buffering=None, encoding=None, newline=None, suffix=None,
prefix=None, dir=None)

Return a file-like object that can be used as a temporary storage area. The file is created securely,
using the same rules as mkstemp(). It will be destroyed as soon as it is closed (including an implicit
close when the object is garbage collected). Under Unix, the directory entry for the file is either not
created at all or is removed immediately after the file is created. Other platforms do not support this;
your code should not rely on a temporary file created using this function having or not having a visible
name in the file system.

The resulting object can be used as a context manager (see Examples). On completion of the context
or destruction of the file object the temporary file will be removed from the filesystem.

The mode parameter defaults to 'w+b' so that the file created can be read and written without being
closed. Binary mode is used so that it behaves consistently on all platforms without regard for the
data that is stored. buffering, encoding and newline are interpreted as for open().

The dir, prefix and suffix parameters have the same meaning and defaults as with mkstemp().

The returned object is a true file object on POSIX platforms. On other platforms, it is a file-like object
whose file attribute is the underlying true file object.

The os.O_TMPFILE flag is used if it is available and works (Linux-specific, requires Linux kernel 3.11
or later).

Changed in version 3.5: The os.O_TMPFILE flag is now used if available.

tempfile.NamedTemporaryFile(mode=’w+b’, buffering=None, encoding=None, newline=None, suf-
fix=None, prefix=None, dir=None, delete=True)

This function operates exactly as TemporaryFile() does, except that the file is guaranteed to have
a visible name in the file system (on Unix, the directory entry is not unlinked). That name can be
retrieved from the name attribute of the returned file-like object. Whether the name can be used to
open the file a second time, while the named temporary file is still open, varies across platforms (it
can be so used on Unix; it cannot on Windows NT or later). If delete is true (the default), the file is
deleted as soon as it is closed. The returned object is always a file-like object whose file attribute is
the underlying true file object. This file-like object can be used in a with statement, just like a normal
file.

tempfile.SpooledTemporaryFile(max_size=0, mode=’w+b’, buffering=None, encoding=None, new-
line=None, suffix=None, prefix=None, dir=None)

This function operates exactly as TemporaryFile() does, except that data is spooled in memory until
the file size exceeds max_size, or until the file’s fileno() method is called, at which point the contents
are written to disk and operation proceeds as with TemporaryFile().

The resulting file has one additional method, rollover(), which causes the file to roll over to an on-disk
file regardless of its size.

11.6. tempfile — Generate temporary files and directories 373

The Python Library Reference, Release 3.5.7

The returned object is a file-like object whose _file attribute is either an io.BytesIO or io.StringIO
object (depending on whether binary or text mode was specified) or a true file object, depending on
whether rollover() has been called. This file-like object can be used in a with statement, just like a
normal file.

Changed in version 3.3: the truncate method now accepts a size argument.

tempfile.TemporaryDirectory(suffix=None, prefix=None, dir=None)
This function securely creates a temporary directory using the same rules as mkdtemp(). The resulting
object can be used as a context manager (see Examples). On completion of the context or destruction of
the temporary directory object the newly created temporary directory and all its contents are removed
from the filesystem.

The directory name can be retrieved from the name attribute of the returned object. When the
returned object is used as a context manager, the name will be assigned to the target of the as clause
in the with statement, if there is one.

The directory can be explicitly cleaned up by calling the cleanup() method.

New in version 3.2.

tempfile.mkstemp(suffix=None, prefix=None, dir=None, text=False)
Creates a temporary file in the most secure manner possible. There are no race conditions in the file’s
creation, assuming that the platform properly implements the os.O_EXCL flag for os.open(). The file
is readable and writable only by the creating user ID. If the platform uses permission bits to indicate
whether a file is executable, the file is executable by no one. The file descriptor is not inherited by
child processes.

Unlike TemporaryFile(), the user of mkstemp() is responsible for deleting the temporary file when done
with it.

If suffix is not None, the file name will end with that suffix, otherwise there will be no suffix. mkstemp()
does not put a dot between the file name and the suffix; if you need one, put it at the beginning of
suffix.

If prefix is not None, the file name will begin with that prefix; otherwise, a default prefix is used. The
default is the return value of gettempprefix() or gettempprefixb(), as appropriate.

If dir is not None, the file will be created in that directory; otherwise, a default directory is used. The
default directory is chosen from a platform-dependent list, but the user of the application can control
the directory location by setting the TMPDIR, TEMP or TMP environment variables. There is thus
no guarantee that the generated filename will have any nice properties, such as not requiring quoting
when passed to external commands via os.popen().

If any of suffix, prefix, and dir are not None, they must be the same type. If they are bytes, the
returned name will be bytes instead of str. If you want to force a bytes return value with otherwise
default behavior, pass suffix=b''.

If text is specified, it indicates whether to open the file in binary mode (the default) or text mode. On
some platforms, this makes no difference.

mkstemp() returns a tuple containing an OS-level handle to an open file (as would be returned by
os.open()) and the absolute pathname of that file, in that order.

Changed in version 3.5: suffix, prefix, and dir may now be supplied in bytes in order to obtain a bytes
return value. Prior to this, only str was allowed. suffix and prefix now accept and default to None to
cause an appropriate default value to be used.

tempfile.mkdtemp(suffix=None, prefix=None, dir=None)
Creates a temporary directory in the most secure manner possible. There are no race conditions in the
directory’s creation. The directory is readable, writable, and searchable only by the creating user ID.

374 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

The user of mkdtemp() is responsible for deleting the temporary directory and its contents when done
with it.

The prefix, suffix, and dir arguments are the same as for mkstemp().

mkdtemp() returns the absolute pathname of the new directory.

Changed in version 3.5: suffix, prefix, and dir may now be supplied in bytes in order to obtain a bytes
return value. Prior to this, only str was allowed. suffix and prefix now accept and default to None to
cause an appropriate default value to be used.

tempfile.gettempdir()
Return the name of the directory used for temporary files. This defines the default value for the dir
argument to all functions in this module.

Python searches a standard list of directories to find one which the calling user can create files in. The
list is:

1. The directory named by the TMPDIR environment variable.

2. The directory named by the TEMP environment variable.

3. The directory named by the TMP environment variable.

4. A platform-specific location:

• On Windows, the directories C:\TEMP, C:\TMP, \TEMP, and \TMP, in that order.

• On all other platforms, the directories /tmp, /var/tmp, and /usr/tmp, in that order.

5. As a last resort, the current working directory.

The result of this search is cached, see the description of tempdir below.

tempfile.gettempdirb()
Same as gettempdir() but the return value is in bytes.

New in version 3.5.

tempfile.gettempprefix()
Return the filename prefix used to create temporary files. This does not contain the directory compo-
nent.

tempfile.gettempprefixb()
Same as gettempprefix() but the return value is in bytes.

New in version 3.5.

The module uses a global variable to store the name of the directory used for temporary files returned by
gettempdir(). It can be set directly to override the selection process, but this is discouraged. All functions
in this module take a dir argument which can be used to specify the directory and this is the recommended
approach.

tempfile.tempdir
When set to a value other than None, this variable defines the default value for the dir argument to
the functions defined in this module.

If tempdir is unset or None at any call to any of the above functions except gettempprefix() it is
initialized following the algorithm described in gettempdir().

11.6.1 Examples

Here are some examples of typical usage of the tempfile module:

11.6. tempfile — Generate temporary files and directories 375

The Python Library Reference, Release 3.5.7

>>> import tempfile

create a temporary file and write some data to it
>>> fp = tempfile.TemporaryFile()
>>> fp.write(b'Hello world!')
read data from file
>>> fp.seek(0)
>>> fp.read()
b'Hello world!'
close the file, it will be removed
>>> fp.close()

create a temporary file using a context manager
>>> with tempfile.TemporaryFile() as fp:
... fp.write(b'Hello world!')
... fp.seek(0)
... fp.read()
b'Hello world!'
>>>
file is now closed and removed

create a temporary directory using the context manager
>>> with tempfile.TemporaryDirectory() as tmpdirname:
... print('created temporary directory', tmpdirname)
>>>
directory and contents have been removed

11.6.2 Deprecated functions and variables

A historical way to create temporary files was to first generate a file name with the mktemp() function and
then create a file using this name. Unfortunately this is not secure, because a different process may create a
file with this name in the time between the call to mktemp() and the subsequent attempt to create the file
by the first process. The solution is to combine the two steps and create the file immediately. This approach
is used by mkstemp() and the other functions described above.

tempfile.mktemp(suffix=”, prefix=’tmp’, dir=None)
Deprecated since version 2.3: Use mkstemp() instead.

Return an absolute pathname of a file that did not exist at the time the call is made. The prefix,
suffix, and dir arguments are similar to those of mkstemp(), except that bytes file names, suffix=None
and prefix=None are not supported.

Warning: Use of this function may introduce a security hole in your program. By the time you
get around to doing anything with the file name it returns, someone else may have beaten you
to the punch. mktemp() usage can be replaced easily with NamedTemporaryFile(), passing it the
delete=False parameter:

>>> f = NamedTemporaryFile(delete=False)
>>> f.name
'/tmp/tmptjujjt'
>>> f.write(b"Hello World!\n")
13
>>> f.close()
>>> os.unlink(f.name)
>>> os.path.exists(f.name)
False

376 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

11.7 glob — Unix style pathname pattern expansion

Source code: Lib/glob.py

The glob module finds all the pathnames matching a specified pattern according to the rules used by the
Unix shell, although results are returned in arbitrary order. No tilde expansion is done, but *, ?, and
character ranges expressed with [] will be correctly matched. This is done by using the os.listdir() and
fnmatch.fnmatch() functions in concert, and not by actually invoking a subshell. Note that unlike fnmatch.
fnmatch(), glob treats filenames beginning with a dot (.) as special cases. (For tilde and shell variable
expansion, use os.path.expanduser() and os.path.expandvars().)

For a literal match, wrap the meta-characters in brackets. For example, '[?]' matches the character '?'.

See also:

The pathlib module offers high-level path objects.

glob.glob(pathname, *, recursive=False)
Return a possibly-empty list of path names that match pathname, which must be a string containing
a path specification. pathname can be either absolute (like /usr/src/Python-1.5/Makefile) or relative
(like ../../Tools/*/*.gif), and can contain shell-style wildcards. Broken symlinks are included in the
results (as in the shell).

If recursive is true, the pattern “**” will match any files and zero or more directories and subdirectories.
If the pattern is followed by an os.sep, only directories and subdirectories match.

Note: Using the “**” pattern in large directory trees may consume an inordinate amount of time.

Changed in version 3.5: Support for recursive globs using “**”.

glob.iglob(pathname, recursive=False)
Return an iterator which yields the same values as glob() without actually storing them all simultane-
ously.

glob.escape(pathname)
Escape all special characters ('?', '*' and '['). This is useful if you want to match an arbitrary
literal string that may have special characters in it. Special characters in drive/UNC sharepoints are
not escaped, e.g. on Windows escape('//?/c:/Quo vadis?.txt') returns '//?/c:/Quo vadis[?].txt'.

New in version 3.4.

For example, consider a directory containing the following files: 1.gif, 2.txt, card.gif and a subdirectory
sub which contains only the file 3.txt. glob() will produce the following results. Notice how any leading
components of the path are preserved.

>>> import glob
>>> glob.glob('./[0-9].*')
['./1.gif', './2.txt']
>>> glob.glob('*.gif')
['1.gif', 'card.gif']
>>> glob.glob('?.gif')
['1.gif']

(continues on next page)

11.7. glob — Unix style pathname pattern expansion 377

https://github.com/python/cpython/tree/3.5/Lib/glob.py

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> glob.glob('**/*.txt', recursive=True)
['2.txt', 'sub/3.txt']
>>> glob.glob('./**/', recursive=True)
['./', './sub/']

If the directory contains files starting with . they won’t be matched by default. For example, consider a
directory containing card.gif and .card.gif:

>>> import glob
>>> glob.glob('*.gif')
['card.gif']
>>> glob.glob('.c*')
['.card.gif']

See also:

Module fnmatch Shell-style filename (not path) expansion

11.8 fnmatch — Unix filename pattern matching

Source code: Lib/fnmatch.py

This module provides support for Unix shell-style wildcards, which are not the same as regular expressions
(which are documented in the re module). The special characters used in shell-style wildcards are:

Pattern Meaning
* matches everything
? matches any single character
[seq] matches any character in seq
[!seq] matches any character not in seq

For a literal match, wrap the meta-characters in brackets. For example, '[?]' matches the character '?'.

Note that the filename separator ('/' on Unix) is not special to this module. See module glob for pathname
expansion (glob uses fnmatch() to match pathname segments). Similarly, filenames starting with a period
are not special for this module, and are matched by the * and ? patterns.

fnmatch.fnmatch(filename, pattern)
Test whether the filename string matches the pattern string, returning True or False. Both parameters
are case-normalized using os.path.normcase(). fnmatchcase() can be used to perform a case-sensitive
comparison, regardless of whether that’s standard for the operating system.

This example will print all file names in the current directory with the extension .txt:

import fnmatch
import os

for file in os.listdir('.'):
if fnmatch.fnmatch(file, '*.txt'):

print(file)

378 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.5/Lib/fnmatch.py

The Python Library Reference, Release 3.5.7

fnmatch.fnmatchcase(filename, pattern)
Test whether filename matches pattern, returning True or False; the comparison is case-sensitive and
does not apply os.path.normcase().

fnmatch.filter(names, pattern)
Return the subset of the list of names that match pattern. It is the same as [n for n in names if
fnmatch(n, pattern)], but implemented more efficiently.

fnmatch.translate(pattern)
Return the shell-style pattern converted to a regular expression for using with re.match().

Example:

>>> import fnmatch, re
>>>
>>> regex = fnmatch.translate('*.txt')
>>> regex
'.*\\.txt\\Z(?ms)'
>>> reobj = re.compile(regex)
>>> reobj.match('foobar.txt')
<_sre.SRE_Match object; span=(0, 10), match='foobar.txt'>

See also:

Module glob Unix shell-style path expansion.

11.9 linecache — Random access to text lines

Source code: Lib/linecache.py

The linecache module allows one to get any line from a Python source file, while attempting to optimize
internally, using a cache, the common case where many lines are read from a single file. This is used by the
traceback module to retrieve source lines for inclusion in the formatted traceback.

The tokenize.open() function is used to open files. This function uses tokenize.detect_encoding() to get the
encoding of the file; in the absence of an encoding token, the file encoding defaults to UTF-8.

The linecache module defines the following functions:

linecache.getline(filename, lineno, module_globals=None)
Get line lineno from file named filename. This function will never raise an exception — it will return
'' on errors (the terminating newline character will be included for lines that are found).

If a file named filename is not found, the function will look for it in the module search path, sys.path,
after first checking for a PEP 302 __loader__ in module_globals, in case the module was imported
from a zipfile or other non-filesystem import source.

linecache.clearcache()
Clear the cache. Use this function if you no longer need lines from files previously read using getline().

linecache.checkcache(filename=None)
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you
require the updated version. If filename is omitted, it will check all the entries in the cache.

linecache.lazycache(filename, module_globals)
Capture enough detail about a non-file-based module to permit getting its lines later via getline() even
if module_globals is None in the later call. This avoids doing I/O until a line is actually needed,
without having to carry the module globals around indefinitely.

11.9. linecache — Random access to text lines 379

https://github.com/python/cpython/tree/3.5/Lib/linecache.py
https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.7

New in version 3.5.

Example:

>>> import linecache
>>> linecache.getline(linecache.__file__, 8)
'import sys\n'

11.10 shutil — High-level file operations

Source code: Lib/shutil.py

The shutil module offers a number of high-level operations on files and collections of files. In particular,
functions are provided which support file copying and removal. For operations on individual files, see also
the os module.

Warning: Even the higher-level file copying functions (shutil.copy(), shutil.copy2()) cannot copy all file
metadata.

On POSIX platforms, this means that file owner and group are lost as well as ACLs. On Mac OS, the
resource fork and other metadata are not used. This means that resources will be lost and file type and
creator codes will not be correct. On Windows, file owners, ACLs and alternate data streams are not
copied.

11.10.1 Directory and files operations

shutil.copyfileobj(fsrc, fdst[, length])
Copy the contents of the file-like object fsrc to the file-like object fdst. The integer length, if given, is
the buffer size. In particular, a negative length value means to copy the data without looping over the
source data in chunks; by default the data is read in chunks to avoid uncontrolled memory consumption.
Note that if the current file position of the fsrc object is not 0, only the contents from the current file
position to the end of the file will be copied.

shutil.copyfile(src, dst, *, follow_symlinks=True)
Copy the contents (no metadata) of the file named src to a file named dst and return dst. src and dst
are path names given as strings. dst must be the complete target file name; look at shutil.copy() for a
copy that accepts a target directory path. If src and dst specify the same file, SameFileError is raised.

The destination location must be writable; otherwise, an OSError exception will be raised. If dst
already exists, it will be replaced. Special files such as character or block devices and pipes cannot be
copied with this function.

If follow_symlinks is false and src is a symbolic link, a new symbolic link will be created instead of
copying the file src points to.

Changed in version 3.3: IOError used to be raised instead of OSError. Added follow_symlinks argu-
ment. Now returns dst.

Changed in version 3.4: Raise SameFileError instead of Error. Since the former is a subclass of the
latter, this change is backward compatible.

380 Chapter 11. File and Directory Access

https://github.com/python/cpython/tree/3.5/Lib/shutil.py

The Python Library Reference, Release 3.5.7

exception shutil.SameFileError
This exception is raised if source and destination in copyfile() are the same file.

New in version 3.4.

shutil.copymode(src, dst, *, follow_symlinks=True)
Copy the permission bits from src to dst. The file contents, owner, and group are unaffected. src and
dst are path names given as strings. If follow_symlinks is false, and both src and dst are symbolic
links, copymode() will attempt to modify the mode of dst itself (rather than the file it points to).
This functionality is not available on every platform; please see copystat() for more information. If
copymode() cannot modify symbolic links on the local platform, and it is asked to do so, it will do
nothing and return.

Changed in version 3.3: Added follow_symlinks argument.

shutil.copystat(src, dst, *, follow_symlinks=True)
Copy the permission bits, last access time, last modification time, and flags from src to dst. On Linux,
copystat() also copies the “extended attributes” where possible. The file contents, owner, and group
are unaffected. src and dst are path names given as strings.

If follow_symlinks is false, and src and dst both refer to symbolic links, copystat() will operate on
the symbolic links themselves rather than the files the symbolic links refer to—reading the information
from the src symbolic link, and writing the information to the dst symbolic link.

Note: Not all platforms provide the ability to examine and modify symbolic links. Python itself can
tell you what functionality is locally available.

• If os.chmod in os.supports_follow_symlinks is True, copystat() can modify the permission bits
of a symbolic link.

• If os.utime in os.supports_follow_symlinks is True, copystat() can modify the last access and
modification times of a symbolic link.

• If os.chflags in os.supports_follow_symlinks is True, copystat() can modify the flags of a symbolic
link. (os.chflags is not available on all platforms.)

On platforms where some or all of this functionality is unavailable, when asked to modify a symbolic
link, copystat() will copy everything it can. copystat() never returns failure.

Please see os.supports_follow_symlinks for more information.

Changed in version 3.3: Added follow_symlinks argument and support for Linux extended attributes.

shutil.copy(src, dst, *, follow_symlinks=True)
Copies the file src to the file or directory dst. src and dst should be strings. If dst specifies a directory,
the file will be copied into dst using the base filename from src. Returns the path to the newly created
file.

If follow_symlinks is false, and src is a symbolic link, dst will be created as a symbolic link. If
follow_symlinks is true and src is a symbolic link, dst will be a copy of the file src refers to.

copy() copies the file data and the file’s permission mode (see os.chmod()). Other metadata, like the
file’s creation and modification times, is not preserved. To preserve all file metadata from the original,
use copy2() instead.

Changed in version 3.3: Added follow_symlinks argument. Now returns path to the newly created file.

shutil.copy2(src, dst, *, follow_symlinks=True)
Identical to copy() except that copy2() also attempts to preserve all file metadata.

11.10. shutil — High-level file operations 381

The Python Library Reference, Release 3.5.7

When follow_symlinks is false, and src is a symbolic link, copy2() attempts to copy all metadata
from the src symbolic link to the newly-created dst symbolic link. However, this functionality is not
available on all platforms. On platforms where some or all of this functionality is unavailable, copy2()
will preserve all the metadata it can; copy2() never returns failure.

copy2() uses copystat() to copy the file metadata. Please see copystat() for more information about
platform support for modifying symbolic link metadata.

Changed in version 3.3: Added follow_symlinks argument, try to copy extended file system attributes
too (currently Linux only). Now returns path to the newly created file.

shutil.ignore_patterns(*patterns)
This factory function creates a function that can be used as a callable for copytree()’s ignore argument,
ignoring files and directories that match one of the glob-style patterns provided. See the example below.

shutil.copytree(src, dst, symlinks=False, ignore=None, copy_function=copy2, ig-
nore_dangling_symlinks=False)

Recursively copy an entire directory tree rooted at src, returning the destination directory. The des-
tination directory, named by dst, must not already exist; it will be created as well as missing parent
directories. Permissions and times of directories are copied with copystat(), individual files are copied
using shutil.copy2().

If symlinks is true, symbolic links in the source tree are represented as symbolic links in the new tree
and the metadata of the original links will be copied as far as the platform allows; if false or omitted,
the contents and metadata of the linked files are copied to the new tree.

When symlinks is false, if the file pointed by the symlink doesn’t exist, an exception will be added in
the list of errors raised in an Error exception at the end of the copy process. You can set the optional
ignore_dangling_symlinks flag to true if you want to silence this exception. Notice that this option
has no effect on platforms that don’t support os.symlink().

If ignore is given, it must be a callable that will receive as its arguments the directory being visited by
copytree(), and a list of its contents, as returned by os.listdir(). Since copytree() is called recursively,
the ignore callable will be called once for each directory that is copied. The callable must return a
sequence of directory and file names relative to the current directory (i.e. a subset of the items in its
second argument); these names will then be ignored in the copy process. ignore_patterns() can be
used to create such a callable that ignores names based on glob-style patterns.

If exception(s) occur, an Error is raised with a list of reasons.

If copy_function is given, it must be a callable that will be used to copy each file. It will be called
with the source path and the destination path as arguments. By default, shutil.copy2() is used, but
any function that supports the same signature (like shutil.copy()) can be used.

Changed in version 3.3: Copy metadata when symlinks is false. Now returns dst.

Changed in version 3.2: Added the copy_function argument to be able to provide a custom copy
function. Added the ignore_dangling_symlinks argument to silent dangling symlinks errors when
symlinks is false.

shutil.rmtree(path, ignore_errors=False, onerror=None)
Delete an entire directory tree; path must point to a directory (but not a symbolic link to a directory).
If ignore_errors is true, errors resulting from failed removals will be ignored; if false or omitted, such
errors are handled by calling a handler specified by onerror or, if that is omitted, they raise an exception.

Note: On platforms that support the necessary fd-based functions a symlink attack resistant version
of rmtree() is used by default. On other platforms, the rmtree() implementation is susceptible to a
symlink attack: given proper timing and circumstances, attackers can manipulate symlinks on the

382 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

filesystem to delete files they wouldn’t be able to access otherwise. Applications can use the rmtree.
avoids_symlink_attacks function attribute to determine which case applies.

If onerror is provided, it must be a callable that accepts three parameters: function, path, and excinfo.

The first parameter, function, is the function which raised the exception; it depends on the platform
and implementation. The second parameter, path, will be the path name passed to function. The third
parameter, excinfo, will be the exception information returned by sys.exc_info(). Exceptions raised
by onerror will not be caught.

Changed in version 3.3: Added a symlink attack resistant version that is used automatically if platform
supports fd-based functions.

rmtree.avoids_symlink_attacks
Indicates whether the current platform and implementation provides a symlink attack resistant
version of rmtree(). Currently this is only true for platforms supporting fd-based directory access
functions.

New in version 3.3.

shutil.move(src, dst, copy_function=copy2)
Recursively move a file or directory (src) to another location (dst) and return the destination.

If the destination is an existing directory, then src is moved inside that directory. If the destination
already exists but is not a directory, it may be overwritten depending on os.rename() semantics.

If the destination is on the current filesystem, then os.rename() is used. Otherwise, src is copied to dst
using copy_function and then removed. In case of symlinks, a new symlink pointing to the target of
src will be created in or as dst and src will be removed.

If copy_function is given, it must be a callable that takes two arguments src and dst, and will be
used to copy src to dest if os.rename() cannot be used. If the source is a directory, copytree() is
called, passing it the copy_function(). The default copy_function is copy2(). Using copy() as the
copy_function allows the move to succeed when it is not possible to also copy the metadata, at the
expense of not copying any of the metadata.

Changed in version 3.3: Added explicit symlink handling for foreign filesystems, thus adapting it to
the behavior of GNU’s mv. Now returns dst.

Changed in version 3.5: Added the copy_function keyword argument.

shutil.disk_usage(path)
Return disk usage statistics about the given path as a named tuple with the attributes total, used and
free, which are the amount of total, used and free space, in bytes.

New in version 3.3.

Availability: Unix, Windows.

shutil.chown(path, user=None, group=None)
Change owner user and/or group of the given path.

user can be a system user name or a uid; the same applies to group. At least one argument is required.

See also os.chown(), the underlying function.

Availability: Unix.

New in version 3.3.

shutil.which(cmd, mode=os.F_OK | os.X_OK, path=None)
Return the path to an executable which would be run if the given cmd was called. If no cmd would
be called, return None.

11.10. shutil — High-level file operations 383

The Python Library Reference, Release 3.5.7

mode is a permission mask passed to os.access(), by default determining if the file exists and executable.

When no path is specified, the results of os.environ() are used, returning either the “PATH” value or a
fallback of os.defpath.

On Windows, the current directory is always prepended to the path whether or not you use the
default or provide your own, which is the behavior the command shell uses when finding executables.
Additionally, when finding the cmd in the path, the PATHEXT environment variable is checked. For
example, if you call shutil.which("python"), which() will search PATHEXT to know that it should look
for python.exe within the path directories. For example, on Windows:

>>> shutil.which("python")
'C:\\Python33\\python.EXE'

New in version 3.3.

exception shutil.Error
This exception collects exceptions that are raised during a multi-file operation. For copytree(), the
exception argument is a list of 3-tuples (srcname, dstname, exception).

copytree example

This example is the implementation of the copytree() function, described above, with the docstring omitted.
It demonstrates many of the other functions provided by this module.

def copytree(src, dst, symlinks=False):
names = os.listdir(src)
os.makedirs(dst)
errors = []
for name in names:

srcname = os.path.join(src, name)
dstname = os.path.join(dst, name)
try:

if symlinks and os.path.islink(srcname):
linkto = os.readlink(srcname)
os.symlink(linkto, dstname)

elif os.path.isdir(srcname):
copytree(srcname, dstname, symlinks)

else:
copy2(srcname, dstname)

XXX What about devices, sockets etc.?
except OSError as why:

errors.append((srcname, dstname, str(why)))
catch the Error from the recursive copytree so that we can
continue with other files
except Error as err:

errors.extend(err.args[0])
try:

copystat(src, dst)
except OSError as why:

can't copy file access times on Windows
if why.winerror is None:

errors.extend((src, dst, str(why)))
if errors:

raise Error(errors)

Another example that uses the ignore_patterns() helper:

384 Chapter 11. File and Directory Access

The Python Library Reference, Release 3.5.7

from shutil import copytree, ignore_patterns

copytree(source, destination, ignore=ignore_patterns('*.pyc', 'tmp*'))

This will copy everything except .pyc files and files or directories whose name starts with tmp.

Another example that uses the ignore argument to add a logging call:

from shutil import copytree
import logging

def _logpath(path, names):
logging.info('Working in %s' % path)
return [] # nothing will be ignored

copytree(source, destination, ignore=_logpath)

rmtree example

This example shows how to remove a directory tree on Windows where some of the files have their read-only
bit set. It uses the onerror callback to clear the readonly bit and reattempt the remove. Any subsequent
failure will propagate.

import os, stat
import shutil

def remove_readonly(func, path, _):
"Clear the readonly bit and reattempt the removal"
os.chmod(path, stat.S_IWRITE)
func(path)

shutil.rmtree(directory, onerror=remove_readonly)

11.10.2 Archiving operations

New in version 3.2.

Changed in version 3.5: Added support for the xztar format.

High-level utilities to create and read compressed and archived files are also provided. They rely on the
zipfile and tarfile modules.

shutil.make_archive(base_name, format[, root_dir[, base_dir[, verbose[, dry_run[, owner[, group[,
logger]]]]]]])

Create an archive file (such as zip or tar) and return its name.

base_name is the name of the file to create, including the path, minus any format-specific extension.
format is the archive format: one of “zip” (if the zlib module is available), “tar”, “gztar” (if the zlib
module is available), “bztar” (if the bz2 module is available), or “xztar” (if the lzma module is available).

root_dir is a directory that will be the root directory of the archive; for example, we typically chdir
into root_dir before creating the archive.

base_dir is the directory where we start archiving from; i.e. base_dir will be the common prefix of all
files and directories in the archive.

11.10. shutil — High-level file operations 385

The Python Library Reference, Release 3.5.7

root_dir and base_dir both default to the current directory.

If dry_run is true, no archive is created, but the operations that would be executed are logged to
logger.

owner and group are used when creating a tar archive. By default, uses the current owner and group.

logger must be an object compatible with PEP 282, usually an instance of logging.Logger.

The verbose argument is unused and deprecated.

shutil.get_archive_formats()
Return a list of supported formats for archiving. Each element of the returned sequence is a tuple
(name, description).

By default shutil provides these formats:

• zip: ZIP file (if the zlib module is available).

• tar: uncompressed tar file.

• gztar: gzip’ed tar-file (if the zlib module is available).

• bztar: bzip2’ed tar-file (if the bz2 module is available).

• xztar: xz’ed tar-file (if the lzma module is available).

You can register new formats or provide your own archiver for any existing formats, by using regis-
ter_archive_format().

shutil.register_archive_format(name, function[, extra_args[, description]])
Register an archiver for the format name.

function is the callable that will be used to unpack archives. The callable will receive the base_name
of the file to create, followed by the base_dir (which defaults to os.curdir) to start archiving from.
Further arguments are passed as keyword arguments: owner, group, dry_run and logger (as passed in
make_archive()).

If given, extra_args is a sequence of (name, value) pairs that will be used as extra keywords arguments
when the archiver callable is used.

description is used by get_archive_formats() which returns the list of archivers. Defaults to an empty
string.

shutil.unregister_archive_format(name)
Remove the archive format name from the list of supported formats.

shutil.unpack_archive(filename[, extract_dir[, format]])
Unpack an archive. filename is the full path of the archive.

extract_dir is the name of the target directory where the archive is unpacked. If not provided, the
current working directory is used.

format is the archive format: one of “zip”, “tar”, “gztar”, “bztar”, or “xztar”. Or any other format
registered with register_unpack_format(). If not provided, unpack_archive() will use the archive file
name extension and see if an unpacker was registered for that extension. In case none is found, a
ValueError is raised.

shutil.register_unpack_format(name, extensions, function[, extra_args[, description]])
Registers an unpack format. name is the name of the format and extensions is a list of extensions
corresponding to the format, like .zip for Zip files.

function is the callable that will be used to unpack archives. The callable will receive the path of the
archive, followed by the directory the archive must be extracted to.

386 Chapter 11. File and Directory Access

https://www.python.org/dev/peps/pep-0282

The Python Library Reference, Release 3.5.7

When provided, extra_args is a sequence of (name, value) tuples that will be passed as keywords
arguments to the callable.

description can be provided to describe the format, and will be returned by the get_unpack_formats()
function.

shutil.unregister_unpack_format(name)
Unregister an unpack format. name is the name of the format.

shutil.get_unpack_formats()
Return a list of all registered formats for unpacking. Each element of the returned sequence is a tuple
(name, extensions, description).

By default shutil provides these formats:

• zip: ZIP file (unpacking compressed files works only if the corresponding module is available).

• tar: uncompressed tar file.

• gztar: gzip’ed tar-file (if the zlib module is available).

• bztar: bzip2’ed tar-file (if the bz2 module is available).

• xztar: xz’ed tar-file (if the lzma module is available).

You can register new formats or provide your own unpacker for any existing formats, by using regis-
ter_unpack_format().

Archiving example

In this example, we create a gzip’ed tar-file archive containing all files found in the .ssh directory of the user:

>>> from shutil import make_archive
>>> import os
>>> archive_name = os.path.expanduser(os.path.join('~', 'myarchive'))
>>> root_dir = os.path.expanduser(os.path.join('~', '.ssh'))
>>> make_archive(archive_name, 'gztar', root_dir)
'/Users/tarek/myarchive.tar.gz'

The resulting archive contains:

$ tar -tzvf /Users/tarek/myarchive.tar.gz
drwx------ tarek/staff 0 2010-02-01 16:23:40 ./
-rw-r--r-- tarek/staff 609 2008-06-09 13:26:54 ./authorized_keys
-rwxr-xr-x tarek/staff 65 2008-06-09 13:26:54 ./config
-rwx------ tarek/staff 668 2008-06-09 13:26:54 ./id_dsa
-rwxr-xr-x tarek/staff 609 2008-06-09 13:26:54 ./id_dsa.pub
-rw------- tarek/staff 1675 2008-06-09 13:26:54 ./id_rsa
-rw-r--r-- tarek/staff 397 2008-06-09 13:26:54 ./id_rsa.pub
-rw-r--r-- tarek/staff 37192 2010-02-06 18:23:10 ./known_hosts

11.10.3 Querying the size of the output terminal

shutil.get_terminal_size(fallback=(columns, lines))
Get the size of the terminal window.

For each of the two dimensions, the environment variable, COLUMNS and LINES respectively, is
checked. If the variable is defined and the value is a positive integer, it is used.

11.10. shutil — High-level file operations 387

The Python Library Reference, Release 3.5.7

When COLUMNS or LINES is not defined, which is the common case, the terminal connected to
sys.__stdout__ is queried by invoking os.get_terminal_size().

If the terminal size cannot be successfully queried, either because the system doesn’t support querying,
or because we are not connected to a terminal, the value given in fallback parameter is used. fallback
defaults to (80, 24) which is the default size used by many terminal emulators.

The value returned is a named tuple of type os.terminal_size.

See also: The Single UNIX Specification, Version 2, Other Environment Variables.

New in version 3.3.

11.11 macpath — Mac OS 9 path manipulation functions

Source code: Lib/macpath.py

This module is the Mac OS 9 (and earlier) implementation of the os.path module. It can be used to
manipulate old-style Macintosh pathnames on Mac OS X (or any other platform).

The following functions are available in this module: normcase(), normpath(), isabs(), join(), split(), isdir(),
isfile(), walk(), exists(). For other functions available in os.path dummy counterparts are available.

See also:

Module os Operating system interfaces, including functions to work with files at a lower level than Python
file objects.

Module io Python’s built-in I/O library, including both abstract classes and some concrete classes such as
file I/O.

Built-in function open() The standard way to open files for reading and writing with Python.

388 Chapter 11. File and Directory Access

http://pubs.opengroup.org/onlinepubs/7908799/xbd/envvar.html#tag_002_003
https://github.com/python/cpython/tree/3.5/Lib/macpath.py

CHAPTER

TWELVE

DATA PERSISTENCE

The modules described in this chapter support storing Python data in a persistent form on disk. The pickle
and marshal modules can turn many Python data types into a stream of bytes and then recreate the objects
from the bytes. The various DBM-related modules support a family of hash-based file formats that store a
mapping of strings to other strings.

The list of modules described in this chapter is:

12.1 pickle — Python object serialization

Source code: Lib/pickle.py

The pickle module implements binary protocols for serializing and de-serializing a Python object structure.
“Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and “unpickling”
is the inverse operation, whereby a byte stream (from a binary file or bytes-like object) is converted back
into an object hierarchy. Pickling (and unpickling) is alternatively known as “serialization”, “marshalling,”1

or “flattening”; however, to avoid confusion, the terms used here are “pickling” and “unpickling”.

Warning: The pickle module is not secure against erroneous or maliciously constructed data. Never
unpickle data received from an untrusted or unauthenticated source.

12.1.1 Relationship to other Python modules

Comparison with marshal

Python has a more primitive serialization module called marshal, but in general pickle should always be the
preferred way to serialize Python objects. marshal exists primarily to support Python’s .pyc files.

The pickle module differs from marshal in several significant ways:

• The pickle module keeps track of the objects it has already serialized, so that later references to the
same object won’t be serialized again. marshal doesn’t do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that
contain references to themselves. These are not handled by marshal, and in fact, attempting to marshal
recursive objects will crash your Python interpreter. Object sharing happens when there are multiple
references to the same object in different places in the object hierarchy being serialized. pickle stores

1 Don’t confuse this with the marshal module

389

https://github.com/python/cpython/tree/3.5/Lib/pickle.py

The Python Library Reference, Release 3.5.7

such objects only once, and ensures that all other references point to the master copy. Shared objects
remain shared, which can be very important for mutable objects.

• marshal cannot be used to serialize user-defined classes and their instances. pickle can save and restore
class instances transparently, however the class definition must be importable and live in the same
module as when the object was stored.

• The marshal serialization format is not guaranteed to be portable across Python versions. Because its
primary job in life is to support .pyc files, the Python implementers reserve the right to change the
serialization format in non-backwards compatible ways should the need arise. The pickle serialization
format is guaranteed to be backwards compatible across Python releases.

Comparison with json

There are fundamental differences between the pickle protocols and JSON (JavaScript Object Notation):

• JSON is a text serialization format (it outputs unicode text, although most of the time it is then
encoded to utf-8), while pickle is a binary serialization format;

• JSON is human-readable, while pickle is not;

• JSON is interoperable and widely used outside of the Python ecosystem, while pickle is Python-specific;

• JSON, by default, can only represent a subset of the Python built-in types, and no custom classes;
pickle can represent an extremely large number of Python types (many of them automatically, by clever
usage of Python’s introspection facilities; complex cases can be tackled by implementing specific object
APIs).

See also:

The json module: a standard library module allowing JSON serialization and deserialization.

12.1.2 Data stream format

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions
imposed by external standards such as JSON or XDR (which can’t represent pointer sharing); however it
means that non-Python programs may not be able to reconstruct pickled Python objects.

By default, the pickle data format uses a relatively compact binary representation. If you need optimal size
characteristics, you can efficiently compress pickled data.

The module pickletools contains tools for analyzing data streams generated by pickle. pickletools source
code has extensive comments about opcodes used by pickle protocols.

There are currently 5 different protocols which can be used for pickling. The higher the protocol used, the
more recent the version of Python needed to read the pickle produced.

• Protocol version 0 is the original “human-readable” protocol and is backwards compatible with earlier
versions of Python.

• Protocol version 1 is an old binary format which is also compatible with earlier versions of Python.

• Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style
classes. Refer to PEP 307 for information about improvements brought by protocol 2.

• Protocol version 3 was added in Python 3.0. It has explicit support for bytes objects and cannot be un-
pickled by Python 2.x. This is the default protocol, and the recommended protocol when compatibility
with other Python 3 versions is required.

390 Chapter 12. Data Persistence

http://json.org
https://www.python.org/dev/peps/pep-0307

The Python Library Reference, Release 3.5.7

• Protocol version 4 was added in Python 3.4. It adds support for very large objects, pickling more
kinds of objects, and some data format optimizations. Refer to PEP 3154 for information about
improvements brought by protocol 4.

Note: Serialization is a more primitive notion than persistence; although pickle reads and writes file objects,
it does not handle the issue of naming persistent objects, nor the (even more complicated) issue of concurrent
access to persistent objects. The pickle module can transform a complex object into a byte stream and it
can transform the byte stream into an object with the same internal structure. Perhaps the most obvious
thing to do with these byte streams is to write them onto a file, but it is also conceivable to send them across
a network or store them in a database. The shelve module provides a simple interface to pickle and unpickle
objects on DBM-style database files.

12.1.3 Module Interface

To serialize an object hierarchy, you simply call the dumps() function. Similarly, to de-serialize a data stream,
you call the loads() function. However, if you want more control over serialization and de-serialization, you
can create a Pickler or an Unpickler object, respectively.

The pickle module provides the following constants:

pickle.HIGHEST_PROTOCOL
An integer, the highest protocol version available. This value can be passed as a protocol value to
functions dump() and dumps() as well as the Pickler constructor.

pickle.DEFAULT_PROTOCOL
An integer, the default protocol version used for pickling. May be less than HIGHEST_PROTOCOL.
Currently the default protocol is 3, a new protocol designed for Python 3.

The pickle module provides the following functions to make the pickling process more convenient:

pickle.dump(obj, file, protocol=None, *, fix_imports=True)
Write a pickled representation of obj to the open file object file. This is equivalent to Pickler(file,
protocol).dump(obj).

The optional protocol argument, an integer, tells the pickler to use the given protocol; supported
protocols are 0 to HIGHEST_PROTOCOL. If not specified, the default is DEFAULT_PROTOCOL.
If a negative number is specified, HIGHEST_PROTOCOL is selected.

The file argument must have a write() method that accepts a single bytes argument. It can thus be an
on-disk file opened for binary writing, an io.BytesIO instance, or any other custom object that meets
this interface.

If fix_imports is true and protocol is less than 3, pickle will try to map the new Python 3 names to
the old module names used in Python 2, so that the pickle data stream is readable with Python 2.

pickle.dumps(obj, protocol=None, *, fix_imports=True)
Return the pickled representation of the object as a bytes object, instead of writing it to a file.

Arguments protocol and fix_imports have the same meaning as in dump().

pickle.load(file, *, fix_imports=True, encoding="ASCII", errors="strict")
Read a pickled object representation from the open file object file and return the reconstituted object
hierarchy specified therein. This is equivalent to Unpickler(file).load().

The protocol version of the pickle is detected automatically, so no protocol argument is needed. Bytes
past the pickled object’s representation are ignored.

12.1. pickle — Python object serialization 391

https://www.python.org/dev/peps/pep-3154

The Python Library Reference, Release 3.5.7

The argument file must have two methods, a read() method that takes an integer argument, and a
readline() method that requires no arguments. Both methods should return bytes. Thus file can be
an on-disk file opened for binary reading, an io.BytesIO object, or any other custom object that meets
this interface.

Optional keyword arguments are fix_imports, encoding and errors, which are used to control compat-
ibility support for pickle stream generated by Python 2. If fix_imports is true, pickle will try to map
the old Python 2 names to the new names used in Python 3. The encoding and errors tell pickle how
to decode 8-bit string instances pickled by Python 2; these default to ‘ASCII’ and ‘strict’, respectively.
The encoding can be ‘bytes’ to read these 8-bit string instances as bytes objects.

pickle.loads(bytes_object, *, fix_imports=True, encoding="ASCII", errors="strict")
Read a pickled object hierarchy from a bytes object and return the reconstituted object hierarchy
specified therein.

The protocol version of the pickle is detected automatically, so no protocol argument is needed. Bytes
past the pickled object’s representation are ignored.

Optional keyword arguments are fix_imports, encoding and errors, which are used to control compat-
ibility support for pickle stream generated by Python 2. If fix_imports is true, pickle will try to map
the old Python 2 names to the new names used in Python 3. The encoding and errors tell pickle how
to decode 8-bit string instances pickled by Python 2; these default to ‘ASCII’ and ‘strict’, respectively.
The encoding can be ‘bytes’ to read these 8-bit string instances as bytes objects.

The pickle module defines three exceptions:

exception pickle.PickleError
Common base class for the other pickling exceptions. It inherits Exception.

exception pickle.PicklingError
Error raised when an unpicklable object is encountered by Pickler. It inherits PickleError.

Refer to What can be pickled and unpickled? to learn what kinds of objects can be pickled.

exception pickle.UnpicklingError
Error raised when there is a problem unpickling an object, such as a data corruption or a security
violation. It inherits PickleError.

Note that other exceptions may also be raised during unpickling, including (but not necessarily limited
to) AttributeError, EOFError, ImportError, and IndexError.

The pickle module exports two classes, Pickler and Unpickler:

class pickle.Pickler(file, protocol=None, *, fix_imports=True)
This takes a binary file for writing a pickle data stream.

The optional protocol argument, an integer, tells the pickler to use the given protocol; supported
protocols are 0 to HIGHEST_PROTOCOL. If not specified, the default is DEFAULT_PROTOCOL.
If a negative number is specified, HIGHEST_PROTOCOL is selected.

The file argument must have a write() method that accepts a single bytes argument. It can thus be an
on-disk file opened for binary writing, an io.BytesIO instance, or any other custom object that meets
this interface.

If fix_imports is true and protocol is less than 3, pickle will try to map the new Python 3 names to
the old module names used in Python 2, so that the pickle data stream is readable with Python 2.

dump(obj)
Write a pickled representation of obj to the open file object given in the constructor.

persistent_id(obj)
Do nothing by default. This exists so a subclass can override it.

392 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

If persistent_id() returns None, obj is pickled as usual. Any other value causes Pickler to emit the
returned value as a persistent ID for obj. The meaning of this persistent ID should be defined by
Unpickler.persistent_load(). Note that the value returned by persistent_id() cannot itself have
a persistent ID.

See Persistence of External Objects for details and examples of uses.

dispatch_table
A pickler object’s dispatch table is a registry of reduction functions of the kind which can be
declared using copyreg.pickle(). It is a mapping whose keys are classes and whose values are
reduction functions. A reduction function takes a single argument of the associated class and
should conform to the same interface as a __reduce__() method.

By default, a pickler object will not have a dispatch_table attribute, and it will instead use the
global dispatch table managed by the copyreg module. However, to customize the pickling for a
specific pickler object one can set the dispatch_table attribute to a dict-like object. Alternatively,
if a subclass of Pickler has a dispatch_table attribute then this will be used as the default dispatch
table for instances of that class.

See Dispatch Tables for usage examples.

New in version 3.3.

fast
Deprecated. Enable fast mode if set to a true value. The fast mode disables the usage of memo,
therefore speeding the pickling process by not generating superfluous PUT opcodes. It should not
be used with self-referential objects, doing otherwise will cause Pickler to recurse infinitely.

Use pickletools.optimize() if you need more compact pickles.

class pickle.Unpickler(file, *, fix_imports=True, encoding="ASCII", errors="strict")
This takes a binary file for reading a pickle data stream.

The protocol version of the pickle is detected automatically, so no protocol argument is needed.

The argument file must have two methods, a read() method that takes an integer argument, and a
readline() method that requires no arguments. Both methods should return bytes. Thus file can be an
on-disk file object opened for binary reading, an io.BytesIO object, or any other custom object that
meets this interface.

Optional keyword arguments are fix_imports, encoding and errors, which are used to control compat-
ibility support for pickle stream generated by Python 2. If fix_imports is true, pickle will try to map
the old Python 2 names to the new names used in Python 3. The encoding and errors tell pickle how
to decode 8-bit string instances pickled by Python 2; these default to ‘ASCII’ and ‘strict’, respectively.
The encoding can be ‘bytes’ to read these ß8-bit string instances as bytes objects.

load()
Read a pickled object representation from the open file object given in the constructor, and return
the reconstituted object hierarchy specified therein. Bytes past the pickled object’s representation
are ignored.

persistent_load(pid)
Raise an UnpicklingError by default.

If defined, persistent_load() should return the object specified by the persistent ID pid. If an
invalid persistent ID is encountered, an UnpicklingError should be raised.

See Persistence of External Objects for details and examples of uses.

find_class(module, name)
Import module if necessary and return the object called name from it, where the module and

12.1. pickle — Python object serialization 393

The Python Library Reference, Release 3.5.7

name arguments are str objects. Note, unlike its name suggests, find_class() is also used for
finding functions.

Subclasses may override this to gain control over what type of objects and how they can be loaded,
potentially reducing security risks. Refer to Restricting Globals for details.

12.1.4 What can be pickled and unpickled?

The following types can be pickled:

• None, True, and False

• integers, floating point numbers, complex numbers

• strings, bytes, bytearrays

• tuples, lists, sets, and dictionaries containing only picklable objects

• functions defined at the top level of a module (using def, not lambda)

• built-in functions defined at the top level of a module

• classes that are defined at the top level of a module

• instances of such classes whose __dict__ or the result of calling __getstate__() is picklable (see
section Pickling Class Instances for details).

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an un-
specified number of bytes may have already been written to the underlying file. Trying to pickle a highly
recursive data structure may exceed the maximum recursion depth, a RecursionError will be raised in this
case. You can carefully raise this limit with sys.setrecursionlimit().

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value.2

This means that only the function name is pickled, along with the name of the module the function is defined
in. Neither the function’s code, nor any of its function attributes are pickled. Thus the defining module must
be importable in the unpickling environment, and the module must contain the named object, otherwise an
exception will be raised.3

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment
apply. Note that none of the class’s code or data is pickled, so in the following example the class attribute
attr is not restored in the unpickling environment:

class Foo:
attr = 'A class attribute'

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only
the instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to
the class and still load objects that were created with an earlier version of the class. If you plan to have
long-lived objects that will see many versions of a class, it may be worthwhile to put a version number in
the objects so that suitable conversions can be made by the class’s __setstate__() method.

2 This is why lambda functions cannot be pickled: all lambda functions share the same name: <lambda>.
3 The exception raised will likely be an ImportError or an AttributeError but it could be something else.

394 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

12.1.5 Pickling Class Instances

In this section, we describe the general mechanisms available to you to define, customize, and control how
class instances are pickled and unpickled.

In most cases, no additional code is needed to make instances picklable. By default, pickle will retrieve the
class and the attributes of an instance via introspection. When a class instance is unpickled, its __init__()
method is usually not invoked. The default behaviour first creates an uninitialized instance and then restores
the saved attributes. The following code shows an implementation of this behaviour:

def save(obj):
return (obj.__class__, obj.__dict__)

def load(cls, attributes):
obj = cls.__new__(cls)
obj.__dict__.update(attributes)
return obj

Classes can alter the default behaviour by providing one or several special methods:

object.__getnewargs_ex__()
In protocols 4 and newer, classes that implements the __getnewargs_ex__() method can dictate the
values passed to the __new__() method upon unpickling. The method must return a pair (args,
kwargs) where args is a tuple of positional arguments and kwargs a dictionary of named arguments for
constructing the object. Those will be passed to the __new__() method upon unpickling.

You should implement this method if the __new__() method of your class requires keyword-only
arguments. Otherwise, it is recommended for compatibility to implement __getnewargs__().

object.__getnewargs__()
This method serve a similar purpose as __getnewargs_ex__() but for protocols 2 and newer. It must
return a tuple of arguments args which will be passed to the __new__() method upon unpickling.

In protocols 4 and newer, __getnewargs__() will not be called if __getnewargs_ex__() is defined.

object.__getstate__()
Classes can further influence how their instances are pickled; if the class defines the method __get-
state__(), it is called and the returned object is pickled as the contents for the instance, instead
of the contents of the instance’s dictionary. If the __getstate__() method is absent, the instance’s
__dict__ is pickled as usual.

object.__setstate__(state)
Upon unpickling, if the class defines __setstate__(), it is called with the unpickled state. In that
case, there is no requirement for the state object to be a dictionary. Otherwise, the pickled state must
be a dictionary and its items are assigned to the new instance’s dictionary.

Note: If __getstate__() returns a false value, the __setstate__() method will not be called upon
unpickling.

Refer to the section Handling Stateful Objects for more information about how to use the methods __get-
state__() and __setstate__().

Note: At unpickling time, some methods like __getattr__(), __getattribute__(), or __setattr__()
may be called upon the instance. In case those methods rely on some internal invariant being true, the type
should implement __getnewargs__() or __getnewargs_ex__() to establish such an invariant; otherwise,
neither __new__() nor __init__() will be called.

12.1. pickle — Python object serialization 395

The Python Library Reference, Release 3.5.7

As we shall see, pickle does not use directly the methods described above. In fact, these methods are part
of the copy protocol which implements the __reduce__() special method. The copy protocol provides a
unified interface for retrieving the data necessary for pickling and copying objects.4

Although powerful, implementing __reduce__() directly in your classes is error prone. For this reason,
class designers should use the high-level interface (i.e., __getnewargs_ex__(), __getstate__() and __set-
state__()) whenever possible. We will show, however, cases where using __reduce__() is the only option
or leads to more efficient pickling or both.

object.__reduce__()
The interface is currently defined as follows. The __reduce__() method takes no argument and shall
return either a string or preferably a tuple (the returned object is often referred to as the “reduce
value”).

If a string is returned, the string should be interpreted as the name of a global variable. It should be
the object’s local name relative to its module; the pickle module searches the module namespace to
determine the object’s module. This behaviour is typically useful for singletons.

When a tuple is returned, it must be between two and five items long. Optional items can either be
omitted, or None can be provided as their value. The semantics of each item are in order:

• A callable object that will be called to create the initial version of the object.

• A tuple of arguments for the callable object. An empty tuple must be given if the callable does
not accept any argument.

• Optionally, the object’s state, which will be passed to the object’s __setstate__() method as
previously described. If the object has no such method then, the value must be a dictionary and
it will be added to the object’s __dict__ attribute.

• Optionally, an iterator (and not a sequence) yielding successive items. These items will be ap-
pended to the object either using obj.append(item) or, in batch, using obj.extend(list_of_items).
This is primarily used for list subclasses, but may be used by other classes as long as they have
append() and extend() methods with the appropriate signature. (Whether append() or extend()
is used depends on which pickle protocol version is used as well as the number of items to append,
so both must be supported.)

• Optionally, an iterator (not a sequence) yielding successive key-value pairs. These items will be
stored to the object using obj[key] = value. This is primarily used for dictionary subclasses, but
may be used by other classes as long as they implement __setitem__().

object.__reduce_ex__(protocol)
Alternatively, a __reduce_ex__() method may be defined. The only difference is this method should
take a single integer argument, the protocol version. When defined, pickle will prefer it over the __re-
duce__() method. In addition, __reduce__() automatically becomes a synonym for the extended
version. The main use for this method is to provide backwards-compatible reduce values for older
Python releases.

Persistence of External Objects

For the benefit of object persistence, the pickle module supports the notion of a reference to an object outside
the pickled data stream. Such objects are referenced by a persistent ID, which should be either a string of
alphanumeric characters (for protocol 0)5 or just an arbitrary object (for any newer protocol).

The resolution of such persistent IDs is not defined by the pickle module; it will delegate this resolution to
the user defined methods on the pickler and unpickler, persistent_id() and persistent_load() respectively.

4 The copy module uses this protocol for shallow and deep copying operations.
5 The limitation on alphanumeric characters is due to the fact the persistent IDs, in protocol 0, are delimited by the newline

character. Therefore if any kind of newline characters occurs in persistent IDs, the resulting pickle will become unreadable.

396 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

To pickle objects that have an external persistent id, the pickler must have a custom persistent_id() method
that takes an object as an argument and returns either None or the persistent id for that object. When
None is returned, the pickler simply pickles the object as normal. When a persistent ID string is returned,
the pickler will pickle that object, along with a marker so that the unpickler will recognize it as a persistent
ID.

To unpickle external objects, the unpickler must have a custom persistent_load() method that takes a
persistent ID object and returns the referenced object.

Here is a comprehensive example presenting how persistent ID can be used to pickle external objects by
reference.

Simple example presenting how persistent ID can be used to pickle
external objects by reference.

import pickle
import sqlite3
from collections import namedtuple

Simple class representing a record in our database.
MemoRecord = namedtuple("MemoRecord", "key, task")

class DBPickler(pickle.Pickler):

def persistent_id(self, obj):
Instead of pickling MemoRecord as a regular class instance, we emit a
persistent ID.
if isinstance(obj, MemoRecord):

Here, our persistent ID is simply a tuple, containing a tag and a
key, which refers to a specific record in the database.
return ("MemoRecord", obj.key)

else:
If obj does not have a persistent ID, return None. This means obj
needs to be pickled as usual.
return None

class DBUnpickler(pickle.Unpickler):

def __init__(self, file, connection):
super().__init__(file)
self.connection = connection

def persistent_load(self, pid):
This method is invoked whenever a persistent ID is encountered.
Here, pid is the tuple returned by DBPickler.
cursor = self.connection.cursor()
type_tag, key_id = pid
if type_tag == "MemoRecord":

Fetch the referenced record from the database and return it.
cursor.execute("SELECT * FROM memos WHERE key=?", (str(key_id),))
key, task = cursor.fetchone()
return MemoRecord(key, task)

else:
Always raises an error if you cannot return the correct object.
Otherwise, the unpickler will think None is the object referenced
by the persistent ID.
raise pickle.UnpicklingError("unsupported persistent object")

(continues on next page)

12.1. pickle — Python object serialization 397

The Python Library Reference, Release 3.5.7

(continued from previous page)

def main():
import io
import pprint

Initialize and populate our database.
conn = sqlite3.connect(":memory:")
cursor = conn.cursor()
cursor.execute("CREATE TABLE memos(key INTEGER PRIMARY KEY, task TEXT)")
tasks = (

'give food to fish',
'prepare group meeting',
'fight with a zebra',
)

for task in tasks:
cursor.execute("INSERT INTO memos VALUES(NULL, ?)", (task,))

Fetch the records to be pickled.
cursor.execute("SELECT * FROM memos")
memos = [MemoRecord(key, task) for key, task in cursor]
Save the records using our custom DBPickler.
file = io.BytesIO()
DBPickler(file).dump(memos)

print("Pickled records:")
pprint.pprint(memos)

Update a record, just for good measure.
cursor.execute("UPDATE memos SET task='learn italian' WHERE key=1")

Load the records from the pickle data stream.
file.seek(0)
memos = DBUnpickler(file, conn).load()

print("Unpickled records:")
pprint.pprint(memos)

if __name__ == '__main__':
main()

Dispatch Tables

If one wants to customize pickling of some classes without disturbing any other code which depends on
pickling, then one can create a pickler with a private dispatch table.

The global dispatch table managed by the copyreg module is available as copyreg.dispatch_table. Therefore,
one may choose to use a modified copy of copyreg.dispatch_table as a private dispatch table.

For example

f = io.BytesIO()
p = pickle.Pickler(f)
p.dispatch_table = copyreg.dispatch_table.copy()
p.dispatch_table[SomeClass] = reduce_SomeClass

398 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

creates an instance of pickle.Pickler with a private dispatch table which handles the SomeClass class specially.
Alternatively, the code

class MyPickler(pickle.Pickler):
dispatch_table = copyreg.dispatch_table.copy()
dispatch_table[SomeClass] = reduce_SomeClass

f = io.BytesIO()
p = MyPickler(f)

does the same, but all instances of MyPickler will by default share the same dispatch table. The equivalent
code using the copyreg module is

copyreg.pickle(SomeClass, reduce_SomeClass)
f = io.BytesIO()
p = pickle.Pickler(f)

Handling Stateful Objects

Here’s an example that shows how to modify pickling behavior for a class. The TextReader class opens a text
file, and returns the line number and line contents each time its readline() method is called. If a TextReader
instance is pickled, all attributes except the file object member are saved. When the instance is unpickled,
the file is reopened, and reading resumes from the last location. The __setstate__() and __getstate__()
methods are used to implement this behavior.

class TextReader:
"""Print and number lines in a text file."""

def __init__(self, filename):
self.filename = filename
self.file = open(filename)
self.lineno = 0

def readline(self):
self.lineno += 1
line = self.file.readline()
if not line:

return None
if line.endswith('\n'):

line = line[:-1]
return "%i: %s" % (self.lineno, line)

def __getstate__(self):
Copy the object's state from self.__dict__ which contains
all our instance attributes. Always use the dict.copy()
method to avoid modifying the original state.
state = self.__dict__.copy()
Remove the unpicklable entries.
del state['file']
return state

def __setstate__(self, state):
Restore instance attributes (i.e., filename and lineno).
self.__dict__.update(state)
Restore the previously opened file's state. To do so, we need to
reopen it and read from it until the line count is restored.
file = open(self.filename)

(continues on next page)

12.1. pickle — Python object serialization 399

The Python Library Reference, Release 3.5.7

(continued from previous page)

for _ in range(self.lineno):
file.readline()

Finally, save the file.
self.file = file

A sample usage might be something like this:

>>> reader = TextReader("hello.txt")
>>> reader.readline()
'1: Hello world!'
>>> reader.readline()
'2: I am line number two.'
>>> new_reader = pickle.loads(pickle.dumps(reader))
>>> new_reader.readline()
'3: Goodbye!'

12.1.6 Restricting Globals

By default, unpickling will import any class or function that it finds in the pickle data. For many applications,
this behaviour is unacceptable as it permits the unpickler to import and invoke arbitrary code. Just consider
what this hand-crafted pickle data stream does when loaded:

>>> import pickle
>>> pickle.loads(b"cos\nsystem\n(S'echo hello world'\ntR.")
hello world
0

In this example, the unpickler imports the os.system() function and then apply the string argument “echo
hello world”. Although this example is inoffensive, it is not difficult to imagine one that could damage your
system.

For this reason, you may want to control what gets unpickled by customizing Unpickler.find_class(). Unlike
its name suggests, Unpickler.find_class() is called whenever a global (i.e., a class or a function) is requested.
Thus it is possible to either completely forbid globals or restrict them to a safe subset.

Here is an example of an unpickler allowing only few safe classes from the builtins module to be loaded:

import builtins
import io
import pickle

safe_builtins = {
'range',
'complex',
'set',
'frozenset',
'slice',

}

class RestrictedUnpickler(pickle.Unpickler):

def find_class(self, module, name):
Only allow safe classes from builtins.
if module == "builtins" and name in safe_builtins:

return getattr(builtins, name)

(continues on next page)

400 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

(continued from previous page)

Forbid everything else.
raise pickle.UnpicklingError("global '%s.%s' is forbidden" %

(module, name))

def restricted_loads(s):
"""Helper function analogous to pickle.loads()."""
return RestrictedUnpickler(io.BytesIO(s)).load()

A sample usage of our unpickler working has intended:

>>> restricted_loads(pickle.dumps([1, 2, range(15)]))
[1, 2, range(0, 15)]
>>> restricted_loads(b"cos\nsystem\n(S'echo hello world'\ntR.")
Traceback (most recent call last):
...

pickle.UnpicklingError: global 'os.system' is forbidden
>>> restricted_loads(b'cbuiltins\neval\n'
... b'(S\'getattr(__import__("os"), "system")'
... b'("echo hello world")\'\ntR.')
Traceback (most recent call last):
...

pickle.UnpicklingError: global 'builtins.eval' is forbidden

As our examples shows, you have to be careful with what you allow to be unpickled. Therefore if security is
a concern, you may want to consider alternatives such as the marshalling API in xmlrpc.client or third-party
solutions.

12.1.7 Performance

Recent versions of the pickle protocol (from protocol 2 and upwards) feature efficient binary encodings for
several common features and built-in types. Also, the pickle module has a transparent optimizer written in
C.

12.1.8 Examples

For the simplest code, use the dump() and load() functions.

import pickle

An arbitrary collection of objects supported by pickle.
data = {

'a': [1, 2.0, 3, 4+6j],
'b': ("character string", b"byte string"),
'c': {None, True, False}

}

with open('data.pickle', 'wb') as f:
Pickle the 'data' dictionary using the highest protocol available.
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)

The following example reads the resulting pickled data.

12.1. pickle — Python object serialization 401

The Python Library Reference, Release 3.5.7

import pickle

with open('data.pickle', 'rb') as f:
The protocol version used is detected automatically, so we do not
have to specify it.
data = pickle.load(f)

See also:

Module copyreg Pickle interface constructor registration for extension types.

Module pickletools Tools for working with and analyzing pickled data.

Module shelve Indexed databases of objects; uses pickle.

Module copy Shallow and deep object copying.

Module marshal High-performance serialization of built-in types.

12.2 copyreg — Register pickle support functions

Source code: Lib/copyreg.py

The copyreg module offers a way to define functions used while pickling specific objects. The pickle and
copy modules use those functions when pickling/copying those objects. The module provides configuration
information about object constructors which are not classes. Such constructors may be factory functions or
class instances.

copyreg.constructor(object)
Declares object to be a valid constructor. If object is not callable (and hence not valid as a constructor),
raises TypeError.

copyreg.pickle(type, function, constructor=None)
Declares that function should be used as a “reduction” function for objects of type type. function
should return either a string or a tuple containing two or three elements.

The optional constructor parameter, if provided, is a callable object which can be used to reconstruct
the object when called with the tuple of arguments returned by function at pickling time. TypeError
will be raised if object is a class or constructor is not callable.

See the pickle module for more details on the interface expected of function and constructor. Note
that the dispatch_table attribute of a pickler object or subclass of pickle.Pickler can also be used for
declaring reduction functions.

12.2.1 Example

The example below would like to show how to register a pickle function and how it will be used:

>>> import copyreg, copy, pickle
>>> class C(object):
... def __init__(self, a):
... self.a = a
...
>>> def pickle_c(c):

(continues on next page)

402 Chapter 12. Data Persistence

https://github.com/python/cpython/tree/3.5/Lib/copyreg.py

The Python Library Reference, Release 3.5.7

(continued from previous page)

... print("pickling a C instance...")

... return C, (c.a,)

...
>>> copyreg.pickle(C, pickle_c)
>>> c = C(1)
>>> d = copy.copy(c)
pickling a C instance...
>>> p = pickle.dumps(c)
pickling a C instance...

12.3 shelve — Python object persistence

Source code: Lib/shelve.py

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values
(not the keys!) in a shelf can be essentially arbitrary Python objects — anything that the pickle module
can handle. This includes most class instances, recursive data types, and objects containing lots of shared
sub-objects. The keys are ordinary strings.

shelve.open(filename, flag=’c’, protocol=None, writeback=False)
Open a persistent dictionary. The filename specified is the base filename for the underlying database.
As a side-effect, an extension may be added to the filename and more than one file may be created. By
default, the underlying database file is opened for reading and writing. The optional flag parameter
has the same interpretation as the flag parameter of dbm.open().

By default, version 3 pickles are used to serialize values. The version of the pickle protocol can be
specified with the protocol parameter.

Because of Python semantics, a shelf cannot know when a mutable persistent-dictionary entry is mod-
ified. By default modified objects are written only when assigned to the shelf (see Example). If the
optional writeback parameter is set to True, all entries accessed are also cached in memory, and writ-
ten back on sync() and close(); this can make it handier to mutate mutable entries in the persistent
dictionary, but, if many entries are accessed, it can consume vast amounts of memory for the cache,
and it can make the close operation very slow since all accessed entries are written back (there is no
way to determine which accessed entries are mutable, nor which ones were actually mutated).

Note: Do not rely on the shelf being closed automatically; always call close() explicitly when you
don’t need it any more, or use shelve.open() as a context manager:

with shelve.open('spam') as db:
db['eggs'] = 'eggs'

Warning: Because the shelve module is backed by pickle, it is insecure to load a shelf from an untrusted
source. Like with pickle, loading a shelf can execute arbitrary code.

Shelf objects support all methods supported by dictionaries. This eases the transition from dictionary based
scripts to those requiring persistent storage.

Two additional methods are supported:

12.3. shelve — Python object persistence 403

https://github.com/python/cpython/tree/3.5/Lib/shelve.py

The Python Library Reference, Release 3.5.7

Shelf.sync()
Write back all entries in the cache if the shelf was opened with writeback set to True. Also empty the
cache and synchronize the persistent dictionary on disk, if feasible. This is called automatically when
the shelf is closed with close().

Shelf.close()
Synchronize and close the persistent dict object. Operations on a closed shelf will fail with a ValueError.

See also:

Persistent dictionary recipe with widely supported storage formats and having the speed of native dictionar-
ies.

12.3.1 Restrictions

• The choice of which database package will be used (such as dbm.ndbm or dbm.gnu) depends on which
interface is available. Therefore it is not safe to open the database directly using dbm. The database
is also (unfortunately) subject to the limitations of dbm, if it is used — this means that (the pickled
representation of) the objects stored in the database should be fairly small, and in rare cases key
collisions may cause the database to refuse updates.

• The shelve module does not support concurrent read/write access to shelved objects. (Multiple simul-
taneous read accesses are safe.) When a program has a shelf open for writing, no other program should
have it open for reading or writing. Unix file locking can be used to solve this, but this differs across
Unix versions and requires knowledge about the database implementation used.

class shelve.Shelf(dict, protocol=None, writeback=False, keyencoding=’utf-8’)
A subclass of collections.abc.MutableMapping which stores pickled values in the dict object.

By default, version 3 pickles are used to serialize values. The version of the pickle protocol can be
specified with the protocol parameter. See the pickle documentation for a discussion of the pickle
protocols.

If the writeback parameter is True, the object will hold a cache of all entries accessed and write them
back to the dict at sync and close times. This allows natural operations on mutable entries, but can
consume much more memory and make sync and close take a long time.

The keyencoding parameter is the encoding used to encode keys before they are used with the under-
lying dict.

A Shelf object can also be used as a context manager, in which case it will be automatically closed
when the with block ends.

Changed in version 3.2: Added the keyencoding parameter; previously, keys were always encoded in
UTF-8.

Changed in version 3.4: Added context manager support.

class shelve.BsdDbShelf(dict, protocol=None, writeback=False, keyencoding=’utf-8’)
A subclass of Shelf which exposes first(), next(), previous(), last() and set_location() which are avail-
able in the third-party bsddb module from pybsddb but not in other database modules. The dict
object passed to the constructor must support those methods. This is generally accomplished by call-
ing one of bsddb.hashopen(), bsddb.btopen() or bsddb.rnopen(). The optional protocol, writeback,
and keyencoding parameters have the same interpretation as for the Shelf class.

class shelve.DbfilenameShelf(filename, flag=’c’, protocol=None, writeback=False)
A subclass of Shelf which accepts a filename instead of a dict-like object. The underlying file will be
opened using dbm.open(). By default, the file will be created and opened for both read and write. The

404 Chapter 12. Data Persistence

https://code.activestate.com/recipes/576642/
https://www.jcea.es/programacion/pybsddb.htm

The Python Library Reference, Release 3.5.7

optional flag parameter has the same interpretation as for the open() function. The optional protocol
and writeback parameters have the same interpretation as for the Shelf class.

12.3.2 Example

To summarize the interface (key is a string, data is an arbitrary object):

import shelve

d = shelve.open(filename) # open -- file may get suffix added by low-level
library

d[key] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve a COPY of data at key (raise KeyError
if no such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = key in d # true if the key exists
klist = list(d.keys()) # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:
d['xx'] = [0, 1, 2] # this works as expected, but...
d['xx'].append(3) # *this doesn't!* -- d['xx'] is STILL [0, 1, 2]!

having opened d without writeback=True, you need to code carefully:
temp = d['xx'] # extracts the copy
temp.append(5) # mutates the copy
d['xx'] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code
d['xx'].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close() # close it

See also:

Module dbm Generic interface to dbm-style databases.

Module pickle Object serialization used by shelve.

12.4 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is
specific to Python, but independent of machine architecture issues (e.g., you can write a Python value to a
file on a PC, transport the file to a Sun, and read it back there). Details of the format are undocumented
on purpose; it may change between Python versions (although it rarely does).1

1 The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use
the term “marshalling” for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert
some data from internal to external form (in an RPC buffer for instance) and “unmarshalling” for the reverse process.

12.4. marshal — Internal Python object serialization 405

The Python Library Reference, Release 3.5.7

This is not a general “persistence” module. For general persistence and transfer of Python objects through
RPC calls, see the modules pickle and shelve. The marshal module exists mainly to support reading and
writing the “pseudo-compiled” code for Python modules of .pyc files. Therefore, the Python maintainers
reserve the right to modify the marshal format in backward incompatible ways should the need arise. If
you’re serializing and de-serializing Python objects, use the pickle module instead – the performance is
comparable, version independence is guaranteed, and pickle supports a substantially wider range of objects
than marshal.

Warning: The marshal module is not intended to be secure against erroneous or maliciously constructed
data. Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a
particular invocation of Python can be written and read by this module. The following types are supported:
booleans, integers, floating point numbers, complex numbers, strings, bytes, bytearrays, tuples, lists, sets,
frozensets, dictionaries, and code objects, where it should be understood that tuples, lists, sets, frozensets
and dictionaries are only supported as long as the values contained therein are themselves supported. The
singletons None, Ellipsis and StopIteration can also be marshalled and unmarshalled. For format version
lower than 3, recursive lists, sets and dictionaries cannot be written (see below).

There are functions that read/write files as well as functions operating on bytes-like objects.

The module defines these functions:

marshal.dump(value, file[, version])
Write the value on the open file. The value must be a supported type. The file must be a writeable
binary file.

If the value has (or contains an object that has) an unsupported type, a ValueError exception is raised
— but garbage data will also be written to the file. The object will not be properly read back by load().

The version argument indicates the data format that dump should use (see below).

marshal.load(file)
Read one value from the open file and return it. If no valid value is read (e.g. because the data has
a different Python version’s incompatible marshal format), raise EOFError, ValueError or TypeError.
The file must be a readable binary file.

Note: If an object containing an unsupported type was marshalled with dump(), load() will substitute
None for the unmarshallable type.

marshal.dumps(value[, version])
Return the bytes object that would be written to a file by dump(value, file). The value must be
a supported type. Raise a ValueError exception if value has (or contains an object that has) an
unsupported type.

The version argument indicates the data format that dumps should use (see below).

marshal.loads(bytes)
Convert the bytes-like object to a value. If no valid value is found, raise EOFError, ValueError or
TypeError. Extra bytes in the input are ignored.

In addition, the following constants are defined:

marshal.version
Indicates the format that the module uses. Version 0 is the historical format, version 1 shares interned
strings and version 2 uses a binary format for floating point numbers. Version 3 adds support for object
instancing and recursion. The current version is 4.

406 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

12.5 dbm — Interfaces to Unix “databases”

Source code: Lib/dbm/__init__.py

dbm is a generic interface to variants of the DBM database — dbm.gnu or dbm.ndbm. If none of these
modules is installed, the slow-but-simple implementation in module dbm.dumb will be used. There is a third
party interface to the Oracle Berkeley DB.

exception dbm.error
A tuple containing the exceptions that can be raised by each of the supported modules, with a unique
exception also named dbm.error as the first item — the latter is used when dbm.error is raised.

dbm.whichdb(filename)
This function attempts to guess which of the several simple database modules available — dbm.gnu,
dbm.ndbm or dbm.dumb — should be used to open a given file.

Returns one of the following values: None if the file can’t be opened because it’s unreadable or doesn’t
exist; the empty string ('') if the file’s format can’t be guessed; or a string containing the required
module name, such as 'dbm.ndbm' or 'dbm.gnu'.

dbm.open(file, flag=’r’, mode=0o666)
Open the database file file and return a corresponding object.

If the database file already exists, the whichdb() function is used to determine its type and the ap-
propriate module is used; if it does not exist, the first module listed above that can be imported is
used.

The optional flag argument can be:

Value Meaning
'r' Open existing database for reading only (default)
'w' Open existing database for reading and writing
'c' Open database for reading and writing, creating it if it doesn’t exist
'n' Always create a new, empty database, open for reading and writing

The optional mode argument is the Unix mode of the file, used only when the database has to be
created. It defaults to octal 0o666 (and will be modified by the prevailing umask).

The object returned by open() supports the same basic functionality as dictionaries; keys and their cor-
responding values can be stored, retrieved, and deleted, and the in operator and the keys() method are
available, as well as get() and setdefault().

Changed in version 3.2: get() and setdefault() are now available in all database modules.

Key and values are always stored as bytes. This means that when strings are used they are implicitly
converted to the default encoding before being stored.

These objects also support being used in a with statement, which will automatically close them when done.

Changed in version 3.4: Added native support for the context management protocol to the objects returned
by open().

The following example records some hostnames and a corresponding title, and then prints out the contents
of the database:

12.5. dbm — Interfaces to Unix “databases” 407

https://github.com/python/cpython/tree/3.5/Lib/dbm/__init__.py
https://www.jcea.es/programacion/pybsddb.htm
https://www.jcea.es/programacion/pybsddb.htm

The Python Library Reference, Release 3.5.7

import dbm

Open database, creating it if necessary.
with dbm.open('cache', 'c') as db:

Record some values
db[b'hello'] = b'there'
db['www.python.org'] = 'Python Website'
db['www.cnn.com'] = 'Cable News Network'

Note that the keys are considered bytes now.
assert db[b'www.python.org'] == b'Python Website'
Notice how the value is now in bytes.
assert db['www.cnn.com'] == b'Cable News Network'

Often-used methods of the dict interface work too.
print(db.get('python.org', b'not present'))

Storing a non-string key or value will raise an exception (most
likely a TypeError).
db['www.yahoo.com'] = 4

db is automatically closed when leaving the with statement.

See also:

Module shelve Persistence module which stores non-string data.

The individual submodules are described in the following sections.

12.5.1 dbm.gnu — GNU’s reinterpretation of dbm

Source code: Lib/dbm/gnu.py

This module is quite similar to the dbm module, but uses the GNU library gdbm instead to provide some
additional functionality. Please note that the file formats created by dbm.gnu and dbm.ndbm are incompat-
ible.

The dbm.gnu module provides an interface to the GNU DBM library. dbm.gnu.gdbm objects behave like
mappings (dictionaries), except that keys and values are always converted to bytes before storing. Printing
a gdbm object doesn’t print the keys and values, and the items() and values() methods are not supported.

exception dbm.gnu.error
Raised on dbm.gnu-specific errors, such as I/O errors. KeyError is raised for general mapping errors
like specifying an incorrect key.

dbm.gnu.open(filename[, flag[, mode]])
Open a gdbm database and return a gdbm object. The filename argument is the name of the database
file.

The optional flag argument can be:

408 Chapter 12. Data Persistence

https://github.com/python/cpython/tree/3.5/Lib/dbm/gnu.py

The Python Library Reference, Release 3.5.7

Value Meaning
'r' Open existing database for reading only (default)
'w' Open existing database for reading and writing
'c' Open database for reading and writing, creating it if it doesn’t exist
'n' Always create a new, empty database, open for reading and writing

The following additional characters may be appended to the flag to control how the database is opened:

Value Meaning
'f' Open the database in fast mode. Writes to the database will not be synchronized.
's' Synchronized mode. This will cause changes to the database to be immediately written to

the file.
'u' Do not lock database.

Not all flags are valid for all versions of gdbm. The module constant open_flags is a string of supported
flag characters. The exception error is raised if an invalid flag is specified.

The optional mode argument is the Unix mode of the file, used only when the database has to be
created. It defaults to octal 0o666.

In addition to the dictionary-like methods, gdbm objects have the following methods:

gdbm.firstkey()
It’s possible to loop over every key in the database using this method and the nextkey() method.
The traversal is ordered by gdbm’s internal hash values, and won’t be sorted by the key values.
This method returns the starting key.

gdbm.nextkey(key)
Returns the key that follows key in the traversal. The following code prints every key in the
database db, without having to create a list in memory that contains them all:

k = db.firstkey()
while k != None:

print(k)
k = db.nextkey(k)

gdbm.reorganize()
If you have carried out a lot of deletions and would like to shrink the space used by the gdbm file,
this routine will reorganize the database. gdbm objects will not shorten the length of a database
file except by using this reorganization; otherwise, deleted file space will be kept and reused as
new (key, value) pairs are added.

gdbm.sync()
When the database has been opened in fast mode, this method forces any unwritten data to be
written to the disk.

gdbm.close()
Close the gdbm database.

12.5.2 dbm.ndbm — Interface based on ndbm

Source code: Lib/dbm/ndbm.py

12.5. dbm — Interfaces to Unix “databases” 409

https://github.com/python/cpython/tree/3.5/Lib/dbm/ndbm.py

The Python Library Reference, Release 3.5.7

The dbm.ndbm module provides an interface to the Unix “(n)dbm” library. Dbm objects behave like map-
pings (dictionaries), except that keys and values are always stored as bytes. Printing a dbm object doesn’t
print the keys and values, and the items() and values() methods are not supported.

This module can be used with the “classic” ndbm interface or the GNU GDBM compatibility interface. On
Unix, the configure script will attempt to locate the appropriate header file to simplify building this module.

exception dbm.ndbm.error
Raised on dbm.ndbm-specific errors, such as I/O errors. KeyError is raised for general mapping errors
like specifying an incorrect key.

dbm.ndbm.library
Name of the ndbm implementation library used.

dbm.ndbm.open(filename[, flag[, mode]])
Open a dbm database and return a ndbm object. The filename argument is the name of the database
file (without the .dir or .pag extensions).

The optional flag argument must be one of these values:

Value Meaning
'r' Open existing database for reading only (default)
'w' Open existing database for reading and writing
'c' Open database for reading and writing, creating it if it doesn’t exist
'n' Always create a new, empty database, open for reading and writing

The optional mode argument is the Unix mode of the file, used only when the database has to be
created. It defaults to octal 0o666 (and will be modified by the prevailing umask).

In addition to the dictionary-like methods, ndbm objects provide the following method:

ndbm.close()
Close the ndbm database.

12.5.3 dbm.dumb — Portable DBM implementation

Source code: Lib/dbm/dumb.py

Note: The dbm.dumb module is intended as a last resort fallback for the dbm module when a more robust
module is not available. The dbm.dumb module is not written for speed and is not nearly as heavily used
as the other database modules.

The dbm.dumb module provides a persistent dictionary-like interface which is written entirely in Python.
Unlike other modules such as dbm.gnu no external library is required. As with other persistent mappings,
the keys and values are always stored as bytes.

The module defines the following:

exception dbm.dumb.error
Raised on dbm.dumb-specific errors, such as I/O errors. KeyError is raised for general mapping errors
like specifying an incorrect key.

410 Chapter 12. Data Persistence

https://github.com/python/cpython/tree/3.5/Lib/dbm/dumb.py

The Python Library Reference, Release 3.5.7

dbm.dumb.open(filename[, flag[, mode]])
Open a dumbdbm database and return a dumbdbm object. The filename argument is the basename of
the database file (without any specific extensions). When a dumbdbm database is created, files with
.dat and .dir extensions are created.

The optional flag argument supports only the semantics of 'c' and 'n' values. Other values will
default to database being always opened for update, and will be created if it does not exist.

The optional mode argument is the Unix mode of the file, used only when the database has to be
created. It defaults to octal 0o666 (and will be modified by the prevailing umask).

Changed in version 3.5: open() always creates a new database when the flag has the value 'n'.

In addition to the methods provided by the collections.abc.MutableMapping class, dumbdbm objects
provide the following methods:

dumbdbm.sync()
Synchronize the on-disk directory and data files. This method is called by the Shelve.sync()
method.

dumbdbm.close()
Close the dumbdbm database.

12.6 sqlite3 — DB-API 2.0 interface for SQLite databases

Source code: Lib/sqlite3/

SQLite is a C library that provides a lightweight disk-based database that doesn’t require a separate server
process and allows accessing the database using a nonstandard variant of the SQL query language. Some
applications can use SQLite for internal data storage. It’s also possible to prototype an application using
SQLite and then port the code to a larger database such as PostgreSQL or Oracle.

The sqlite3 module was written by Gerhard Häring. It provides a SQL interface compliant with the DB-API
2.0 specification described by PEP 249.

To use the module, you must first create a Connection object that represents the database. Here the data
will be stored in the example.db file:

import sqlite3
conn = sqlite3.connect('example.db')

You can also supply the special name :memory: to create a database in RAM.

Once you have a Connection, you can create a Cursor object and call its execute() method to perform SQL
commands:

c = conn.cursor()

Create table
c.execute('''CREATE TABLE stocks

(date text, trans text, symbol text, qty real, price real)''')

Insert a row of data
c.execute("INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14)")

Save (commit) the changes

(continues on next page)

12.6. sqlite3 — DB-API 2.0 interface for SQLite databases 411

https://github.com/python/cpython/tree/3.5/Lib/sqlite3/
https://www.python.org/dev/peps/pep-0249

The Python Library Reference, Release 3.5.7

(continued from previous page)

conn.commit()

We can also close the connection if we are done with it.
Just be sure any changes have been committed or they will be lost.
conn.close()

The data you’ve saved is persistent and is available in subsequent sessions:

import sqlite3
conn = sqlite3.connect('example.db')
c = conn.cursor()

Usually your SQL operations will need to use values from Python variables. You shouldn’t assemble your
query using Python’s string operations because doing so is insecure; it makes your program vulnerable to an
SQL injection attack (see https://xkcd.com/327/ for humorous example of what can go wrong).

Instead, use the DB-API’s parameter substitution. Put ? as a placeholder wherever you want to use a value,
and then provide a tuple of values as the second argument to the cursor’s execute() method. (Other database
modules may use a different placeholder, such as %s or :1.) For example:

Never do this -- insecure!
symbol = 'RHAT'
c.execute("SELECT * FROM stocks WHERE symbol = '%s'" % symbol)

Do this instead
t = ('RHAT',)
c.execute('SELECT * FROM stocks WHERE symbol=?', t)
print(c.fetchone())

Larger example that inserts many records at a time
purchases = [('2006-03-28', 'BUY', 'IBM', 1000, 45.00),

('2006-04-05', 'BUY', 'MSFT', 1000, 72.00),
('2006-04-06', 'SELL', 'IBM', 500, 53.00),
]

c.executemany('INSERT INTO stocks VALUES (?,?,?,?,?)', purchases)

To retrieve data after executing a SELECT statement, you can either treat the cursor as an iterator, call the
cursor’s fetchone() method to retrieve a single matching row, or call fetchall() to get a list of the matching
rows.

This example uses the iterator form:

>>> for row in c.execute('SELECT * FROM stocks ORDER BY price'):
print(row)

('2006-01-05', 'BUY', 'RHAT', 100, 35.14)
('2006-03-28', 'BUY', 'IBM', 1000, 45.0)
('2006-04-06', 'SELL', 'IBM', 500, 53.0)
('2006-04-05', 'BUY', 'MSFT', 1000, 72.0)

See also:

https://github.com/ghaering/pysqlite The pysqlite web page – sqlite3 is developed externally under the
name “pysqlite”.

https://www.sqlite.org The SQLite web page; the documentation describes the syntax and the available
data types for the supported SQL dialect.

412 Chapter 12. Data Persistence

https://xkcd.com/327/
https://github.com/ghaering/pysqlite
https://www.sqlite.org

The Python Library Reference, Release 3.5.7

http://www.w3schools.com/sql/ Tutorial, reference and examples for learning SQL syntax.

PEP 249 - Database API Specification 2.0 PEP written by Marc-André Lemburg.

12.6.1 Module functions and constants

sqlite3.version
The version number of this module, as a string. This is not the version of the SQLite library.

sqlite3.version_info
The version number of this module, as a tuple of integers. This is not the version of the SQLite library.

sqlite3.sqlite_version
The version number of the run-time SQLite library, as a string.

sqlite3.sqlite_version_info
The version number of the run-time SQLite library, as a tuple of integers.

sqlite3.PARSE_DECLTYPES
This constant is meant to be used with the detect_types parameter of the connect() function.

Setting it makes the sqlite3 module parse the declared type for each column it returns. It will parse
out the first word of the declared type, i. e. for “integer primary key”, it will parse out “integer”, or
for “number(10)” it will parse out “number”. Then for that column, it will look into the converters
dictionary and use the converter function registered for that type there.

sqlite3.PARSE_COLNAMES
This constant is meant to be used with the detect_types parameter of the connect() function.

Setting this makes the SQLite interface parse the column name for each column it returns. It will look
for a string formed [mytype] in there, and then decide that ‘mytype’ is the type of the column. It will
try to find an entry of ‘mytype’ in the converters dictionary and then use the converter function found
there to return the value. The column name found in Cursor.description is only the first word of the
column name, i. e. if you use something like 'as "x [datetime]"' in your SQL, then we will parse out
everything until the first blank for the column name: the column name would simply be “x”.

sqlite3.connect(database[, timeout, detect_types, isolation_level, check_same_thread, factory,

cached_statements, uri])
Opens a connection to the SQLite database file database. You can use ":memory:" to open a database
connection to a database that resides in RAM instead of on disk.

When a database is accessed by multiple connections, and one of the processes modifies the database,
the SQLite database is locked until that transaction is committed. The timeout parameter specifies
how long the connection should wait for the lock to go away until raising an exception. The default
for the timeout parameter is 5.0 (five seconds).

For the isolation_level parameter, please see the isolation_level property of Connection objects.

SQLite natively supports only the types TEXT, INTEGER, REAL, BLOB and NULL. If you want to
use other types you must add support for them yourself. The detect_types parameter and the using
custom converters registered with the module-level register_converter() function allow you to easily
do that.

detect_types defaults to 0 (i. e. off, no type detection), you can set it to any combination of
PARSE_DECLTYPES and PARSE_COLNAMES to turn type detection on.

By default, check_same_thread is True and only the creating thread may use the connection. If set
False, the returned connection may be shared across multiple threads. When using multiple threads
with the same connection writing operations should be serialized by the user to avoid data corruption.

12.6. sqlite3 — DB-API 2.0 interface for SQLite databases 413

http://www.w3schools.com/sql/
https://www.python.org/dev/peps/pep-0249

The Python Library Reference, Release 3.5.7

By default, the sqlite3 module uses its Connection class for the connect call. You can, however, subclass
the Connection class and make connect() use your class instead by providing your class for the factory
parameter.

Consult the section SQLite and Python types of this manual for details.

The sqlite3 module internally uses a statement cache to avoid SQL parsing overhead. If you want
to explicitly set the number of statements that are cached for the connection, you can set the
cached_statements parameter. The currently implemented default is to cache 100 statements.

If uri is true, database is interpreted as a URI. This allows you to specify options. For example, to
open a database in read-only mode you can use:

db = sqlite3.connect('file:path/to/database?mode=ro', uri=True)

More information about this feature, including a list of recognized options, can be found in the SQLite
URI documentation.

Changed in version 3.4: Added the uri parameter.

sqlite3.register_converter(typename, callable)
Registers a callable to convert a bytestring from the database into a custom Python type. The callable
will be invoked for all database values that are of the type typename. Confer the parameter de-
tect_types of the connect() function for how the type detection works. Note that the case of typename
and the name of the type in your query must match!

sqlite3.register_adapter(type, callable)
Registers a callable to convert the custom Python type type into one of SQLite’s supported types. The
callable callable accepts as single parameter the Python value, and must return a value of the following
types: int, float, str or bytes.

sqlite3.complete_statement(sql)
Returns True if the string sql contains one or more complete SQL statements terminated by semicolons.
It does not verify that the SQL is syntactically correct, only that there are no unclosed string literals
and the statement is terminated by a semicolon.

This can be used to build a shell for SQLite, as in the following example:

A minimal SQLite shell for experiments

import sqlite3

con = sqlite3.connect(":memory:")
con.isolation_level = None
cur = con.cursor()

buffer = ""

print("Enter your SQL commands to execute in sqlite3.")
print("Enter a blank line to exit.")

while True:
line = input()
if line == "":

break
buffer += line
if sqlite3.complete_statement(buffer):

try:
buffer = buffer.strip()

(continues on next page)

414 Chapter 12. Data Persistence

https://www.sqlite.org/uri.html
https://www.sqlite.org/uri.html

The Python Library Reference, Release 3.5.7

(continued from previous page)

cur.execute(buffer)

if buffer.lstrip().upper().startswith("SELECT"):
print(cur.fetchall())

except sqlite3.Error as e:
print("An error occurred:", e.args[0])

buffer = ""

con.close()

sqlite3.enable_callback_tracebacks(flag)
By default you will not get any tracebacks in user-defined functions, aggregates, converters, authorizer
callbacks etc. If you want to debug them, you can call this function with flag set to True. Afterwards,
you will get tracebacks from callbacks on sys.stderr. Use False to disable the feature again.

12.6.2 Connection Objects

class sqlite3.Connection
A SQLite database connection has the following attributes and methods:

isolation_level
Get or set the current isolation level. None for autocommit mode or one of “DEFERRED”, “IMME-
DIATE” or “EXCLUSIVE”. See section Controlling Transactions for a more detailed explanation.

in_transaction
True if a transaction is active (there are uncommitted changes), False otherwise. Read-only
attribute.

New in version 3.2.

cursor(factory=Cursor)
The cursor method accepts a single optional parameter factory. If supplied, this must be a callable
returning an instance of Cursor or its subclasses.

commit()
This method commits the current transaction. If you don’t call this method, anything you did
since the last call to commit() is not visible from other database connections. If you wonder why
you don’t see the data you’ve written to the database, please check you didn’t forget to call this
method.

rollback()
This method rolls back any changes to the database since the last call to commit().

close()
This closes the database connection. Note that this does not automatically call commit(). If you
just close your database connection without calling commit() first, your changes will be lost!

execute(sql[, parameters])
This is a nonstandard shortcut that creates a cursor object by calling the cursor() method, calls
the cursor’s execute() method with the parameters given, and returns the cursor.

executemany(sql[, parameters])
This is a nonstandard shortcut that creates a cursor object by calling the cursor() method, calls
the cursor’s executemany() method with the parameters given, and returns the cursor.

12.6. sqlite3 — DB-API 2.0 interface for SQLite databases 415

The Python Library Reference, Release 3.5.7

executescript(sql_script)
This is a nonstandard shortcut that creates a cursor object by calling the cursor() method, calls
the cursor’s executescript() method with the given sql_script, and returns the cursor.

create_function(name, num_params, func)
Creates a user-defined function that you can later use from within SQL statements under the func-
tion name name. num_params is the number of parameters the function accepts (if num_params
is -1, the function may take any number of arguments), and func is a Python callable that is called
as the SQL function.

The function can return any of the types supported by SQLite: bytes, str, int, float and None.

Example:

import sqlite3
import hashlib

def md5sum(t):
return hashlib.md5(t).hexdigest()

con = sqlite3.connect(":memory:")
con.create_function("md5", 1, md5sum)
cur = con.cursor()
cur.execute("select md5(?)", (b"foo",))
print(cur.fetchone()[0])

create_aggregate(name, num_params, aggregate_class)
Creates a user-defined aggregate function.

The aggregate class must implement a step method, which accepts the number of parameters
num_params (if num_params is -1, the function may take any number of arguments), and a
finalize method which will return the final result of the aggregate.

The finalize method can return any of the types supported by SQLite: bytes, str, int, float and
None.

Example:

import sqlite3

class MySum:
def __init__(self):

self.count = 0

def step(self, value):
self.count += value

def finalize(self):
return self.count

con = sqlite3.connect(":memory:")
con.create_aggregate("mysum", 1, MySum)
cur = con.cursor()
cur.execute("create table test(i)")
cur.execute("insert into test(i) values (1)")
cur.execute("insert into test(i) values (2)")
cur.execute("select mysum(i) from test")
print(cur.fetchone()[0])

create_collation(name, callable)

416 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

Creates a collation with the specified name and callable. The callable will be passed two string
arguments. It should return -1 if the first is ordered lower than the second, 0 if they are ordered
equal and 1 if the first is ordered higher than the second. Note that this controls sorting (ORDER
BY in SQL) so your comparisons don’t affect other SQL operations.

Note that the callable will get its parameters as Python bytestrings, which will normally be
encoded in UTF-8.

The following example shows a custom collation that sorts “the wrong way”:

import sqlite3

def collate_reverse(string1, string2):
if string1 == string2:

return 0
elif string1 < string2:

return 1
else:

return -1

con = sqlite3.connect(":memory:")
con.create_collation("reverse", collate_reverse)

cur = con.cursor()
cur.execute("create table test(x)")
cur.executemany("insert into test(x) values (?)", [("a",), ("b",)])
cur.execute("select x from test order by x collate reverse")
for row in cur:

print(row)
con.close()

To remove a collation, call create_collation with None as callable:

con.create_collation("reverse", None)

interrupt()
You can call this method from a different thread to abort any queries that might be executing on
the connection. The query will then abort and the caller will get an exception.

set_authorizer(authorizer_callback)
This routine registers a callback. The callback is invoked for each attempt to access a col-
umn of a table in the database. The callback should return SQLITE_OK if access is al-
lowed, SQLITE_DENY if the entire SQL statement should be aborted with an error and
SQLITE_IGNORE if the column should be treated as a NULL value. These constants are
available in the sqlite3 module.

The first argument to the callback signifies what kind of operation is to be authorized. The
second and third argument will be arguments or None depending on the first argument. The 4th
argument is the name of the database (“main”, “temp”, etc.) if applicable. The 5th argument is
the name of the inner-most trigger or view that is responsible for the access attempt or None if
this access attempt is directly from input SQL code.

Please consult the SQLite documentation about the possible values for the first argument and the
meaning of the second and third argument depending on the first one. All necessary constants
are available in the sqlite3 module.

set_progress_handler(handler, n)
This routine registers a callback. The callback is invoked for every n instructions of the SQLite vir-
tual machine. This is useful if you want to get called from SQLite during long-running operations,

12.6. sqlite3 — DB-API 2.0 interface for SQLite databases 417

The Python Library Reference, Release 3.5.7

for example to update a GUI.

If you want to clear any previously installed progress handler, call the method with None for
handler.

set_trace_callback(trace_callback)
Registers trace_callback to be called for each SQL statement that is actually executed by the
SQLite backend.

The only argument passed to the callback is the statement (as string) that is being executed.
The return value of the callback is ignored. Note that the backend does not only run statements
passed to the Cursor.execute() methods. Other sources include the transaction management of
the Python module and the execution of triggers defined in the current database.

Passing None as trace_callback will disable the trace callback.

New in version 3.3.

enable_load_extension(enabled)
This routine allows/disallows the SQLite engine to load SQLite extensions from shared libraries.
SQLite extensions can define new functions, aggregates or whole new virtual table implementa-
tions. One well-known extension is the fulltext-search extension distributed with SQLite.

Loadable extensions are disabled by default. See1.

New in version 3.2.

import sqlite3

con = sqlite3.connect(":memory:")

enable extension loading
con.enable_load_extension(True)

Load the fulltext search extension
con.execute("select load_extension('./fts3.so')")

alternatively you can load the extension using an API call:
con.load_extension("./fts3.so")

disable extension laoding again
con.enable_load_extension(False)

example from SQLite wiki
con.execute("create virtual table recipe using fts3(name, ingredients)")
con.executescript("""

insert into recipe (name, ingredients) values ('broccoli stew', 'broccoli peppers cheese tomatoes');
insert into recipe (name, ingredients) values ('pumpkin stew', 'pumpkin onions garlic celery');
insert into recipe (name, ingredients) values ('broccoli pie', 'broccoli cheese onions flour');
insert into recipe (name, ingredients) values ('pumpkin pie', 'pumpkin sugar flour butter');
""")

for row in con.execute("select rowid, name, ingredients from recipe where name match 'pie'"):
print(row)

load_extension(path)
This routine loads a SQLite extension from a shared library. You have to enable extension loading
with enable_load_extension() before you can use this routine.

1 The sqlite3 module is not built with loadable extension support by default, because some platforms (notably Mac OS
X) have SQLite libraries which are compiled without this feature. To get loadable extension support, you must pass –enable-
loadable-sqlite-extensions to configure.

418 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

Loadable extensions are disabled by default. See1.

New in version 3.2.

row_factory
You can change this attribute to a callable that accepts the cursor and the original row as a tuple
and will return the real result row. This way, you can implement more advanced ways of returning
results, such as returning an object that can also access columns by name.

Example:

import sqlite3

def dict_factory(cursor, row):
d = {}
for idx, col in enumerate(cursor.description):

d[col[0]] = row[idx]
return d

con = sqlite3.connect(":memory:")
con.row_factory = dict_factory
cur = con.cursor()
cur.execute("select 1 as a")
print(cur.fetchone()["a"])

If returning a tuple doesn’t suffice and you want name-based access to columns, you should
consider setting row_factory to the highly-optimized sqlite3.Row type. Row provides both index-
based and case-insensitive name-based access to columns with almost no memory overhead. It
will probably be better than your own custom dictionary-based approach or even a db_row based
solution.

text_factory
Using this attribute you can control what objects are returned for the TEXT data type. By
default, this attribute is set to str and the sqlite3 module will return Unicode objects for TEXT.
If you want to return bytestrings instead, you can set it to bytes.

You can also set it to any other callable that accepts a single bytestring parameter and returns
the resulting object.

See the following example code for illustration:

import sqlite3

con = sqlite3.connect(":memory:")
cur = con.cursor()

AUSTRIA = "\xd6sterreich"

by default, rows are returned as Unicode
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert row[0] == AUSTRIA

but we can make sqlite3 always return bytestrings ...
con.text_factory = bytes
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert type(row[0]) is bytes
the bytestrings will be encoded in UTF-8, unless you stored garbage in the

(continues on next page)

12.6. sqlite3 — DB-API 2.0 interface for SQLite databases 419

The Python Library Reference, Release 3.5.7

(continued from previous page)

database ...
assert row[0] == AUSTRIA.encode("utf-8")

we can also implement a custom text_factory ...
here we implement one that appends "foo" to all strings
con.text_factory = lambda x: x.decode("utf-8") + "foo"
cur.execute("select ?", ("bar",))
row = cur.fetchone()
assert row[0] == "barfoo"

total_changes
Returns the total number of database rows that have been modified, inserted, or deleted since the
database connection was opened.

iterdump()
Returns an iterator to dump the database in an SQL text format. Useful when saving an in-
memory database for later restoration. This function provides the same capabilities as the .dump
command in the sqlite3 shell.

Example:

Convert file existing_db.db to SQL dump file dump.sql
import sqlite3

con = sqlite3.connect('existing_db.db')
with open('dump.sql', 'w') as f:

for line in con.iterdump():
f.write('%s\n' % line)

12.6.3 Cursor Objects

class sqlite3.Cursor
A Cursor instance has the following attributes and methods.

execute(sql[, parameters])
Executes an SQL statement. The SQL statement may be parameterized (i. e. placeholders
instead of SQL literals). The sqlite3 module supports two kinds of placeholders: question marks
(qmark style) and named placeholders (named style).

Here’s an example of both styles:

import sqlite3

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("create table people (name_last, age)")

who = "Yeltsin"
age = 72

This is the qmark style:
cur.execute("insert into people values (?, ?)", (who, age))

And this is the named style:
cur.execute("select * from people where name_last=:who and age=:age", {"who": who, "age": age})

(continues on next page)

420 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

(continued from previous page)

print(cur.fetchone())

execute() will only execute a single SQL statement. If you try to execute more than one statement
with it, it will raise a Warning. Use executescript() if you want to execute multiple SQL statements
with one call.

executemany(sql, seq_of_parameters)
Executes an SQL command against all parameter sequences or mappings found in the sequence
seq_of_parameters. The sqlite3 module also allows using an iterator yielding parameters instead
of a sequence.

import sqlite3

class IterChars:
def __init__(self):

self.count = ord('a')

def __iter__(self):
return self

def __next__(self):
if self.count > ord('z'):

raise StopIteration
self.count += 1
return (chr(self.count - 1),) # this is a 1-tuple

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("create table characters(c)")

theIter = IterChars()
cur.executemany("insert into characters(c) values (?)", theIter)

cur.execute("select c from characters")
print(cur.fetchall())

Here’s a shorter example using a generator:

import sqlite3
import string

def char_generator():
for c in string.ascii_lowercase:

yield (c,)

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("create table characters(c)")

cur.executemany("insert into characters(c) values (?)", char_generator())

cur.execute("select c from characters")
print(cur.fetchall())

executescript(sql_script)
This is a nonstandard convenience method for executing multiple SQL statements at once. It

12.6. sqlite3 — DB-API 2.0 interface for SQLite databases 421

The Python Library Reference, Release 3.5.7

issues a COMMIT statement first, then executes the SQL script it gets as a parameter.

sql_script can be an instance of str.

Example:

import sqlite3

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.executescript("""

create table person(
firstname,
lastname,
age

);

create table book(
title,
author,
published

);

insert into book(title, author, published)
values (

'Dirk Gently''s Holistic Detective Agency',
'Douglas Adams',
1987

);
""")

fetchone()
Fetches the next row of a query result set, returning a single sequence, or None when no more
data is available.

fetchmany(size=cursor.arraysize)
Fetches the next set of rows of a query result, returning a list. An empty list is returned when no
more rows are available.

The number of rows to fetch per call is specified by the size parameter. If it is not given, the
cursor’s arraysize determines the number of rows to be fetched. The method should try to fetch as
many rows as indicated by the size parameter. If this is not possible due to the specified number
of rows not being available, fewer rows may be returned.

Note there are performance considerations involved with the size parameter. For optimal perfor-
mance, it is usually best to use the arraysize attribute. If the size parameter is used, then it is
best for it to retain the same value from one fetchmany() call to the next.

fetchall()
Fetches all (remaining) rows of a query result, returning a list. Note that the cursor’s arraysize
attribute can affect the performance of this operation. An empty list is returned when no rows
are available.

close()
Close the cursor now (rather than whenever __del__ is called).

The cursor will be unusable from this point forward; a ProgrammingError exception will be raised
if any operation is attempted with the cursor.

rowcount
Although the Cursor class of the sqlite3 module implements this attribute, the database engine’s

422 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

own support for the determination of “rows affected”/”rows selected” is quirky.

For executemany() statements, the number of modifications are summed up into rowcount.

As required by the Python DB API Spec, the rowcount attribute “is -1 in case no executeXX()
has been performed on the cursor or the rowcount of the last operation is not determinable by the
interface”. This includes SELECT statements because we cannot determine the number of rows
a query produced until all rows were fetched.

With SQLite versions before 3.6.5, rowcount is set to 0 if you make a DELETE FROM table
without any condition.

lastrowid
This read-only attribute provides the rowid of the last modified row. It is only set if you issued
an INSERT statement using the execute() method. For operations other than INSERT or when
executemany() is called, lastrowid is set to None.

arraysize
Read/write attribute that controls the number of rows returned by fetchmany(). The default
value is 1 which means a single row would be fetched per call.

description
This read-only attribute provides the column names of the last query. To remain compatible with
the Python DB API, it returns a 7-tuple for each column where the last six items of each tuple
are None.

It is set for SELECT statements without any matching rows as well.

connection
This read-only attribute provides the SQLite database Connection used by the Cursor object. A
Cursor object created by calling con.cursor() will have a connection attribute that refers to con:

>>> con = sqlite3.connect(":memory:")
>>> cur = con.cursor()
>>> cur.connection == con
True

12.6.4 Row Objects

class sqlite3.Row
A Row instance serves as a highly optimized row_factory for Connection objects. It tries to mimic a
tuple in most of its features.

It supports mapping access by column name and index, iteration, representation, equality testing and
len().

If two Row objects have exactly the same columns and their members are equal, they compare equal.

keys()
This method returns a list of column names. Immediately after a query, it is the first member of
each tuple in Cursor.description.

Changed in version 3.5: Added support of slicing.

Let’s assume we initialize a table as in the example given above:

conn = sqlite3.connect(":memory:")
c = conn.cursor()
c.execute('''create table stocks

(continues on next page)

12.6. sqlite3 — DB-API 2.0 interface for SQLite databases 423

The Python Library Reference, Release 3.5.7

(continued from previous page)

(date text, trans text, symbol text,
qty real, price real)''')
c.execute("""insert into stocks

values ('2006-01-05','BUY','RHAT',100,35.14)""")
conn.commit()
c.close()

Now we plug Row in:

>>> conn.row_factory = sqlite3.Row
>>> c = conn.cursor()
>>> c.execute('select * from stocks')
<sqlite3.Cursor object at 0x7f4e7dd8fa80>
>>> r = c.fetchone()
>>> type(r)
<class 'sqlite3.Row'>
>>> tuple(r)
('2006-01-05', 'BUY', 'RHAT', 100.0, 35.14)
>>> len(r)
5
>>> r[2]
'RHAT'
>>> r.keys()
['date', 'trans', 'symbol', 'qty', 'price']
>>> r['qty']
100.0
>>> for member in r:
... print(member)
...
2006-01-05
BUY
RHAT
100.0
35.14

12.6.5 Exceptions

exception sqlite3.Warning
A subclass of Exception.

exception sqlite3.Error
The base class of the other exceptions in this module. It is a subclass of Exception.

exception sqlite3.DatabaseError
Exception raised for errors that are related to the database.

exception sqlite3.IntegrityError
Exception raised when the relational integrity of the database is affected, e.g. a foreign key check fails.
It is a subclass of DatabaseError.

exception sqlite3.ProgrammingError
Exception raised for programming errors, e.g. table not found or already exists, syntax error in the
SQL statement, wrong number of parameters specified, etc. It is a subclass of DatabaseError.

424 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

12.6.6 SQLite and Python types

Introduction

SQLite natively supports the following types: NULL, INTEGER, REAL, TEXT, BLOB.

The following Python types can thus be sent to SQLite without any problem:

Python type SQLite type
None NULL
int INTEGER
float REAL
str TEXT
bytes BLOB

This is how SQLite types are converted to Python types by default:

SQLite type Python type
NULL None
INTEGER int
REAL float
TEXT depends on text_factory, str by default
BLOB bytes

The type system of the sqlite3 module is extensible in two ways: you can store additional Python types in a
SQLite database via object adaptation, and you can let the sqlite3 module convert SQLite types to different
Python types via converters.

Using adapters to store additional Python types in SQLite databases

As described before, SQLite supports only a limited set of types natively. To use other Python types with
SQLite, you must adapt them to one of the sqlite3 module’s supported types for SQLite: one of NoneType,
int, float, str, bytes.

There are two ways to enable the sqlite3 module to adapt a custom Python type to one of the supported
ones.

Letting your object adapt itself

This is a good approach if you write the class yourself. Let’s suppose you have a class like this:

class Point:
def __init__(self, x, y):

self.x, self.y = x, y

Now you want to store the point in a single SQLite column. First you’ll have to choose one of the supported
types first to be used for representing the point. Let’s just use str and separate the coordinates using a
semicolon. Then you need to give your class a method __conform__(self, protocol) which must return the
converted value. The parameter protocol will be PrepareProtocol.

12.6. sqlite3 — DB-API 2.0 interface for SQLite databases 425

The Python Library Reference, Release 3.5.7

import sqlite3

class Point:
def __init__(self, x, y):

self.x, self.y = x, y

def __conform__(self, protocol):
if protocol is sqlite3.PrepareProtocol:

return "%f;%f" % (self.x, self.y)

con = sqlite3.connect(":memory:")
cur = con.cursor()

p = Point(4.0, -3.2)
cur.execute("select ?", (p,))
print(cur.fetchone()[0])

Registering an adapter callable

The other possibility is to create a function that converts the type to the string representation and register
the function with register_adapter().

import sqlite3

class Point:
def __init__(self, x, y):

self.x, self.y = x, y

def adapt_point(point):
return "%f;%f" % (point.x, point.y)

sqlite3.register_adapter(Point, adapt_point)

con = sqlite3.connect(":memory:")
cur = con.cursor()

p = Point(4.0, -3.2)
cur.execute("select ?", (p,))
print(cur.fetchone()[0])

The sqlite3 module has two default adapters for Python’s built-in datetime.date and datetime.datetime
types. Now let’s suppose we want to store datetime.datetime objects not in ISO representation, but as a
Unix timestamp.

import sqlite3
import datetime
import time

def adapt_datetime(ts):
return time.mktime(ts.timetuple())

sqlite3.register_adapter(datetime.datetime, adapt_datetime)

con = sqlite3.connect(":memory:")
cur = con.cursor()

(continues on next page)

426 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

(continued from previous page)

now = datetime.datetime.now()
cur.execute("select ?", (now,))
print(cur.fetchone()[0])

Converting SQLite values to custom Python types

Writing an adapter lets you send custom Python types to SQLite. But to make it really useful we need to
make the Python to SQLite to Python roundtrip work.

Enter converters.

Let’s go back to the Point class. We stored the x and y coordinates separated via semicolons as strings in
SQLite.

First, we’ll define a converter function that accepts the string as a parameter and constructs a Point object
from it.

Note: Converter functions always get called with a bytes object, no matter under which data type you sent
the value to SQLite.

def convert_point(s):
x, y = map(float, s.split(b";"))
return Point(x, y)

Now you need to make the sqlite3 module know that what you select from the database is actually a point.
There are two ways of doing this:

• Implicitly via the declared type

• Explicitly via the column name

Both ways are described in section Module functions and constants, in the entries for the constants
PARSE_DECLTYPES and PARSE_COLNAMES.

The following example illustrates both approaches.

import sqlite3

class Point:
def __init__(self, x, y):

self.x, self.y = x, y

def __repr__(self):
return "(%f;%f)" % (self.x, self.y)

def adapt_point(point):
return ("%f;%f" % (point.x, point.y)).encode('ascii')

def convert_point(s):
x, y = list(map(float, s.split(b";")))
return Point(x, y)

Register the adapter
sqlite3.register_adapter(Point, adapt_point)

(continues on next page)

12.6. sqlite3 — DB-API 2.0 interface for SQLite databases 427

The Python Library Reference, Release 3.5.7

(continued from previous page)

Register the converter
sqlite3.register_converter("point", convert_point)

p = Point(4.0, -3.2)

#########################
1) Using declared types
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES)
cur = con.cursor()
cur.execute("create table test(p point)")

cur.execute("insert into test(p) values (?)", (p,))
cur.execute("select p from test")
print("with declared types:", cur.fetchone()[0])
cur.close()
con.close()

#######################
1) Using column names
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES)
cur = con.cursor()
cur.execute("create table test(p)")

cur.execute("insert into test(p) values (?)", (p,))
cur.execute('select p as "p [point]" from test')
print("with column names:", cur.fetchone()[0])
cur.close()
con.close()

Default adapters and converters

There are default adapters for the date and datetime types in the datetime module. They will be sent as
ISO dates/ISO timestamps to SQLite.

The default converters are registered under the name “date” for datetime.date and under the name “times-
tamp” for datetime.datetime.

This way, you can use date/timestamps from Python without any additional fiddling in most cases. The
format of the adapters is also compatible with the experimental SQLite date/time functions.

The following example demonstrates this.

import sqlite3
import datetime

con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES)
cur = con.cursor()
cur.execute("create table test(d date, ts timestamp)")

today = datetime.date.today()
now = datetime.datetime.now()

cur.execute("insert into test(d, ts) values (?, ?)", (today, now))
cur.execute("select d, ts from test")
row = cur.fetchone()

(continues on next page)

428 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

(continued from previous page)

print(today, "=>", row[0], type(row[0]))
print(now, "=>", row[1], type(row[1]))

cur.execute('select current_date as "d [date]", current_timestamp as "ts [timestamp]"')
row = cur.fetchone()
print("current_date", row[0], type(row[0]))
print("current_timestamp", row[1], type(row[1]))

If a timestamp stored in SQLite has a fractional part longer than 6 numbers, its value will be truncated to
microsecond precision by the timestamp converter.

12.6.7 Controlling Transactions

By default, the sqlite3 module opens transactions implicitly before a Data Modification Language (DML)
statement (i.e. INSERT/UPDATE/DELETE/REPLACE), and commits transactions implicitly before a
non-DML, non-query statement (i. e. anything other than SELECT or the aforementioned).

So if you are within a transaction and issue a command like CREATE TABLE ..., VACUUM, PRAGMA,
the sqlite3 module will commit implicitly before executing that command. There are two reasons for doing
that. The first is that some of these commands don’t work within transactions. The other reason is that
sqlite3 needs to keep track of the transaction state (if a transaction is active or not). The current transaction
state is exposed through the Connection.in_transaction attribute of the connection object.

You can control which kind of BEGIN statements sqlite3 implicitly executes (or none at all) via the isola-
tion_level parameter to the connect() call, or via the isolation_level property of connections.

If you want autocommit mode, then set isolation_level to None.

Otherwise leave it at its default, which will result in a plain “BEGIN” statement, or set it to one of SQLite’s
supported isolation levels: “DEFERRED”, “IMMEDIATE” or “EXCLUSIVE”.

12.6.8 Using sqlite3 efficiently

Using shortcut methods

Using the nonstandard execute(), executemany() and executescript() methods of the Connection object, your
code can be written more concisely because you don’t have to create the (often superfluous) Cursor objects
explicitly. Instead, the Cursor objects are created implicitly and these shortcut methods return the cursor
objects. This way, you can execute a SELECT statement and iterate over it directly using only a single call
on the Connection object.

import sqlite3

persons = [
("Hugo", "Boss"),
("Calvin", "Klein")
]

con = sqlite3.connect(":memory:")

Create the table
con.execute("create table person(firstname, lastname)")

Fill the table

(continues on next page)

12.6. sqlite3 — DB-API 2.0 interface for SQLite databases 429

The Python Library Reference, Release 3.5.7

(continued from previous page)

con.executemany("insert into person(firstname, lastname) values (?, ?)", persons)

Print the table contents
for row in con.execute("select firstname, lastname from person"):

print(row)

print("I just deleted", con.execute("delete from person").rowcount, "rows")

Accessing columns by name instead of by index

One useful feature of the sqlite3 module is the built-in sqlite3.Row class designed to be used as a row factory.

Rows wrapped with this class can be accessed both by index (like tuples) and case-insensitively by name:

import sqlite3

con = sqlite3.connect(":memory:")
con.row_factory = sqlite3.Row

cur = con.cursor()
cur.execute("select 'John' as name, 42 as age")
for row in cur:

assert row[0] == row["name"]
assert row["name"] == row["nAmE"]
assert row[1] == row["age"]
assert row[1] == row["AgE"]

Using the connection as a context manager

Connection objects can be used as context managers that automatically commit or rollback transactions. In
the event of an exception, the transaction is rolled back; otherwise, the transaction is committed:

import sqlite3

con = sqlite3.connect(":memory:")
con.execute("create table person (id integer primary key, firstname varchar unique)")

Successful, con.commit() is called automatically afterwards
with con:

con.execute("insert into person(firstname) values (?)", ("Joe",))

con.rollback() is called after the with block finishes with an exception, the
exception is still raised and must be caught
try:

with con:
con.execute("insert into person(firstname) values (?)", ("Joe",))

except sqlite3.IntegrityError:
print("couldn't add Joe twice")

12.6.9 Common issues

430 Chapter 12. Data Persistence

The Python Library Reference, Release 3.5.7

Multithreading

Older SQLite versions had issues with sharing connections between threads. That’s why the Python module
disallows sharing connections and cursors between threads. If you still try to do so, you will get an exception
at runtime.

The only exception is calling the interrupt() method, which only makes sense to call from a different thread.

12.6. sqlite3 — DB-API 2.0 interface for SQLite databases 431

The Python Library Reference, Release 3.5.7

432 Chapter 12. Data Persistence

CHAPTER

THIRTEEN

DATA COMPRESSION AND ARCHIVING

The modules described in this chapter support data compression with the zlib, gzip, bzip2 and lzma algo-
rithms, and the creation of ZIP- and tar-format archives. See also Archiving operations provided by the
shutil module.

13.1 zlib — Compression compatible with gzip

For applications that require data compression, the functions in this module allow compression and decom-
pression, using the zlib library. The zlib library has its own home page at http://www.zlib.net. There are
known incompatibilities between the Python module and versions of the zlib library earlier than 1.1.3; 1.1.3
has a security vulnerability, so we recommend using 1.1.4 or later.

zlib’s functions have many options and often need to be used in a particular order. This documentation
doesn’t attempt to cover all of the permutations; consult the zlib manual at http://www.zlib.net/manual.html
for authoritative information.

For reading and writing .gz files see the gzip module.

The available exception and functions in this module are:

exception zlib.error
Exception raised on compression and decompression errors.

zlib.adler32(data[, value])
Computes an Adler-32 checksum of data. (An Adler-32 checksum is almost as reliable as a CRC32 but
can be computed much more quickly.) The result is an unsigned 32-bit integer. If value is present,
it is used as the starting value of the checksum; otherwise, a default value of 1 is used. Passing in
value allows computing a running checksum over the concatenation of several inputs. The algorithm
is not cryptographically strong, and should not be used for authentication or digital signatures. Since
the algorithm is designed for use as a checksum algorithm, it is not suitable for use as a general hash
algorithm.

Changed in version 3.0: Always returns an unsigned value. To generate the same numeric value across
all Python versions and platforms, use adler32(data) & 0xffffffff.

zlib.compress(data[, level])
Compresses the bytes in data, returning a bytes object containing compressed data. level is an integer
from 0 to 9 controlling the level of compression; 1 is fastest and produces the least compression, 9 is
slowest and produces the most. 0 is no compression. The default value is 6. Raises the error exception
if any error occurs.

433

http://www.zlib.net
http://www.zlib.net/manual.html

The Python Library Reference, Release 3.5.7

zlib.compressobj(level=-1, method=DEFLATED, wbits=15, memLevel=8, strat-

egy=Z_DEFAULT_STRATEGY[, zdict])
Returns a compression object, to be used for compressing data streams that won’t fit into memory at
once.

level is the compression level – an integer from 0 to 9 or -1. A value of 1 is fastest and produces the
least compression, while a value of 9 is slowest and produces the most. 0 is no compression. The
default value is -1 (Z_DEFAULT_COMPRESSION). Z_DEFAULT_COMPRESSION represents a
default compromise between speed and compression (currently equivalent to level 6).

method is the compression algorithm. Currently, the only supported value is DEFLATED.

The wbits argument controls the size of the history buffer (or the “window size”) used when compressing
data, and whether a header and trailer is included in the output. It can take several ranges of values:

• +9 to +15: The base-two logarithm of the window size, which therefore ranges between 512 and
32768. Larger values produce better compression at the expense of greater memory usage. The
resulting output will include a zlib-specific header and trailer.

• −9 to −15: Uses the absolute value of wbits as the window size logarithm, while producing a raw
output stream with no header or trailing checksum.

• +25 to +31 = 16 + (9 to 15): Uses the low 4 bits of the value as the window size logarithm, while
including a basic gzip header and trailing checksum in the output.

The memLevel argument controls the amount of memory used for the internal compression state. Valid
values range from 1 to 9. Higher values use more memory, but are faster and produce smaller output.

strategy is used to tune the compression algorithm. Possible values are Z_DEFAULT_STRATEGY,
Z_FILTERED, and Z_HUFFMAN_ONLY.

zdict is a predefined compression dictionary. This is a sequence of bytes (such as a bytes object)
containing subsequences that are expected to occur frequently in the data that is to be compressed.
Those subsequences that are expected to be most common should come at the end of the dictionary.

Changed in version 3.3: Added the zdict parameter and keyword argument support.

zlib.crc32(data[, value])
Computes a CRC (Cyclic Redundancy Check) checksum of data. The result is an unsigned 32-bit
integer. If value is present, it is used as the starting value of the checksum; otherwise, a default value
of 0 is used. Passing in value allows computing a running checksum over the concatenation of several
inputs. The algorithm is not cryptographically strong, and should not be used for authentication or
digital signatures. Since the algorithm is designed for use as a checksum algorithm, it is not suitable
for use as a general hash algorithm.

Changed in version 3.0: Always returns an unsigned value. To generate the same numeric value across
all Python versions and platforms, use crc32(data) & 0xffffffff.

zlib.decompress(data[, wbits[, bufsize]])
Decompresses the bytes in data, returning a bytes object containing the uncompressed data. The wbits
parameter depends on the format of data, and is discussed further below. If bufsize is given, it is used
as the initial size of the output buffer. Raises the error exception if any error occurs.

The wbits parameter controls the size of the history buffer (or “window size”), and what header and
trailer format is expected. It is similar to the parameter for compressobj(), but accepts more ranges
of values:

• +8 to +15: The base-two logarithm of the window size. The input must include a zlib header
and trailer.

434 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

• 0: Automatically determine the window size from the zlib header. Only supported since zlib
1.2.3.5.

• −8 to −15: Uses the absolute value of wbits as the window size logarithm. The input must be a
raw stream with no header or trailer.

• +24 to +31 = 16 + (8 to 15): Uses the low 4 bits of the value as the window size logarithm. The
input must include a gzip header and trailer.

• +40 to +47 = 32 + (8 to 15): Uses the low 4 bits of the value as the window size logarithm, and
automatically accepts either the zlib or gzip format.

When decompressing a stream, the window size must not be smaller than the size originally used to
compress the stream; using a too-small value may result in an error exception. The default wbits
value is 15, which corresponds to the largest window size and requires a zlib header and trailer to be
included.

bufsize is the initial size of the buffer used to hold decompressed data. If more space is required, the
buffer size will be increased as needed, so you don’t have to get this value exactly right; tuning it will
only save a few calls to malloc(). The default size is 16384.

zlib.decompressobj(wbits=15[, zdict])
Returns a decompression object, to be used for decompressing data streams that won’t fit into memory
at once.

The wbits parameter controls the size of the history buffer (or the “window size”), and what header
and trailer format is expected. It has the same meaning as described for decompress().

The zdict parameter specifies a predefined compression dictionary. If provided, this must be the same
dictionary as was used by the compressor that produced the data that is to be decompressed.

Note: If zdict is a mutable object (such as a bytearray), you must not modify its contents between
the call to decompressobj() and the first call to the decompressor’s decompress() method.

Changed in version 3.3: Added the zdict parameter.

Compression objects support the following methods:

Compress.compress(data)
Compress data, returning a bytes object containing compressed data for at least part of the data
in data. This data should be concatenated to the output produced by any preceding calls to the
compress() method. Some input may be kept in internal buffers for later processing.

Compress.flush([mode])
All pending input is processed, and a bytes object containing the remaining compressed output
is returned. mode can be selected from the constants Z_SYNC_FLUSH, Z_FULL_FLUSH, or
Z_FINISH, defaulting to Z_FINISH. Z_SYNC_FLUSH and Z_FULL_FLUSH allow compressing
further bytestrings of data, while Z_FINISH finishes the compressed stream and prevents compressing
any more data. After calling flush() with mode set to Z_FINISH, the compress() method cannot be
called again; the only realistic action is to delete the object.

Compress.copy()
Returns a copy of the compression object. This can be used to efficiently compress a set of data that
share a common initial prefix.

Decompression objects support the following methods and attributes:

Decompress.unused_data
A bytes object which contains any bytes past the end of the compressed data. That is, this remains

13.1. zlib — Compression compatible with gzip 435

The Python Library Reference, Release 3.5.7

b"" until the last byte that contains compression data is available. If the whole bytestring turned out
to contain compressed data, this is b"", an empty bytes object.

Decompress.unconsumed_tail
A bytes object that contains any data that was not consumed by the last decompress() call because
it exceeded the limit for the uncompressed data buffer. This data has not yet been seen by the zlib
machinery, so you must feed it (possibly with further data concatenated to it) back to a subsequent
decompress() method call in order to get correct output.

Decompress.eof
A boolean indicating whether the end of the compressed data stream has been reached.

This makes it possible to distinguish between a properly-formed compressed stream, and an incomplete
or truncated one.

New in version 3.3.

Decompress.decompress(data[, max_length])
Decompress data, returning a bytes object containing the uncompressed data corresponding to at least
part of the data in string. This data should be concatenated to the output produced by any preceding
calls to the decompress() method. Some of the input data may be preserved in internal buffers for
later processing.

If the optional parameter max_length is non-zero then the return value will be no longer than
max_length. This may mean that not all of the compressed input can be processed; and uncon-
sumed data will be stored in the attribute unconsumed_tail. This bytestring must be passed to a
subsequent call to decompress() if decompression is to continue. If max_length is not supplied then
the whole input is decompressed, and unconsumed_tail is empty.

Decompress.flush([length])
All pending input is processed, and a bytes object containing the remaining uncompressed output is
returned. After calling flush(), the decompress() method cannot be called again; the only realistic
action is to delete the object.

The optional parameter length sets the initial size of the output buffer.

Decompress.copy()
Returns a copy of the decompression object. This can be used to save the state of the decompressor
midway through the data stream in order to speed up random seeks into the stream at a future point.

Information about the version of the zlib library in use is available through the following constants:

zlib.ZLIB_VERSION
The version string of the zlib library that was used for building the module. This may be different
from the zlib library actually used at runtime, which is available as ZLIB_RUNTIME_VERSION.

zlib.ZLIB_RUNTIME_VERSION
The version string of the zlib library actually loaded by the interpreter.

New in version 3.3.

See also:

Module gzip Reading and writing gzip-format files.

http://www.zlib.net The zlib library home page.

http://www.zlib.net/manual.html The zlib manual explains the semantics and usage of the library’s many
functions.

436 Chapter 13. Data Compression and Archiving

http://www.zlib.net
http://www.zlib.net/manual.html

The Python Library Reference, Release 3.5.7

13.2 gzip — Support for gzip files

Source code: Lib/gzip.py

This module provides a simple interface to compress and decompress files just like the GNU programs gzip
and gunzip would.

The data compression is provided by the zlib module.

The gzip module provides the GzipFile class, as well as the open(), compress() and decompress() convenience
functions. The GzipFile class reads and writes gzip-format files, automatically compressing or decompressing
the data so that it looks like an ordinary file object.

Note that additional file formats which can be decompressed by the gzip and gunzip programs, such as those
produced by compress and pack, are not supported by this module.

The module defines the following items:

gzip.open(filename, mode=’rb’, compresslevel=9, encoding=None, errors=None, newline=None)
Open a gzip-compressed file in binary or text mode, returning a file object.

The filename argument can be an actual filename (a str or bytes object), or an existing file object to
read from or write to.

The mode argument can be any of 'r', 'rb', 'a', 'ab', 'w', 'wb', 'x' or 'xb' for binary mode,
or 'rt', 'at', 'wt', or 'xt' for text mode. The default is 'rb'.

The compresslevel argument is an integer from 0 to 9, as for the GzipFile constructor.

For binary mode, this function is equivalent to the GzipFile constructor: GzipFile(filename, mode,
compresslevel). In this case, the encoding, errors and newline arguments must not be provided.

For text mode, a GzipFile object is created, and wrapped in an io.TextIOWrapper instance with the
specified encoding, error handling behavior, and line ending(s).

Changed in version 3.3: Added support for filename being a file object, support for text mode, and the
encoding, errors and newline arguments.

Changed in version 3.4: Added support for the 'x', 'xb' and 'xt' modes.

class gzip.GzipFile(filename=None, mode=None, compresslevel=9, fileobj=None, mtime=None)
Constructor for the GzipFile class, which simulates most of the methods of a file object, with the
exception of the truncate() method. At least one of fileobj and filename must be given a non-trivial
value.

The new class instance is based on fileobj, which can be a regular file, an io.BytesIO object, or any
other object which simulates a file. It defaults to None, in which case filename is opened to provide a
file object.

When fileobj is not None, the filename argument is only used to be included in the gzip file header,
which may include the original filename of the uncompressed file. It defaults to the filename of fileobj,
if discernible; otherwise, it defaults to the empty string, and in this case the original filename is not
included in the header.

The mode argument can be any of 'r', 'rb', 'a', 'ab', 'w', 'wb', 'x', or 'xb', depending on
whether the file will be read or written. The default is the mode of fileobj if discernible; otherwise, the
default is 'rb'.

Note that the file is always opened in binary mode. To open a compressed file in text mode, use open()
(or wrap your GzipFile with an io.TextIOWrapper).

13.2. gzip — Support for gzip files 437

https://github.com/python/cpython/tree/3.5/Lib/gzip.py

The Python Library Reference, Release 3.5.7

The compresslevel argument is an integer from 0 to 9 controlling the level of compression; 1 is fastest
and produces the least compression, and 9 is slowest and produces the most compression. 0 is no
compression. The default is 9.

The mtime argument is an optional numeric timestamp to be written to the last modification time
field in the stream when compressing. It should only be provided in compression mode. If omitted or
None, the current time is used. See the mtime attribute for more details.

Calling a GzipFile object’s close() method does not close fileobj, since you might wish to append more
material after the compressed data. This also allows you to pass an io.BytesIO object opened for
writing as fileobj, and retrieve the resulting memory buffer using the io.BytesIO object’s getvalue()
method.

GzipFile supports the io.BufferedIOBase interface, including iteration and the with statement. Only
the truncate() method isn’t implemented.

GzipFile also provides the following method and attribute:

peek(n)
Read n uncompressed bytes without advancing the file position. At most one single read on the
compressed stream is done to satisfy the call. The number of bytes returned may be more or less
than requested.

Note: While calling peek() does not change the file position of the GzipFile, it may change
the position of the underlying file object (e.g. if the GzipFile was constructed with the fileobj
parameter).

New in version 3.2.

mtime
When decompressing, the value of the last modification time field in the most recently read header
may be read from this attribute, as an integer. The initial value before reading any headers is
None.

All gzip compressed streams are required to contain this timestamp field. Some programs, such
as gunzip, make use of the timestamp. The format is the same as the return value of time.time()
and the st_mtime attribute of the object returned by os.stat().

Changed in version 3.1: Support for the with statement was added, along with the mtime constructor
argument and mtime attribute.

Changed in version 3.2: Support for zero-padded and unseekable files was added.

Changed in version 3.3: The io.BufferedIOBase.read1() method is now implemented.

Changed in version 3.4: Added support for the 'x' and 'xb' modes.

Changed in version 3.5: Added support for writing arbitrary bytes-like objects. The read() method
now accepts an argument of None.

gzip.compress(data, compresslevel=9)
Compress the data, returning a bytes object containing the compressed data. compresslevel has the
same meaning as in the GzipFile constructor above.

New in version 3.2.

gzip.decompress(data)
Decompress the data, returning a bytes object containing the uncompressed data.

New in version 3.2.

438 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

13.2.1 Examples of usage

Example of how to read a compressed file:

import gzip
with gzip.open('/home/joe/file.txt.gz', 'rb') as f:

file_content = f.read()

Example of how to create a compressed GZIP file:

import gzip
content = b"Lots of content here"
with gzip.open('/home/joe/file.txt.gz', 'wb') as f:

f.write(content)

Example of how to GZIP compress an existing file:

import gzip
import shutil
with open('/home/joe/file.txt', 'rb') as f_in:

with gzip.open('/home/joe/file.txt.gz', 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)

Example of how to GZIP compress a binary string:

import gzip
s_in = b"Lots of content here"
s_out = gzip.compress(s_in)

See also:

Module zlib The basic data compression module needed to support the gzip file format.

13.3 bz2 — Support for bzip2 compression

Source code: Lib/bz2.py

This module provides a comprehensive interface for compressing and decompressing data using the bzip2
compression algorithm.

The bz2 module contains:

• The open() function and BZ2File class for reading and writing compressed files.

• The BZ2Compressor and BZ2Decompressor classes for incremental (de)compression.

• The compress() and decompress() functions for one-shot (de)compression.

All of the classes in this module may safely be accessed from multiple threads.

13.3.1 (De)compression of files

bz2.open(filename, mode=’r’, compresslevel=9, encoding=None, errors=None, newline=None)
Open a bzip2-compressed file in binary or text mode, returning a file object.

13.3. bz2 — Support for bzip2 compression 439

https://github.com/python/cpython/tree/3.5/Lib/bz2.py

The Python Library Reference, Release 3.5.7

As with the constructor for BZ2File, the filename argument can be an actual filename (a str or bytes
object), or an existing file object to read from or write to.

The mode argument can be any of 'r', 'rb', 'w', 'wb', 'x', 'xb', 'a' or 'ab' for binary mode,
or 'rt', 'wt', 'xt', or 'at' for text mode. The default is 'rb'.

The compresslevel argument is an integer from 1 to 9, as for the BZ2File constructor.

For binary mode, this function is equivalent to the BZ2File constructor: BZ2File(filename, mode,
compresslevel=compresslevel). In this case, the encoding, errors and newline arguments must not be
provided.

For text mode, a BZ2File object is created, and wrapped in an io.TextIOWrapper instance with the
specified encoding, error handling behavior, and line ending(s).

New in version 3.3.

Changed in version 3.4: The 'x' (exclusive creation) mode was added.

class bz2.BZ2File(filename, mode=’r’, buffering=None, compresslevel=9)
Open a bzip2-compressed file in binary mode.

If filename is a str or bytes object, open the named file directly. Otherwise, filename should be a file
object, which will be used to read or write the compressed data.

The mode argument can be either 'r' for reading (default), 'w' for overwriting, 'x' for exclusive
creation, or 'a' for appending. These can equivalently be given as 'rb', 'wb', 'xb' and 'ab'
respectively.

If filename is a file object (rather than an actual file name), a mode of 'w' does not truncate the file,
and is instead equivalent to 'a'.

The buffering argument is ignored. Its use is deprecated.

If mode is 'w' or 'a', compresslevel can be a number between 1 and 9 specifying the level of com-
pression: 1 produces the least compression, and 9 (default) produces the most compression.

If mode is 'r', the input file may be the concatenation of multiple compressed streams.

BZ2File provides all of the members specified by the io.BufferedIOBase, except for detach() and trun-
cate(). Iteration and the with statement are supported.

BZ2File also provides the following method:

peek([n])
Return buffered data without advancing the file position. At least one byte of data will be returned
(unless at EOF). The exact number of bytes returned is unspecified.

Note: While calling peek() does not change the file position of the BZ2File, it may change the
position of the underlying file object (e.g. if the BZ2File was constructed by passing a file object
for filename).

New in version 3.3.

Changed in version 3.1: Support for the with statement was added.

Changed in version 3.3: The fileno(), readable(), seekable(), writable(), read1() and readinto() methods
were added.

Changed in version 3.3: Support was added for filename being a file object instead of an actual filename.

Changed in version 3.3: The 'a' (append) mode was added, along with support for reading multi-
stream files.

440 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

Changed in version 3.4: The 'x' (exclusive creation) mode was added.

Changed in version 3.5: The read() method now accepts an argument of None.

13.3.2 Incremental (de)compression

class bz2.BZ2Compressor(compresslevel=9)
Create a new compressor object. This object may be used to compress data incrementally. For one-shot
compression, use the compress() function instead.

compresslevel, if given, must be a number between 1 and 9. The default is 9.

compress(data)
Provide data to the compressor object. Returns a chunk of compressed data if possible, or an
empty byte string otherwise.

When you have finished providing data to the compressor, call the flush() method to finish the
compression process.

flush()
Finish the compression process. Returns the compressed data left in internal buffers.

The compressor object may not be used after this method has been called.

class bz2.BZ2Decompressor
Create a new decompressor object. This object may be used to decompress data incrementally. For
one-shot compression, use the decompress() function instead.

Note: This class does not transparently handle inputs containing multiple compressed streams, unlike
decompress() and BZ2File. If you need to decompress a multi-stream input with BZ2Decompressor,
you must use a new decompressor for each stream.

decompress(data, max_length=-1)
Decompress data (a bytes-like object), returning uncompressed data as bytes. Some of data
may be buffered internally, for use in later calls to decompress(). The returned data should be
concatenated with the output of any previous calls to decompress().

If max_length is nonnegative, returns at most max_length bytes of decompressed data. If this
limit is reached and further output can be produced, the needs_input attribute will be set to
False. In this case, the next call to decompress() may provide data as b'' to obtain more of the
output.

If all of the input data was decompressed and returned (either because this was less than
max_length bytes, or because max_length was negative), the needs_input attribute will be
set to True.

Attempting to decompress data after the end of stream is reached raises an EOFError. Any data
found after the end of the stream is ignored and saved in the unused_data attribute.

Changed in version 3.5: Added the max_length parameter.

eof
True if the end-of-stream marker has been reached.

New in version 3.3.

unused_data
Data found after the end of the compressed stream.

If this attribute is accessed before the end of the stream has been reached, its value will be b''.

13.3. bz2 — Support for bzip2 compression 441

The Python Library Reference, Release 3.5.7

needs_input
False if the decompress() method can provide more decompressed data before requiring new
uncompressed input.

New in version 3.5.

13.3.3 One-shot (de)compression

bz2.compress(data, compresslevel=9)
Compress data.

compresslevel, if given, must be a number between 1 and 9. The default is 9.

For incremental compression, use a BZ2Compressor instead.

bz2.decompress(data)
Decompress data.

If data is the concatenation of multiple compressed streams, decompress all of the streams.

For incremental decompression, use a BZ2Decompressor instead.

Changed in version 3.3: Support for multi-stream inputs was added.

13.4 lzma — Compression using the LZMA algorithm

New in version 3.3.

Source code: Lib/lzma.py

This module provides classes and convenience functions for compressing and decompressing data using the
LZMA compression algorithm. Also included is a file interface supporting the .xz and legacy .lzma file
formats used by the xz utility, as well as raw compressed streams.

The interface provided by this module is very similar to that of the bz2 module. However, note that
LZMAFile is not thread-safe, unlike bz2.BZ2File, so if you need to use a single LZMAFile instance from
multiple threads, it is necessary to protect it with a lock.

exception lzma.LZMAError
This exception is raised when an error occurs during compression or decompression, or while initializing
the compressor/decompressor state.

13.4.1 Reading and writing compressed files

lzma.open(filename, mode="rb", *, format=None, check=-1, preset=None, filters=None, encod-
ing=None, errors=None, newline=None)

Open an LZMA-compressed file in binary or text mode, returning a file object.

The filename argument can be either an actual file name (given as a str or bytes object), in which case
the named file is opened, or it can be an existing file object to read from or write to.

The mode argument can be any of "r", "rb", "w", "wb", "x", "xb", "a" or "ab" for binary mode, or
"rt", "wt", "xt", or "at" for text mode. The default is "rb".

When opening a file for reading, the format and filters arguments have the same meanings as for
LZMADecompressor. In this case, the check and preset arguments should not be used.

442 Chapter 13. Data Compression and Archiving

https://github.com/python/cpython/tree/3.5/Lib/lzma.py

The Python Library Reference, Release 3.5.7

When opening a file for writing, the format, check, preset and filters arguments have the same meanings
as for LZMACompressor.

For binary mode, this function is equivalent to the LZMAFile constructor: LZMAFile(filename, mode,
...). In this case, the encoding, errors and newline arguments must not be provided.

For text mode, a LZMAFile object is created, and wrapped in an io.TextIOWrapper instance with the
specified encoding, error handling behavior, and line ending(s).

Changed in version 3.4: Added support for the "x", "xb" and "xt" modes.

class lzma.LZMAFile(filename=None, mode="r", *, format=None, check=-1, preset=None, fil-
ters=None)

Open an LZMA-compressed file in binary mode.

An LZMAFile can wrap an already-open file object, or operate directly on a named file. The filename
argument specifies either the file object to wrap, or the name of the file to open (as a str or bytes object).
When wrapping an existing file object, the wrapped file will not be closed when the LZMAFile is closed.

The mode argument can be either "r" for reading (default), "w" for overwriting, "x" for exclusive
creation, or "a" for appending. These can equivalently be given as "rb", "wb", "xb" and "ab" respec-
tively.

If filename is a file object (rather than an actual file name), a mode of "w" does not truncate the file,
and is instead equivalent to "a".

When opening a file for reading, the input file may be the concatenation of multiple separate compressed
streams. These are transparently decoded as a single logical stream.

When opening a file for reading, the format and filters arguments have the same meanings as for
LZMADecompressor. In this case, the check and preset arguments should not be used.

When opening a file for writing, the format, check, preset and filters arguments have the same meanings
as for LZMACompressor.

LZMAFile supports all the members specified by io.BufferedIOBase, except for detach() and truncate().
Iteration and the with statement are supported.

The following method is also provided:

peek(size=-1)
Return buffered data without advancing the file position. At least one byte of data will be
returned, unless EOF has been reached. The exact number of bytes returned is unspecified (the
size argument is ignored).

Note: While calling peek() does not change the file position of the LZMAFile, it may change
the position of the underlying file object (e.g. if the LZMAFile was constructed by passing a file
object for filename).

Changed in version 3.4: Added support for the "x" and "xb" modes.

Changed in version 3.5: The read() method now accepts an argument of None.

13.4.2 Compressing and decompressing data in memory

class lzma.LZMACompressor(format=FORMAT_XZ, check=-1, preset=None, filters=None)
Create a compressor object, which can be used to compress data incrementally.

For a more convenient way of compressing a single chunk of data, see compress().

13.4. lzma — Compression using the LZMA algorithm 443

The Python Library Reference, Release 3.5.7

The format argument specifies what container format should be used. Possible values are:

• FORMAT_XZ: The .xz container format. This is the default format.

• FORMAT_ALONE: The legacy .lzma container format. This format is more limited than .xz –
it does not support integrity checks or multiple filters.

• FORMAT_RAW: A raw data stream, not using any container format. This format specifier
does not support integrity checks, and requires that you always specify a custom filter chain
(for both compression and decompression). Additionally, data compressed in this manner
cannot be decompressed using FORMAT_AUTO (see LZMADecompressor).

The check argument specifies the type of integrity check to include in the compressed data. This check
is used when decompressing, to ensure that the data has not been corrupted. Possible values are:

• CHECK_NONE: No integrity check. This is the default (and the only acceptable value) for
FORMAT_ALONE and FORMAT_RAW.

• CHECK_CRC32: 32-bit Cyclic Redundancy Check.

• CHECK_CRC64: 64-bit Cyclic Redundancy Check. This is the default for FORMAT_XZ.

• CHECK_SHA256: 256-bit Secure Hash Algorithm.

If the specified check is not supported, an LZMAError is raised.

The compression settings can be specified either as a preset compression level (with the preset argu-
ment), or in detail as a custom filter chain (with the filters argument).

The preset argument (if provided) should be an integer between 0 and 9 (inclusive), optionally OR-ed
with the constant PRESET_EXTREME. If neither preset nor filters are given, the default behavior
is to use PRESET_DEFAULT (preset level 6). Higher presets produce smaller output, but make the
compression process slower.

Note: In addition to being more CPU-intensive, compression with higher presets also requires much
more memory (and produces output that needs more memory to decompress). With preset 9 for
example, the overhead for an LZMACompressor object can be as high as 800 MiB. For this reason, it
is generally best to stick with the default preset.

The filters argument (if provided) should be a filter chain specifier. See Specifying custom filter chains
for details.

compress(data)
Compress data (a bytes object), returning a bytes object containing compressed data for at least
part of the input. Some of data may be buffered internally, for use in later calls to compress()
and flush(). The returned data should be concatenated with the output of any previous calls to
compress().

flush()
Finish the compression process, returning a bytes object containing any data stored in the com-
pressor’s internal buffers.

The compressor cannot be used after this method has been called.

class lzma.LZMADecompressor(format=FORMAT_AUTO, memlimit=None, filters=None)
Create a decompressor object, which can be used to decompress data incrementally.

For a more convenient way of decompressing an entire compressed stream at once, see decompress().

444 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

The format argument specifies the container format that should be used. The default is FOR-
MAT_AUTO, which can decompress both .xz and .lzma files. Other possible values are FORMAT_XZ,
FORMAT_ALONE, and FORMAT_RAW.

The memlimit argument specifies a limit (in bytes) on the amount of memory that the decompressor
can use. When this argument is used, decompression will fail with an LZMAError if it is not possible
to decompress the input within the given memory limit.

The filters argument specifies the filter chain that was used to create the stream being decompressed.
This argument is required if format is FORMAT_RAW, but should not be used for other formats. See
Specifying custom filter chains for more information about filter chains.

Note: This class does not transparently handle inputs containing multiple compressed streams, unlike
decompress() and LZMAFile. To decompress a multi-stream input with LZMADecompressor, you must
create a new decompressor for each stream.

decompress(data, max_length=-1)
Decompress data (a bytes-like object), returning uncompressed data as bytes. Some of data
may be buffered internally, for use in later calls to decompress(). The returned data should be
concatenated with the output of any previous calls to decompress().

If max_length is nonnegative, returns at most max_length bytes of decompressed data. If this
limit is reached and further output can be produced, the needs_input attribute will be set to
False. In this case, the next call to decompress() may provide data as b'' to obtain more of the
output.

If all of the input data was decompressed and returned (either because this was less than
max_length bytes, or because max_length was negative), the needs_input attribute will be
set to True.

Attempting to decompress data after the end of stream is reached raises an EOFError. Any data
found after the end of the stream is ignored and saved in the unused_data attribute.

Changed in version 3.5: Added the max_length parameter.

check
The ID of the integrity check used by the input stream. This may be CHECK_UNKNOWN until
enough of the input has been decoded to determine what integrity check it uses.

eof
True if the end-of-stream marker has been reached.

unused_data
Data found after the end of the compressed stream.

Before the end of the stream is reached, this will be b"".

needs_input
False if the decompress() method can provide more decompressed data before requiring new
uncompressed input.

New in version 3.5.

lzma.compress(data, format=FORMAT_XZ, check=-1, preset=None, filters=None)
Compress data (a bytes object), returning the compressed data as a bytes object.

See LZMACompressor above for a description of the format, check, preset and filters arguments.

lzma.decompress(data, format=FORMAT_AUTO, memlimit=None, filters=None)
Decompress data (a bytes object), returning the uncompressed data as a bytes object.

13.4. lzma — Compression using the LZMA algorithm 445

The Python Library Reference, Release 3.5.7

If data is the concatenation of multiple distinct compressed streams, decompress all of these streams,
and return the concatenation of the results.

See LZMADecompressor above for a description of the format, memlimit and filters arguments.

13.4.3 Miscellaneous

lzma.is_check_supported(check)
Returns true if the given integrity check is supported on this system.

CHECK_NONE and CHECK_CRC32 are always supported. CHECK_CRC64 and
CHECK_SHA256 may be unavailable if you are using a version of liblzma that was compiled
with a limited feature set.

13.4.4 Specifying custom filter chains

A filter chain specifier is a sequence of dictionaries, where each dictionary contains the ID and options
for a single filter. Each dictionary must contain the key "id", and may contain additional keys to specify
filter-dependent options. Valid filter IDs are as follows:

• Compression filters:

– FILTER_LZMA1 (for use with FORMAT_ALONE)

– FILTER_LZMA2 (for use with FORMAT_XZ and FORMAT_RAW)

• Delta filter:

– FILTER_DELTA

• Branch-Call-Jump (BCJ) filters:

– FILTER_X86

– FILTER_IA64

– FILTER_ARM

– FILTER_ARMTHUMB

– FILTER_POWERPC

– FILTER_SPARC

A filter chain can consist of up to 4 filters, and cannot be empty. The last filter in the chain must be a
compression filter, and any other filters must be delta or BCJ filters.

Compression filters support the following options (specified as additional entries in the dictionary representing
the filter):

• preset: A compression preset to use as a source of default values for options that are not specified
explicitly.

• dict_size: Dictionary size in bytes. This should be between 4 KiB and 1.5 GiB (inclusive).

• lc: Number of literal context bits.

• lp: Number of literal position bits. The sum lc + lp must be at most 4.

• pb: Number of position bits; must be at most 4.

• mode: MODE_FAST or MODE_NORMAL.

• nice_len: What should be considered a “nice length” for a match. This should be 273 or less.

446 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

• mf: What match finder to use – MF_HC3, MF_HC4, MF_BT2, MF_BT3, or MF_BT4.

• depth: Maximum search depth used by match finder. 0 (default) means to select automatically based
on other filter options.

The delta filter stores the differences between bytes, producing more repetitive input for the compressor
in certain circumstances. It supports one option, dist. This indicates the distance between bytes to be
subtracted. The default is 1, i.e. take the differences between adjacent bytes.

The BCJ filters are intended to be applied to machine code. They convert relative branches, calls and jumps
in the code to use absolute addressing, with the aim of increasing the redundancy that can be exploited by
the compressor. These filters support one option, start_offset. This specifies the address that should be
mapped to the beginning of the input data. The default is 0.

13.4.5 Examples

Reading in a compressed file:

import lzma
with lzma.open("file.xz") as f:

file_content = f.read()

Creating a compressed file:

import lzma
data = b"Insert Data Here"
with lzma.open("file.xz", "w") as f:

f.write(data)

Compressing data in memory:

import lzma
data_in = b"Insert Data Here"
data_out = lzma.compress(data_in)

Incremental compression:

import lzma
lzc = lzma.LZMACompressor()
out1 = lzc.compress(b"Some data\n")
out2 = lzc.compress(b"Another piece of data\n")
out3 = lzc.compress(b"Even more data\n")
out4 = lzc.flush()
Concatenate all the partial results:
result = b"".join([out1, out2, out3, out4])

Writing compressed data to an already-open file:

import lzma
with open("file.xz", "wb") as f:

f.write(b"This data will not be compressed\n")
with lzma.open(f, "w") as lzf:

lzf.write(b"This *will* be compressed\n")
f.write(b"Not compressed\n")

Creating a compressed file using a custom filter chain:

13.4. lzma — Compression using the LZMA algorithm 447

The Python Library Reference, Release 3.5.7

import lzma
my_filters = [

{"id": lzma.FILTER_DELTA, "dist": 5},
{"id": lzma.FILTER_LZMA2, "preset": 7 | lzma.PRESET_EXTREME},

]
with lzma.open("file.xz", "w", filters=my_filters) as f:

f.write(b"blah blah blah")

13.5 zipfile — Work with ZIP archives

Source code: Lib/zipfile.py

The ZIP file format is a common archive and compression standard. This module provides tools to create,
read, write, append, and list a ZIP file. Any advanced use of this module will require an understanding of
the format, as defined in PKZIP Application Note.

This module does not currently handle multi-disk ZIP files. It can handle ZIP files that use the ZIP64
extensions (that is ZIP files that are more than 4 GiB in size). It supports decryption of encrypted files
in ZIP archives, but it currently cannot create an encrypted file. Decryption is extremely slow as it is
implemented in native Python rather than C.

The module defines the following items:

exception zipfile.BadZipFile
The error raised for bad ZIP files.

New in version 3.2.

exception zipfile.BadZipfile
Alias of BadZipFile, for compatibility with older Python versions.

Deprecated since version 3.2.

exception zipfile.LargeZipFile
The error raised when a ZIP file would require ZIP64 functionality but that has not been enabled.

class zipfile.ZipFile
The class for reading and writing ZIP files. See section ZipFile Objects for constructor details.

class zipfile.PyZipFile
Class for creating ZIP archives containing Python libraries.

class zipfile.ZipInfo(filename=’NoName’, date_time=(1980, 1, 1, 0, 0, 0))
Class used to represent information about a member of an archive. Instances of this class are returned
by the getinfo() and infolist() methods of ZipFile objects. Most users of the zipfile module will not
need to create these, but only use those created by this module. filename should be the full name of
the archive member, and date_time should be a tuple containing six fields which describe the time of
the last modification to the file; the fields are described in section ZipInfo Objects.

zipfile.is_zipfile(filename)
Returns True if filename is a valid ZIP file based on its magic number, otherwise returns False. filename
may be a file or file-like object too.

Changed in version 3.1: Support for file and file-like objects.

zipfile.ZIP_STORED
The numeric constant for an uncompressed archive member.

448 Chapter 13. Data Compression and Archiving

https://github.com/python/cpython/tree/3.5/Lib/zipfile.py
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

The Python Library Reference, Release 3.5.7

zipfile.ZIP_DEFLATED
The numeric constant for the usual ZIP compression method. This requires the zlib module.

zipfile.ZIP_BZIP2
The numeric constant for the BZIP2 compression method. This requires the bz2 module.

New in version 3.3.

zipfile.ZIP_LZMA
The numeric constant for the LZMA compression method. This requires the lzma module.

New in version 3.3.

Note: The ZIP file format specification has included support for bzip2 compression since 2001, and for
LZMA compression since 2006. However, some tools (including older Python releases) do not support
these compression methods, and may either refuse to process the ZIP file altogether, or fail to extract
individual files.

See also:

PKZIP Application Note Documentation on the ZIP file format by Phil Katz, the creator of the format and
algorithms used.

Info-ZIP Home Page Information about the Info-ZIP project’s ZIP archive programs and development li-
braries.

13.5.1 ZipFile Objects

class zipfile.ZipFile(file, mode=’r’, compression=ZIP_STORED, allowZip64=True)
Open a ZIP file, where file can be either a path to a file (a string) or a file-like object. The mode
parameter should be 'r' to read an existing file, 'w' to truncate and write a new file, 'a' to append
to an existing file, or 'x' to exclusively create and write a new file. If mode is 'x' and file refers
to an existing file, a FileExistsError will be raised. If mode is 'a' and file refers to an existing ZIP
file, then additional files are added to it. If file does not refer to a ZIP file, then a new ZIP archive
is appended to the file. This is meant for adding a ZIP archive to another file (such as python.exe).
If mode is 'a' and the file does not exist at all, it is created. If mode is 'r' or 'a', the file should
be seekable. compression is the ZIP compression method to use when writing the archive, and should
be ZIP_STORED, ZIP_DEFLATED, ZIP_BZIP2 or ZIP_LZMA; unrecognized values will cause
RuntimeError to be raised. If ZIP_DEFLATED, ZIP_BZIP2 or ZIP_LZMA is specified but the
corresponding module (zlib, bz2 or lzma) is not available, RuntimeError is also raised. The default
is ZIP_STORED. If allowZip64 is True (the default) zipfile will create ZIP files that use the ZIP64
extensions when the zipfile is larger than 4 GiB. If it is false zipfile will raise an exception when the
ZIP file would require ZIP64 extensions.

If the file is created with mode 'w', 'x' or 'a' and then closed without adding any files to the
archive, the appropriate ZIP structures for an empty archive will be written to the file.

ZipFile is also a context manager and therefore supports the with statement. In the example, myzip
is closed after the with statement’s suite is finished—even if an exception occurs:

with ZipFile('spam.zip', 'w') as myzip:
myzip.write('eggs.txt')

New in version 3.2: Added the ability to use ZipFile as a context manager.

Changed in version 3.3: Added support for bzip2 and lzma compression.

13.5. zipfile — Work with ZIP archives 449

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
http://www.info-zip.org/

The Python Library Reference, Release 3.5.7

Changed in version 3.4: ZIP64 extensions are enabled by default.

Changed in version 3.5: Added support for writing to unseekable streams. Added support for the 'x'
mode.

ZipFile.close()
Close the archive file. You must call close() before exiting your program or essential records will not
be written.

ZipFile.getinfo(name)
Return a ZipInfo object with information about the archive member name. Calling getinfo() for a
name not currently contained in the archive will raise a KeyError.

ZipFile.infolist()
Return a list containing a ZipInfo object for each member of the archive. The objects are in the same
order as their entries in the actual ZIP file on disk if an existing archive was opened.

ZipFile.namelist()
Return a list of archive members by name.

ZipFile.open(name, mode=’r’, pwd=None)
Extract a member from the archive as a file-like object (ZipExtFile). name is the name of the file
in the archive, or a ZipInfo object. The mode parameter, if included, must be one of the following:
'r' (the default), 'U', or 'rU'. Choosing 'U' or 'rU' will enable universal newlines support in the
read-only object. pwd is the password used for encrypted files. Calling open() on a closed ZipFile will
raise a RuntimeError.

open() is also a context manager and therefore supports the with statement:

with ZipFile('spam.zip') as myzip:
with myzip.open('eggs.txt') as myfile:

print(myfile.read())

Note: The file-like object is read-only and provides the following methods: read(), readline(), read-
lines(), __iter__(), __next__().

Note: Objects returned by open() can operate independently of the ZipFile.

Note: The open(), read() and extract() methods can take a filename or a ZipInfo object. You will
appreciate this when trying to read a ZIP file that contains members with duplicate names.

Deprecated since version 3.4, will be removed in version 3.6: The 'U' or 'rU' mode. Use io.
TextIOWrapper for reading compressed text files in universal newlines mode.

ZipFile.extract(member, path=None, pwd=None)
Extract a member from the archive to the current working directory; member must be its full name or
a ZipInfo object. Its file information is extracted as accurately as possible. path specifies a different
directory to extract to. member can be a filename or a ZipInfo object. pwd is the password used for
encrypted files.

Returns the normalized path created (a directory or new file).

Note: If a member filename is an absolute path, a drive/UNC sharepoint and leading (back)slashes
will be stripped, e.g.: ///foo/bar becomes foo/bar on Unix, and C:\foo\bar becomes foo\bar on

450 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

Windows. And all ".." components in a member filename will be removed, e.g.: ../../foo../../ba..r
becomes foo../ba..r. On Windows illegal characters (:, <, >, |, ", ?, and *) replaced by underscore (_).

ZipFile.extractall(path=None, members=None, pwd=None)
Extract all members from the archive to the current working directory. path specifies a different
directory to extract to. members is optional and must be a subset of the list returned by namelist().
pwd is the password used for encrypted files.

Warning: Never extract archives from untrusted sources without prior inspection. It is possible
that files are created outside of path, e.g. members that have absolute filenames starting with "/"
or filenames with two dots "..". This module attempts to prevent that. See extract() note.

ZipFile.printdir()
Print a table of contents for the archive to sys.stdout.

ZipFile.setpassword(pwd)
Set pwd as default password to extract encrypted files.

ZipFile.read(name, pwd=None)
Return the bytes of the file name in the archive. name is the name of the file in the archive, or a ZipInfo
object. The archive must be open for read or append. pwd is the password used for encrypted files and,
if specified, it will override the default password set with setpassword(). Calling read() on a closed Zip-
File will raise a RuntimeError. Calling read() on a ZipFile that uses a compression method other than
ZIP_STORED, ZIP_DEFLATED, ZIP_BZIP2 or ZIP_LZMA will raise a NotImplementedError. An
error will also be raised if the corresponding compression module is not available.

ZipFile.testzip()
Read all the files in the archive and check their CRC’s and file headers. Return the name of the first
bad file, or else return None. Calling testzip() on a closed ZipFile will raise a RuntimeError.

ZipFile.write(filename, arcname=None, compress_type=None)
Write the file named filename to the archive, giving it the archive name arcname (by default, this will
be the same as filename, but without a drive letter and with leading path separators removed). If
given, compress_type overrides the value given for the compression parameter to the constructor for
the new entry. The archive must be open with mode 'w', 'x' or 'a' – calling write() on a ZipFile
created with mode 'r' will raise a RuntimeError. Calling write() on a closed ZipFile will raise a
RuntimeError.

Note: There is no official file name encoding for ZIP files. If you have unicode file names, you must
convert them to byte strings in your desired encoding before passing them to write(). WinZip interprets
all file names as encoded in CP437, also known as DOS Latin.

Note: Archive names should be relative to the archive root, that is, they should not start with a path
separator.

Note: If arcname (or filename, if arcname is not given) contains a null byte, the name of the file in
the archive will be truncated at the null byte.

ZipFile.writestr(zinfo_or_arcname, data[, compress_type])
Write the string data to the archive; zinfo_or_arcname is either the file name it will be given in

13.5. zipfile — Work with ZIP archives 451

The Python Library Reference, Release 3.5.7

the archive, or a ZipInfo instance. If it’s an instance, at least the filename, date, and time must be
given. If it’s a name, the date and time is set to the current date and time. The archive must be
opened with mode 'w', 'x' or 'a' – calling writestr() on a ZipFile created with mode 'r' will raise
a RuntimeError. Calling writestr() on a closed ZipFile will raise a RuntimeError.

If given, compress_type overrides the value given for the compression parameter to the constructor for
the new entry, or in the zinfo_or_arcname (if that is a ZipInfo instance).

Note: When passing a ZipInfo instance as the zinfo_or_arcname parameter, the compression method
used will be that specified in the compress_type member of the given ZipInfo instance. By default,
the ZipInfo constructor sets this member to ZIP_STORED.

Changed in version 3.2: The compress_type argument.

The following data attributes are also available:

ZipFile.debug
The level of debug output to use. This may be set from 0 (the default, no output) to 3 (the most
output). Debugging information is written to sys.stdout.

ZipFile.comment
The comment text associated with the ZIP file. If assigning a comment to a ZipFile instance created
with mode 'w', 'x' or 'a', this should be a string no longer than 65535 bytes. Comments longer
than this will be truncated in the written archive when close() is called.

13.5.2 PyZipFile Objects

The PyZipFile constructor takes the same parameters as the ZipFile constructor, and one additional param-
eter, optimize.

class zipfile.PyZipFile(file, mode=’r’, compression=ZIP_STORED, allowZip64=True, optimize=-1)
New in version 3.2: The optimize parameter.

Changed in version 3.4: ZIP64 extensions are enabled by default.

Instances have one method in addition to those of ZipFile objects:

writepy(pathname, basename=”, filterfunc=None)
Search for files *.py and add the corresponding file to the archive.

If the optimize parameter to PyZipFile was not given or -1, the corresponding file is a *.pyc file,
compiling if necessary.

If the optimize parameter to PyZipFile was 0, 1 or 2, only files with that optimization level (see
compile()) are added to the archive, compiling if necessary.

If pathname is a file, the filename must end with .py, and just the (corresponding *.pyc) file is
added at the top level (no path information). If pathname is a file that does not end with .py,
a RuntimeError will be raised. If it is a directory, and the directory is not a package directory,
then all the files *.pyc are added at the top level. If the directory is a package directory, then
all *.pyc are added under the package name as a file path, and if any subdirectories are package
directories, all of these are added recursively.

basename is intended for internal use only.

filterfunc, if given, must be a function taking a single string argument. It will be passed each path
(including each individual full file path) before it is added to the archive. If filterfunc returns a
false value, the path will not be added, and if it is a directory its contents will be ignored. For

452 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

example, if our test files are all either in test directories or start with the string test_, we can use
a filterfunc to exclude them:

>>> zf = PyZipFile('myprog.zip')
>>> def notests(s):
... fn = os.path.basename(s)
... return (not (fn == 'test' or fn.startswith('test_')))
>>> zf.writepy('myprog', filterfunc=notests)

The writepy() method makes archives with file names like this:

string.pyc # Top level name
test/__init__.pyc # Package directory
test/testall.pyc # Module test.testall
test/bogus/__init__.pyc # Subpackage directory
test/bogus/myfile.pyc # Submodule test.bogus.myfile

New in version 3.4: The filterfunc parameter.

13.5.3 ZipInfo Objects

Instances of the ZipInfo class are returned by the getinfo() and infolist() methods of ZipFile objects. Each
object stores information about a single member of the ZIP archive.

Instances have the following attributes:

ZipInfo.filename
Name of the file in the archive.

ZipInfo.date_time
The time and date of the last modification to the archive member. This is a tuple of six values:

Index Value
0 Year (>= 1980)
1 Month (one-based)
2 Day of month (one-based)
3 Hours (zero-based)
4 Minutes (zero-based)
5 Seconds (zero-based)

Note: The ZIP file format does not support timestamps before 1980.

ZipInfo.compress_type
Type of compression for the archive member.

ZipInfo.comment
Comment for the individual archive member.

ZipInfo.extra
Expansion field data. The PKZIP Application Note contains some comments on the internal structure
of the data contained in this string.

ZipInfo.create_system
System which created ZIP archive.

13.5. zipfile — Work with ZIP archives 453

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

The Python Library Reference, Release 3.5.7

ZipInfo.create_version
PKZIP version which created ZIP archive.

ZipInfo.extract_version
PKZIP version needed to extract archive.

ZipInfo.reserved
Must be zero.

ZipInfo.flag_bits
ZIP flag bits.

ZipInfo.volume
Volume number of file header.

ZipInfo.internal_attr
Internal attributes.

ZipInfo.external_attr
External file attributes.

ZipInfo.header_offset
Byte offset to the file header.

ZipInfo.CRC
CRC-32 of the uncompressed file.

ZipInfo.compress_size
Size of the compressed data.

ZipInfo.file_size
Size of the uncompressed file.

13.5.4 Command-Line Interface

The zipfile module provides a simple command-line interface to interact with ZIP archives.

If you want to create a new ZIP archive, specify its name after the -c option and then list the filename(s)
that should be included:

$ python -m zipfile -c monty.zip spam.txt eggs.txt

Passing a directory is also acceptable:

$ python -m zipfile -c monty.zip life-of-brian_1979/

If you want to extract a ZIP archive into the specified directory, use the -e option:

$ python -m zipfile -e monty.zip target-dir/

For a list of the files in a ZIP archive, use the -l option:

$ python -m zipfile -l monty.zip

Command-line options

-l <zipfile>
List files in a zipfile.

454 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

-c <zipfile> <source1> ... <sourceN>
Create zipfile from source files.

-e <zipfile> <output_dir>
Extract zipfile into target directory.

-t <zipfile>
Test whether the zipfile is valid or not.

13.6 tarfile — Read and write tar archive files

Source code: Lib/tarfile.py

The tarfile module makes it possible to read and write tar archives, including those using gzip, bz2 and lzma
compression. Use the zipfile module to read or write .zip files, or the higher-level functions in shutil.

Some facts and figures:

• reads and writes gzip, bz2 and lzma compressed archives if the respective modules are available.

• read/write support for the POSIX.1-1988 (ustar) format.

• read/write support for the GNU tar format including longname and longlink extensions, read-only
support for all variants of the sparse extension including restoration of sparse files.

• read/write support for the POSIX.1-2001 (pax) format.

• handles directories, regular files, hardlinks, symbolic links, fifos, character devices and block devices
and is able to acquire and restore file information like timestamp, access permissions and owner.

Changed in version 3.3: Added support for lzma compression.

tarfile.open(name=None, mode=’r’, fileobj=None, bufsize=10240, **kwargs)
Return a TarFile object for the pathname name. For detailed information on TarFile objects and the
keyword arguments that are allowed, see TarFile Objects.

mode has to be a string of the form 'filemode[:compression]', it defaults to 'r'. Here is a full list of
mode combinations:

13.6. tarfile — Read and write tar archive files 455

https://github.com/python/cpython/tree/3.5/Lib/tarfile.py

The Python Library Reference, Release 3.5.7

mode action
'r' or
'r:*'

Open for reading with transparent compression (recommended).

'r:' Open for reading exclusively without compression.
'r:gz' Open for reading with gzip compression.
'r:bz2' Open for reading with bzip2 compression.
'r:xz' Open for reading with lzma compression.
'x' or
'x:'

Create a tarfile exclusively without compression. Raise an FileExistsError exception
if it already exists.

'x:gz' Create a tarfile with gzip compression. Raise an FileExistsError exception if it already
exists.

'x:bz2' Create a tarfile with bzip2 compression. Raise an FileExistsError exception if it al-
ready exists.

'x:xz' Create a tarfile with lzma compression. Raise an FileExistsError exception if it already
exists.

'a' or
'a:'

Open for appending with no compression. The file is created if it does not exist.

'w' or
'w:'

Open for uncompressed writing.

'w:gz' Open for gzip compressed writing.
'w:bz2' Open for bzip2 compressed writing.
'w:xz' Open for lzma compressed writing.

Note that 'a:gz', 'a:bz2' or 'a:xz' is not possible. If mode is not suitable to open a certain (com-
pressed) file for reading, ReadError is raised. Use mode 'r' to avoid this. If a compression method is
not supported, CompressionError is raised.

If fileobj is specified, it is used as an alternative to a file object opened in binary mode for name. It is
supposed to be at position 0.

For modes 'w:gz', 'r:gz', 'w:bz2', 'r:bz2', 'x:gz', 'x:bz2', tarfile.open() accepts the keyword
argument compresslevel (default 9) to specify the compression level of the file.

For special purposes, there is a second format for mode: 'filemode|[compression]'. tarfile.open() will
return a TarFile object that processes its data as a stream of blocks. No random seeking will be done
on the file. If given, fileobj may be any object that has a read() or write() method (depending on the
mode). bufsize specifies the blocksize and defaults to 20 * 512 bytes. Use this variant in combination
with e.g. sys.stdin, a socket file object or a tape device. However, such a TarFile object is limited in
that it does not allow random access, see Examples. The currently possible modes:

Mode Action
'r|*' Open a stream of tar blocks for reading with transparent compression.
'r|' Open a stream of uncompressed tar blocks for reading.
'r|gz' Open a gzip compressed stream for reading.
'r|bz2' Open a bzip2 compressed stream for reading.
'r|xz' Open an lzma compressed stream for reading.
'w|' Open an uncompressed stream for writing.
'w|gz' Open a gzip compressed stream for writing.
'w|bz2' Open a bzip2 compressed stream for writing.
'w|xz' Open an lzma compressed stream for writing.

Changed in version 3.5: The 'x' (exclusive creation) mode was added.

456 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

class tarfile.TarFile
Class for reading and writing tar archives. Do not use this class directly: use tarfile.open() instead.
See TarFile Objects.

tarfile.is_tarfile(name)
Return True if name is a tar archive file, that the tarfile module can read.

The tarfile module defines the following exceptions:

exception tarfile.TarError
Base class for all tarfile exceptions.

exception tarfile.ReadError
Is raised when a tar archive is opened, that either cannot be handled by the tarfile module or is
somehow invalid.

exception tarfile.CompressionError
Is raised when a compression method is not supported or when the data cannot be decoded properly.

exception tarfile.StreamError
Is raised for the limitations that are typical for stream-like TarFile objects.

exception tarfile.ExtractError
Is raised for non-fatal errors when using TarFile.extract(), but only if TarFile.errorlevel== 2.

exception tarfile.HeaderError
Is raised by TarInfo.frombuf() if the buffer it gets is invalid.

The following constants are available at the module level:

tarfile.ENCODING
The default character encoding: 'utf-8' onWindows, the value returned by sys.getfilesystemencoding()
otherwise.

Each of the following constants defines a tar archive format that the tarfile module is able to create. See
section Supported tar formats for details.

tarfile.USTAR_FORMAT
POSIX.1-1988 (ustar) format.

tarfile.GNU_FORMAT
GNU tar format.

tarfile.PAX_FORMAT
POSIX.1-2001 (pax) format.

tarfile.DEFAULT_FORMAT
The default format for creating archives. This is currently GNU_FORMAT.

See also:

Module zipfile Documentation of the zipfile standard module.

Archiving operations Documentation of the higher-level archiving facilities provided by the standard shutil
module.

GNU tar manual, Basic Tar Format Documentation for tar archive files, including GNU tar extensions.

13.6.1 TarFile Objects

The TarFile object provides an interface to a tar archive. A tar archive is a sequence of blocks. An archive
member (a stored file) is made up of a header block followed by data blocks. It is possible to store a file in a

13.6. tarfile — Read and write tar archive files 457

https://www.gnu.org/software/tar/manual/html_node/Standard.html

The Python Library Reference, Release 3.5.7

tar archive several times. Each archive member is represented by a TarInfo object, see TarInfo Objects for
details.

A TarFile object can be used as a context manager in a with statement. It will automatically be closed when
the block is completed. Please note that in the event of an exception an archive opened for writing will not
be finalized; only the internally used file object will be closed. See the Examples section for a use case.

New in version 3.2: Added support for the context management protocol.

class tarfile.TarFile(name=None, mode=’r’, fileobj=None, format=DEFAULT_FORMAT, tar-
info=TarInfo, dereference=False, ignore_zeros=False, encoding=ENCODING, er-
rors=’surrogateescape’, pax_headers=None, debug=0, errorlevel=0)

All following arguments are optional and can be accessed as instance attributes as well.

name is the pathname of the archive. It can be omitted if fileobj is given. In this case, the file object’s
name attribute is used if it exists.

mode is either 'r' to read from an existing archive, 'a' to append data to an existing file, 'w' to
create a new file overwriting an existing one, or 'x' to create a new file only if it does not already
exist.

If fileobj is given, it is used for reading or writing data. If it can be determined, mode is overridden
by fileobj’s mode. fileobj will be used from position 0.

Note: fileobj is not closed, when TarFile is closed.

format controls the archive format. It must be one of the constants USTAR_FORMAT,
GNU_FORMAT or PAX_FORMAT that are defined at module level.

The tarinfo argument can be used to replace the default TarInfo class with a different one.

If dereference is False, add symbolic and hard links to the archive. If it is True, add the content of the
target files to the archive. This has no effect on systems that do not support symbolic links.

If ignore_zeros is False, treat an empty block as the end of the archive. If it is True, skip empty (and
invalid) blocks and try to get as many members as possible. This is only useful for reading concatenated
or damaged archives.

debug can be set from 0 (no debug messages) up to 3 (all debug messages). The messages are written
to sys.stderr.

If errorlevel is 0, all errors are ignored when using TarFile.extract(). Nevertheless, they appear as error
messages in the debug output, when debugging is enabled. If 1, all fatal errors are raised as OSError
exceptions. If 2, all non-fatal errors are raised as TarError exceptions as well.

The encoding and errors arguments define the character encoding to be used for reading or writing the
archive and how conversion errors are going to be handled. The default settings will work for most
users. See section Unicode issues for in-depth information.

The pax_headers argument is an optional dictionary of strings which will be added as a pax global
header if format is PAX_FORMAT.

Changed in version 3.2: Use 'surrogateescape' as the default for the errors argument.

Changed in version 3.5: The 'x' (exclusive creation) mode was added.

classmethod TarFile.open(...)
Alternative constructor. The tarfile.open() function is actually a shortcut to this classmethod.

TarFile.getmember(name)
Return a TarInfo object for member name. If name can not be found in the archive, KeyError is raised.

458 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

Note: If a member occurs more than once in the archive, its last occurrence is assumed to be the
most up-to-date version.

TarFile.getmembers()
Return the members of the archive as a list of TarInfo objects. The list has the same order as the
members in the archive.

TarFile.getnames()
Return the members as a list of their names. It has the same order as the list returned by getmembers().

TarFile.list(verbose=True, *, members=None)
Print a table of contents to sys.stdout. If verbose is False, only the names of the members are printed.
If it is True, output similar to that of ls -l is produced. If optional members is given, it must be a
subset of the list returned by getmembers().

Changed in version 3.5: Added the members parameter.

TarFile.next()
Return the next member of the archive as a TarInfo object, when TarFile is opened for reading. Return
None if there is no more available.

TarFile.extractall(path=".", members=None, *, numeric_owner=False)
Extract all members from the archive to the current working directory or directory path. If optional
members is given, it must be a subset of the list returned by getmembers(). Directory information like
owner, modification time and permissions are set after all members have been extracted. This is done
to work around two problems: A directory’s modification time is reset each time a file is created in it.
And, if a directory’s permissions do not allow writing, extracting files to it will fail.

If numeric_owner is True, the uid and gid numbers from the tarfile are used to set the owner/group
for the extracted files. Otherwise, the named values from the tarfile are used.

Warning: Never extract archives from untrusted sources without prior inspection. It is possible
that files are created outside of path, e.g. members that have absolute filenames starting with "/"
or filenames with two dots "..".

Changed in version 3.5: Added the numeric_owner parameter.

TarFile.extract(member, path="", set_attrs=True, *, numeric_owner=False)
Extract a member from the archive to the current working directory, using its full name. Its file
information is extracted as accurately as possible. member may be a filename or a TarInfo object.
You can specify a different directory using path. File attributes (owner, mtime, mode) are set unless
set_attrs is false.

If numeric_owner is True, the uid and gid numbers from the tarfile are used to set the owner/group
for the extracted files. Otherwise, the named values from the tarfile are used.

Note: The extract() method does not take care of several extraction issues. In most cases you should
consider using the extractall() method.

Warning: See the warning for extractall().

Changed in version 3.2: Added the set_attrs parameter.

13.6. tarfile — Read and write tar archive files 459

The Python Library Reference, Release 3.5.7

Changed in version 3.5: Added the numeric_owner parameter.

TarFile.extractfile(member)
Extract a member from the archive as a file object. member may be a filename or a TarInfo object. If
member is a regular file or a link, an io.BufferedReader object is returned. Otherwise, None is returned.

Changed in version 3.3: Return an io.BufferedReader object.

TarFile.add(name, arcname=None, recursive=True, exclude=None, *, filter=None)
Add the file name to the archive. name may be any type of file (directory, fifo, symbolic link, etc.). If
given, arcname specifies an alternative name for the file in the archive. Directories are added recursively
by default. This can be avoided by setting recursive to False. If exclude is given, it must be a function
that takes one filename argument and returns a boolean value. Depending on this value the respective
file is either excluded (True) or added (False). If filter is specified it must be a keyword argument. It
should be a function that takes a TarInfo object argument and returns the changed TarInfo object.
If it instead returns None the TarInfo object will be excluded from the archive. See Examples for an
example.

Changed in version 3.2: Added the filter parameter.

Deprecated since version 3.2: The exclude parameter is deprecated, please use the filter parameter
instead.

TarFile.addfile(tarinfo, fileobj=None)
Add the TarInfo object tarinfo to the archive. If fileobj is given, it should be a binary file, and tarinfo.
size bytes are read from it and added to the archive. You can create TarInfo objects directly, or by
using gettarinfo().

TarFile.gettarinfo(name=None, arcname=None, fileobj=None)
Create a TarInfo object from the result of os.stat() or equivalent on an existing file. The file is either
named by name, or specified as a file object fileobj with a file descriptor. If given, arcname specifies an
alternative name for the file in the archive, otherwise, the name is taken from fileobj’s name attribute,
or the name argument. The name should be a text string.

You can modify some of the TarInfo’s attributes before you add it using addfile(). If the file object
is not an ordinary file object positioned at the beginning of the file, attributes such as size may need
modifying. This is the case for objects such as GzipFile. The name may also be modified, in which
case arcname could be a dummy string.

TarFile.close()
Close the TarFile. In write mode, two finishing zero blocks are appended to the archive.

TarFile.pax_headers
A dictionary containing key-value pairs of pax global headers.

13.6.2 TarInfo Objects

A TarInfo object represents one member in a TarFile. Aside from storing all required attributes of a file
(like file type, size, time, permissions, owner etc.), it provides some useful methods to determine its type. It
does not contain the file’s data itself.

TarInfo objects are returned by TarFile’s methods getmember(), getmembers() and gettarinfo().

class tarfile.TarInfo(name="")
Create a TarInfo object.

classmethod TarInfo.frombuf(buf, encoding, errors)
Create and return a TarInfo object from string buffer buf.

Raises HeaderError if the buffer is invalid.

460 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

classmethod TarInfo.fromtarfile(tarfile)
Read the next member from the TarFile object tarfile and return it as a TarInfo object.

TarInfo.tobuf(format=DEFAULT_FORMAT, encoding=ENCODING, errors=’surrogateescape’)
Create a string buffer from a TarInfo object. For information on the arguments see the constructor of
the TarFile class.

Changed in version 3.2: Use 'surrogateescape' as the default for the errors argument.

A TarInfo object has the following public data attributes:

TarInfo.name
Name of the archive member.

TarInfo.size
Size in bytes.

TarInfo.mtime
Time of last modification.

TarInfo.mode
Permission bits.

TarInfo.type
File type. type is usually one of these constants: REGTYPE, AREGTYPE, LNKTYPE, SYMTYPE,
DIRTYPE, FIFOTYPE, CONTTYPE, CHRTYPE, BLKTYPE, GNUTYPE_SPARSE. To determine
the type of a TarInfo object more conveniently, use the is*() methods below.

TarInfo.linkname
Name of the target file name, which is only present in TarInfo objects of type LNKTYPE and SYM-
TYPE.

TarInfo.uid
User ID of the user who originally stored this member.

TarInfo.gid
Group ID of the user who originally stored this member.

TarInfo.uname
User name.

TarInfo.gname
Group name.

TarInfo.pax_headers
A dictionary containing key-value pairs of an associated pax extended header.

A TarInfo object also provides some convenient query methods:

TarInfo.isfile()
Return True if the Tarinfo object is a regular file.

TarInfo.isreg()
Same as isfile().

TarInfo.isdir()
Return True if it is a directory.

TarInfo.issym()
Return True if it is a symbolic link.

TarInfo.islnk()
Return True if it is a hard link.

13.6. tarfile — Read and write tar archive files 461

The Python Library Reference, Release 3.5.7

TarInfo.ischr()
Return True if it is a character device.

TarInfo.isblk()
Return True if it is a block device.

TarInfo.isfifo()
Return True if it is a FIFO.

TarInfo.isdev()
Return True if it is one of character device, block device or FIFO.

13.6.3 Command-Line Interface

New in version 3.4.

The tarfile module provides a simple command-line interface to interact with tar archives.

If you want to create a new tar archive, specify its name after the -c option and then list the filename(s)
that should be included:

$ python -m tarfile -c monty.tar spam.txt eggs.txt

Passing a directory is also acceptable:

$ python -m tarfile -c monty.tar life-of-brian_1979/

If you want to extract a tar archive into the current directory, use the -e option:

$ python -m tarfile -e monty.tar

You can also extract a tar archive into a different directory by passing the directory’s name:

$ python -m tarfile -e monty.tar other-dir/

For a list of the files in a tar archive, use the -l option:

$ python -m tarfile -l monty.tar

Command-line options

-l <tarfile>
--list <tarfile>

List files in a tarfile.

-c <tarfile> <source1> ... <sourceN>
--create <tarfile> <source1> ... <sourceN>

Create tarfile from source files.

-e <tarfile> [<output_dir>]
--extract <tarfile> [<output_dir>]

Extract tarfile into the current directory if output_dir is not specified.

-t <tarfile>
--test <tarfile>

Test whether the tarfile is valid or not.

462 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

-v, --verbose
Verbose output.

13.6.4 Examples

How to extract an entire tar archive to the current working directory:

import tarfile
tar = tarfile.open("sample.tar.gz")
tar.extractall()
tar.close()

How to extract a subset of a tar archive with TarFile.extractall() using a generator function instead of a list:

import os
import tarfile

def py_files(members):
for tarinfo in members:

if os.path.splitext(tarinfo.name)[1] == ".py":
yield tarinfo

tar = tarfile.open("sample.tar.gz")
tar.extractall(members=py_files(tar))
tar.close()

How to create an uncompressed tar archive from a list of filenames:

import tarfile
tar = tarfile.open("sample.tar", "w")
for name in ["foo", "bar", "quux"]:

tar.add(name)
tar.close()

The same example using the with statement:

import tarfile
with tarfile.open("sample.tar", "w") as tar:

for name in ["foo", "bar", "quux"]:
tar.add(name)

How to read a gzip compressed tar archive and display some member information:

import tarfile
tar = tarfile.open("sample.tar.gz", "r:gz")
for tarinfo in tar:

print(tarinfo.name, "is", tarinfo.size, "bytes in size and is", end="")
if tarinfo.isreg():

print("a regular file.")
elif tarinfo.isdir():

print("a directory.")
else:

print("something else.")
tar.close()

How to create an archive and reset the user information using the filter parameter in TarFile.add():

13.6. tarfile — Read and write tar archive files 463

The Python Library Reference, Release 3.5.7

import tarfile
def reset(tarinfo):

tarinfo.uid = tarinfo.gid = 0
tarinfo.uname = tarinfo.gname = "root"
return tarinfo

tar = tarfile.open("sample.tar.gz", "w:gz")
tar.add("foo", filter=reset)
tar.close()

13.6.5 Supported tar formats

There are three tar formats that can be created with the tarfile module:

• The POSIX.1-1988 ustar format (USTAR_FORMAT). It supports filenames up to a length of at best
256 characters and linknames up to 100 characters. The maximum file size is 8 GiB. This is an old
and limited but widely supported format.

• The GNU tar format (GNU_FORMAT). It supports long filenames and linknames, files bigger than
8 GiB and sparse files. It is the de facto standard on GNU/Linux systems. tarfile fully supports the
GNU tar extensions for long names, sparse file support is read-only.

• The POSIX.1-2001 pax format (PAX_FORMAT). It is the most flexible format with virtually no
limits. It supports long filenames and linknames, large files and stores pathnames in a portable way.
However, not all tar implementations today are able to handle pax archives properly.

The pax format is an extension to the existing ustar format. It uses extra headers for information that
cannot be stored otherwise. There are two flavours of pax headers: Extended headers only affect the
subsequent file header, global headers are valid for the complete archive and affect all following files.
All the data in a pax header is encoded in UTF-8 for portability reasons.

There are some more variants of the tar format which can be read, but not created:

• The ancient V7 format. This is the first tar format from Unix Seventh Edition, storing only regular
files and directories. Names must not be longer than 100 characters, there is no user/group name
information. Some archives have miscalculated header checksums in case of fields with non-ASCII
characters.

• The SunOS tar extended format. This format is a variant of the POSIX.1-2001 pax format, but is not
compatible.

13.6.6 Unicode issues

The tar format was originally conceived to make backups on tape drives with the main focus on preserving file
system information. Nowadays tar archives are commonly used for file distribution and exchanging archives
over networks. One problem of the original format (which is the basis of all other formats) is that there is
no concept of supporting different character encodings. For example, an ordinary tar archive created on a
UTF-8 system cannot be read correctly on a Latin-1 system if it contains non-ASCII characters. Textual
metadata (like filenames, linknames, user/group names) will appear damaged. Unfortunately, there is no
way to autodetect the encoding of an archive. The pax format was designed to solve this problem. It stores
non-ASCII metadata using the universal character encoding UTF-8.

The details of character conversion in tarfile are controlled by the encoding and errors keyword arguments
of the TarFile class.

464 Chapter 13. Data Compression and Archiving

The Python Library Reference, Release 3.5.7

encoding defines the character encoding to use for the metadata in the archive. The default value is sys.
getfilesystemencoding() or 'ascii' as a fallback. Depending on whether the archive is read or written, the
metadata must be either decoded or encoded. If encoding is not set appropriately, this conversion may fail.

The errors argument defines how characters are treated that cannot be converted. Possible values are listed
in section Error Handlers. The default scheme is 'surrogateescape' which Python also uses for its file system
calls, see File Names, Command Line Arguments, and Environment Variables.

In case of PAX_FORMAT archives, encoding is generally not needed because all the metadata is stored
using UTF-8. encoding is only used in the rare cases when binary pax headers are decoded or when strings
with surrogate characters are stored.

13.6. tarfile — Read and write tar archive files 465

The Python Library Reference, Release 3.5.7

466 Chapter 13. Data Compression and Archiving

CHAPTER

FOURTEEN

FILE FORMATS

The modules described in this chapter parse various miscellaneous file formats that aren’t markup languages
and are not related to e-mail.

14.1 csv — CSV File Reading and Writing

Source code: Lib/csv.py

The so-called CSV (Comma Separated Values) format is the most common import and export format for
spreadsheets and databases. CSV format was used for many years prior to attempts to describe the format
in a standardized way in RFC 4180. The lack of a well-defined standard means that subtle differences often
exist in the data produced and consumed by different applications. These differences can make it annoying
to process CSV files from multiple sources. Still, while the delimiters and quoting characters vary, the overall
format is similar enough that it is possible to write a single module which can efficiently manipulate such
data, hiding the details of reading and writing the data from the programmer.

The csv module implements classes to read and write tabular data in CSV format. It allows programmers to
say, “write this data in the format preferred by Excel,” or “read data from this file which was generated by
Excel,” without knowing the precise details of the CSV format used by Excel. Programmers can also describe
the CSV formats understood by other applications or define their own special-purpose CSV formats.

The csv module’s reader and writer objects read and write sequences. Programmers can also read and write
data in dictionary form using the DictReader and DictWriter classes.

See also:

PEP 305 - CSV File API The Python Enhancement Proposal which proposed this addition to Python.

14.1.1 Module Contents

The csv module defines the following functions:

csv.reader(csvfile, dialect=’excel’, **fmtparams)
Return a reader object which will iterate over lines in the given csvfile. csvfile can be any object
which supports the iterator protocol and returns a string each time its __next__() method is called
— file objects and list objects are both suitable. If csvfile is a file object, it should be opened with
newline=''.1 An optional dialect parameter can be given which is used to define a set of parameters
specific to a particular CSV dialect. It may be an instance of a subclass of the Dialect class or one of

1 If newline='' is not specified, newlines embedded inside quoted fields will not be interpreted correctly, and on platforms
that use \r\n linendings on write an extra \r will be added. It should always be safe to specify newline='', since the csv
module does its own (universal) newline handling.

467

https://github.com/python/cpython/tree/3.5/Lib/csv.py
https://tools.ietf.org/html/rfc4180.html
https://www.python.org/dev/peps/pep-0305

The Python Library Reference, Release 3.5.7

the strings returned by the list_dialects() function. The other optional fmtparams keyword arguments
can be given to override individual formatting parameters in the current dialect. For full details about
the dialect and formatting parameters, see section Dialects and Formatting Parameters.

Each row read from the csv file is returned as a list of strings. No automatic data type conversion
is performed unless the QUOTE_NONNUMERIC format option is specified (in which case unquoted
fields are transformed into floats).

A short usage example:

>>> import csv
>>> with open('eggs.csv', newline='') as csvfile:
... spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|')
... for row in spamreader:
... print(', '.join(row))
Spam, Spam, Spam, Spam, Spam, Baked Beans
Spam, Lovely Spam, Wonderful Spam

csv.writer(csvfile, dialect=’excel’, **fmtparams)
Return a writer object responsible for converting the user’s data into delimited strings on the given
file-like object. csvfile can be any object with a write() method. If csvfile is a file object, it should be
opened with newline=''1. An optional dialect parameter can be given which is used to define a set of
parameters specific to a particular CSV dialect. It may be an instance of a subclass of the Dialect class
or one of the strings returned by the list_dialects() function. The other optional fmtparams keyword
arguments can be given to override individual formatting parameters in the current dialect. For full
details about the dialect and formatting parameters, see section Dialects and Formatting Parameters.
To make it as easy as possible to interface with modules which implement the DB API, the value None
is written as the empty string. While this isn’t a reversible transformation, it makes it easier to dump
SQL NULL data values to CSV files without preprocessing the data returned from a cursor.fetch* call.
All other non-string data are stringified with str() before being written.

A short usage example:

import csv
with open('eggs.csv', 'w', newline='') as csvfile:

spamwriter = csv.writer(csvfile, delimiter=' ',
quotechar='|', quoting=csv.QUOTE_MINIMAL)

spamwriter.writerow(['Spam'] * 5 + ['Baked Beans'])
spamwriter.writerow(['Spam', 'Lovely Spam', 'Wonderful Spam'])

csv.register_dialect(name[, dialect[, **fmtparams]])
Associate dialect with name. name must be a string. The dialect can be specified either by passing a
sub-class of Dialect, or by fmtparams keyword arguments, or both, with keyword arguments overriding
parameters of the dialect. For full details about the dialect and formatting parameters, see section
Dialects and Formatting Parameters.

csv.unregister_dialect(name)
Delete the dialect associated with name from the dialect registry. An Error is raised if name is not a
registered dialect name.

csv.get_dialect(name)
Return the dialect associated with name. An Error is raised if name is not a registered dialect name.
This function returns an immutable Dialect.

csv.list_dialects()
Return the names of all registered dialects.

csv.field_size_limit([new_limit])
Returns the current maximum field size allowed by the parser. If new_limit is given, this becomes the

468 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

new limit.

The csv module defines the following classes:

class csv.DictReader(csvfile, fieldnames=None, restkey=None, restval=None, dialect=’excel’, *args,
**kwds)

Create an object which operates like a regular reader but maps the information read into a dict whose
keys are given by the optional fieldnames parameter. The fieldnames parameter is a sequence whose
elements are associated with the fields of the input data in order. These elements become the keys
of the resulting dictionary. If the fieldnames parameter is omitted, the values in the first row of the
csvfile will be used as the fieldnames. If the row read has more fields than the fieldnames sequence, the
remaining data is added as a sequence keyed by the value of restkey. If the row read has fewer fields
than the fieldnames sequence, the remaining keys take the value of the optional restval parameter. Any
other optional or keyword arguments are passed to the underlying reader instance.

A short usage example:

>>> import csv
>>> with open('names.csv') as csvfile:
... reader = csv.DictReader(csvfile)
... for row in reader:
... print(row['first_name'], row['last_name'])
...
Baked Beans
Lovely Spam
Wonderful Spam

class csv.DictWriter(csvfile, fieldnames, restval=”, extrasaction=’raise’, dialect=’excel’, *args, **kwds)
Create an object which operates like a regular writer but maps dictionaries onto output rows. The
fieldnames parameter is a sequence of keys that identify the order in which values in the dictionary
passed to the writerow() method are written to the csvfile. The optional restval parameter specifies
the value to be written if the dictionary is missing a key in fieldnames. If the dictionary passed to
the writerow() method contains a key not found in fieldnames, the optional extrasaction parameter
indicates what action to take. If it is set to 'raise' a ValueError is raised. If it is set to 'ignore',
extra values in the dictionary are ignored. Any other optional or keyword arguments are passed to the
underlying writer instance.

Note that unlike the DictReader class, the fieldnames parameter of the DictWriter is not optional.
Since Python’s dict objects are not ordered, there is not enough information available to deduce the
order in which the row should be written to the csvfile.

A short usage example:

import csv

with open('names.csv', 'w') as csvfile:
fieldnames = ['first_name', 'last_name']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

writer.writeheader()
writer.writerow({'first_name': 'Baked', 'last_name': 'Beans'})
writer.writerow({'first_name': 'Lovely', 'last_name': 'Spam'})
writer.writerow({'first_name': 'Wonderful', 'last_name': 'Spam'})

class csv.Dialect
The Dialect class is a container class relied on primarily for its attributes, which are used to define the
parameters for a specific reader or writer instance.

class csv.excel

14.1. csv — CSV File Reading and Writing 469

The Python Library Reference, Release 3.5.7

The excel class defines the usual properties of an Excel-generated CSV file. It is registered with the
dialect name 'excel'.

class csv.excel_tab
The excel_tab class defines the usual properties of an Excel-generated TAB-delimited file. It is regis-
tered with the dialect name 'excel-tab'.

class csv.unix_dialect
The unix_dialect class defines the usual properties of a CSV file generated on UNIX systems, i.e. using
'\n' as line terminator and quoting all fields. It is registered with the dialect name 'unix'.

New in version 3.2.

class csv.Sniffer
The Sniffer class is used to deduce the format of a CSV file.

The Sniffer class provides two methods:

sniff(sample, delimiters=None)
Analyze the given sample and return a Dialect subclass reflecting the parameters found. If the op-
tional delimiters parameter is given, it is interpreted as a string containing possible valid delimiter
characters.

has_header(sample)
Analyze the sample text (presumed to be in CSV format) and return True if the first row appears
to be a series of column headers.

An example for Sniffer use:

with open('example.csv') as csvfile:
dialect = csv.Sniffer().sniff(csvfile.read(1024))
csvfile.seek(0)
reader = csv.reader(csvfile, dialect)
... process CSV file contents here ...

The csv module defines the following constants:

csv.QUOTE_ALL
Instructs writer objects to quote all fields.

csv.QUOTE_MINIMAL
Instructs writer objects to only quote those fields which contain special characters such as delimiter,
quotechar or any of the characters in lineterminator.

csv.QUOTE_NONNUMERIC
Instructs writer objects to quote all non-numeric fields.

Instructs the reader to convert all non-quoted fields to type float.

csv.QUOTE_NONE
Instructs writer objects to never quote fields. When the current delimiter occurs in output data it is
preceded by the current escapechar character. If escapechar is not set, the writer will raise Error if
any characters that require escaping are encountered.

Instructs reader to perform no special processing of quote characters.

The csv module defines the following exception:

exception csv.Error
Raised by any of the functions when an error is detected.

470 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

14.1.2 Dialects and Formatting Parameters

To make it easier to specify the format of input and output records, specific formatting parameters are
grouped together into dialects. A dialect is a subclass of the Dialect class having a set of specific methods
and a single validate() method. When creating reader or writer objects, the programmer can specify a
string or a subclass of the Dialect class as the dialect parameter. In addition to, or instead of, the dialect
parameter, the programmer can also specify individual formatting parameters, which have the same names
as the attributes defined below for the Dialect class.

Dialects support the following attributes:

Dialect.delimiter
A one-character string used to separate fields. It defaults to ','.

Dialect.doublequote
Controls how instances of quotechar appearing inside a field should themselves be quoted. When True,
the character is doubled. When False, the escapechar is used as a prefix to the quotechar. It defaults
to True.

On output, if doublequote is False and no escapechar is set, Error is raised if a quotechar is found in
a field.

Dialect.escapechar
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE
and the quotechar if doublequote is False. On reading, the escapechar removes any special meaning
from the following character. It defaults to None, which disables escaping.

Dialect.lineterminator
The string used to terminate lines produced by the writer. It defaults to '\r\n'.

Note: The reader is hard-coded to recognise either '\r' or '\n' as end-of-line, and ignores lineter-
minator. This behavior may change in the future.

Dialect.quotechar
A one-character string used to quote fields containing special characters, such as the delimiter or
quotechar, or which contain new-line characters. It defaults to '"'.

Dialect.quoting
Controls when quotes should be generated by the writer and recognised by the reader. It can take on
any of the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

Dialect.skipinitialspace
When True, whitespace immediately following the delimiter is ignored. The default is False.

Dialect.strict
When True, raise exception Error on bad CSV input. The default is False.

14.1.3 Reader Objects

Reader objects (DictReader instances and objects returned by the reader() function) have the following
public methods:

csvreader.__next__()
Return the next row of the reader’s iterable object as a list (if the object was returned from reader())
or a dict (if it is a DictReader instance), parsed according to the current dialect. Usually you should
call this as next(reader).

14.1. csv — CSV File Reading and Writing 471

The Python Library Reference, Release 3.5.7

Reader objects have the following public attributes:

csvreader.dialect
A read-only description of the dialect in use by the parser.

csvreader.line_num
The number of lines read from the source iterator. This is not the same as the number of records
returned, as records can span multiple lines.

DictReader objects have the following public attribute:

csvreader.fieldnames
If not passed as a parameter when creating the object, this attribute is initialized upon first access or
when the first record is read from the file.

14.1.4 Writer Objects

Writer objects (DictWriter instances and objects returned by the writer() function) have the following public
methods. A row must be an iterable of strings or numbers for Writer objects and a dictionary mapping
fieldnames to strings or numbers (by passing them through str() first) for DictWriter objects. Note that
complex numbers are written out surrounded by parens. This may cause some problems for other programs
which read CSV files (assuming they support complex numbers at all).

csvwriter.writerow(row)
Write the row parameter to the writer’s file object, formatted according to the current dialect.

Changed in version 3.5: Added support of arbitrary iterables.

csvwriter.writerows(rows)
Write all the rows parameters (a list of row objects as described above) to the writer’s file object,
formatted according to the current dialect.

Writer objects have the following public attribute:

csvwriter.dialect
A read-only description of the dialect in use by the writer.

DictWriter objects have the following public method:

DictWriter.writeheader()
Write a row with the field names (as specified in the constructor).

New in version 3.2.

14.1.5 Examples

The simplest example of reading a CSV file:

import csv
with open('some.csv', newline='') as f:

reader = csv.reader(f)
for row in reader:

print(row)

Reading a file with an alternate format:

472 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

import csv
with open('passwd', newline='') as f:

reader = csv.reader(f, delimiter=':', quoting=csv.QUOTE_NONE)
for row in reader:

print(row)

The corresponding simplest possible writing example is:

import csv
with open('some.csv', 'w', newline='') as f:

writer = csv.writer(f)
writer.writerows(someiterable)

Since open() is used to open a CSV file for reading, the file will by default be decoded into unicode using
the system default encoding (see locale.getpreferredencoding()). To decode a file using a different encoding,
use the encoding argument of open:

import csv
with open('some.csv', newline='', encoding='utf-8') as f:

reader = csv.reader(f)
for row in reader:

print(row)

The same applies to writing in something other than the system default encoding: specify the encoding
argument when opening the output file.

Registering a new dialect:

import csv
csv.register_dialect('unixpwd', delimiter=':', quoting=csv.QUOTE_NONE)
with open('passwd', newline='') as f:

reader = csv.reader(f, 'unixpwd')

A slightly more advanced use of the reader — catching and reporting errors:

import csv, sys
filename = 'some.csv'
with open(filename, newline='') as f:

reader = csv.reader(f)
try:

for row in reader:
print(row)

except csv.Error as e:
sys.exit('file {}, line {}: {}'.format(filename, reader.line_num, e))

And while the module doesn’t directly support parsing strings, it can easily be done:

import csv
for row in csv.reader(['one,two,three']):

print(row)

14.2 configparser — Configuration file parser

Source code: Lib/configparser.py

14.2. configparser — Configuration file parser 473

https://github.com/python/cpython/tree/3.5/Lib/configparser.py

The Python Library Reference, Release 3.5.7

This module provides the ConfigParser class which implements a basic configuration language which provides
a structure similar to what’s found in Microsoft Windows INI files. You can use this to write Python programs
which can be customized by end users easily.

Note: This library does not interpret or write the value-type prefixes used in the Windows Registry extended
version of INI syntax.

See also:

Module shlex Support for creating Unix shell-like mini-languages which can be used as an alternate format
for application configuration files.

Module json The json module implements a subset of JavaScript syntax which can also be used for this
purpose.

14.2.1 Quick Start

Let’s take a very basic configuration file that looks like this:

[DEFAULT]
ServerAliveInterval = 45
Compression = yes
CompressionLevel = 9
ForwardX11 = yes

[bitbucket.org]
User = hg

[topsecret.server.com]
Port = 50022
ForwardX11 = no

The structure of INI files is described in the following section. Essentially, the file consists of sections, each
of which contains keys with values. configparser classes can read and write such files. Let’s start by creating
the above configuration file programmatically.

>>> import configparser
>>> config = configparser.ConfigParser()
>>> config['DEFAULT'] = {'ServerAliveInterval': '45',
... 'Compression': 'yes',
... 'CompressionLevel': '9'}
>>> config['bitbucket.org'] = {}
>>> config['bitbucket.org']['User'] = 'hg'
>>> config['topsecret.server.com'] = {}
>>> topsecret = config['topsecret.server.com']
>>> topsecret['Port'] = '50022' # mutates the parser
>>> topsecret['ForwardX11'] = 'no' # same here
>>> config['DEFAULT']['ForwardX11'] = 'yes'
>>> with open('example.ini', 'w') as configfile:
... config.write(configfile)
...

As you can see, we can treat a config parser much like a dictionary. There are differences, outlined later, but
the behavior is very close to what you would expect from a dictionary.

Now that we have created and saved a configuration file, let’s read it back and explore the data it holds.

474 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

>>> import configparser
>>> config = configparser.ConfigParser()
>>> config.sections()
[]
>>> config.read('example.ini')
['example.ini']
>>> config.sections()
['bitbucket.org', 'topsecret.server.com']
>>> 'bitbucket.org' in config
True
>>> 'bytebong.com' in config
False
>>> config['bitbucket.org']['User']
'hg'
>>> config['DEFAULT']['Compression']
'yes'
>>> topsecret = config['topsecret.server.com']
>>> topsecret['ForwardX11']
'no'
>>> topsecret['Port']
'50022'
>>> for key in config['bitbucket.org']: print(key)
...
user
compressionlevel
serveraliveinterval
compression
forwardx11
>>> config['bitbucket.org']['ForwardX11']
'yes'

As we can see above, the API is pretty straightforward. The only bit of magic involves the DEFAULT section
which provides default values for all other sections1. Note also that keys in sections are case-insensitive and
stored in lowercase1.

14.2.2 Supported Datatypes

Config parsers do not guess datatypes of values in configuration files, always storing them internally as
strings. This means that if you need other datatypes, you should convert on your own:

>>> int(topsecret['Port'])
50022
>>> float(topsecret['CompressionLevel'])
9.0

Since this task is so common, config parsers provide a range of handy getter methods to handle integers,
floats and booleans. The last one is the most interesting because simply passing the value to bool() would
do no good since bool('False') is still True. This is why config parsers also provide getboolean(). This
method is case-insensitive and recognizes Boolean values from 'yes'/'no', 'on'/'off', 'true'/'false' and
'1'/'0'1. For example:

>>> topsecret.getboolean('ForwardX11')
False

(continues on next page)

1 Config parsers allow for heavy customization. If you are interested in changing the behaviour outlined by the footnote
reference, consult the Customizing Parser Behaviour section.

14.2. configparser — Configuration file parser 475

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> config['bitbucket.org'].getboolean('ForwardX11')
True
>>> config.getboolean('bitbucket.org', 'Compression')
True

Apart from getboolean(), config parsers also provide equivalent getint() and getfloat() methods. You can
register your own converters and customize the provided ones.1

14.2.3 Fallback Values

As with a dictionary, you can use a section’s get() method to provide fallback values:

>>> topsecret.get('Port')
'50022'
>>> topsecret.get('CompressionLevel')
'9'
>>> topsecret.get('Cipher')
>>> topsecret.get('Cipher', '3des-cbc')
'3des-cbc'

Please note that default values have precedence over fallback values. For instance, in our example the
'CompressionLevel' key was specified only in the 'DEFAULT' section. If we try to get it from the section
'topsecret.server.com', we will always get the default, even if we specify a fallback:

>>> topsecret.get('CompressionLevel', '3')
'9'

One more thing to be aware of is that the parser-level get() method provides a custom, more complex
interface, maintained for backwards compatibility. When using this method, a fallback value can be provided
via the fallback keyword-only argument:

>>> config.get('bitbucket.org', 'monster',
... fallback='No such things as monsters')
'No such things as monsters'

The same fallback argument can be used with the getint(), getfloat() and getboolean() methods, for example:

>>> 'BatchMode' in topsecret
False
>>> topsecret.getboolean('BatchMode', fallback=True)
True
>>> config['DEFAULT']['BatchMode'] = 'no'
>>> topsecret.getboolean('BatchMode', fallback=True)
False

14.2.4 Supported INI File Structure

A configuration file consists of sections, each led by a [section] header, followed by key/value entries separated
by a specific string (= or : by default1). By default, section names are case sensitive but keys are not1.
Leading and trailing whitespace is removed from keys and values. Values can be omitted, in which case the
key/value delimiter may also be left out. Values can also span multiple lines, as long as they are indented
deeper than the first line of the value. Depending on the parser’s mode, blank lines may be treated as parts
of multiline values or ignored.

476 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

Configuration files may include comments, prefixed by specific characters (# and ; by default1). Comments
may appear on their own on an otherwise empty line, possibly indented.1

For example:

[Simple Values]
key=value
spaces in keys=allowed
spaces in values=allowed as well
spaces around the delimiter = obviously
you can also use : to delimit keys from values

[All Values Are Strings]
values like this: 1000000
or this: 3.14159265359
are they treated as numbers? : no
integers, floats and booleans are held as: strings
can use the API to get converted values directly: true

[Multiline Values]
chorus: I'm a lumberjack, and I'm okay

I sleep all night and I work all day

[No Values]
key_without_value
empty string value here =

[You can use comments]
like this
; or this

By default only in an empty line.
Inline comments can be harmful because they prevent users
from using the delimiting characters as parts of values.
That being said, this can be customized.

[Sections Can Be Indented]
can_values_be_as_well = True
does_that_mean_anything_special = False
purpose = formatting for readability
multiline_values = are

handled just fine as
long as they are indented
deeper than the first line
of a value

Did I mention we can indent comments, too?

14.2.5 Interpolation of values

On top of the core functionality, ConfigParser supports interpolation. This means values can be preprocessed
before returning them from get() calls.

class configparser.BasicInterpolation
The default implementation used by ConfigParser. It enables values to contain format strings which
refer to other values in the same section, or values in the special default section1. Additional default
values can be provided on initialization.

For example:

14.2. configparser — Configuration file parser 477

The Python Library Reference, Release 3.5.7

[Paths]
home_dir: /Users
my_dir: %(home_dir)s/lumberjack
my_pictures: %(my_dir)s/Pictures

In the example above, ConfigParser with interpolation set to BasicInterpolation() would resolve
%(home_dir)s to the value of home_dir (/Users in this case). %(my_dir)s in effect would resolve
to /Users/lumberjack. All interpolations are done on demand so keys used in the chain of references
do not have to be specified in any specific order in the configuration file.

With interpolation set to None, the parser would simply return %(my_dir)s/Pictures as the value of
my_pictures and %(home_dir)s/lumberjack as the value of my_dir.

class configparser.ExtendedInterpolation
An alternative handler for interpolation which implements a more advanced syntax, used for instance in
zc.buildout. Extended interpolation is using ${section:option} to denote a value from a foreign section.
Interpolation can span multiple levels. For convenience, if the section: part is omitted, interpolation
defaults to the current section (and possibly the default values from the special section).

For example, the configuration specified above with basic interpolation, would look like this with
extended interpolation:

[Paths]
home_dir: /Users
my_dir: ${home_dir}/lumberjack
my_pictures: ${my_dir}/Pictures

Values from other sections can be fetched as well:

[Common]
home_dir: /Users
library_dir: /Library
system_dir: /System
macports_dir: /opt/local

[Frameworks]
Python: 3.2
path: ${Common:system_dir}/Library/Frameworks/

[Arthur]
nickname: Two Sheds
last_name: Jackson
my_dir: ${Common:home_dir}/twosheds
my_pictures: ${my_dir}/Pictures
python_dir: ${Frameworks:path}/Python/Versions/${Frameworks:Python}

14.2.6 Mapping Protocol Access

New in version 3.2.

Mapping protocol access is a generic name for functionality that enables using custom objects as if
they were dictionaries. In case of configparser, the mapping interface implementation is using the
parser['section']['option'] notation.

parser['section'] in particular returns a proxy for the section’s data in the parser. This means that the
values are not copied but they are taken from the original parser on demand. What’s even more important
is that when values are changed on a section proxy, they are actually mutated in the original parser.

478 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

configparser objects behave as close to actual dictionaries as possible. The mapping interface is complete
and adheres to the MutableMapping ABC. However, there are a few differences that should be taken into
account:

• By default, all keys in sections are accessible in a case-insensitive manner1. E.g. for option in
parser["section"] yields only optionxform’ed option key names. This means lowercased keys by de-
fault. At the same time, for a section that holds the key 'a', both expressions return True:

"a" in parser["section"]
"A" in parser["section"]

• All sections include DEFAULTSECT values as well which means that .clear() on a section may not
leave the section visibly empty. This is because default values cannot be deleted from the section
(because technically they are not there). If they are overridden in the section, deleting causes the
default value to be visible again. Trying to delete a default value causes a KeyError.

• DEFAULTSECT cannot be removed from the parser:

– trying to delete it raises ValueError,

– parser.clear() leaves it intact,

– parser.popitem() never returns it.

• parser.get(section, option, **kwargs) - the second argument is not a fallback value. Note however
that the section-level get() methods are compatible both with the mapping protocol and the classic
configparser API.

• parser.items() is compatible with the mapping protocol (returns a list of section_name, section_proxy
pairs including the DEFAULTSECT). However, this method can also be invoked with arguments:
parser.items(section, raw, vars). The latter call returns a list of option, value pairs for a specified
section, with all interpolations expanded (unless raw=True is provided).

The mapping protocol is implemented on top of the existing legacy API so that subclasses overriding the
original interface still should have mappings working as expected.

14.2.7 Customizing Parser Behaviour

There are nearly as many INI format variants as there are applications using it. configparser goes a long
way to provide support for the largest sensible set of INI styles available. The default functionality is mainly
dictated by historical background and it’s very likely that you will want to customize some of the features.

The most common way to change the way a specific config parser works is to use the __init__() options:

• defaults, default value: None

This option accepts a dictionary of key-value pairs which will be initially put in the DEFAULT section.
This makes for an elegant way to support concise configuration files that don’t specify values which
are the same as the documented default.

Hint: if you want to specify default values for a specific section, use read_dict() before you read the
actual file.

• dict_type, default value: collections.OrderedDict

This option has a major impact on how the mapping protocol will behave and how the written config-
uration files look. With the default ordered dictionary, every section is stored in the order they were
added to the parser. Same goes for options within sections.

An alternative dictionary type can be used for example to sort sections and options on write-back.
You can also use a regular dictionary for performance reasons.

14.2. configparser — Configuration file parser 479

The Python Library Reference, Release 3.5.7

Please note: there are ways to add a set of key-value pairs in a single operation. When you use a
regular dictionary in those operations, the order of the keys may be random. For example:

>>> parser = configparser.ConfigParser()
>>> parser.read_dict({'section1': {'key1': 'value1',
... 'key2': 'value2',
... 'key3': 'value3'},
... 'section2': {'keyA': 'valueA',
... 'keyB': 'valueB',
... 'keyC': 'valueC'},
... 'section3': {'foo': 'x',
... 'bar': 'y',
... 'baz': 'z'}
... })
>>> parser.sections()
['section3', 'section2', 'section1']
>>> [option for option in parser['section3']]
['baz', 'foo', 'bar']

In these operations you need to use an ordered dictionary as well:

>>> from collections import OrderedDict
>>> parser = configparser.ConfigParser()
>>> parser.read_dict(
... OrderedDict((
... ('s1',
... OrderedDict((
... ('1', '2'),
... ('3', '4'),
... ('5', '6'),
...))
...),
... ('s2',
... OrderedDict((
... ('a', 'b'),
... ('c', 'd'),
... ('e', 'f'),
...))
...),
...))
...)
>>> parser.sections()
['s1', 's2']
>>> [option for option in parser['s1']]
['1', '3', '5']
>>> [option for option in parser['s2'].values()]
['b', 'd', 'f']

• allow_no_value, default value: False

Some configuration files are known to include settings without values, but which otherwise conform to
the syntax supported by configparser. The allow_no_value parameter to the constructor can be used
to indicate that such values should be accepted:

>>> import configparser

>>> sample_config = """
... [mysqld]

(continues on next page)

480 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

(continued from previous page)

... user = mysql

... pid-file = /var/run/mysqld/mysqld.pid

... skip-external-locking

... old_passwords = 1

... skip-bdb

... # we don't need ACID today

... skip-innodb

... """
>>> config = configparser.ConfigParser(allow_no_value=True)
>>> config.read_string(sample_config)

>>> # Settings with values are treated as before:
>>> config["mysqld"]["user"]
'mysql'

>>> # Settings without values provide None:
>>> config["mysqld"]["skip-bdb"]

>>> # Settings which aren't specified still raise an error:
>>> config["mysqld"]["does-not-exist"]
Traceback (most recent call last):
...

KeyError: 'does-not-exist'

• delimiters, default value: ('=', ':')

Delimiters are substrings that delimit keys from values within a section. The first occurrence of a
delimiting substring on a line is considered a delimiter. This means values (but not keys) can contain
the delimiters.

See also the space_around_delimiters argument to ConfigParser.write().

• comment_prefixes, default value: ('#', ';')

• inline_comment_prefixes, default value: None

Comment prefixes are strings that indicate the start of a valid comment within a config file.
comment_prefixes are used only on otherwise empty lines (optionally indented) whereas in-
line_comment_prefixes can be used after every valid value (e.g. section names, options and empty
lines as well). By default inline comments are disabled and '#' and ';' are used as prefixes for whole
line comments.

Changed in version 3.2: In previous versions of configparser behaviour matched
comment_prefixes=('#',';') and inline_comment_prefixes=(';',).

Please note that config parsers don’t support escaping of comment prefixes so using in-
line_comment_prefixes may prevent users from specifying option values with characters used as com-
ment prefixes. When in doubt, avoid setting inline_comment_prefixes. In any circumstances, the only
way of storing comment prefix characters at the beginning of a line in multiline values is to interpolate
the prefix, for example:

>>> from configparser import ConfigParser, ExtendedInterpolation
>>> parser = ConfigParser(interpolation=ExtendedInterpolation())
>>> # the default BasicInterpolation could be used as well
>>> parser.read_string("""
... [DEFAULT]
... hash = #
...

(continues on next page)

14.2. configparser — Configuration file parser 481

The Python Library Reference, Release 3.5.7

(continued from previous page)

... [hashes]

... shebang =

... ${hash}!/usr/bin/env python

... ${hash} -*- coding: utf-8 -*-

...

... extensions =

... enabled_extension

... another_extension

... #disabled_by_comment

... yet_another_extension

...

... interpolation not necessary = if # is not at line start

... even in multiline values = line #1

... line #2

... line #3

... """)
>>> print(parser['hashes']['shebang'])

#!/usr/bin/env python
-*- coding: utf-8 -*-
>>> print(parser['hashes']['extensions'])

enabled_extension
another_extension
yet_another_extension
>>> print(parser['hashes']['interpolation not necessary'])
if # is not at line start
>>> print(parser['hashes']['even in multiline values'])
line #1
line #2
line #3

• strict, default value: True

When set to True, the parser will not allow for any section or option duplicates while reading from a
single source (using read_file(), read_string() or read_dict()). It is recommended to use strict parsers
in new applications.

Changed in version 3.2: In previous versions of configparser behaviour matched strict=False.

• empty_lines_in_values, default value: True

In config parsers, values can span multiple lines as long as they are indented more than the key that
holds them. By default parsers also let empty lines to be parts of values. At the same time, keys can
be arbitrarily indented themselves to improve readability. In consequence, when configuration files get
big and complex, it is easy for the user to lose track of the file structure. Take for instance:

[Section]
key = multiline
value with a gotcha

this = is still a part of the multiline value of 'key'

This can be especially problematic for the user to see if she’s using a proportional font to edit the
file. That is why when your application does not need values with empty lines, you should consider
disallowing them. This will make empty lines split keys every time. In the example above, it would
produce two keys, key and this.

482 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

• default_section, default value: configparser.DEFAULTSECT (that is: "DEFAULT")

The convention of allowing a special section of default values for other sections or interpolation purposes
is a powerful concept of this library, letting users create complex declarative configurations. This section
is normally called "DEFAULT" but this can be customized to point to any other valid section name.
Some typical values include: "general" or "common". The name provided is used for recognizing
default sections when reading from any source and is used when writing configuration back to a file.
Its current value can be retrieved using the parser_instance.default_section attribute and may be
modified at runtime (i.e. to convert files from one format to another).

• interpolation, default value: configparser.BasicInterpolation

Interpolation behaviour may be customized by providing a custom handler through the interpolation
argument. None can be used to turn off interpolation completely, ExtendedInterpolation() provides a
more advanced variant inspired by zc.buildout. More on the subject in the dedicated documentation
section. RawConfigParser has a default value of None.

• converters, default value: not set

Config parsers provide option value getters that perform type conversion. By default getint(), get-
float(), and getboolean() are implemented. Should other getters be desirable, users may define them
in a subclass or pass a dictionary where each key is a name of the converter and each value is a
callable implementing said conversion. For instance, passing {'decimal': decimal.Decimal} would add
getdecimal() on both the parser object and all section proxies. In other words, it will be possible to
write both parser_instance.getdecimal('section', 'key', fallback=0) and parser_instance['section'].
getdecimal('key', 0).

If the converter needs to access the state of the parser, it can be implemented as a method on a config
parser subclass. If the name of this method starts with get, it will be available on all section proxies,
in the dict-compatible form (see the getdecimal() example above).

More advanced customization may be achieved by overriding default values of these parser attributes. The
defaults are defined on the classes, so they may be overridden by subclasses or by attribute assignment.

configparser.BOOLEAN_STATES
By default when using getboolean(), config parsers consider the following values True: '1', 'yes',
'true', 'on' and the following values False: '0', 'no', 'false', 'off'. You can override this by
specifying a custom dictionary of strings and their Boolean outcomes. For example:

>>> custom = configparser.ConfigParser()
>>> custom['section1'] = {'funky': 'nope'}
>>> custom['section1'].getboolean('funky')
Traceback (most recent call last):
...
ValueError: Not a boolean: nope
>>> custom.BOOLEAN_STATES = {'sure': True, 'nope': False}
>>> custom['section1'].getboolean('funky')
False

Other typical Boolean pairs include accept/reject or enabled/disabled.

configparser.optionxform(option)
This method transforms option names on every read, get, or set operation. The default converts
the name to lowercase. This also means that when a configuration file gets written, all keys will be
lowercase. Override this method if that’s unsuitable. For example:

>>> config = """
... [Section1]
... Key = Value

(continues on next page)

14.2. configparser — Configuration file parser 483

The Python Library Reference, Release 3.5.7

(continued from previous page)

...

... [Section2]

... AnotherKey = Value

... """
>>> typical = configparser.ConfigParser()
>>> typical.read_string(config)
>>> list(typical['Section1'].keys())
['key']
>>> list(typical['Section2'].keys())
['anotherkey']
>>> custom = configparser.RawConfigParser()
>>> custom.optionxform = lambda option: option
>>> custom.read_string(config)
>>> list(custom['Section1'].keys())
['Key']
>>> list(custom['Section2'].keys())
['AnotherKey']

configparser.SECTCRE
A compiled regular expression used to parse section headers. The default matches [section] to the name
"section". Whitespace is considered part of the section name, thus [larch] will be read as a section of
name " larch ". Override this attribute if that’s unsuitable. For example:

>>> config = """
... [Section 1]
... option = value
...
... [Section 2]
... another = val
... """
>>> typical = ConfigParser()
>>> typical.read_string(config)
>>> typical.sections()
['Section 1', ' Section 2 ']
>>> custom = ConfigParser()
>>> custom.SECTCRE = re.compile(r"\[*(?P<header>[^]]+?) *\]")
>>> custom.read_string(config)
>>> custom.sections()
['Section 1', 'Section 2']

Note: While ConfigParser objects also use an OPTCRE attribute for recognizing option lines, it’s
not recommended to override it because that would interfere with constructor options allow_no_value
and delimiters.

14.2.8 Legacy API Examples

Mainly because of backwards compatibility concerns, configparser provides also a legacy API with explicit
get/set methods. While there are valid use cases for the methods outlined below, mapping protocol ac-
cess is preferred for new projects. The legacy API is at times more advanced, low-level and downright
counterintuitive.

An example of writing to a configuration file:

484 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

import configparser

config = configparser.RawConfigParser()

Please note that using RawConfigParser's set functions, you can assign
non-string values to keys internally, but will receive an error when
attempting to write to a file or when you get it in non-raw mode. Setting
values using the mapping protocol or ConfigParser's set() does not allow
such assignments to take place.
config.add_section('Section1')
config.set('Section1', 'an_int', '15')
config.set('Section1', 'a_bool', 'true')
config.set('Section1', 'a_float', '3.1415')
config.set('Section1', 'baz', 'fun')
config.set('Section1', 'bar', 'Python')
config.set('Section1', 'foo', '%(bar)s is %(baz)s!')

Writing our configuration file to 'example.cfg'
with open('example.cfg', 'w') as configfile:

config.write(configfile)

An example of reading the configuration file again:

import configparser

config = configparser.RawConfigParser()
config.read('example.cfg')

getfloat() raises an exception if the value is not a float
getint() and getboolean() also do this for their respective types
a_float = config.getfloat('Section1', 'a_float')
an_int = config.getint('Section1', 'an_int')
print(a_float + an_int)

Notice that the next output does not interpolate '%(bar)s' or '%(baz)s'.
This is because we are using a RawConfigParser().
if config.getboolean('Section1', 'a_bool'):

print(config.get('Section1', 'foo'))

To get interpolation, use ConfigParser:

import configparser

cfg = configparser.ConfigParser()
cfg.read('example.cfg')

Set the optional *raw* argument of get() to True if you wish to disable
interpolation in a single get operation.
print(cfg.get('Section1', 'foo', raw=False)) # -> "Python is fun!"
print(cfg.get('Section1', 'foo', raw=True)) # -> "%(bar)s is %(baz)s!"

The optional *vars* argument is a dict with members that will take
precedence in interpolation.
print(cfg.get('Section1', 'foo', vars={'bar': 'Documentation',

'baz': 'evil'}))

The optional *fallback* argument can be used to provide a fallback value

(continues on next page)

14.2. configparser — Configuration file parser 485

The Python Library Reference, Release 3.5.7

(continued from previous page)

print(cfg.get('Section1', 'foo'))
-> "Python is fun!"

print(cfg.get('Section1', 'foo', fallback='Monty is not.'))
-> "Python is fun!"

print(cfg.get('Section1', 'monster', fallback='No such things as monsters.'))
-> "No such things as monsters."

A bare print(cfg.get('Section1', 'monster')) would raise NoOptionError
but we can also use:

print(cfg.get('Section1', 'monster', fallback=None))
-> None

Default values are available in both types of ConfigParsers. They are used in interpolation if an option used
is not defined elsewhere.

import configparser

New instance with 'bar' and 'baz' defaulting to 'Life' and 'hard' each
config = configparser.ConfigParser({'bar': 'Life', 'baz': 'hard'})
config.read('example.cfg')

print(config.get('Section1', 'foo')) # -> "Python is fun!"
config.remove_option('Section1', 'bar')
config.remove_option('Section1', 'baz')
print(config.get('Section1', 'foo')) # -> "Life is hard!"

14.2.9 ConfigParser Objects

class configparser.ConfigParser(defaults=None, dict_type=collections.OrderedDict, al-
low_no_value=False, delimiters=(’=’, ’:’), com-
ment_prefixes=(’#’, ’;’), inline_comment_prefixes=None,
strict=True, empty_lines_in_values=True, de-
fault_section=configparser.DEFAULTSECT, interpola-
tion=BasicInterpolation(), converters={})

The main configuration parser. When defaults is given, it is initialized into the dictionary of intrinsic
defaults. When dict_type is given, it will be used to create the dictionary objects for the list of
sections, for the options within a section, and for the default values.

When delimiters is given, it is used as the set of substrings that divide keys from values. When
comment_prefixes is given, it will be used as the set of substrings that prefix comments in otherwise
empty lines. Comments can be indented. When inline_comment_prefixes is given, it will be used as
the set of substrings that prefix comments in non-empty lines.

When strict is True (the default), the parser won’t allow for any section or option duplicates while
reading from a single source (file, string or dictionary), raising DuplicateSectionError or DuplicateOp-
tionError. When empty_lines_in_values is False (default: True), each empty line marks the end of
an option. Otherwise, internal empty lines of a multiline option are kept as part of the value. When
allow_no_value is True (default: False), options without values are accepted; the value held for these
is None and they are serialized without the trailing delimiter.

When default_section is given, it specifies the name for the special section holding default values for
other sections and interpolation purposes (normally named "DEFAULT"). This value can be retrieved

486 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

and changed on runtime using the default_section instance attribute.

Interpolation behaviour may be customized by providing a custom handler through the interpolation
argument. None can be used to turn off interpolation completely, ExtendedInterpolation() provides a
more advanced variant inspired by zc.buildout. More on the subject in the dedicated documentation
section.

All option names used in interpolation will be passed through the optionxform() method just like any
other option name reference. For example, using the default implementation of optionxform() (which
converts option names to lower case), the values foo %(bar)s and foo %(BAR)s are equivalent.

When converters is given, it should be a dictionary where each key represents the name of a type
converter and each value is a callable implementing the conversion from string to the desired datatype.
Every converter gets its own corresponding get*() method on the parser object and section proxies.

Changed in version 3.1: The default dict_type is collections.OrderedDict.

Changed in version 3.2: allow_no_value, delimiters, comment_prefixes, strict,
empty_lines_in_values, default_section and interpolation were added.

Changed in version 3.5: The converters argument was added.

defaults()
Return a dictionary containing the instance-wide defaults.

sections()
Return a list of the sections available; the default section is not included in the list.

add_section(section)
Add a section named section to the instance. If a section by the given name already exists,
DuplicateSectionError is raised. If the default section name is passed, ValueError is raised. The
name of the section must be a string; if not, TypeError is raised.

Changed in version 3.2: Non-string section names raise TypeError.

has_section(section)
Indicates whether the named section is present in the configuration. The default section is not
acknowledged.

options(section)
Return a list of options available in the specified section.

has_option(section, option)
If the given section exists, and contains the given option, return True; otherwise return False. If
the specified section is None or an empty string, DEFAULT is assumed.

read(filenames, encoding=None)
Attempt to read and parse a list of filenames, returning a list of filenames which were successfully
parsed. If filenames is a string, it is treated as a single filename. If a file named in filenames cannot
be opened, that file will be ignored. This is designed so that you can specify a list of potential
configuration file locations (for example, the current directory, the user’s home directory, and
some system-wide directory), and all existing configuration files in the list will be read. If none
of the named files exist, the ConfigParser instance will contain an empty dataset. An application
which requires initial values to be loaded from a file should load the required file or files using
read_file() before calling read() for any optional files:

import configparser, os

config = configparser.ConfigParser()
config.read_file(open('defaults.cfg'))

(continues on next page)

14.2. configparser — Configuration file parser 487

The Python Library Reference, Release 3.5.7

(continued from previous page)

config.read(['site.cfg', os.path.expanduser('~/.myapp.cfg')],
encoding='cp1250')

New in version 3.2: The encoding parameter. Previously, all files were read using the default
encoding for open().

read_file(f, source=None)
Read and parse configuration data from f which must be an iterable yielding Unicode strings (for
example files opened in text mode).

Optional argument source specifies the name of the file being read. If not given and f has a name
attribute, that is used for source; the default is '<???>'.

New in version 3.2: Replaces readfp().

read_string(string, source=’<string>’)
Parse configuration data from a string.

Optional argument source specifies a context-specific name of the string passed. If not given,
'<string>' is used. This should commonly be a filesystem path or a URL.

New in version 3.2.

read_dict(dictionary, source=’<dict>’)
Load configuration from any object that provides a dict-like items() method. Keys are section
names, values are dictionaries with keys and values that should be present in the section. If the
used dictionary type preserves order, sections and their keys will be added in order. Values are
automatically converted to strings.

Optional argument source specifies a context-specific name of the dictionary passed. If not given,
<dict> is used.

This method can be used to copy state between parsers.

New in version 3.2.

get(section, option, *, raw=False, vars=None[, fallback])
Get an option value for the named section. If vars is provided, it must be a dictionary. The option
is looked up in vars (if provided), section, and in DEFAULTSECT in that order. If the key is not
found and fallback is provided, it is used as a fallback value. None can be provided as a fallback
value.

All the '%' interpolations are expanded in the return values, unless the raw argument is true.
Values for interpolation keys are looked up in the same manner as the option.

Changed in version 3.2: Arguments raw, vars and fallback are keyword only to protect users from
trying to use the third argument as the fallback fallback (especially when using the mapping
protocol).

getint(section, option, *, raw=False, vars=None[, fallback])
A convenience method which coerces the option in the specified section to an integer. See get()
for explanation of raw, vars and fallback.

getfloat(section, option, *, raw=False, vars=None[, fallback])
A convenience method which coerces the option in the specified section to a floating point number.
See get() for explanation of raw, vars and fallback.

getboolean(section, option, *, raw=False, vars=None[, fallback])
A convenience method which coerces the option in the specified section to a Boolean value. Note
that the accepted values for the option are '1', 'yes', 'true', and 'on', which cause this method

488 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

to return True, and '0', 'no', 'false', and 'off', which cause it to return False. These string
values are checked in a case-insensitive manner. Any other value will cause it to raise ValueError.
See get() for explanation of raw, vars and fallback.

items(raw=False, vars=None)
items(section, raw=False, vars=None)

When section is not given, return a list of section_name, section_proxy pairs, including DE-
FAULTSECT.

Otherwise, return a list of name, value pairs for the options in the given section. Optional
arguments have the same meaning as for the get() method.

Changed in version 3.2: Items present in vars no longer appear in the result. The previous
behaviour mixed actual parser options with variables provided for interpolation.

set(section, option, value)
If the given section exists, set the given option to the specified value; otherwise raise NoSection-
Error. option and value must be strings; if not, TypeError is raised.

write(fileobject, space_around_delimiters=True)
Write a representation of the configuration to the specified file object, which must be opened
in text mode (accepting strings). This representation can be parsed by a future read() call. If
space_around_delimiters is true, delimiters between keys and values are surrounded by spaces.

remove_option(section, option)
Remove the specified option from the specified section. If the section does not exist, raise NoSec-
tionError. If the option existed to be removed, return True; otherwise return False.

remove_section(section)
Remove the specified section from the configuration. If the section in fact existed, return True.
Otherwise return False.

optionxform(option)
Transforms the option name option as found in an input file or as passed in by client code to
the form that should be used in the internal structures. The default implementation returns a
lower-case version of option; subclasses may override this or client code can set an attribute of
this name on instances to affect this behavior.

You don’t need to subclass the parser to use this method, you can also set it on an instance, to a
function that takes a string argument and returns a string. Setting it to str, for example, would
make option names case sensitive:

cfgparser = ConfigParser()
cfgparser.optionxform = str

Note that when reading configuration files, whitespace around the option names is stripped before
optionxform() is called.

readfp(fp, filename=None)
Deprecated since version 3.2: Use read_file() instead.

Changed in version 3.2: readfp() now iterates on fp instead of calling fp.readline().

For existing code calling readfp() with arguments which don’t support iteration, the following
generator may be used as a wrapper around the file-like object:

def readline_generator(fp):
line = fp.readline()
while line:

(continues on next page)

14.2. configparser — Configuration file parser 489

The Python Library Reference, Release 3.5.7

(continued from previous page)

yield line
line = fp.readline()

Instead of parser.readfp(fp) use parser.read_file(readline_generator(fp)).

configparser.MAX_INTERPOLATION_DEPTH
The maximum depth for recursive interpolation for get() when the raw parameter is false. This is
relevant only when the default interpolation is used.

14.2.10 RawConfigParser Objects

class configparser.RawConfigParser(defaults=None, dict_type=collections.OrderedDict, al-
low_no_value=False, *, delimiters=(’=’, ’:’), com-
ment_prefixes=(’#’, ’;’), inline_comment_prefixes=None,
strict=True, empty_lines_in_values=True, de-

fault_section=configparser.DEFAULTSECT[, interpolation

])
Legacy variant of the ConfigParser with interpolation disabled by default and unsafe add_section and
set methods.

Note: Consider using ConfigParser instead which checks types of the values to be stored internally.
If you don’t want interpolation, you can use ConfigParser(interpolation=None).

add_section(section)
Add a section named section to the instance. If a section by the given name already exists,
DuplicateSectionError is raised. If the default section name is passed, ValueError is raised.

Type of section is not checked which lets users create non-string named sections. This behaviour
is unsupported and may cause internal errors.

set(section, option, value)
If the given section exists, set the given option to the specified value; otherwise raise NoSection-
Error. While it is possible to use RawConfigParser (or ConfigParser with raw parameters set
to true) for internal storage of non-string values, full functionality (including interpolation and
output to files) can only be achieved using string values.

This method lets users assign non-string values to keys internally. This behaviour is unsupported
and will cause errors when attempting to write to a file or get it in non-raw mode. Use the
mapping protocol API which does not allow such assignments to take place.

14.2.11 Exceptions

exception configparser.Error
Base class for all other configparser exceptions.

exception configparser.NoSectionError
Exception raised when a specified section is not found.

exception configparser.DuplicateSectionError
Exception raised if add_section() is called with the name of a section that is already present or in
strict parsers when a section if found more than once in a single input file, string or dictionary.

New in version 3.2: Optional source and lineno attributes and arguments to __init__() were added.

490 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

exception configparser.DuplicateOptionError
Exception raised by strict parsers if a single option appears twice during reading from a single file,
string or dictionary. This catches misspellings and case sensitivity-related errors, e.g. a dictionary may
have two keys representing the same case-insensitive configuration key.

exception configparser.NoOptionError
Exception raised when a specified option is not found in the specified section.

exception configparser.InterpolationError
Base class for exceptions raised when problems occur performing string interpolation.

exception configparser.InterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations
exceeds MAX_INTERPOLATION_DEPTH. Subclass of InterpolationError.

exception configparser.InterpolationMissingOptionError
Exception raised when an option referenced from a value does not exist. Subclass of InterpolationError.

exception configparser.InterpolationSyntaxError
Exception raised when the source text into which substitutions are made does not conform to the
required syntax. Subclass of InterpolationError.

exception configparser.MissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

exception configparser.ParsingError
Exception raised when errors occur attempting to parse a file.

Changed in version 3.2: The filename attribute and __init__() argument were renamed to source for
consistency.

14.3 netrc — netrc file processing

Source code: Lib/netrc.py

The netrc class parses and encapsulates the netrc file format used by the Unix ftp program and other FTP
clients.

class netrc.netrc([file])
A netrc instance or subclass instance encapsulates data from a netrc file. The initialization argument,
if present, specifies the file to parse. If no argument is given, the file .netrc in the user’s home directory
will be read. Parse errors will raise NetrcParseError with diagnostic information including the file name,
line number, and terminating token. If no argument is specified on a POSIX system, the presence of
passwords in the .netrc file will raise a NetrcParseError if the file ownership or permissions are insecure
(owned by a user other than the user running the process, or accessible for read or write by any other
user). This implements security behavior equivalent to that of ftp and other programs that use .netrc.

Changed in version 3.4: Added the POSIX permission check.

exception netrc.NetrcParseError
Exception raised by the netrc class when syntactical errors are encountered in source text. Instances of
this exception provide three interesting attributes: msg is a textual explanation of the error, filename
is the name of the source file, and lineno gives the line number on which the error was found.

14.3. netrc — netrc file processing 491

https://github.com/python/cpython/tree/3.5/Lib/netrc.py

The Python Library Reference, Release 3.5.7

14.3.1 netrc Objects

A netrc instance has the following methods:

netrc.authenticators(host)
Return a 3-tuple (login, account, password) of authenticators for host. If the netrc file did not contain
an entry for the given host, return the tuple associated with the ‘default’ entry. If neither matching
host nor default entry is available, return None.

netrc.__repr__()
Dump the class data as a string in the format of a netrc file. (This discards comments and may reorder
the entries.)

Instances of netrc have public instance variables:

netrc.hosts
Dictionary mapping host names to (login, account, password) tuples. The ‘default’ entry, if any, is
represented as a pseudo-host by that name.

netrc.macros
Dictionary mapping macro names to string lists.

Note: Passwords are limited to a subset of the ASCII character set. All ASCII punctuation is allowed in
passwords, however, note that whitespace and non-printable characters are not allowed in passwords. This
is a limitation of the way the .netrc file is parsed and may be removed in the future.

14.4 xdrlib — Encode and decode XDR data

Source code: Lib/xdrlib.py

The xdrlib module supports the External Data Representation Standard as described in RFC 1014, written
by Sun Microsystems, Inc. June 1987. It supports most of the data types described in the RFC.

The xdrlib module defines two classes, one for packing variables into XDR representation, and another for
unpacking from XDR representation. There are also two exception classes.

class xdrlib.Packer
Packer is the class for packing data into XDR representation. The Packer class is instantiated with no
arguments.

class xdrlib.Unpacker(data)
Unpacker is the complementary class which unpacks XDR data values from a string buffer. The input
buffer is given as data.

See also:

RFC 1014 - XDR: External Data Representation Standard This RFC defined the encoding of data which
was XDR at the time this module was originally written. It has apparently been obsoleted by RFC
1832.

RFC 1832 - XDR: External Data Representation Standard Newer RFC that provides a revised definition of
XDR.

492 Chapter 14. File Formats

https://github.com/python/cpython/tree/3.5/Lib/xdrlib.py
https://tools.ietf.org/html/rfc1014.html
https://tools.ietf.org/html/rfc1014.html
https://tools.ietf.org/html/rfc1832.html
https://tools.ietf.org/html/rfc1832.html
https://tools.ietf.org/html/rfc1832.html

The Python Library Reference, Release 3.5.7

14.4.1 Packer Objects

Packer instances have the following methods:

Packer.get_buffer()
Returns the current pack buffer as a string.

Packer.reset()
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the appropriate pack_type()
method. Each method takes a single argument, the value to pack. The following simple data type pack-
ing methods are supported: pack_uint(), pack_int(), pack_enum(), pack_bool(), pack_uhyper(), and
pack_hyper().

Packer.pack_float(value)
Packs the single-precision floating point number value.

Packer.pack_double(value)
Packs the double-precision floating point number value.

The following methods support packing strings, bytes, and opaque data:

Packer.pack_fstring(n, s)
Packs a fixed length string, s. n is the length of the string but it is not packed into the data buffer.
The string is padded with null bytes if necessary to guaranteed 4 byte alignment.

Packer.pack_fopaque(n, data)
Packs a fixed length opaque data stream, similarly to pack_fstring().

Packer.pack_string(s)
Packs a variable length string, s. The length of the string is first packed as an unsigned integer, then
the string data is packed with pack_fstring().

Packer.pack_opaque(data)
Packs a variable length opaque data string, similarly to pack_string().

Packer.pack_bytes(bytes)
Packs a variable length byte stream, similarly to pack_string().

The following methods support packing arrays and lists:

Packer.pack_list(list, pack_item)
Packs a list of homogeneous items. This method is useful for lists with an indeterminate size; i.e. the
size is not available until the entire list has been walked. For each item in the list, an unsigned integer
1 is packed first, followed by the data value from the list. pack_item is the function that is called to
pack the individual item. At the end of the list, an unsigned integer 0 is packed.

For example, to pack a list of integers, the code might appear like this:

import xdrlib
p = xdrlib.Packer()
p.pack_list([1, 2, 3], p.pack_int)

Packer.pack_farray(n, array, pack_item)
Packs a fixed length list (array) of homogeneous items. n is the length of the list; it is not packed into
the buffer, but a ValueError exception is raised if len(array) is not equal to n. As above, pack_item
is the function used to pack each element.

Packer.pack_array(list, pack_item)
Packs a variable length list of homogeneous items. First, the length of the list is packed as an unsigned
integer, then each element is packed as in pack_farray() above.

14.4. xdrlib — Encode and decode XDR data 493

The Python Library Reference, Release 3.5.7

14.4.2 Unpacker Objects

The Unpacker class offers the following methods:

Unpacker.reset(data)
Resets the string buffer with the given data.

Unpacker.get_position()
Returns the current unpack position in the data buffer.

Unpacker.set_position(position)
Sets the data buffer unpack position to position. You should be careful about using get_position()
and set_position().

Unpacker.get_buffer()
Returns the current unpack data buffer as a string.

Unpacker.done()
Indicates unpack completion. Raises an Error exception if all of the data has not been unpacked.

In addition, every data type that can be packed with a Packer, can be unpacked with an Unpacker. Unpacking
methods are of the form unpack_type(), and take no arguments. They return the unpacked object.

Unpacker.unpack_float()
Unpacks a single-precision floating point number.

Unpacker.unpack_double()
Unpacks a double-precision floating point number, similarly to unpack_float().

In addition, the following methods unpack strings, bytes, and opaque data:

Unpacker.unpack_fstring(n)
Unpacks and returns a fixed length string. n is the number of characters expected. Padding with null
bytes to guaranteed 4 byte alignment is assumed.

Unpacker.unpack_fopaque(n)
Unpacks and returns a fixed length opaque data stream, similarly to unpack_fstring().

Unpacker.unpack_string()
Unpacks and returns a variable length string. The length of the string is first unpacked as an unsigned
integer, then the string data is unpacked with unpack_fstring().

Unpacker.unpack_opaque()
Unpacks and returns a variable length opaque data string, similarly to unpack_string().

Unpacker.unpack_bytes()
Unpacks and returns a variable length byte stream, similarly to unpack_string().

The following methods support unpacking arrays and lists:

Unpacker.unpack_list(unpack_item)
Unpacks and returns a list of homogeneous items. The list is unpacked one element at a time by first
unpacking an unsigned integer flag. If the flag is 1, then the item is unpacked and appended to the
list. A flag of 0 indicates the end of the list. unpack_item is the function that is called to unpack the
items.

Unpacker.unpack_farray(n, unpack_item)
Unpacks and returns (as a list) a fixed length array of homogeneous items. n is number of list elements
to expect in the buffer. As above, unpack_item is the function used to unpack each element.

Unpacker.unpack_array(unpack_item)
Unpacks and returns a variable length list of homogeneous items. First, the length of the list is
unpacked as an unsigned integer, then each element is unpacked as in unpack_farray() above.

494 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

14.4.3 Exceptions

Exceptions in this module are coded as class instances:

exception xdrlib.Error
The base exception class. Error has a single public attribute msg containing the description of the
error.

exception xdrlib.ConversionError
Class derived from Error. Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib
p = xdrlib.Packer()
try:

p.pack_double(8.01)
except xdrlib.ConversionError as instance:

print('packing the double failed:', instance.msg)

14.5 plistlib — Generate and parse Mac OS X .plist files

Source code: Lib/plistlib.py

This module provides an interface for reading and writing the “property list” files used mainly by Mac OS
X and supports both binary and XML plist files.

The property list (.plist) file format is a simple serialization supporting basic object types, like dictionaries,
lists, numbers and strings. Usually the top level object is a dictionary.

To write out and to parse a plist file, use the dump() and load() functions.

To work with plist data in bytes objects, use dumps() and loads().

Values can be strings, integers, floats, booleans, tuples, lists, dictionaries (but only with string keys), Data,
bytes, bytesarray or datetime.datetime objects.

Changed in version 3.4: New API, old API deprecated. Support for binary format plists added.

See also:

PList manual page Apple’s documentation of the file format.

This module defines the following functions:

plistlib.load(fp, *, fmt=None, use_builtin_types=True, dict_type=dict)
Read a plist file. fp should be a readable and binary file object. Return the unpacked root object
(which usually is a dictionary).

The fmt is the format of the file and the following values are valid:

• None: Autodetect the file format

• FMT_XML: XML file format

• FMT_BINARY: Binary plist format

14.5. plistlib — Generate and parse Mac OS X .plist files 495

https://github.com/python/cpython/tree/3.5/Lib/plistlib.py
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man5/plist.5.html

The Python Library Reference, Release 3.5.7

If use_builtin_types is true (the default) binary data will be returned as instances of bytes, otherwise
it is returned as instances of Data.

The dict_type is the type used for dictionaries that are read from the plist file. The exact structure
of the plist can be recovered by using collections.OrderedDict (although the order of keys shouldn’t be
important in plist files).

XML data for the FMT_XML format is parsed using the Expat parser from xml.parsers.expat – see its
documentation for possible exceptions on ill-formed XML. Unknown elements will simply be ignored
by the plist parser.

The parser for the binary format raises InvalidFileException when the file cannot be parsed.

New in version 3.4.

plistlib.loads(data, *, fmt=None, use_builtin_types=True, dict_type=dict)
Load a plist from a bytes object. See load() for an explanation of the keyword arguments.

New in version 3.4.

plistlib.dump(value, fp, *, fmt=FMT_XML, sort_keys=True, skipkeys=False)
Write value to a plist file. Fp should be a writable, binary file object.

The fmt argument specifies the format of the plist file and can be one of the following values:

• FMT_XML: XML formatted plist file

• FMT_BINARY: Binary formatted plist file

When sort_keys is true (the default) the keys for dictionaries will be written to the plist in sorted
order, otherwise they will be written in the iteration order of the dictionary.

When skipkeys is false (the default) the function raises TypeError when a key of a dictionary is not a
string, otherwise such keys are skipped.

A TypeError will be raised if the object is of an unsupported type or a container that contains objects
of unsupported types.

An OverflowError will be raised for integer values that cannot be represented in (binary) plist files.

New in version 3.4.

plistlib.dumps(value, *, fmt=FMT_XML, sort_keys=True, skipkeys=False)
Return value as a plist-formatted bytes object. See the documentation for dump() for an explanation
of the keyword arguments of this function.

New in version 3.4.

The following functions are deprecated:

plistlib.readPlist(pathOrFile)
Read a plist file. pathOrFile may be either a file name or a (readable and binary) file object. Returns
the unpacked root object (which usually is a dictionary).

This function calls load() to do the actual work, see the documentation of that function for an expla-
nation of the keyword arguments.

Note: Dict values in the result have a __getattr__ method that defers to __getitem_. This means
that you can use attribute access to access items of these dictionaries.

Deprecated since version 3.4: Use load() instead.

496 Chapter 14. File Formats

The Python Library Reference, Release 3.5.7

plistlib.writePlist(rootObject, pathOrFile)
Write rootObject to an XML plist file. pathOrFile may be either a file name or a (writable and binary)
file object

Deprecated since version 3.4: Use dump() instead.

plistlib.readPlistFromBytes(data)
Read a plist data from a bytes object. Return the root object.

See load() for a description of the keyword arguments.

Note: Dict values in the result have a __getattr__ method that defers to __getitem_. This means
that you can use attribute access to access items of these dictionaries.

Deprecated since version 3.4: Use loads() instead.

plistlib.writePlistToBytes(rootObject)
Return rootObject as an XML plist-formatted bytes object.

Deprecated since version 3.4: Use dumps() instead.

The following classes are available:

Dict([dict]):
Return an extended mapping object with the same value as dictionary dict.

This class is a subclass of dict where attribute access can be used to access items. That is, aDict.key
is the same as aDict['key'] for getting, setting and deleting items in the mapping.

Deprecated since version 3.0.

class plistlib.Data(data)
Return a “data” wrapper object around the bytes object data. This is used in functions converting
from/to plists to represent the <data> type available in plists.

It has one attribute, data, that can be used to retrieve the Python bytes object stored in it.

Deprecated since version 3.4: Use a bytes object instead.

The following constants are available:

plistlib.FMT_XML
The XML format for plist files.

New in version 3.4.

plistlib.FMT_BINARY
The binary format for plist files

New in version 3.4.

14.5.1 Examples

Generating a plist:

pl = dict(
aString = "Doodah",
aList = ["A", "B", 12, 32.1, [1, 2, 3]],
aFloat = 0.1,
anInt = 728,

(continues on next page)

14.5. plistlib — Generate and parse Mac OS X .plist files 497

The Python Library Reference, Release 3.5.7

(continued from previous page)

aDict = dict(
anotherString = "<hello & hi there!>",
aThirdString = "M\xe4ssig, Ma\xdf",
aTrueValue = True,
aFalseValue = False,

),
someData = b"<binary gunk>",
someMoreData = b"<lots of binary gunk>" * 10,
aDate = datetime.datetime.fromtimestamp(time.mktime(time.gmtime())),

)
with open(fileName, 'wb') as fp:

dump(pl, fp)

Parsing a plist:

with open(fileName, 'rb') as fp:
pl = load(fp)

print(pl["aKey"])

498 Chapter 14. File Formats

CHAPTER

FIFTEEN

CRYPTOGRAPHIC SERVICES

The modules described in this chapter implement various algorithms of a cryptographic nature. They are
available at the discretion of the installation. On Unix systems, the crypt module may also be available.
Here’s an overview:

15.1 hashlib — Secure hashes and message digests

Source code: Lib/hashlib.py

This module implements a common interface to many different secure hash and message digest algorithms.
Included are the FIPS secure hash algorithms SHA1, SHA224, SHA256, SHA384, and SHA512 (defined in
FIPS 180-2) as well as RSA’s MD5 algorithm (defined in Internet RFC 1321). The terms “secure hash” and
“message digest” are interchangeable. Older algorithms were called message digests. The modern term is
secure hash.

Note: If you want the adler32 or crc32 hash functions, they are available in the zlib module.

Warning: Some algorithms have known hash collision weaknesses, refer to the “See also” section at the
end.

15.1.1 Hash algorithms

There is one constructor method named for each type of hash. All return a hash object with the same
simple interface. For example: use sha1() to create a SHA1 hash object. You can now feed this object with
bytes-like objects (normally bytes) using the update() method. At any point you can ask it for the digest of
the concatenation of the data fed to it so far using the digest() or hexdigest() methods.

Note: For better multithreading performance, the Python GIL is released for data larger than 2047 bytes
at object creation or on update.

Note: Feeding string objects into update() is not supported, as hashes work on bytes, not on characters.

499

https://github.com/python/cpython/tree/3.5/Lib/hashlib.py
https://tools.ietf.org/html/rfc1321.html

The Python Library Reference, Release 3.5.7

Constructors for hash algorithms that are always present in this module are md5(), sha1(), sha224(), sha256(),
sha384(), and sha512(). Additional algorithms may also be available depending upon the OpenSSL library
that Python uses on your platform.

For example, to obtain the digest of the byte string b'Nobody inspects the spammish repetition':

>>> import hashlib
>>> m = hashlib.md5()
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()
b'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'
>>> m.digest_size
16
>>> m.block_size
64

More condensed:

>>> hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest()
'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'

hashlib.new(name[, data])
Is a generic constructor that takes the string name of the desired algorithm as its first parameter. It
also exists to allow access to the above listed hashes as well as any other algorithms that your OpenSSL
library may offer. The named constructors are much faster than new() and should be preferred.

Using new() with an algorithm provided by OpenSSL:

>>> h = hashlib.new('ripemd160')
>>> h.update(b"Nobody inspects the spammish repetition")
>>> h.hexdigest()
'cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc'

Hashlib provides the following constant attributes:

hashlib.algorithms_guaranteed
A set containing the names of the hash algorithms guaranteed to be supported by this module on all
platforms.

New in version 3.2.

hashlib.algorithms_available
A set containing the names of the hash algorithms that are available in the running Python interpreter.
These names will be recognized when passed to new(). algorithms_guaranteed will always be a subset.
The same algorithm may appear multiple times in this set under different names (thanks to OpenSSL).

New in version 3.2.

The following values are provided as constant attributes of the hash objects returned by the constructors:

hash.digest_size
The size of the resulting hash in bytes.

hash.block_size
The internal block size of the hash algorithm in bytes.

A hash object has the following attributes:

hash.name
The canonical name of this hash, always lowercase and always suitable as a parameter to new() to
create another hash of this type.

500 Chapter 15. Cryptographic Services

The Python Library Reference, Release 3.5.7

Changed in version 3.4: The name attribute has been present in CPython since its inception, but until
Python 3.4 was not formally specified, so may not exist on some platforms.

A hash object has the following methods:

hash.update(arg)
Update the hash object with the object arg, which must be interpretable as a buffer of bytes. Repeated
calls are equivalent to a single call with the concatenation of all the arguments: m.update(a); m.
update(b) is equivalent to m.update(a+b).

Changed in version 3.1: The Python GIL is released to allow other threads to run while hash updates
on data larger than 2047 bytes is taking place when using hash algorithms supplied by OpenSSL.

hash.digest()
Return the digest of the data passed to the update() method so far. This is a bytes object of size
digest_size which may contain bytes in the whole range from 0 to 255.

hash.hexdigest()
Like digest() except the digest is returned as a string object of double length, containing only hexadec-
imal digits. This may be used to exchange the value safely in email or other non-binary environments.

hash.copy()
Return a copy (“clone”) of the hash object. This can be used to efficiently compute the digests of data
sharing a common initial substring.

15.1.2 Key derivation

Key derivation and key stretching algorithms are designed for secure password hashing. Naive algorithms
such as sha1(password) are not resistant against brute-force attacks. A good password hashing function
must be tunable, slow, and include a salt.

hashlib.pbkdf2_hmac(hash_name, password, salt, iterations, dklen=None)
The function provides PKCS#5 password-based key derivation function 2. It uses HMAC as pseudo-
random function.

The string hash_name is the desired name of the hash digest algorithm for HMAC, e.g. ‘sha1’ or
‘sha256’. password and salt are interpreted as buffers of bytes. Applications and libraries should limit
password to a sensible length (e.g. 1024). salt should be about 16 or more bytes from a proper source,
e.g. os.urandom().

The number of iterations should be chosen based on the hash algorithm and computing power. As of
2013, at least 100,000 iterations of SHA-256 are suggested.

dklen is the length of the derived key. If dklen is None then the digest size of the hash algorithm
hash_name is used, e.g. 64 for SHA-512.

>>> import hashlib, binascii
>>> dk = hashlib.pbkdf2_hmac('sha256', b'password', b'salt', 100000)
>>> binascii.hexlify(dk)
b'0394a2ede332c9a13eb82e9b24631604c31df978b4e2f0fbd2c549944f9d79a5'

New in version 3.4.

Note: A fast implementation of pbkdf2_hmac is available with OpenSSL. The Python implementation
uses an inline version of hmac. It is about three times slower and doesn’t release the GIL.

See also:

15.1. hashlib — Secure hashes and message digests 501

https://en.wikipedia.org/wiki/Salt_%28cryptography%29

The Python Library Reference, Release 3.5.7

Module hmac A module to generate message authentication codes using hashes.

Module base64 Another way to encode binary hashes for non-binary environments.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf The FIPS 180-2 publication on Secure Hash
Algorithms.

https://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms
Wikipedia article with information on which algorithms have known issues and what that means
regarding their use.

https://www.ietf.org/rfc/rfc2898.txt PKCS #5: Password-Based Cryptography Specification Version 2.0

15.2 hmac — Keyed-Hashing for Message Authentication

Source code: Lib/hmac.py

This module implements the HMAC algorithm as described by RFC 2104.

hmac.new(key, msg=None, digestmod=None)
Return a new hmac object. key is a bytes or bytearray object giving the secret key. If msg is present,
the method call update(msg) is made. digestmod is the digest name, digest constructor or module
for the HMAC object to use. It supports any name suitable to hashlib.new() and defaults to the
hashlib.md5 constructor.

Changed in version 3.4: Parameter key can be a bytes or bytearray object. Parameter msg can be of
any type supported by hashlib. Parameter digestmod can be the name of a hash algorithm.

Deprecated since version 3.4: MD5 as implicit default digest for digestmod is deprecated.

An HMAC object has the following methods:

HMAC.update(msg)
Update the hmac object with msg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments: m.update(a); m.update(b) is equivalent to m.update(a + b).

Changed in version 3.4: Parameter msg can be of any type supported by hashlib.

HMAC.digest()
Return the digest of the bytes passed to the update() method so far. This bytes object will be the
same length as the digest_size of the digest given to the constructor. It may contain non-ASCII bytes,
including NUL bytes.

Warning: When comparing the output of digest() to an externally-supplied digest during a verifi-
cation routine, it is recommended to use the compare_digest() function instead of the == operator
to reduce the vulnerability to timing attacks.

HMAC.hexdigest()
Like digest() except the digest is returned as a string twice the length containing only hexadecimal
digits. This may be used to exchange the value safely in email or other non-binary environments.

Warning: When comparing the output of hexdigest() to an externally-supplied digest during a
verification routine, it is recommended to use the compare_digest() function instead of the ==
operator to reduce the vulnerability to timing attacks.

502 Chapter 15. Cryptographic Services

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
https://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms
https://www.ietf.org/rfc/rfc2898.txt
https://github.com/python/cpython/tree/3.5/Lib/hmac.py
https://tools.ietf.org/html/rfc2104.html

The Python Library Reference, Release 3.5.7

HMAC.copy()
Return a copy (“clone”) of the hmac object. This can be used to efficiently compute the digests of
strings that share a common initial substring.

A hash object has the following attributes:

HMAC.digest_size
The size of the resulting HMAC digest in bytes.

HMAC.block_size
The internal block size of the hash algorithm in bytes.

New in version 3.4.

HMAC.name
The canonical name of this HMAC, always lowercase, e.g. hmac-md5.

New in version 3.4.

This module also provides the following helper function:

hmac.compare_digest(a, b)
Return a == b. This function uses an approach designed to prevent timing analysis by avoiding
content-based short circuiting behaviour, making it appropriate for cryptography. a and b must both
be of the same type: either str (ASCII only, as e.g. returned by HMAC.hexdigest()), or a bytes-like
object.

Note: If a and b are of different lengths, or if an error occurs, a timing attack could theoretically
reveal information about the types and lengths of a and b—but not their values.

New in version 3.3.

See also:

Module hashlib The Python module providing secure hash functions.

15.2. hmac — Keyed-Hashing for Message Authentication 503

The Python Library Reference, Release 3.5.7

504 Chapter 15. Cryptographic Services

CHAPTER

SIXTEEN

GENERIC OPERATING SYSTEM SERVICES

The modules described in this chapter provide interfaces to operating system features that are available on
(almost) all operating systems, such as files and a clock. The interfaces are generally modeled after the Unix
or C interfaces, but they are available on most other systems as well. Here’s an overview:

16.1 os — Miscellaneous operating system interfaces

Source code: Lib/os.py

This module provides a portable way of using operating system dependent functionality. If you just want to
read or write a file see open(), if you want to manipulate paths, see the os.path module, and if you want to
read all the lines in all the files on the command line see the fileinput module. For creating temporary files
and directories see the tempfile module, and for high-level file and directory handling see the shutil module.

Notes on the availability of these functions:

• The design of all built-in operating system dependent modules of Python is such that as long as
the same functionality is available, it uses the same interface; for example, the function os.stat(path)
returns stat information about path in the same format (which happens to have originated with the
POSIX interface).

• Extensions peculiar to a particular operating system are also available through the os module, but
using them is of course a threat to portability.

• All functions accepting path or file names accept both bytes and string objects, and result in an object
of the same type, if a path or file name is returned.

• An “Availability: Unix” note means that this function is commonly found on Unix systems. It does
not make any claims about its existence on a specific operating system.

• If not separately noted, all functions that claim “Availability: Unix” are supported on Mac OS X, which
builds on a Unix core.

Note: All functions in this module raise OSError in the case of invalid or inaccessible file names and paths,
or other arguments that have the correct type, but are not accepted by the operating system.

exception os.error
An alias for the built-in OSError exception.

os.name
The name of the operating system dependent module imported. The following names have currently
been registered: 'posix', 'nt', 'ce', 'java'.

505

https://github.com/python/cpython/tree/3.5/Lib/os.py

The Python Library Reference, Release 3.5.7

See also:

sys.platform has a finer granularity. os.uname() gives system-dependent version information.

The platform module provides detailed checks for the system’s identity.

16.1.1 File Names, Command Line Arguments, and Environment Variables

In Python, file names, command line arguments, and environment variables are represented using the
string type. On some systems, decoding these strings to and from bytes is necessary before passing
them to the operating system. Python uses the file system encoding to perform this conversion (see sys.
getfilesystemencoding()).

Changed in version 3.1: On some systems, conversion using the file system encoding may fail. In this case,
Python uses the surrogateescape encoding error handler, which means that undecodable bytes are replaced by
a Unicode character U+DCxx on decoding, and these are again translated to the original byte on encoding.

The file system encoding must guarantee to successfully decode all bytes below 128. If the file system
encoding fails to provide this guarantee, API functions may raise UnicodeErrors.

16.1.2 Process Parameters

These functions and data items provide information and operate on the current process and user.

os.ctermid()
Return the filename corresponding to the controlling terminal of the process.

Availability: Unix.

os.environ
A mapping object representing the string environment. For example, environ['HOME'] is the path-
name of your home directory (on some platforms), and is equivalent to getenv("HOME") in C.

This mapping is captured the first time the os module is imported, typically during Python startup
as part of processing site.py. Changes to the environment made after this time are not reflected in
os.environ, except for changes made by modifying os.environ directly.

If the platform supports the putenv() function, this mapping may be used to modify the environment
as well as query the environment. putenv() will be called automatically when the mapping is modified.

On Unix, keys and values use sys.getfilesystemencoding() and 'surrogateescape' error handler. Use
environb if you would like to use a different encoding.

Note: Calling putenv() directly does not change os.environ, so it’s better to modify os.environ.

Note: On some platforms, including FreeBSD and Mac OS X, setting environ may cause memory
leaks. Refer to the system documentation for putenv().

If putenv() is not provided, a modified copy of this mapping may be passed to the appropriate process-
creation functions to cause child processes to use a modified environment.

If the platform supports the unsetenv() function, you can delete items in this mapping to unset envi-
ronment variables. unsetenv() will be called automatically when an item is deleted from os.environ,
and when one of the pop() or clear() methods is called.

506 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

os.environb
Bytes version of environ: a mapping object representing the environment as byte strings. environ and
environb are synchronized (modify environb updates environ, and vice versa).

environb is only available if supports_bytes_environ is True.

New in version 3.2.

os.chdir(path)
os.fchdir(fd)
os.getcwd()

These functions are described in Files and Directories.

os.fsencode(filename)
Encode filename to the filesystem encoding with 'surrogateescape' error handler, or 'strict' on Win-
dows; return bytes unchanged.

fsdecode() is the reverse function.

New in version 3.2.

os.fsdecode(filename)
Decode filename from the filesystem encoding with 'surrogateescape' error handler, or 'strict' on
Windows; return str unchanged.

fsencode() is the reverse function.

New in version 3.2.

os.getenv(key, default=None)
Return the value of the environment variable key if it exists, or default if it doesn’t. key, default and
the result are str.

On Unix, keys and values are decoded with sys.getfilesystemencoding() and 'surrogateescape' error
handler. Use os.getenvb() if you would like to use a different encoding.

Availability: most flavors of Unix, Windows.

os.getenvb(key, default=None)
Return the value of the environment variable key if it exists, or default if it doesn’t. key, default and
the result are bytes.

getenvb() is only available if supports_bytes_environ is True.

Availability: most flavors of Unix.

New in version 3.2.

os.get_exec_path(env=None)
Returns the list of directories that will be searched for a named executable, similar to a shell, when
launching a process. env, when specified, should be an environment variable dictionary to lookup the
PATH in. By default, when env is None, environ is used.

New in version 3.2.

os.getegid()
Return the effective group id of the current process. This corresponds to the “set id” bit on the file
being executed in the current process.

Availability: Unix.

os.geteuid()
Return the current process’s effective user id.

Availability: Unix.

16.1. os — Miscellaneous operating system interfaces 507

The Python Library Reference, Release 3.5.7

os.getgid()
Return the real group id of the current process.

Availability: Unix.

os.getgrouplist(user, group)
Return list of group ids that user belongs to. If group is not in the list, it is included; typically, group
is specified as the group ID field from the password record for user.

Availability: Unix.

New in version 3.3.

os.getgroups()
Return list of supplemental group ids associated with the current process.

Availability: Unix.

Note: On Mac OS X, getgroups() behavior differs somewhat from other Unix platforms. If the
Python interpreter was built with a deployment target of 10.5 or earlier, getgroups() returns the list
of effective group ids associated with the current user process; this list is limited to a system-defined
number of entries, typically 16, and may be modified by calls to setgroups() if suitably privileged. If
built with a deployment target greater than 10.5, getgroups() returns the current group access list
for the user associated with the effective user id of the process; the group access list may change
over the lifetime of the process, it is not affected by calls to setgroups(), and its length is not limited
to 16. The deployment target value, MACOSX_DEPLOYMENT_TARGET, can be obtained with
sysconfig.get_config_var().

os.getlogin()
Return the name of the user logged in on the controlling terminal of the process. For most purposes, it
is more useful to use the environment variables LOGNAME or USERNAME to find out who the user
is, or pwd.getpwuid(os.getuid())[0] to get the login name of the current real user id.

Availability: Unix, Windows.

os.getpgid(pid)
Return the process group id of the process with process id pid. If pid is 0, the process group id of the
current process is returned.

Availability: Unix.

os.getpgrp()
Return the id of the current process group.

Availability: Unix.

os.getpid()
Return the current process id.

os.getppid()
Return the parent’s process id. When the parent process has exited, on Unix the id returned is the
one of the init process (1), on Windows it is still the same id, which may be already reused by another
process.

Availability: Unix, Windows.

Changed in version 3.2: Added support for Windows.

os.getpriority(which, who)
Get program scheduling priority. The value which is one of PRIO_PROCESS, PRIO_PGRP, or
PRIO_USER, and who is interpreted relative to which (a process identifier for PRIO_PROCESS,

508 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

process group identifier for PRIO_PGRP, and a user ID for PRIO_USER). A zero value for who
denotes (respectively) the calling process, the process group of the calling process, or the real user ID
of the calling process.

Availability: Unix.

New in version 3.3.

os.PRIO_PROCESS
os.PRIO_PGRP
os.PRIO_USER

Parameters for the getpriority() and setpriority() functions.

Availability: Unix.

New in version 3.3.

os.getresuid()
Return a tuple (ruid, euid, suid) denoting the current process’s real, effective, and saved user ids.

Availability: Unix.

New in version 3.2.

os.getresgid()
Return a tuple (rgid, egid, sgid) denoting the current process’s real, effective, and saved group ids.

Availability: Unix.

New in version 3.2.

os.getuid()
Return the current process’s real user id.

Availability: Unix.

os.initgroups(username, gid)
Call the system initgroups() to initialize the group access list with all of the groups of which the
specified username is a member, plus the specified group id.

Availability: Unix.

New in version 3.2.

os.putenv(key, value)
Set the environment variable named key to the string value. Such changes to the environment affect
subprocesses started with os.system(), popen() or fork() and execv().

Availability: most flavors of Unix, Windows.

Note: On some platforms, including FreeBSD and Mac OS X, setting environ may cause memory
leaks. Refer to the system documentation for putenv.

When putenv() is supported, assignments to items in os.environ are automatically translated into
corresponding calls to putenv(); however, calls to putenv() don’t update os.environ, so it is actually
preferable to assign to items of os.environ.

os.setegid(egid)
Set the current process’s effective group id.

Availability: Unix.

16.1. os — Miscellaneous operating system interfaces 509

The Python Library Reference, Release 3.5.7

os.seteuid(euid)
Set the current process’s effective user id.

Availability: Unix.

os.setgid(gid)
Set the current process’ group id.

Availability: Unix.

os.setgroups(groups)
Set the list of supplemental group ids associated with the current process to groups. groups must
be a sequence, and each element must be an integer identifying a group. This operation is typically
available only to the superuser.

Availability: Unix.

Note: On Mac OS X, the length of groups may not exceed the system-defined maximum number of
effective group ids, typically 16. See the documentation for getgroups() for cases where it may not
return the same group list set by calling setgroups().

os.setpgrp()
Call the system call setpgrp() or setpgrp(0, 0) depending on which version is implemented (if any).
See the Unix manual for the semantics.

Availability: Unix.

os.setpgid(pid, pgrp)
Call the system call setpgid() to set the process group id of the process with id pid to the process group
with id pgrp. See the Unix manual for the semantics.

Availability: Unix.

os.setpriority(which, who, priority)
Set program scheduling priority. The value which is one of PRIO_PROCESS, PRIO_PGRP, or
PRIO_USER, and who is interpreted relative to which (a process identifier for PRIO_PROCESS,
process group identifier for PRIO_PGRP, and a user ID for PRIO_USER). A zero value for who
denotes (respectively) the calling process, the process group of the calling process, or the real user
ID of the calling process. priority is a value in the range -20 to 19. The default priority is 0; lower
priorities cause more favorable scheduling.

Availability: Unix

New in version 3.3.

os.setregid(rgid, egid)
Set the current process’s real and effective group ids.

Availability: Unix.

os.setresgid(rgid, egid, sgid)
Set the current process’s real, effective, and saved group ids.

Availability: Unix.

New in version 3.2.

os.setresuid(ruid, euid, suid)
Set the current process’s real, effective, and saved user ids.

Availability: Unix.

510 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

New in version 3.2.

os.setreuid(ruid, euid)
Set the current process’s real and effective user ids.

Availability: Unix.

os.getsid(pid)
Call the system call getsid(). See the Unix manual for the semantics.

Availability: Unix.

os.setsid()
Call the system call setsid(). See the Unix manual for the semantics.

Availability: Unix.

os.setuid(uid)
Set the current process’s user id.

Availability: Unix.

os.strerror(code)
Return the error message corresponding to the error code in code. On platforms where strerror()
returns NULL when given an unknown error number, ValueError is raised.

os.supports_bytes_environ
True if the native OS type of the environment is bytes (eg. False on Windows).

New in version 3.2.

os.umask(mask)
Set the current numeric umask and return the previous umask.

os.uname()
Returns information identifying the current operating system. The return value is an object with five
attributes:

• sysname - operating system name

• nodename - name of machine on network (implementation-defined)

• release - operating system release

• version - operating system version

• machine - hardware identifier

For backwards compatibility, this object is also iterable, behaving like a five-tuple containing sysname,
nodename, release, version, and machine in that order.

Some systems truncate nodename to 8 characters or to the leading component; a better way to get the
hostname is socket.gethostname() or even socket.gethostbyaddr(socket.gethostname()).

Availability: recent flavors of Unix.

Changed in version 3.3: Return type changed from a tuple to a tuple-like object with named attributes.

os.unsetenv(key)
Unset (delete) the environment variable named key. Such changes to the environment affect subpro-
cesses started with os.system(), popen() or fork() and execv().

When unsetenv() is supported, deletion of items in os.environ is automatically translated into a cor-
responding call to unsetenv(); however, calls to unsetenv() don’t update os.environ, so it is actually
preferable to delete items of os.environ.

16.1. os — Miscellaneous operating system interfaces 511

The Python Library Reference, Release 3.5.7

Availability: most flavors of Unix, Windows.

16.1.3 File Object Creation

This function creates new file objects. (See also open() for opening file descriptors.)

os.fdopen(fd, *args, **kwargs)
Return an open file object connected to the file descriptor fd. This is an alias of the open() built-in
function and accepts the same arguments. The only difference is that the first argument of fdopen()
must always be an integer.

16.1.4 File Descriptor Operations

These functions operate on I/O streams referenced using file descriptors.

File descriptors are small integers corresponding to a file that has been opened by the current process. For
example, standard input is usually file descriptor 0, standard output is 1, and standard error is 2. Further
files opened by a process will then be assigned 3, 4, 5, and so forth. The name “file descriptor” is slightly
deceptive; on Unix platforms, sockets and pipes are also referenced by file descriptors.

The fileno() method can be used to obtain the file descriptor associated with a file object when required.
Note that using the file descriptor directly will bypass the file object methods, ignoring aspects such as
internal buffering of data.

os.close(fd)
Close file descriptor fd.

Note: This function is intended for low-level I/O and must be applied to a file descriptor as returned
by os.open() or pipe(). To close a “file object” returned by the built-in function open() or by popen()
or fdopen(), use its close() method.

os.closerange(fd_low, fd_high)
Close all file descriptors from fd_low (inclusive) to fd_high (exclusive), ignoring errors. Equivalent to
(but much faster than):

for fd in range(fd_low, fd_high):
try:

os.close(fd)
except OSError:

pass

os.device_encoding(fd)
Return a string describing the encoding of the device associated with fd if it is connected to a terminal;
else return None.

os.dup(fd)
Return a duplicate of file descriptor fd. The new file descriptor is non-inheritable.

OnWindows, when duplicating a standard stream (0: stdin, 1: stdout, 2: stderr), the new file descriptor
is inheritable.

Changed in version 3.4: The new file descriptor is now non-inheritable.

os.dup2(fd, fd2, inheritable=True)
Duplicate file descriptor fd to fd2, closing the latter first if necessary. The file descriptor fd2 is inheri-
table by default, or non-inheritable if inheritable is False.

512 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Changed in version 3.4: Add the optional inheritable parameter.

os.fchmod(fd, mode)
Change the mode of the file given by fd to the numeric mode. See the docs for chmod() for possible
values of mode. As of Python 3.3, this is equivalent to os.chmod(fd, mode).

Availability: Unix.

os.fchown(fd, uid, gid)
Change the owner and group id of the file given by fd to the numeric uid and gid. To leave one of the
ids unchanged, set it to -1. See chown(). As of Python 3.3, this is equivalent to os.chown(fd, uid, gid).

Availability: Unix.

os.fdatasync(fd)
Force write of file with filedescriptor fd to disk. Does not force update of metadata.

Availability: Unix.

Note: This function is not available on MacOS.

os.fpathconf(fd, name)
Return system configuration information relevant to an open file. name specifies the configuration value
to retrieve; it may be a string which is the name of a defined system value; these names are specified
in a number of standards (POSIX.1, Unix 95, Unix 98, and others). Some platforms define additional
names as well. The names known to the host operating system are given in the pathconf_names
dictionary. For configuration variables not included in that mapping, passing an integer for name is
also accepted.

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported
by the host system, even if it is included in pathconf_names, an OSError is raised with errno.EINVAL
for the error number.

As of Python 3.3, this is equivalent to os.pathconf(fd, name).

Availability: Unix.

os.fstat(fd)
Get the status of the file descriptor fd. Return a stat_result object.

As of Python 3.3, this is equivalent to os.stat(fd).

See also:

The stat() function.

os.fstatvfs(fd)
Return information about the filesystem containing the file associated with file descriptor fd, like
statvfs(). As of Python 3.3, this is equivalent to os.statvfs(fd).

Availability: Unix.

os.fsync(fd)
Force write of file with filedescriptor fd to disk. On Unix, this calls the native fsync() function; on
Windows, the MS _commit() function.

If you’re starting with a buffered Python file object f, first do f.flush(), and then do os.fsync(f.fileno()),
to ensure that all internal buffers associated with f are written to disk.

Availability: Unix, Windows.

16.1. os — Miscellaneous operating system interfaces 513

The Python Library Reference, Release 3.5.7

os.ftruncate(fd, length)
Truncate the file corresponding to file descriptor fd, so that it is at most length bytes in size. As of
Python 3.3, this is equivalent to os.truncate(fd, length).

Availability: Unix, Windows.

Changed in version 3.5: Added support for Windows

os.get_blocking(fd)
Get the blocking mode of the file descriptor: False if the O_NONBLOCK flag is set, True if the flag
is cleared.

See also set_blocking() and socket.socket.setblocking().

Availability: Unix.

New in version 3.5.

os.isatty(fd)
Return True if the file descriptor fd is open and connected to a tty(-like) device, else False.

os.lockf(fd, cmd, len)
Apply, test or remove a POSIX lock on an open file descriptor. fd is an open file descriptor. cmd
specifies the command to use - one of F_LOCK, F_TLOCK, F_ULOCK or F_TEST. len specifies
the section of the file to lock.

Availability: Unix.

New in version 3.3.

os.F_LOCK
os.F_TLOCK
os.F_ULOCK
os.F_TEST

Flags that specify what action lockf() will take.

Availability: Unix.

New in version 3.3.

os.lseek(fd, pos, how)
Set the current position of file descriptor fd to position pos, modified by how: SEEK_SET or 0 to
set the position relative to the beginning of the file; SEEK_CUR or 1 to set it relative to the current
position; SEEK_END or 2 to set it relative to the end of the file. Return the new cursor position in
bytes, starting from the beginning.

os.SEEK_SET
os.SEEK_CUR
os.SEEK_END

Parameters to the lseek() function. Their values are 0, 1, and 2, respectively.

New in version 3.3: Some operating systems could support additional values, like os.SEEK_HOLE or
os.SEEK_DATA.

os.open(path, flags, mode=0o777, *, dir_fd=None)
Open the file path and set various flags according to flags and possibly its mode according to mode.
When computing mode, the current umask value is first masked out. Return the file descriptor for the
newly opened file. The new file descriptor is non-inheritable.

For a description of the flag and mode values, see the C run-time documentation; flag constants (like
O_RDONLY and O_WRONLY) are defined in the os module. In particular, on Windows adding
O_BINARY is needed to open files in binary mode.

514 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

This function can support paths relative to directory descriptors with the dir_fd parameter.

Changed in version 3.4: The new file descriptor is now non-inheritable.

Note: This function is intended for low-level I/O. For normal usage, use the built-in function open(),
which returns a file object with read() and write() methods (and many more). To wrap a file descriptor
in a file object, use fdopen().

New in version 3.3: The dir_fd argument.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the function now retries the system call instead of raising an InterruptedError exception
(see PEP 475 for the rationale).

The following constants are options for the flags parameter to the open() function. They can be combined
using the bitwise OR operator |. Some of them are not available on all platforms. For descriptions of their
availability and use, consult the open(2) manual page on Unix or the MSDN on Windows.

os.O_RDONLY
os.O_WRONLY
os.O_RDWR
os.O_APPEND
os.O_CREAT
os.O_EXCL
os.O_TRUNC

The above constants are available on Unix and Windows.

os.O_DSYNC
os.O_RSYNC
os.O_SYNC
os.O_NDELAY
os.O_NONBLOCK
os.O_NOCTTY
os.O_CLOEXEC

The above constants are only available on Unix.

Changed in version 3.3: Add O_CLOEXEC constant.

os.O_BINARY
os.O_NOINHERIT
os.O_SHORT_LIVED
os.O_TEMPORARY
os.O_RANDOM
os.O_SEQUENTIAL
os.O_TEXT

The above constants are only available on Windows.

os.O_ASYNC
os.O_DIRECT
os.O_DIRECTORY
os.O_NOFOLLOW
os.O_NOATIME
os.O_PATH
os.O_TMPFILE
os.O_SHLOCK
os.O_EXLOCK

The above constants are extensions and not present if they are not defined by the C library.

16.1. os — Miscellaneous operating system interfaces 515

https://www.python.org/dev/peps/pep-0475
https://msdn.microsoft.com/en-us/library/z0kc8e3z.aspx

The Python Library Reference, Release 3.5.7

Changed in version 3.4: Add O_PATH on systems that support it. Add O_TMPFILE, only available
on Linux Kernel 3.11 or newer.

os.openpty()
Open a new pseudo-terminal pair. Return a pair of file descriptors (master, slave) for the pty and the
tty, respectively. The new file descriptors are non-inheritable. For a (slightly) more portable approach,
use the pty module.

Availability: some flavors of Unix.

Changed in version 3.4: The new file descriptors are now non-inheritable.

os.pipe()
Create a pipe. Return a pair of file descriptors (r, w) usable for reading and writing, respectively. The
new file descriptor is non-inheritable.

Availability: Unix, Windows.

Changed in version 3.4: The new file descriptors are now non-inheritable.

os.pipe2(flags)
Create a pipe with flags set atomically. flags can be constructed by ORing together one or more of these
values: O_NONBLOCK, O_CLOEXEC. Return a pair of file descriptors (r, w) usable for reading
and writing, respectively.

Availability: some flavors of Unix.

New in version 3.3.

os.posix_fallocate(fd, offset, len)
Ensures that enough disk space is allocated for the file specified by fd starting from offset and continuing
for len bytes.

Availability: Unix.

New in version 3.3.

os.posix_fadvise(fd, offset, len, advice)
Announces an intention to access data in a specific pattern thus allowing the kernel to make
optimizations. The advice applies to the region of the file specified by fd starting at offset and continu-
ing for len bytes. advice is one of POSIX_FADV_NORMAL, POSIX_FADV_SEQUENTIAL,
POSIX_FADV_RANDOM, POSIX_FADV_NOREUSE, POSIX_FADV_WILLNEED or
POSIX_FADV_DONTNEED.

Availability: Unix.

New in version 3.3.

os.POSIX_FADV_NORMAL
os.POSIX_FADV_SEQUENTIAL
os.POSIX_FADV_RANDOM
os.POSIX_FADV_NOREUSE
os.POSIX_FADV_WILLNEED
os.POSIX_FADV_DONTNEED

Flags that can be used in advice in posix_fadvise() that specify the access pattern that is likely to be
used.

Availability: Unix.

New in version 3.3.

516 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

os.pread(fd, buffersize, offset)
Read from a file descriptor, fd, at a position of offset. It will read up to buffersize number of bytes.
The file offset remains unchanged.

Availability: Unix.

New in version 3.3.

os.pwrite(fd, str, offset)
Write bytestring to a file descriptor, fd, from offset, leaving the file offset unchanged.

Availability: Unix.

New in version 3.3.

os.read(fd, n)
Read at most n bytes from file descriptor fd. Return a bytestring containing the bytes read. If the end
of the file referred to by fd has been reached, an empty bytes object is returned.

Note: This function is intended for low-level I/O and must be applied to a file descriptor as returned
by os.open() or pipe(). To read a “file object” returned by the built-in function open() or by popen()
or fdopen(), or sys.stdin, use its read() or readline() methods.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the function now retries the system call instead of raising an InterruptedError exception
(see PEP 475 for the rationale).

os.sendfile(out, in, offset, count)

os.sendfile(out, in, offset, count[, headers][, trailers], flags=0)
Copy count bytes from file descriptor in to file descriptor out starting at offset. Return the number of
bytes sent. When EOF is reached return 0.

The first function notation is supported by all platforms that define sendfile().

On Linux, if offset is given as None, the bytes are read from the current position of in and the position
of in is updated.

The second case may be used on Mac OS X and FreeBSD where headers and trailers are arbitrary
sequences of buffers that are written before and after the data from in is written. It returns the same
as the first case.

On Mac OS X and FreeBSD, a value of 0 for count specifies to send until the end of in is reached.

All platforms support sockets as out file descriptor, and some platforms allow other types (e.g. regular
file, pipe) as well.

Cross-platform applications should not use headers, trailers and flags arguments.

Availability: Unix.

Note: For a higher-level wrapper of sendfile(), see socket.socket.sendfile().

New in version 3.3.

os.set_blocking(fd, blocking)
Set the blocking mode of the specified file descriptor. Set the O_NONBLOCK flag if blocking is False,
clear the flag otherwise.

See also get_blocking() and socket.socket.setblocking().

16.1. os — Miscellaneous operating system interfaces 517

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

Availability: Unix.

New in version 3.5.

os.SF_NODISKIO
os.SF_MNOWAIT
os.SF_SYNC

Parameters to the sendfile() function, if the implementation supports them.

Availability: Unix.

New in version 3.3.

os.readv(fd, buffers)
Read from a file descriptor fd into a number of mutable bytes-like objects buffers. readv() will transfer
data into each buffer until it is full and then move on to the next buffer in the sequence to hold the rest
of the data. readv() returns the total number of bytes read (which may be less than the total capacity
of all the objects).

Availability: Unix.

New in version 3.3.

os.tcgetpgrp(fd)
Return the process group associated with the terminal given by fd (an open file descriptor as returned
by os.open()).

Availability: Unix.

os.tcsetpgrp(fd, pg)
Set the process group associated with the terminal given by fd (an open file descriptor as returned by
os.open()) to pg.

Availability: Unix.

os.ttyname(fd)
Return a string which specifies the terminal device associated with file descriptor fd. If fd is not
associated with a terminal device, an exception is raised.

Availability: Unix.

os.write(fd, str)
Write the bytestring in str to file descriptor fd. Return the number of bytes actually written.

Note: This function is intended for low-level I/O and must be applied to a file descriptor as returned
by os.open() or pipe(). To write a “file object” returned by the built-in function open() or by popen()
or fdopen(), or sys.stdout or sys.stderr, use its write() method.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the function now retries the system call instead of raising an InterruptedError exception
(see PEP 475 for the rationale).

os.writev(fd, buffers)
Write the contents of buffers to file descriptor fd. buffers must be a sequence of bytes-like objects.
Buffers are processed in array order. Entire contents of first buffer is written before proceeding to
second, and so on. The operating system may set a limit (sysconf() value SC_IOV_MAX) on the
number of buffers that can be used.

writev() writes the contents of each object to the file descriptor and returns the total number of bytes
written.

518 Chapter 16. Generic Operating System Services

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

Availability: Unix.

New in version 3.3.

Querying the size of a terminal

New in version 3.3.

os.get_terminal_size(fd=STDOUT_FILENO)
Return the size of the terminal window as (columns, lines), tuple of type terminal_size.

The optional argument fd (default STDOUT_FILENO, or standard output) specifies which file de-
scriptor should be queried.

If the file descriptor is not connected to a terminal, an OSError is raised.

shutil.get_terminal_size() is the high-level function which should normally be used, os.
get_terminal_size is the low-level implementation.

Availability: Unix, Windows.

class os.terminal_size
A subclass of tuple, holding (columns, lines) of the terminal window size.

columns
Width of the terminal window in characters.

lines
Height of the terminal window in characters.

Inheritance of File Descriptors

New in version 3.4.

A file descriptor has an “inheritable” flag which indicates if the file descriptor can be inherited by child
processes. Since Python 3.4, file descriptors created by Python are non-inheritable by default.

On UNIX, non-inheritable file descriptors are closed in child processes at the execution of a new program,
other file descriptors are inherited.

On Windows, non-inheritable handles and file descriptors are closed in child processes, except for standard
streams (file descriptors 0, 1 and 2: stdin, stdout and stderr), which are always inherited. Using spawn*
functions, all inheritable handles and all inheritable file descriptors are inherited. Using the subprocess
module, all file descriptors except standard streams are closed, and inheritable handles are only inherited if
the close_fds parameter is False.

os.get_inheritable(fd)
Get the “inheritable” flag of the specified file descriptor (a boolean).

os.set_inheritable(fd, inheritable)
Set the “inheritable” flag of the specified file descriptor.

os.get_handle_inheritable(handle)
Get the “inheritable” flag of the specified handle (a boolean).

Availability: Windows.

os.set_handle_inheritable(handle, inheritable)
Set the “inheritable” flag of the specified handle.

Availability: Windows.

16.1. os — Miscellaneous operating system interfaces 519

The Python Library Reference, Release 3.5.7

16.1.5 Files and Directories

On some Unix platforms, many of these functions support one or more of these features:

• specifying a file descriptor: For some functions, the path argument can be not only a string giving
a path name, but also a file descriptor. The function will then operate on the file referred to by the
descriptor. (For POSIX systems, Python will call the f... version of the function.)

You can check whether or not path can be specified as a file descriptor on your platform using os.
supports_fd. If it is unavailable, using it will raise a NotImplementedError.

If the function also supports dir_fd or follow_symlinks arguments, it is an error to specify one of those
when supplying path as a file descriptor.

• paths relative to directory descriptors: If dir_fd is not None, it should be a file descriptor referring to a
directory, and the path to operate on should be relative; path will then be relative to that directory. If
the path is absolute, dir_fd is ignored. (For POSIX systems, Python will call the ...at or f...at version
of the function.)

You can check whether or not dir_fd is supported on your platform using os.supports_dir_fd. If it is
unavailable, using it will raise a NotImplementedError.

• not following symlinks: If follow_symlinks is False, and the last element of the path to operate on is
a symbolic link, the function will operate on the symbolic link itself instead of the file the link points
to. (For POSIX systems, Python will call the l... version of the function.)

You can check whether or not follow_symlinks is supported on your platform using os.
supports_follow_symlinks. If it is unavailable, using it will raise a NotImplementedError.

os.access(path, mode, *, dir_fd=None, effective_ids=False, follow_symlinks=True)
Use the real uid/gid to test for access to path. Note that most operations will use the effective uid/gid,
therefore this routine can be used in a suid/sgid environment to test if the invoking user has the
specified access to path. mode should be F_OK to test the existence of path, or it can be the inclusive
OR of one or more of R_OK, W_OK, and X_OK to test permissions. Return True if access is allowed,
False if not. See the Unix man page access(2) for more information.

This function can support specifying paths relative to directory descriptors and not following symlinks.

If effective_ids is True, access() will perform its access checks using the effective uid/gid instead of the
real uid/gid. effective_ids may not be supported on your platform; you can check whether or not it is
available using os.supports_effective_ids. If it is unavailable, using it will raise a NotImplementedEr-
ror.

Note: Using access() to check if a user is authorized to e.g. open a file before actually doing so using
open() creates a security hole, because the user might exploit the short time interval between checking
and opening the file to manipulate it. It’s preferable to use EAFP techniques. For example:

if os.access("myfile", os.R_OK):
with open("myfile") as fp:

return fp.read()
return "some default data"

is better written as:

try:
fp = open("myfile")

except PermissionError:
return "some default data"

else:

(continues on next page)

520 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

with fp:
return fp.read()

Note: I/O operations may fail even when access() indicates that they would succeed, particularly
for operations on network filesystems which may have permissions semantics beyond the usual POSIX
permission-bit model.

Changed in version 3.3: Added the dir_fd, effective_ids, and follow_symlinks parameters.

os.F_OK
os.R_OK
os.W_OK
os.X_OK

Values to pass as the mode parameter of access() to test the existence, readability, writability and
executability of path, respectively.

os.chdir(path)
Change the current working directory to path.

This function can support specifying a file descriptor. The descriptor must refer to an opened directory,
not an open file.

New in version 3.3: Added support for specifying path as a file descriptor on some platforms.

os.chflags(path, flags, *, follow_symlinks=True)
Set the flags of path to the numeric flags. flags may take a combination (bitwise OR) of the following
values (as defined in the stat module):

• stat.UF_NODUMP

• stat.UF_IMMUTABLE

• stat.UF_APPEND

• stat.UF_OPAQUE

• stat.UF_NOUNLINK

• stat.UF_COMPRESSED

• stat.UF_HIDDEN

• stat.SF_ARCHIVED

• stat.SF_IMMUTABLE

• stat.SF_APPEND

• stat.SF_NOUNLINK

• stat.SF_SNAPSHOT

This function can support not following symlinks.

Availability: Unix.

New in version 3.3: The follow_symlinks argument.

os.chmod(path, mode, *, dir_fd=None, follow_symlinks=True)
Change the mode of path to the numeric mode. mode may take one of the following values (as defined
in the stat module) or bitwise ORed combinations of them:

16.1. os — Miscellaneous operating system interfaces 521

The Python Library Reference, Release 3.5.7

• stat.S_ISUID

• stat.S_ISGID

• stat.S_ENFMT

• stat.S_ISVTX

• stat.S_IREAD

• stat.S_IWRITE

• stat.S_IEXEC

• stat.S_IRWXU

• stat.S_IRUSR

• stat.S_IWUSR

• stat.S_IXUSR

• stat.S_IRWXG

• stat.S_IRGRP

• stat.S_IWGRP

• stat.S_IXGRP

• stat.S_IRWXO

• stat.S_IROTH

• stat.S_IWOTH

• stat.S_IXOTH

This function can support specifying a file descriptor, paths relative to directory descriptors and not
following symlinks.

Note: Although Windows supports chmod(), you can only set the file’s read-only flag with it (via the
stat.S_IWRITE and stat.S_IREAD constants or a corresponding integer value). All other bits are
ignored.

New in version 3.3: Added support for specifying path as an open file descriptor, and the dir_fd and
follow_symlinks arguments.

os.chown(path, uid, gid, *, dir_fd=None, follow_symlinks=True)
Change the owner and group id of path to the numeric uid and gid. To leave one of the ids unchanged,
set it to -1.

This function can support specifying a file descriptor, paths relative to directory descriptors and not
following symlinks.

See shutil.chown() for a higher-level function that accepts names in addition to numeric ids.

Availability: Unix.

New in version 3.3: Added support for specifying an open file descriptor for path, and the dir_fd and
follow_symlinks arguments.

os.chroot(path)
Change the root directory of the current process to path.

Availability: Unix.

522 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

os.fchdir(fd)
Change the current working directory to the directory represented by the file descriptor fd. The
descriptor must refer to an opened directory, not an open file. As of Python 3.3, this is equivalent to
os.chdir(fd).

Availability: Unix.

os.getcwd()
Return a string representing the current working directory.

os.getcwdb()
Return a bytestring representing the current working directory.

os.lchflags(path, flags)
Set the flags of path to the numeric flags, like chflags(), but do not follow symbolic links. As of Python
3.3, this is equivalent to os.chflags(path, flags, follow_symlinks=False).

Availability: Unix.

os.lchmod(path, mode)
Change the mode of path to the numeric mode. If path is a symlink, this affects the symlink rather
than the target. See the docs for chmod() for possible values of mode. As of Python 3.3, this is
equivalent to os.chmod(path, mode, follow_symlinks=False).

Availability: Unix.

os.lchown(path, uid, gid)
Change the owner and group id of path to the numeric uid and gid. This function will not follow
symbolic links. As of Python 3.3, this is equivalent to os.chown(path, uid, gid, follow_symlinks=False).

Availability: Unix.

os.link(src, dst, *, src_dir_fd=None, dst_dir_fd=None, follow_symlinks=True)
Create a hard link pointing to src named dst.

This function can support specifying src_dir_fd and/or dst_dir_fd to supply paths relative to direc-
tory descriptors, and not following symlinks.

Availability: Unix, Windows.

Changed in version 3.2: Added Windows support.

New in version 3.3: Added the src_dir_fd, dst_dir_fd, and follow_symlinks arguments.

os.listdir(path=’.’)
Return a list containing the names of the entries in the directory given by path. The list is in arbitrary
order, and does not include the special entries '.' and '..' even if they are present in the directory.

path may be either of type str or of type bytes. If path is of type bytes, the filenames returned will
also be of type bytes; in all other circumstances, they will be of type str.

This function can also support specifying a file descriptor; the file descriptor must refer to a directory.

Note: To encode str filenames to bytes, use fsencode().

See also:

The scandir() function returns directory entries along with file attribute information, giving better
performance for many common use cases.

Changed in version 3.2: The path parameter became optional.

New in version 3.3: Added support for specifying an open file descriptor for path.

16.1. os — Miscellaneous operating system interfaces 523

The Python Library Reference, Release 3.5.7

os.lstat(path, *, dir_fd=None)
Perform the equivalent of an lstat() system call on the given path. Similar to stat(), but does not
follow symbolic links. Return a stat_result object.

On platforms that do not support symbolic links, this is an alias for stat().

As of Python 3.3, this is equivalent to os.stat(path, dir_fd=dir_fd, follow_symlinks=False).

This function can also support paths relative to directory descriptors.

See also:

The stat() function.

Changed in version 3.2: Added support for Windows 6.0 (Vista) symbolic links.

Changed in version 3.3: Added the dir_fd parameter.

os.mkdir(path, mode=0o777, *, dir_fd=None)
Create a directory named path with numeric mode mode.

If the directory already exists, FileExistsError is raised.

On some systems, mode is ignored. Where it is used, the current umask value is first masked out. If
bits other than the last 9 (i.e. the last 3 digits of the octal representation of the mode) are set, their
meaning is platform-dependent. On some platforms, they are ignored and you should call chmod()
explicitly to set them.

This function can also support paths relative to directory descriptors.

It is also possible to create temporary directories; see the tempfile module’s tempfile.mkdtemp() func-
tion.

New in version 3.3: The dir_fd argument.

os.makedirs(name, mode=0o777, exist_ok=False)
Recursive directory creation function. Like mkdir(), but makes all intermediate-level directories needed
to contain the leaf directory.

The mode parameter is passed to mkdir(); see the mkdir() description for how it is interpreted.

If exist_ok is False (the default), an OSError is raised if the target directory already exists.

Note: makedirs() will become confused if the path elements to create include pardir (eg. “..” on UNIX
systems).

This function handles UNC paths correctly.

New in version 3.2: The exist_ok parameter.

Changed in version 3.4.1: Before Python 3.4.1, if exist_ok was True and the directory existed,
makedirs() would still raise an error if mode did not match the mode of the existing directory. Since
this behavior was impossible to implement safely, it was removed in Python 3.4.1. See bpo-21082.

os.mkfifo(path, mode=0o666, *, dir_fd=None)
Create a FIFO (a named pipe) named path with numeric mode mode. The current umask value is first
masked out from the mode.

This function can also support paths relative to directory descriptors.

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example
with os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes:

524 Chapter 16. Generic Operating System Services

https://bugs.python.org/issue21082

The Python Library Reference, Release 3.5.7

the server opens the FIFO for reading, and the client opens it for writing. Note that mkfifo() doesn’t
open the FIFO — it just creates the rendezvous point.

Availability: Unix.

New in version 3.3: The dir_fd argument.

os.mknod(path, mode=0o600, device=0, *, dir_fd=None)
Create a filesystem node (file, device special file or named pipe) named path. mode specifies both
the permissions to use and the type of node to be created, being combined (bitwise OR) with one
of stat.S_IFREG, stat.S_IFCHR, stat.S_IFBLK, and stat.S_IFIFO (those constants are available
in stat). For stat.S_IFCHR and stat.S_IFBLK, device defines the newly created device special file
(probably using os.makedev()), otherwise it is ignored.

This function can also support paths relative to directory descriptors.

Availability: Unix.

New in version 3.3: The dir_fd argument.

os.major(device)
Extract the device major number from a raw device number (usually the st_dev or st_rdev field from
stat).

os.minor(device)
Extract the device minor number from a raw device number (usually the st_dev or st_rdev field from
stat).

os.makedev(major, minor)
Compose a raw device number from the major and minor device numbers.

os.pathconf(path, name)
Return system configuration information relevant to a named file. name specifies the configuration value
to retrieve; it may be a string which is the name of a defined system value; these names are specified
in a number of standards (POSIX.1, Unix 95, Unix 98, and others). Some platforms define additional
names as well. The names known to the host operating system are given in the pathconf_names
dictionary. For configuration variables not included in that mapping, passing an integer for name is
also accepted.

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported
by the host system, even if it is included in pathconf_names, an OSError is raised with errno.EINVAL
for the error number.

This function can support specifying a file descriptor.

Availability: Unix.

os.pathconf_names
Dictionary mapping names accepted by pathconf() and fpathconf() to the integer values defined for
those names by the host operating system. This can be used to determine the set of names known to
the system.

Availability: Unix.

os.readlink(path, *, dir_fd=None)
Return a string representing the path to which the symbolic link points. The result may be either
an absolute or relative pathname; if it is relative, it may be converted to an absolute pathname using
os.path.join(os.path.dirname(path), result).

If the path is a string object, the result will also be a string object, and the call may raise a Unicod-
eDecodeError. If the path is a bytes object, the result will be a bytes object.

This function can also support paths relative to directory descriptors.

16.1. os — Miscellaneous operating system interfaces 525

The Python Library Reference, Release 3.5.7

Availability: Unix, Windows

Changed in version 3.2: Added support for Windows 6.0 (Vista) symbolic links.

New in version 3.3: The dir_fd argument.

os.remove(path, *, dir_fd=None)
Remove (delete) the file path. If path is a directory, OSError is raised. Use rmdir() to remove
directories.

This function can support paths relative to directory descriptors.

On Windows, attempting to remove a file that is in use causes an exception to be raised; on Unix, the
directory entry is removed but the storage allocated to the file is not made available until the original
file is no longer in use.

This function is semantically identical to unlink().

New in version 3.3: The dir_fd argument.

os.removedirs(name)
Remove directories recursively. Works like rmdir() except that, if the leaf directory is successfully
removed, removedirs() tries to successively remove every parent directory mentioned in path until an
error is raised (which is ignored, because it generally means that a parent directory is not empty).
For example, os.removedirs('foo/bar/baz') will first remove the directory 'foo/bar/baz', and then
remove 'foo/bar' and 'foo' if they are empty. Raises OSError if the leaf directory could not be
successfully removed.

os.rename(src, dst, *, src_dir_fd=None, dst_dir_fd=None)
Rename the file or directory src to dst. If dst is a directory, OSError will be raised. On Unix, if dst
exists and is a file, it will be replaced silently if the user has permission. The operation may fail on
some Unix flavors if src and dst are on different filesystems. If successful, the renaming will be an
atomic operation (this is a POSIX requirement). On Windows, if dst already exists, OSError will be
raised even if it is a file.

This function can support specifying src_dir_fd and/or dst_dir_fd to supply paths relative to direc-
tory descriptors.

If you want cross-platform overwriting of the destination, use replace().

New in version 3.3: The src_dir_fd and dst_dir_fd arguments.

os.renames(old, new)
Recursive directory or file renaming function. Works like rename(), except creation of any intermediate
directories needed to make the new pathname good is attempted first. After the rename, directories
corresponding to rightmost path segments of the old name will be pruned away using removedirs().

Note: This function can fail with the new directory structure made if you lack permissions needed to
remove the leaf directory or file.

os.replace(src, dst, *, src_dir_fd=None, dst_dir_fd=None)
Rename the file or directory src to dst. If dst is a directory, OSError will be raised. If dst exists and
is a file, it will be replaced silently if the user has permission. The operation may fail if src and dst
are on different filesystems. If successful, the renaming will be an atomic operation (this is a POSIX
requirement).

This function can support specifying src_dir_fd and/or dst_dir_fd to supply paths relative to direc-
tory descriptors.

New in version 3.3.

526 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

os.rmdir(path, *, dir_fd=None)
Remove (delete) the directory path. Only works when the directory is empty, otherwise, OSError is
raised. In order to remove whole directory trees, shutil.rmtree() can be used.

This function can support paths relative to directory descriptors.

New in version 3.3: The dir_fd parameter.

os.scandir(path=’.’)
Return an iterator of DirEntry objects corresponding to the entries in the directory given by path.
The entries are yielded in arbitrary order, and the special entries '.' and '..' are not included.

Using scandir() instead of listdir() can significantly increase the performance of code that also needs
file type or file attribute information, because DirEntry objects expose this information if the operating
system provides it when scanning a directory. All DirEntry methods may perform a system call, but
is_dir() and is_file() usually only require a system call for symbolic links; DirEntry.stat() always
requires a system call on Unix but only requires one for symbolic links on Windows.

On Unix, path can be of type str or bytes (use fsencode() and fsdecode() to encode and decode bytes
paths). On Windows, path must be of type str. On both systems, the type of the name and path
attributes of each DirEntry will be of the same type as path.

The following example shows a simple use of scandir() to display all the files (excluding directories) in
the given path that don’t start with '.'. The entry.is_file() call will generally not make an additional
system call:

for entry in os.scandir(path):
if not entry.name.startswith('.') and entry.is_file():

print(entry.name)

Note: On Unix-based systems, scandir() uses the system’s opendir() and readdir() functions. On
Windows, it uses the Win32 FindFirstFileW and FindNextFileW functions.

New in version 3.5.

class os.DirEntry
Object yielded by scandir() to expose the file path and other file attributes of a directory entry.

scandir() will provide as much of this information as possible without making additional system calls.
When a stat() or lstat() system call is made, the DirEntry object will cache the result.

DirEntry instances are not intended to be stored in long-lived data structures; if you know the file
metadata has changed or if a long time has elapsed since calling scandir(), call os.stat(entry.path) to
fetch up-to-date information.

Because the DirEntry methods can make operating system calls, they may also raise OSError. If you
need very fine-grained control over errors, you can catch OSError when calling one of the DirEntry
methods and handle as appropriate.

Attributes and methods on a DirEntry instance are as follows:

name
The entry’s base filename, relative to the scandir() path argument.

The name attribute will be of the same type (str or bytes) as the scandir() path argument. Use
fsdecode() to decode byte filenames.

path
The entry’s full path name: equivalent to os.path.join(scandir_path, entry.name) where scan-

16.1. os — Miscellaneous operating system interfaces 527

http://pubs.opengroup.org/onlinepubs/009695399/functions/opendir.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/readdir_r.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364428(v=vs.85).aspx

The Python Library Reference, Release 3.5.7

dir_path is the scandir() path argument. The path is only absolute if the scandir() path argument
was absolute.

The path attribute will be of the same type (str or bytes) as the scandir() path argument. Use
fsdecode() to decode byte filenames.

inode()
Return the inode number of the entry.

The result is cached on the DirEntry object. Use os.stat(entry.path, follow_symlinks=False).
st_ino to fetch up-to-date information.

On the first, uncached call, a system call is required on Windows but not on Unix.

is_dir(*, follow_symlinks=True)
Return True if this entry is a directory or a symbolic link pointing to a directory; return False if
the entry is or points to any other kind of file, or if it doesn’t exist anymore.

If follow_symlinks is False, return True only if this entry is a directory (without following sym-
links); return False if the entry is any other kind of file or if it doesn’t exist anymore.

The result is cached on the DirEntry object, with a separate cache for follow_symlinks True and
False. Call os.stat() along with stat.S_ISDIR() to fetch up-to-date information.

On the first, uncached call, no system call is required in most cases. Specifically, for non-symlinks,
neither Windows or Unix require a system call, except on certain Unix file systems, such as network
file systems, that return dirent.d_type == DT_UNKNOWN. If the entry is a symlink, a system
call will be required to follow the symlink unless follow_symlinks is False.

This method can raise OSError, such as PermissionError, but FileNotFoundError is caught and
not raised.

is_file(*, follow_symlinks=True)
Return True if this entry is a file or a symbolic link pointing to a file; return False if the entry is
or points to a directory or other non-file entry, or if it doesn’t exist anymore.

If follow_symlinks is False, return True only if this entry is a file (without following symlinks);
return False if the entry is a directory or other non-file entry, or if it doesn’t exist anymore.

The result is cached on the DirEntry object. Caching, system calls made, and exceptions raised
are as per is_dir().

is_symlink()
Return True if this entry is a symbolic link (even if broken); return False if the entry points to a
directory or any kind of file, or if it doesn’t exist anymore.

The result is cached on the DirEntry object. Call os.path.islink() to fetch up-to-date information.

On the first, uncached call, no system call is required in most cases. Specifically, neither Windows
or Unix require a system call, except on certain Unix file systems, such as network file systems,
that return dirent.d_type == DT_UNKNOWN.

This method can raise OSError, such as PermissionError, but FileNotFoundError is caught and
not raised.

stat(*, follow_symlinks=True)
Return a stat_result object for this entry. This method follows symbolic links by default; to stat
a symbolic link add the follow_symlinks=False argument.

On Unix, this method always requires a system call. On Windows, it only requires a system call
if follow_symlinks is True and the entry is a symbolic link.

528 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

On Windows, the st_ino, st_dev and st_nlink attributes of the stat_result are always set to
zero. Call os.stat() to get these attributes.

The result is cached on the DirEntry object, with a separate cache for follow_symlinks True and
False. Call os.stat() to fetch up-to-date information.

Note that there is a nice correspondence between several attributes and methods of DirEntry and of
pathlib.Path. In particular, the name attribute has the same meaning, as do the is_dir(), is_file(),
is_symlink() and stat() methods.

New in version 3.5.

os.stat(path, *, dir_fd=None, follow_symlinks=True)
Get the status of a file or a file descriptor. Perform the equivalent of a stat() system call on the
given path. path may be specified as either a string, a bytes or as an open file descriptor. Return a
stat_result object.

This function normally follows symlinks; to stat a symlink add the argument follow_symlinks=False,
or use lstat().

This function can support specifying a file descriptor and not following symlinks.

Example:

>>> import os
>>> statinfo = os.stat('somefile.txt')
>>> statinfo
os.stat_result(st_mode=33188, st_ino=7876932, st_dev=234881026,
st_nlink=1, st_uid=501, st_gid=501, st_size=264, st_atime=1297230295,
st_mtime=1297230027, st_ctime=1297230027)
>>> statinfo.st_size
264

See also:

fstat() and lstat() functions.

New in version 3.3: Added the dir_fd and follow_symlinks arguments, specifying a file descriptor
instead of a path.

class os.stat_result
Object whose attributes correspond roughly to the members of the stat structure. It is used for the
result of os.stat(), os.fstat() and os.lstat().

Attributes:

st_mode
File mode: file type and file mode bits (permissions).

st_ino
Inode number.

st_dev
Identifier of the device on which this file resides.

st_nlink
Number of hard links.

st_uid
User identifier of the file owner.

st_gid
Group identifier of the file owner.

16.1. os — Miscellaneous operating system interfaces 529

The Python Library Reference, Release 3.5.7

st_size
Size of the file in bytes, if it is a regular file or a symbolic link. The size of a symbolic link is the
length of the pathname it contains, without a terminating null byte.

Timestamps:

st_atime
Time of most recent access expressed in seconds.

st_mtime
Time of most recent content modification expressed in seconds.

st_ctime
Platform dependent:

• the time of most recent metadata change on Unix,

• the time of creation on Windows, expressed in seconds.

st_atime_ns
Time of most recent access expressed in nanoseconds as an integer.

st_mtime_ns
Time of most recent content modification expressed in nanoseconds as an integer.

st_ctime_ns
Platform dependent:

• the time of most recent metadata change on Unix,

• the time of creation on Windows, expressed in nanoseconds as an integer.

See also the stat_float_times() function.

Note: The exact meaning and resolution of the st_atime, st_mtime, and st_ctime attributes depend
on the operating system and the file system. For example, on Windows systems using the FAT or
FAT32 file systems, st_mtime has 2-second resolution, and st_atime has only 1-day resolution. See
your operating system documentation for details.

Similarly, although st_atime_ns, st_mtime_ns, and st_ctime_ns are always expressed in nanosec-
onds, many systems do not provide nanosecond precision. On systems that do provide nanosecond
precision, the floating-point object used to store st_atime, st_mtime, and st_ctime cannot preserve
all of it, and as such will be slightly inexact. If you need the exact timestamps you should always use
st_atime_ns, st_mtime_ns, and st_ctime_ns.

On some Unix systems (such as Linux), the following attributes may also be available:

st_blocks
Number of 512-byte blocks allocated for file. This may be smaller than st_size/512 when the file
has holes.

st_blksize
“Preferred” blocksize for efficient file system I/O. Writing to a file in smaller chunks may cause
an inefficient read-modify-rewrite.

st_rdev
Type of device if an inode device.

st_flags
User defined flags for file.

530 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

On other Unix systems (such as FreeBSD), the following attributes may be available (but may be only
filled out if root tries to use them):

st_gen
File generation number.

st_birthtime
Time of file creation.

On Mac OS systems, the following attributes may also be available:

st_rsize
Real size of the file.

st_creator
Creator of the file.

st_type
File type.

On Windows systems, the following attribute is also available:

st_file_attributes
Windows file attributes: dwFileAttributes member of the
BY_HANDLE_FILE_INFORMATION structure returned by GetFileInformationByHan-
dle(). See the FILE_ATTRIBUTE_* constants in the stat module.

The standard module stat defines functions and constants that are useful for extracting information
from a stat structure. (On Windows, some items are filled with dummy values.)

For backward compatibility, a stat_result instance is also accessible as a tuple of at least 10 inte-
gers giving the most important (and portable) members of the stat structure, in the order st_mode,
st_ino, st_dev, st_nlink, st_uid, st_gid, st_size, st_atime, st_mtime, st_ctime. More items may
be added at the end by some implementations. For compatibility with older Python versions, accessing
stat_result as a tuple always returns integers.

New in version 3.3: Added the st_atime_ns, st_mtime_ns, and st_ctime_ns members.

New in version 3.5: Added the st_file_attributes member on Windows.

os.stat_float_times([newvalue])
Determine whether stat_result represents time stamps as float objects. If newvalue is True, future
calls to stat() return floats, if it is False, future calls return ints. If newvalue is omitted, return the
current setting.

For compatibility with older Python versions, accessing stat_result as a tuple always returns integers.

Python now returns float values by default. Applications which do not work correctly with floating
point time stamps can use this function to restore the old behaviour.

The resolution of the timestamps (that is the smallest possible fraction) depends on the system. Some
systems only support second resolution; on these systems, the fraction will always be zero.

It is recommended that this setting is only changed at program startup time in the __main__ module;
libraries should never change this setting. If an application uses a library that works incorrectly if
floating point time stamps are processed, this application should turn the feature off until the library
has been corrected.

Deprecated since version 3.3.

os.statvfs(path)
Perform a statvfs() system call on the given path. The return value is an object whose attributes

16.1. os — Miscellaneous operating system interfaces 531

The Python Library Reference, Release 3.5.7

describe the filesystem on the given path, and correspond to the members of the statvfs structure,
namely: f_bsize, f_frsize, f_blocks, f_bfree, f_bavail, f_files, f_ffree, f_favail, f_flag, f_namemax.

Two module-level constants are defined for the f_flag attribute’s bit-flags: if ST_RDONLY is set, the
filesystem is mounted read-only, and if ST_NOSUID is set, the semantics of setuid/setgid bits are
disabled or not supported.

Additional module-level constants are defined for GNU/glibc based systems. These are
ST_NODEV (disallow access to device special files), ST_NOEXEC (disallow program exe-
cution), ST_SYNCHRONOUS (writes are synced at once), ST_MANDLOCK (allow manda-
tory locks on an FS), ST_WRITE (write on file/directory/symlink), ST_APPEND (append-
only file), ST_IMMUTABLE (immutable file), ST_NOATIME (do not update access times),
ST_NODIRATIME (do not update directory access times), ST_RELATIME (update atime relative
to mtime/ctime).

This function can support specifying a file descriptor.

Changed in version 3.2: The ST_RDONLY and ST_NOSUID constants were added.

Changed in version 3.4: The ST_NODEV, ST_NOEXEC, ST_SYNCHRONOUS, ST_MANDLOCK,
ST_WRITE, ST_APPEND, ST_IMMUTABLE, ST_NOATIME, ST_NODIRATIME, and
ST_RELATIME constants were added.

Availability: Unix.

New in version 3.3: Added support for specifying an open file descriptor for path.

os.supports_dir_fd
A Set object indicating which functions in the os module permit use of their dir_fd parameter. Different
platforms provide different functionality, and an option that might work on one might be unsupported
on another. For consistency’s sakes, functions that support dir_fd always allow specifying the param-
eter, but will raise an exception if the functionality is not actually available.

To check whether a particular function permits use of its dir_fd parameter, use the in operator on
supports_dir_fd. As an example, this expression determines whether the dir_fd parameter of os.stat()
is locally available:

os.stat in os.supports_dir_fd

Currently dir_fd parameters only work on Unix platforms; none of them work on Windows.

New in version 3.3.

os.supports_effective_ids
A Set object indicating which functions in the os module permit use of the effective_ids parameter for
os.access(). If the local platform supports it, the collection will contain os.access(), otherwise it will be
empty.

To check whether you can use the effective_ids parameter for os.access(), use the in operator on
supports_effective_ids, like so:

os.access in os.supports_effective_ids

Currently effective_ids only works on Unix platforms; it does not work on Windows.

New in version 3.3.

os.supports_fd
A Set object indicating which functions in the os module permit specifying their path parameter as an
open file descriptor. Different platforms provide different functionality, and an option that might work
on one might be unsupported on another. For consistency’s sakes, functions that support fd always
allow specifying the parameter, but will raise an exception if the functionality is not actually available.

532 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

To check whether a particular function permits specifying an open file descriptor for its path parameter,
use the in operator on supports_fd. As an example, this expression determines whether os.chdir()
accepts open file descriptors when called on your local platform:

os.chdir in os.supports_fd

New in version 3.3.

os.supports_follow_symlinks
A Set object indicating which functions in the os module permit use of their follow_symlinks parameter.
Different platforms provide different functionality, and an option that might work on one might be
unsupported on another. For consistency’s sakes, functions that support follow_symlinks always allow
specifying the parameter, but will raise an exception if the functionality is not actually available.

To check whether a particular function permits use of its follow_symlinks parameter, use the in operator
on supports_follow_symlinks. As an example, this expression determines whether the follow_symlinks
parameter of os.stat() is locally available:

os.stat in os.supports_follow_symlinks

New in version 3.3.

os.symlink(src, dst, target_is_directory=False, *, dir_fd=None)
Create a symbolic link pointing to src named dst.

On Windows, a symlink represents either a file or a directory, and does not morph to the target
dynamically. If the target is present, the type of the symlink will be created to match. Otherwise,
the symlink will be created as a directory if target_is_directory is True or a file symlink (the default)
otherwise. On non-Window platforms, target_is_directory is ignored.

Symbolic link support was introduced in Windows 6.0 (Vista). symlink() will raise a NotImplement-
edError on Windows versions earlier than 6.0.

This function can support paths relative to directory descriptors.

Note: On Windows, the SeCreateSymbolicLinkPrivilege is required in order to successfully create
symlinks. This privilege is not typically granted to regular users but is available to accounts which can
escalate privileges to the administrator level. Either obtaining the privilege or running your application
as an administrator are ways to successfully create symlinks.

OSError is raised when the function is called by an unprivileged user.

Availability: Unix, Windows.

Changed in version 3.2: Added support for Windows 6.0 (Vista) symbolic links.

New in version 3.3: Added the dir_fd argument, and now allow target_is_directory on non-Windows
platforms.

os.sync()
Force write of everything to disk.

Availability: Unix.

New in version 3.3.

os.truncate(path, length)
Truncate the file corresponding to path, so that it is at most length bytes in size.

This function can support specifying a file descriptor.

16.1. os — Miscellaneous operating system interfaces 533

The Python Library Reference, Release 3.5.7

Availability: Unix, Windows.

New in version 3.3.

Changed in version 3.5: Added support for Windows

os.unlink(path, *, dir_fd=None)
Remove (delete) the file path. This function is semantically identical to remove(); the unlink name is
its traditional Unix name. Please see the documentation for remove() for further information.

New in version 3.3: The dir_fd parameter.

os.utime(path, times=None, *[, ns], dir_fd=None, follow_symlinks=True)
Set the access and modified times of the file specified by path.

utime() takes two optional parameters, times and ns. These specify the times set on path and are used
as follows:

• If ns is specified, it must be a 2-tuple of the form (atime_ns, mtime_ns) where each member is
an int expressing nanoseconds.

• If times is not None, it must be a 2-tuple of the form (atime, mtime) where each member is an
int or float expressing seconds.

• If times is None and ns is unspecified, this is equivalent to specifying ns=(atime_ns, mtime_ns)
where both times are the current time.

It is an error to specify tuples for both times and ns.

Whether a directory can be given for path depends on whether the operating system implements
directories as files (for example, Windows does not). Note that the exact times you set here may not
be returned by a subsequent stat() call, depending on the resolution with which your operating system
records access and modification times; see stat(). The best way to preserve exact times is to use the
st_atime_ns and st_mtime_ns fields from the os.stat() result object with the ns parameter to utime.

This function can support specifying a file descriptor, paths relative to directory descriptors and not
following symlinks.

New in version 3.3: Added support for specifying an open file descriptor for path, and the dir_fd,
follow_symlinks, and ns parameters.

os.walk(top, topdown=True, onerror=None, followlinks=False)
Generate the file names in a directory tree by walking the tree either top-down or bottom-up. For
each directory in the tree rooted at directory top (including top itself), it yields a 3-tuple (dirpath,
dirnames, filenames).

dirpath is a string, the path to the directory. dirnames is a list of the names of the subdirectories in
dirpath (excluding '.' and '..'). filenames is a list of the names of the non-directory files in dirpath.
Note that the names in the lists contain no path components. To get a full path (which begins with
top) to a file or directory in dirpath, do os.path.join(dirpath, name).

If optional argument topdown is True or not specified, the triple for a directory is generated before
the triples for any of its subdirectories (directories are generated top-down). If topdown is False, the
triple for a directory is generated after the triples for all of its subdirectories (directories are generated
bottom-up). No matter the value of topdown, the list of subdirectories is retrieved before the tuples
for the directory and its subdirectories are generated.

When topdown is True, the caller can modify the dirnames list in-place (perhaps using del or slice
assignment), and walk() will only recurse into the subdirectories whose names remain in dirnames; this
can be used to prune the search, impose a specific order of visiting, or even to inform walk() about
directories the caller creates or renames before it resumes walk() again. Modifying dirnames when

534 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

topdown is False has no effect on the behavior of the walk, because in bottom-up mode the directories
in dirnames are generated before dirpath itself is generated.

By default, errors from the listdir() call are ignored. If optional argument onerror is specified, it should
be a function; it will be called with one argument, an OSError instance. It can report the error to
continue with the walk, or raise the exception to abort the walk. Note that the filename is available
as the filename attribute of the exception object.

By default, walk() will not walk down into symbolic links that resolve to directories. Set followlinks to
True to visit directories pointed to by symlinks, on systems that support them.

Note: Be aware that setting followlinks to True can lead to infinite recursion if a link points to a
parent directory of itself. walk() does not keep track of the directories it visited already.

Note: If you pass a relative pathname, don’t change the current working directory between resumptions
of walk(). walk() never changes the current directory, and assumes that its caller doesn’t either.

This example displays the number of bytes taken by non-directory files in each directory under the
starting directory, except that it doesn’t look under any CVS subdirectory:

import os
from os.path import join, getsize
for root, dirs, files in os.walk('python/Lib/email'):

print(root, "consumes", end=" ")
print(sum(getsize(join(root, name)) for name in files), end=" ")
print("bytes in", len(files), "non-directory files")
if 'CVS' in dirs:

dirs.remove('CVS') # don't visit CVS directories

In the next example (simple implementation of shutil.rmtree()), walking the tree bottom-up is essential,
rmdir() doesn’t allow deleting a directory before the directory is empty:

Delete everything reachable from the directory named in "top",
assuming there are no symbolic links.
CAUTION: This is dangerous! For example, if top == '/', it
could delete all your disk files.
import os
for root, dirs, files in os.walk(top, topdown=False):

for name in files:
os.remove(os.path.join(root, name))

for name in dirs:
os.rmdir(os.path.join(root, name))

Changed in version 3.5: This function now calls os.scandir() instead of os.listdir(), making it faster by
reducing the number of calls to os.stat().

os.fwalk(top=’.’, topdown=True, onerror=None, *, follow_symlinks=False, dir_fd=None)
This behaves exactly like walk(), except that it yields a 4-tuple (dirpath, dirnames, filenames, dirfd),
and it supports dir_fd.

dirpath, dirnames and filenames are identical to walk() output, and dirfd is a file descriptor referring
to the directory dirpath.

This function always supports paths relative to directory descriptors and not following symlinks. Note
however that, unlike other functions, the fwalk() default value for follow_symlinks is False.

16.1. os — Miscellaneous operating system interfaces 535

The Python Library Reference, Release 3.5.7

Note: Since fwalk() yields file descriptors, those are only valid until the next iteration step, so you
should duplicate them (e.g. with dup()) if you want to keep them longer.

This example displays the number of bytes taken by non-directory files in each directory under the
starting directory, except that it doesn’t look under any CVS subdirectory:

import os
for root, dirs, files, rootfd in os.fwalk('python/Lib/email'):

print(root, "consumes", end="")
print(sum([os.stat(name, dir_fd=rootfd).st_size for name in files]),

end="")
print("bytes in", len(files), "non-directory files")
if 'CVS' in dirs:

dirs.remove('CVS') # don't visit CVS directories

In the next example, walking the tree bottom-up is essential: rmdir() doesn’t allow deleting a directory
before the directory is empty:

Delete everything reachable from the directory named in "top",
assuming there are no symbolic links.
CAUTION: This is dangerous! For example, if top == '/', it
could delete all your disk files.
import os
for root, dirs, files, rootfd in os.fwalk(top, topdown=False):

for name in files:
os.unlink(name, dir_fd=rootfd)

for name in dirs:
os.rmdir(name, dir_fd=rootfd)

Availability: Unix.

New in version 3.3.

Linux extended attributes

New in version 3.3.

These functions are all available on Linux only.

os.getxattr(path, attribute, *, follow_symlinks=True)
Return the value of the extended filesystem attribute attribute for path. attribute can be bytes or str.
If it is str, it is encoded with the filesystem encoding.

This function can support specifying a file descriptor and not following symlinks.

os.listxattr(path=None, *, follow_symlinks=True)
Return a list of the extended filesystem attributes on path. The attributes in the list are represented
as strings decoded with the filesystem encoding. If path is None, listxattr() will examine the current
directory.

This function can support specifying a file descriptor and not following symlinks.

os.removexattr(path, attribute, *, follow_symlinks=True)
Removes the extended filesystem attribute attribute from path. attribute should be bytes or str. If it
is a string, it is encoded with the filesystem encoding.

This function can support specifying a file descriptor and not following symlinks.

536 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

os.setxattr(path, attribute, value, flags=0, *, follow_symlinks=True)
Set the extended filesystem attribute attribute on path to value. attribute must be a bytes or str
with no embedded NULs. If it is a str, it is encoded with the filesystem encoding. flags may be
XATTR_REPLACE or XATTR_CREATE. If XATTR_REPLACE is given and the attribute does
not exist, EEXISTS will be raised. If XATTR_CREATE is given and the attribute already exists, the
attribute will not be created and ENODATA will be raised.

This function can support specifying a file descriptor and not following symlinks.

Note: A bug in Linux kernel versions less than 2.6.39 caused the flags argument to be ignored on
some filesystems.

os.XATTR_SIZE_MAX
The maximum size the value of an extended attribute can be. Currently, this is 64 KiB on Linux.

os.XATTR_CREATE
This is a possible value for the flags argument in setxattr(). It indicates the operation must create an
attribute.

os.XATTR_REPLACE
This is a possible value for the flags argument in setxattr(). It indicates the operation must replace an
existing attribute.

16.1.6 Process Management

These functions may be used to create and manage processes.

The various exec* functions take a list of arguments for the new program loaded into the process. In each
case, the first of these arguments is passed to the new program as its own name rather than as an argument
a user may have typed on a command line. For the C programmer, this is the argv[0] passed to a program’s
main(). For example, os.execv('/bin/echo', ['foo', 'bar']) will only print bar on standard output; foo will
seem to be ignored.

os.abort()
Generate a SIGABRT signal to the current process. On Unix, the default behavior is to produce a
core dump; on Windows, the process immediately returns an exit code of 3. Be aware that calling this
function will not call the Python signal handler registered for SIGABRT with signal.signal().

os.execl(path, arg0, arg1, ...)
os.execle(path, arg0, arg1, ..., env)
os.execlp(file, arg0, arg1, ...)
os.execlpe(file, arg0, arg1, ..., env)
os.execv(path, args)
os.execve(path, args, env)
os.execvp(file, args)
os.execvpe(file, args, env)

These functions all execute a new program, replacing the current process; they do not return. On
Unix, the new executable is loaded into the current process, and will have the same process id as the
caller. Errors will be reported as OSError exceptions.

The current process is replaced immediately. Open file objects and descriptors are not flushed, so
if there may be data buffered on these open files, you should flush them using sys.stdout.flush() or
os.fsync() before calling an exec* function.

The “l” and “v” variants of the exec* functions differ in how command-line arguments are passed. The
“l” variants are perhaps the easiest to work with if the number of parameters is fixed when the code

16.1. os — Miscellaneous operating system interfaces 537

The Python Library Reference, Release 3.5.7

is written; the individual parameters simply become additional parameters to the execl*() functions.
The “v” variants are good when the number of parameters is variable, with the arguments being passed
in a list or tuple as the args parameter. In either case, the arguments to the child process should start
with the name of the command being run, but this is not enforced.

The variants which include a “p” near the end (execlp(), execlpe(), execvp(), and execvpe()) will use
the PATH environment variable to locate the program file. When the environment is being replaced
(using one of the exec*e variants, discussed in the next paragraph), the new environment is used as
the source of the PATH variable. The other variants, execl(), execle(), execv(), and execve(), will not
use the PATH variable to locate the executable; path must contain an appropriate absolute or relative
path.

For execle(), execlpe(), execve(), and execvpe() (note that these all end in “e”), the env parameter must
be a mapping which is used to define the environment variables for the new process (these are used
instead of the current process’ environment); the functions execl(), execlp(), execv(), and execvp() all
cause the new process to inherit the environment of the current process.

For execve() on some platforms, path may also be specified as an open file descriptor. This func-
tionality may not be supported on your platform; you can check whether or not it is available using
os.supports_fd. If it is unavailable, using it will raise a NotImplementedError.

Availability: Unix, Windows.

New in version 3.3: Added support for specifying an open file descriptor for path for execve().

os._exit(n)
Exit the process with status n, without calling cleanup handlers, flushing stdio buffers, etc.

Note: The standard way to exit is sys.exit(n). _exit() should normally only be used in the child
process after a fork().

The following exit codes are defined and can be used with _exit(), although they are not required. These
are typically used for system programs written in Python, such as a mail server’s external command delivery
program.

Note: Some of these may not be available on all Unix platforms, since there is some variation. These
constants are defined where they are defined by the underlying platform.

os.EX_OK
Exit code that means no error occurred.

Availability: Unix.

os.EX_USAGE
Exit code that means the command was used incorrectly, such as when the wrong number of arguments
are given.

Availability: Unix.

os.EX_DATAERR
Exit code that means the input data was incorrect.

Availability: Unix.

os.EX_NOINPUT
Exit code that means an input file did not exist or was not readable.

Availability: Unix.

538 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

os.EX_NOUSER
Exit code that means a specified user did not exist.

Availability: Unix.

os.EX_NOHOST
Exit code that means a specified host did not exist.

Availability: Unix.

os.EX_UNAVAILABLE
Exit code that means that a required service is unavailable.

Availability: Unix.

os.EX_SOFTWARE
Exit code that means an internal software error was detected.

Availability: Unix.

os.EX_OSERR
Exit code that means an operating system error was detected, such as the inability to fork or create a
pipe.

Availability: Unix.

os.EX_OSFILE
Exit code that means some system file did not exist, could not be opened, or had some other kind of
error.

Availability: Unix.

os.EX_CANTCREAT
Exit code that means a user specified output file could not be created.

Availability: Unix.

os.EX_IOERR
Exit code that means that an error occurred while doing I/O on some file.

Availability: Unix.

os.EX_TEMPFAIL
Exit code that means a temporary failure occurred. This indicates something that may not really be
an error, such as a network connection that couldn’t be made during a retryable operation.

Availability: Unix.

os.EX_PROTOCOL
Exit code that means that a protocol exchange was illegal, invalid, or not understood.

Availability: Unix.

os.EX_NOPERM
Exit code that means that there were insufficient permissions to perform the operation (but not intended
for file system problems).

Availability: Unix.

os.EX_CONFIG
Exit code that means that some kind of configuration error occurred.

Availability: Unix.

16.1. os — Miscellaneous operating system interfaces 539

The Python Library Reference, Release 3.5.7

os.EX_NOTFOUND
Exit code that means something like “an entry was not found”.

Availability: Unix.

os.fork()
Fork a child process. Return 0 in the child and the child’s process id in the parent. If an error occurs
OSError is raised.

Note that some platforms including FreeBSD <= 6.3 and Cygwin have known issues when using fork()
from a thread.

Warning: See ssl for applications that use the SSL module with fork().

Availability: Unix.

os.forkpty()
Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return a pair of
(pid, fd), where pid is 0 in the child, the new child’s process id in the parent, and fd is the file descriptor
of the master end of the pseudo-terminal. For a more portable approach, use the pty module. If an
error occurs OSError is raised.

Availability: some flavors of Unix.

os.kill(pid, sig)
Send signal sig to the process pid. Constants for the specific signals available on the host platform are
defined in the signal module.

Windows: The signal.CTRL_C_EVENT and signal.CTRL_BREAK_EVENT signals are special sig-
nals which can only be sent to console processes which share a common console window, e.g., some
subprocesses. Any other value for sig will cause the process to be unconditionally killed by the Termi-
nateProcess API, and the exit code will be set to sig. The Windows version of kill() additionally takes
process handles to be killed.

See also signal.pthread_kill().

New in version 3.2: Windows support.

os.killpg(pgid, sig)
Send the signal sig to the process group pgid.

Availability: Unix.

os.nice(increment)
Add increment to the process’s “niceness”. Return the new niceness.

Availability: Unix.

os.plock(op)
Lock program segments into memory. The value of op (defined in <sys/lock.h>) determines which
segments are locked.

Availability: Unix.

os.popen(cmd, mode=’r’, buffering=-1)
Open a pipe to or from command cmd. The return value is an open file object connected to the pipe,
which can be read or written depending on whether mode is 'r' (default) or 'w'. The buffering
argument has the same meaning as the corresponding argument to the built-in open() function. The
returned file object reads or writes text strings rather than bytes.

540 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

The close method returns None if the subprocess exited successfully, or the subprocess’s return code
if there was an error. On POSIX systems, if the return code is positive it represents the return value
of the process left-shifted by one byte. If the return code is negative, the process was terminated by
the signal given by the negated value of the return code. (For example, the return value might be
- signal.SIGKILL if the subprocess was killed.) On Windows systems, the return value contains the
signed integer return code from the child process.

This is implemented using subprocess.Popen; see that class’s documentation for more powerful ways
to manage and communicate with subprocesses.

os.spawnl(mode, path, ...)
os.spawnle(mode, path, ..., env)
os.spawnlp(mode, file, ...)
os.spawnlpe(mode, file, ..., env)
os.spawnv(mode, path, args)
os.spawnve(mode, path, args, env)
os.spawnvp(mode, file, args)
os.spawnvpe(mode, file, args, env)

Execute the program path in a new process.

(Note that the subprocess module provides more powerful facilities for spawning new processes and
retrieving their results; using that module is preferable to using these functions. Check especially the
Replacing Older Functions with the subprocess Module section.)

If mode is P_NOWAIT, this function returns the process id of the new process; if mode is P_WAIT,
returns the process’s exit code if it exits normally, or -signal, where signal is the signal that killed the
process. On Windows, the process id will actually be the process handle, so can be used with the
waitpid() function.

The “l” and “v” variants of the spawn* functions differ in how command-line arguments are passed. The
“l” variants are perhaps the easiest to work with if the number of parameters is fixed when the code
is written; the individual parameters simply become additional parameters to the spawnl*() functions.
The “v” variants are good when the number of parameters is variable, with the arguments being passed
in a list or tuple as the args parameter. In either case, the arguments to the child process must start
with the name of the command being run.

The variants which include a second “p” near the end (spawnlp(), spawnlpe(), spawnvp(), and spawn-
vpe()) will use the PATH environment variable to locate the program file. When the environment is
being replaced (using one of the spawn*e variants, discussed in the next paragraph), the new environ-
ment is used as the source of the PATH variable. The other variants, spawnl(), spawnle(), spawnv(),
and spawnve(), will not use the PATH variable to locate the executable; path must contain an appro-
priate absolute or relative path.

For spawnle(), spawnlpe(), spawnve(), and spawnvpe() (note that these all end in “e”), the env param-
eter must be a mapping which is used to define the environment variables for the new process (they
are used instead of the current process’ environment); the functions spawnl(), spawnlp(), spawnv(),
and spawnvp() all cause the new process to inherit the environment of the current process. Note that
keys and values in the env dictionary must be strings; invalid keys or values will cause the function to
fail, with a return value of 127.

As an example, the following calls to spawnlp() and spawnvpe() are equivalent:

import os
os.spawnlp(os.P_WAIT, 'cp', 'cp', 'index.html', '/dev/null')

L = ['cp', 'index.html', '/dev/null']
os.spawnvpe(os.P_WAIT, 'cp', L, os.environ)

16.1. os — Miscellaneous operating system interfaces 541

The Python Library Reference, Release 3.5.7

Availability: Unix, Windows. spawnlp(), spawnlpe(), spawnvp() and spawnvpe() are not available
on Windows. spawnle() and spawnve() are not thread-safe on Windows; we advise you to use the
subprocess module instead.

os.P_NOWAIT
os.P_NOWAITO

Possible values for the mode parameter to the spawn* family of functions. If either of these values is
given, the spawn*() functions will return as soon as the new process has been created, with the process
id as the return value.

Availability: Unix, Windows.

os.P_WAIT
Possible value for the mode parameter to the spawn* family of functions. If this is given as mode, the
spawn*() functions will not return until the new process has run to completion and will return the exit
code of the process the run is successful, or -signal if a signal kills the process.

Availability: Unix, Windows.

os.P_DETACH
os.P_OVERLAY

Possible values for the mode parameter to the spawn* family of functions. These are less portable
than those listed above. P_DETACH is similar to P_NOWAIT, but the new process is detached from
the console of the calling process. If P_OVERLAY is used, the current process will be replaced; the
spawn* function will not return.

Availability: Windows.

os.startfile(path[, operation])
Start a file with its associated application.

When operation is not specified or 'open', this acts like double-clicking the file in Windows Explorer,
or giving the file name as an argument to the start command from the interactive command shell: the
file is opened with whatever application (if any) its extension is associated.

When another operation is given, it must be a “command verb” that specifies what should be done
with the file. Common verbs documented by Microsoft are 'print' and 'edit' (to be used on files) as
well as 'explore' and 'find' (to be used on directories).

startfile() returns as soon as the associated application is launched. There is no option to wait for the
application to close, and no way to retrieve the application’s exit status. The path parameter is relative
to the current directory. If you want to use an absolute path, make sure the first character is not a slash
('/'); the underlying Win32 ShellExecute() function doesn’t work if it is. Use the os.path.normpath()
function to ensure that the path is properly encoded for Win32.

To reduce interpreter startup overhead, the Win32 ShellExecute() function is not resolved until this
function is first called. If the function cannot be resolved, NotImplementedError will be raised.

Availability: Windows.

os.system(command)
Execute the command (a string) in a subshell. This is implemented by calling the Standard C function
system(), and has the same limitations. Changes to sys.stdin, etc. are not reflected in the environment
of the executed command. If command generates any output, it will be sent to the interpreter standard
output stream.

On Unix, the return value is the exit status of the process encoded in the format specified for wait().
Note that POSIX does not specify the meaning of the return value of the C system() function, so the
return value of the Python function is system-dependent.

542 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

On Windows, the return value is that returned by the system shell after running command. The shell
is given by the Windows environment variable COMSPEC: it is usually cmd.exe, which returns the
exit status of the command run; on systems using a non-native shell, consult your shell documentation.

The subprocess module provides more powerful facilities for spawning new processes and retrieving
their results; using that module is preferable to using this function. See the Replacing Older Functions
with the subprocess Module section in the subprocess documentation for some helpful recipes.

Availability: Unix, Windows.

os.times()
Returns the current global process times. The return value is an object with five attributes:

• user - user time

• system - system time

• children_user - user time of all child processes

• children_system - system time of all child processes

• elapsed - elapsed real time since a fixed point in the past

For backwards compatibility, this object also behaves like a five-tuple containing user, system, chil-
dren_user, children_system, and elapsed in that order.

See the Unix manual page times(2) or the corresponding Windows Platform API documentation. On
Windows, only user and system are known; the other attributes are zero.

Availability: Unix, Windows.

Changed in version 3.3: Return type changed from a tuple to a tuple-like object with named attributes.

os.wait()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication:
a 16-bit number, whose low byte is the signal number that killed the process, and whose high byte
is the exit status (if the signal number is zero); the high bit of the low byte is set if a core file was
produced.

Availability: Unix.

os.waitid(idtype, id, options)
Wait for the completion of one or more child processes. idtype can be P_PID, P_PGID or P_ALL.
id specifies the pid to wait on. options is constructed from the ORing of one or more of WEXITED,
WSTOPPED or WCONTINUED and additionally may be ORed with WNOHANG or WNOWAIT.
The return value is an object representing the data contained in the siginfo_t structure, namely:
si_pid, si_uid, si_signo, si_status, si_code or None if WNOHANG is specified and there are no
children in a waitable state.

Availability: Unix.

New in version 3.3.

os.P_PID
os.P_PGID
os.P_ALL

These are the possible values for idtype in waitid(). They affect how id is interpreted.

Availability: Unix.

New in version 3.3.

os.WEXITED
os.WSTOPPED

16.1. os — Miscellaneous operating system interfaces 543

The Python Library Reference, Release 3.5.7

os.WNOWAIT
Flags that can be used in options in waitid() that specify what child signal to wait for.

Availability: Unix.

New in version 3.3.

os.CLD_EXITED
os.CLD_DUMPED
os.CLD_TRAPPED
os.CLD_CONTINUED

These are the possible values for si_code in the result returned by waitid().

Availability: Unix.

New in version 3.3.

os.waitpid(pid, options)
The details of this function differ on Unix and Windows.

On Unix: Wait for completion of a child process given by process id pid, and return a tuple containing
its process id and exit status indication (encoded as for wait()). The semantics of the call are affected
by the value of the integer options, which should be 0 for normal operation.

If pid is greater than 0, waitpid() requests status information for that specific process. If pid is 0,
the request is for the status of any child in the process group of the current process. If pid is -1, the
request pertains to any child of the current process. If pid is less than -1, status is requested for any
process in the process group -pid (the absolute value of pid).

An OSError is raised with the value of errno when the syscall returns -1.

On Windows: Wait for completion of a process given by process handle pid, and return a tuple
containing pid, and its exit status shifted left by 8 bits (shifting makes cross-platform use of the
function easier). A pid less than or equal to 0 has no special meaning on Windows, and raises an
exception. The value of integer options has no effect. pid can refer to any process whose id is known,
not necessarily a child process. The spawn* functions called with P_NOWAIT return suitable process
handles.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the function now retries the system call instead of raising an InterruptedError exception
(see PEP 475 for the rationale).

os.wait3(options)
Similar to waitpid(), except no process id argument is given and a 3-element tuple containing the
child’s process id, exit status indication, and resource usage information is returned. Refer to re-
source.getrusage() for details on resource usage information. The option argument is the same as that
provided to waitpid() and wait4().

Availability: Unix.

os.wait4(pid, options)
Similar to waitpid(), except a 3-element tuple, containing the child’s process id, exit status indication,
and resource usage information is returned. Refer to resource.getrusage() for details on resource usage
information. The arguments to wait4() are the same as those provided to waitpid().

Availability: Unix.

os.WNOHANG
The option for waitpid() to return immediately if no child process status is available immediately. The
function returns (0, 0) in this case.

Availability: Unix.

544 Chapter 16. Generic Operating System Services

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

os.WCONTINUED
This option causes child processes to be reported if they have been continued from a job control stop
since their status was last reported.

Availability: some Unix systems.

os.WUNTRACED
This option causes child processes to be reported if they have been stopped but their current state has
not been reported since they were stopped.

Availability: Unix.

The following functions take a process status code as returned by system(), wait(), or waitpid() as a param-
eter. They may be used to determine the disposition of a process.

os.WCOREDUMP(status)
Return True if a core dump was generated for the process, otherwise return False.

Availability: Unix.

os.WIFCONTINUED(status)
Return True if the process has been continued from a job control stop, otherwise return False.

Availability: Unix.

os.WIFSTOPPED(status)
Return True if the process has been stopped, otherwise return False.

Availability: Unix.

os.WIFSIGNALED(status)
Return True if the process exited due to a signal, otherwise return False.

Availability: Unix.

os.WIFEXITED(status)
Return True if the process exited using the exit(2) system call, otherwise return False.

Availability: Unix.

os.WEXITSTATUS(status)
If WIFEXITED(status) is true, return the integer parameter to the exit(2) system call. Otherwise,
the return value is meaningless.

Availability: Unix.

os.WSTOPSIG(status)
Return the signal which caused the process to stop.

Availability: Unix.

os.WTERMSIG(status)
Return the signal which caused the process to exit.

Availability: Unix.

16.1.7 Interface to the scheduler

These functions control how a process is allocated CPU time by the operating system. They are only available
on some Unix platforms. For more detailed information, consult your Unix manpages.

New in version 3.3.

The following scheduling policies are exposed if they are supported by the operating system.

16.1. os — Miscellaneous operating system interfaces 545

The Python Library Reference, Release 3.5.7

os.SCHED_OTHER
The default scheduling policy.

os.SCHED_BATCH
Scheduling policy for CPU-intensive processes that tries to preserve interactivity on the rest of the
computer.

os.SCHED_IDLE
Scheduling policy for extremely low priority background tasks.

os.SCHED_SPORADIC
Scheduling policy for sporadic server programs.

os.SCHED_FIFO
A First In First Out scheduling policy.

os.SCHED_RR
A round-robin scheduling policy.

os.SCHED_RESET_ON_FORK
This flag can be OR’ed with any other scheduling policy. When a process with this flag set forks, its
child’s scheduling policy and priority are reset to the default.

class os.sched_param(sched_priority)
This class represents tunable scheduling parameters used in sched_setparam(), sched_setscheduler(),
and sched_getparam(). It is immutable.

At the moment, there is only one possible parameter:

sched_priority
The scheduling priority for a scheduling policy.

os.sched_get_priority_min(policy)
Get the minimum priority value for policy. policy is one of the scheduling policy constants above.

os.sched_get_priority_max(policy)
Get the maximum priority value for policy. policy is one of the scheduling policy constants above.

os.sched_setscheduler(pid, policy, param)
Set the scheduling policy for the process with PID pid. A pid of 0 means the calling process. policy is
one of the scheduling policy constants above. param is a sched_param instance.

os.sched_getscheduler(pid)
Return the scheduling policy for the process with PID pid. A pid of 0 means the calling process. The
result is one of the scheduling policy constants above.

os.sched_setparam(pid, param)
Set a scheduling parameters for the process with PID pid. A pid of 0 means the calling process. param
is a sched_param instance.

os.sched_getparam(pid)
Return the scheduling parameters as a sched_param instance for the process with PID pid. A pid of
0 means the calling process.

os.sched_rr_get_interval(pid)
Return the round-robin quantum in seconds for the process with PID pid. A pid of 0 means the calling
process.

os.sched_yield()
Voluntarily relinquish the CPU.

546 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

os.sched_setaffinity(pid, mask)
Restrict the process with PID pid (or the current process if zero) to a set of CPUs. mask is an iterable
of integers representing the set of CPUs to which the process should be restricted.

os.sched_getaffinity(pid)
Return the set of CPUs the process with PID pid (or the current process if zero) is restricted to.

16.1.8 Miscellaneous System Information

os.confstr(name)
Return string-valued system configuration values. name specifies the configuration value to retrieve; it
may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX, Unix 95, Unix 98, and others). Some platforms define additional names as well.
The names known to the host operating system are given as the keys of the confstr_names dictionary.
For configuration variables not included in that mapping, passing an integer for name is also accepted.

If the configuration value specified by name isn’t defined, None is returned.

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported
by the host system, even if it is included in confstr_names, an OSError is raised with errno.EINVAL
for the error number.

Availability: Unix.

os.confstr_names
Dictionary mapping names accepted by confstr() to the integer values defined for those names by the
host operating system. This can be used to determine the set of names known to the system.

Availability: Unix.

os.cpu_count()
Return the number of CPUs in the system. Returns None if undetermined.

New in version 3.4.

os.getloadavg()
Return the number of processes in the system run queue averaged over the last 1, 5, and 15 minutes
or raises OSError if the load average was unobtainable.

Availability: Unix.

os.sysconf(name)
Return integer-valued system configuration values. If the configuration value specified by name isn’t
defined, -1 is returned. The comments regarding the name parameter for confstr() apply here as well;
the dictionary that provides information on the known names is given by sysconf_names.

Availability: Unix.

os.sysconf_names
Dictionary mapping names accepted by sysconf() to the integer values defined for those names by the
host operating system. This can be used to determine the set of names known to the system.

Availability: Unix.

The following data values are used to support path manipulation operations. These are defined for all
platforms.

Higher-level operations on pathnames are defined in the os.path module.

os.curdir
The constant string used by the operating system to refer to the current directory. This is '.' for
Windows and POSIX. Also available via os.path.

16.1. os — Miscellaneous operating system interfaces 547

The Python Library Reference, Release 3.5.7

os.pardir
The constant string used by the operating system to refer to the parent directory. This is '..' for
Windows and POSIX. Also available via os.path.

os.sep
The character used by the operating system to separate pathname components. This is '/' for POSIX
and '\\' for Windows. Note that knowing this is not sufficient to be able to parse or concatenate
pathnames — use os.path.split() and os.path.join() — but it is occasionally useful. Also available via
os.path.

os.altsep
An alternative character used by the operating system to separate pathname components, or None if
only one separator character exists. This is set to '/' on Windows systems where sep is a backslash.
Also available via os.path.

os.extsep
The character which separates the base filename from the extension; for example, the '.' in os.py.
Also available via os.path.

os.pathsep
The character conventionally used by the operating system to separate search path components (as in
PATH), such as ':' for POSIX or ';' for Windows. Also available via os.path.

os.defpath
The default search path used by exec*p* and spawn*p* if the environment doesn’t have a 'PATH'
key. Also available via os.path.

os.linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a single
character, such as '\n' for POSIX, or multiple characters, for example, '\r\n' for Windows. Do not
use os.linesep as a line terminator when writing files opened in text mode (the default); use a single
'\n' instead, on all platforms.

os.devnull
The file path of the null device. For example: '/dev/null' for POSIX, 'nul' for Windows. Also
available via os.path.

os.RTLD_LAZY
os.RTLD_NOW
os.RTLD_GLOBAL
os.RTLD_LOCAL
os.RTLD_NODELETE
os.RTLD_NOLOAD
os.RTLD_DEEPBIND

Flags for use with the setdlopenflags() and getdlopenflags() functions. See the Unix manual page
dlopen(3) for what the different flags mean.

New in version 3.3.

16.1.9 Miscellaneous Functions

os.urandom(n)
Return a string of n random bytes suitable for cryptographic use.

This function returns random bytes from an OS-specific randomness source. The returned data should
be unpredictable enough for cryptographic applications, though its exact quality depends on the OS
implementation.

548 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

On Linux, getrandom() syscall is used if available and the urandom entropy pool is initialized
(getrandom() does not block). On a Unix-like system this will query /dev/urandom. On Windows,
it will use CryptGenRandom(). If a randomness source is not found, NotImplementedError will be
raised.

For an easy-to-use interface to the random number generator provided by your platform, please see
random.SystemRandom.

Changed in version 3.5.2: On Linux, if getrandom() blocks (the urandom entropy pool is not initialized
yet), fall back on reading /dev/urandom.

Changed in version 3.5: On Linux 3.17 and newer, the getrandom() syscall is now used when available.
On OpenBSD 5.6 and newer, the C getentropy() function is now used. These functions avoid the usage
of an internal file descriptor.

16.2 io — Core tools for working with streams

Source code: Lib/io.py

16.2.1 Overview

The io module provides Python’s main facilities for dealing with various types of I/O. There are three main
types of I/O: text I/O, binary I/O and raw I/O. These are generic categories, and various backing stores
can be used for each of them. A concrete object belonging to any of these categories is called a file object.
Other common terms are stream and file-like object.

Independently of its category, each concrete stream object will also have various capabilities: it can be read-
only, write-only, or read-write. It can also allow arbitrary random access (seeking forwards or backwards to
any location), or only sequential access (for example in the case of a socket or pipe).

All streams are careful about the type of data you give to them. For example giving a str object to the
write() method of a binary stream will raise a TypeError. So will giving a bytes object to the write() method
of a text stream.

Changed in version 3.3: Operations that used to raise IOError now raise OSError, since IOError is now an
alias of OSError.

Text I/O

Text I/O expects and produces str objects. This means that whenever the backing store is natively made of
bytes (such as in the case of a file), encoding and decoding of data is made transparently as well as optional
translation of platform-specific newline characters.

The easiest way to create a text stream is with open(), optionally specifying an encoding:

f = open("myfile.txt", "r", encoding="utf-8")

In-memory text streams are also available as StringIO objects:

f = io.StringIO("some initial text data")

The text stream API is described in detail in the documentation of TextIOBase.

16.2. io — Core tools for working with streams 549

https://github.com/python/cpython/tree/3.5/Lib/io.py

The Python Library Reference, Release 3.5.7

Binary I/O

Binary I/O (also called buffered I/O) expects bytes-like objects and produces bytes objects. No encoding,
decoding, or newline translation is performed. This category of streams can be used for all kinds of non-text
data, and also when manual control over the handling of text data is desired.

The easiest way to create a binary stream is with open() with 'b' in the mode string:

f = open("myfile.jpg", "rb")

In-memory binary streams are also available as BytesIO objects:

f = io.BytesIO(b"some initial binary data: \x00\x01")

The binary stream API is described in detail in the docs of BufferedIOBase.

Other library modules may provide additional ways to create text or binary streams. See socket.socket.
makefile() for example.

Raw I/O

Raw I/O (also called unbuffered I/O) is generally used as a low-level building-block for binary and text
streams; it is rarely useful to directly manipulate a raw stream from user code. Nevertheless, you can create
a raw stream by opening a file in binary mode with buffering disabled:

f = open("myfile.jpg", "rb", buffering=0)

The raw stream API is described in detail in the docs of RawIOBase.

16.2.2 High-level Module Interface

io.DEFAULT_BUFFER_SIZE
An int containing the default buffer size used by the module’s buffered I/O classes. open() uses the
file’s blksize (as obtained by os.stat()) if possible.

io.open(file, mode=’r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True,
opener=None)

This is an alias for the builtin open() function.

exception io.BlockingIOError
This is a compatibility alias for the builtin BlockingIOError exception.

exception io.UnsupportedOperation
An exception inheriting OSError and ValueError that is raised when an unsupported operation is called
on a stream.

In-memory streams

It is also possible to use a str or bytes-like object as a file for both reading and writing. For strings StringIO
can be used like a file opened in text mode. BytesIO can be used like a file opened in binary mode. Both
provide full read-write capabilities with random access.

See also:

sys contains the standard IO streams: sys.stdin, sys.stdout, and sys.stderr.

550 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

16.2.3 Class hierarchy

The implementation of I/O streams is organized as a hierarchy of classes. First abstract base classes (ABCs),
which are used to specify the various categories of streams, then concrete classes providing the standard
stream implementations.

Note: The abstract base classes also provide default implementations of some methods in
order to help implementation of concrete stream classes. For example, BufferedIOBase provides
unoptimized implementations of readinto() and readline().

At the top of the I/O hierarchy is the abstract base class IOBase. It defines the basic interface to a stream.
Note, however, that there is no separation between reading and writing to streams; implementations are
allowed to raise UnsupportedOperation if they do not support a given operation.

The RawIOBase ABC extends IOBase. It deals with the reading and writing of bytes to a stream. FileIO
subclasses RawIOBase to provide an interface to files in the machine’s file system.

The BufferedIOBase ABC deals with buffering on a raw byte stream (RawIOBase). Its subclasses, Buffered-
Writer, BufferedReader, and BufferedRWPair buffer streams that are readable, writable, and both readable
and writable. BufferedRandom provides a buffered interface to random access streams. Another Buffere-
dIOBase subclass, BytesIO, is a stream of in-memory bytes.

The TextIOBase ABC, another subclass of IOBase, deals with streams whose bytes represent text, and
handles encoding and decoding to and from strings. TextIOWrapper, which extends it, is a buffered text
interface to a buffered raw stream (BufferedIOBase). Finally, StringIO is an in-memory stream for text.

Argument names are not part of the specification, and only the arguments of open() are intended to be used
as keyword arguments.

The following table summarizes the ABCs provided by the io module:

ABC Inherits Stub
Methods

Mixin Methods and Properties

IOBase fileno, seek,
and truncate

close, closed, __enter__, __exit__, flush, isatty,
__iter__, __next__, readable, readline, readlines,
seekable, tell, writable, and writelines

RawIOBase IOBase readinto and
write

Inherited IOBase methods, read, and readall

BufferedIOBase IOBase detach, read,
read1, and
write

Inherited IOBase methods, readinto

TextIOBase IOBase detach, read,
readline, and
write

Inherited IOBase methods, encoding, errors, and newlines

I/O Base Classes

class io.IOBase
The abstract base class for all I/O classes, acting on streams of bytes. There is no public constructor.

This class provides empty abstract implementations for many methods that derived classes can override
selectively; the default implementations represent a file that cannot be read, written or seeked.

Even though IOBase does not declare read(), readinto(), or write() because their signatures will vary,
implementations and clients should consider those methods part of the interface. Also, implementations

16.2. io — Core tools for working with streams 551

The Python Library Reference, Release 3.5.7

may raise a ValueError (or UnsupportedOperation) when operations they do not support are called.

The basic type used for binary data read from or written to a file is bytes. Other bytes-like objects
are accepted as method arguments too. In some cases, such as readinto(), a writable object such as
bytearray is required. Text I/O classes work with str data.

Note that calling any method (even inquiries) on a closed stream is undefined. Implementations may
raise ValueError in this case.

IOBase (and its subclasses) supports the iterator protocol, meaning that an IOBase object can be
iterated over yielding the lines in a stream. Lines are defined slightly differently depending on whether
the stream is a binary stream (yielding bytes), or a text stream (yielding character strings). See
readline() below.

IOBase is also a context manager and therefore supports the with statement. In this example, file is
closed after the with statement’s suite is finished—even if an exception occurs:

with open('spam.txt', 'w') as file:
file.write('Spam and eggs!')

IOBase provides these data attributes and methods:

close()
Flush and close this stream. This method has no effect if the file is already closed. Once the file
is closed, any operation on the file (e.g. reading or writing) will raise a ValueError.

As a convenience, it is allowed to call this method more than once; only the first call, however,
will have an effect.

closed
True if the stream is closed.

fileno()
Return the underlying file descriptor (an integer) of the stream if it exists. An OSError is raised
if the IO object does not use a file descriptor.

flush()
Flush the write buffers of the stream if applicable. This does nothing for read-only and non-
blocking streams.

isatty()
Return True if the stream is interactive (i.e., connected to a terminal/tty device).

readable()
Return True if the stream can be read from. If False, read() will raise OSError.

readline(size=-1)
Read and return one line from the stream. If size is specified, at most size bytes will be read.

The line terminator is always b'\n' for binary files; for text files, the newline argument to open()
can be used to select the line terminator(s) recognized.

readlines(hint=-1)
Read and return a list of lines from the stream. hint can be specified to control the number of lines
read: no more lines will be read if the total size (in bytes/characters) of all lines so far exceeds
hint.

Note that it’s already possible to iterate on file objects using for line in file: ... without calling
file.readlines().

552 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

seek(offset[, whence])
Change the stream position to the given byte offset. offset is interpreted relative to the position
indicated by whence. The default value for whence is SEEK_SET. Values for whence are:

• SEEK_SET or 0 – start of the stream (the default); offset should be zero or positive

• SEEK_CUR or 1 – current stream position; offset may be negative

• SEEK_END or 2 – end of the stream; offset is usually negative

Return the new absolute position.

New in version 3.1: The SEEK_* constants.

New in version 3.3: Some operating systems could support additional values, like os.SEEK_HOLE
or os.SEEK_DATA. The valid values for a file could depend on it being open in text or binary
mode.

seekable()
Return True if the stream supports random access. If False, seek(), tell() and truncate() will raise
OSError.

tell()
Return the current stream position.

truncate(size=None)
Resize the stream to the given size in bytes (or the current position if size is not specified). The
current stream position isn’t changed. This resizing can extend or reduce the current file size.
In case of extension, the contents of the new file area depend on the platform (on most systems,
additional bytes are zero-filled). The new file size is returned.

Changed in version 3.5: Windows will now zero-fill files when extending.

writable()
Return True if the stream supports writing. If False, write() and truncate() will raise OSError.

writelines(lines)
Write a list of lines to the stream. Line separators are not added, so it is usual for each of the
lines provided to have a line separator at the end.

__del__()
Prepare for object destruction. IOBase provides a default implementation of this method that
calls the instance’s close() method.

class io.RawIOBase
Base class for raw binary I/O. It inherits IOBase. There is no public constructor.

Raw binary I/O typically provides low-level access to an underlying OS device or API, and does not
try to encapsulate it in high-level primitives (this is left to Buffered I/O and Text I/O, described later
in this page).

In addition to the attributes and methods from IOBase, RawIOBase provides the following methods:

read(size=-1)
Read up to size bytes from the object and return them. As a convenience, if size is unspecified or
-1, readall() is called. Otherwise, only one system call is ever made. Fewer than size bytes may
be returned if the operating system call returns fewer than size bytes.

If 0 bytes are returned, and size was not 0, this indicates end of file. If the object is in non-blocking
mode and no bytes are available, None is returned.

16.2. io — Core tools for working with streams 553

The Python Library Reference, Release 3.5.7

readall()
Read and return all the bytes from the stream until EOF, using multiple calls to the stream if
necessary.

readinto(b)
Read bytes into a pre-allocated, writable bytes-like object b, and return the number of bytes read.
If the object is in non-blocking mode and no bytes are available, None is returned.

write(b)
Write the given bytes-like object, b, to the underlying raw stream, and return the number of bytes
written. This can be less than the length of b in bytes, depending on specifics of the underlying
raw stream, and especially if it is in non-blocking mode. None is returned if the raw stream is set
not to block and no single byte could be readily written to it. The caller may release or mutate
b after this method returns, so the implementation should only access b during the method call.

class io.BufferedIOBase
Base class for binary streams that support some kind of buffering. It inherits IOBase. There is no
public constructor.

The main difference with RawIOBase is that methods read(), readinto() and write() will try (respec-
tively) to read as much input as requested or to consume all given output, at the expense of making
perhaps more than one system call.

In addition, those methods can raise BlockingIOError if the underlying raw stream is in non-blocking
mode and cannot take or give enough data; unlike their RawIOBase counterparts, they will never
return None.

Besides, the read() method does not have a default implementation that defers to readinto().

A typical BufferedIOBase implementation should not inherit from a RawIOBase implementation, but
wrap one, like BufferedWriter and BufferedReader do.

BufferedIOBase provides or overrides these methods and attribute in addition to those from IOBase:

raw
The underlying raw stream (a RawIOBase instance) that BufferedIOBase deals with. This is not
part of the BufferedIOBase API and may not exist on some implementations.

detach()
Separate the underlying raw stream from the buffer and return it.

After the raw stream has been detached, the buffer is in an unusable state.

Some buffers, like BytesIO, do not have the concept of a single raw stream to return from this
method. They raise UnsupportedOperation.

New in version 3.1.

read(size=-1)
Read and return up to size bytes. If the argument is omitted, None, or negative, data is read
and returned until EOF is reached. An empty bytes object is returned if the stream is already at
EOF.

If the argument is positive, and the underlying raw stream is not interactive, multiple raw reads
may be issued to satisfy the byte count (unless EOF is reached first). But for interactive raw
streams, at most one raw read will be issued, and a short result does not imply that EOF is
imminent.

A BlockingIOError is raised if the underlying raw stream is in non blocking-mode, and has no
data available at the moment.

554 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

read1(size=-1)
Read and return up to size bytes, with at most one call to the underlying raw stream’s read() (or
readinto()) method. This can be useful if you are implementing your own buffering on top of a
BufferedIOBase object.

readinto(b)
Read bytes into a pre-allocated, writable bytes-like object b and return the number of bytes read.

Like read(), multiple reads may be issued to the underlying raw stream, unless the latter is
interactive.

A BlockingIOError is raised if the underlying raw stream is in non blocking-mode, and has no
data available at the moment.

readinto1(b)
Read bytes into a pre-allocated, writable bytes-like object b, using at most one call to the under-
lying raw stream’s read() (or readinto()) method. Return the number of bytes read.

A BlockingIOError is raised if the underlying raw stream is in non blocking-mode, and has no
data available at the moment.

New in version 3.5.

write(b)
Write the given bytes-like object, b, and return the number of bytes written (always equal to the
length of b in bytes, since if the write fails an OSError will be raised). Depending on the actual
implementation, these bytes may be readily written to the underlying stream, or held in a buffer
for performance and latency reasons.

When in non-blocking mode, a BlockingIOError is raised if the data needed to be written to the
raw stream but it couldn’t accept all the data without blocking.

The caller may release or mutate b after this method returns, so the implementation should only
access b during the method call.

Raw File I/O

class io.FileIO(name, mode=’r’, closefd=True, opener=None)
FileIO represents an OS-level file containing bytes data. It implements the RawIOBase interface (and
therefore the IOBase interface, too).

The name can be one of two things:

• a character string or bytes object representing the path to the file which will be opened. In this
case closefd must be True (the default) otherwise an error will be raised.

• an integer representing the number of an existing OS-level file descriptor to which the resulting
FileIO object will give access. When the FileIO object is closed this fd will be closed as well,
unless closefd is set to False.

The mode can be 'r', 'w', 'x' or 'a' for reading (default), writing, exclusive creation or appending.
The file will be created if it doesn’t exist when opened for writing or appending; it will be truncated
when opened for writing. FileExistsError will be raised if it already exists when opened for creating.
Opening a file for creating implies writing, so this mode behaves in a similar way to 'w'. Add a '+'
to the mode to allow simultaneous reading and writing.

The read() (when called with a positive argument), readinto() and write() methods on this class will
only make one system call.

16.2. io — Core tools for working with streams 555

The Python Library Reference, Release 3.5.7

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file
object is then obtained by calling opener with (name, flags). opener must return an open file descriptor
(passing os.open as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

See the open() built-in function for examples on using the opener parameter.

Changed in version 3.3: The opener parameter was added. The 'x' mode was added.

Changed in version 3.4: The file is now non-inheritable.

In addition to the attributes and methods from IOBase and RawIOBase, FileIO provides the following
data attributes:

mode
The mode as given in the constructor.

name
The file name. This is the file descriptor of the file when no name is given in the constructor.

Buffered Streams

Buffered I/O streams provide a higher-level interface to an I/O device than raw I/O does.

class io.BytesIO([initial_bytes])
A stream implementation using an in-memory bytes buffer. It inherits BufferedIOBase. The buffer is
discarded when the close() method is called.

The optional argument initial_bytes is a bytes-like object that contains initial data.

BytesIO provides or overrides these methods in addition to those from BufferedIOBase and IOBase:

getbuffer()
Return a readable and writable view over the contents of the buffer without copying them. Also,
mutating the view will transparently update the contents of the buffer:

>>> b = io.BytesIO(b"abcdef")
>>> view = b.getbuffer()
>>> view[2:4] = b"56"
>>> b.getvalue()
b'ab56ef'

Note: As long as the view exists, the BytesIO object cannot be resized or closed.

New in version 3.2.

getvalue()
Return bytes containing the entire contents of the buffer.

read1()
In BytesIO, this is the same as read().

readinto1()
In BytesIO, this is the same as readinto().

New in version 3.5.

556 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

class io.BufferedReader(raw, buffer_size=DEFAULT_BUFFER_SIZE)
A buffer providing higher-level access to a readable, sequential RawIOBase object. It inherits Buffere-
dIOBase. When reading data from this object, a larger amount of data may be requested from the
underlying raw stream, and kept in an internal buffer. The buffered data can then be returned directly
on subsequent reads.

The constructor creates a BufferedReader for the given readable raw stream and buffer_size. If
buffer_size is omitted, DEFAULT_BUFFER_SIZE is used.

BufferedReader provides or overrides these methods in addition to those from BufferedIOBase and
IOBase:

peek([size])
Return bytes from the stream without advancing the position. At most one single read on the
raw stream is done to satisfy the call. The number of bytes returned may be less or more than
requested.

read([size])
Read and return size bytes, or if size is not given or negative, until EOF or if the read call would
block in non-blocking mode.

read1(size)
Read and return up to size bytes with only one call on the raw stream. If at least one byte is
buffered, only buffered bytes are returned. Otherwise, one raw stream read call is made.

class io.BufferedWriter(raw, buffer_size=DEFAULT_BUFFER_SIZE)
A buffer providing higher-level access to a writeable, sequential RawIOBase object. It inherits Buffere-
dIOBase. When writing to this object, data is normally placed into an internal buffer. The buffer will
be written out to the underlying RawIOBase object under various conditions, including:

• when the buffer gets too small for all pending data;

• when flush() is called;

• when a seek() is requested (for BufferedRandom objects);

• when the BufferedWriter object is closed or destroyed.

The constructor creates a BufferedWriter for the given writeable raw stream. If the buffer_size is not
given, it defaults to DEFAULT_BUFFER_SIZE.

BufferedWriter provides or overrides these methods in addition to those from BufferedIOBase and
IOBase:

flush()
Force bytes held in the buffer into the raw stream. A BlockingIOError should be raised if the raw
stream blocks.

write(b)
Write the bytes-like object, b, and return the number of bytes written. When in non-blocking
mode, a BlockingIOError is raised if the buffer needs to be written out but the raw stream blocks.

class io.BufferedRandom(raw, buffer_size=DEFAULT_BUFFER_SIZE)
A buffered interface to random access streams. It inherits BufferedReader and BufferedWriter, and
further supports seek() and tell() functionality.

The constructor creates a reader and writer for a seekable raw stream, given in the first argument. If
the buffer_size is omitted it defaults to DEFAULT_BUFFER_SIZE.

BufferedRandom is capable of anything BufferedReader or BufferedWriter can do.

16.2. io — Core tools for working with streams 557

The Python Library Reference, Release 3.5.7

class io.BufferedRWPair(reader, writer, buffer_size=DEFAULT_BUFFER_SIZE)
A buffered I/O object combining two unidirectional RawIOBase objects – one readable, the other
writeable – into a single bidirectional endpoint. It inherits BufferedIOBase.

reader and writer are RawIOBase objects that are readable and writeable respectively. If the buffer_size
is omitted it defaults to DEFAULT_BUFFER_SIZE.

BufferedRWPair implements all of BufferedIOBase’s methods except for detach(), which raises Unsup-
portedOperation.

Warning: BufferedRWPair does not attempt to synchronize accesses to its underlying raw streams.
You should not pass it the same object as reader and writer; use BufferedRandom instead.

Text I/O

class io.TextIOBase
Base class for text streams. This class provides a character and line based interface to stream I/O.
There is no readinto() method because Python’s character strings are immutable. It inherits IOBase.
There is no public constructor.

TextIOBase provides or overrides these data attributes and methods in addition to those from IOBase:

encoding
The name of the encoding used to decode the stream’s bytes into strings, and to encode strings
into bytes.

errors
The error setting of the decoder or encoder.

newlines
A string, a tuple of strings, or None, indicating the newlines translated so far. Depending on the
implementation and the initial constructor flags, this may not be available.

buffer
The underlying binary buffer (a BufferedIOBase instance) that TextIOBase deals with. This is
not part of the TextIOBase API and may not exist in some implementations.

detach()
Separate the underlying binary buffer from the TextIOBase and return it.

After the underlying buffer has been detached, the TextIOBase is in an unusable state.

Some TextIOBase implementations, like StringIO, may not have the concept of an underlying
buffer and calling this method will raise UnsupportedOperation.

New in version 3.1.

read(size)
Read and return at most size characters from the stream as a single str. If size is negative or
None, reads until EOF.

readline(size=-1)
Read until newline or EOF and return a single str. If the stream is already at EOF, an empty
string is returned.

If size is specified, at most size characters will be read.

558 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

seek(offset[, whence])
Change the stream position to the given offset. Behaviour depends on the whence parameter.
The default value for whence is SEEK_SET.

• SEEK_SET or 0: seek from the start of the stream (the default); offset must either be a
number returned by TextIOBase.tell(), or zero. Any other offset value produces undefined
behaviour.

• SEEK_CUR or 1: “seek” to the current position; offset must be zero, which is a no-operation
(all other values are unsupported).

• SEEK_END or 2: seek to the end of the stream; offset must be zero (all other values are
unsupported).

Return the new absolute position as an opaque number.

New in version 3.1: The SEEK_* constants.

tell()
Return the current stream position as an opaque number. The number does not usually represent
a number of bytes in the underlying binary storage.

write(s)
Write the string s to the stream and return the number of characters written.

class io.TextIOWrapper(buffer, encoding=None, errors=None, newline=None, line_buffering=False,
write_through=False)

A buffered text stream over a BufferedIOBase binary stream. It inherits TextIOBase.

encoding gives the name of the encoding that the stream will be decoded or encoded with. It defaults
to locale.getpreferredencoding(False).

errors is an optional string that specifies how encoding and decoding errors are to be handled. Pass
'strict' to raise a ValueError exception if there is an encoding error (the default of None has the same
effect), or pass 'ignore' to ignore errors. (Note that ignoring encoding errors can lead to data loss.)
'replace' causes a replacement marker (such as '?') to be inserted where there is malformed data.
'backslashreplace' causes malformed data to be replaced by a backslashed escape sequence. When
writing, 'xmlcharrefreplace' (replace with the appropriate XML character reference) or 'namereplace'
(replace with \N{...} escape sequences) can be used. Any other error handling name that has been
registered with codecs.register_error() is also valid.

newline controls how line endings are handled. It can be None, '', '\n', '\r', and '\r\n'. It works
as follows:

• When reading input from the stream, if newline is None, universal newlines mode is enabled.
Lines in the input can end in '\n', '\r', or '\r\n', and these are translated into '\n' before
being returned to the caller. If it is '', universal newlines mode is enabled, but line endings are
returned to the caller untranslated. If it has any of the other legal values, input lines are only
terminated by the given string, and the line ending is returned to the caller untranslated.

• When writing output to the stream, if newline is None, any '\n' characters written are translated
to the system default line separator, os.linesep. If newline is '' or '\n', no translation takes
place. If newline is any of the other legal values, any '\n' characters written are translated to
the given string.

If line_buffering is True, flush() is implied when a call to write contains a newline character.

If write_through is True, calls to write() are guaranteed not to be buffered: any data written on the
TextIOWrapper object is immediately handled to its underlying binary buffer.

Changed in version 3.3: The write_through argument has been added.

16.2. io — Core tools for working with streams 559

The Python Library Reference, Release 3.5.7

Changed in version 3.3: The default encoding is now locale.getpreferredencoding(False) instead of
locale.getpreferredencoding(). Don’t change temporary the locale encoding using locale.setlocale(),
use the current locale encoding instead of the user preferred encoding.

TextIOWrapper provides one attribute in addition to those of TextIOBase and its parents:

line_buffering
Whether line buffering is enabled.

class io.StringIO(initial_value=”, newline=’\n’)
An in-memory stream for text I/O. The text buffer is discarded when the close() method is called.

The initial value of the buffer can be set by providing initial_value. If newline translation is enabled,
newlines will be encoded as if by write(). The stream is positioned at the start of the buffer.

The newline argument works like that of TextIOWrapper. The default is to consider only \n characters
as ends of lines and to do no newline translation. If newline is set to None, newlines are written as \n
on all platforms, but universal newline decoding is still performed when reading.

StringIO provides this method in addition to those from TextIOBase and its parents:

getvalue()
Return a str containing the entire contents of the buffer. Newlines are decoded as if by read(),
although the stream position is not changed.

Example usage:

import io

output = io.StringIO()
output.write('First line.\n')
print('Second line.', file=output)

Retrieve file contents -- this will be
'First line.\nSecond line.\n'
contents = output.getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output.close()

class io.IncrementalNewlineDecoder
A helper codec that decodes newlines for universal newlines mode. It inherits codecs.
IncrementalDecoder.

16.2.4 Performance

This section discusses the performance of the provided concrete I/O implementations.

Binary I/O

By reading and writing only large chunks of data even when the user asks for a single byte, buffered I/O
hides any inefficiency in calling and executing the operating system’s unbuffered I/O routines. The gain
depends on the OS and the kind of I/O which is performed. For example, on some modern OSes such as
Linux, unbuffered disk I/O can be as fast as buffered I/O. The bottom line, however, is that buffered I/O
offers predictable performance regardless of the platform and the backing device. Therefore, it is almost
always preferable to use buffered I/O rather than unbuffered I/O for binary data.

560 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Text I/O

Text I/O over a binary storage (such as a file) is significantly slower than binary I/O over the same stor-
age, because it requires conversions between unicode and binary data using a character codec. This can
become noticeable handling huge amounts of text data like large log files. Also, TextIOWrapper.tell() and
TextIOWrapper.seek() are both quite slow due to the reconstruction algorithm used.

StringIO, however, is a native in-memory unicode container and will exhibit similar speed to BytesIO.

Multi-threading

FileIO objects are thread-safe to the extent that the operating system calls (such as read(2) under Unix)
they wrap are thread-safe too.

Binary buffered objects (instances of BufferedReader, BufferedWriter, BufferedRandom and BufferedRW-
Pair) protect their internal structures using a lock; it is therefore safe to call them from multiple threads at
once.

TextIOWrapper objects are not thread-safe.

Reentrancy

Binary buffered objects (instances of BufferedReader, BufferedWriter, BufferedRandom and BufferedRW-
Pair) are not reentrant. While reentrant calls will not happen in normal situations, they can arise from
doing I/O in a signal handler. If a thread tries to re-enter a buffered object which it is already accessing, a
RuntimeError is raised. Note this doesn’t prohibit a different thread from entering the buffered object.

The above implicitly extends to text files, since the open() function will wrap a buffered object inside a
TextIOWrapper. This includes standard streams and therefore affects the built-in function print() as well.

16.3 time — Time access and conversions

This module provides various time-related functions. For related functionality, see also the datetime and
calendar modules.

Although this module is always available, not all functions are available on all platforms. Most of the
functions defined in this module call platform C library functions with the same name. It may sometimes
be helpful to consult the platform documentation, because the semantics of these functions varies among
platforms.

An explanation of some terminology and conventions is in order.

• The epoch is the point where the time starts, and is platform dependent. For Unix, the epoch is January
1, 1970, 00:00:00 (UTC). To find out what the epoch is on a given platform, look at time.gmtime(0).

• The term seconds since the epoch refers to the total number of elapsed seconds since the epoch, typically
excluding leap seconds. Leap seconds are excluded from this total on all POSIX-compliant platforms.

• The functions in this module may not handle dates and times before the epoch or far in the future.
The cut-off point in the future is determined by the C library; for 32-bit systems, it is typically in 2038.

16.3. time — Time access and conversions 561

https://en.wikipedia.org/wiki/Leap_second

The Python Library Reference, Release 3.5.7

• Year 2000 (Y2K) issues: Python depends on the platform’s C library, which generally doesn’t have year
2000 issues, since all dates and times are represented internally as seconds since the epoch. Function
strptime() can parse 2-digit years when given %y format code. When 2-digit years are parsed, they
are converted according to the POSIX and ISO C standards: values 69–99 are mapped to 1969–1999,
and values 0–68 are mapped to 2000–2068.

• UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The
acronym UTC is not a mistake but a compromise between English and French.

• DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the
year. DST rules are magic (determined by local law) and can change from year to year. The C library
has a table containing the local rules (often it is read from a system file for flexibility) and is the only
source of True Wisdom in this respect.

• The precision of the various real-time functions may be less than suggested by the units in which their
value or argument is expressed. E.g. on most Unix systems, the clock “ticks” only 50 or 100 times a
second.

• On the other hand, the precision of time() and sleep() is better than their Unix equivalents: times
are expressed as floating point numbers, time() returns the most accurate time available (using Unix
gettimeofday() where available), and sleep() will accept a time with a nonzero fraction (Unix select()
is used to implement this, where available).

• The time value as returned by gmtime(), localtime(), and strptime(), and accepted by asctime(),
mktime() and strftime(), is a sequence of 9 integers. The return values of gmtime(), localtime(), and
strptime() also offer attribute names for individual fields.

See struct_time for a description of these objects.

Changed in version 3.3: The struct_time type was extended to provide the tm_gmtoff and tm_zone
attributes when platform supports corresponding struct tm members.

• Use the following functions to convert between time representations:

From To Use
seconds since the epoch struct_time in UTC gmtime()
seconds since the epoch struct_time in local time localtime()
struct_time in UTC seconds since the epoch calendar.timegm()
struct_time in local time seconds since the epoch mktime()

The module defines the following functions and data items:

time.altzone
The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative if the
local DST timezone is east of UTC (as in Western Europe, including the UK). Only use this if daylight
is nonzero.

time.asctime([t])
Convert a tuple or struct_time representing a time as returned by gmtime() or localtime() to a string
of the following form: 'Sun Jun 20 23:21:05 1993'. If t is not provided, the current time as returned
by localtime() is used. Locale information is not used by asctime().

Note: Unlike the C function of the same name, asctime() does not add a trailing newline.

time.clock()
On Unix, return the current processor time as a floating point number expressed in seconds. The

562 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

precision, and in fact the very definition of the meaning of “processor time”, depends on that of the C
function of the same name.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as
a floating point number, based on the Win32 function QueryPerformanceCounter(). The resolution is
typically better than one microsecond.

Deprecated since version 3.3: The behaviour of this function depends on the platform: use
perf_counter() or process_time() instead, depending on your requirements, to have a well defined
behaviour.

time.clock_getres(clk_id)
Return the resolution (precision) of the specified clock clk_id.

Availability: Unix.

New in version 3.3.

time.clock_gettime(clk_id)
Return the time of the specified clock clk_id.

Availability: Unix.

New in version 3.3.

time.clock_settime(clk_id, time)
Set the time of the specified clock clk_id.

Availability: Unix.

New in version 3.3.

time.CLOCK_HIGHRES
The Solaris OS has a CLOCK_HIGHRES timer that attempts to use an optimal hardware source, and
may give close to nanosecond resolution. CLOCK_HIGHRES is the nonadjustable, high-resolution
clock.

Availability: Solaris.

New in version 3.3.

time.CLOCK_MONOTONIC
Clock that cannot be set and represents monotonic time since some unspecified starting point.

Availability: Unix.

New in version 3.3.

time.CLOCK_MONOTONIC_RAW
Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-based time that is not
subject to NTP adjustments.

Availability: Linux 2.6.28 or later.

New in version 3.3.

time.CLOCK_PROCESS_CPUTIME_ID
High-resolution per-process timer from the CPU.

Availability: Unix.

New in version 3.3.

time.CLOCK_REALTIME
System-wide real-time clock. Setting this clock requires appropriate privileges.

16.3. time — Time access and conversions 563

The Python Library Reference, Release 3.5.7

Availability: Unix.

New in version 3.3.

time.CLOCK_THREAD_CPUTIME_ID
Thread-specific CPU-time clock.

Availability: Unix.

New in version 3.3.

time.ctime([secs])
Convert a time expressed in seconds since the epoch to a string representing local time. If secs is
not provided or None, the current time as returned by time() is used. ctime(secs) is equivalent to
asctime(localtime(secs)). Locale information is not used by ctime().

time.daylight
Nonzero if a DST timezone is defined.

time.get_clock_info(name)
Get information on the specified clock as a namespace object. Supported clock names and the corre-
sponding functions to read their value are:

• 'clock': time.clock()

• 'monotonic': time.monotonic()

• 'perf_counter': time.perf_counter()

• 'process_time': time.process_time()

• 'time': time.time()

The result has the following attributes:

• adjustable: True if the clock can be changed automatically (e.g. by a NTP daemon) or manually
by the system administrator, False otherwise

• implementation: The name of the underlying C function used to get the clock value

• monotonic: True if the clock cannot go backward, False otherwise

• resolution: The resolution of the clock in seconds (float)

New in version 3.3.

time.gmtime([secs])
Convert a time expressed in seconds since the epoch to a struct_time in UTC in which the dst flag is
always zero. If secs is not provided or None, the current time as returned by time() is used. Fractions
of a second are ignored. See above for a description of the struct_time object. See calendar.timegm()
for the inverse of this function.

time.localtime([secs])
Like gmtime() but converts to local time. If secs is not provided or None, the current time as returned
by time() is used. The dst flag is set to 1 when DST applies to the given time.

time.mktime(t)
This is the inverse function of localtime(). Its argument is the struct_time or full 9-tuple (since the
dst flag is needed; use -1 as the dst flag if it is unknown) which expresses the time in local time, not
UTC. It returns a floating point number, for compatibility with time(). If the input value cannot
be represented as a valid time, either OverflowError or ValueError will be raised (which depends on
whether the invalid value is caught by Python or the underlying C libraries). The earliest date for
which it can generate a time is platform-dependent.

564 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

time.monotonic()
Return the value (in fractional seconds) of a monotonic clock, i.e. a clock that cannot go backwards.
The clock is not affected by system clock updates. The reference point of the returned value is
undefined, so that only the difference between the results of consecutive calls is valid.

On Windows versions older than Vista, monotonic() detects GetTickCount() integer overflow (32 bits,
roll-over after 49.7 days). It increases an internal epoch (reference time) by 232 each time that an
overflow is detected. The epoch is stored in the process-local state and so the value of monotonic()
may be different in two Python processes running for more than 49 days. On more recent versions of
Windows and on other operating systems, monotonic() is system-wide.

New in version 3.3.

Changed in version 3.5: The function is now always available.

time.perf_counter()
Return the value (in fractional seconds) of a performance counter, i.e. a clock with the highest available
resolution to measure a short duration. It does include time elapsed during sleep and is system-wide.
The reference point of the returned value is undefined, so that only the difference between the results
of consecutive calls is valid.

New in version 3.3.

time.process_time()
Return the value (in fractional seconds) of the sum of the system and user CPU time of the current
process. It does not include time elapsed during sleep. It is process-wide by definition. The reference
point of the returned value is undefined, so that only the difference between the results of consecutive
calls is valid.

New in version 3.3.

time.sleep(secs)
Suspend execution of the calling thread for the given number of seconds. The argument may be a
floating point number to indicate a more precise sleep time. The actual suspension time may be less
than that requested because any caught signal will terminate the sleep() following execution of that
signal’s catching routine. Also, the suspension time may be longer than requested by an arbitrary
amount because of the scheduling of other activity in the system.

Changed in version 3.5: The function now sleeps at least secs even if the sleep is interrupted by a
signal, except if the signal handler raises an exception (see PEP 475 for the rationale).

time.strftime(format[, t])
Convert a tuple or struct_time representing a time as returned by gmtime() or localtime() to a string
as specified by the format argument. If t is not provided, the current time as returned by localtime()
is used. format must be a string. ValueError is raised if any field in t is outside of the allowed range.

0 is a legal argument for any position in the time tuple; if it is normally illegal the value is forced to a
correct one.

The following directives can be embedded in the format string. They are shown without the optional
field width and precision specification, and are replaced by the indicated characters in the strftime()
result:

16.3. time — Time access and conversions 565

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

Di-
rec-
tive

Meaning Notes

%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM. (1)
%S Second as a decimal number [00,61]. (2)
%U Week number of the year (Sunday as the first day of the week) as a decimal number

[00,53]. All days in a new year preceding the first Sunday are considered to be in week
0.

(3)

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the week) as a decimal number

[00,53]. All days in a new year preceding the first Monday are considered to be in week
0.

(3)

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%z Time zone offset indicating a positive or negative time difference from UTC/GMT of the

form +HHMM or -HHMM, where H represents decimal hour digits and M represents
decimal minute digits [-23:59, +23:59].

%Z Time zone name (no characters if no time zone exists).
%% A literal '%' character.

Notes:

(1) When used with the strptime() function, the %p directive only affects the output hour field if the
%I directive is used to parse the hour.

(2) The range really is 0 to 61; value 60 is valid in timestamps representing leap seconds and value
61 is supported for historical reasons.

(3) When used with the strptime() function, %U and %W are only used in calculations when the day
of the week and the year are specified.

Here is an example, a format for dates compatible with that specified in the RFC 2822 Internet email
standard.1

>>> from time import gmtime, strftime
>>> strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())
'Thu, 28 Jun 2001 14:17:15 +0000'

1 The use of %Z is now deprecated, but the %z escape that expands to the preferred hour/minute offset is not supported
by all ANSI C libraries. Also, a strict reading of the original 1982 RFC 822 standard calls for a two-digit year (%y rather than
%Y), but practice moved to 4-digit years long before the year 2000. After that, RFC 822 became obsolete and the 4-digit year
has been first recommended by RFC 1123 and then mandated by RFC 2822.

566 Chapter 16. Generic Operating System Services

https://en.wikipedia.org/wiki/Leap_second
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc822.html
https://tools.ietf.org/html/rfc822.html
https://tools.ietf.org/html/rfc1123.html
https://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.5.7

Additional directives may be supported on certain platforms, but only the ones listed here have a
meaning standardized by ANSI C. To see the full set of format codes supported on your platform,
consult the strftime(3) documentation.

On some platforms, an optional field width and precision specification can immediately follow the
initial '%' of a directive in the following order; this is also not portable. The field width is normally
2 except for %j where it is 3.

time.strptime(string[, format])
Parse a string representing a time according to a format. The return value is a struct_time as returned
by gmtime() or localtime().

The format parameter uses the same directives as those used by strftime(); it defaults to "%a %b
%d %H:%M:%S %Y" which matches the formatting returned by ctime(). If string cannot be parsed
according to format, or if it has excess data after parsing, ValueError is raised. The default values
used to fill in any missing data when more accurate values cannot be inferred are (1900, 1, 1, 0, 0, 0,
0, 1, -1). Both string and format must be strings.

For example:

>>> import time
>>> time.strptime("30 Nov 00", "%d %b %y") # doctest: +NORMALIZE_WHITESPACE
time.struct_time(tm_year=2000, tm_mon=11, tm_mday=30, tm_hour=0, tm_min=0,

tm_sec=0, tm_wday=3, tm_yday=335, tm_isdst=-1)

Support for the %Z directive is based on the values contained in tzname and whether daylight is true.
Because of this, it is platform-specific except for recognizing UTC and GMT which are always known
(and are considered to be non-daylight savings timezones).

Only the directives specified in the documentation are supported. Because strftime() is implemented
per platform it can sometimes offer more directives than those listed. But strptime() is independent
of any platform and thus does not necessarily support all directives available that are not documented
as supported.

class time.struct_time

The type of the time value sequence returned by gmtime(), localtime(), and strptime(). It
is an object with a named tuple interface: values can be accessed by index and by attribute
name. The following values are present:

Index Attribute Values
0 tm_year (for example, 1993)
1 tm_mon range [1, 12]
2 tm_mday range [1, 31]
3 tm_hour range [0, 23]
4 tm_min range [0, 59]
5 tm_sec range [0, 61]; see (2) in strftime() description
6 tm_wday range [0, 6], Monday is 0
7 tm_yday range [1, 366]
8 tm_isdst 0, 1 or -1; see below
N/A tm_zone abbreviation of timezone name
N/A tm_gmtoff offset east of UTC in seconds

Note that unlike the C structure, the month value is a range of [1, 12], not [0, 11].

In calls to mktime(), tm_isdst may be set to 1 when daylight savings time is in effect, and 0
when it is not. A value of -1 indicates that this is not known, and will usually result in the
correct state being filled in.

16.3. time — Time access and conversions 567

The Python Library Reference, Release 3.5.7

When a tuple with an incorrect length is passed to a function expecting a struct_time, or
having elements of the wrong type, a TypeError is raised.

Changed in version 3.3: tm_gmtoff and tm_zone attributes are available on platforms with C library
supporting the corresponding fields in struct tm.

time.time()
Return the time in seconds since the epoch as a floating point number. The specific date of the epoch
and the handling of leap seconds is platform dependent. On Windows and most Unix systems, the
epoch is January 1, 1970, 00:00:00 (UTC) and leap seconds are not counted towards the time in seconds
since the epoch. This is commonly referred to as Unix time. To find out what the epoch is on a given
platform, look at gmtime(0).

Note that even though the time is always returned as a floating point number, not all systems provide
time with a better precision than 1 second. While this function normally returns non-decreasing values,
it can return a lower value than a previous call if the system clock has been set back between the two
calls.

The number returned by time() may be converted into a more common time format (i.e. year, month,
day, hour, etc. . .) in UTC by passing it to gmtime() function or in local time by passing it to the
localtime() function. In both cases a struct_time object is returned, from which the components of
the calendar date may be accessed as attributes.

time.timezone
The offset of the local (non-DST) timezone, in seconds west of UTC (negative in most of Western
Europe, positive in the US, zero in the UK).

time.tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of
the local DST timezone. If no DST timezone is defined, the second string should not be used.

time.tzset()
Resets the time conversion rules used by the library routines. The environment variable TZ specifies
how this is done.

Availability: Unix.

Note: Although in many cases, changing the TZ environment variable may affect the output of
functions like localtime() without calling tzset(), this behavior should not be relied on.

The TZ environment variable should contain no whitespace.

The standard format of the TZ environment variable is (whitespace added for clarity):

std offset [dst [offset [,start[/time], end[/time]]]]

Where the components are:

std and dst Three or more alphanumerics giving the timezone abbreviations. These will be propagated
into time.tzname

offset The offset has the form: ± hh[:mm[:ss]]. This indicates the value added the local time to arrive
at UTC. If preceded by a ‘-‘, the timezone is east of the Prime Meridian; otherwise, it is west. If
no offset follows dst, summer time is assumed to be one hour ahead of standard time.

start[/time], end[/time] Indicates when to change to and back from DST. The format of the start and
end dates are one of the following:

Jn The Julian day n (1 <= n <= 365). Leap days are not counted, so in all years February 28
is day 59 and March 1 is day 60.

568 Chapter 16. Generic Operating System Services

https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Unix_time

The Python Library Reference, Release 3.5.7

n The zero-based Julian day (0 <= n <= 365). Leap days are counted, and it is possible to refer
to February 29.

Mm.n.d The d’th day (0 <= d <= 6) or week n of month m of the year (1 <= n <= 5, 1 <=
m <= 12, where week 5 means “the last d day in month m” which may occur in either the
fourth or the fifth week). Week 1 is the first week in which the d’th day occurs. Day zero is
Sunday.

time has the same format as offset except that no leading sign (‘-‘ or ‘+’) is allowed. The default,
if time is not given, is 02:00:00.

>>> os.environ['TZ'] = 'EST+05EDT,M4.1.0,M10.5.0'
>>> time.tzset()
>>> time.strftime('%X %x %Z')
'02:07:36 05/08/03 EDT'
>>> os.environ['TZ'] = 'AEST-10AEDT-11,M10.5.0,M3.5.0'
>>> time.tzset()
>>> time.strftime('%X %x %Z')
'16:08:12 05/08/03 AEST'

On many Unix systems (including *BSD, Linux, Solaris, and Darwin), it is more convenient to use the
system’s zoneinfo (tzfile(5)) database to specify the timezone rules. To do this, set the TZ environment
variable to the path of the required timezone datafile, relative to the root of the systems ‘zoneinfo’
timezone database, usually located at /usr/share/zoneinfo. For example, 'US/Eastern', 'Australia/
Melbourne', 'Egypt' or 'Europe/Amsterdam'.

>>> os.environ['TZ'] = 'US/Eastern'
>>> time.tzset()
>>> time.tzname
('EST', 'EDT')
>>> os.environ['TZ'] = 'Egypt'
>>> time.tzset()
>>> time.tzname
('EET', 'EEST')

See also:

Module datetime More object-oriented interface to dates and times.

Module locale Internationalization services. The locale setting affects the interpretation of many format
specifiers in strftime() and strptime().

Module calendar General calendar-related functions. timegm() is the inverse of gmtime() from this module.

16.4 argparse — Parser for command-line options, arguments and sub-
commands

New in version 3.2.

Source code: Lib/argparse.py

Tutorial

This page contains the API reference information. For a more gentle introduction to Python command-line
parsing, have a look at the argparse tutorial.

16.4. argparse — Parser for command-line options, arguments and sub-commands 569

https://github.com/python/cpython/tree/3.5/Lib/argparse.py

The Python Library Reference, Release 3.5.7

The argparse module makes it easy to write user-friendly command-line interfaces. The program defines
what arguments it requires, and argparse will figure out how to parse those out of sys.argv. The argparse
module also automatically generates help and usage messages and issues errors when users give the program
invalid arguments.

16.4.1 Example

The following code is a Python program that takes a list of integers and produces either the sum or the max:

import argparse

parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('integers', metavar='N', type=int, nargs='+',

help='an integer for the accumulator')
parser.add_argument('--sum', dest='accumulate', action='store_const',

const=sum, default=max,
help='sum the integers (default: find the max)')

args = parser.parse_args()
print(args.accumulate(args.integers))

Assuming the Python code above is saved into a file called prog.py, it can be run at the command line and
provides useful help messages:

$ python prog.py -h
usage: prog.py [-h] [--sum] N [N ...]

Process some integers.

positional arguments:
N an integer for the accumulator

optional arguments:
-h, --help show this help message and exit
--sum sum the integers (default: find the max)

When run with the appropriate arguments, it prints either the sum or the max of the command-line integers:

$ python prog.py 1 2 3 4
4

$ python prog.py 1 2 3 4 --sum
10

If invalid arguments are passed in, it will issue an error:

$ python prog.py a b c
usage: prog.py [-h] [--sum] N [N ...]
prog.py: error: argument N: invalid int value: 'a'

The following sections walk you through this example.

Creating a parser

The first step in using the argparse is creating an ArgumentParser object:

570 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

>>> parser = argparse.ArgumentParser(description='Process some integers.')

The ArgumentParser object will hold all the information necessary to parse the command line into Python
data types.

Adding arguments

Filling an ArgumentParser with information about program arguments is done by making calls to the
add_argument() method. Generally, these calls tell the ArgumentParser how to take the strings on the
command line and turn them into objects. This information is stored and used when parse_args() is called.
For example:

>>> parser.add_argument('integers', metavar='N', type=int, nargs='+',
... help='an integer for the accumulator')
>>> parser.add_argument('--sum', dest='accumulate', action='store_const',
... const=sum, default=max,
... help='sum the integers (default: find the max)')

Later, calling parse_args() will return an object with two attributes, integers and accumulate. The integers
attribute will be a list of one or more ints, and the accumulate attribute will be either the sum() function,
if --sum was specified at the command line, or the max() function if it was not.

Parsing arguments

ArgumentParser parses arguments through the parse_args() method. This will inspect the command line,
convert each argument to the appropriate type and then invoke the appropriate action. In most cases, this
means a simple Namespace object will be built up from attributes parsed out of the command line:

>>> parser.parse_args(['--sum', '7', '-1', '42'])
Namespace(accumulate=<built-in function sum>, integers=[7, -1, 42])

In a script, parse_args() will typically be called with no arguments, and the ArgumentParser will automat-
ically determine the command-line arguments from sys.argv.

16.4.2 ArgumentParser objects

class argparse.ArgumentParser(prog=None, usage=None, description=None, epilog=None, par-
ents=[], formatter_class=argparse.HelpFormatter, prefix_chars=’-
’, fromfile_prefix_chars=None, argument_default=None, con-
flict_handler=’error’, add_help=True, allow_abbrev=True)

Create a new ArgumentParser object. All parameters should be passed as keyword arguments. Each
parameter has its own more detailed description below, but in short they are:

• prog - The name of the program (default: sys.argv[0])

• usage - The string describing the program usage (default: generated from arguments added to
parser)

• description - Text to display before the argument help (default: none)

• epilog - Text to display after the argument help (default: none)

• parents - A list of ArgumentParser objects whose arguments should also be included

• formatter_class - A class for customizing the help output

16.4. argparse — Parser for command-line options, arguments and sub-commands 571

The Python Library Reference, Release 3.5.7

• prefix_chars - The set of characters that prefix optional arguments (default: ‘-‘)

• fromfile_prefix_chars - The set of characters that prefix files from which additional arguments
should be read (default: None)

• argument_default - The global default value for arguments (default: None)

• conflict_handler - The strategy for resolving conflicting optionals (usually unnecessary)

• add_help - Add a -h/--help option to the parser (default: True)

• allow_abbrev - Allows long options to be abbreviated if the abbreviation is unambiguous. (default:
True)

Changed in version 3.5: allow_abbrev parameter was added.

The following sections describe how each of these are used.

prog

By default, ArgumentParser objects use sys.argv[0] to determine how to display the name of the program
in help messages. This default is almost always desirable because it will make the help messages match how
the program was invoked on the command line. For example, consider a file named myprogram.py with the
following code:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--foo', help='foo help')
args = parser.parse_args()

The help for this program will display myprogram.py as the program name (regardless of where the program
was invoked from):

$ python myprogram.py --help
usage: myprogram.py [-h] [--foo FOO]

optional arguments:
-h, --help show this help message and exit
--foo FOO foo help
$ cd ..
$ python subdir/myprogram.py --help
usage: myprogram.py [-h] [--foo FOO]

optional arguments:
-h, --help show this help message and exit
--foo FOO foo help

To change this default behavior, another value can be supplied using the prog= argument to ArgumentParser:

>>> parser = argparse.ArgumentParser(prog='myprogram')
>>> parser.print_help()
usage: myprogram [-h]

optional arguments:
-h, --help show this help message and exit

Note that the program name, whether determined from sys.argv[0] or from the prog= argument, is available
to help messages using the %(prog)s format specifier.

572 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

>>> parser = argparse.ArgumentParser(prog='myprogram')
>>> parser.add_argument('--foo', help='foo of the %(prog)s program')
>>> parser.print_help()
usage: myprogram [-h] [--foo FOO]

optional arguments:
-h, --help show this help message and exit
--foo FOO foo of the myprogram program

usage

By default, ArgumentParser calculates the usage message from the arguments it contains:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('--foo', nargs='?', help='foo help')
>>> parser.add_argument('bar', nargs='+', help='bar help')
>>> parser.print_help()
usage: PROG [-h] [--foo [FOO]] bar [bar ...]

positional arguments:
bar bar help

optional arguments:
-h, --help show this help message and exit
--foo [FOO] foo help

The default message can be overridden with the usage= keyword argument:

>>> parser = argparse.ArgumentParser(prog='PROG', usage='%(prog)s [options]')
>>> parser.add_argument('--foo', nargs='?', help='foo help')
>>> parser.add_argument('bar', nargs='+', help='bar help')
>>> parser.print_help()
usage: PROG [options]

positional arguments:
bar bar help

optional arguments:
-h, --help show this help message and exit
--foo [FOO] foo help

The %(prog)s format specifier is available to fill in the program name in your usage messages.

description

Most calls to the ArgumentParser constructor will use the description= keyword argument. This argument
gives a brief description of what the program does and how it works. In help messages, the description is
displayed between the command-line usage string and the help messages for the various arguments:

>>> parser = argparse.ArgumentParser(description='A foo that bars')
>>> parser.print_help()
usage: argparse.py [-h]

A foo that bars

(continues on next page)

16.4. argparse — Parser for command-line options, arguments and sub-commands 573

The Python Library Reference, Release 3.5.7

(continued from previous page)

optional arguments:
-h, --help show this help message and exit

By default, the description will be line-wrapped so that it fits within the given space. To change this behavior,
see the formatter_class argument.

epilog

Some programs like to display additional description of the program after the description of the arguments.
Such text can be specified using the epilog= argument to ArgumentParser:

>>> parser = argparse.ArgumentParser(
... description='A foo that bars',
... epilog="And that's how you'd foo a bar")
>>> parser.print_help()
usage: argparse.py [-h]

A foo that bars

optional arguments:
-h, --help show this help message and exit

And that's how you'd foo a bar

As with the description argument, the epilog= text is by default line-wrapped, but this behavior can be
adjusted with the formatter_class argument to ArgumentParser.

parents

Sometimes, several parsers share a common set of arguments. Rather than repeating the definitions of these
arguments, a single parser with all the shared arguments and passed to parents= argument to Argument-
Parser can be used. The parents= argument takes a list of ArgumentParser objects, collects all the positional
and optional actions from them, and adds these actions to the ArgumentParser object being constructed:

>>> parent_parser = argparse.ArgumentParser(add_help=False)
>>> parent_parser.add_argument('--parent', type=int)

>>> foo_parser = argparse.ArgumentParser(parents=[parent_parser])
>>> foo_parser.add_argument('foo')
>>> foo_parser.parse_args(['--parent', '2', 'XXX'])
Namespace(foo='XXX', parent=2)

>>> bar_parser = argparse.ArgumentParser(parents=[parent_parser])
>>> bar_parser.add_argument('--bar')
>>> bar_parser.parse_args(['--bar', 'YYY'])
Namespace(bar='YYY', parent=None)

Note that most parent parsers will specify add_help=False. Otherwise, the ArgumentParser will see two
-h/--help options (one in the parent and one in the child) and raise an error.

Note: You must fully initialize the parsers before passing them via parents=. If you change the parent
parsers after the child parser, those changes will not be reflected in the child.

574 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

formatter_class

ArgumentParser objects allow the help formatting to be customized by specifying an alternate formatting
class. Currently, there are four such classes:

class argparse.RawDescriptionHelpFormatter
class argparse.RawTextHelpFormatter
class argparse.ArgumentDefaultsHelpFormatter
class argparse.MetavarTypeHelpFormatter

RawDescriptionHelpFormatter and RawTextHelpFormatter give more control over how textual descriptions
are displayed. By default, ArgumentParser objects line-wrap the description and epilog texts in command-
line help messages:

>>> parser = argparse.ArgumentParser(
... prog='PROG',
... description='''this description
... was indented weird
... but that is okay''',
... epilog='''
... likewise for this epilog whose whitespace will
... be cleaned up and whose words will be wrapped
... across a couple lines''')
>>> parser.print_help()
usage: PROG [-h]

this description was indented weird but that is okay

optional arguments:
-h, --help show this help message and exit

likewise for this epilog whose whitespace will be cleaned up and whose words
will be wrapped across a couple lines

Passing RawDescriptionHelpFormatter as formatter_class= indicates that description and epilog are already
correctly formatted and should not be line-wrapped:

>>> parser = argparse.ArgumentParser(
... prog='PROG',
... formatter_class=argparse.RawDescriptionHelpFormatter,
... description=textwrap.dedent('''\
... Please do not mess up this text!
... --------------------------------
... I have indented it
... exactly the way
... I want it
... '''))
>>> parser.print_help()
usage: PROG [-h]

Please do not mess up this text!

I have indented it
exactly the way
I want it

optional arguments:
-h, --help show this help message and exit

16.4. argparse — Parser for command-line options, arguments and sub-commands 575

The Python Library Reference, Release 3.5.7

RawTextHelpFormatter maintains whitespace for all sorts of help text, including argument descriptions.

ArgumentDefaultsHelpFormatter automatically adds information about default values to each of the argu-
ment help messages:

>>> parser = argparse.ArgumentParser(
... prog='PROG',
... formatter_class=argparse.ArgumentDefaultsHelpFormatter)
>>> parser.add_argument('--foo', type=int, default=42, help='FOO!')
>>> parser.add_argument('bar', nargs='*', default=[1, 2, 3], help='BAR!')
>>> parser.print_help()
usage: PROG [-h] [--foo FOO] [bar [bar ...]]

positional arguments:
bar BAR! (default: [1, 2, 3])

optional arguments:
-h, --help show this help message and exit
--foo FOO FOO! (default: 42)

MetavarTypeHelpFormatter uses the name of the type argument for each argument as the display name for
its values (rather than using the dest as the regular formatter does):

>>> parser = argparse.ArgumentParser(
... prog='PROG',
... formatter_class=argparse.MetavarTypeHelpFormatter)
>>> parser.add_argument('--foo', type=int)
>>> parser.add_argument('bar', type=float)
>>> parser.print_help()
usage: PROG [-h] [--foo int] float

positional arguments:
float

optional arguments:
-h, --help show this help message and exit
--foo int

prefix_chars

Most command-line options will use - as the prefix, e.g. -f/--foo. Parsers that need to support different
or additional prefix characters, e.g. for options like +f or /foo, may specify them using the prefix_chars=
argument to the ArgumentParser constructor:

>>> parser = argparse.ArgumentParser(prog='PROG', prefix_chars='-+')
>>> parser.add_argument('+f')
>>> parser.add_argument('++bar')
>>> parser.parse_args('+f X ++bar Y'.split())
Namespace(bar='Y', f='X')

The prefix_chars= argument defaults to '-'. Supplying a set of characters that does not include - will cause
-f/--foo options to be disallowed.

576 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

fromfile_prefix_chars

Sometimes, for example when dealing with a particularly long argument lists, it may make sense to keep
the list of arguments in a file rather than typing it out at the command line. If the fromfile_prefix_chars=
argument is given to the ArgumentParser constructor, then arguments that start with any of the specified
characters will be treated as files, and will be replaced by the arguments they contain. For example:

>>> with open('args.txt', 'w') as fp:
... fp.write('-f\nbar')
>>> parser = argparse.ArgumentParser(fromfile_prefix_chars='@')
>>> parser.add_argument('-f')
>>> parser.parse_args(['-f', 'foo', '@args.txt'])
Namespace(f='bar')

Arguments read from a file must by default be one per line (but see also convert_arg_line_to_args()) and
are treated as if they were in the same place as the original file referencing argument on the command line.
So in the example above, the expression ['-f', 'foo', '@args.txt'] is considered equivalent to the expression
['-f', 'foo', '-f', 'bar'].

The fromfile_prefix_chars= argument defaults to None, meaning that arguments will never be treated as
file references.

argument_default

Generally, argument defaults are specified either by passing a default to add_argument() or by calling the
set_defaults() methods with a specific set of name-value pairs. Sometimes however, it may be useful to specify
a single parser-wide default for arguments. This can be accomplished by passing the argument_default=
keyword argument to ArgumentParser. For example, to globally suppress attribute creation on parse_args()
calls, we supply argument_default=SUPPRESS:

>>> parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
>>> parser.add_argument('--foo')
>>> parser.add_argument('bar', nargs='?')
>>> parser.parse_args(['--foo', '1', 'BAR'])
Namespace(bar='BAR', foo='1')
>>> parser.parse_args([])
Namespace()

allow_abbrev

Normally, when you pass an argument list to the parse_args() method of an ArgumentParser, it recognizes
abbreviations of long options.

This feature can be disabled by setting allow_abbrev to False:

>>> parser = argparse.ArgumentParser(prog='PROG', allow_abbrev=False)
>>> parser.add_argument('--foobar', action='store_true')
>>> parser.add_argument('--foonley', action='store_false')
>>> parser.parse_args(['--foon'])
usage: PROG [-h] [--foobar] [--foonley]
PROG: error: unrecognized arguments: --foon

New in version 3.5.

16.4. argparse — Parser for command-line options, arguments and sub-commands 577

The Python Library Reference, Release 3.5.7

conflict_handler

ArgumentParser objects do not allow two actions with the same option string. By default, ArgumentParser
objects raise an exception if an attempt is made to create an argument with an option string that is already
in use:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-f', '--foo', help='old foo help')
>>> parser.add_argument('--foo', help='new foo help')
Traceback (most recent call last):
..
ArgumentError: argument --foo: conflicting option string(s): --foo

Sometimes (e.g. when using parents) it may be useful to simply override any older arguments with the same
option string. To get this behavior, the value 'resolve' can be supplied to the conflict_handler= argument
of ArgumentParser:

>>> parser = argparse.ArgumentParser(prog='PROG', conflict_handler='resolve')
>>> parser.add_argument('-f', '--foo', help='old foo help')
>>> parser.add_argument('--foo', help='new foo help')
>>> parser.print_help()
usage: PROG [-h] [-f FOO] [--foo FOO]

optional arguments:
-h, --help show this help message and exit
-f FOO old foo help
--foo FOO new foo help

Note that ArgumentParser objects only remove an action if all of its option strings are overridden. So, in
the example above, the old -f/--foo action is retained as the -f action, because only the --foo option string
was overridden.

add_help

By default, ArgumentParser objects add an option which simply displays the parser’s help message. For
example, consider a file named myprogram.py containing the following code:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--foo', help='foo help')
args = parser.parse_args()

If -h or --help is supplied at the command line, the ArgumentParser help will be printed:

$ python myprogram.py --help
usage: myprogram.py [-h] [--foo FOO]

optional arguments:
-h, --help show this help message and exit
--foo FOO foo help

Occasionally, it may be useful to disable the addition of this help option. This can be achieved by passing
False as the add_help= argument to ArgumentParser:

>>> parser = argparse.ArgumentParser(prog='PROG', add_help=False)
>>> parser.add_argument('--foo', help='foo help')

(continues on next page)

578 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> parser.print_help()
usage: PROG [--foo FOO]

optional arguments:
--foo FOO foo help

The help option is typically -h/--help. The exception to this is if the prefix_chars= is specified and does not
include -, in which case -h and --help are not valid options. In this case, the first character in prefix_chars
is used to prefix the help options:

>>> parser = argparse.ArgumentParser(prog='PROG', prefix_chars='+/')
>>> parser.print_help()
usage: PROG [+h]

optional arguments:
+h, ++help show this help message and exit

16.4.3 The add_argument() method

ArgumentParser.add_argument(name or flags...[, action][, nargs][, const][, default][, type][, choices
][, required][, help][, metavar][, dest])

Define how a single command-line argument should be parsed. Each parameter has its own more
detailed description below, but in short they are:

• name or flags - Either a name or a list of option strings, e.g. foo or -f, --foo.

• action - The basic type of action to be taken when this argument is encountered at the command
line.

• nargs - The number of command-line arguments that should be consumed.

• const - A constant value required by some action and nargs selections.

• default - The value produced if the argument is absent from the command line.

• type - The type to which the command-line argument should be converted.

• choices - A container of the allowable values for the argument.

• required - Whether or not the command-line option may be omitted (optionals only).

• help - A brief description of what the argument does.

• metavar - A name for the argument in usage messages.

• dest - The name of the attribute to be added to the object returned by parse_args().

The following sections describe how each of these are used.

name or flags

The add_argument() method must know whether an optional argument, like -f or --foo, or a positional
argument, like a list of filenames, is expected. The first arguments passed to add_argument() must therefore
be either a series of flags, or a simple argument name. For example, an optional argument could be created
like:

16.4. argparse — Parser for command-line options, arguments and sub-commands 579

The Python Library Reference, Release 3.5.7

>>> parser.add_argument('-f', '--foo')

while a positional argument could be created like:

>>> parser.add_argument('bar')

When parse_args() is called, optional arguments will be identified by the - prefix, and the remaining argu-
ments will be assumed to be positional:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-f', '--foo')
>>> parser.add_argument('bar')
>>> parser.parse_args(['BAR'])
Namespace(bar='BAR', foo=None)
>>> parser.parse_args(['BAR', '--foo', 'FOO'])
Namespace(bar='BAR', foo='FOO')
>>> parser.parse_args(['--foo', 'FOO'])
usage: PROG [-h] [-f FOO] bar
PROG: error: too few arguments

action

ArgumentParser objects associate command-line arguments with actions. These actions can do just about
anything with the command-line arguments associated with them, though most actions simply add an
attribute to the object returned by parse_args(). The action keyword argument specifies how the command-
line arguments should be handled. The supplied actions are:

• 'store' - This just stores the argument’s value. This is the default action. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo')
>>> parser.parse_args('--foo 1'.split())
Namespace(foo='1')

• 'store_const' - This stores the value specified by the const keyword argument. The 'store_const'
action is most commonly used with optional arguments that specify some sort of flag. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', action='store_const', const=42)
>>> parser.parse_args(['--foo'])
Namespace(foo=42)

• 'store_true' and 'store_false' - These are special cases of 'store_const' used for storing the values
True and False respectively. In addition, they create default values of False and True respectively. For
example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', action='store_true')
>>> parser.add_argument('--bar', action='store_false')
>>> parser.add_argument('--baz', action='store_false')
>>> parser.parse_args('--foo --bar'.split())
Namespace(foo=True, bar=False, baz=True)

• 'append' - This stores a list, and appends each argument value to the list. This is useful to allow an
option to be specified multiple times. Example usage:

580 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', action='append')
>>> parser.parse_args('--foo 1 --foo 2'.split())
Namespace(foo=['1', '2'])

• 'append_const' - This stores a list, and appends the value specified by the const keyword argument
to the list. (Note that the const keyword argument defaults to None.) The 'append_const' action is
typically useful when multiple arguments need to store constants to the same list. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--str', dest='types', action='append_const', const=str)
>>> parser.add_argument('--int', dest='types', action='append_const', const=int)
>>> parser.parse_args('--str --int'.split())
Namespace(types=[<class 'str'>, <class 'int'>])

• 'count' - This counts the number of times a keyword argument occurs. For example, this is useful for
increasing verbosity levels:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--verbose', '-v', action='count')
>>> parser.parse_args(['-vvv'])
Namespace(verbose=3)

• 'help' - This prints a complete help message for all the options in the current parser and then exits.
By default a help action is automatically added to the parser. See ArgumentParser for details of how
the output is created.

• 'version' - This expects a version= keyword argument in the add_argument() call, and prints version
information and exits when invoked:

>>> import argparse
>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('--version', action='version', version='%(prog)s 2.0')
>>> parser.parse_args(['--version'])
PROG 2.0

You may also specify an arbitrary action by passing an Action subclass or other object that implements the
same interface. The recommended way to do this is to extend Action, overriding the __call__ method and
optionally the __init__ method.

An example of a custom action:

>>> class FooAction(argparse.Action):
... def __init__(self, option_strings, dest, nargs=None, **kwargs):
... if nargs is not None:
... raise ValueError("nargs not allowed")
... super(FooAction, self).__init__(option_strings, dest, **kwargs)
... def __call__(self, parser, namespace, values, option_string=None):
... print('%r %r %r' % (namespace, values, option_string))
... setattr(namespace, self.dest, values)
...
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', action=FooAction)
>>> parser.add_argument('bar', action=FooAction)
>>> args = parser.parse_args('1 --foo 2'.split())
Namespace(bar=None, foo=None) '1' None
Namespace(bar='1', foo=None) '2' '--foo'

(continues on next page)

16.4. argparse — Parser for command-line options, arguments and sub-commands 581

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> args
Namespace(bar='1', foo='2')

For more details, see Action.

nargs

ArgumentParser objects usually associate a single command-line argument with a single action to be taken.
The nargs keyword argument associates a different number of command-line arguments with a single action.
The supported values are:

• N (an integer). N arguments from the command line will be gathered together into a list. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', nargs=2)
>>> parser.add_argument('bar', nargs=1)
>>> parser.parse_args('c --foo a b'.split())
Namespace(bar=['c'], foo=['a', 'b'])

Note that nargs=1 produces a list of one item. This is different from the default, in which the item is
produced by itself.

• '?'. One argument will be consumed from the command line if possible, and produced as a single
item. If no command-line argument is present, the value from default will be produced. Note that
for optional arguments, there is an additional case - the option string is present but not followed by
a command-line argument. In this case the value from const will be produced. Some examples to
illustrate this:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', nargs='?', const='c', default='d')
>>> parser.add_argument('bar', nargs='?', default='d')
>>> parser.parse_args(['XX', '--foo', 'YY'])
Namespace(bar='XX', foo='YY')
>>> parser.parse_args(['XX', '--foo'])
Namespace(bar='XX', foo='c')
>>> parser.parse_args([])
Namespace(bar='d', foo='d')

One of the more common uses of nargs='?' is to allow optional input and output files:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('infile', nargs='?', type=argparse.FileType('r'),
... default=sys.stdin)
>>> parser.add_argument('outfile', nargs='?', type=argparse.FileType('w'),
... default=sys.stdout)
>>> parser.parse_args(['input.txt', 'output.txt'])
Namespace(infile=<_io.TextIOWrapper name='input.txt' encoding='UTF-8'>,

outfile=<_io.TextIOWrapper name='output.txt' encoding='UTF-8'>)
>>> parser.parse_args([])
Namespace(infile=<_io.TextIOWrapper name='<stdin>' encoding='UTF-8'>,

outfile=<_io.TextIOWrapper name='<stdout>' encoding='UTF-8'>)

• '*'. All command-line arguments present are gathered into a list. Note that it generally doesn’t
make much sense to have more than one positional argument with nargs='*', but multiple optional
arguments with nargs='*' is possible. For example:

582 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', nargs='*')
>>> parser.add_argument('--bar', nargs='*')
>>> parser.add_argument('baz', nargs='*')
>>> parser.parse_args('a b --foo x y --bar 1 2'.split())
Namespace(bar=['1', '2'], baz=['a', 'b'], foo=['x', 'y'])

• '+'. Just like '*', all command-line args present are gathered into a list. Additionally, an error
message will be generated if there wasn’t at least one command-line argument present. For example:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('foo', nargs='+')
>>> parser.parse_args(['a', 'b'])
Namespace(foo=['a', 'b'])
>>> parser.parse_args([])
usage: PROG [-h] foo [foo ...]
PROG: error: too few arguments

• argparse.REMAINDER. All the remaining command-line arguments are gathered into a list. This is
commonly useful for command line utilities that dispatch to other command line utilities:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('--foo')
>>> parser.add_argument('command')
>>> parser.add_argument('args', nargs=argparse.REMAINDER)
>>> print(parser.parse_args('--foo B cmd --arg1 XX ZZ'.split()))
Namespace(args=['--arg1', 'XX', 'ZZ'], command='cmd', foo='B')

If the nargs keyword argument is not provided, the number of arguments consumed is determined by the
action. Generally this means a single command-line argument will be consumed and a single item (not a
list) will be produced.

const

The const argument of add_argument() is used to hold constant values that are not read from the command
line but are required for the various ArgumentParser actions. The two most common uses of it are:

• When add_argument() is called with action='store_const' or action='append_const'. These ac-
tions add the const value to one of the attributes of the object returned by parse_args(). See the
action description for examples.

• When add_argument() is called with option strings (like -f or --foo) and nargs='?'. This creates an
optional argument that can be followed by zero or one command-line arguments. When parsing the
command line, if the option string is encountered with no command-line argument following it, the
value of const will be assumed instead. See the nargs description for examples.

With the 'store_const' and 'append_const' actions, the const keyword argument must be given. For
other actions, it defaults to None.

default

All optional arguments and some positional arguments may be omitted at the command line. The default
keyword argument of add_argument(), whose value defaults to None, specifies what value should be used
if the command-line argument is not present. For optional arguments, the default value is used when the
option string was not present at the command line:

16.4. argparse — Parser for command-line options, arguments and sub-commands 583

The Python Library Reference, Release 3.5.7

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', default=42)
>>> parser.parse_args(['--foo', '2'])
Namespace(foo='2')
>>> parser.parse_args([])
Namespace(foo=42)

If the default value is a string, the parser parses the value as if it were a command-line argument. In
particular, the parser applies any type conversion argument, if provided, before setting the attribute on the
Namespace return value. Otherwise, the parser uses the value as is:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--length', default='10', type=int)
>>> parser.add_argument('--width', default=10.5, type=int)
>>> parser.parse_args()
Namespace(length=10, width=10.5)

For positional arguments with nargs equal to ? or *, the default value is used when no command-line argument
was present:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('foo', nargs='?', default=42)
>>> parser.parse_args(['a'])
Namespace(foo='a')
>>> parser.parse_args([])
Namespace(foo=42)

Providing default=argparse.SUPPRESS causes no attribute to be added if the command-line argument was
not present.:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', default=argparse.SUPPRESS)
>>> parser.parse_args([])
Namespace()
>>> parser.parse_args(['--foo', '1'])
Namespace(foo='1')

type

By default, ArgumentParser objects read command-line arguments in as simple strings. However, quite often
the command-line string should instead be interpreted as another type, like a float or int. The type keyword
argument of add_argument() allows any necessary type-checking and type conversions to be performed.
Common built-in types and functions can be used directly as the value of the type argument:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('foo', type=int)
>>> parser.add_argument('bar', type=open)
>>> parser.parse_args('2 temp.txt'.split())
Namespace(bar=<_io.TextIOWrapper name='temp.txt' encoding='UTF-8'>, foo=2)

See the section on the default keyword argument for information on when the type argument is applied to
default arguments.

To ease the use of various types of files, the argparse module provides the factory FileType which takes the
mode=, bufsize=, encoding= and errors= arguments of the open() function. For example, FileType('w')
can be used to create a writable file:

584 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('bar', type=argparse.FileType('w'))
>>> parser.parse_args(['out.txt'])
Namespace(bar=<_io.TextIOWrapper name='out.txt' encoding='UTF-8'>)

type= can take any callable that takes a single string argument and returns the converted value:

>>> def perfect_square(string):
... value = int(string)
... sqrt = math.sqrt(value)
... if sqrt != int(sqrt):
... msg = "%r is not a perfect square" % string
... raise argparse.ArgumentTypeError(msg)
... return value
...
>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('foo', type=perfect_square)
>>> parser.parse_args(['9'])
Namespace(foo=9)
>>> parser.parse_args(['7'])
usage: PROG [-h] foo
PROG: error: argument foo: '7' is not a perfect square

The choices keyword argument may be more convenient for type checkers that simply check against a range
of values:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('foo', type=int, choices=range(5, 10))
>>> parser.parse_args(['7'])
Namespace(foo=7)
>>> parser.parse_args(['11'])
usage: PROG [-h] {5,6,7,8,9}
PROG: error: argument foo: invalid choice: 11 (choose from 5, 6, 7, 8, 9)

See the choices section for more details.

choices

Some command-line arguments should be selected from a restricted set of values. These can be handled by
passing a container object as the choices keyword argument to add_argument(). When the command line
is parsed, argument values will be checked, and an error message will be displayed if the argument was not
one of the acceptable values:

>>> parser = argparse.ArgumentParser(prog='game.py')
>>> parser.add_argument('move', choices=['rock', 'paper', 'scissors'])
>>> parser.parse_args(['rock'])
Namespace(move='rock')
>>> parser.parse_args(['fire'])
usage: game.py [-h] {rock,paper,scissors}
game.py: error: argument move: invalid choice: 'fire' (choose from 'rock',
'paper', 'scissors')

Note that inclusion in the choices container is checked after any type conversions have been performed, so
the type of the objects in the choices container should match the type specified:

16.4. argparse — Parser for command-line options, arguments and sub-commands 585

The Python Library Reference, Release 3.5.7

>>> parser = argparse.ArgumentParser(prog='doors.py')
>>> parser.add_argument('door', type=int, choices=range(1, 4))
>>> print(parser.parse_args(['3']))
Namespace(door=3)
>>> parser.parse_args(['4'])
usage: doors.py [-h] {1,2,3}
doors.py: error: argument door: invalid choice: 4 (choose from 1, 2, 3)

Any object that supports the in operator can be passed as the choices value, so dict objects, set objects,
custom containers, etc. are all supported.

required

In general, the argparse module assumes that flags like -f and --bar indicate optional arguments, which can
always be omitted at the command line. To make an option required, True can be specified for the required=
keyword argument to add_argument():

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', required=True)
>>> parser.parse_args(['--foo', 'BAR'])
Namespace(foo='BAR')
>>> parser.parse_args([])
usage: argparse.py [-h] [--foo FOO]
argparse.py: error: option --foo is required

As the example shows, if an option is marked as required, parse_args() will report an error if that option is
not present at the command line.

Note: Required options are generally considered bad form because users expect options to be optional, and
thus they should be avoided when possible.

help

The help value is a string containing a brief description of the argument. When a user requests help (usually
by using -h or --help at the command line), these help descriptions will be displayed with each argument:

>>> parser = argparse.ArgumentParser(prog='frobble')
>>> parser.add_argument('--foo', action='store_true',
... help='foo the bars before frobbling')
>>> parser.add_argument('bar', nargs='+',
... help='one of the bars to be frobbled')
>>> parser.parse_args(['-h'])
usage: frobble [-h] [--foo] bar [bar ...]

positional arguments:
bar one of the bars to be frobbled

optional arguments:
-h, --help show this help message and exit
--foo foo the bars before frobbling

The help strings can include various format specifiers to avoid repetition of things like the program name
or the argument default. The available specifiers include the program name, %(prog)s and most keyword

586 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

arguments to add_argument(), e.g. %(default)s, %(type)s, etc.:

>>> parser = argparse.ArgumentParser(prog='frobble')
>>> parser.add_argument('bar', nargs='?', type=int, default=42,
... help='the bar to %(prog)s (default: %(default)s)')
>>> parser.print_help()
usage: frobble [-h] [bar]

positional arguments:
bar the bar to frobble (default: 42)

optional arguments:
-h, --help show this help message and exit

As the help string supports %-formatting, if you want a literal % to appear in the help string, you must
escape it as %%.

argparse supports silencing the help entry for certain options, by setting the help value to argparse.
SUPPRESS:

>>> parser = argparse.ArgumentParser(prog='frobble')
>>> parser.add_argument('--foo', help=argparse.SUPPRESS)
>>> parser.print_help()
usage: frobble [-h]

optional arguments:
-h, --help show this help message and exit

metavar

When ArgumentParser generates help messages, it needs some way to refer to each expected argument. By
default, ArgumentParser objects use the dest value as the “name” of each object. By default, for positional
argument actions, the dest value is used directly, and for optional argument actions, the dest value is
uppercased. So, a single positional argument with dest='bar' will be referred to as bar. A single optional
argument --foo that should be followed by a single command-line argument will be referred to as FOO. An
example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo')
>>> parser.add_argument('bar')
>>> parser.parse_args('X --foo Y'.split())
Namespace(bar='X', foo='Y')
>>> parser.print_help()
usage: [-h] [--foo FOO] bar

positional arguments:
bar

optional arguments:
-h, --help show this help message and exit
--foo FOO

An alternative name can be specified with metavar:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', metavar='YYY')

(continues on next page)

16.4. argparse — Parser for command-line options, arguments and sub-commands 587

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> parser.add_argument('bar', metavar='XXX')
>>> parser.parse_args('X --foo Y'.split())
Namespace(bar='X', foo='Y')
>>> parser.print_help()
usage: [-h] [--foo YYY] XXX

positional arguments:
XXX

optional arguments:
-h, --help show this help message and exit
--foo YYY

Note that metavar only changes the displayed name - the name of the attribute on the parse_args() object
is still determined by the dest value.

Different values of nargs may cause the metavar to be used multiple times. Providing a tuple to metavar
specifies a different display for each of the arguments:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-x', nargs=2)
>>> parser.add_argument('--foo', nargs=2, metavar=('bar', 'baz'))
>>> parser.print_help()
usage: PROG [-h] [-x X X] [--foo bar baz]

optional arguments:
-h, --help show this help message and exit
-x X X
--foo bar baz

dest

Most ArgumentParser actions add some value as an attribute of the object returned by parse_args(). The
name of this attribute is determined by the dest keyword argument of add_argument(). For positional
argument actions, dest is normally supplied as the first argument to add_argument():

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('bar')
>>> parser.parse_args(['XXX'])
Namespace(bar='XXX')

For optional argument actions, the value of dest is normally inferred from the option strings. ArgumentParser
generates the value of dest by taking the first long option string and stripping away the initial -- string. If
no long option strings were supplied, dest will be derived from the first short option string by stripping the
initial - character. Any internal - characters will be converted to _ characters to make sure the string is a
valid attribute name. The examples below illustrate this behavior:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('-f', '--foo-bar', '--foo')
>>> parser.add_argument('-x', '-y')
>>> parser.parse_args('-f 1 -x 2'.split())
Namespace(foo_bar='1', x='2')
>>> parser.parse_args('--foo 1 -y 2'.split())
Namespace(foo_bar='1', x='2')

588 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

dest allows a custom attribute name to be provided:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', dest='bar')
>>> parser.parse_args('--foo XXX'.split())
Namespace(bar='XXX')

Action classes

Action classes implement the Action API, a callable which returns a callable which processes arguments
from the command-line. Any object which follows this API may be passed as the action parameter to
add_argument().

class argparse.Action(option_strings, dest, nargs=None, const=None, default=None, type=None,
choices=None, required=False, help=None, metavar=None)

Action objects are used by an ArgumentParser to represent the information needed to parse a single argument
from one or more strings from the command line. The Action class must accept the two positional arguments
plus any keyword arguments passed to ArgumentParser.add_argument() except for the action itself.

Instances of Action (or return value of any callable to the action parameter) should have attributes “dest”,
“option_strings”, “default”, “type”, “required”, “help”, etc. defined. The easiest way to ensure these attributes
are defined is to call Action.__init__.

Action instances should be callable, so subclasses must override the __call__ method, which should accept
four parameters:

• parser - The ArgumentParser object which contains this action.

• namespace - The Namespace object that will be returned by parse_args(). Most actions add an
attribute to this object using setattr().

• values - The associated command-line arguments, with any type conversions applied. Type conversions
are specified with the type keyword argument to add_argument().

• option_string - The option string that was used to invoke this action. The option_string argument is
optional, and will be absent if the action is associated with a positional argument.

The __call__ method may perform arbitrary actions, but will typically set attributes on the namespace
based on dest and values.

16.4.4 The parse_args() method

ArgumentParser.parse_args(args=None, namespace=None)
Convert argument strings to objects and assign them as attributes of the namespace. Return the
populated namespace.

Previous calls to add_argument() determine exactly what objects are created and how they are as-
signed. See the documentation for add_argument() for details.

By default, the argument strings are taken from sys.argv, and a new empty Namespace object is created
for the attributes.

Option value syntax

The parse_args() method supports several ways of specifying the value of an option (if it takes one). In the
simplest case, the option and its value are passed as two separate arguments:

16.4. argparse — Parser for command-line options, arguments and sub-commands 589

The Python Library Reference, Release 3.5.7

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-x')
>>> parser.add_argument('--foo')
>>> parser.parse_args(['-x', 'X'])
Namespace(foo=None, x='X')
>>> parser.parse_args(['--foo', 'FOO'])
Namespace(foo='FOO', x=None)

For long options (options with names longer than a single character), the option and value can also be passed
as a single command-line argument, using = to separate them:

>>> parser.parse_args(['--foo=FOO'])
Namespace(foo='FOO', x=None)

For short options (options only one character long), the option and its value can be concatenated:

>>> parser.parse_args(['-xX'])
Namespace(foo=None, x='X')

Several short options can be joined together, using only a single - prefix, as long as only the last option (or
none of them) requires a value:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-x', action='store_true')
>>> parser.add_argument('-y', action='store_true')
>>> parser.add_argument('-z')
>>> parser.parse_args(['-xyzZ'])
Namespace(x=True, y=True, z='Z')

Invalid arguments

While parsing the command line, parse_args() checks for a variety of errors, including ambiguous options,
invalid types, invalid options, wrong number of positional arguments, etc. When it encounters such an error,
it exits and prints the error along with a usage message:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('--foo', type=int)
>>> parser.add_argument('bar', nargs='?')

>>> # invalid type
>>> parser.parse_args(['--foo', 'spam'])
usage: PROG [-h] [--foo FOO] [bar]
PROG: error: argument --foo: invalid int value: 'spam'

>>> # invalid option
>>> parser.parse_args(['--bar'])
usage: PROG [-h] [--foo FOO] [bar]
PROG: error: no such option: --bar

>>> # wrong number of arguments
>>> parser.parse_args(['spam', 'badger'])
usage: PROG [-h] [--foo FOO] [bar]
PROG: error: extra arguments found: badger

590 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Arguments containing -

The parse_args() method attempts to give errors whenever the user has clearly made a mistake, but some
situations are inherently ambiguous. For example, the command-line argument -1 could either be an attempt
to specify an option or an attempt to provide a positional argument. The parse_args() method is cautious
here: positional arguments may only begin with - if they look like negative numbers and there are no options
in the parser that look like negative numbers:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-x')
>>> parser.add_argument('foo', nargs='?')

>>> # no negative number options, so -1 is a positional argument
>>> parser.parse_args(['-x', '-1'])
Namespace(foo=None, x='-1')

>>> # no negative number options, so -1 and -5 are positional arguments
>>> parser.parse_args(['-x', '-1', '-5'])
Namespace(foo='-5', x='-1')

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-1', dest='one')
>>> parser.add_argument('foo', nargs='?')

>>> # negative number options present, so -1 is an option
>>> parser.parse_args(['-1', 'X'])
Namespace(foo=None, one='X')

>>> # negative number options present, so -2 is an option
>>> parser.parse_args(['-2'])
usage: PROG [-h] [-1 ONE] [foo]
PROG: error: no such option: -2

>>> # negative number options present, so both -1s are options
>>> parser.parse_args(['-1', '-1'])
usage: PROG [-h] [-1 ONE] [foo]
PROG: error: argument -1: expected one argument

If you have positional arguments that must begin with - and don’t look like negative numbers, you can insert
the pseudo-argument '--' which tells parse_args() that everything after that is a positional argument:

>>> parser.parse_args(['--', '-f'])
Namespace(foo='-f', one=None)

Argument abbreviations (prefix matching)

The parse_args() method by default allows long options to be abbreviated to a prefix, if the abbreviation is
unambiguous (the prefix matches a unique option):

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-bacon')
>>> parser.add_argument('-badger')
>>> parser.parse_args('-bac MMM'.split())
Namespace(bacon='MMM', badger=None)
>>> parser.parse_args('-bad WOOD'.split())
Namespace(bacon=None, badger='WOOD')

(continues on next page)

16.4. argparse — Parser for command-line options, arguments and sub-commands 591

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> parser.parse_args('-ba BA'.split())
usage: PROG [-h] [-bacon BACON] [-badger BADGER]
PROG: error: ambiguous option: -ba could match -badger, -bacon

An error is produced for arguments that could produce more than one options. This feature can be disabled
by setting allow_abbrev to False.

Beyond sys.argv

Sometimes it may be useful to have an ArgumentParser parse arguments other than those of sys.argv. This
can be accomplished by passing a list of strings to parse_args(). This is useful for testing at the interactive
prompt:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(
... 'integers', metavar='int', type=int, choices=range(10),
... nargs='+', help='an integer in the range 0..9')
>>> parser.add_argument(
... '--sum', dest='accumulate', action='store_const', const=sum,
... default=max, help='sum the integers (default: find the max)')
>>> parser.parse_args(['1', '2', '3', '4'])
Namespace(accumulate=<built-in function max>, integers=[1, 2, 3, 4])
>>> parser.parse_args(['1', '2', '3', '4', '--sum'])
Namespace(accumulate=<built-in function sum>, integers=[1, 2, 3, 4])

The Namespace object

class argparse.Namespace
Simple class used by default by parse_args() to create an object holding attributes and return it.

This class is deliberately simple, just an object subclass with a readable string representation. If you prefer
to have dict-like view of the attributes, you can use the standard Python idiom, vars():

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo')
>>> args = parser.parse_args(['--foo', 'BAR'])
>>> vars(args)
{'foo': 'BAR'}

It may also be useful to have an ArgumentParser assign attributes to an already existing object, rather than
a new Namespace object. This can be achieved by specifying the namespace= keyword argument:

>>> class C:
... pass
...
>>> c = C()
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo')
>>> parser.parse_args(args=['--foo', 'BAR'], namespace=c)
>>> c.foo
'BAR'

592 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

16.4.5 Other utilities

Sub-commands

ArgumentParser.add_subparsers([title][, description][, prog][, parser_class][, action][, op-

tion_string][, dest][, help][, metavar])
Many programs split up their functionality into a number of sub-commands, for example, the svn
program can invoke sub-commands like svn checkout, svn update, and svn commit. Splitting up
functionality this way can be a particularly good idea when a program performs several different
functions which require different kinds of command-line arguments. ArgumentParser supports the
creation of such sub-commands with the add_subparsers() method. The add_subparsers() method
is normally called with no arguments and returns a special action object. This object has a single
method, add_parser(), which takes a command name and any ArgumentParser constructor arguments,
and returns an ArgumentParser object that can be modified as usual.

Description of parameters:

• title - title for the sub-parser group in help output; by default “subcommands” if description is
provided, otherwise uses title for positional arguments

• description - description for the sub-parser group in help output, by default None

• prog - usage information that will be displayed with sub-command help, by default the name of
the program and any positional arguments before the subparser argument

• parser_class - class which will be used to create sub-parser instances, by default the class of the
current parser (e.g. ArgumentParser)

• action - the basic type of action to be taken when this argument is encountered at the command
line

• dest - name of the attribute under which sub-command name will be stored; by default None and
no value is stored

• help - help for sub-parser group in help output, by default None

• metavar - string presenting available sub-commands in help; by default it is None and presents
sub-commands in form {cmd1, cmd2, ..}

Some example usage:

>>> # create the top-level parser
>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('--foo', action='store_true', help='foo help')
>>> subparsers = parser.add_subparsers(help='sub-command help')
>>>
>>> # create the parser for the "a" command
>>> parser_a = subparsers.add_parser('a', help='a help')
>>> parser_a.add_argument('bar', type=int, help='bar help')
>>>
>>> # create the parser for the "b" command
>>> parser_b = subparsers.add_parser('b', help='b help')
>>> parser_b.add_argument('--baz', choices='XYZ', help='baz help')
>>>
>>> # parse some argument lists
>>> parser.parse_args(['a', '12'])
Namespace(bar=12, foo=False)
>>> parser.parse_args(['--foo', 'b', '--baz', 'Z'])
Namespace(baz='Z', foo=True)

16.4. argparse — Parser for command-line options, arguments and sub-commands 593

The Python Library Reference, Release 3.5.7

Note that the object returned by parse_args() will only contain attributes for the main parser and the
subparser that was selected by the command line (and not any other subparsers). So in the example
above, when the a command is specified, only the foo and bar attributes are present, and when the b
command is specified, only the foo and baz attributes are present.

Similarly, when a help message is requested from a subparser, only the help for that particular parser
will be printed. The help message will not include parent parser or sibling parser messages. (A help
message for each subparser command, however, can be given by supplying the help= argument to
add_parser() as above.)

>>> parser.parse_args(['--help'])
usage: PROG [-h] [--foo] {a,b} ...

positional arguments:
{a,b} sub-command help
a a help
b b help

optional arguments:
-h, --help show this help message and exit
--foo foo help

>>> parser.parse_args(['a', '--help'])
usage: PROG a [-h] bar

positional arguments:
bar bar help

optional arguments:
-h, --help show this help message and exit

>>> parser.parse_args(['b', '--help'])
usage: PROG b [-h] [--baz {X,Y,Z}]

optional arguments:
-h, --help show this help message and exit
--baz {X,Y,Z} baz help

The add_subparsers() method also supports title and description keyword arguments. When either is
present, the subparser’s commands will appear in their own group in the help output. For example:

>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers(title='subcommands',
... description='valid subcommands',
... help='additional help')
>>> subparsers.add_parser('foo')
>>> subparsers.add_parser('bar')
>>> parser.parse_args(['-h'])
usage: [-h] {foo,bar} ...

optional arguments:
-h, --help show this help message and exit

subcommands:
valid subcommands

{foo,bar} additional help

594 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Furthermore, add_parser supports an additional aliases argument, which allows multiple strings to
refer to the same subparser. This example, like svn, aliases co as a shorthand for checkout:

>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers()
>>> checkout = subparsers.add_parser('checkout', aliases=['co'])
>>> checkout.add_argument('foo')
>>> parser.parse_args(['co', 'bar'])
Namespace(foo='bar')

One particularly effective way of handling sub-commands is to combine the use of the add_subparsers()
method with calls to set_defaults() so that each subparser knows which Python function it should
execute. For example:

>>> # sub-command functions
>>> def foo(args):
... print(args.x * args.y)
...
>>> def bar(args):
... print('((%s))' % args.z)
...
>>> # create the top-level parser
>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers()
>>>
>>> # create the parser for the "foo" command
>>> parser_foo = subparsers.add_parser('foo')
>>> parser_foo.add_argument('-x', type=int, default=1)
>>> parser_foo.add_argument('y', type=float)
>>> parser_foo.set_defaults(func=foo)
>>>
>>> # create the parser for the "bar" command
>>> parser_bar = subparsers.add_parser('bar')
>>> parser_bar.add_argument('z')
>>> parser_bar.set_defaults(func=bar)
>>>
>>> # parse the args and call whatever function was selected
>>> args = parser.parse_args('foo 1 -x 2'.split())
>>> args.func(args)
2.0
>>>
>>> # parse the args and call whatever function was selected
>>> args = parser.parse_args('bar XYZYX'.split())
>>> args.func(args)
((XYZYX))

This way, you can let parse_args() do the job of calling the appropriate function after argument
parsing is complete. Associating functions with actions like this is typically the easiest way to handle
the different actions for each of your subparsers. However, if it is necessary to check the name of the
subparser that was invoked, the dest keyword argument to the add_subparsers() call will work:

>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers(dest='subparser_name')
>>> subparser1 = subparsers.add_parser('1')
>>> subparser1.add_argument('-x')
>>> subparser2 = subparsers.add_parser('2')
>>> subparser2.add_argument('y')

(continues on next page)

16.4. argparse — Parser for command-line options, arguments and sub-commands 595

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> parser.parse_args(['2', 'frobble'])
Namespace(subparser_name='2', y='frobble')

FileType objects

class argparse.FileType(mode=’r’, bufsize=-1, encoding=None, errors=None)
The FileType factory creates objects that can be passed to the type argument of ArgumentParser.
add_argument(). Arguments that have FileType objects as their type will open command-line argu-
ments as files with the requested modes, buffer sizes, encodings and error handling (see the open()
function for more details):

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--raw', type=argparse.FileType('wb', 0))
>>> parser.add_argument('out', type=argparse.FileType('w', encoding='UTF-8'))
>>> parser.parse_args(['--raw', 'raw.dat', 'file.txt'])
Namespace(out=<_io.TextIOWrapper name='file.txt' mode='w' encoding='UTF-8'>, raw=<_io.
→˓FileIO name='raw.dat' mode='wb'>)

FileType objects understand the pseudo-argument '-' and automatically convert this into sys.stdin
for readable FileType objects and sys.stdout for writable FileType objects:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('infile', type=argparse.FileType('r'))
>>> parser.parse_args(['-'])
Namespace(infile=<_io.TextIOWrapper name='<stdin>' encoding='UTF-8'>)

New in version 3.4: The encodings and errors keyword arguments.

Argument groups

ArgumentParser.add_argument_group(title=None, description=None)
By default, ArgumentParser groups command-line arguments into “positional arguments” and “optional
arguments” when displaying help messages. When there is a better conceptual grouping of arguments
than this default one, appropriate groups can be created using the add_argument_group() method:

>>> parser = argparse.ArgumentParser(prog='PROG', add_help=False)
>>> group = parser.add_argument_group('group')
>>> group.add_argument('--foo', help='foo help')
>>> group.add_argument('bar', help='bar help')
>>> parser.print_help()
usage: PROG [--foo FOO] bar

group:
bar bar help
--foo FOO foo help

The add_argument_group() method returns an argument group object which has an add_argument()
method just like a regular ArgumentParser. When an argument is added to the group, the parser
treats it just like a normal argument, but displays the argument in a separate group for help messages.
The add_argument_group() method accepts title and description arguments which can be used to
customize this display:

596 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

>>> parser = argparse.ArgumentParser(prog='PROG', add_help=False)
>>> group1 = parser.add_argument_group('group1', 'group1 description')
>>> group1.add_argument('foo', help='foo help')
>>> group2 = parser.add_argument_group('group2', 'group2 description')
>>> group2.add_argument('--bar', help='bar help')
>>> parser.print_help()
usage: PROG [--bar BAR] foo

group1:
group1 description

foo foo help

group2:
group2 description

--bar BAR bar help

Note that any arguments not in your user-defined groups will end up back in the usual “positional
arguments” and “optional arguments” sections.

Mutual exclusion

ArgumentParser.add_mutually_exclusive_group(required=False)
Create a mutually exclusive group. argparse will make sure that only one of the arguments in the
mutually exclusive group was present on the command line:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> group = parser.add_mutually_exclusive_group()
>>> group.add_argument('--foo', action='store_true')
>>> group.add_argument('--bar', action='store_false')
>>> parser.parse_args(['--foo'])
Namespace(bar=True, foo=True)
>>> parser.parse_args(['--bar'])
Namespace(bar=False, foo=False)
>>> parser.parse_args(['--foo', '--bar'])
usage: PROG [-h] [--foo | --bar]
PROG: error: argument --bar: not allowed with argument --foo

The add_mutually_exclusive_group() method also accepts a required argument, to indicate that at
least one of the mutually exclusive arguments is required:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> group = parser.add_mutually_exclusive_group(required=True)
>>> group.add_argument('--foo', action='store_true')
>>> group.add_argument('--bar', action='store_false')
>>> parser.parse_args([])
usage: PROG [-h] (--foo | --bar)
PROG: error: one of the arguments --foo --bar is required

Note that currently mutually exclusive argument groups do not support the title and description
arguments of add_argument_group().

16.4. argparse — Parser for command-line options, arguments and sub-commands 597

The Python Library Reference, Release 3.5.7

Parser defaults

ArgumentParser.set_defaults(**kwargs)
Most of the time, the attributes of the object returned by parse_args() will be fully determined
by inspecting the command-line arguments and the argument actions. set_defaults() allows some
additional attributes that are determined without any inspection of the command line to be added:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('foo', type=int)
>>> parser.set_defaults(bar=42, baz='badger')
>>> parser.parse_args(['736'])
Namespace(bar=42, baz='badger', foo=736)

Note that parser-level defaults always override argument-level defaults:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', default='bar')
>>> parser.set_defaults(foo='spam')
>>> parser.parse_args([])
Namespace(foo='spam')

Parser-level defaults can be particularly useful when working with multiple parsers. See the
add_subparsers() method for an example of this type.

ArgumentParser.get_default(dest)
Get the default value for a namespace attribute, as set by either add_argument() or by set_defaults():

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', default='badger')
>>> parser.get_default('foo')
'badger'

Printing help

In most typical applications, parse_args() will take care of formatting and printing any usage or error
messages. However, several formatting methods are available:

ArgumentParser.print_usage(file=None)
Print a brief description of how the ArgumentParser should be invoked on the command line. If file is
None, sys.stdout is assumed.

ArgumentParser.print_help(file=None)
Print a help message, including the program usage and information about the arguments registered
with the ArgumentParser. If file is None, sys.stdout is assumed.

There are also variants of these methods that simply return a string instead of printing it:

ArgumentParser.format_usage()
Return a string containing a brief description of how the ArgumentParser should be invoked on the
command line.

ArgumentParser.format_help()
Return a string containing a help message, including the program usage and information about the
arguments registered with the ArgumentParser.

598 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Partial parsing

ArgumentParser.parse_known_args(args=None, namespace=None)

Sometimes a script may only parse a few of the command-line arguments, passing the remaining arguments
on to another script or program. In these cases, the parse_known_args() method can be useful. It works
much like parse_args() except that it does not produce an error when extra arguments are present. Instead,
it returns a two item tuple containing the populated namespace and the list of remaining argument strings.

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', action='store_true')
>>> parser.add_argument('bar')
>>> parser.parse_known_args(['--foo', '--badger', 'BAR', 'spam'])
(Namespace(bar='BAR', foo=True), ['--badger', 'spam'])

Warning: Prefix matching rules apply to parse_known_args(). The parser may consume an option even
if it’s just a prefix of one of its known options, instead of leaving it in the remaining arguments list.

Customizing file parsing

ArgumentParser.convert_arg_line_to_args(arg_line)
Arguments that are read from a file (see the fromfile_prefix_chars keyword argument to the Argument-
Parser constructor) are read one argument per line. convert_arg_line_to_args() can be overridden
for fancier reading.

This method takes a single argument arg_line which is a string read from the argument file. It returns
a list of arguments parsed from this string. The method is called once per line read from the argument
file, in order.

A useful override of this method is one that treats each space-separated word as an argument. The
following example demonstrates how to do this:

class MyArgumentParser(argparse.ArgumentParser):
def convert_arg_line_to_args(self, arg_line):

return arg_line.split()

Exiting methods

ArgumentParser.exit(status=0, message=None)
This method terminates the program, exiting with the specified status and, if given, it prints a message
before that.

ArgumentParser.error(message)
This method prints a usage message including the message to the standard error and terminates the
program with a status code of 2.

16.4.6 Upgrading optparse code

Originally, the argparse module had attempted to maintain compatibility with optparse. However, optparse
was difficult to extend transparently, particularly with the changes required to support the new nargs=
specifiers and better usage messages. When most everything in optparse had either been copy-pasted over
or monkey-patched, it no longer seemed practical to try to maintain the backwards compatibility.

16.4. argparse — Parser for command-line options, arguments and sub-commands 599

The Python Library Reference, Release 3.5.7

The argparse module improves on the standard library optparse module in a number of ways including:

• Handling positional arguments.

• Supporting sub-commands.

• Allowing alternative option prefixes like + and /.

• Handling zero-or-more and one-or-more style arguments.

• Producing more informative usage messages.

• Providing a much simpler interface for custom type and action.

A partial upgrade path from optparse to argparse:

• Replace all optparse.OptionParser.add_option() calls with ArgumentParser.add_argument() calls.

• Replace (options, args) = parser.parse_args() with args = parser.parse_args() and add additional
ArgumentParser.add_argument() calls for the positional arguments. Keep in mind that what was
previously called options, now in argparse context is called args.

• Replace callback actions and the callback_* keyword arguments with type or action arguments.

• Replace string names for type keyword arguments with the corresponding type objects (e.g. int, float,
complex, etc).

• Replace optparse.Values with Namespace and optparse.OptionError and optparse.OptionValueError
with ArgumentError.

• Replace strings with implicit arguments such as %default or %prog with the standard Python syntax
to use dictionaries to format strings, that is, %(default)s and %(prog)s.

• Replace the OptionParser constructor version argument with a call to parser.add_argument('--
version', action='version', version='<the version>').

16.5 getopt — C-style parser for command line options

Source code: Lib/getopt.py

Note: The getopt module is a parser for command line options whose API is designed to be familiar to
users of the C getopt() function. Users who are unfamiliar with the C getopt() function or who would like
to write less code and get better help and error messages should consider using the argparse module instead.

This module helps scripts to parse the command line arguments in sys.argv. It supports the same conventions
as the Unix getopt() function (including the special meanings of arguments of the form ‘-‘ and ‘--‘). Long
options similar to those supported by GNU software may be used as well via an optional third argument.

This module provides two functions and an exception:

getopt.getopt(args, shortopts, longopts=[])
Parses command line options and parameter list. args is the argument list to be parsed, without the
leading reference to the running program. Typically, this means sys.argv[1:]. shortopts is the string of
option letters that the script wants to recognize, with options that require an argument followed by a
colon (':'; i.e., the same format that Unix getopt() uses).

600 Chapter 16. Generic Operating System Services

https://github.com/python/cpython/tree/3.5/Lib/getopt.py

The Python Library Reference, Release 3.5.7

Note: Unlike GNU getopt(), after a non-option argument, all further arguments are considered also
non-options. This is similar to the way non-GNU Unix systems work.

longopts, if specified, must be a list of strings with the names of the long options which should be
supported. The leading '--' characters should not be included in the option name. Long options
which require an argument should be followed by an equal sign ('='). Optional arguments are not
supported. To accept only long options, shortopts should be an empty string. Long options on the
command line can be recognized so long as they provide a prefix of the option name that matches
exactly one of the accepted options. For example, if longopts is ['foo', 'frob'], the option --fo will
match as --foo, but --f will not match uniquely, so GetoptError will be raised.

The return value consists of two elements: the first is a list of (option, value) pairs; the second is the
list of program arguments left after the option list was stripped (this is a trailing slice of args). Each
option-and-value pair returned has the option as its first element, prefixed with a hyphen for short
options (e.g., '-x') or two hyphens for long options (e.g., '--long-option'), and the option argument
as its second element, or an empty string if the option has no argument. The options occur in the
list in the same order in which they were found, thus allowing multiple occurrences. Long and short
options may be mixed.

getopt.gnu_getopt(args, shortopts, longopts=[])
This function works like getopt(), except that GNU style scanning mode is used by default. This means
that option and non-option arguments may be intermixed. The getopt() function stops processing
options as soon as a non-option argument is encountered.

If the first character of the option string is '+', or if the environment variable POSIXLY_CORRECT
is set, then option processing stops as soon as a non-option argument is encountered.

exception getopt.GetoptError
This is raised when an unrecognized option is found in the argument list or when an option requiring
an argument is given none. The argument to the exception is a string indicating the cause of the
error. For long options, an argument given to an option which does not require one will also cause this
exception to be raised. The attributes msg and opt give the error message and related option; if there
is no specific option to which the exception relates, opt is an empty string.

exception getopt.error
Alias for GetoptError; for backward compatibility.

An example using only Unix style options:

>>> import getopt
>>> args = '-a -b -cfoo -d bar a1 a2'.split()
>>> args
['-a', '-b', '-cfoo', '-d', 'bar', 'a1', 'a2']
>>> optlist, args = getopt.getopt(args, 'abc:d:')
>>> optlist
[('-a', ''), ('-b', ''), ('-c', 'foo'), ('-d', 'bar')]
>>> args
['a1', 'a2']

Using long option names is equally easy:

>>> s = '--condition=foo --testing --output-file abc.def -x a1 a2'
>>> args = s.split()
>>> args
['--condition=foo', '--testing', '--output-file', 'abc.def', '-x', 'a1', 'a2']
>>> optlist, args = getopt.getopt(args, 'x', [

(continues on next page)

16.5. getopt — C-style parser for command line options 601

The Python Library Reference, Release 3.5.7

(continued from previous page)

... 'condition=', 'output-file=', 'testing'])
>>> optlist
[('--condition', 'foo'), ('--testing', ''), ('--output-file', 'abc.def'), ('-x', '')]
>>> args
['a1', 'a2']

In a script, typical usage is something like this:

import getopt, sys

def main():
try:

opts, args = getopt.getopt(sys.argv[1:], "ho:v", ["help", "output="])
except getopt.GetoptError as err:

print help information and exit:
print(err) # will print something like "option -a not recognized"
usage()
sys.exit(2)

output = None
verbose = False
for o, a in opts:

if o == "-v":
verbose = True

elif o in ("-h", "--help"):
usage()
sys.exit()

elif o in ("-o", "--output"):
output = a

else:
assert False, "unhandled option"

...

if __name__ == "__main__":
main()

Note that an equivalent command line interface could be produced with less code and more informative help
and error messages by using the argparse module:

import argparse

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-o', '--output')
parser.add_argument('-v', dest='verbose', action='store_true')
args = parser.parse_args()
... do something with args.output ...
... do something with args.verbose ..

See also:

Module argparse Alternative command line option and argument parsing library.

16.6 logging — Logging facility for Python

Source code: Lib/logging/__init__.py

602 Chapter 16. Generic Operating System Services

https://github.com/python/cpython/tree/3.5/Lib/logging/__init__.py

The Python Library Reference, Release 3.5.7

Important

This page contains the API reference information. For tutorial information and discussion of more ad-
vanced topics, see

• Basic Tutorial

• Advanced Tutorial

• Logging Cookbook

This module defines functions and classes which implement a flexible event logging system for applications
and libraries.

The key benefit of having the logging API provided by a standard library module is that all Python modules
can participate in logging, so your application log can include your own messages integrated with messages
from third-party modules.

The module provides a lot of functionality and flexibility. If you are unfamiliar with logging, the best way
to get to grips with it is to see the tutorials (see the links on the right).

The basic classes defined by the module, together with their functions, are listed below.

• Loggers expose the interface that application code directly uses.

• Handlers send the log records (created by loggers) to the appropriate destination.

• Filters provide a finer grained facility for determining which log records to output.

• Formatters specify the layout of log records in the final output.

16.6.1 Logger Objects

Loggers have the following attributes and methods. Note that Loggers are never instantiated directly, but
always through the module-level function logging.getLogger(name). Multiple calls to getLogger() with the
same name will always return a reference to the same Logger object.

The name is potentially a period-separated hierarchical value, like foo.bar.baz (though it could also be just
plain foo, for example). Loggers that are further down in the hierarchical list are children of loggers higher
up in the list. For example, given a logger with a name of foo, loggers with names of foo.bar, foo.bar.baz, and
foo.bam are all descendants of foo. The logger name hierarchy is analogous to the Python package hierarchy,
and identical to it if you organise your loggers on a per-module basis using the recommended construction
logging.getLogger(__name__). That’s because in a module, __name__ is the module’s name in the
Python package namespace.

class logging.Logger

Logger.propagate
If this evaluates to true, events logged to this logger will be passed to the handlers of higher level
(ancestor) loggers, in addition to any handlers attached to this logger. Messages are passed directly
to the ancestor loggers’ handlers - neither the level nor filters of the ancestor loggers in question are
considered.

If this evaluates to false, logging messages are not passed to the handlers of ancestor loggers.

The constructor sets this attribute to True.

16.6. logging — Logging facility for Python 603

The Python Library Reference, Release 3.5.7

Note: If you attach a handler to a logger and one or more of its ancestors, it may emit the same
record multiple times. In general, you should not need to attach a handler to more than one logger -
if you just attach it to the appropriate logger which is highest in the logger hierarchy, then it will see
all events logged by all descendant loggers, provided that their propagate setting is left set to True. A
common scenario is to attach handlers only to the root logger, and to let propagation take care of the
rest.

Logger.setLevel(lvl)
Sets the threshold for this logger to lvl. Logging messages which are less severe than lvl will be ignored.
When a logger is created, the level is set to NOTSET (which causes all messages to be processed when
the logger is the root logger, or delegation to the parent when the logger is a non-root logger). Note
that the root logger is created with level WARNING.

The term ‘delegation to the parent’ means that if a logger has a level of NOTSET, its chain of ancestor
loggers is traversed until either an ancestor with a level other than NOTSET is found, or the root is
reached.

If an ancestor is found with a level other than NOTSET, then that ancestor’s level is treated as the
effective level of the logger where the ancestor search began, and is used to determine how a logging
event is handled.

If the root is reached, and it has a level of NOTSET, then all messages will be processed. Otherwise,
the root’s level will be used as the effective level.

See Logging Levels for a list of levels.

Changed in version 3.2: The lvl parameter now accepts a string representation of the level such as
‘INFO’ as an alternative to the integer constants such as INFO. Note, however, that levels are internally
stored as integers, and methods such as e.g. getEffectiveLevel() and isEnabledFor() will return/expect
to be passed integers.

Logger.isEnabledFor(lvl)
Indicates if a message of severity lvl would be processed by this logger. This method checks first
the module-level level set by logging.disable(lvl) and then the logger’s effective level as determined by
getEffectiveLevel().

Logger.getEffectiveLevel()
Indicates the effective level for this logger. If a value other than NOTSET has been set using setLevel(),
it is returned. Otherwise, the hierarchy is traversed towards the root until a value other than NOTSET
is found, and that value is returned. The value returned is an integer, typically one of logging.DEBUG,
logging.INFO etc.

Logger.getChild(suffix)
Returns a logger which is a descendant to this logger, as determined by the suffix. Thus, logging.
getLogger('abc').getChild('def.ghi') would return the same logger as would be returned by logging.
getLogger('abc.def.ghi'). This is a convenience method, useful when the parent logger is named using
e.g. __name__ rather than a literal string.

New in version 3.2.

Logger.debug(msg, *args, **kwargs)
Logs a message with level DEBUG on this logger. The msg is the message format string, and the args
are the arguments which are merged into msg using the string formatting operator. (Note that this
means that you can use keywords in the format string, together with a single dictionary argument.)

There are three keyword arguments in kwargs which are inspected: exc_info, stack_info, and extra.

If exc_info does not evaluate as false, it causes exception information to be added to the logging

604 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

message. If an exception tuple (in the format returned by sys.exc_info()) or an exception instance is
provided, it is used; otherwise, sys.exc_info() is called to get the exception information.

The second optional keyword argument is stack_info, which defaults to False. If true, stack information
is added to the logging message, including the actual logging call. Note that this is not the same stack
information as that displayed through specifying exc_info: The former is stack frames from the bottom
of the stack up to the logging call in the current thread, whereas the latter is information about stack
frames which have been unwound, following an exception, while searching for exception handlers.

You can specify stack_info independently of exc_info, e.g. to just show how you got to a certain point
in your code, even when no exceptions were raised. The stack frames are printed following a header
line which says:

Stack (most recent call last):

This mimics the Traceback (most recent call last): which is used when displaying exception frames.

The third keyword argument is extra which can be used to pass a dictionary which is used to populate
the __dict__ of the LogRecord created for the logging event with user-defined attributes. These
custom attributes can then be used as you like. For example, they could be incorporated into logged
messages. For example:

FORMAT = '%(asctime)-15s %(clientip)s %(user)-8s %(message)s'
logging.basicConfig(format=FORMAT)
d = {'clientip': '192.168.0.1', 'user': 'fbloggs'}
logger = logging.getLogger('tcpserver')
logger.warning('Protocol problem: %s', 'connection reset', extra=d)

would print something like

2006-02-08 22:20:02,165 192.168.0.1 fbloggs Protocol problem: connection reset

The keys in the dictionary passed in extra should not clash with the keys used by the logging system.
(See the Formatter documentation for more information on which keys are used by the logging system.)

If you choose to use these attributes in logged messages, you need to exercise some care. In the above
example, for instance, the Formatter has been set up with a format string which expects ‘clientip’ and
‘user’ in the attribute dictionary of the LogRecord. If these are missing, the message will not be logged
because a string formatting exception will occur. So in this case, you always need to pass the extra
dictionary with these keys.

While this might be annoying, this feature is intended for use in specialized circumstances, such as
multi-threaded servers where the same code executes in many contexts, and interesting conditions
which arise are dependent on this context (such as remote client IP address and authenticated user
name, in the above example). In such circumstances, it is likely that specialized Formatters would be
used with particular Handlers.

New in version 3.2: The stack_info parameter was added.

Changed in version 3.5: The exc_info parameter can now accept exception instances.

Logger.info(msg, *args, **kwargs)
Logs a message with level INFO on this logger. The arguments are interpreted as for debug().

Logger.warning(msg, *args, **kwargs)
Logs a message with level WARNING on this logger. The arguments are interpreted as for debug().

Note: There is an obsolete method warn which is functionally identical to warning. As warn is

16.6. logging — Logging facility for Python 605

The Python Library Reference, Release 3.5.7

deprecated, please do not use it - use warning instead.

Logger.error(msg, *args, **kwargs)
Logs a message with level ERROR on this logger. The arguments are interpreted as for debug().

Logger.critical(msg, *args, **kwargs)
Logs a message with level CRITICAL on this logger. The arguments are interpreted as for debug().

Logger.log(lvl, msg, *args, **kwargs)
Logs a message with integer level lvl on this logger. The other arguments are interpreted as for debug().

Logger.exception(msg, *args, **kwargs)
Logs a message with level ERROR on this logger. The arguments are interpreted as for debug().
Exception info is added to the logging message. This method should only be called from an exception
handler.

Logger.addFilter(filt)
Adds the specified filter filt to this logger.

Logger.removeFilter(filt)
Removes the specified filter filt from this logger.

Logger.filter(record)
Applies this logger’s filters to the record and returns a true value if the record is to be processed. The
filters are consulted in turn, until one of them returns a false value. If none of them return a false value,
the record will be processed (passed to handlers). If one returns a false value, no further processing of
the record occurs.

Logger.addHandler(hdlr)
Adds the specified handler hdlr to this logger.

Logger.removeHandler(hdlr)
Removes the specified handler hdlr from this logger.

Logger.findCaller(stack_info=False)
Finds the caller’s source filename and line number. Returns the filename, line number, function name
and stack information as a 4-element tuple. The stack information is returned as None unless stack_info
is True.

Logger.handle(record)
Handles a record by passing it to all handlers associated with this logger and its ancestors (until a false
value of propagate is found). This method is used for unpickled records received from a socket, as well
as those created locally. Logger-level filtering is applied using filter().

Logger.makeRecord(name, lvl, fn, lno, msg, args, exc_info, func=None, extra=None, sinfo=None)
This is a factory method which can be overridden in subclasses to create specialized LogRecord in-
stances.

Logger.hasHandlers()
Checks to see if this logger has any handlers configured. This is done by looking for handlers in this
logger and its parents in the logger hierarchy. Returns True if a handler was found, else False. The
method stops searching up the hierarchy whenever a logger with the ‘propagate’ attribute set to false
is found - that will be the last logger which is checked for the existence of handlers.

New in version 3.2.

606 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

16.6.2 Logging Levels

The numeric values of logging levels are given in the following table. These are primarily of interest if you
want to define your own levels, and need them to have specific values relative to the predefined levels. If you
define a level with the same numeric value, it overwrites the predefined value; the predefined name is lost.

Level Numeric value
CRITICAL 50
ERROR 40
WARNING 30
INFO 20
DEBUG 10
NOTSET 0

16.6.3 Handler Objects

Handlers have the following attributes and methods. Note that Handler is never instantiated directly; this
class acts as a base for more useful subclasses. However, the __init__() method in subclasses needs to call
Handler.__init__().

Handler.__init__(level=NOTSET)
Initializes the Handler instance by setting its level, setting the list of filters to the empty list and
creating a lock (using createLock()) for serializing access to an I/O mechanism.

Handler.createLock()
Initializes a thread lock which can be used to serialize access to underlying I/O functionality which
may not be threadsafe.

Handler.acquire()
Acquires the thread lock created with createLock().

Handler.release()
Releases the thread lock acquired with acquire().

Handler.setLevel(lvl)
Sets the threshold for this handler to lvl. Logging messages which are less severe than lvl will be
ignored. When a handler is created, the level is set to NOTSET (which causes all messages to be
processed).

See Logging Levels for a list of levels.

Changed in version 3.2: The lvl parameter now accepts a string representation of the level such as
‘INFO’ as an alternative to the integer constants such as INFO.

Handler.setFormatter(form)
Sets the Formatter for this handler to form.

Handler.addFilter(filt)
Adds the specified filter filt to this handler.

Handler.removeFilter(filt)
Removes the specified filter filt from this handler.

Handler.filter(record)
Applies this handler’s filters to the record and returns a true value if the record is to be processed.
The filters are consulted in turn, until one of them returns a false value. If none of them return a false
value, the record will be emitted. If one returns a false value, the handler will not emit the record.

16.6. logging — Logging facility for Python 607

The Python Library Reference, Release 3.5.7

Handler.flush()
Ensure all logging output has been flushed. This version does nothing and is intended to be imple-
mented by subclasses.

Handler.close()
Tidy up any resources used by the handler. This version does no output but removes the handler from
an internal list of handlers which is closed when shutdown() is called. Subclasses should ensure that
this gets called from overridden close() methods.

Handler.handle(record)
Conditionally emits the specified logging record, depending on filters which may have been added to
the handler. Wraps the actual emission of the record with acquisition/release of the I/O thread lock.

Handler.handleError(record)
This method should be called from handlers when an exception is encountered during an emit() call.
If the module-level attribute raiseExceptions is False, exceptions get silently ignored. This is what is
mostly wanted for a logging system - most users will not care about errors in the logging system, they
are more interested in application errors. You could, however, replace this with a custom handler if
you wish. The specified record is the one which was being processed when the exception occurred.
(The default value of raiseExceptions is True, as that is more useful during development).

Handler.format(record)
Do formatting for a record - if a formatter is set, use it. Otherwise, use the default formatter for the
module.

Handler.emit(record)
Do whatever it takes to actually log the specified logging record. This version is intended to be
implemented by subclasses and so raises a NotImplementedError.

For a list of handlers included as standard, see logging.handlers.

16.6.4 Formatter Objects

Formatter objects have the following attributes and methods. They are responsible for converting a Lo-
gRecord to (usually) a string which can be interpreted by either a human or an external system. The base
Formatter allows a formatting string to be specified. If none is supplied, the default value of '%(message)s'
is used, which just includes the message in the logging call. To have additional items of information in the
formatted output (such as a timestamp), keep reading.

A Formatter can be initialized with a format string which makes use of knowledge of the LogRecord attributes
- such as the default value mentioned above making use of the fact that the user’s message and arguments are
pre-formatted into a LogRecord’s message attribute. This format string contains standard Python %-style
mapping keys. See section printf-style String Formatting for more information on string formatting.

The useful mapping keys in a LogRecord are given in the section on LogRecord attributes.

class logging.Formatter(fmt=None, datefmt=None, style=’%’)
Returns a new instance of the Formatter class. The instance is initialized with a format string for the
message as a whole, as well as a format string for the date/time portion of a message. If no fmt is
specified, '%(message)s' is used. If no datefmt is specified, the ISO8601 date format is used.

The style parameter can be one of ‘%’, ‘{‘ or ‘$’ and determines how the format string will be merged
with its data: using one of %-formatting, str.format() or string.Template. See formatting-styles for
more information on using {- and $-formatting for log messages.

Changed in version 3.2: The style parameter was added.

format(record)
The record’s attribute dictionary is used as the operand to a string formatting operation. Returns

608 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

the resulting string. Before formatting the dictionary, a couple of preparatory steps are carried
out. The message attribute of the record is computed using msg % args. If the formatting string
contains '(asctime)', formatTime() is called to format the event time. If there is exception
information, it is formatted using formatException() and appended to the message. Note that
the formatted exception information is cached in attribute exc_text. This is useful because the
exception information can be pickled and sent across the wire, but you should be careful if you
have more than one Formatter subclass which customizes the formatting of exception information.
In this case, you will have to clear the cached value after a formatter has done its formatting,
so that the next formatter to handle the event doesn’t use the cached value but recalculates it
afresh.

If stack information is available, it’s appended after the exception information, using formatStack()
to transform it if necessary.

formatTime(record, datefmt=None)
This method should be called from format() by a formatter which wants to make use of a formatted
time. This method can be overridden in formatters to provide for any specific requirement, but
the basic behavior is as follows: if datefmt (a string) is specified, it is used with time.strftime()
to format the creation time of the record. Otherwise, the ISO8601 format is used. The resulting
string is returned.

This function uses a user-configurable function to convert the creation time to a tuple. By default,
time.localtime() is used; to change this for a particular formatter instance, set the converter
attribute to a function with the same signature as time.localtime() or time.gmtime(). To change
it for all formatters, for example if you want all logging times to be shown in GMT, set the
converter attribute in the Formatter class.

Changed in version 3.3: Previously, the default ISO 8601 format was hard-coded as in this ex-
ample: 2010-09-06 22:38:15,292 where the part before the comma is handled by a strptime for-
mat string ('%Y-%m-%d %H:%M:%S'), and the part after the comma is a millisecond value.
Because strptime does not have a format placeholder for milliseconds, the millisecond value is
appended using another format string, '%s,%03d' — and both of these format strings have been
hardcoded into this method. With the change, these strings are defined as class-level attributes
which can be overridden at the instance level when desired. The names of the attributes are
default_time_format (for the strptime format string) and default_msec_format (for appending
the millisecond value).

formatException(exc_info)
Formats the specified exception information (a standard exception tuple as returned by sys.
exc_info()) as a string. This default implementation just uses traceback.print_exception(). The
resulting string is returned.

formatStack(stack_info)
Formats the specified stack information (a string as returned by traceback.print_stack(), but with
the last newline removed) as a string. This default implementation just returns the input value.

16.6.5 Filter Objects

Filters can be used by Handlers and Loggers for more sophisticated filtering than is provided by levels. The
base filter class only allows events which are below a certain point in the logger hierarchy. For example, a
filter initialized with ‘A.B’ will allow events logged by loggers ‘A.B’, ‘A.B.C’, ‘A.B.C.D’, ‘A.B.D’ etc. but
not ‘A.BB’, ‘B.A.B’ etc. If initialized with the empty string, all events are passed.

class logging.Filter(name=”)
Returns an instance of the Filter class. If name is specified, it names a logger which, together with
its children, will have its events allowed through the filter. If name is the empty string, allows every
event.

16.6. logging — Logging facility for Python 609

The Python Library Reference, Release 3.5.7

filter(record)
Is the specified record to be logged? Returns zero for no, nonzero for yes. If deemed appropriate,
the record may be modified in-place by this method.

Note that filters attached to handlers are consulted before an event is emitted by the handler, whereas filters
attached to loggers are consulted whenever an event is logged (using debug(), info(), etc.), before sending
an event to handlers. This means that events which have been generated by descendant loggers will not be
filtered by a logger’s filter setting, unless the filter has also been applied to those descendant loggers.

You don’t actually need to subclass Filter: you can pass any instance which has a filter method with the
same semantics.

Changed in version 3.2: You don’t need to create specialized Filter classes, or use other classes with a filter
method: you can use a function (or other callable) as a filter. The filtering logic will check to see if the filter
object has a filter attribute: if it does, it’s assumed to be a Filter and its filter() method is called. Otherwise,
it’s assumed to be a callable and called with the record as the single parameter. The returned value should
conform to that returned by filter().

Although filters are used primarily to filter records based on more sophisticated criteria than levels, they
get to see every record which is processed by the handler or logger they’re attached to: this can be useful
if you want to do things like counting how many records were processed by a particular logger or handler,
or adding, changing or removing attributes in the LogRecord being processed. Obviously changing the
LogRecord needs to be done with some care, but it does allow the injection of contextual information into
logs (see filters-contextual).

16.6.6 LogRecord Objects

LogRecord instances are created automatically by the Logger every time something is logged, and can be
created manually via makeLogRecord() (for example, from a pickled event received over the wire).

class logging.LogRecord(name, level, pathname, lineno, msg, args, exc_info, func=None, sinfo=None)
Contains all the information pertinent to the event being logged.

The primary information is passed in msg and args, which are combined using msg % args to create
the message field of the record.

Parameters

• name – The name of the logger used to log the event represented by this LogRecord.
Note that this name will always have this value, even though it may be emitted by
a handler attached to a different (ancestor) logger.

• level – The numeric level of the logging event (one of DEBUG, INFO etc.) Note that
this is converted to two attributes of the LogRecord: levelno for the numeric value
and levelname for the corresponding level name.

• pathname – The full pathname of the source file where the logging call was made.

• lineno – The line number in the source file where the logging call was made.

• msg – The event description message, possibly a format string with placeholders for
variable data.

• args – Variable data to merge into the msg argument to obtain the event description.

• exc_info – An exception tuple with the current exception information, or None if
no exception information is available.

• func – The name of the function or method from which the logging call was invoked.

610 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

• sinfo – A text string representing stack information from the base of the stack in the
current thread, up to the logging call.

getMessage()
Returns the message for this LogRecord instance after merging any user-supplied arguments with
the message. If the user-supplied message argument to the logging call is not a string, str() is
called on it to convert it to a string. This allows use of user-defined classes as messages, whose
__str__ method can return the actual format string to be used.

Changed in version 3.2: The creation of a LogRecord has been made more configurable by providing
a factory which is used to create the record. The factory can be set using getLogRecordFactory() and
setLogRecordFactory() (see this for the factory’s signature).

This functionality can be used to inject your own values into a LogRecord at creation time. You can
use the following pattern:

old_factory = logging.getLogRecordFactory()

def record_factory(*args, **kwargs):
record = old_factory(*args, **kwargs)
record.custom_attribute = 0xdecafbad
return record

logging.setLogRecordFactory(record_factory)

With this pattern, multiple factories could be chained, and as long as they don’t overwrite each
other’s attributes or unintentionally overwrite the standard attributes listed above, there should be no
surprises.

16.6.7 LogRecord attributes

The LogRecord has a number of attributes, most of which are derived from the parameters to the constructor.
(Note that the names do not always correspond exactly between the LogRecord constructor parameters and
the LogRecord attributes.) These attributes can be used to merge data from the record into the format string.
The following table lists (in alphabetical order) the attribute names, their meanings and the corresponding
placeholder in a %-style format string.

If you are using {}-formatting (str.format()), you can use {attrname} as the placeholder in the format string.
If you are using $-formatting (string.Template), use the form ${attrname}. In both cases, of course, replace
attrname with the actual attribute name you want to use.

In the case of {}-formatting, you can specify formatting flags by placing them after the attribute name,
separated from it with a colon. For example: a placeholder of {msecs:03d} would format a millisecond value
of 4 as 004. Refer to the str.format() documentation for full details on the options available to you.

16.6. logging — Logging facility for Python 611

The Python Library Reference, Release 3.5.7

At-
tribute
name

Format Description

args You shouldn’t
need to format
this yourself.

The tuple of arguments merged into msg to produce message, or a dict whose
values are used for the merge (when there is only one argument, and it is a
dictionary).

asc-
time

%(asctime)s Human-readable time when the LogRecord was created. By default this
is of the form ‘2003-07-08 16:49:45,896’ (the numbers after the comma are
millisecond portion of the time).

cre-
ated

%(created)f Time when the LogRecord was created (as returned by time.time()).

exc_infoYou shouldn’t
need to format
this yourself.

Exception tuple (à la sys.exc_info) or, if no exception has occurred, None.

file-
name

%(filename)s Filename portion of pathname.

func-
Name

%(funcName)s Name of function containing the logging call.

level-
name

%(levelname)s Text logging level for the message ('DEBUG', 'INFO', 'WARNING',
'ERROR', 'CRITICAL').

lev-
elno

%(levelno)s Numeric logging level for the message (DEBUG, INFO, WARNING, ER-
ROR, CRITICAL).

lineno %(lineno)d Source line number where the logging call was issued (if available).
mod-
ule

%(module)s Module (name portion of filename).

msecs %(msecs)d Millisecond portion of the time when the LogRecord was created.
mes-
sage

%(message)s The logged message, computed as msg % args. This is set when Formatter.
format() is invoked.

msg You shouldn’t
need to format
this yourself.

The format string passed in the original logging call. Merged with args to
produce message, or an arbitrary object (see arbitrary-object-messages).

name %(name)s Name of the logger used to log the call.
path-
name

%(pathname)s Full pathname of the source file where the logging call was issued (if avail-
able).

pro-
cess

%(process)d Process ID (if available).

pro-
cess-
Name

%(process-
Name)s

Process name (if available).

rela-
tive-
Cre-
ated

%(relativeCre-
ated)d

Time in milliseconds when the LogRecord was created, relative to the time
the logging module was loaded.

stack_infoYou shouldn’t
need to format
this yourself.

Stack frame information (where available) from the bottom of the stack in
the current thread, up to and including the stack frame of the logging call
which resulted in the creation of this record.

thread %(thread)d Thread ID (if available).
thread-
Name

%(thread-
Name)s

Thread name (if available).

Changed in version 3.1: processName was added.

612 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

16.6.8 LoggerAdapter Objects

LoggerAdapter instances are used to conveniently pass contextual information into logging calls. For a usage
example, see the section on adding contextual information to your logging output.

class logging.LoggerAdapter(logger, extra)
Returns an instance of LoggerAdapter initialized with an underlying Logger instance and a dict-like
object.

process(msg, kwargs)
Modifies the message and/or keyword arguments passed to a logging call in order to insert con-
textual information. This implementation takes the object passed as extra to the constructor and
adds it to kwargs using key ‘extra’. The return value is a (msg, kwargs) tuple which has the
(possibly modified) versions of the arguments passed in.

In addition to the above, LoggerAdapter supports the following methods of Logger: debug(), info(), warn-
ing(), error(), exception(), critical(), log(), isEnabledFor(), getEffectiveLevel(), setLevel() and hasHandlers().
These methods have the same signatures as their counterparts in Logger, so you can use the two types of
instances interchangeably.

Changed in version 3.2: The isEnabledFor(), getEffectiveLevel(), setLevel() and hasHandlers() methods were
added to LoggerAdapter. These methods delegate to the underlying logger.

16.6.9 Thread Safety

The logging module is intended to be thread-safe without any special work needing to be done by its clients.
It achieves this though using threading locks; there is one lock to serialize access to the module’s shared
data, and each handler also creates a lock to serialize access to its underlying I/O.

If you are implementing asynchronous signal handlers using the signal module, you may not be able to use
logging from within such handlers. This is because lock implementations in the threading module are not
always re-entrant, and so cannot be invoked from such signal handlers.

16.6.10 Module-Level Functions

In addition to the classes described above, there are a number of module- level functions.

logging.getLogger(name=None)
Return a logger with the specified name or, if name is None, return a logger which is the root logger
of the hierarchy. If specified, the name is typically a dot-separated hierarchical name like ‘a’, ‘a.b’ or
‘a.b.c.d’. Choice of these names is entirely up to the developer who is using logging.

All calls to this function with a given name return the same logger instance. This means that logger
instances never need to be passed between different parts of an application.

logging.getLoggerClass()
Return either the standard Logger class, or the last class passed to setLoggerClass(). This function
may be called from within a new class definition, to ensure that installing a customized Logger class
will not undo customizations already applied by other code. For example:

class MyLogger(logging.getLoggerClass()):
... override behaviour here

logging.getLogRecordFactory()
Return a callable which is used to create a LogRecord.

16.6. logging — Logging facility for Python 613

The Python Library Reference, Release 3.5.7

New in version 3.2: This function has been provided, along with setLogRecordFactory(), to allow
developers more control over how the LogRecord representing a logging event is constructed.

See setLogRecordFactory() for more information about the how the factory is called.

logging.debug(msg, *args, **kwargs)
Logs a message with level DEBUG on the root logger. The msg is the message format string, and the
args are the arguments which are merged into msg using the string formatting operator. (Note that
this means that you can use keywords in the format string, together with a single dictionary argument.)

There are three keyword arguments in kwargs which are inspected: exc_info which, if it does not
evaluate as false, causes exception information to be added to the logging message. If an exception
tuple (in the format returned by sys.exc_info()) is provided, it is used; otherwise, sys.exc_info() is
called to get the exception information.

The second optional keyword argument is stack_info, which defaults to False. If true, stack information
is added to the logging message, including the actual logging call. Note that this is not the same stack
information as that displayed through specifying exc_info: The former is stack frames from the bottom
of the stack up to the logging call in the current thread, whereas the latter is information about stack
frames which have been unwound, following an exception, while searching for exception handlers.

You can specify stack_info independently of exc_info, e.g. to just show how you got to a certain point
in your code, even when no exceptions were raised. The stack frames are printed following a header
line which says:

Stack (most recent call last):

This mimics the Traceback (most recent call last): which is used when displaying exception frames.

The third optional keyword argument is extra which can be used to pass a dictionary which is used to
populate the __dict__ of the LogRecord created for the logging event with user-defined attributes.
These custom attributes can then be used as you like. For example, they could be incorporated into
logged messages. For example:

FORMAT = '%(asctime)-15s %(clientip)s %(user)-8s %(message)s'
logging.basicConfig(format=FORMAT)
d = {'clientip': '192.168.0.1', 'user': 'fbloggs'}
logging.warning('Protocol problem: %s', 'connection reset', extra=d)

would print something like:

2006-02-08 22:20:02,165 192.168.0.1 fbloggs Protocol problem: connection reset

The keys in the dictionary passed in extra should not clash with the keys used by the logging system.
(See the Formatter documentation for more information on which keys are used by the logging system.)

If you choose to use these attributes in logged messages, you need to exercise some care. In the above
example, for instance, the Formatter has been set up with a format string which expects ‘clientip’ and
‘user’ in the attribute dictionary of the LogRecord. If these are missing, the message will not be logged
because a string formatting exception will occur. So in this case, you always need to pass the extra
dictionary with these keys.

While this might be annoying, this feature is intended for use in specialized circumstances, such as
multi-threaded servers where the same code executes in many contexts, and interesting conditions
which arise are dependent on this context (such as remote client IP address and authenticated user
name, in the above example). In such circumstances, it is likely that specialized Formatters would be
used with particular Handlers.

New in version 3.2: The stack_info parameter was added.

614 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

logging.info(msg, *args, **kwargs)
Logs a message with level INFO on the root logger. The arguments are interpreted as for debug().

logging.warning(msg, *args, **kwargs)
Logs a message with level WARNING on the root logger. The arguments are interpreted as for debug().

Note: There is an obsolete function warn which is functionally identical to warning. As warn is
deprecated, please do not use it - use warning instead.

logging.error(msg, *args, **kwargs)
Logs a message with level ERROR on the root logger. The arguments are interpreted as for debug().

logging.critical(msg, *args, **kwargs)
Logs a message with level CRITICAL on the root logger. The arguments are interpreted as for debug().

logging.exception(msg, *args, **kwargs)
Logs a message with level ERROR on the root logger. The arguments are interpreted as for debug().
Exception info is added to the logging message. This function should only be called from an exception
handler.

logging.log(level, msg, *args, **kwargs)
Logs a message with level level on the root logger. The other arguments are interpreted as for debug().

Note: The above module-level convenience functions, which delegate to the root logger, call basic-
Config() to ensure that at least one handler is available. Because of this, they should not be used in
threads, in versions of Python earlier than 2.7.1 and 3.2, unless at least one handler has been added
to the root logger before the threads are started. In earlier versions of Python, due to a thread safety
shortcoming in basicConfig(), this can (under rare circumstances) lead to handlers being added multiple
times to the root logger, which can in turn lead to multiple messages for the same event.

logging.disable(lvl)
Provides an overriding level lvl for all loggers which takes precedence over the logger’s own level. When
the need arises to temporarily throttle logging output down across the whole application, this function
can be useful. Its effect is to disable all logging calls of severity lvl and below, so that if you call
it with a value of INFO, then all INFO and DEBUG events would be discarded, whereas those of
severity WARNING and above would be processed according to the logger’s effective level. If logging.
disable(logging.NOTSET) is called, it effectively removes this overriding level, so that logging output
again depends on the effective levels of individual loggers.

logging.addLevelName(lvl, levelName)
Associates level lvl with text levelName in an internal dictionary, which is used to map numeric levels
to a textual representation, for example when a Formatter formats a message. This function can also
be used to define your own levels. The only constraints are that all levels used must be registered using
this function, levels should be positive integers and they should increase in increasing order of severity.

Note: If you are thinking of defining your own levels, please see the section on custom-levels.

logging.getLevelName(lvl)
Returns the textual representation of logging level lvl. If the level is one of the predefined levels
CRITICAL, ERROR, WARNING, INFO or DEBUG then you get the corresponding string. If you
have associated levels with names using addLevelName() then the name you have associated with lvl is
returned. If a numeric value corresponding to one of the defined levels is passed in, the corresponding
string representation is returned. Otherwise, the string ‘Level %s’ % lvl is returned.

16.6. logging — Logging facility for Python 615

The Python Library Reference, Release 3.5.7

Note: Levels are internally integers (as they need to be compared in the logging logic). This function
is used to convert between an integer level and the level name displayed in the formatted log output
by means of the %(levelname)s format specifier (see LogRecord attributes).

Changed in version 3.4: In Python versions earlier than 3.4, this function could also be passed a text
level, and would return the corresponding numeric value of the level. This undocumented behaviour was
considered a mistake, and was removed in Python 3.4, but reinstated in 3.4.2 due to retain backward
compatibility.

logging.makeLogRecord(attrdict)
Creates and returns a new LogRecord instance whose attributes are defined by attrdict. This function
is useful for taking a pickled LogRecord attribute dictionary, sent over a socket, and reconstituting it
as a LogRecord instance at the receiving end.

logging.basicConfig(**kwargs)
Does basic configuration for the logging system by creating a StreamHandler with a default Formatter
and adding it to the root logger. The functions debug(), info(), warning(), error() and critical() will
call basicConfig() automatically if no handlers are defined for the root logger.

This function does nothing if the root logger already has handlers configured for it.

Note: This function should be called from the main thread before other threads are started. In
versions of Python prior to 2.7.1 and 3.2, if this function is called from multiple threads, it is possible
(in rare circumstances) that a handler will be added to the root logger more than once, leading to
unexpected results such as messages being duplicated in the log.

The following keyword arguments are supported.

Format Description
filename Specifies that a FileHandler be created, using the specified filename, rather than a

StreamHandler.
filemode Specifies the mode to open the file, if filename is specified (if filemode is unspecified, it

defaults to ‘a’).
format Use the specified format string for the handler.
datefmt Use the specified date/time format.
style If format is specified, use this style for the format string. One of ‘%’, ‘{‘ or ‘$’ for

%-formatting, str.format() or string.Template respectively, and defaulting to ‘%’ if not
specified.

level Set the root logger level to the specified level.
stream Use the specified stream to initialize the StreamHandler. Note that this argument is

incompatible with ‘filename’ - if both are present, a ValueError is raised.
handlers If specified, this should be an iterable of already created handlers to add to the root

logger. Any handlers which don’t already have a formatter set will be assigned the
default formatter created in this function. Note that this argument is incompatible
with ‘filename’ or ‘stream’ - if both are present, a ValueError is raised.

Changed in version 3.2: The style argument was added.

Changed in version 3.3: The handlers argument was added. Additional checks were added to catch
situations where incompatible arguments are specified (e.g. handlers together with stream or filename,
or stream together with filename).

616 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

logging.shutdown()
Informs the logging system to perform an orderly shutdown by flushing and closing all handlers. This
should be called at application exit and no further use of the logging system should be made after this
call.

logging.setLoggerClass(klass)
Tells the logging system to use the class klass when instantiating a logger. The class should define
__init__() such that only a name argument is required, and the __init__() should call Logger.
__init__(). This function is typically called before any loggers are instantiated by applications which
need to use custom logger behavior.

logging.setLogRecordFactory(factory)
Set a callable which is used to create a LogRecord.

Parameters factory – The factory callable to be used to instantiate a log record.

New in version 3.2: This function has been provided, along with getLogRecordFactory(), to allow
developers more control over how the LogRecord representing a logging event is constructed.

The factory has the following signature:

factory(name, level, fn, lno, msg, args, exc_info, func=None, sinfo=None, **kwargs)

name The logger name.

level The logging level (numeric).

fn The full pathname of the file where the logging call was made.

lno The line number in the file where the logging call was made.

msg The logging message.

args The arguments for the logging message.

exc_info An exception tuple, or None.

func The name of the function or method which invoked the logging call.

sinfo A stack traceback such as is provided by traceback.print_stack(), showing the
call hierarchy.

kwargs Additional keyword arguments.

16.6.11 Module-Level Attributes

logging.lastResort
A “handler of last resort” is available through this attribute. This is a StreamHandler writing to sys.
stderr with a level of WARNING, and is used to handle logging events in the absence of any logging
configuration. The end result is to just print the message to sys.stderr. This replaces the earlier error
message saying that “no handlers could be found for logger XYZ”. If you need the earlier behaviour
for some reason, lastResort can be set to None.

New in version 3.2.

16.6.12 Integration with the warnings module

The captureWarnings() function can be used to integrate logging with the warnings module.

16.6. logging — Logging facility for Python 617

The Python Library Reference, Release 3.5.7

logging.captureWarnings(capture)
This function is used to turn the capture of warnings by logging on and off.

If capture is True, warnings issued by the warnings module will be redirected to the logging system.
Specifically, a warning will be formatted using warnings.formatwarning() and the resulting string logged
to a logger named 'py.warnings' with a severity of WARNING.

If capture is False, the redirection of warnings to the logging system will stop, and warnings will be
redirected to their original destinations (i.e. those in effect before captureWarnings(True) was called).

See also:

Module logging.config Configuration API for the logging module.

Module logging.handlers Useful handlers included with the logging module.

PEP 282 - A Logging System The proposal which described this feature for inclusion in the Python standard
library.

Original Python logging package This is the original source for the logging package. The version of the
package available from this site is suitable for use with Python 1.5.2, 2.1.x and 2.2.x, which do not
include the logging package in the standard library.

16.7 logging.config — Logging configuration

Source code: Lib/logging/config.py

Important

This page contains only reference information. For tutorials, please see

• Basic Tutorial

• Advanced Tutorial

• Logging Cookbook

This section describes the API for configuring the logging module.

16.7.1 Configuration functions

The following functions configure the logging module. They are located in the logging.config module. Their
use is optional — you can configure the logging module using these functions or by making calls to the main
API (defined in logging itself) and defining handlers which are declared either in logging or logging.handlers.

logging.config.dictConfig(config)

Takes the logging configuration from a dictionary. The contents of this dictionary are de-
scribed in Configuration dictionary schema below.

If an error is encountered during configuration, this function will raise a ValueError, Type-
Error, AttributeError or ImportError with a suitably descriptive message. The following is
a (possibly incomplete) list of conditions which will raise an error:

618 Chapter 16. Generic Operating System Services

https://www.python.org/dev/peps/pep-0282
https://www.red-dove.com/python_logging.html
https://github.com/python/cpython/tree/3.5/Lib/logging/config.py

The Python Library Reference, Release 3.5.7

• A level which is not a string or which is a string not corresponding to an actual logging
level.

• A propagate value which is not a boolean.

• An id which does not have a corresponding destination.

• A non-existent handler id found during an incremental call.

• An invalid logger name.

• Inability to resolve to an internal or external object.

Parsing is performed by the DictConfigurator class, whose constructor is passed the dictio-
nary used for configuration, and has a configure() method. The logging.config module has a
callable attribute dictConfigClass which is initially set to DictConfigurator. You can replace
the value of dictConfigClass with a suitable implementation of your own.

dictConfig() calls dictConfigClass passing the specified dictionary, and then calls the config-
ure() method on the returned object to put the configuration into effect:

def dictConfig(config):
dictConfigClass(config).configure()

For example, a subclass of DictConfigurator could call DictConfigurator.__init__() in its
own __init__(), then set up custom prefixes which would be usable in the subsequent
configure() call. dictConfigClass would be bound to this new subclass, and then dictConfig()
could be called exactly as in the default, uncustomized state.

New in version 3.2.

logging.config.fileConfig(fname, defaults=None, disable_existing_loggers=True)
Reads the logging configuration from a configparser-format file. The format of the file should be as
described in Configuration file format. This function can be called several times from an application,
allowing an end user to select from various pre-canned configurations (if the developer provides a
mechanism to present the choices and load the chosen configuration).

Parameters

• fname – A filename, or a file-like object, or an instance derived from RawConfig-
Parser. If a RawConfigParser-derived instance is passed, it is used as is. Otherwise, a
Configparser is instantiated, and the configuration read by it from the object passed
in fname. If that has a readline() method, it is assumed to be a file-like object and
read using read_file(); otherwise, it is assumed to be a filename and passed to read().

• defaults – Defaults to be passed to the ConfigParser can be specified in this argument.

• disable_existing_loggers – If specified as False, loggers which exist when this call is
made are left enabled. The default is True because this enables old behaviour in a
backward-compatible way. This behaviour is to disable any existing loggers unless
they or their ancestors are explicitly named in the logging configuration.

Changed in version 3.4: An instance of a subclass of RawConfigParser is now accepted as a value for
fname. This facilitates:

• Use of a configuration file where logging configuration is just part of the overall application
configuration.

• Use of a configuration read from a file, and then modified by the using application (e.g. based
on command-line parameters or other aspects of the runtime environment) before being passed
to fileConfig.

16.7. logging.config — Logging configuration 619

The Python Library Reference, Release 3.5.7

logging.config.listen(port=DEFAULT_LOGGING_CONFIG_PORT, verify=None)
Starts up a socket server on the specified port, and listens for new configurations. If no port is specified,
the module’s default DEFAULT_LOGGING_CONFIG_PORT is used. Logging configurations will
be sent as a file suitable for processing by dictConfig() or fileConfig(). Returns a Thread instance on
which you can call start() to start the server, and which you can join() when appropriate. To stop the
server, call stopListening().

The verify argument, if specified, should be a callable which should verify whether bytes received
across the socket are valid and should be processed. This could be done by encrypting and/or signing
what is sent across the socket, such that the verify callable can perform signature verification and/or
decryption. The verify callable is called with a single argument - the bytes received across the socket
- and should return the bytes to be processed, or None to indicate that the bytes should be discarded.
The returned bytes could be the same as the passed in bytes (e.g. when only verification is done), or
they could be completely different (perhaps if decryption were performed).

To send a configuration to the socket, read in the configuration file and send it to the socket as a
sequence of bytes preceded by a four-byte length string packed in binary using struct.pack('>L', n).

Note: Because portions of the configuration are passed through eval(), use of this function may
open its users to a security risk. While the function only binds to a socket on localhost, and so does
not accept connections from remote machines, there are scenarios where untrusted code could be run
under the account of the process which calls listen(). Specifically, if the process calling listen() runs
on a multi-user machine where users cannot trust each other, then a malicious user could arrange to
run essentially arbitrary code in a victim user’s process, simply by connecting to the victim’s listen()
socket and sending a configuration which runs whatever code the attacker wants to have executed in
the victim’s process. This is especially easy to do if the default port is used, but not hard even if
a different port is used). To avoid the risk of this happening, use the verify argument to listen() to
prevent unrecognised configurations from being applied.

Changed in version 3.4: The verify argument was added.

Note: If you want to send configurations to the listener which don’t disable existing loggers, you will
need to use a JSON format for the configuration, which will use dictConfig() for configuration. This
method allows you to specify disable_existing_loggers as False in the configuration you send.

logging.config.stopListening()
Stops the listening server which was created with a call to listen(). This is typically called before
calling join() on the return value from listen().

16.7.2 Configuration dictionary schema

Describing a logging configuration requires listing the various objects to create and the connections between
them; for example, you may create a handler named ‘console’ and then say that the logger named ‘startup’
will send its messages to the ‘console’ handler. These objects aren’t limited to those provided by the logging
module because you might write your own formatter or handler class. The parameters to these classes
may also need to include external objects such as sys.stderr. The syntax for describing these objects and
connections is defined in Object connections below.

Dictionary Schema Details

The dictionary passed to dictConfig() must contain the following keys:

620 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

• version - to be set to an integer value representing the schema version. The only valid value at present
is 1, but having this key allows the schema to evolve while still preserving backwards compatibility.

All other keys are optional, but if present they will be interpreted as described below. In all cases below where
a ‘configuring dict’ is mentioned, it will be checked for the special '()' key to see if a custom instantiation
is required. If so, the mechanism described in User-defined objects below is used to create an instance;
otherwise, the context is used to determine what to instantiate.

• formatters - the corresponding value will be a dict in which each key is a formatter id and each value
is a dict describing how to configure the corresponding Formatter instance.

The configuring dict is searched for keys format and datefmt (with defaults of None) and these are
used to construct a Formatter instance.

• filters - the corresponding value will be a dict in which each key is a filter id and each value is a dict
describing how to configure the corresponding Filter instance.

The configuring dict is searched for the key name (defaulting to the empty string) and this is used to
construct a logging.Filter instance.

• handlers - the corresponding value will be a dict in which each key is a handler id and each value is a
dict describing how to configure the corresponding Handler instance.

The configuring dict is searched for the following keys:

– class (mandatory). This is the fully qualified name of the handler class.

– level (optional). The level of the handler.

– formatter (optional). The id of the formatter for this handler.

– filters (optional). A list of ids of the filters for this handler.

All other keys are passed through as keyword arguments to the handler’s constructor. For example,
given the snippet:

handlers:
console:
class : logging.StreamHandler
formatter: brief
level : INFO
filters: [allow_foo]
stream : ext://sys.stdout

file:
class : logging.handlers.RotatingFileHandler
formatter: precise
filename: logconfig.log
maxBytes: 1024
backupCount: 3

the handler with id console is instantiated as a logging.StreamHandler, using sys.stdout as the under-
lying stream. The handler with id file is instantiated as a logging.handlers.RotatingFileHandler with
the keyword arguments filename='logconfig.log', maxBytes=1024, backupCount=3.

• loggers - the corresponding value will be a dict in which each key is a logger name and each value is a
dict describing how to configure the corresponding Logger instance.

The configuring dict is searched for the following keys:

– level (optional). The level of the logger.

– propagate (optional). The propagation setting of the logger.

– filters (optional). A list of ids of the filters for this logger.

16.7. logging.config — Logging configuration 621

The Python Library Reference, Release 3.5.7

– handlers (optional). A list of ids of the handlers for this logger.

The specified loggers will be configured according to the level, propagation, filters and handlers speci-
fied.

• root - this will be the configuration for the root logger. Processing of the configuration will be as for
any logger, except that the propagate setting will not be applicable.

• incremental - whether the configuration is to be interpreted as incremental to the existing configura-
tion. This value defaults to False, which means that the specified configuration replaces the existing
configuration with the same semantics as used by the existing fileConfig() API.

If the specified value is True, the configuration is processed as described in the section on Incremental
Configuration.

• disable_existing_loggers - whether any existing loggers are to be disabled. This setting mirrors the
parameter of the same name in fileConfig(). If absent, this parameter defaults to True. This value is
ignored if incremental is True.

Incremental Configuration

It is difficult to provide complete flexibility for incremental configuration. For example, because objects such
as filters and formatters are anonymous, once a configuration is set up, it is not possible to refer to such
anonymous objects when augmenting a configuration.

Furthermore, there is not a compelling case for arbitrarily altering the object graph of loggers, handlers,
filters, formatters at run-time, once a configuration is set up; the verbosity of loggers and handlers can be
controlled just by setting levels (and, in the case of loggers, propagation flags). Changing the object graph
arbitrarily in a safe way is problematic in a multi-threaded environment; while not impossible, the benefits
are not worth the complexity it adds to the implementation.

Thus, when the incremental key of a configuration dict is present and is True, the system will completely
ignore any formatters and filters entries, and process only the level settings in the handlers entries, and the
level and propagate settings in the loggers and root entries.

Using a value in the configuration dict lets configurations to be sent over the wire as pickled dicts to a socket
listener. Thus, the logging verbosity of a long-running application can be altered over time with no need to
stop and restart the application.

Object connections

The schema describes a set of logging objects - loggers, handlers, formatters, filters - which are connected
to each other in an object graph. Thus, the schema needs to represent connections between the objects.
For example, say that, once configured, a particular logger has attached to it a particular handler. For the
purposes of this discussion, we can say that the logger represents the source, and the handler the destination,
of a connection between the two. Of course in the configured objects this is represented by the logger holding
a reference to the handler. In the configuration dict, this is done by giving each destination object an id
which identifies it unambiguously, and then using the id in the source object’s configuration to indicate that
a connection exists between the source and the destination object with that id.

So, for example, consider the following YAML snippet:

formatters:
brief:
configuration for formatter with id 'brief' goes here

precise:
configuration for formatter with id 'precise' goes here

(continues on next page)

622 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

handlers:
h1: #This is an id
configuration of handler with id 'h1' goes here
formatter: brief
h2: #This is another id
configuration of handler with id 'h2' goes here
formatter: precise

loggers:
foo.bar.baz:
other configuration for logger 'foo.bar.baz'
handlers: [h1, h2]

(Note: YAML used here because it’s a little more readable than the equivalent Python source form for the
dictionary.)

The ids for loggers are the logger names which would be used programmatically to obtain a reference to those
loggers, e.g. foo.bar.baz. The ids for Formatters and Filters can be any string value (such as brief, precise
above) and they are transient, in that they are only meaningful for processing the configuration dictionary
and used to determine connections between objects, and are not persisted anywhere when the configuration
call is complete.

The above snippet indicates that logger named foo.bar.baz should have two handlers attached to it, which
are described by the handler ids h1 and h2. The formatter for h1 is that described by id brief, and the
formatter for h2 is that described by id precise.

User-defined objects

The schema supports user-defined objects for handlers, filters and formatters. (Loggers do not need to have
different types for different instances, so there is no support in this configuration schema for user-defined
logger classes.)

Objects to be configured are described by dictionaries which detail their configuration. In some places,
the logging system will be able to infer from the context how an object is to be instantiated, but when
a user-defined object is to be instantiated, the system will not know how to do this. In order to provide
complete flexibility for user-defined object instantiation, the user needs to provide a ‘factory’ - a callable
which is called with a configuration dictionary and which returns the instantiated object. This is signalled
by an absolute import path to the factory being made available under the special key '()'. Here’s a concrete
example:

formatters:
brief:
format: '%(message)s'

default:
format: '%(asctime)s %(levelname)-8s %(name)-15s %(message)s'
datefmt: '%Y-%m-%d %H:%M:%S'

custom:
(): my.package.customFormatterFactory
bar: baz
spam: 99.9
answer: 42

The above YAML snippet defines three formatters. The first, with id brief, is a standard logging.Formatter
instance with the specified format string. The second, with id default, has a longer format and also defines
the time format explicitly, and will result in a logging.Formatter initialized with those two format strings.
Shown in Python source form, the brief and default formatters have configuration sub-dictionaries:

16.7. logging.config — Logging configuration 623

The Python Library Reference, Release 3.5.7

{
'format' : '%(message)s'

}

and:

{
'format' : '%(asctime)s %(levelname)-8s %(name)-15s %(message)s',
'datefmt' : '%Y-%m-%d %H:%M:%S'

}

respectively, and as these dictionaries do not contain the special key '()', the instantiation is inferred from
the context: as a result, standard logging.Formatter instances are created. The configuration sub-dictionary
for the third formatter, with id custom, is:

{
'()' : 'my.package.customFormatterFactory',
'bar' : 'baz',
'spam' : 99.9,
'answer' : 42

}

and this contains the special key '()', which means that user-defined instantiation is wanted. In this case,
the specified factory callable will be used. If it is an actual callable it will be used directly - otherwise, if you
specify a string (as in the example) the actual callable will be located using normal import mechanisms. The
callable will be called with the remaining items in the configuration sub-dictionary as keyword arguments.
In the above example, the formatter with id custom will be assumed to be returned by the call:

my.package.customFormatterFactory(bar='baz', spam=99.9, answer=42)

The key '()' has been used as the special key because it is not a valid keyword parameter name, and so will
not clash with the names of the keyword arguments used in the call. The '()' also serves as a mnemonic
that the corresponding value is a callable.

Access to external objects

There are times where a configuration needs to refer to objects external to the configuration, for example
sys.stderr. If the configuration dict is constructed using Python code, this is straightforward, but a problem
arises when the configuration is provided via a text file (e.g. JSON, YAML). In a text file, there is no
standard way to distinguish sys.stderr from the literal string 'sys.stderr'. To facilitate this distinction, the
configuration system looks for certain special prefixes in string values and treat them specially. For example,
if the literal string 'ext://sys.stderr' is provided as a value in the configuration, then the ext:// will be
stripped off and the remainder of the value processed using normal import mechanisms.

The handling of such prefixes is done in a way analogous to protocol handling: there is a generic mechanism
to look for prefixes which match the regular expression ^(?P<prefix>[a-z]+)://(?P<suffix>.*)$ whereby, if
the prefix is recognised, the suffix is processed in a prefix-dependent manner and the result of the processing
replaces the string value. If the prefix is not recognised, then the string value will be left as-is.

Access to internal objects

As well as external objects, there is sometimes also a need to refer to objects in the configuration. This will
be done implicitly by the configuration system for things that it knows about. For example, the string value
'DEBUG' for a level in a logger or handler will automatically be converted to the value logging.DEBUG,

624 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

and the handlers, filters and formatter entries will take an object id and resolve to the appropriate destination
object.

However, a more generic mechanism is needed for user-defined objects which are not known to the logging
module. For example, consider logging.handlers.MemoryHandler, which takes a target argument which is
another handler to delegate to. Since the system already knows about this class, then in the configuration,
the given target just needs to be the object id of the relevant target handler, and the system will resolve to
the handler from the id. If, however, a user defines a my.package.MyHandler which has an alternate handler,
the configuration system would not know that the alternate referred to a handler. To cater for this, a generic
resolution system allows the user to specify:

handlers:
file:
configuration of file handler goes here

custom:
(): my.package.MyHandler
alternate: cfg://handlers.file

The literal string 'cfg://handlers.file' will be resolved in an analogous way to strings with the ext:// prefix,
but looking in the configuration itself rather than the import namespace. The mechanism allows access by
dot or by index, in a similar way to that provided by str.format. Thus, given the following snippet:

handlers:
email:
class: logging.handlers.SMTPHandler
mailhost: localhost
fromaddr: my_app@domain.tld
toaddrs:
- support_team@domain.tld
- dev_team@domain.tld

subject: Houston, we have a problem.

in the configuration, the string 'cfg://handlers' would resolve to the dict with key handlers, the string
'cfg://handlers.email would resolve to the dict with key email in the handlers dict, and so on. The string
'cfg://handlers.email.toaddrs[1] would resolve to 'dev_team.domain.tld' and the string 'cfg://handlers.
email.toaddrs[0]' would resolve to the value 'support_team@domain.tld'. The subject value could be
accessed using either 'cfg://handlers.email.subject' or, equivalently, 'cfg://handlers.email[subject]'. The
latter form only needs to be used if the key contains spaces or non-alphanumeric characters. If an index
value consists only of decimal digits, access will be attempted using the corresponding integer value, falling
back to the string value if needed.

Given a string cfg://handlers.myhandler.mykey.123, this will resolve to con-
fig_dict['handlers']['myhandler']['mykey']['123']. If the string is specified as
cfg://handlers.myhandler.mykey[123], the system will attempt to retrieve the value
from config_dict['handlers']['myhandler']['mykey'][123], and fall back to con-
fig_dict['handlers']['myhandler']['mykey']['123'] if that fails.

Import resolution and custom importers

Import resolution, by default, uses the builtin __import__() function to do its importing. You may want
to replace this with your own importing mechanism: if so, you can replace the importer attribute of the
DictConfigurator or its superclass, the BaseConfigurator class. However, you need to be careful because
of the way functions are accessed from classes via descriptors. If you are using a Python callable to do
your imports, and you want to define it at class level rather than instance level, you need to wrap it with
staticmethod(). For example:

16.7. logging.config — Logging configuration 625

The Python Library Reference, Release 3.5.7

from importlib import import_module
from logging.config import BaseConfigurator

BaseConfigurator.importer = staticmethod(import_module)

You don’t need to wrap with staticmethod() if you’re setting the import callable on a configurator instance.

16.7.3 Configuration file format

The configuration file format understood by fileConfig() is based on configparser functionality. The file
must contain sections called [loggers], [handlers] and [formatters] which identify by name the entities of each
type which are defined in the file. For each such entity, there is a separate section which identifies how
that entity is configured. Thus, for a logger named log01 in the [loggers] section, the relevant configuration
details are held in a section [logger_log01]. Similarly, a handler called hand01 in the [handlers] section
will have its configuration held in a section called [handler_hand01], while a formatter called form01 in the
[formatters] section will have its configuration specified in a section called [formatter_form01]. The root
logger configuration must be specified in a section called [logger_root].

Note: The fileConfig() API is older than the dictConfig() API and does not provide functionality to cover
certain aspects of logging. For example, you cannot configure Filter objects, which provide for filtering of
messages beyond simple integer levels, using fileConfig(). If you need to have instances of Filter in your
logging configuration, you will need to use dictConfig(). Note that future enhancements to configuration
functionality will be added to dictConfig(), so it’s worth considering transitioning to this newer API when
it’s convenient to do so.

Examples of these sections in the file are given below.

[loggers]
keys=root,log02,log03,log04,log05,log06,log07

[handlers]
keys=hand01,hand02,hand03,hand04,hand05,hand06,hand07,hand08,hand09

[formatters]
keys=form01,form02,form03,form04,form05,form06,form07,form08,form09

The root logger must specify a level and a list of handlers. An example of a root logger section is given
below.

[logger_root]
level=NOTSET
handlers=hand01

The level entry can be one of DEBUG, INFO, WARNING, ERROR, CRITICAL or NOTSET. For the root
logger only, NOTSET means that all messages will be logged. Level values are eval()uated in the context of
the logging package’s namespace.

The handlers entry is a comma-separated list of handler names, which must appear in the [handlers] section.
These names must appear in the [handlers] section and have corresponding sections in the configuration file.

For loggers other than the root logger, some additional information is required. This is illustrated by the
following example.

626 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

[logger_parser]
level=DEBUG
handlers=hand01
propagate=1
qualname=compiler.parser

The level and handlers entries are interpreted as for the root logger, except that if a non-root logger’s level
is specified as NOTSET, the system consults loggers higher up the hierarchy to determine the effective level
of the logger. The propagate entry is set to 1 to indicate that messages must propagate to handlers higher
up the logger hierarchy from this logger, or 0 to indicate that messages are not propagated to handlers up
the hierarchy. The qualname entry is the hierarchical channel name of the logger, that is to say the name
used by the application to get the logger.

Sections which specify handler configuration are exemplified by the following.

[handler_hand01]
class=StreamHandler
level=NOTSET
formatter=form01
args=(sys.stdout,)

The class entry indicates the handler’s class (as determined by eval() in the logging package’s namespace).
The level is interpreted as for loggers, and NOTSET is taken to mean ‘log everything’.

The formatter entry indicates the key name of the formatter for this handler. If blank, a default formatter
(logging._defaultFormatter) is used. If a name is specified, it must appear in the [formatters] section and
have a corresponding section in the configuration file.

The args entry, when eval()uated in the context of the logging package’s namespace, is the list of arguments to
the constructor for the handler class. Refer to the constructors for the relevant handlers, or to the examples
below, to see how typical entries are constructed.

[handler_hand02]
class=FileHandler
level=DEBUG
formatter=form02
args=('python.log', 'w')

[handler_hand03]
class=handlers.SocketHandler
level=INFO
formatter=form03
args=('localhost', handlers.DEFAULT_TCP_LOGGING_PORT)

[handler_hand04]
class=handlers.DatagramHandler
level=WARN
formatter=form04
args=('localhost', handlers.DEFAULT_UDP_LOGGING_PORT)

[handler_hand05]
class=handlers.SysLogHandler
level=ERROR
formatter=form05
args=(('localhost', handlers.SYSLOG_UDP_PORT), handlers.SysLogHandler.LOG_USER)

[handler_hand06]

(continues on next page)

16.7. logging.config — Logging configuration 627

The Python Library Reference, Release 3.5.7

(continued from previous page)

class=handlers.NTEventLogHandler
level=CRITICAL
formatter=form06
args=('Python Application', '', 'Application')

[handler_hand07]
class=handlers.SMTPHandler
level=WARN
formatter=form07
args=('localhost', 'from@abc', ['user1@abc', 'user2@xyz'], 'Logger Subject')

[handler_hand08]
class=handlers.MemoryHandler
level=NOTSET
formatter=form08
target=
args=(10, ERROR)

[handler_hand09]
class=handlers.HTTPHandler
level=NOTSET
formatter=form09
args=('localhost:9022', '/log', 'GET')

Sections which specify formatter configuration are typified by the following.

[formatter_form01]
format=F1 %(asctime)s %(levelname)s %(message)s
datefmt=
class=logging.Formatter

The format entry is the overall format string, and the datefmt entry is the strftime()-compatible date/time
format string. If empty, the package substitutes ISO8601 format date/times, which is almost equivalent to
specifying the date format string '%Y-%m-%d %H:%M:%S'. The ISO8601 format also specifies milliseconds,
which are appended to the result of using the above format string, with a comma separator. An example
time in ISO8601 format is 2003-01-23 00:29:50,411.

The class entry is optional. It indicates the name of the formatter’s class (as a dotted module and class
name.) This option is useful for instantiating a Formatter subclass. Subclasses of Formatter can present
exception tracebacks in an expanded or condensed format.

Note: Due to the use of eval() as described above, there are potential security risks which result from using
the listen() to send and receive configurations via sockets. The risks are limited to where multiple users with
no mutual trust run code on the same machine; see the listen() documentation for more information.

See also:

Module logging API reference for the logging module.

Module logging.handlers Useful handlers included with the logging module.

16.8 logging.handlers — Logging handlers

Source code: Lib/logging/handlers.py

628 Chapter 16. Generic Operating System Services

https://github.com/python/cpython/tree/3.5/Lib/logging/handlers.py

The Python Library Reference, Release 3.5.7

Important

This page contains only reference information. For tutorials, please see

• Basic Tutorial

• Advanced Tutorial

• Logging Cookbook

The following useful handlers are provided in the package. Note that three of the handlers (StreamHandler,
FileHandler and NullHandler) are actually defined in the logging module itself, but have been documented
here along with the other handlers.

16.8.1 StreamHandler

The StreamHandler class, located in the core logging package, sends logging output to streams such as
sys.stdout, sys.stderr or any file-like object (or, more precisely, any object which supports write() and flush()
methods).

class logging.StreamHandler(stream=None)
Returns a new instance of the StreamHandler class. If stream is specified, the instance will use it for
logging output; otherwise, sys.stderr will be used.

emit(record)
If a formatter is specified, it is used to format the record. The record is then written to the
stream with a terminator. If exception information is present, it is formatted using traceback.
print_exception() and appended to the stream.

flush()
Flushes the stream by calling its flush() method. Note that the close() method is inherited from
Handler and so does no output, so an explicit flush() call may be needed at times.

Changed in version 3.2: The StreamHandler class now has a terminator attribute, default value '\n', which
is used as the terminator when writing a formatted record to a stream. If you don’t want this newline
termination, you can set the handler instance’s terminator attribute to the empty string. In earlier versions,
the terminator was hardcoded as '\n'.

16.8.2 FileHandler

The FileHandler class, located in the core logging package, sends logging output to a disk file. It inherits
the output functionality from StreamHandler.

class logging.FileHandler(filename, mode=’a’, encoding=None, delay=False)
Returns a new instance of the FileHandler class. The specified file is opened and used as the stream for
logging. If mode is not specified, 'a' is used. If encoding is not None, it is used to open the file with
that encoding. If delay is true, then file opening is deferred until the first call to emit(). By default,
the file grows indefinitely.

close()
Closes the file.

emit(record)
Outputs the record to the file.

16.8. logging.handlers — Logging handlers 629

The Python Library Reference, Release 3.5.7

16.8.3 NullHandler

New in version 3.1.

The NullHandler class, located in the core logging package, does not do any formatting or output. It is
essentially a ‘no-op’ handler for use by library developers.

class logging.NullHandler
Returns a new instance of the NullHandler class.

emit(record)
This method does nothing.

handle(record)
This method does nothing.

createLock()
This method returns None for the lock, since there is no underlying I/O to which access needs to
be serialized.

See library-config for more information on how to use NullHandler.

16.8.4 WatchedFileHandler

The WatchedFileHandler class, located in the logging.handlers module, is a FileHandler which watches the
file it is logging to. If the file changes, it is closed and reopened using the file name.

A file change can happen because of usage of programs such as newsyslog and logrotate which perform log
file rotation. This handler, intended for use under Unix/Linux, watches the file to see if it has changed since
the last emit. (A file is deemed to have changed if its device or inode have changed.) If the file has changed,
the old file stream is closed, and the file opened to get a new stream.

This handler is not appropriate for use under Windows, because under Windows open log files cannot be
moved or renamed - logging opens the files with exclusive locks - and so there is no need for such a handler.
Furthermore, ST_INO is not supported under Windows; stat() always returns zero for this value.

class logging.handlers.WatchedFileHandler(filename, mode=’a’, encoding=None, delay=False)
Returns a new instance of the WatchedFileHandler class. The specified file is opened and used as the
stream for logging. If mode is not specified, 'a' is used. If encoding is not None, it is used to open
the file with that encoding. If delay is true, then file opening is deferred until the first call to emit().
By default, the file grows indefinitely.

emit(record)
Outputs the record to the file, but first checks to see if the file has changed. If it has, the existing
stream is flushed and closed and the file opened again, before outputting the record to the file.

16.8.5 BaseRotatingHandler

The BaseRotatingHandler class, located in the logging.handlers module, is the base class for the rotating
file handlers, RotatingFileHandler and TimedRotatingFileHandler. You should not need to instantiate this
class, but it has attributes and methods you may need to override.

class logging.handlers.BaseRotatingHandler(filename, mode, encoding=None, delay=False)
The parameters are as for FileHandler. The attributes are:

namer
If this attribute is set to a callable, the rotation_filename() method delegates to this callable.
The parameters passed to the callable are those passed to rotation_filename().

630 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Note: The namer function is called quite a few times during rollover, so it should be as simple and
as fast as possible. It should also return the same output every time for a given input, otherwise
the rollover behaviour may not work as expected.

New in version 3.3.

rotator
If this attribute is set to a callable, the rotate() method delegates to this callable. The parameters
passed to the callable are those passed to rotate().

New in version 3.3.

rotation_filename(default_name)
Modify the filename of a log file when rotating.

This is provided so that a custom filename can be provided.

The default implementation calls the ‘namer’ attribute of the handler, if it’s callable, passing the
default name to it. If the attribute isn’t callable (the default is None), the name is returned
unchanged.

Parameters default_name – The default name for the log file.

New in version 3.3.

rotate(source, dest)
When rotating, rotate the current log.

The default implementation calls the ‘rotator’ attribute of the handler, if it’s callable, passing the
source and dest arguments to it. If the attribute isn’t callable (the default is None), the source is
simply renamed to the destination.

Parameters

• source – The source filename. This is normally the base filename, e.g. ‘test.log’.

• dest – The destination filename. This is normally what the source is rotated to,
e.g. ‘test.log.1’.

New in version 3.3.

The reason the attributes exist is to save you having to subclass - you can use the same callables for
instances of RotatingFileHandler and TimedRotatingFileHandler. If either the namer or rotator callable
raises an exception, this will be handled in the same way as any other exception during an emit() call, i.e.
via the handleError() method of the handler.

If you need to make more significant changes to rotation processing, you can override the methods.

For an example, see cookbook-rotator-namer.

16.8.6 RotatingFileHandler

The RotatingFileHandler class, located in the logging.handlers module, supports rotation of disk log files.

class logging.handlers.RotatingFileHandler(filename, mode=’a’, maxBytes=0, backupCount=0, en-
coding=None, delay=False)

Returns a new instance of the RotatingFileHandler class. The specified file is opened and used as the
stream for logging. If mode is not specified, 'a' is used. If encoding is not None, it is used to open
the file with that encoding. If delay is true, then file opening is deferred until the first call to emit().
By default, the file grows indefinitely.

16.8. logging.handlers — Logging handlers 631

The Python Library Reference, Release 3.5.7

You can use the maxBytes and backupCount values to allow the file to rollover at a predetermined size.
When the size is about to be exceeded, the file is closed and a new file is silently opened for output.
Rollover occurs whenever the current log file is nearly maxBytes in length; if either of maxBytes or
backupCount is zero, rollover never occurs. If backupCount is non-zero, the system will save old log
files by appending the extensions ‘.1’, ‘.2’ etc., to the filename. For example, with a backupCount of 5
and a base file name of app.log, you would get app.log, app.log.1, app.log.2, up to app.log.5. The file
being written to is always app.log. When this file is filled, it is closed and renamed to app.log.1, and
if files app.log.1, app.log.2, etc. exist, then they are renamed to app.log.2, app.log.3 etc. respectively.

doRollover()
Does a rollover, as described above.

emit(record)
Outputs the record to the file, catering for rollover as described previously.

16.8.7 TimedRotatingFileHandler

The TimedRotatingFileHandler class, located in the logging.handlers module, supports rotation of disk log
files at certain timed intervals.

class logging.handlers.TimedRotatingFileHandler(filename, when=’h’, interval=1, backupCount=0,
encoding=None, delay=False, utc=False, at-
Time=None)

Returns a new instance of the TimedRotatingFileHandler class. The specified file is opened and used
as the stream for logging. On rotating it also sets the filename suffix. Rotating happens based on the
product of when and interval.

You can use the when to specify the type of interval. The list of possible values is below. Note that
they are not case sensitive.

Value Type of interval
'S' Seconds
'M' Minutes
'H' Hours
'D' Days
'W0'-'W6' Weekday (0=Monday)
'midnight' Roll over at midnight

When using weekday-based rotation, specify ‘W0’ for Monday, ‘W1’ for Tuesday, and so on up to ‘W6’
for Sunday. In this case, the value passed for interval isn’t used.

The system will save old log files by appending extensions to the filename. The extensions are date-
and-time based, using the strftime format %Y-%m-%d_%H-%M-%S or a leading portion thereof,
depending on the rollover interval.

When computing the next rollover time for the first time (when the handler is created), the last
modification time of an existing log file, or else the current time, is used to compute when the next
rotation will occur.

If the utc argument is true, times in UTC will be used; otherwise local time is used.

If backupCount is nonzero, at most backupCount files will be kept, and if more would be created when
rollover occurs, the oldest one is deleted. The deletion logic uses the interval to determine which files
to delete, so changing the interval may leave old files lying around.

If delay is true, then file opening is deferred until the first call to emit().

632 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

If atTime is not None, it must be a datetime.time instance which specifies the time of day when rollover
occurs, for the cases where rollover is set to happen “at midnight” or “on a particular weekday”.

Changed in version 3.4: atTime parameter was added.

doRollover()
Does a rollover, as described above.

emit(record)
Outputs the record to the file, catering for rollover as described above.

16.8.8 SocketHandler

The SocketHandler class, located in the logging.handlers module, sends logging output to a network socket.
The base class uses a TCP socket.

class logging.handlers.SocketHandler(host, port)
Returns a new instance of the SocketHandler class intended to communicate with a remote machine
whose address is given by host and port.

Changed in version 3.4: If port is specified as None, a Unix domain socket is created using the value
in host - otherwise, a TCP socket is created.

close()
Closes the socket.

emit()
Pickles the record’s attribute dictionary and writes it to the socket in binary format. If there
is an error with the socket, silently drops the packet. If the connection was previously lost, re-
establishes the connection. To unpickle the record at the receiving end into a LogRecord, use the
makeLogRecord() function.

handleError()
Handles an error which has occurred during emit(). The most likely cause is a lost connection.
Closes the socket so that we can retry on the next event.

makeSocket()
This is a factory method which allows subclasses to define the precise type of socket they want.
The default implementation creates a TCP socket (socket.SOCK_STREAM).

makePickle(record)
Pickles the record’s attribute dictionary in binary format with a length prefix, and returns it
ready for transmission across the socket.

Note that pickles aren’t completely secure. If you are concerned about security, you may want
to override this method to implement a more secure mechanism. For example, you can sign
pickles using HMAC and then verify them on the receiving end, or alternatively you can disable
unpickling of global objects on the receiving end.

send(packet)
Send a pickled string packet to the socket. This function allows for partial sends which can happen
when the network is busy.

createSocket()
Tries to create a socket; on failure, uses an exponential back-off algorithm. On initial failure, the
handler will drop the message it was trying to send. When subsequent messages are handled by
the same instance, it will not try connecting until some time has passed. The default parameters
are such that the initial delay is one second, and if after that delay the connection still can’t be
made, the handler will double the delay each time up to a maximum of 30 seconds.

16.8. logging.handlers — Logging handlers 633

The Python Library Reference, Release 3.5.7

This behaviour is controlled by the following handler attributes:

• retryStart (initial delay, defaulting to 1.0 seconds).

• retryFactor (multiplier, defaulting to 2.0).

• retryMax (maximum delay, defaulting to 30.0 seconds).

This means that if the remote listener starts up after the handler has been used, you could lose
messages (since the handler won’t even attempt a connection until the delay has elapsed, but just
silently drop messages during the delay period).

16.8.9 DatagramHandler

The DatagramHandler class, located in the logging.handlers module, inherits from SocketHandler to support
sending logging messages over UDP sockets.

class logging.handlers.DatagramHandler(host, port)
Returns a new instance of the DatagramHandler class intended to communicate with a remote machine
whose address is given by host and port.

Changed in version 3.4: If port is specified as None, a Unix domain socket is created using the value
in host - otherwise, a TCP socket is created.

emit()
Pickles the record’s attribute dictionary and writes it to the socket in binary format. If there is
an error with the socket, silently drops the packet. To unpickle the record at the receiving end
into a LogRecord, use the makeLogRecord() function.

makeSocket()
The factory method of SocketHandler is here overridden to create a UDP socket (socket.
SOCK_DGRAM).

send(s)
Send a pickled string to a socket.

16.8.10 SysLogHandler

The SysLogHandler class, located in the logging.handlers module, supports sending logging messages to a
remote or local Unix syslog.

class logging.handlers.SysLogHandler(address=(’localhost’, SYSLOG_UDP_PORT), facil-
ity=LOG_USER, socktype=socket.SOCK_DGRAM)

Returns a new instance of the SysLogHandler class intended to communicate with a remote Unix
machine whose address is given by address in the form of a (host, port) tuple. If address is not
specified, ('localhost', 514) is used. The address is used to open a socket. An alternative to providing
a (host, port) tuple is providing an address as a string, for example ‘/dev/log’. In this case, a Unix
domain socket is used to send the message to the syslog. If facility is not specified, LOG_USER
is used. The type of socket opened depends on the socktype argument, which defaults to socket.
SOCK_DGRAM and thus opens a UDP socket. To open a TCP socket (for use with the newer syslog
daemons such as rsyslog), specify a value of socket.SOCK_STREAM.

Note that if your server is not listening on UDP port 514, SysLogHandler may appear not to work. In
that case, check what address you should be using for a domain socket - it’s system dependent. For
example, on Linux it’s usually ‘/dev/log’ but on OS/X it’s ‘/var/run/syslog’. You’ll need to check your
platform and use the appropriate address (you may need to do this check at runtime if your application
needs to run on several platforms). On Windows, you pretty much have to use the UDP option.

634 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Changed in version 3.2: socktype was added.

close()
Closes the socket to the remote host.

emit(record)
The record is formatted, and then sent to the syslog server. If exception information is present,
it is not sent to the server.

Changed in version 3.2.1: (See: bpo-12168.) In earlier versions, the message sent to the syslog
daemons was always terminated with a NUL byte, because early versions of these daemons ex-
pected a NUL terminated message - even though it’s not in the relevant specification (RFC 5424).
More recent versions of these daemons don’t expect the NUL byte but strip it off if it’s there, and
even more recent daemons (which adhere more closely to RFC 5424) pass the NUL byte on as
part of the message.

To enable easier handling of syslog messages in the face of all these differing daemon behaviours,
the appending of the NUL byte has been made configurable, through the use of a class-level
attribute, append_nul. This defaults to True (preserving the existing behaviour) but can be set
to False on a SysLogHandler instance in order for that instance to not append the NUL terminator.

Changed in version 3.3: (See: bpo-12419.) In earlier versions, there was no facility for an “ident”
or “tag” prefix to identify the source of the message. This can now be specified using a class-
level attribute, defaulting to "" to preserve existing behaviour, but which can be overridden on a
SysLogHandler instance in order for that instance to prepend the ident to every message handled.
Note that the provided ident must be text, not bytes, and is prepended to the message exactly as
is.

encodePriority(facility, priority)
Encodes the facility and priority into an integer. You can pass in strings or integers - if strings
are passed, internal mapping dictionaries are used to convert them to integers.

The symbolic LOG_ values are defined in SysLogHandler and mirror the values defined in the
sys/syslog.h header file.

Priorities

Name (string) Symbolic value
alert LOG_ALERT
crit or critical LOG_CRIT
debug LOG_DEBUG
emerg or panic LOG_EMERG
err or error LOG_ERR
info LOG_INFO
notice LOG_NOTICE
warn or warning LOG_WARNING

Facilities

16.8. logging.handlers — Logging handlers 635

https://bugs.python.org/issue12168
https://bugs.python.org/issue12419

The Python Library Reference, Release 3.5.7

Name (string) Symbolic value
auth LOG_AUTH
authpriv LOG_AUTHPRIV
cron LOG_CRON
daemon LOG_DAEMON
ftp LOG_FTP
kern LOG_KERN
lpr LOG_LPR
mail LOG_MAIL
news LOG_NEWS
syslog LOG_SYSLOG
user LOG_USER
uucp LOG_UUCP
local0 LOG_LOCAL0
local1 LOG_LOCAL1
local2 LOG_LOCAL2
local3 LOG_LOCAL3
local4 LOG_LOCAL4
local5 LOG_LOCAL5
local6 LOG_LOCAL6
local7 LOG_LOCAL7

mapPriority(levelname)
Maps a logging level name to a syslog priority name. You may need to override this if you are using
custom levels, or if the default algorithm is not suitable for your needs. The default algorithm
maps DEBUG, INFO, WARNING, ERROR and CRITICAL to the equivalent syslog names, and
all other level names to ‘warning’.

16.8.11 NTEventLogHandler

The NTEventLogHandler class, located in the logging.handlers module, supports sending logging messages
to a local Windows NT, Windows 2000 or Windows XP event log. Before you can use it, you need Mark
Hammond’s Win32 extensions for Python installed.

class logging.handlers.NTEventLogHandler(appname, dllname=None, logtype=’Application’)
Returns a new instance of the NTEventLogHandler class. The appname is used to define the application
name as it appears in the event log. An appropriate registry entry is created using this name. The
dllname should give the fully qualified pathname of a .dll or .exe which contains message definitions to
hold in the log (if not specified, 'win32service.pyd' is used - this is installed with the Win32 extensions
and contains some basic placeholder message definitions. Note that use of these placeholders will make
your event logs big, as the entire message source is held in the log. If you want slimmer logs, you
have to pass in the name of your own .dll or .exe which contains the message definitions you want to
use in the event log). The logtype is one of 'Application', 'System' or 'Security', and defaults to
'Application'.

close()
At this point, you can remove the application name from the registry as a source of event log
entries. However, if you do this, you will not be able to see the events as you intended in the
Event Log Viewer - it needs to be able to access the registry to get the .dll name. The current
version does not do this.

emit(record)
Determines the message ID, event category and event type, and then logs the message in the NT

636 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

event log.

getEventCategory(record)
Returns the event category for the record. Override this if you want to specify your own categories.
This version returns 0.

getEventType(record)
Returns the event type for the record. Override this if you want to specify your own types. This
version does a mapping using the handler’s typemap attribute, which is set up in __init__() to
a dictionary which contains mappings for DEBUG, INFO, WARNING, ERROR and CRITICAL.
If you are using your own levels, you will either need to override this method or place a suitable
dictionary in the handler’s typemap attribute.

getMessageID(record)
Returns the message ID for the record. If you are using your own messages, you could do this by
having the msg passed to the logger being an ID rather than a format string. Then, in here, you
could use a dictionary lookup to get the message ID. This version returns 1, which is the base
message ID in win32service.pyd.

16.8.12 SMTPHandler

The SMTPHandler class, located in the logging.handlers module, supports sending logging messages to an
email address via SMTP.

class logging.handlers.SMTPHandler(mailhost, fromaddr, toaddrs, subject, credentials=None, se-
cure=None, timeout=1.0)

Returns a new instance of the SMTPHandler class. The instance is initialized with the from and to
addresses and subject line of the email. The toaddrs should be a list of strings. To specify a non-
standard SMTP port, use the (host, port) tuple format for the mailhost argument. If you use a string,
the standard SMTP port is used. If your SMTP server requires authentication, you can specify a
(username, password) tuple for the credentials argument.

To specify the use of a secure protocol (TLS), pass in a tuple to the secure argument. This will only
be used when authentication credentials are supplied. The tuple should be either an empty tuple, or
a single-value tuple with the name of a keyfile, or a 2-value tuple with the names of the keyfile and
certificate file. (This tuple is passed to the smtplib.SMTP.starttls() method.)

A timeout can be specified for communication with the SMTP server using the timeout argument.

New in version 3.3: The timeout argument was added.

emit(record)
Formats the record and sends it to the specified addressees.

getSubject(record)
If you want to specify a subject line which is record-dependent, override this method.

16.8.13 MemoryHandler

The MemoryHandler class, located in the logging.handlers module, supports buffering of logging records in
memory, periodically flushing them to a target handler. Flushing occurs whenever the buffer is full, or when
an event of a certain severity or greater is seen.

MemoryHandler is a subclass of the more general BufferingHandler, which is an abstract class. This buffers
logging records in memory. Whenever each record is added to the buffer, a check is made by calling should-
Flush() to see if the buffer should be flushed. If it should, then flush() is expected to do the flushing.

16.8. logging.handlers — Logging handlers 637

The Python Library Reference, Release 3.5.7

class logging.handlers.BufferingHandler(capacity)
Initializes the handler with a buffer of the specified capacity.

emit(record)
Appends the record to the buffer. If shouldFlush() returns true, calls flush() to process the buffer.

flush()
You can override this to implement custom flushing behavior. This version just zaps the buffer
to empty.

shouldFlush(record)
Returns true if the buffer is up to capacity. This method can be overridden to implement custom
flushing strategies.

class logging.handlers.MemoryHandler(capacity, flushLevel=ERROR, target=None)
Returns a new instance of the MemoryHandler class. The instance is initialized with a buffer size of
capacity. If flushLevel is not specified, ERROR is used. If no target is specified, the target will need
to be set using setTarget() before this handler does anything useful.

close()
Calls flush(), sets the target to None and clears the buffer.

flush()
For a MemoryHandler, flushing means just sending the buffered records to the target, if there is
one. The buffer is also cleared when this happens. Override if you want different behavior.

setTarget(target)
Sets the target handler for this handler.

shouldFlush(record)
Checks for buffer full or a record at the flushLevel or higher.

16.8.14 HTTPHandler

The HTTPHandler class, located in the logging.handlers module, supports sending logging messages to a
Web server, using either GET or POST semantics.

class logging.handlers.HTTPHandler(host, url, method=’GET’, secure=False, credentials=None, con-
text=None)

Returns a new instance of the HTTPHandler class. The host can be of the form host:port, should you
need to use a specific port number. If no method is specified, GET is used. If secure is true, a HTTPS
connection will be used. The context parameter may be set to a ssl.SSLContext instance to configure
the SSL settings used for the HTTPS connection. If credentials is specified, it should be a 2-tuple
consisting of userid and password, which will be placed in a HTTP ‘Authorization’ header using Basic
authentication. If you specify credentials, you should also specify secure=True so that your userid and
password are not passed in cleartext across the wire.

Changed in version 3.5: The context parameter was added.

mapLogRecord(record)
Provides a dictionary, based on record, which is to be URL-encoded and sent to the web server.
The default implementation just returns record.__dict__. This method can be overridden if e.g.
only a subset of LogRecord is to be sent to the web server, or if more specific customization of
what’s sent to the server is required.

emit(record)
Sends the record to the Web server as a URL-encoded dictionary. The mapLogRecord() method
is used to convert the record to the dictionary to be sent.

638 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Note: Since preparing a record for sending it to a Web server is not the same as a generic formatting
operation, using setFormatter() to specify a Formatter for a HTTPHandler has no effect. Instead of
calling format(), this handler calls mapLogRecord() and then urllib.parse.urlencode() to encode the
dictionary in a form suitable for sending to a Web server.

16.8.15 QueueHandler

New in version 3.2.

The QueueHandler class, located in the logging.handlers module, supports sending logging messages to a
queue, such as those implemented in the queue or multiprocessing modules.

Along with the QueueListener class, QueueHandler can be used to let handlers do their work on a separate
thread from the one which does the logging. This is important in Web applications and also other service
applications where threads servicing clients need to respond as quickly as possible, while any potentially
slow operations (such as sending an email via SMTPHandler) are done on a separate thread.

class logging.handlers.QueueHandler(queue)
Returns a new instance of the QueueHandler class. The instance is initialized with the queue to send
messages to. The queue can be any queue-like object; it’s used as-is by the enqueue() method, which
needs to know how to send messages to it.

emit(record)
Enqueues the result of preparing the LogRecord.

prepare(record)
Prepares a record for queuing. The object returned by this method is enqueued.

The base implementation formats the record to merge the message and arguments, and removes
unpickleable items from the record in-place.

You might want to override this method if you want to convert the record to a dict or JSON
string, or send a modified copy of the record while leaving the original intact.

enqueue(record)
Enqueues the record on the queue using put_nowait(); you may want to override this if you want
to use blocking behaviour, or a timeout, or a customized queue implementation.

16.8.16 QueueListener

New in version 3.2.

The QueueListener class, located in the logging.handlers module, supports receiving logging messages from
a queue, such as those implemented in the queue or multiprocessing modules. The messages are received
from a queue in an internal thread and passed, on the same thread, to one or more handlers for processing.
While QueueListener is not itself a handler, it is documented here because it works hand-in-hand with
QueueHandler.

Along with the QueueHandler class, QueueListener can be used to let handlers do their work on a separate
thread from the one which does the logging. This is important in Web applications and also other service
applications where threads servicing clients need to respond as quickly as possible, while any potentially
slow operations (such as sending an email via SMTPHandler) are done on a separate thread.

class logging.handlers.QueueListener(queue, *handlers, respect_handler_level=False)
Returns a new instance of the QueueListener class. The instance is initialized with the queue to send
messages to and a list of handlers which will handle entries placed on the queue. The queue can be any

16.8. logging.handlers — Logging handlers 639

The Python Library Reference, Release 3.5.7

queue-like object; it’s passed as-is to the dequeue() method, which needs to know how to get messages
from it. If respect_handler_level is True, a handler’s level is respected (compared with the level for
the message) when deciding whether to pass messages to that handler; otherwise, the behaviour is as
in previous Python versions - to always pass each message to each handler.

Changed in version 3.5: The respect_handler_levels argument was added.

dequeue(block)
Dequeues a record and return it, optionally blocking.

The base implementation uses get(). You may want to override this method if you want to use
timeouts or work with custom queue implementations.

prepare(record)
Prepare a record for handling.

This implementation just returns the passed-in record. You may want to override this method
if you need to do any custom marshalling or manipulation of the record before passing it to the
handlers.

handle(record)
Handle a record.

This just loops through the handlers offering them the record to handle. The actual object passed
to the handlers is that which is returned from prepare().

start()
Starts the listener.

This starts up a background thread to monitor the queue for LogRecords to process.

stop()
Stops the listener.

This asks the thread to terminate, and then waits for it to do so. Note that if you don’t call this
before your application exits, there may be some records still left on the queue, which won’t be
processed.

enqueue_sentinel()
Writes a sentinel to the queue to tell the listener to quit. This implementation uses put_nowait().
You may want to override this method if you want to use timeouts or work with custom queue
implementations.

New in version 3.3.

See also:

Module logging API reference for the logging module.

Module logging.config Configuration API for the logging module.

16.9 getpass — Portable password input

Source code: Lib/getpass.py

The getpass module provides two functions:

640 Chapter 16. Generic Operating System Services

https://github.com/python/cpython/tree/3.5/Lib/getpass.py

The Python Library Reference, Release 3.5.7

getpass.getpass(prompt=’Password: ’, stream=None)
Prompt the user for a password without echoing. The user is prompted using the string prompt, which
defaults to 'Password: '. On Unix, the prompt is written to the file-like object stream using the
replace error handler if needed. stream defaults to the controlling terminal (/dev/tty) or if that is
unavailable to sys.stderr (this argument is ignored on Windows).

If echo free input is unavailable getpass() falls back to printing a warning message to stream and
reading from sys.stdin and issuing a GetPassWarning.

Note: If you call getpass from within IDLE, the input may be done in the terminal you launched
IDLE from rather than the idle window itself.

exception getpass.GetPassWarning
A UserWarning subclass issued when password input may be echoed.

getpass.getuser()
Return the “login name” of the user.

This function checks the environment variables LOGNAME, USER, LNAME and USERNAME, in
order, and returns the value of the first one which is set to a non-empty string. If none are set,
the login name from the password database is returned on systems which support the pwd module,
otherwise, an exception is raised.

16.10 curses — Terminal handling for character-cell displays

The curses module provides an interface to the curses library, the de-facto standard for portable advanced
terminal handling.

While curses is most widely used in the Unix environment, versions are available for Windows, DOS, and
possibly other systems as well. This extension module is designed to match the API of ncurses, an open-
source curses library hosted on Linux and the BSD variants of Unix.

Note: Since version 5.4, the ncurses library decides how to interpret non-ASCII data using the nl_langinfo
function. That means that you have to call locale.setlocale() in the application and encode Unicode strings
using one of the system’s available encodings. This example uses the system’s default encoding:

import locale
locale.setlocale(locale.LC_ALL, '')
code = locale.getpreferredencoding()

Then use code as the encoding for str.encode() calls.

See also:

Module curses.ascii Utilities for working with ASCII characters, regardless of your locale settings.

Module curses.panel A panel stack extension that adds depth to curses windows.

Module curses.textpad Editable text widget for curses supporting Emacs-like bindings.

curses-howto Tutorial material on using curses with Python, by Andrew Kuchling and Eric Raymond.

The Tools/demo/ directory in the Python source distribution contains some example programs using the
curses bindings provided by this module.

16.10. curses — Terminal handling for character-cell displays 641

https://github.com/python/cpython/tree/3.5/Tools/demo/

The Python Library Reference, Release 3.5.7

16.10.1 Functions

The module curses defines the following exception:

exception curses.error
Exception raised when a curses library function returns an error.

Note: Whenever x or y arguments to a function or a method are optional, they default to the current cursor
location. Whenever attr is optional, it defaults to A_NORMAL.

The module curses defines the following functions:

curses.baudrate()
Return the output speed of the terminal in bits per second. On software terminal emulators it will
have a fixed high value. Included for historical reasons; in former times, it was used to write output
loops for time delays and occasionally to change interfaces depending on the line speed.

curses.beep()
Emit a short attention sound.

curses.can_change_color()
Return True or False, depending on whether the programmer can change the colors displayed by the
terminal.

curses.cbreak()
Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is turned
off and characters are available to be read one by one. However, unlike raw mode, special characters
(interrupt, quit, suspend, and flow control) retain their effects on the tty driver and calling program.
Calling first raw() then cbreak() leaves the terminal in cbreak mode.

curses.color_content(color_number)
Return the intensity of the red, green, and blue (RGB) components in the color color_number, which
must be between 0 and COLORS. A 3-tuple is returned, containing the R,G,B values for the given
color, which will be between 0 (no component) and 1000 (maximum amount of component).

curses.color_pair(color_number)
Return the attribute value for displaying text in the specified color. This attribute value can be
combined with A_STANDOUT, A_REVERSE, and the other A_* attributes. pair_number() is the
counterpart to this function.

curses.curs_set(visibility)
Set the cursor state. visibility can be set to 0, 1, or 2, for invisible, normal, or very visible. If the
terminal supports the visibility requested, the previous cursor state is returned; otherwise, an exception
is raised. On many terminals, the “visible” mode is an underline cursor and the “very visible” mode is
a block cursor.

curses.def_prog_mode()
Save the current terminal mode as the “program” mode, the mode when the running program is using
curses. (Its counterpart is the “shell” mode, for when the program is not in curses.) Subsequent calls
to reset_prog_mode() will restore this mode.

curses.def_shell_mode()
Save the current terminal mode as the “shell” mode, the mode when the running program is not
using curses. (Its counterpart is the “program” mode, when the program is using curses capabilities.)
Subsequent calls to reset_shell_mode() will restore this mode.

curses.delay_output(ms)
Insert an ms millisecond pause in output.

642 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

curses.doupdate()
Update the physical screen. The curses library keeps two data structures, one representing the current
physical screen contents and a virtual screen representing the desired next state. The doupdate()
ground updates the physical screen to match the virtual screen.

The virtual screen may be updated by a noutrefresh() call after write operations such as addstr() have
been performed on a window. The normal refresh() call is simply noutrefresh() followed by doupdate();
if you have to update multiple windows, you can speed performance and perhaps reduce screen flicker
by issuing noutrefresh() calls on all windows, followed by a single doupdate().

curses.echo()
Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

curses.endwin()
De-initialize the library, and return terminal to normal status.

curses.erasechar()
Return the user’s current erase character. Under Unix operating systems this is a property of the
controlling tty of the curses program, and is not set by the curses library itself.

curses.filter()
The filter() routine, if used, must be called before initscr() is called. The effect is that, during those
calls, LINES is set to 1; the capabilities clear, cup, cud, cud1, cuu1, cuu, vpa are disabled; and the
home string is set to the value of cr. The effect is that the cursor is confined to the current line, and so
are screen updates. This may be used for enabling character-at-a-time line editing without touching
the rest of the screen.

curses.flash()
Flash the screen. That is, change it to reverse-video and then change it back in a short interval. Some
people prefer such as ‘visible bell’ to the audible attention signal produced by beep().

curses.flushinp()
Flush all input buffers. This throws away any typeahead that has been typed by the user and has not
yet been processed by the program.

curses.getmouse()
After getch() returns KEY_MOUSE to signal a mouse event, this method should be call to re-
trieve the queued mouse event, represented as a 5-tuple (id, x, y, z, bstate). id is an ID
value used to distinguish multiple devices, and x, y, z are the event’s coordinates. (z is cur-
rently unused.) bstate is an integer value whose bits will be set to indicate the type of event,
and will be the bitwise OR of one or more of the following constants, where n is the button
number from 1 to 4: BUTTONn_PRESSED, BUTTONn_RELEASED, BUTTONn_CLICKED,
BUTTONn_DOUBLE_CLICKED, BUTTONn_TRIPLE_CLICKED, BUTTON_SHIFT, BUT-
TON_CTRL, BUTTON_ALT.

curses.getsyx()
Return the current coordinates of the virtual screen cursor in y and x. If leaveok is currently true,
then -1,-1 is returned.

curses.getwin(file)
Read window related data stored in the file by an earlier putwin() call. The routine then creates and
initializes a new window using that data, returning the new window object.

curses.has_colors()
Return True if the terminal can display colors; otherwise, return False.

curses.has_ic()
Return True if the terminal has insert- and delete-character capabilities. This function is included for
historical reasons only, as all modern software terminal emulators have such capabilities.

16.10. curses — Terminal handling for character-cell displays 643

The Python Library Reference, Release 3.5.7

curses.has_il()
Return True if the terminal has insert- and delete-line capabilities, or can simulate them using scrolling
regions. This function is included for historical reasons only, as all modern software terminal emulators
have such capabilities.

curses.has_key(ch)
Take a key value ch, and return True if the current terminal type recognizes a key with that value.

curses.halfdelay(tenths)
Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user are im-
mediately available to the program. However, after blocking for tenths tenths of seconds, an exception
is raised if nothing has been typed. The value of tenths must be a number between 1 and 255. Use
nocbreak() to leave half-delay mode.

curses.init_color(color_number, r, g, b)
Change the definition of a color, taking the number of the color to be changed followed by three RGB
values (for the amounts of red, green, and blue components). The value of color_number must be
between 0 and COLORS. Each of r, g, b, must be a value between 0 and 1000. When init_color()
is used, all occurrences of that color on the screen immediately change to the new definition. This
function is a no-op on most terminals; it is active only if can_change_color() returns 1.

curses.init_pair(pair_number, fg, bg)
Change the definition of a color-pair. It takes three arguments: the number of the color-pair to be
changed, the foreground color number, and the background color number. The value of pair_number
must be between 1 and COLOR_PAIRS - 1 (the 0 color pair is wired to white on black and cannot be
changed). The value of fg and bg arguments must be between 0 and COLORS. If the color-pair was
previously initialized, the screen is refreshed and all occurrences of that color-pair are changed to the
new definition.

curses.initscr()
Initialize the library. Return a window object which represents the whole screen.

Note: If there is an error opening the terminal, the underlying curses library may cause the interpreter
to exit.

curses.is_term_resized(nlines, ncols)
Return True if resize_term() would modify the window structure, False otherwise.

curses.isendwin()
Return True if endwin() has been called (that is, the curses library has been deinitialized).

curses.keyname(k)
Return the name of the key numbered k. The name of a key generating printable ASCII character is
the key’s character. The name of a control-key combination is a two-character string consisting of a
caret followed by the corresponding printable ASCII character. The name of an alt-key combination
(128–255) is a string consisting of the prefix ‘M-‘ followed by the name of the corresponding ASCII
character.

curses.killchar()
Return the user’s current line kill character. Under Unix operating systems this is a property of the
controlling tty of the curses program, and is not set by the curses library itself.

curses.longname()
Return a string containing the terminfo long name field describing the current terminal. The maximum
length of a verbose description is 128 characters. It is defined only after the call to initscr().

curses.meta(yes)
If yes is 1, allow 8-bit characters to be input. If yes is 0, allow only 7-bit chars.

644 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

curses.mouseinterval(interval)
Set the maximum time in milliseconds that can elapse between press and release events in order for
them to be recognized as a click, and return the previous interval value. The default value is 200 msec,
or one fifth of a second.

curses.mousemask(mousemask)
Set the mouse events to be reported, and return a tuple (availmask, oldmask). availmask indicates
which of the specified mouse events can be reported; on complete failure it returns 0. oldmask is the
previous value of the given window’s mouse event mask. If this function is never called, no mouse
events are ever reported.

curses.napms(ms)
Sleep for ms milliseconds.

curses.newpad(nlines, ncols)
Create and return a pointer to a new pad data structure with the given number of lines and columns.
A pad is returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily
associated with a particular part of the screen. Pads can be used when a large window is needed, and
only a part of the window will be on the screen at one time. Automatic refreshes of pads (such as
from scrolling or echoing of input) do not occur. The refresh() and noutrefresh() methods of a pad
require 6 arguments to specify the part of the pad to be displayed and the location on the screen to
be used for the display. The arguments are pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol;
the p arguments refer to the upper left corner of the pad region to be displayed and the s arguments
define a clipping box on the screen within which the pad region is to be displayed.

curses.newwin(nlines, ncols)
curses.newwin(nlines, ncols, begin_y, begin_x)

Return a new window, whose left-upper corner is at (begin_y, begin_x), and whose height/width is
nlines/ncols.

By default, the window will extend from the specified position to the lower right corner of the screen.

curses.nl()
Enter newline mode. This mode translates the return key into newline on input, and translates newline
into return and line-feed on output. Newline mode is initially on.

curses.nocbreak()
Leave cbreak mode. Return to normal “cooked” mode with line buffering.

curses.noecho()
Leave echo mode. Echoing of input characters is turned off.

curses.nonl()
Leave newline mode. Disable translation of return into newline on input, and disable low-level transla-
tion of newline into newline/return on output (but this does not change the behavior of addch('\n'),
which always does the equivalent of return and line feed on the virtual screen). With translation off,
curses can sometimes speed up vertical motion a little; also, it will be able to detect the return key on
input.

curses.noqiflush()
When the noqiflush() routine is used, normal flush of input and output queues associated with the
INTR, QUIT and SUSP characters will not be done. You may want to call noqiflush() in a signal
handler if you want output to continue as though the interrupt had not occurred, after the handler
exits.

curses.noraw()
Leave raw mode. Return to normal “cooked” mode with line buffering.

16.10. curses — Terminal handling for character-cell displays 645

The Python Library Reference, Release 3.5.7

curses.pair_content(pair_number)
Return a tuple (fg, bg) containing the colors for the requested color pair. The value of pair_number
must be between 1 and COLOR_PAIRS - 1.

curses.pair_number(attr)
Return the number of the color-pair set by the attribute value attr. color_pair() is the counterpart to
this function.

curses.putp(string)
Equivalent to tputs(str, 1, putchar); emit the value of a specified terminfo capability for the current
terminal. Note that the output of putp() always goes to standard output.

curses.qiflush([flag])
If flag is False, the effect is the same as calling noqiflush(). If flag is True, or no argument is provided,
the queues will be flushed when these control characters are read.

curses.raw()
Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend, and
flow control keys are turned off; characters are presented to curses input functions one by one.

curses.reset_prog_mode()
Restore the terminal to “program” mode, as previously saved by def_prog_mode().

curses.reset_shell_mode()
Restore the terminal to “shell” mode, as previously saved by def_shell_mode().

curses.resetty()
Restore the state of the terminal modes to what it was at the last call to savetty().

curses.resize_term(nlines, ncols)
Backend function used by resizeterm(), performing most of the work; when resizing the windows,
resize_term() blank-fills the areas that are extended. The calling application should fill in these areas
with appropriate data. The resize_term() function attempts to resize all windows. However, due to
the calling convention of pads, it is not possible to resize these without additional interaction with the
application.

curses.resizeterm(nlines, ncols)
Resize the standard and current windows to the specified dimensions, and adjusts other bookkeeping
data used by the curses library that record the window dimensions (in particular the SIGWINCH
handler).

curses.savetty()
Save the current state of the terminal modes in a buffer, usable by resetty().

curses.setsyx(y, x)
Set the virtual screen cursor to y, x. If y and x are both -1, then leaveok is set.

curses.setupterm([termstr, fd])
Initialize the terminal. termstr is a string giving the terminal name; if omitted, the value of the TERM
environment variable will be used. fd is the file descriptor to which any initialization sequences will be
sent; if not supplied, the file descriptor for sys.stdout will be used.

curses.start_color()
Must be called if the programmer wants to use colors, and before any other color manipulation routine
is called. It is good practice to call this routine right after initscr().

start_color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white),
and two global variables in the curses module, COLORS and COLOR_PAIRS, containing the max-
imum number of colors and color-pairs the terminal can support. It also restores the colors on the
terminal to the values they had when the terminal was just turned on.

646 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

curses.termattrs()
Return a logical OR of all video attributes supported by the terminal. This information is useful when
a curses program needs complete control over the appearance of the screen.

curses.termname()
Return the value of the environment variable TERM, truncated to 14 characters.

curses.tigetflag(capname)
Return the value of the Boolean capability corresponding to the terminfo capability name capname.
The value -1 is returned if capname is not a Boolean capability, or 0 if it is canceled or absent from
the terminal description.

curses.tigetnum(capname)
Return the value of the numeric capability corresponding to the terminfo capability name capname.
The value -2 is returned if capname is not a numeric capability, or -1 if it is canceled or absent from
the terminal description.

curses.tigetstr(capname)
Return the value of the string capability corresponding to the terminfo capability name capname. None
is returned if capname is not a string capability, or is canceled or absent from the terminal description.

curses.tparm(str[, ...])
Instantiate the string str with the supplied parameters, where str should be a parameterized string
obtained from the terminfo database. E.g. tparm(tigetstr("cup"), 5, 3) could result in b'\033[6;4H',
the exact result depending on terminal type.

curses.typeahead(fd)
Specify that the file descriptor fd be used for typeahead checking. If fd is -1, then no typeahead
checking is done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while up-
dating the screen. If input is found, and it is coming from a tty, the current update is postponed
until refresh or doupdate is called again, allowing faster response to commands typed in advance. This
function allows specifying a different file descriptor for typeahead checking.

curses.unctrl(ch)
Return a string which is a printable representation of the character ch. Control characters are displayed
as a caret followed by the character, for example as ^C. Printing characters are left as they are.

curses.ungetch(ch)
Push ch so the next getch() will return it.

Note: Only one ch can be pushed before getch() is called.

curses.update_lines_cols()
Update LINES and COLS. Useful for detecting manual screen resize.

New in version 3.5.

curses.unget_wch(ch)
Push ch so the next get_wch() will return it.

Note: Only one ch can be pushed before get_wch() is called.

New in version 3.3.

curses.ungetmouse(id, x, y, z, bstate)
Push a KEY_MOUSE event onto the input queue, associating the given state data with it.

16.10. curses — Terminal handling for character-cell displays 647

The Python Library Reference, Release 3.5.7

curses.use_env(flag)
If used, this function should be called before initscr() or newterm are called. When flag is False,
the values of lines and columns specified in the terminfo database will be used, even if environment
variables LINES and COLUMNS (used by default) are set, or if curses is running in a window (in
which case default behavior would be to use the window size if LINES and COLUMNS are not set).

curses.use_default_colors()
Allow use of default values for colors on terminals supporting this feature. Use this to support trans-
parency in your application. The default color is assigned to the color number -1. After calling this
function, init_pair(x, curses.COLOR_RED, -1) initializes, for instance, color pair x to a red foreground
color on the default background.

curses.wrapper(func, ...)
Initialize curses and call another callable object, func, which should be the rest of your curses-using
application. If the application raises an exception, this function will restore the terminal to a sane state
before re-raising the exception and generating a traceback. The callable object func is then passed
the main window ‘stdscr’ as its first argument, followed by any other arguments passed to wrapper().
Before calling func, wrapper() turns on cbreak mode, turns off echo, enables the terminal keypad,
and initializes colors if the terminal has color support. On exit (whether normally or by exception) it
restores cooked mode, turns on echo, and disables the terminal keypad.

16.10.2 Window Objects

Window objects, as returned by initscr() and newwin() above, have the following methods and attributes:

window.addch(ch[, attr])
window.addch(y, x, ch[, attr])

Note: A character means a C character (an ASCII code), rather than a Python character (a string of
length 1). (This note is true whenever the documentation mentions a character.) The built-in ord() is
handy for conveying strings to codes.

Paint character ch at (y, x) with attributes attr, overwriting any character previously painter at that
location. By default, the character position and attributes are the current settings for the window
object.

window.addnstr(str, n[, attr])
window.addnstr(y, x, str, n[, attr])

Paint at most n characters of the string str at (y, x) with attributes attr, overwriting anything previously
on the display.

window.addstr(str[, attr])
window.addstr(y, x, str[, attr])

Paint the string str at (y, x) with attributes attr, overwriting anything previously on the display.

window.attroff(attr)
Remove attribute attr from the “background” set applied to all writes to the current window.

window.attron(attr)
Add attribute attr from the “background” set applied to all writes to the current window.

window.attrset(attr)
Set the “background” set of attributes to attr. This set is initially 0 (no attributes).

648 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

window.bkgd(ch[, attr])
Set the background property of the window to the character ch, with attributes attr. The change is
then applied to every character position in that window:

• The attribute of every character in the window is changed to the new background attribute.

• Wherever the former background character appears, it is changed to the new background charac-
ter.

window.bkgdset(ch[, attr])
Set the window’s background. A window’s background consists of a character and any combination of
attributes. The attribute part of the background is combined (OR’ed) with all non-blank characters
that are written into the window. Both the character and attribute parts of the background are
combined with the blank characters. The background becomes a property of the character and moves
with the character through any scrolling and insert/delete line/character operations.

window.border([ls[, rs[, ts[, bs[, tl[, tr[, bl[, br]]]]]]]])
Draw a border around the edges of the window. Each parameter specifies the character to use for a
specific part of the border; see the table below for more details. The characters can be specified as
integers or as one-character strings.

Note: A 0 value for any parameter will cause the default character to be used for that parameter.
Keyword parameters can not be used. The defaults are listed in this table:

Parameter Description Default value
ls Left side ACS_VLINE
rs Right side ACS_VLINE
ts Top ACS_HLINE
bs Bottom ACS_HLINE
tl Upper-left corner ACS_ULCORNER
tr Upper-right corner ACS_URCORNER
bl Bottom-left corner ACS_LLCORNER
br Bottom-right corner ACS_LRCORNER

window.box([vertch, horch])
Similar to border(), but both ls and rs are vertch and both ts and bs are horch. The default corner
characters are always used by this function.

window.chgat(attr)
window.chgat(num, attr)
window.chgat(y, x, attr)
window.chgat(y, x, num, attr)

Set the attributes of num characters at the current cursor position, or at position (y, x) if supplied. If
no value of num is given or num = -1, the attribute will be set on all the characters to the end of the
line. This function does not move the cursor. The changed line will be touched using the touchline()
method so that the contents will be redisplayed by the next window refresh.

window.clear()
Like erase(), but also cause the whole window to be repainted upon next call to refresh().

window.clearok(yes)
If yes is 1, the next call to refresh() will clear the window completely.

window.clrtobot()
Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the

16.10. curses — Terminal handling for character-cell displays 649

The Python Library Reference, Release 3.5.7

equivalent of clrtoeol() is performed.

window.clrtoeol()
Erase from cursor to the end of the line.

window.cursyncup()
Update the current cursor position of all the ancestors of the window to reflect the current cursor
position of the window.

window.delch([y, x])
Delete any character at (y, x).

window.deleteln()
Delete the line under the cursor. All following lines are moved up by one line.

window.derwin(begin_y, begin_x)
window.derwin(nlines, ncols, begin_y, begin_x)

An abbreviation for “derive window”, derwin() is the same as calling subwin(), except that begin_y
and begin_x are relative to the origin of the window, rather than relative to the entire screen. Return
a window object for the derived window.

window.echochar(ch[, attr])
Add character ch with attribute attr, and immediately call refresh() on the window.

window.enclose(y, x)
Test whether the given pair of screen-relative character-cell coordinates are enclosed by the given
window, returning True or False. It is useful for determining what subset of the screen windows
enclose the location of a mouse event.

window.encoding
Encoding used to encode method arguments (Unicode strings and characters). The encoding attribute
is inherited from the parent window when a subwindow is created, for example with window.subwin().
By default, the locale encoding is used (see locale.getpreferredencoding()).

New in version 3.3.

window.erase()
Clear the window.

window.getbegyx()
Return a tuple (y, x) of co-ordinates of upper-left corner.

window.getbkgd()
Return the given window’s current background character/attribute pair.

window.getch([y, x])
Get a character. Note that the integer returned does not have to be in ASCII range: function keys,
keypad keys and so on return numbers higher than 256. In no-delay mode, -1 is returned if there is no
input, else getch() waits until a key is pressed.

window.get_wch([y, x])
Get a wide character. Return a character for most keys, or an integer for function keys, keypad keys,
and other special keys.

New in version 3.3.

window.getkey([y, x])
Get a character, returning a string instead of an integer, as getch() does. Function keys, keypad
keys and other special keys return a multibyte string containing the key name. In no-delay mode, an
exception is raised if there is no input.

650 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

window.getmaxyx()
Return a tuple (y, x) of the height and width of the window.

window.getparyx()
Return the beginning coordinates of this window relative to its parent window into two integer variables
y and x. Return -1, -1 if this window has no parent.

window.getstr([y, x])
Read a string from the user, with primitive line editing capacity.

window.getyx()
Return a tuple (y, x) of current cursor position relative to the window’s upper-left corner.

window.hline(ch, n)
window.hline(y, x, ch, n)

Display a horizontal line starting at (y, x) with length n consisting of the character ch.

window.idcok(flag)
If flag is False, curses no longer considers using the hardware insert/delete character feature of the
terminal; if flag is True, use of character insertion and deletion is enabled. When curses is first
initialized, use of character insert/delete is enabled by default.

window.idlok(yes)
If called with yes equal to 1, curses will try and use hardware line editing facilities. Otherwise, line
insertion/deletion are disabled.

window.immedok(flag)
If flag is True, any change in the window image automatically causes the window to be refreshed; you
no longer have to call refresh() yourself. However, it may degrade performance considerably, due to
repeated calls to wrefresh. This option is disabled by default.

window.inch([y, x])
Return the character at the given position in the window. The bottom 8 bits are the character proper,
and upper bits are the attributes.

window.insch(ch[, attr])
window.insch(y, x, ch[, attr])

Paint character ch at (y, x) with attributes attr, moving the line from position x right by one character.

window.insdelln(nlines)
Insert nlines lines into the specified window above the current line. The nlines bottom lines are lost.
For negative nlines, delete nlines lines starting with the one under the cursor, and move the remaining
lines up. The bottom nlines lines are cleared. The current cursor position remains the same.

window.insertln()
Insert a blank line under the cursor. All following lines are moved down by one line.

window.insnstr(str, n[, attr])
window.insnstr(y, x, str, n[, attr])

Insert a character string (as many characters as will fit on the line) before the character under the
cursor, up to n characters. If n is zero or negative, the entire string is inserted. All characters to the
right of the cursor are shifted right, with the rightmost characters on the line being lost. The cursor
position does not change (after moving to y, x, if specified).

window.insstr(str[, attr])
window.insstr(y, x, str[, attr])

Insert a character string (as many characters as will fit on the line) before the character under the
cursor. All characters to the right of the cursor are shifted right, with the rightmost characters on the
line being lost. The cursor position does not change (after moving to y, x, if specified).

16.10. curses — Terminal handling for character-cell displays 651

The Python Library Reference, Release 3.5.7

window.instr([n])
window.instr(y, x[, n])

Return a string of characters, extracted from the window starting at the current cursor position, or at
y, x if specified. Attributes are stripped from the characters. If n is specified, instr() returns a string
at most n characters long (exclusive of the trailing NUL).

window.is_linetouched(line)
Return True if the specified line was modified since the last call to refresh(); otherwise return False.
Raise a curses.error exception if line is not valid for the given window.

window.is_wintouched()
Return True if the specified window was modified since the last call to refresh(); otherwise return False.

window.keypad(yes)
If yes is 1, escape sequences generated by some keys (keypad, function keys) will be interpreted by
curses. If yes is 0, escape sequences will be left as is in the input stream.

window.leaveok(yes)
If yes is 1, cursor is left where it is on update, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible the cursor will be made invisible.

If yes is 0, cursor will always be at “cursor position” after an update.

window.move(new_y, new_x)
Move cursor to (new_y, new_x).

window.mvderwin(y, x)
Move the window inside its parent window. The screen-relative parameters of the window are not
changed. This routine is used to display different parts of the parent window at the same physical
position on the screen.

window.mvwin(new_y, new_x)
Move the window so its upper-left corner is at (new_y, new_x).

window.nodelay(yes)
If yes is 1, getch() will be non-blocking.

window.notimeout(yes)
If yes is 1, escape sequences will not be timed out.

If yes is 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in the
input stream as is.

window.noutrefresh()
Mark for refresh but wait. This function updates the data structure representing the desired state of
the window, but does not force an update of the physical screen. To accomplish that, call doupdate().

window.overlay(destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])
Overlay the window on top of destwin. The windows need not be the same size, only the overlapping
region is copied. This copy is non-destructive, which means that the current background character
does not overwrite the old contents of destwin.

To get fine-grained control over the copied region, the second form of overlay() can be used. sminrow
and smincol are the upper-left coordinates of the source window, and the other variables mark a
rectangle in the destination window.

window.overwrite(destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])
Overwrite the window on top of destwin. The windows need not be the same size, in which case only
the overlapping region is copied. This copy is destructive, which means that the current background
character overwrites the old contents of destwin.

652 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

To get fine-grained control over the copied region, the second form of overwrite() can be used. sminrow
and smincol are the upper-left coordinates of the source window, the other variables mark a rectangle
in the destination window.

window.putwin(file)
Write all data associated with the window into the provided file object. This information can be later
retrieved using the getwin() function.

window.redrawln(beg, num)
Indicate that the num screen lines, starting at line beg, are corrupted and should be completely redrawn
on the next refresh() call.

window.redrawwin()
Touch the entire window, causing it to be completely redrawn on the next refresh() call.

window.refresh([pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol])
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad created with newpad(). The
additional parameters are needed to indicate what part of the pad and screen are involved. pminrow
and pmincol specify the upper left-hand corner of the rectangle to be displayed in the pad. sminrow,
smincol, smaxrow, and smaxcol specify the edges of the rectangle to be displayed on the screen. The
lower right-hand corner of the rectangle to be displayed in the pad is calculated from the screen
coordinates, since the rectangles must be the same size. Both rectangles must be entirely contained
within their respective structures. Negative values of pminrow, pmincol, sminrow, or smincol are
treated as if they were zero.

window.resize(nlines, ncols)
Reallocate storage for a curses window to adjust its dimensions to the specified values. If either
dimension is larger than the current values, the window’s data is filled with blanks that have the
current background rendition (as set by bkgdset()) merged into them.

window.scroll([lines=1])
Scroll the screen or scrolling region upward by lines lines.

window.scrollok(flag)
Control what happens when the cursor of a window is moved off the edge of the window or scrolling
region, either as a result of a newline action on the bottom line, or typing the last character of the last
line. If flag is false, the cursor is left on the bottom line. If flag is true, the window is scrolled up one
line. Note that in order to get the physical scrolling effect on the terminal, it is also necessary to call
idlok().

window.setscrreg(top, bottom)
Set the scrolling region from line top to line bottom. All scrolling actions will take place in this region.

window.standend()
Turn off the standout attribute. On some terminals this has the side effect of turning off all attributes.

window.standout()
Turn on attribute A_STANDOUT.

window.subpad(begin_y, begin_x)
window.subpad(nlines, ncols, begin_y, begin_x)

Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and whose width/height is
ncols/nlines.

window.subwin(begin_y, begin_x)
window.subwin(nlines, ncols, begin_y, begin_x)

Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and whose width/height is
ncols/nlines.

16.10. curses — Terminal handling for character-cell displays 653

The Python Library Reference, Release 3.5.7

By default, the sub-window will extend from the specified position to the lower right corner of the
window.

window.syncdown()
Touch each location in the window that has been touched in any of its ancestor windows. This routine
is called by refresh(), so it should almost never be necessary to call it manually.

window.syncok(flag)
If called with flag set to True, then syncup() is called automatically whenever there is a change in the
window.

window.syncup()
Touch all locations in ancestors of the window that have been changed in the window.

window.timeout(delay)
Set blocking or non-blocking read behavior for the window. If delay is negative, blocking read is used
(which will wait indefinitely for input). If delay is zero, then non-blocking read is used, and -1 will
be returned by getch() if no input is waiting. If delay is positive, then getch() will block for delay
milliseconds, and return -1 if there is still no input at the end of that time.

window.touchline(start, count[, changed])
Pretend count lines have been changed, starting with line start. If changed is supplied, it specifies
whether the affected lines are marked as having been changed (changed=1) or unchanged (changed=0).

window.touchwin()
Pretend the whole window has been changed, for purposes of drawing optimizations.

window.untouchwin()
Mark all lines in the window as unchanged since the last call to refresh().

window.vline(ch, n)
window.vline(y, x, ch, n)

Display a vertical line starting at (y, x) with length n consisting of the character ch.

16.10.3 Constants

The curses module defines the following data members:

curses.ERR
Some curses routines that return an integer, such as getch(), return ERR upon failure.

curses.OK
Some curses routines that return an integer, such as napms(), return OK upon success.

curses.version
A string representing the current version of the module. Also available as __version__.

Some constants are available to specify character cell attributes. The exact constants available are system
dependent.

654 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Attribute Meaning
A_ALTCHARSET Alternate character set mode
A_BLINK Blink mode
A_BOLD Bold mode
A_DIM Dim mode
A_INVIS Invisible or blank mode
A_NORMAL Normal attribute
A_PROTECT Protected mode
A_REVERSE Reverse background and foreground colors
A_STANDOUT Standout mode
A_UNDERLINE Underline mode
A_HORIZONTAL Horizontal highlight
A_LEFT Left highlight
A_LOW Low highlight
A_RIGHT Right highlight
A_TOP Top highlight
A_VERTICAL Vertical highlight
A_CHARTEXT Bit-mask to extract a character

Several constants are available to extract corresponding attributes returned by some methods.

Bit-mask Meaning
A_ATTRIBUTES Bit-mask to extract attributes
A_CHARTEXT Bit-mask to extract a character
A_COLOR Bit-mask to extract color-pair field information

Keys are referred to by integer constants with names starting with KEY_. The exact keycaps available are
system dependent.

Key constant Key
KEY_MIN Minimum key value
KEY_BREAK Break key (unreliable)
KEY_DOWN Down-arrow
KEY_UP Up-arrow
KEY_LEFT Left-arrow
KEY_RIGHT Right-arrow
KEY_HOME Home key (upward+left arrow)
KEY_BACKSPACE Backspace (unreliable)
KEY_F0 Function keys. Up to 64 function keys are supported.
KEY_Fn Value of function key n
KEY_DL Delete line
KEY_IL Insert line
KEY_DC Delete character
KEY_IC Insert char or enter insert mode
KEY_EIC Exit insert char mode
KEY_CLEAR Clear screen
KEY_EOS Clear to end of screen
KEY_EOL Clear to end of line
KEY_SF Scroll 1 line forward
KEY_SR Scroll 1 line backward (reverse)

Continued on next page

16.10. curses — Terminal handling for character-cell displays 655

The Python Library Reference, Release 3.5.7

Table 1 – continued from previous page
Key constant Key
KEY_NPAGE Next page
KEY_PPAGE Previous page
KEY_STAB Set tab
KEY_CTAB Clear tab
KEY_CATAB Clear all tabs
KEY_ENTER Enter or send (unreliable)
KEY_SRESET Soft (partial) reset (unreliable)
KEY_RESET Reset or hard reset (unreliable)
KEY_PRINT Print
KEY_LL Home down or bottom (lower left)
KEY_A1 Upper left of keypad
KEY_A3 Upper right of keypad
KEY_B2 Center of keypad
KEY_C1 Lower left of keypad
KEY_C3 Lower right of keypad
KEY_BTAB Back tab
KEY_BEG Beg (beginning)
KEY_CANCEL Cancel
KEY_CLOSE Close
KEY_COMMAND Cmd (command)
KEY_COPY Copy
KEY_CREATE Create
KEY_END End
KEY_EXIT Exit
KEY_FIND Find
KEY_HELP Help
KEY_MARK Mark
KEY_MESSAGE Message
KEY_MOVE Move
KEY_NEXT Next
KEY_OPEN Open
KEY_OPTIONS Options
KEY_PREVIOUS Prev (previous)
KEY_REDO Redo
KEY_REFERENCE Ref (reference)
KEY_REFRESH Refresh
KEY_REPLACE Replace
KEY_RESTART Restart
KEY_RESUME Resume
KEY_SAVE Save
KEY_SBEG Shifted Beg (beginning)
KEY_SCANCEL Shifted Cancel
KEY_SCOMMAND Shifted Command
KEY_SCOPY Shifted Copy
KEY_SCREATE Shifted Create
KEY_SDC Shifted Delete char
KEY_SDL Shifted Delete line
KEY_SELECT Select
KEY_SEND Shifted End

Continued on next page

656 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Table 1 – continued from previous page
Key constant Key
KEY_SEOL Shifted Clear line
KEY_SEXIT Shifted Exit
KEY_SFIND Shifted Find
KEY_SHELP Shifted Help
KEY_SHOME Shifted Home
KEY_SIC Shifted Input
KEY_SLEFT Shifted Left arrow
KEY_SMESSAGE Shifted Message
KEY_SMOVE Shifted Move
KEY_SNEXT Shifted Next
KEY_SOPTIONS Shifted Options
KEY_SPREVIOUS Shifted Prev
KEY_SPRINT Shifted Print
KEY_SREDO Shifted Redo
KEY_SREPLACE Shifted Replace
KEY_SRIGHT Shifted Right arrow
KEY_SRSUME Shifted Resume
KEY_SSAVE Shifted Save
KEY_SSUSPEND Shifted Suspend
KEY_SUNDO Shifted Undo
KEY_SUSPEND Suspend
KEY_UNDO Undo
KEY_MOUSE Mouse event has occurred
KEY_RESIZE Terminal resize event
KEY_MAX Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are normally at least four func-
tion keys (KEY_F1, KEY_F2, KEY_F3, KEY_F4) available, and the arrow keys mapped to KEY_UP,
KEY_DOWN, KEY_LEFT and KEY_RIGHT in the obvious way. If your machine has a PC keyboard, it
is safe to expect arrow keys and twelve function keys (older PC keyboards may have only ten function keys);
also, the following keypad mappings are standard:

Keycap Constant
Insert KEY_IC
Delete KEY_DC
Home KEY_HOME
End KEY_END
Page Up KEY_PPAGE
Page Down KEY_NPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100
terminal, and will generally be available on software emulations such as X terminals. When there is no
graphic available, curses falls back on a crude printable ASCII approximation.

Note: These are available only after initscr() has been called.

16.10. curses — Terminal handling for character-cell displays 657

The Python Library Reference, Release 3.5.7

ACS code Meaning
ACS_BBSS alternate name for upper right corner
ACS_BLOCK solid square block
ACS_BOARD board of squares
ACS_BSBS alternate name for horizontal line
ACS_BSSB alternate name for upper left corner
ACS_BSSS alternate name for top tee
ACS_BTEE bottom tee
ACS_BULLET bullet
ACS_CKBOARD checker board (stipple)
ACS_DARROW arrow pointing down
ACS_DEGREE degree symbol
ACS_DIAMOND diamond
ACS_GEQUAL greater-than-or-equal-to
ACS_HLINE horizontal line
ACS_LANTERN lantern symbol
ACS_LARROW left arrow
ACS_LEQUAL less-than-or-equal-to
ACS_LLCORNER lower left-hand corner
ACS_LRCORNER lower right-hand corner
ACS_LTEE left tee
ACS_NEQUAL not-equal sign
ACS_PI letter pi
ACS_PLMINUS plus-or-minus sign
ACS_PLUS big plus sign
ACS_RARROW right arrow
ACS_RTEE right tee
ACS_S1 scan line 1
ACS_S3 scan line 3
ACS_S7 scan line 7
ACS_S9 scan line 9
ACS_SBBS alternate name for lower right corner
ACS_SBSB alternate name for vertical line
ACS_SBSS alternate name for right tee
ACS_SSBB alternate name for lower left corner
ACS_SSBS alternate name for bottom tee
ACS_SSSB alternate name for left tee
ACS_SSSS alternate name for crossover or big plus
ACS_STERLING pound sterling
ACS_TTEE top tee
ACS_UARROW up arrow
ACS_ULCORNER upper left corner
ACS_URCORNER upper right corner
ACS_VLINE vertical line

The following table lists the predefined colors:

658 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_CYAN Cyan (light greenish blue)
COLOR_GREEN Green
COLOR_MAGENTA Magenta (purplish red)
COLOR_RED Red
COLOR_WHITE White
COLOR_YELLOW Yellow

16.11 curses.textpad — Text input widget for curses programs

The curses.textpad module provides a Textbox class that handles elementary text editing in a curses window,
supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator, BBedit 6.x,
FrameMaker, and many other programs). The module also provides a rectangle-drawing function useful for
framing text boxes or for other purposes.

The module curses.textpad defines the following function:

curses.textpad.rectangle(win, uly, ulx, lry, lrx)
Draw a rectangle. The first argument must be a window object; the remaining arguments are coor-
dinates relative to that window. The second and third arguments are the y and x coordinates of the
upper left hand corner of the rectangle to be drawn; the fourth and fifth arguments are the y and x
coordinates of the lower right hand corner. The rectangle will be drawn using VT100/IBM PC forms
characters on terminals that make this possible (including xterm and most other software terminal
emulators). Otherwise it will be drawn with ASCII dashes, vertical bars, and plus signs.

16.11.1 Textbox objects

You can instantiate a Textbox object as follows:

class curses.textpad.Textbox(win)
Return a textbox widget object. The win argument should be a curses window object in which the
textbox is to be contained. The edit cursor of the textbox is initially located at the upper left hand
corner of the containing window, with coordinates (0, 0). The instance’s stripspaces flag is initially on.

Textbox objects have the following methods:

edit([validator])
This is the entry point you will normally use. It accepts editing keystrokes until one of the
termination keystrokes is entered. If validator is supplied, it must be a function. It will be called
for each keystroke entered with the keystroke as a parameter; command dispatch is done on the
result. This method returns the window contents as a string; whether blanks in the window are
included is affected by the stripspaces attribute.

do_command(ch)
Process a single command keystroke. Here are the supported special keystrokes:

16.11. curses.textpad — Text input widget for curses programs 659

The Python Library Reference, Release 3.5.7

Keystroke Action
Control-A Go to left edge of window.
Control-B Cursor left, wrapping to previous line if appropriate.
Control-D Delete character under cursor.
Control-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Control-F Cursor right, wrapping to next line when appropriate.
Control-G Terminate, returning the window contents.
Control-H Delete character backward.
Control-J Terminate if the window is 1 line, otherwise insert newline.
Control-K If line is blank, delete it, otherwise clear to end of line.
Control-L Refresh screen.
Control-N Cursor down; move down one line.
Control-O Insert a blank line at cursor location.
Control-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The
following synonyms are supported where possible:

Constant Keystroke
KEY_LEFT Control-B
KEY_RIGHT Control-F
KEY_UP Control-P
KEY_DOWN Control-N
KEY_BACKSPACE Control-h

All other keystrokes are treated as a command to insert the given character and move right (with
line wrapping).

gather()
Return the window contents as a string; whether blanks in the window are included is affected by
the stripspaces member.

stripspaces
This attribute is a flag which controls the interpretation of blanks in the window. When it is
on, trailing blanks on each line are ignored; any cursor motion that would land the cursor on
a trailing blank goes to the end of that line instead, and trailing blanks are stripped when the
window contents are gathered.

16.12 curses.ascii — Utilities for ASCII characters

The curses.ascii module supplies name constants for ASCII characters and functions to test membership in
various ASCII character classes. The constants supplied are names for control characters as follows:

Name Meaning
NUL
SOH Start of heading, console interrupt
STX Start of text
ETX End of text

Continued on next page

660 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Table 3 – continued from previous page
Name Meaning
EOT End of transmission
ENQ Enquiry, goes with ACK flow control
ACK Acknowledgement
BEL Bell
BS Backspace
TAB Tab
HT Alias for TAB: “Horizontal tab”
LF Line feed
NL Alias for LF: “New line”
VT Vertical tab
FF Form feed
CR Carriage return
SO Shift-out, begin alternate character set
SI Shift-in, resume default character set
DLE Data-link escape
DC1 XON, for flow control
DC2 Device control 2, block-mode flow control
DC3 XOFF, for flow control
DC4 Device control 4
NAK Negative acknowledgement
SYN Synchronous idle
ETB End transmission block
CAN Cancel
EM End of medium
SUB Substitute
ESC Escape
FS File separator
GS Group separator
RS Record separator, block-mode terminator
US Unit separator
SP Space
DEL Delete

Note that many of these have little practical significance in modern usage. The mnemonics derive from
teleprinter conventions that predate digital computers.

The module supplies the following functions, patterned on those in the standard C library:

curses.ascii.isalnum(c)
Checks for an ASCII alphanumeric character; it is equivalent to isalpha(c) or isdigit(c).

curses.ascii.isalpha(c)
Checks for an ASCII alphabetic character; it is equivalent to isupper(c) or islower(c).

curses.ascii.isascii(c)
Checks for a character value that fits in the 7-bit ASCII set.

curses.ascii.isblank(c)
Checks for an ASCII whitespace character; space or horizontal tab.

curses.ascii.iscntrl(c)
Checks for an ASCII control character (in the range 0x00 to 0x1f or 0x7f).

16.12. curses.ascii — Utilities for ASCII characters 661

The Python Library Reference, Release 3.5.7

curses.ascii.isdigit(c)
Checks for an ASCII decimal digit, '0' through '9'. This is equivalent to c in string.digits.

curses.ascii.isgraph(c)
Checks for ASCII any printable character except space.

curses.ascii.islower(c)
Checks for an ASCII lower-case character.

curses.ascii.isprint(c)
Checks for any ASCII printable character including space.

curses.ascii.ispunct(c)
Checks for any printable ASCII character which is not a space or an alphanumeric character.

curses.ascii.isspace(c)
Checks for ASCII white-space characters; space, line feed, carriage return, form feed, horizontal tab,
vertical tab.

curses.ascii.isupper(c)
Checks for an ASCII uppercase letter.

curses.ascii.isxdigit(c)
Checks for an ASCII hexadecimal digit. This is equivalent to c in string.hexdigits.

curses.ascii.isctrl(c)
Checks for an ASCII control character (ordinal values 0 to 31).

curses.ascii.ismeta(c)
Checks for a non-ASCII character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a string, it is first converted using
the built-in function ord().

Note that all these functions check ordinal bit values derived from the first character of the string you pass
in; they do not actually know anything about the host machine’s character encoding. For functions that
know about the character encoding (and handle internationalization properly) see the string module.

The following two functions take either a single-character string or integer byte value; they return a value
of the same type.

curses.ascii.ascii(c)
Return the ASCII value corresponding to the low 7 bits of c.

curses.ascii.ctrl(c)
Return the control character corresponding to the given character (the character bit value is bitwise-
anded with 0x1f).

curses.ascii.alt(c)
Return the 8-bit character corresponding to the given ASCII character (the character bit value is
bitwise-ored with 0x80).

The following function takes either a single-character string or integer value; it returns a string.

curses.ascii.unctrl(c)
Return a string representation of the ASCII character c. If c is printable, this string is the character
itself. If the character is a control character (0x00–0x1f) the string consists of a caret ('^') followed
by the corresponding uppercase letter. If the character is an ASCII delete (0x7f) the string is '^?'.
If the character has its meta bit (0x80) set, the meta bit is stripped, the preceding rules applied, and
'!' prepended to the result.

662 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

curses.ascii.controlnames
A 33-element string array that contains the ASCII mnemonics for the thirty-two ASCII control char-
acters from 0 (NUL) to 0x1f (US), in order, plus the mnemonic SP for the space character.

16.13 curses.panel — A panel stack extension for curses

Panels are windows with the added feature of depth, so they can be stacked on top of each other, and only
the visible portions of each window will be displayed. Panels can be added, moved up or down in the stack,
and removed.

16.13.1 Functions

The module curses.panel defines the following functions:

curses.panel.bottom_panel()
Returns the bottom panel in the panel stack.

curses.panel.new_panel(win)
Returns a panel object, associating it with the given window win. Be aware that you need to keep
the returned panel object referenced explicitly. If you don’t, the panel object is garbage collected and
removed from the panel stack.

curses.panel.top_panel()
Returns the top panel in the panel stack.

curses.panel.update_panels()
Updates the virtual screen after changes in the panel stack. This does not call curses.doupdate(), so
you’ll have to do this yourself.

16.13.2 Panel Objects

Panel objects, as returned by new_panel() above, are windows with a stacking order. There’s always a
window associated with a panel which determines the content, while the panel methods are responsible for
the window’s depth in the panel stack.

Panel objects have the following methods:

Panel.above()
Returns the panel above the current panel.

Panel.below()
Returns the panel below the current panel.

Panel.bottom()
Push the panel to the bottom of the stack.

Panel.hidden()
Returns true if the panel is hidden (not visible), false otherwise.

Panel.hide()
Hide the panel. This does not delete the object, it just makes the window on screen invisible.

Panel.move(y, x)
Move the panel to the screen coordinates (y, x).

16.13. curses.panel — A panel stack extension for curses 663

The Python Library Reference, Release 3.5.7

Panel.replace(win)
Change the window associated with the panel to the window win.

Panel.set_userptr(obj)
Set the panel’s user pointer to obj. This is used to associate an arbitrary piece of data with the panel,
and can be any Python object.

Panel.show()
Display the panel (which might have been hidden).

Panel.top()
Push panel to the top of the stack.

Panel.userptr()
Returns the user pointer for the panel. This might be any Python object.

Panel.window()
Returns the window object associated with the panel.

16.14 platform — Access to underlying platform’s identifying data

Source code: Lib/platform.py

Note: Specific platforms listed alphabetically, with Linux included in the Unix section.

16.14.1 Cross Platform

platform.architecture(executable=sys.executable, bits=”, linkage=”)
Queries the given executable (defaults to the Python interpreter binary) for various architecture infor-
mation.

Returns a tuple (bits, linkage) which contain information about the bit architecture and the linkage
format used for the executable. Both values are returned as strings.

Values that cannot be determined are returned as given by the parameter presets. If bits is given as '',
the sizeof(pointer) (or sizeof(long) on Python version < 1.5.2) is used as indicator for the supported
pointer size.

The function relies on the system’s file command to do the actual work. This is available on most
if not all Unix platforms and some non-Unix platforms and then only if the executable points to the
Python interpreter. Reasonable defaults are used when the above needs are not met.

Note: On Mac OS X (and perhaps other platforms), executable files may be universal files containing
multiple architectures.

To get at the “64-bitness” of the current interpreter, it is more reliable to query the sys.maxsize
attribute:

is_64bits = sys.maxsize > 2**32

platform.machine()
Returns the machine type, e.g. 'i386'. An empty string is returned if the value cannot be determined.

664 Chapter 16. Generic Operating System Services

https://github.com/python/cpython/tree/3.5/Lib/platform.py

The Python Library Reference, Release 3.5.7

platform.node()
Returns the computer’s network name (may not be fully qualified!). An empty string is returned if the
value cannot be determined.

platform.platform(aliased=0, terse=0)
Returns a single string identifying the underlying platform with as much useful information as possible.

The output is intended to be human readable rather than machine parseable. It may look different on
different platforms and this is intended.

If aliased is true, the function will use aliases for various platforms that report system names which
differ from their common names, for example SunOS will be reported as Solaris. The system_alias()
function is used to implement this.

Setting terse to true causes the function to return only the absolute minimum information needed to
identify the platform.

platform.processor()
Returns the (real) processor name, e.g. 'amdk6'.

An empty string is returned if the value cannot be determined. Note that many platforms do not
provide this information or simply return the same value as for machine(). NetBSD does this.

platform.python_build()
Returns a tuple (buildno, builddate) stating the Python build number and date as strings.

platform.python_compiler()
Returns a string identifying the compiler used for compiling Python.

platform.python_branch()
Returns a string identifying the Python implementation SCM branch.

platform.python_implementation()
Returns a string identifying the Python implementation. Possible return values are: ‘CPython’, ‘Iron-
Python’, ‘Jython’, ‘PyPy’.

platform.python_revision()
Returns a string identifying the Python implementation SCM revision.

platform.python_version()
Returns the Python version as string 'major.minor.patchlevel'.

Note that unlike the Python sys.version, the returned value will always include the patchlevel (it
defaults to 0).

platform.python_version_tuple()
Returns the Python version as tuple (major, minor, patchlevel) of strings.

Note that unlike the Python sys.version, the returned value will always include the patchlevel (it
defaults to '0').

platform.release()
Returns the system’s release, e.g. '2.2.0' or 'NT' An empty string is returned if the value cannot be
determined.

platform.system()
Returns the system/OS name, e.g. 'Linux', 'Windows', or 'Java'. An empty string is returned if
the value cannot be determined.

platform.system_alias(system, release, version)
Returns (system, release, version) aliased to common marketing names used for some systems. It also
does some reordering of the information in some cases where it would otherwise cause confusion.

16.14. platform — Access to underlying platform’s identifying data 665

The Python Library Reference, Release 3.5.7

platform.version()
Returns the system’s release version, e.g. '#3 on degas'. An empty string is returned if the value
cannot be determined.

platform.uname()
Fairly portable uname interface. Returns a namedtuple() containing six attributes: system, node,
release, version, machine, and processor.

Note that this adds a sixth attribute (processor) not present in the os.uname() result. Also, the at-
tribute names are different for the first two attributes; os.uname() names them sysname and nodename.

Entries which cannot be determined are set to ''.

Changed in version 3.3: Result changed from a tuple to a namedtuple.

16.14.2 Java Platform

platform.java_ver(release=”, vendor=”, vminfo=(”, ”, ”), osinfo=(”, ”, ”))
Version interface for Jython.

Returns a tuple (release, vendor, vminfo, osinfo) with vminfo being a tuple (vm_name, vm_release,
vm_vendor) and osinfo being a tuple (os_name, os_version, os_arch). Values which cannot be deter-
mined are set to the defaults given as parameters (which all default to '').

16.14.3 Windows Platform

platform.win32_ver(release=”, version=”, csd=”, ptype=”)
Get additional version information from the Windows Registry and return a tuple (release, version,
csd, ptype) referring to OS release, version number, CSD level (service pack) and OS type (multi/single
processor).

As a hint: ptype is 'Uniprocessor Free' on single processor NT machines and 'Multiprocessor Free'
on multi processor machines. The ‘Free’ refers to the OS version being free of debugging code. It could
also state ‘Checked’ which means the OS version uses debugging code, i.e. code that checks arguments,
ranges, etc.

Note: This function works best with Mark Hammond’s win32all package installed, but also on Python
2.3 and later (support for this was added in Python 2.6). It obviously only runs on Win32 compatible
platforms.

Win95/98 specific

platform.popen(cmd, mode=’r’, bufsize=-1)
Portable popen() interface. Find a working popen implementation preferring win32pipe.popen(). On
Windows NT, win32pipe.popen() should work; on Windows 9x it hangs due to bugs in the MS C
library.

Deprecated since version 3.3: This function is obsolete. Use the subprocess module. Check especially
the Replacing Older Functions with the subprocess Module section.

666 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

16.14.4 Mac OS Platform

platform.mac_ver(release=”, versioninfo=(”, ”, ”), machine=”)
Get Mac OS version information and return it as tuple (release, versioninfo, machine) with versioninfo
being a tuple (version, dev_stage, non_release_version).

Entries which cannot be determined are set to ''. All tuple entries are strings.

16.14.5 Unix Platforms

platform.dist(distname=”, version=”, id=”, supported_dists=(’SuSE’, ’debian’, ’redhat’, ’mandrake’,
...))

This is another name for linux_distribution().

Deprecated since version 3.5, will be removed in version 3.7.

platform.linux_distribution(distname=”, version=”, id=”, supported_dists=(’SuSE’, ’debian’, ’red-
hat’, ’mandrake’, ...), full_distribution_name=1)

Tries to determine the name of the Linux OS distribution name.

supported_dists may be given to define the set of Linux distributions to look for. It defaults to a list
of currently supported Linux distributions identified by their release file name.

If full_distribution_name is true (default), the full distribution read from the OS is returned. Other-
wise the short name taken from supported_dists is used.

Returns a tuple (distname,version,id) which defaults to the args given as parameters. id is the item in
parentheses after the version number. It is usually the version codename.

Deprecated since version 3.5, will be removed in version 3.7.

platform.libc_ver(executable=sys.executable, lib=”, version=”, chunksize=2048)
Tries to determine the libc version against which the file executable (defaults to the Python interpreter)
is linked. Returns a tuple of strings (lib, version) which default to the given parameters in case the
lookup fails.

Note that this function has intimate knowledge of how different libc versions add symbols to the
executable is probably only usable for executables compiled using gcc.

The file is read and scanned in chunks of chunksize bytes.

16.15 errno — Standard errno system symbols

This module makes available standard errno system symbols. The value of each symbol is the corresponding
integer value. The names and descriptions are borrowed from linux/include/errno.h, which should be pretty
all-inclusive.

errno.errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system. For
instance, errno.errorcode[errno.EPERM] maps to 'EPERM'.

To translate a numeric error code to an error message, use os.strerror().

Of the following list, symbols that are not used on the current platform are not defined by the module. The
specific list of defined symbols is available as errno.errorcode.keys(). Symbols available can include:

16.15. errno — Standard errno system symbols 667

The Python Library Reference, Release 3.5.7

errno.EPERM
Operation not permitted

errno.ENOENT
No such file or directory

errno.ESRCH
No such process

errno.EINTR
Interrupted system call.

See also:

This error is mapped to the exception InterruptedError.

errno.EIO
I/O error

errno.ENXIO
No such device or address

errno.E2BIG
Arg list too long

errno.ENOEXEC
Exec format error

errno.EBADF
Bad file number

errno.ECHILD
No child processes

errno.EAGAIN
Try again

errno.ENOMEM
Out of memory

errno.EACCES
Permission denied

errno.EFAULT
Bad address

errno.ENOTBLK
Block device required

errno.EBUSY
Device or resource busy

errno.EEXIST
File exists

errno.EXDEV
Cross-device link

errno.ENODEV
No such device

errno.ENOTDIR
Not a directory

668 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

errno.EISDIR
Is a directory

errno.EINVAL
Invalid argument

errno.ENFILE
File table overflow

errno.EMFILE
Too many open files

errno.ENOTTY
Not a typewriter

errno.ETXTBSY
Text file busy

errno.EFBIG
File too large

errno.ENOSPC
No space left on device

errno.ESPIPE
Illegal seek

errno.EROFS
Read-only file system

errno.EMLINK
Too many links

errno.EPIPE
Broken pipe

errno.EDOM
Math argument out of domain of func

errno.ERANGE
Math result not representable

errno.EDEADLK
Resource deadlock would occur

errno.ENAMETOOLONG
File name too long

errno.ENOLCK
No record locks available

errno.ENOSYS
Function not implemented

errno.ENOTEMPTY
Directory not empty

errno.ELOOP
Too many symbolic links encountered

errno.EWOULDBLOCK
Operation would block

16.15. errno — Standard errno system symbols 669

The Python Library Reference, Release 3.5.7

errno.ENOMSG
No message of desired type

errno.EIDRM
Identifier removed

errno.ECHRNG
Channel number out of range

errno.EL2NSYNC
Level 2 not synchronized

errno.EL3HLT
Level 3 halted

errno.EL3RST
Level 3 reset

errno.ELNRNG
Link number out of range

errno.EUNATCH
Protocol driver not attached

errno.ENOCSI
No CSI structure available

errno.EL2HLT
Level 2 halted

errno.EBADE
Invalid exchange

errno.EBADR
Invalid request descriptor

errno.EXFULL
Exchange full

errno.ENOANO
No anode

errno.EBADRQC
Invalid request code

errno.EBADSLT
Invalid slot

errno.EDEADLOCK
File locking deadlock error

errno.EBFONT
Bad font file format

errno.ENOSTR
Device not a stream

errno.ENODATA
No data available

errno.ETIME
Timer expired

670 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

errno.ENOSR
Out of streams resources

errno.ENONET
Machine is not on the network

errno.ENOPKG
Package not installed

errno.EREMOTE
Object is remote

errno.ENOLINK
Link has been severed

errno.EADV
Advertise error

errno.ESRMNT
Srmount error

errno.ECOMM
Communication error on send

errno.EPROTO
Protocol error

errno.EMULTIHOP
Multihop attempted

errno.EDOTDOT
RFS specific error

errno.EBADMSG
Not a data message

errno.EOVERFLOW
Value too large for defined data type

errno.ENOTUNIQ
Name not unique on network

errno.EBADFD
File descriptor in bad state

errno.EREMCHG
Remote address changed

errno.ELIBACC
Can not access a needed shared library

errno.ELIBBAD
Accessing a corrupted shared library

errno.ELIBSCN
.lib section in a.out corrupted

errno.ELIBMAX
Attempting to link in too many shared libraries

errno.ELIBEXEC
Cannot exec a shared library directly

16.15. errno — Standard errno system symbols 671

The Python Library Reference, Release 3.5.7

errno.EILSEQ
Illegal byte sequence

errno.ERESTART
Interrupted system call should be restarted

errno.ESTRPIPE
Streams pipe error

errno.EUSERS
Too many users

errno.ENOTSOCK
Socket operation on non-socket

errno.EDESTADDRREQ
Destination address required

errno.EMSGSIZE
Message too long

errno.EPROTOTYPE
Protocol wrong type for socket

errno.ENOPROTOOPT
Protocol not available

errno.EPROTONOSUPPORT
Protocol not supported

errno.ESOCKTNOSUPPORT
Socket type not supported

errno.EOPNOTSUPP
Operation not supported on transport endpoint

errno.EPFNOSUPPORT
Protocol family not supported

errno.EAFNOSUPPORT
Address family not supported by protocol

errno.EADDRINUSE
Address already in use

errno.EADDRNOTAVAIL
Cannot assign requested address

errno.ENETDOWN
Network is down

errno.ENETUNREACH
Network is unreachable

errno.ENETRESET
Network dropped connection because of reset

errno.ECONNABORTED
Software caused connection abort

errno.ECONNRESET
Connection reset by peer

672 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

errno.ENOBUFS
No buffer space available

errno.EISCONN
Transport endpoint is already connected

errno.ENOTCONN
Transport endpoint is not connected

errno.ESHUTDOWN
Cannot send after transport endpoint shutdown

errno.ETOOMANYREFS
Too many references: cannot splice

errno.ETIMEDOUT
Connection timed out

errno.ECONNREFUSED
Connection refused

errno.EHOSTDOWN
Host is down

errno.EHOSTUNREACH
No route to host

errno.EALREADY
Operation already in progress

errno.EINPROGRESS
Operation now in progress

errno.ESTALE
Stale NFS file handle

errno.EUCLEAN
Structure needs cleaning

errno.ENOTNAM
Not a XENIX named type file

errno.ENAVAIL
No XENIX semaphores available

errno.EISNAM
Is a named type file

errno.EREMOTEIO
Remote I/O error

errno.EDQUOT
Quota exceeded

16.16 ctypes — A foreign function library for Python

ctypes is a foreign function library for Python. It provides C compatible data types, and allows calling
functions in DLLs or shared libraries. It can be used to wrap these libraries in pure Python.

16.16. ctypes — A foreign function library for Python 673

The Python Library Reference, Release 3.5.7

16.16.1 ctypes tutorial

Note: The code samples in this tutorial use doctest to make sure that they actually work. Since some
code samples behave differently under Linux, Windows, or Mac OS X, they contain doctest directives in
comments.

Note: Some code samples reference the ctypes c_int type. On platforms where sizeof(long) == sizeof(int)
it is an alias to c_long. So, you should not be confused if c_long is printed if you would expect c_int —
they are actually the same type.

Loading dynamic link libraries

ctypes exports the cdll, and on Windows windll and oledll objects, for loading dynamic link libraries.

You load libraries by accessing them as attributes of these objects. cdll loads libraries which export functions
using the standard cdecl calling convention, while windll libraries call functions using the stdcall calling
convention. oledll also uses the stdcall calling convention, and assumes the functions return a Windows
HRESULT error code. The error code is used to automatically raise an OSError exception when the function
call fails.

Changed in version 3.3: Windows errors used to raise WindowsError, which is now an alias of OSError.

Here are some examples for Windows. Note that msvcrt is the MS standard C library containing most
standard C functions, and uses the cdecl calling convention:

>>> from ctypes import *
>>> print(windll.kernel32)
<WinDLL 'kernel32', handle ... at ...>
>>> print(cdll.msvcrt)
<CDLL 'msvcrt', handle ... at ...>
>>> libc = cdll.msvcrt
>>>

Windows appends the usual .dll file suffix automatically.

Note: Accessing the standard C library through cdll.msvcrt will use an outdated version of the library that
may be incompatible with the one being used by Python. Where possible, use native Python functionality,
or else import and use the msvcrt module.

On Linux, it is required to specify the filename including the extension to load a library, so attribute access
can not be used to load libraries. Either the LoadLibrary() method of the dll loaders should be used, or you
should load the library by creating an instance of CDLL by calling the constructor:

>>> cdll.LoadLibrary("libc.so.6")
<CDLL 'libc.so.6', handle ... at ...>
>>> libc = CDLL("libc.so.6")
>>> libc
<CDLL 'libc.so.6', handle ... at ...>
>>>

Accessing functions from loaded dlls

Functions are accessed as attributes of dll objects:

674 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

>>> from ctypes import *
>>> libc.printf
<_FuncPtr object at 0x...>
>>> print(windll.kernel32.GetModuleHandleA)
<_FuncPtr object at 0x...>
>>> print(windll.kernel32.MyOwnFunction)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "ctypes.py", line 239, in __getattr__
func = _StdcallFuncPtr(name, self)

AttributeError: function 'MyOwnFunction' not found
>>>

Note that win32 system dlls like kernel32 and user32 often export ANSI as well as UNICODE versions of a
function. The UNICODE version is exported with an W appended to the name, while the ANSI version is
exported with an A appended to the name. The win32 GetModuleHandle function, which returns a module
handle for a given module name, has the following C prototype, and a macro is used to expose one of them
as GetModuleHandle depending on whether UNICODE is defined or not:

/* ANSI version */
HMODULE GetModuleHandleA(LPCSTR lpModuleName);
/* UNICODE version */
HMODULE GetModuleHandleW(LPCWSTR lpModuleName);

windll does not try to select one of them by magic, you must access the version you need by specifying Get-
ModuleHandleA or GetModuleHandleW explicitly, and then call it with bytes or string objects respectively.

Sometimes, dlls export functions with names which aren’t valid Python identifiers, like "??2@YAPAXI@Z".
In this case you have to use getattr() to retrieve the function:

>>> getattr(cdll.msvcrt, "??2@YAPAXI@Z")
<_FuncPtr object at 0x...>
>>>

On Windows, some dlls export functions not by name but by ordinal. These functions can be accessed by
indexing the dll object with the ordinal number:

>>> cdll.kernel32[1]
<_FuncPtr object at 0x...>
>>> cdll.kernel32[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "ctypes.py", line 310, in __getitem__
func = _StdcallFuncPtr(name, self)

AttributeError: function ordinal 0 not found
>>>

Calling functions

You can call these functions like any other Python callable. This example uses the time() function, which
returns system time in seconds since the Unix epoch, and the GetModuleHandleA() function, which returns
a win32 module handle.

This example calls both functions with a NULL pointer (None should be used as the NULL pointer):

16.16. ctypes — A foreign function library for Python 675

The Python Library Reference, Release 3.5.7

>>> print(libc.time(None))
1150640792
>>> print(hex(windll.kernel32.GetModuleHandleA(None)))
0x1d000000
>>>

ctypes tries to protect you from calling functions with the wrong number of arguments or the wrong calling
convention. Unfortunately this only works on Windows. It does this by examining the stack after the
function returns, so although an error is raised the function has been called:

>>> windll.kernel32.GetModuleHandleA()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: Procedure probably called with not enough arguments (4 bytes missing)
>>> windll.kernel32.GetModuleHandleA(0, 0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: Procedure probably called with too many arguments (4 bytes in excess)
>>>

The same exception is raised when you call an stdcall function with the cdecl calling convention, or vice
versa:

>>> cdll.kernel32.GetModuleHandleA(None)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: Procedure probably called with not enough arguments (4 bytes missing)
>>>

>>> windll.msvcrt.printf(b"spam")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: Procedure probably called with too many arguments (4 bytes in excess)
>>>

To find out the correct calling convention you have to look into the C header file or the documentation for
the function you want to call.

On Windows, ctypes uses win32 structured exception handling to prevent crashes from general protection
faults when functions are called with invalid argument values:

>>> windll.kernel32.GetModuleHandleA(32)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

OSError: exception: access violation reading 0x00000020
>>>

There are, however, enough ways to crash Python with ctypes, so you should be careful anyway. The fault-
handler module can be helpful in debugging crashes (e.g. from segmentation faults produced by erroneous
C library calls).

None, integers, bytes objects and (unicode) strings are the only native Python objects that can directly be
used as parameters in these function calls. None is passed as a C NULL pointer, bytes objects and strings
are passed as pointer to the memory block that contains their data (char * or wchar_t *). Python integers
are passed as the platforms default C int type, their value is masked to fit into the C type.

Before we move on calling functions with other parameter types, we have to learn more about ctypes data
types.

676 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Fundamental data types

ctypes defines a number of primitive C compatible data types:

ctypes type C type Python type
c_bool _Bool bool (1)
c_char char 1-character bytes object
c_wchar wchar_t 1-character string
c_byte char int
c_ubyte unsigned char int
c_short short int
c_ushort unsigned short int
c_int int int
c_uint unsigned int int
c_long long int
c_ulong unsigned long int
c_longlong __int64 or long long int
c_ulonglong unsigned __int64 or unsigned long long int
c_size_t size_t int
c_ssize_t ssize_t or Py_ssize_t int
c_float float float
c_double double float
c_longdouble long double float
c_char_p char * (NUL terminated) bytes object or None
c_wchar_p wchar_t * (NUL terminated) string or None
c_void_p void * int or None

(1) The constructor accepts any object with a truth value.

All these types can be created by calling them with an optional initializer of the correct type and value:

>>> c_int()
c_long(0)
>>> c_wchar_p("Hello, World")
c_wchar_p(140018365411392)
>>> c_ushort(-3)
c_ushort(65533)
>>>

Since these types are mutable, their value can also be changed afterwards:

>>> i = c_int(42)
>>> print(i)
c_long(42)
>>> print(i.value)
42
>>> i.value = -99
>>> print(i.value)
-99
>>>

Assigning a new value to instances of the pointer types c_char_p, c_wchar_p, and c_void_p changes the
memory location they point to, not the contents of the memory block (of course not, because Python bytes
objects are immutable):

16.16. ctypes — A foreign function library for Python 677

The Python Library Reference, Release 3.5.7

>>> s = "Hello, World"
>>> c_s = c_wchar_p(s)
>>> print(c_s)
c_wchar_p(139966785747344)
>>> print(c_s.value)
Hello World
>>> c_s.value = "Hi, there"
>>> print(c_s) # the memory location has changed
c_wchar_p(139966783348904)
>>> print(c_s.value)
Hi, there
>>> print(s) # first object is unchanged
Hello, World
>>>

You should be careful, however, not to pass them to functions expecting pointers to mutable memory. If you
need mutable memory blocks, ctypes has a create_string_buffer() function which creates these in various
ways. The current memory block contents can be accessed (or changed) with the raw property; if you want
to access it as NUL terminated string, use the value property:

>>> from ctypes import *
>>> p = create_string_buffer(3) # create a 3 byte buffer, initialized to NUL bytes
>>> print(sizeof(p), repr(p.raw))
3 b'\x00\x00\x00'
>>> p = create_string_buffer(b"Hello") # create a buffer containing a NUL terminated string
>>> print(sizeof(p), repr(p.raw))
6 b'Hello\x00'
>>> print(repr(p.value))
b'Hello'
>>> p = create_string_buffer(b"Hello", 10) # create a 10 byte buffer
>>> print(sizeof(p), repr(p.raw))
10 b'Hello\x00\x00\x00\x00\x00'
>>> p.value = b"Hi"
>>> print(sizeof(p), repr(p.raw))
10 b'Hi\x00lo\x00\x00\x00\x00\x00'
>>>

The create_string_buffer() function replaces the c_buffer() function (which is still available as an alias), as
well as the c_string() function from earlier ctypes releases. To create a mutable memory block containing
unicode characters of the C type wchar_t use the create_unicode_buffer() function.

Calling functions, continued

Note that printf prints to the real standard output channel, not to sys.stdout, so these examples will only
work at the console prompt, not from within IDLE or PythonWin:

>>> printf = libc.printf
>>> printf(b"Hello, %s\n", b"World!")
Hello, World!
14
>>> printf(b"Hello, %S\n", "World!")
Hello, World!
14
>>> printf(b"%d bottles of beer\n", 42)
42 bottles of beer
19

(continues on next page)

678 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> printf(b"%f bottles of beer\n", 42.5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ArgumentError: argument 2: exceptions.TypeError: Don't know how to convert parameter 2
>>>

As has been mentioned before, all Python types except integers, strings, and bytes objects have to be wrapped
in their corresponding ctypes type, so that they can be converted to the required C data type:

>>> printf(b"An int %d, a double %f\n", 1234, c_double(3.14))
An int 1234, a double 3.140000
31
>>>

Calling functions with your own custom data types

You can also customize ctypes argument conversion to allow instances of your own classes be used as function
arguments. ctypes looks for an _as_parameter_ attribute and uses this as the function argument. Of course,
it must be one of integer, string, or bytes:

>>> class Bottles:
... def __init__(self, number):
... self._as_parameter_ = number
...
>>> bottles = Bottles(42)
>>> printf(b"%d bottles of beer\n", bottles)
42 bottles of beer
19
>>>

If you don’t want to store the instance’s data in the _as_parameter_ instance variable, you could define a
property which makes the attribute available on request.

Specifying the required argument types (function prototypes)

It is possible to specify the required argument types of functions exported from DLLs by setting the argtypes
attribute.

argtypes must be a sequence of C data types (the printf function is probably not a good example here,
because it takes a variable number and different types of parameters depending on the format string, on the
other hand this is quite handy to experiment with this feature):

>>> printf.argtypes = [c_char_p, c_char_p, c_int, c_double]
>>> printf(b"String '%s', Int %d, Double %f\n", b"Hi", 10, 2.2)
String 'Hi', Int 10, Double 2.200000
37
>>>

Specifying a format protects against incompatible argument types (just as a prototype for a C function),
and tries to convert the arguments to valid types:

>>> printf(b"%d %d %d", 1, 2, 3)
Traceback (most recent call last):

(continues on next page)

16.16. ctypes — A foreign function library for Python 679

The Python Library Reference, Release 3.5.7

(continued from previous page)

File "<stdin>", line 1, in <module>
ArgumentError: argument 2: exceptions.TypeError: wrong type
>>> printf(b"%s %d %f\n", b"X", 2, 3)
X 2 3.000000
13
>>>

If you have defined your own classes which you pass to function calls, you have to implement a from_param()
class method for them to be able to use them in the argtypes sequence. The from_param() class method
receives the Python object passed to the function call, it should do a typecheck or whatever is needed to
make sure this object is acceptable, and then return the object itself, its _as_parameter_ attribute, or
whatever you want to pass as the C function argument in this case. Again, the result should be an integer,
string, bytes, a ctypes instance, or an object with an _as_parameter_ attribute.

Return types

By default functions are assumed to return the C int type. Other return types can be specified by setting
the restype attribute of the function object.

Here is a more advanced example, it uses the strchr function, which expects a string pointer and a char, and
returns a pointer to a string:

>>> strchr = libc.strchr
>>> strchr(b"abcdef", ord("d"))
8059983
>>> strchr.restype = c_char_p # c_char_p is a pointer to a string
>>> strchr(b"abcdef", ord("d"))
b'def'
>>> print(strchr(b"abcdef", ord("x")))
None
>>>

If you want to avoid the ord("x") calls above, you can set the argtypes attribute, and the second argument
will be converted from a single character Python bytes object into a C char:

>>> strchr.restype = c_char_p
>>> strchr.argtypes = [c_char_p, c_char]
>>> strchr(b"abcdef", b"d")
'def'
>>> strchr(b"abcdef", b"def")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ArgumentError: argument 2: exceptions.TypeError: one character string expected
>>> print(strchr(b"abcdef", b"x"))
None
>>> strchr(b"abcdef", b"d")
'def'
>>>

You can also use a callable Python object (a function or a class for example) as the restype attribute, if the
foreign function returns an integer. The callable will be called with the integer the C function returns, and
the result of this call will be used as the result of your function call. This is useful to check for error return
values and automatically raise an exception:

680 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

>>> GetModuleHandle = windll.kernel32.GetModuleHandleA
>>> def ValidHandle(value):
... if value == 0:
... raise WinError()
... return value
...
>>>
>>> GetModuleHandle.restype = ValidHandle
>>> GetModuleHandle(None)
486539264
>>> GetModuleHandle("something silly")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in ValidHandle

OSError: [Errno 126] The specified module could not be found.
>>>

WinError is a function which will call Windows FormatMessage() api to get the string representation of an
error code, and returns an exception. WinError takes an optional error code parameter, if no one is used, it
calls GetLastError() to retrieve it.

Please note that a much more powerful error checking mechanism is available through the errcheck attribute;
see the reference manual for details.

Passing pointers (or: passing parameters by reference)

Sometimes a C api function expects a pointer to a data type as parameter, probably to write into the
corresponding location, or if the data is too large to be passed by value. This is also known as passing
parameters by reference.

ctypes exports the byref() function which is used to pass parameters by reference. The same effect can
be achieved with the pointer() function, although pointer() does a lot more work since it constructs a real
pointer object, so it is faster to use byref() if you don’t need the pointer object in Python itself:

>>> i = c_int()
>>> f = c_float()
>>> s = create_string_buffer(b'\000' * 32)
>>> print(i.value, f.value, repr(s.value))
0 0.0 b''
>>> libc.sscanf(b"1 3.14 Hello", b"%d %f %s",
... byref(i), byref(f), s)
3
>>> print(i.value, f.value, repr(s.value))
1 3.1400001049 b'Hello'
>>>

Structures and unions

Structures and unions must derive from the Structure and Union base classes which are defined in the ctypes
module. Each subclass must define a _fields_ attribute. _fields_ must be a list of 2-tuples, containing a
field name and a field type.

The field type must be a ctypes type like c_int, or any other derived ctypes type: structure, union, array,
pointer.

16.16. ctypes — A foreign function library for Python 681

The Python Library Reference, Release 3.5.7

Here is a simple example of a POINT structure, which contains two integers named x and y, and also shows
how to initialize a structure in the constructor:

>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = [("x", c_int),
... ("y", c_int)]
...
>>> point = POINT(10, 20)
>>> print(point.x, point.y)
10 20
>>> point = POINT(y=5)
>>> print(point.x, point.y)
0 5
>>> POINT(1, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: too many initializers
>>>

You can, however, build much more complicated structures. A structure can itself contain other structures
by using a structure as a field type.

Here is a RECT structure which contains two POINTs named upperleft and lowerright:

>>> class RECT(Structure):
... _fields_ = [("upperleft", POINT),
... ("lowerright", POINT)]
...
>>> rc = RECT(point)
>>> print(rc.upperleft.x, rc.upperleft.y)
0 5
>>> print(rc.lowerright.x, rc.lowerright.y)
0 0
>>>

Nested structures can also be initialized in the constructor in several ways:

>>> r = RECT(POINT(1, 2), POINT(3, 4))
>>> r = RECT((1, 2), (3, 4))

Field descriptors can be retrieved from the class, they are useful for debugging because they can provide
useful information:

>>> print(POINT.x)
<Field type=c_long, ofs=0, size=4>
>>> print(POINT.y)
<Field type=c_long, ofs=4, size=4>
>>>

Warning: ctypes does not support passing unions or structures with bit-fields to functions by value.
While this may work on 32-bit x86, it’s not guaranteed by the library to work in the general case. Unions
and structures with bit-fields should always be passed to functions by pointer.

682 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Structure/union alignment and byte order

By default, Structure and Union fields are aligned in the same way the C compiler does it. It is possible to
override this behavior be specifying a _pack_ class attribute in the subclass definition. This must be set to
a positive integer and specifies the maximum alignment for the fields. This is what #pragma pack(n) also
does in MSVC.

ctypes uses the native byte order for Structures and Unions. To build structures with non-native byte order,
you can use one of the BigEndianStructure, LittleEndianStructure, BigEndianUnion, and LittleEndianUnion
base classes. These classes cannot contain pointer fields.

Bit fields in structures and unions

It is possible to create structures and unions containing bit fields. Bit fields are only possible for integer
fields, the bit width is specified as the third item in the _fields_ tuples:

>>> class Int(Structure):
... _fields_ = [("first_16", c_int, 16),
... ("second_16", c_int, 16)]
...
>>> print(Int.first_16)
<Field type=c_long, ofs=0:0, bits=16>
>>> print(Int.second_16)
<Field type=c_long, ofs=0:16, bits=16>
>>>

Arrays

Arrays are sequences, containing a fixed number of instances of the same type.

The recommended way to create array types is by multiplying a data type with a positive integer:

TenPointsArrayType = POINT * 10

Here is an example of a somewhat artificial data type, a structure containing 4 POINTs among other stuff:

>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = ("x", c_int), ("y", c_int)
...
>>> class MyStruct(Structure):
... _fields_ = [("a", c_int),
... ("b", c_float),
... ("point_array", POINT * 4)]
>>>
>>> print(len(MyStruct().point_array))
4
>>>

Instances are created in the usual way, by calling the class:

arr = TenPointsArrayType()
for pt in arr:

print(pt.x, pt.y)

16.16. ctypes — A foreign function library for Python 683

The Python Library Reference, Release 3.5.7

The above code print a series of 0 0 lines, because the array contents is initialized to zeros.

Initializers of the correct type can also be specified:

>>> from ctypes import *
>>> TenIntegers = c_int * 10
>>> ii = TenIntegers(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
>>> print(ii)
<c_long_Array_10 object at 0x...>
>>> for i in ii: print(i, end=" ")
...
1 2 3 4 5 6 7 8 9 10
>>>

Pointers

Pointer instances are created by calling the pointer() function on a ctypes type:

>>> from ctypes import *
>>> i = c_int(42)
>>> pi = pointer(i)
>>>

Pointer instances have a contents attribute which returns the object to which the pointer points, the i object
above:

>>> pi.contents
c_long(42)
>>>

Note that ctypes does not have OOR (original object return), it constructs a new, equivalent object each
time you retrieve an attribute:

>>> pi.contents is i
False
>>> pi.contents is pi.contents
False
>>>

Assigning another c_int instance to the pointer’s contents attribute would cause the pointer to point to the
memory location where this is stored:

>>> i = c_int(99)
>>> pi.contents = i
>>> pi.contents
c_long(99)
>>>

Pointer instances can also be indexed with integers:

>>> pi[0]
99
>>>

Assigning to an integer index changes the pointed to value:

684 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

>>> print(i)
c_long(99)
>>> pi[0] = 22
>>> print(i)
c_long(22)
>>>

It is also possible to use indexes different from 0, but you must know what you’re doing, just as in C: You
can access or change arbitrary memory locations. Generally you only use this feature if you receive a pointer
from a C function, and you know that the pointer actually points to an array instead of a single item.

Behind the scenes, the pointer() function does more than simply create pointer instances, it has to create
pointer types first. This is done with the POINTER() function, which accepts any ctypes type, and returns
a new type:

>>> PI = POINTER(c_int)
>>> PI
<class 'ctypes.LP_c_long'>
>>> PI(42)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: expected c_long instead of int
>>> PI(c_int(42))
<ctypes.LP_c_long object at 0x...>
>>>

Calling the pointer type without an argument creates a NULL pointer. NULL pointers have a False boolean
value:

>>> null_ptr = POINTER(c_int)()
>>> print(bool(null_ptr))
False
>>>

ctypes checks for NULL when dereferencing pointers (but dereferencing invalid non-NULL pointers would
crash Python):

>>> null_ptr[0]
Traceback (most recent call last):

....
ValueError: NULL pointer access
>>>

>>> null_ptr[0] = 1234
Traceback (most recent call last):

....
ValueError: NULL pointer access
>>>

Type conversions

Usually, ctypes does strict type checking. This means, if you have POINTER(c_int) in the argtypes list of
a function or as the type of a member field in a structure definition, only instances of exactly the same type
are accepted. There are some exceptions to this rule, where ctypes accepts other objects. For example, you
can pass compatible array instances instead of pointer types. So, for POINTER(c_int), ctypes accepts an
array of c_int:

16.16. ctypes — A foreign function library for Python 685

The Python Library Reference, Release 3.5.7

>>> class Bar(Structure):
... _fields_ = [("count", c_int), ("values", POINTER(c_int))]
...
>>> bar = Bar()
>>> bar.values = (c_int * 3)(1, 2, 3)
>>> bar.count = 3
>>> for i in range(bar.count):
... print(bar.values[i])
...
1
2
3
>>>

In addition, if a function argument is explicitly declared to be a pointer type (such as POINTER(c_int)) in
argtypes, an object of the pointed type (c_int in this case) can be passed to the function. ctypes will apply
the required byref() conversion in this case automatically.

To set a POINTER type field to NULL, you can assign None:

>>> bar.values = None
>>>

Sometimes you have instances of incompatible types. In C, you can cast one type into another type. ctypes
provides a cast() function which can be used in the same way. The Bar structure defined above accepts
POINTER(c_int) pointers or c_int arrays for its values field, but not instances of other types:

>>> bar.values = (c_byte * 4)()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: incompatible types, c_byte_Array_4 instance instead of LP_c_long instance
>>>

For these cases, the cast() function is handy.

The cast() function can be used to cast a ctypes instance into a pointer to a different ctypes data type. cast()
takes two parameters, a ctypes object that is or can be converted to a pointer of some kind, and a ctypes
pointer type. It returns an instance of the second argument, which references the same memory block as the
first argument:

>>> a = (c_byte * 4)()
>>> cast(a, POINTER(c_int))
<ctypes.LP_c_long object at ...>
>>>

So, cast() can be used to assign to the values field of Bar the structure:

>>> bar = Bar()
>>> bar.values = cast((c_byte * 4)(), POINTER(c_int))
>>> print(bar.values[0])
0
>>>

Incomplete Types

Incomplete Types are structures, unions or arrays whose members are not yet specified. In C, they are
specified by forward declarations, which are defined later:

686 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

struct cell; /* forward declaration */

struct cell {
char *name;
struct cell *next;

};

The straightforward translation into ctypes code would be this, but it does not work:

>>> class cell(Structure):
... _fields_ = [("name", c_char_p),
... ("next", POINTER(cell))]
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in cell

NameError: name 'cell' is not defined
>>>

because the new class cell is not available in the class statement itself. In ctypes, we can define the cell class
and set the _fields_ attribute later, after the class statement:

>>> from ctypes import *
>>> class cell(Structure):
... pass
...
>>> cell._fields_ = [("name", c_char_p),
... ("next", POINTER(cell))]
>>>

Lets try it. We create two instances of cell, and let them point to each other, and finally follow the pointer
chain a few times:

>>> c1 = cell()
>>> c1.name = "foo"
>>> c2 = cell()
>>> c2.name = "bar"
>>> c1.next = pointer(c2)
>>> c2.next = pointer(c1)
>>> p = c1
>>> for i in range(8):
... print(p.name, end=" ")
... p = p.next[0]
...
foo bar foo bar foo bar foo bar
>>>

Callback functions

ctypes allows creating C callable function pointers from Python callables. These are sometimes called callback
functions.

First, you must create a class for the callback function. The class knows the calling convention, the return
type, and the number and types of arguments this function will receive.

The CFUNCTYPE() factory function creates types for callback functions using the cdecl calling convention.
On Windows, the WINFUNCTYPE() factory function creates types for callback functions using the stdcall

16.16. ctypes — A foreign function library for Python 687

The Python Library Reference, Release 3.5.7

calling convention.

Both of these factory functions are called with the result type as first argument, and the callback functions
expected argument types as the remaining arguments.

I will present an example here which uses the standard C library’s qsort() function, that is used to sort items
with the help of a callback function. qsort() will be used to sort an array of integers:

>>> IntArray5 = c_int * 5
>>> ia = IntArray5(5, 1, 7, 33, 99)
>>> qsort = libc.qsort
>>> qsort.restype = None
>>>

qsort() must be called with a pointer to the data to sort, the number of items in the data array, the size of
one item, and a pointer to the comparison function, the callback. The callback will then be called with two
pointers to items, and it must return a negative integer if the first item is smaller than the second, a zero if
they are equal, and a positive integer otherwise.

So our callback function receives pointers to integers, and must return an integer. First we create the type
for the callback function:

>>> CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
>>>

To get started, here is a simple callback that shows the values it gets passed:

>>> def py_cmp_func(a, b):
... print("py_cmp_func", a[0], b[0])
... return 0
...
>>> cmp_func = CMPFUNC(py_cmp_func)
>>>

The result:

>>> qsort(ia, len(ia), sizeof(c_int), cmp_func)
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 5 7
py_cmp_func 1 7
>>>

Now we can actually compare the two items and return a useful result:

>>> def py_cmp_func(a, b):
... print("py_cmp_func", a[0], b[0])
... return a[0] - b[0]
...
>>>
>>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func))
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 1 7
py_cmp_func 5 7
>>>

688 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

As we can easily check, our array is sorted now:

>>> for i in ia: print(i, end=" ")
...
1 5 7 33 99
>>>

Note: Make sure you keep references to CFUNCTYPE() objects as long as they are used from C code.
ctypes doesn’t, and if you don’t, they may be garbage collected, crashing your program when a callback is
made.

Also, note that if the callback function is called in a thread created outside of Python’s control (e.g. by the
foreign code that calls the callback), ctypes creates a new dummy Python thread on every invocation. This
behavior is correct for most purposes, but it means that values stored with threading.local will not survive
across different callbacks, even when those calls are made from the same C thread.

Accessing values exported from dlls

Some shared libraries not only export functions, they also export variables. An example in the Python
library itself is the Py_OptimizeFlag, an integer set to 0, 1, or 2, depending on the -O or -OO flag given on
startup.

ctypes can access values like this with the in_dll() class methods of the type. pythonapi is a predefined
symbol giving access to the Python C api:

>>> opt_flag = c_int.in_dll(pythonapi, "Py_OptimizeFlag")
>>> print(opt_flag)
c_long(0)
>>>

If the interpreter would have been started with -O, the sample would have printed c_long(1), or c_long(2)
if -OO would have been specified.

An extended example which also demonstrates the use of pointers accesses the PyImport_FrozenModules
pointer exported by Python.

Quoting the docs for that value:

This pointer is initialized to point to an array of struct _frozen records, terminated by one whose
members are all NULL or zero. When a frozen module is imported, it is searched in this table.
Third-party code could play tricks with this to provide a dynamically created collection of frozen
modules.

So manipulating this pointer could even prove useful. To restrict the example size, we show only how this
table can be read with ctypes:

>>> from ctypes import *
>>>
>>> class struct_frozen(Structure):
... _fields_ = [("name", c_char_p),
... ("code", POINTER(c_ubyte)),
... ("size", c_int)]
...
>>>

We have defined the struct _frozen data type, so we can get the pointer to the table:

16.16. ctypes — A foreign function library for Python 689

The Python Library Reference, Release 3.5.7

>>> FrozenTable = POINTER(struct_frozen)
>>> table = FrozenTable.in_dll(pythonapi, "PyImport_FrozenModules")
>>>

Since table is a pointer to the array of struct_frozen records, we can iterate over it, but we just have to
make sure that our loop terminates, because pointers have no size. Sooner or later it would probably crash
with an access violation or whatever, so it’s better to break out of the loop when we hit the NULL entry:

>>> for item in table:
... if item.name is None:
... break
... print(item.name.decode("ascii"), item.size)
...
_frozen_importlib 31764
_frozen_importlib_external 41499
__hello__ 161
__phello__ -161
__phello__.spam 161
>>>

The fact that standard Python has a frozen module and a frozen package (indicated by the negative size
member) is not well known, it is only used for testing. Try it out with import __hello__ for example.

Surprises

There are some edges in ctypes where you might expect something other than what actually happens.

Consider the following example:

>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = ("x", c_int), ("y", c_int)
...
>>> class RECT(Structure):
... _fields_ = ("a", POINT), ("b", POINT)
...
>>> p1 = POINT(1, 2)
>>> p2 = POINT(3, 4)
>>> rc = RECT(p1, p2)
>>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
1 2 3 4
>>> # now swap the two points
>>> rc.a, rc.b = rc.b, rc.a
>>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
3 4 3 4
>>>

Hm. We certainly expected the last statement to print 3 4 1 2. What happened? Here are the steps of the
rc.a, rc.b = rc.b, rc.a line above:

>>> temp0, temp1 = rc.b, rc.a
>>> rc.a = temp0
>>> rc.b = temp1
>>>

Note that temp0 and temp1 are objects still using the internal buffer of the rc object above. So executing
rc.a = temp0 copies the buffer contents of temp0 into rc ‘s buffer. This, in turn, changes the contents of

690 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

temp1. So, the last assignment rc.b = temp1, doesn’t have the expected effect.

Keep in mind that retrieving sub-objects from Structure, Unions, and Arrays doesn’t copy the sub-object,
instead it retrieves a wrapper object accessing the root-object’s underlying buffer.

Another example that may behave different from what one would expect is this:

>>> s = c_char_p()
>>> s.value = "abc def ghi"
>>> s.value
'abc def ghi'
>>> s.value is s.value
False
>>>

Why is it printing False? ctypes instances are objects containing a memory block plus some descriptors
accessing the contents of the memory. Storing a Python object in the memory block does not store the
object itself, instead the contents of the object is stored. Accessing the contents again constructs a new
Python object each time!

Variable-sized data types

ctypes provides some support for variable-sized arrays and structures.

The resize() function can be used to resize the memory buffer of an existing ctypes object. The function
takes the object as first argument, and the requested size in bytes as the second argument. The memory
block cannot be made smaller than the natural memory block specified by the objects type, a ValueError is
raised if this is tried:

>>> short_array = (c_short * 4)()
>>> print(sizeof(short_array))
8
>>> resize(short_array, 4)
Traceback (most recent call last):

...
ValueError: minimum size is 8
>>> resize(short_array, 32)
>>> sizeof(short_array)
32
>>> sizeof(type(short_array))
8
>>>

This is nice and fine, but how would one access the additional elements contained in this array? Since the
type still only knows about 4 elements, we get errors accessing other elements:

>>> short_array[:]
[0, 0, 0, 0]
>>> short_array[7]
Traceback (most recent call last):

...
IndexError: invalid index
>>>

Another way to use variable-sized data types with ctypes is to use the dynamic nature of Python, and
(re-)define the data type after the required size is already known, on a case by case basis.

16.16. ctypes — A foreign function library for Python 691

The Python Library Reference, Release 3.5.7

16.16.2 ctypes reference

Finding shared libraries

When programming in a compiled language, shared libraries are accessed when compiling/linking a program,
and when the program is run.

The purpose of the find_library() function is to locate a library in a way similar to what the compiler does
(on platforms with several versions of a shared library the most recent should be loaded), while the ctypes
library loaders act like when a program is run, and call the runtime loader directly.

The ctypes.util module provides a function which can help to determine the library to load.

ctypes.util.find_library(name)
Try to find a library and return a pathname. name is the library name without any prefix like lib,
suffix like .so, .dylib or version number (this is the form used for the posix linker option -l). If no
library can be found, returns None.

The exact functionality is system dependent.

On Linux, find_library() tries to run external programs (/sbin/ldconfig, gcc, and objdump) to find the
library file. It returns the filename of the library file. Here are some examples:

>>> from ctypes.util import find_library
>>> find_library("m")
'libm.so.6'
>>> find_library("c")
'libc.so.6'
>>> find_library("bz2")
'libbz2.so.1.0'
>>>

On OS X, find_library() tries several predefined naming schemes and paths to locate the library, and returns
a full pathname if successful:

>>> from ctypes.util import find_library
>>> find_library("c")
'/usr/lib/libc.dylib'
>>> find_library("m")
'/usr/lib/libm.dylib'
>>> find_library("bz2")
'/usr/lib/libbz2.dylib'
>>> find_library("AGL")
'/System/Library/Frameworks/AGL.framework/AGL'
>>>

On Windows, find_library() searches along the system search path, and returns the full pathname, but since
there is no predefined naming scheme a call like find_library("c") will fail and return None.

If wrapping a shared library with ctypes, it may be better to determine the shared library name at develop-
ment time, and hardcode that into the wrapper module instead of using find_library() to locate the library
at runtime.

Loading shared libraries

There are several ways to load shared libraries into the Python process. One way is to instantiate one of the
following classes:

692 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

class ctypes.CDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False,
use_last_error=False)

Instances of this class represent loaded shared libraries. Functions in these libraries use the standard
C calling convention, and are assumed to return int.

class ctypes.OleDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False,
use_last_error=False)

Windows only: Instances of this class represent loaded shared libraries, functions in these libraries
use the stdcall calling convention, and are assumed to return the windows specific HRESULT code.
HRESULT values contain information specifying whether the function call failed or succeeded, together
with additional error code. If the return value signals a failure, an OSError is automatically raised.

Changed in version 3.3: WindowsError used to be raised.

class ctypes.WinDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False,
use_last_error=False)

Windows only: Instances of this class represent loaded shared libraries, functions in these libraries use
the stdcall calling convention, and are assumed to return int by default.

OnWindows CE only the standard calling convention is used, for convenience the WinDLL and OleDLL
use the standard calling convention on this platform.

The Python global interpreter lock is released before calling any function exported by these libraries, and
reacquired afterwards.

class ctypes.PyDLL(name, mode=DEFAULT_MODE, handle=None)
Instances of this class behave like CDLL instances, except that the Python GIL is not released during
the function call, and after the function execution the Python error flag is checked. If the error flag is
set, a Python exception is raised.

Thus, this is only useful to call Python C api functions directly.

All these classes can be instantiated by calling them with at least one argument, the pathname of the shared
library. If you have an existing handle to an already loaded shared library, it can be passed as the handle
named parameter, otherwise the underlying platforms dlopen or LoadLibrary function is used to load the
library into the process, and to get a handle to it.

The mode parameter can be used to specify how the library is loaded. For details, consult the dlopen(3)
manpage. On Windows, mode is ignored. On posix systems, RTLD_NOW is always added, and is not
configurable.

The use_errno parameter, when set to true, enables a ctypes mechanism that allows accessing the system
errno error number in a safe way. ctypes maintains a thread-local copy of the systems errno variable; if you
call foreign functions created with use_errno=True then the errno value before the function call is swapped
with the ctypes private copy, the same happens immediately after the function call.

The function ctypes.get_errno() returns the value of the ctypes private copy, and the function ctypes.
set_errno() changes the ctypes private copy to a new value and returns the former value.

The use_last_error parameter, when set to true, enables the same mechanism for the Windows er-
ror code which is managed by the GetLastError() and SetLastError() Windows API functions; ctypes.
get_last_error() and ctypes.set_last_error() are used to request and change the ctypes private copy of the
windows error code.

ctypes.RTLD_GLOBAL
Flag to use as mode parameter. On platforms where this flag is not available, it is defined as the integer
zero.

ctypes.RTLD_LOCAL
Flag to use as mode parameter. On platforms where this is not available, it is the same as
RTLD_GLOBAL.

16.16. ctypes — A foreign function library for Python 693

The Python Library Reference, Release 3.5.7

ctypes.DEFAULT_MODE
The default mode which is used to load shared libraries. On OSX 10.3, this is RTLD_GLOBAL,
otherwise it is the same as RTLD_LOCAL.

Instances of these classes have no public methods. Functions exported by the shared library can be accessed
as attributes or by index. Please note that accessing the function through an attribute caches the result and
therefore accessing it repeatedly returns the same object each time. On the other hand, accessing it through
an index returns a new object each time:

>>> libc.time == libc.time
True
>>> libc['time'] == libc['time']
False

The following public attributes are available, their name starts with an underscore to not clash with exported
function names:

PyDLL._handle
The system handle used to access the library.

PyDLL._name
The name of the library passed in the constructor.

Shared libraries can also be loaded by using one of the prefabricated objects, which are instances of the
LibraryLoader class, either by calling the LoadLibrary() method, or by retrieving the library as attribute of
the loader instance.

class ctypes.LibraryLoader(dlltype)
Class which loads shared libraries. dlltype should be one of the CDLL, PyDLL, WinDLL, or OleDLL
types.

__getattr__() has special behavior: It allows loading a shared library by accessing it as attribute of
a library loader instance. The result is cached, so repeated attribute accesses return the same library
each time.

LoadLibrary(name)
Load a shared library into the process and return it. This method always returns a new instance
of the library.

These prefabricated library loaders are available:

ctypes.cdll
Creates CDLL instances.

ctypes.windll
Windows only: Creates WinDLL instances.

ctypes.oledll
Windows only: Creates OleDLL instances.

ctypes.pydll
Creates PyDLL instances.

For accessing the C Python api directly, a ready-to-use Python shared library object is available:

ctypes.pythonapi
An instance of PyDLL that exposes Python C API functions as attributes. Note that all these functions
are assumed to return C int, which is of course not always the truth, so you have to assign the correct
restype attribute to use these functions.

694 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

Foreign functions

As explained in the previous section, foreign functions can be accessed as attributes of loaded shared libraries.
The function objects created in this way by default accept any number of arguments, accept any ctypes data
instances as arguments, and return the default result type specified by the library loader. They are instances
of a private class:

class ctypes._FuncPtr
Base class for C callable foreign functions.

Instances of foreign functions are also C compatible data types; they represent C function pointers.

This behavior can be customized by assigning to special attributes of the foreign function object.

restype
Assign a ctypes type to specify the result type of the foreign function. Use None for void, a
function not returning anything.

It is possible to assign a callable Python object that is not a ctypes type, in this case the function
is assumed to return a C int, and the callable will be called with this integer, allowing further
processing or error checking. Using this is deprecated, for more flexible post processing or error
checking use a ctypes data type as restype and assign a callable to the errcheck attribute.

argtypes
Assign a tuple of ctypes types to specify the argument types that the function accepts. Functions
using the stdcall calling convention can only be called with the same number of arguments as
the length of this tuple; functions using the C calling convention accept additional, unspecified
arguments as well.

When a foreign function is called, each actual argument is passed to the from_param() class
method of the items in the argtypes tuple, this method allows adapting the actual argument to
an object that the foreign function accepts. For example, a c_char_p item in the argtypes tuple
will convert a string passed as argument into a bytes object using ctypes conversion rules.

New: It is now possible to put items in argtypes which are not ctypes types, but each item must
have a from_param() method which returns a value usable as argument (integer, string, ctypes
instance). This allows defining adapters that can adapt custom objects as function parameters.

errcheck
Assign a Python function or another callable to this attribute. The callable will be called with
three or more arguments:

callable(result, func, arguments)
result is what the foreign function returns, as specified by the restype attribute.

func is the foreign function object itself, this allows reusing the same callable object to check
or post process the results of several functions.

arguments is a tuple containing the parameters originally passed to the function call, this
allows specializing the behavior on the arguments used.

The object that this function returns will be returned from the foreign function call, but it can
also check the result value and raise an exception if the foreign function call failed.

exception ctypes.ArgumentError
This exception is raised when a foreign function call cannot convert one of the passed arguments.

16.16. ctypes — A foreign function library for Python 695

The Python Library Reference, Release 3.5.7

Function prototypes

Foreign functions can also be created by instantiating function prototypes. Function prototypes are similar
to function prototypes in C; they describe a function (return type, argument types, calling convention)
without defining an implementation. The factory functions must be called with the desired result type and
the argument types of the function.

ctypes.CFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False)
The returned function prototype creates functions that use the standard C calling convention. The
function will release the GIL during the call. If use_errno is set to true, the ctypes private copy of the
system errno variable is exchanged with the real errno value before and after the call; use_last_error
does the same for the Windows error code.

ctypes.WINFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False)
Windows only: The returned function prototype creates functions that use the stdcall calling conven-
tion, except on Windows CE where WINFUNCTYPE() is the same as CFUNCTYPE(). The function
will release the GIL during the call. use_errno and use_last_error have the same meaning as above.

ctypes.PYFUNCTYPE(restype, *argtypes)
The returned function prototype creates functions that use the Python calling convention. The function
will not release the GIL during the call.

Function prototypes created by these factory functions can be instantiated in different ways, depending on
the type and number of the parameters in the call:

prototype(address)
Returns a foreign function at the specified address which must be an integer.

prototype(callable)
Create a C callable function (a callback function) from a Python callable.

prototype(func_spec[, paramflags])
Returns a foreign function exported by a shared library. func_spec must be a 2-tuple
(name_or_ordinal, library). The first item is the name of the exported function as string,
or the ordinal of the exported function as small integer. The second item is the shared
library instance.

prototype(vtbl_index, name[, paramflags[, iid]])
Returns a foreign function that will call a COM method. vtbl_index is the index into the
virtual function table, a small non-negative integer. name is name of the COM method. iid
is an optional pointer to the interface identifier which is used in extended error reporting.

COM methods use a special calling convention: They require a pointer to the COM interface
as first argument, in addition to those parameters that are specified in the argtypes tuple.

The optional paramflags parameter creates foreign function wrappers with much more function-
ality than the features described above.

paramflags must be a tuple of the same length as argtypes.

Each item in this tuple contains further information about a parameter, it must be a tuple
containing one, two, or three items.

The first item is an integer containing a combination of direction flags for the parameter:

1 Specifies an input parameter to the function.

2 Output parameter. The foreign function fills in a value.

4 Input parameter which defaults to the integer zero.

696 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

The optional second item is the parameter name as string. If this is specified, the foreign function
can be called with named parameters.

The optional third item is the default value for this parameter.

This example demonstrates how to wrap the Windows MessageBoxW function so that it supports default
parameters and named arguments. The C declaration from the windows header file is this:

WINUSERAPI int WINAPI
MessageBoxW(

HWND hWnd,
LPCWSTR lpText,
LPCWSTR lpCaption,
UINT uType);

Here is the wrapping with ctypes:

>>> from ctypes import c_int, WINFUNCTYPE, windll
>>> from ctypes.wintypes import HWND, LPCWSTR, UINT
>>> prototype = WINFUNCTYPE(c_int, HWND, LPCWSTR, LPCWSTR, UINT)
>>> paramflags = (1, "hwnd", 0), (1, "text", "Hi"), (1, "caption", "Hello from ctypes"), (1, "flags", 0)
>>> MessageBox = prototype(("MessageBoxW", windll.user32), paramflags)

The MessageBox foreign function can now be called in these ways:

>>> MessageBox()
>>> MessageBox(text="Spam, spam, spam")
>>> MessageBox(flags=2, text="foo bar")

A second example demonstrates output parameters. The win32 GetWindowRect function retrieves the
dimensions of a specified window by copying them into RECT structure that the caller has to supply. Here
is the C declaration:

WINUSERAPI BOOL WINAPI
GetWindowRect(

HWND hWnd,
LPRECT lpRect);

Here is the wrapping with ctypes:

>>> from ctypes import POINTER, WINFUNCTYPE, windll, WinError
>>> from ctypes.wintypes import BOOL, HWND, RECT
>>> prototype = WINFUNCTYPE(BOOL, HWND, POINTER(RECT))
>>> paramflags = (1, "hwnd"), (2, "lprect")
>>> GetWindowRect = prototype(("GetWindowRect", windll.user32), paramflags)
>>>

Functions with output parameters will automatically return the output parameter value if there is a single
one, or a tuple containing the output parameter values when there are more than one, so the GetWindowRect
function now returns a RECT instance, when called.

Output parameters can be combined with the errcheck protocol to do further output processing and error
checking. The win32 GetWindowRect api function returns a BOOL to signal success or failure, so this
function could do the error checking, and raises an exception when the api call failed:

>>> def errcheck(result, func, args):
... if not result:
... raise WinError()

(continues on next page)

16.16. ctypes — A foreign function library for Python 697

The Python Library Reference, Release 3.5.7

(continued from previous page)

... return args

...
>>> GetWindowRect.errcheck = errcheck
>>>

If the errcheck function returns the argument tuple it receives unchanged, ctypes continues the normal
processing it does on the output parameters. If you want to return a tuple of window coordinates instead of
a RECT instance, you can retrieve the fields in the function and return them instead, the normal processing
will no longer take place:

>>> def errcheck(result, func, args):
... if not result:
... raise WinError()
... rc = args[1]
... return rc.left, rc.top, rc.bottom, rc.right
...
>>> GetWindowRect.errcheck = errcheck
>>>

Utility functions

ctypes.addressof(obj)
Returns the address of the memory buffer as integer. obj must be an instance of a ctypes type.

ctypes.alignment(obj_or_type)
Returns the alignment requirements of a ctypes type. obj_or_type must be a ctypes type or instance.

ctypes.byref(obj[, offset])
Returns a light-weight pointer to obj, which must be an instance of a ctypes type. offset defaults to
zero, and must be an integer that will be added to the internal pointer value.

byref(obj, offset) corresponds to this C code:

(((char *)&obj) + offset)

The returned object can only be used as a foreign function call parameter. It behaves similar to
pointer(obj), but the construction is a lot faster.

ctypes.cast(obj, type)
This function is similar to the cast operator in C. It returns a new instance of type which points to
the same memory block as obj. type must be a pointer type, and obj must be an object that can be
interpreted as a pointer.

ctypes.create_string_buffer(init_or_size, size=None)
This function creates a mutable character buffer. The returned object is a ctypes array of c_char.

init_or_size must be an integer which specifies the size of the array, or a bytes object which will be
used to initialize the array items.

If a bytes object is specified as first argument, the buffer is made one item larger than its length so
that the last element in the array is a NUL termination character. An integer can be passed as second
argument which allows specifying the size of the array if the length of the bytes should not be used.

ctypes.create_unicode_buffer(init_or_size, size=None)
This function creates a mutable unicode character buffer. The returned object is a ctypes array of
c_wchar.

698 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

init_or_size must be an integer which specifies the size of the array, or a string which will be used to
initialize the array items.

If a string is specified as first argument, the buffer is made one item larger than the length of the string
so that the last element in the array is a NUL termination character. An integer can be passed as
second argument which allows specifying the size of the array if the length of the string should not be
used.

ctypes.DllCanUnloadNow()
Windows only: This function is a hook which allows implementing in-process COM servers with ctypes.
It is called from the DllCanUnloadNow function that the _ctypes extension dll exports.

ctypes.DllGetClassObject()
Windows only: This function is a hook which allows implementing in-process COM servers with ctypes.
It is called from the DllGetClassObject function that the _ctypes extension dll exports.

ctypes.util.find_library(name)
Try to find a library and return a pathname. name is the library name without any prefix like lib,
suffix like .so, .dylib or version number (this is the form used for the posix linker option -l). If no
library can be found, returns None.

The exact functionality is system dependent.

ctypes.util.find_msvcrt()
Windows only: return the filename of the VC runtime library used by Python, and by the extension
modules. If the name of the library cannot be determined, None is returned.

If you need to free memory, for example, allocated by an extension module with a call to the free(void
*), it is important that you use the function in the same library that allocated the memory.

ctypes.FormatError([code])
Windows only: Returns a textual description of the error code code. If no error code is specified, the
last error code is used by calling the Windows api function GetLastError.

ctypes.GetLastError()
Windows only: Returns the last error code set by Windows in the calling thread. This function calls
the Windows GetLastError() function directly, it does not return the ctypes-private copy of the error
code.

ctypes.get_errno()
Returns the current value of the ctypes-private copy of the system errno variable in the calling thread.

ctypes.get_last_error()
Windows only: returns the current value of the ctypes-private copy of the system LastError variable
in the calling thread.

ctypes.memmove(dst, src, count)
Same as the standard C memmove library function: copies count bytes from src to dst. dst and src
must be integers or ctypes instances that can be converted to pointers.

ctypes.memset(dst, c, count)
Same as the standard C memset library function: fills the memory block at address dst with count
bytes of value c. dst must be an integer specifying an address, or a ctypes instance.

ctypes.POINTER(type)
This factory function creates and returns a new ctypes pointer type. Pointer types are cached and
reused internally, so calling this function repeatedly is cheap. type must be a ctypes type.

ctypes.pointer(obj)
This function creates a new pointer instance, pointing to obj. The returned object is of the type
POINTER(type(obj)).

16.16. ctypes — A foreign function library for Python 699

The Python Library Reference, Release 3.5.7

Note: If you just want to pass a pointer to an object to a foreign function call, you should use byref(obj)
which is much faster.

ctypes.resize(obj, size)
This function resizes the internal memory buffer of obj, which must be an instance of a ctypes type.
It is not possible to make the buffer smaller than the native size of the objects type, as given by
sizeof(type(obj)), but it is possible to enlarge the buffer.

ctypes.set_errno(value)
Set the current value of the ctypes-private copy of the system errno variable in the calling thread to
value and return the previous value.

ctypes.set_last_error(value)
Windows only: set the current value of the ctypes-private copy of the system LastError variable in the
calling thread to value and return the previous value.

ctypes.sizeof(obj_or_type)
Returns the size in bytes of a ctypes type or instance memory buffer. Does the same as the C sizeof
operator.

ctypes.string_at(address, size=-1)
This function returns the C string starting at memory address address as a bytes object. If size is
specified, it is used as size, otherwise the string is assumed to be zero-terminated.

ctypes.WinError(code=None, descr=None)
Windows only: this function is probably the worst-named thing in ctypes. It creates an instance of
OSError. If code is not specified, GetLastError is called to determine the error code. If descr is not
specified, FormatError() is called to get a textual description of the error.

Changed in version 3.3: An instance of WindowsError used to be created.

ctypes.wstring_at(address, size=-1)
This function returns the wide character string starting at memory address address as a string. If size
is specified, it is used as the number of characters of the string, otherwise the string is assumed to be
zero-terminated.

Data types

class ctypes._CData
This non-public class is the common base class of all ctypes data types. Among other things, all ctypes
type instances contain a memory block that hold C compatible data; the address of the memory block
is returned by the addressof() helper function. Another instance variable is exposed as _objects; this
contains other Python objects that need to be kept alive in case the memory block contains pointers.

Common methods of ctypes data types, these are all class methods (to be exact, they are methods of
the metaclass):

from_buffer(source[, offset])
This method returns a ctypes instance that shares the buffer of the source object. The source
object must support the writeable buffer interface. The optional offset parameter specifies an
offset into the source buffer in bytes; the default is zero. If the source buffer is not large enough
a ValueError is raised.

from_buffer_copy(source[, offset])
This method creates a ctypes instance, copying the buffer from the source object buffer which
must be readable. The optional offset parameter specifies an offset into the source buffer in bytes;
the default is zero. If the source buffer is not large enough a ValueError is raised.

700 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

from_address(address)
This method returns a ctypes type instance using the memory specified by address which must
be an integer.

from_param(obj)
This method adapts obj to a ctypes type. It is called with the actual object used in a foreign
function call when the type is present in the foreign function’s argtypes tuple; it must return an
object that can be used as a function call parameter.

All ctypes data types have a default implementation of this classmethod that normally returns
obj if that is an instance of the type. Some types accept other objects as well.

in_dll(library, name)
This method returns a ctypes type instance exported by a shared library. name is the name of
the symbol that exports the data, library is the loaded shared library.

Common instance variables of ctypes data types:

_b_base_
Sometimes ctypes data instances do not own the memory block they contain, instead they share
part of the memory block of a base object. The _b_base_ read-only member is the root ctypes
object that owns the memory block.

_b_needsfree_
This read-only variable is true when the ctypes data instance has allocated the memory block
itself, false otherwise.

_objects
This member is either None or a dictionary containing Python objects that need to be kept alive
so that the memory block contents is kept valid. This object is only exposed for debugging; never
modify the contents of this dictionary.

Fundamental data types

class ctypes._SimpleCData
This non-public class is the base class of all fundamental ctypes data types. It is mentioned here
because it contains the common attributes of the fundamental ctypes data types. _SimpleCData is a
subclass of _CData, so it inherits their methods and attributes. ctypes data types that are not and
do not contain pointers can now be pickled.

Instances have a single attribute:

value
This attribute contains the actual value of the instance. For integer and pointer types, it is an
integer, for character types, it is a single character bytes object or string, for character pointer
types it is a Python bytes object or string.

When the value attribute is retrieved from a ctypes instance, usually a new object is returned
each time. ctypes does not implement original object return, always a new object is constructed.
The same is true for all other ctypes object instances.

Fundamental data types, when returned as foreign function call results, or, for example, by retrieving struc-
ture field members or array items, are transparently converted to native Python types. In other words, if a
foreign function has a restype of c_char_p, you will always receive a Python bytes object, not a c_char_p
instance.

Subclasses of fundamental data types do not inherit this behavior. So, if a foreign functions restype is a
subclass of c_void_p, you will receive an instance of this subclass from the function call. Of course, you
can get the value of the pointer by accessing the value attribute.

16.16. ctypes — A foreign function library for Python 701

The Python Library Reference, Release 3.5.7

These are the fundamental ctypes data types:

class ctypes.c_byte
Represents the C signed char datatype, and interprets the value as small integer. The constructor
accepts an optional integer initializer; no overflow checking is done.

class ctypes.c_char
Represents the C char datatype, and interprets the value as a single character. The constructor accepts
an optional string initializer, the length of the string must be exactly one character.

class ctypes.c_char_p
Represents the C char * datatype when it points to a zero-terminated string. For a general character
pointer that may also point to binary data, POINTER(c_char) must be used. The constructor accepts
an integer address, or a bytes object.

class ctypes.c_double
Represents the C double datatype. The constructor accepts an optional float initializer.

class ctypes.c_longdouble
Represents the C long double datatype. The constructor accepts an optional float initializer. On
platforms where sizeof(long double) == sizeof(double) it is an alias to c_double.

class ctypes.c_float
Represents the C float datatype. The constructor accepts an optional float initializer.

class ctypes.c_int
Represents the C signed int datatype. The constructor accepts an optional integer initializer; no
overflow checking is done. On platforms where sizeof(int) == sizeof(long) it is an alias to c_long.

class ctypes.c_int8
Represents the C 8-bit signed int datatype. Usually an alias for c_byte.

class ctypes.c_int16
Represents the C 16-bit signed int datatype. Usually an alias for c_short.

class ctypes.c_int32
Represents the C 32-bit signed int datatype. Usually an alias for c_int.

class ctypes.c_int64
Represents the C 64-bit signed int datatype. Usually an alias for c_longlong.

class ctypes.c_long
Represents the C signed long datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class ctypes.c_longlong
Represents the C signed long long datatype. The constructor accepts an optional integer initializer;
no overflow checking is done.

class ctypes.c_short
Represents the C signed short datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class ctypes.c_size_t
Represents the C size_t datatype.

class ctypes.c_ssize_t
Represents the C ssize_t datatype.

New in version 3.2.

702 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

class ctypes.c_ubyte
Represents the C unsigned char datatype, it interprets the value as small integer. The constructor
accepts an optional integer initializer; no overflow checking is done.

class ctypes.c_uint
Represents the C unsigned int datatype. The constructor accepts an optional integer initializer; no
overflow checking is done. On platforms where sizeof(int) == sizeof(long) it is an alias for c_ulong.

class ctypes.c_uint8
Represents the C 8-bit unsigned int datatype. Usually an alias for c_ubyte.

class ctypes.c_uint16
Represents the C 16-bit unsigned int datatype. Usually an alias for c_ushort.

class ctypes.c_uint32
Represents the C 32-bit unsigned int datatype. Usually an alias for c_uint.

class ctypes.c_uint64
Represents the C 64-bit unsigned int datatype. Usually an alias for c_ulonglong.

class ctypes.c_ulong
Represents the C unsigned long datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class ctypes.c_ulonglong
Represents the C unsigned long long datatype. The constructor accepts an optional integer initializer;
no overflow checking is done.

class ctypes.c_ushort
Represents the C unsigned short datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class ctypes.c_void_p
Represents the C void * type. The value is represented as integer. The constructor accepts an optional
integer initializer.

class ctypes.c_wchar
Represents the C wchar_t datatype, and interprets the value as a single character unicode string. The
constructor accepts an optional string initializer, the length of the string must be exactly one character.

class ctypes.c_wchar_p
Represents the C wchar_t * datatype, which must be a pointer to a zero-terminated wide character
string. The constructor accepts an integer address, or a string.

class ctypes.c_bool
Represent the C bool datatype (more accurately, _Bool from C99). Its value can be True or False,
and the constructor accepts any object that has a truth value.

class ctypes.HRESULT
Windows only: Represents a HRESULT value, which contains success or error information for a func-
tion or method call.

class ctypes.py_object
Represents the C PyObject * datatype. Calling this without an argument creates a NULL PyObject
* pointer.

The ctypes.wintypes module provides quite some other Windows specific data types, for example HWND,
WPARAM, or DWORD. Some useful structures like MSG or RECT are also defined.

16.16. ctypes — A foreign function library for Python 703

The Python Library Reference, Release 3.5.7

Structured data types

class ctypes.Union(*args, **kw)
Abstract base class for unions in native byte order.

class ctypes.BigEndianStructure(*args, **kw)
Abstract base class for structures in big endian byte order.

class ctypes.LittleEndianStructure(*args, **kw)
Abstract base class for structures in little endian byte order.

Structures with non-native byte order cannot contain pointer type fields, or any other data types containing
pointer type fields.

class ctypes.Structure(*args, **kw)
Abstract base class for structures in native byte order.

Concrete structure and union types must be created by subclassing one of these types, and at least
define a _fields_ class variable. ctypes will create descriptors which allow reading and writing the
fields by direct attribute accesses. These are the

fields
A sequence defining the structure fields. The items must be 2-tuples or 3-tuples. The first item
is the name of the field, the second item specifies the type of the field; it can be any ctypes data
type.

For integer type fields like c_int, a third optional item can be given. It must be a small positive
integer defining the bit width of the field.

Field names must be unique within one structure or union. This is not checked, only one field
can be accessed when names are repeated.

It is possible to define the _fields_ class variable after the class statement that defines the
Structure subclass, this allows creating data types that directly or indirectly reference themselves:

class List(Structure):
pass

List._fields_ = [("pnext", POINTER(List)),
...
]

The _fields_ class variable must, however, be defined before the type is first used (an instance is
created, sizeof() is called on it, and so on). Later assignments to the _fields_ class variable will
raise an AttributeError.

It is possible to defined sub-subclasses of structure types, they inherit the fields of the base class
plus the _fields_ defined in the sub-subclass, if any.

pack
An optional small integer that allows overriding the alignment of structure fields in the instance.
pack must already be defined when _fields_ is assigned, otherwise it will have no effect.

anonymous
An optional sequence that lists the names of unnamed (anonymous) fields. _anonymous_ must
be already defined when _fields_ is assigned, otherwise it will have no effect.

The fields listed in this variable must be structure or union type fields. ctypes will create de-
scriptors in the structure type that allows accessing the nested fields directly, without the need
to create the structure or union field.

Here is an example type (Windows):

704 Chapter 16. Generic Operating System Services

The Python Library Reference, Release 3.5.7

class _U(Union):
fields = [("lptdesc", POINTER(TYPEDESC)),

("lpadesc", POINTER(ARRAYDESC)),
("hreftype", HREFTYPE)]

class TYPEDESC(Structure):
anonymous = ("u",)
fields = [("u", _U),

("vt", VARTYPE)]

The TYPEDESC structure describes a COM data type, the vt field specifies which one of the
union fields is valid. Since the u field is defined as anonymous field, it is now possible to access
the members directly off the TYPEDESC instance. td.lptdesc and td.u.lptdesc are equivalent,
but the former is faster since it does not need to create a temporary union instance:

td = TYPEDESC()
td.vt = VT_PTR
td.lptdesc = POINTER(some_type)
td.u.lptdesc = POINTER(some_type)

It is possible to defined sub-subclasses of structures, they inherit the fields of the base class. If the
subclass definition has a separate _fields_ variable, the fields specified in this are appended to the
fields of the base class.

Structure and union constructors accept both positional and keyword arguments. Positional arguments
are used to initialize member fields in the same order as they are appear in _fields_. Keyword
arguments in the constructor are interpreted as attribute assignments, so they will initialize _fields_
with the same name, or create new attributes for names not present in _fields_.

Arrays and pointers

class ctypes.Array(*args)
Abstract base class for arrays.

The recommended way to create concrete array types is by multiplying any ctypes data type with
a positive integer. Alternatively, you can subclass this type and define _length_ and _type_ class
variables. Array elements can be read and written using standard subscript and slice accesses; for slice
reads, the resulting object is not itself an Array.

length
A positive integer specifying the number of elements in the array. Out-of-range subscripts result
in an IndexError. Will be returned by len().

type
Specifies the type of each element in the array.

Array subclass constructors accept positional arguments, used to initialize the elements in order.

class ctypes._Pointer
Private, abstract base class for pointers.

Concrete pointer types are created by calling POINTER() with the type that will be pointed to; this
is done automatically by pointer().

If a pointer points to an array, its elements can be read and written using standard subscript and slice
accesses. Pointer objects have no size, so len() will raise TypeError. Negative subscripts will read
from the memory before the pointer (as in C), and out-of-range subscripts will probably crash with an
access violation (if you’re lucky).

16.16. ctypes — A foreign function library for Python 705

The Python Library Reference, Release 3.5.7

type
Specifies the type pointed to.

contents
Returns the object to which to pointer points. Assigning to this attribute changes the pointer to
point to the assigned object.

706 Chapter 16. Generic Operating System Services

CHAPTER

SEVENTEEN

CONCURRENT EXECUTION

The modules described in this chapter provide support for concurrent execution of code. The appropriate
choice of tool will depend on the task to be executed (CPU bound vs IO bound) and preferred style of
development (event driven cooperative multitasking vs preemptive multitasking). Here’s an overview:

17.1 threading — Thread-based parallelism

Source code: Lib/threading.py

This module constructs higher-level threading interfaces on top of the lower level _thread module. See also
the queue module.

The dummy_threading module is provided for situations where threading cannot be used because _thread
is missing.

Note: While they are not listed below, the camelCase names used for some methods and functions in this
module in the Python 2.x series are still supported by this module.

This module defines the following functions:

threading.active_count()
Return the number of Thread objects currently alive. The returned count is equal to the length of the
list returned by enumerate().

threading.current_thread()
Return the current Thread object, corresponding to the caller’s thread of control. If the caller’s
thread of control was not created through the threading module, a dummy thread object with limited
functionality is returned.

threading.get_ident()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct
meaning; it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data.
Thread identifiers may be recycled when a thread exits and another thread is created.

New in version 3.3.

threading.enumerate()
Return a list of all Thread objects currently alive. The list includes daemonic threads, dummy thread
objects created by current_thread(), and the main thread. It excludes terminated threads and threads
that have not yet been started.

707

https://github.com/python/cpython/tree/3.5/Lib/threading.py

The Python Library Reference, Release 3.5.7

threading.main_thread()
Return the main Thread object. In normal conditions, the main thread is the thread from which the
Python interpreter was started.

New in version 3.4.

threading.settrace(func)
Set a trace function for all threads started from the threading module. The func will be passed to
sys.settrace() for each thread, before its run() method is called.

threading.setprofile(func)
Set a profile function for all threads started from the threading module. The func will be passed to
sys.setprofile() for each thread, before its run() method is called.

threading.stack_size([size])
Return the thread stack size used when creating new threads. The optional size argument specifies
the stack size to be used for subsequently created threads, and must be 0 (use platform or configured
default) or a positive integer value of at least 32,768 (32 KiB). If size is not specified, 0 is used. If
changing the thread stack size is unsupported, a RuntimeError is raised. If the specified stack size
is invalid, a ValueError is raised and the stack size is unmodified. 32 KiB is currently the minimum
supported stack size value to guarantee sufficient stack space for the interpreter itself. Note that some
platforms may have particular restrictions on values for the stack size, such as requiring a minimum
stack size > 32 KiB or requiring allocation in multiples of the system memory page size - platform
documentation should be referred to for more information (4 KiB pages are common; using multiples
of 4096 for the stack size is the suggested approach in the absence of more specific information).
Availability: Windows, systems with POSIX threads.

This module also defines the following constant:

threading.TIMEOUT_MAX
The maximum value allowed for the timeout parameter of blocking functions (Lock.acquire(), RLock.
acquire(), Condition.wait(), etc.). Specifying a timeout greater than this value will raise an Overflow-
Error.

New in version 3.2.

This module defines a number of classes, which are detailed in the sections below.

The design of this module is loosely based on Java’s threading model. However, where Java makes locks and
condition variables basic behavior of every object, they are separate objects in Python. Python’s Thread
class supports a subset of the behavior of Java’s Thread class; currently, there are no priorities, no thread
groups, and threads cannot be destroyed, stopped, suspended, resumed, or interrupted. The static methods
of Java’s Thread class, when implemented, are mapped to module-level functions.

All of the methods described below are executed atomically.

17.1.1 Thread-Local Data

Thread-local data is data whose values are thread specific. To manage thread-local data, just create an
instance of local (or a subclass) and store attributes on it:

mydata = threading.local()
mydata.x = 1

The instance’s values will be different for separate threads.

class threading.local
A class that represents thread-local data.

708 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

For more details and extensive examples, see the documentation string of the _threading_local module.

17.1.2 Thread Objects

The Thread class represents an activity that is run in a separate thread of control. There are two ways to
specify the activity: by passing a callable object to the constructor, or by overriding the run() method in a
subclass. No other methods (except for the constructor) should be overridden in a subclass. In other words,
only override the __init__() and run() methods of this class.

Once a thread object is created, its activity must be started by calling the thread’s start() method. This
invokes the run() method in a separate thread of control.

Once the thread’s activity is started, the thread is considered ‘alive’. It stops being alive when its run()
method terminates – either normally, or by raising an unhandled exception. The is_alive() method tests
whether the thread is alive.

Other threads can call a thread’s join() method. This blocks the calling thread until the thread whose join()
method is called is terminated.

A thread has a name. The name can be passed to the constructor, and read or changed through the name
attribute.

A thread can be flagged as a “daemon thread”. The significance of this flag is that the entire Python program
exits when only daemon threads are left. The initial value is inherited from the creating thread. The flag
can be set through the daemon property or the daemon constructor argument.

Note: Daemon threads are abruptly stopped at shutdown. Their resources (such as open files, database
transactions, etc.) may not be released properly. If you want your threads to stop gracefully, make them
non-daemonic and use a suitable signalling mechanism such as an Event.

There is a “main thread” object; this corresponds to the initial thread of control in the Python program. It
is not a daemon thread.

There is the possibility that “dummy thread objects” are created. These are thread objects corresponding to
“alien threads”, which are threads of control started outside the threading module, such as directly from C
code. Dummy thread objects have limited functionality; they are always considered alive and daemonic, and
cannot be join()ed. They are never deleted, since it is impossible to detect the termination of alien threads.

class threading.Thread(group=None, target=None, name=None, args=(), kwargs={}, *, dae-
mon=None)

This constructor should always be called with keyword arguments. Arguments are:

group should be None; reserved for future extension when a ThreadGroup class is implemented.

target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is
called.

name is the thread name. By default, a unique name is constructed of the form “Thread-N” where N
is a small decimal number.

args is the argument tuple for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation. Defaults to {}.

If not None, daemon explicitly sets whether the thread is daemonic. If None (the default), the daemonic
property is inherited from the current thread.

If the subclass overrides the constructor, it must make sure to invoke the base class constructor (Thread.
__init__()) before doing anything else to the thread.

17.1. threading — Thread-based parallelism 709

The Python Library Reference, Release 3.5.7

Changed in version 3.3: Added the daemon argument.

start()
Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be
invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable
object passed to the object’s constructor as the target argument, if any, with sequential and
keyword arguments taken from the args and kwargs arguments, respectively.

join(timeout=None)
Wait until the thread terminates. This blocks the calling thread until the thread whose join()
method is called terminates – either normally or through an unhandled exception – or until the
optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number
specifying a timeout for the operation in seconds (or fractions thereof). As join() always returns
None, you must call is_alive() after join() to decide whether a timeout happened – if the thread
is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will block until the thread
terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause
a deadlock. It is also an error to join() a thread before it has been started and attempts to do so
raise the same exception.

name
A string used for identification purposes only. It has no semantics. Multiple threads may be given
the same name. The initial name is set by the constructor.

getName()
setName()

Old getter/setter API for name; use it directly as a property instead.

ident
The ‘thread identifier’ of this thread or None if the thread has not been started. This is a nonzero
integer. See the _thread.get_ident() function. Thread identifiers may be recycled when a thread
exits and another thread is created. The identifier is available even after the thread has exited.

is_alive()
Return whether the thread is alive.

This method returns True just before the run() method starts until just after the run() method
terminates. The module function enumerate() returns a list of all alive threads.

daemon
A boolean value indicating whether this thread is a daemon thread (True) or not (False). This
must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited
from the creating thread; the main thread is not a daemon thread and therefore all threads created
in the main thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads are left.

710 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

isDaemon()
setDaemon()

Old getter/setter API for daemon; use it directly as a property instead.

CPython implementation detail: In CPython, due to the Global Interpreter Lock, only one thread can execute
Python code at once (even though certain performance-oriented libraries might overcome this limitation).
If you want your application to make better use of the computational resources of multi-core machines, you
are advised to use multiprocessing or concurrent.futures.ProcessPoolExecutor. However, threading is still
an appropriate model if you want to run multiple I/O-bound tasks simultaneously.

17.1.3 Lock Objects

A primitive lock is a synchronization primitive that is not owned by a particular thread when locked. In
Python, it is currently the lowest level synchronization primitive available, implemented directly by the
_thread extension module.

A primitive lock is in one of two states, “locked” or “unlocked”. It is created in the unlocked state. It has two
basic methods, acquire() and release(). When the state is unlocked, acquire() changes the state to locked and
returns immediately. When the state is locked, acquire() blocks until a call to release() in another thread
changes it to unlocked, then the acquire() call resets it to locked and returns. The release() method should
only be called in the locked state; it changes the state to unlocked and returns immediately. If an attempt
is made to release an unlocked lock, a RuntimeError will be raised.

Locks also support the context management protocol.

When more than one thread is blocked in acquire() waiting for the state to turn to unlocked, only one thread
proceeds when a release() call resets the state to unlocked; which one of the waiting threads proceeds is not
defined, and may vary across implementations.

All methods are executed atomically.

class threading.Lock
The class implementing primitive lock objects. Once a thread has acquired a lock, subsequent attempts
to acquire it block, until it is released; any thread may release it.

Note that Lock is actually a factory function which returns an instance of the most efficient version of
the concrete Lock class that is supported by the platform.

acquire(blocking=True, timeout=-1)
Acquire a lock, blocking or non-blocking.

When invoked with the blocking argument set to True (the default), block until the lock is
unlocked, then set it to locked and return True.

When invoked with the blocking argument set to False, do not block. If a call with blocking set
to True would block, return False immediately; otherwise, set the lock to locked and return True.

When invoked with the floating-point timeout argument set to a positive value, block for at most
the number of seconds specified by timeout and as long as the lock cannot be acquired. A timeout
argument of -1 specifies an unbounded wait. It is forbidden to specify a timeout when blocking
is false.

The return value is True if the lock is acquired successfully, False if not (for example if the timeout
expired).

Changed in version 3.2: The timeout parameter is new.

Changed in version 3.2: Lock acquires can now be interrupted by signals on POSIX.

17.1. threading — Thread-based parallelism 711

The Python Library Reference, Release 3.5.7

release()
Release a lock. This can be called from any thread, not only the thread which has acquired the
lock.

When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting
for the lock to become unlocked, allow exactly one of them to proceed.

When invoked on an unlocked lock, a RuntimeError is raised.

There is no return value.

17.1.4 RLock Objects

A reentrant lock is a synchronization primitive that may be acquired multiple times by the same thread.
Internally, it uses the concepts of “owning thread” and “recursion level” in addition to the locked/unlocked
state used by primitive locks. In the locked state, some thread owns the lock; in the unlocked state, no
thread owns it.

To lock the lock, a thread calls its acquire() method; this returns once the thread owns the lock. To unlock
the lock, a thread calls its release() method. acquire()/release() call pairs may be nested; only the final
release() (the release() of the outermost pair) resets the lock to unlocked and allows another thread blocked
in acquire() to proceed.

Reentrant locks also support the context management protocol.

class threading.RLock
This class implements reentrant lock objects. A reentrant lock must be released by the thread that
acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without
blocking; the thread must release it once for each time it has acquired it.

Note that RLock is actually a factory function which returns an instance of the most efficient version
of the concrete RLock class that is supported by the platform.

acquire(blocking=True, timeout=-1)
Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this thread already owns the lock, increment the recursion
level by one, and return immediately. Otherwise, if another thread owns the lock, block until the
lock is unlocked. Once the lock is unlocked (not owned by any thread), then grab ownership, set
the recursion level to one, and return. If more than one thread is blocked waiting until the lock is
unlocked, only one at a time will be able to grab ownership of the lock. There is no return value
in this case.

When invoked with the blocking argument set to true, do the same thing as when called without
arguments, and return true.

When invoked with the blocking argument set to false, do not block. If a call without an argument
would block, return false immediately; otherwise, do the same thing as when called without
arguments, and return true.

When invoked with the floating-point timeout argument set to a positive value, block for at most
the number of seconds specified by timeout and as long as the lock cannot be acquired. Return
true if the lock has been acquired, false if the timeout has elapsed.

Changed in version 3.2: The timeout parameter is new.

release()
Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock
to unlocked (not owned by any thread), and if any other threads are blocked waiting for the lock

712 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

to become unlocked, allow exactly one of them to proceed. If after the decrement the recursion
level is still nonzero, the lock remains locked and owned by the calling thread.

Only call this method when the calling thread owns the lock. A RuntimeError is raised if this
method is called when the lock is unlocked.

There is no return value.

17.1.5 Condition Objects

A condition variable is always associated with some kind of lock; this can be passed in or one will be created
by default. Passing one in is useful when several condition variables must share the same lock. The lock is
part of the condition object: you don’t have to track it separately.

A condition variable obeys the context management protocol: using the with statement acquires the as-
sociated lock for the duration of the enclosed block. The acquire() and release() methods also call the
corresponding methods of the associated lock.

Other methods must be called with the associated lock held. The wait() method releases the lock, and then
blocks until another thread awakens it by calling notify() or notify_all(). Once awakened, wait() re-acquires
the lock and returns. It is also possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The
notify_all() method wakes up all threads waiting for the condition variable.

Note: the notify() and notify_all() methods don’t release the lock; this means that the thread or threads
awakened will not return from their wait() call immediately, but only when the thread that called notify()
or notify_all() finally relinquishes ownership of the lock.

The typical programming style using condition variables uses the lock to synchronize access to some shared
state; threads that are interested in a particular change of state call wait() repeatedly until they see the
desired state, while threads that modify the state call notify() or notify_all() when they change the state in
such a way that it could possibly be a desired state for one of the waiters. For example, the following code
is a generic producer-consumer situation with unlimited buffer capacity:

Consume one item
with cv:

while not an_item_is_available():
cv.wait()

get_an_available_item()

Produce one item
with cv:

make_an_item_available()
cv.notify()

The while loop checking for the application’s condition is necessary because wait() can return after an
arbitrary long time, and the condition which prompted the notify() call may no longer hold true. This is
inherent to multi-threaded programming. The wait_for() method can be used to automate the condition
checking, and eases the computation of timeouts:

Consume an item
with cv:

cv.wait_for(an_item_is_available)
get_an_available_item()

To choose between notify() and notify_all(), consider whether one state change can be interesting for only
one or several waiting threads. E.g. in a typical producer-consumer situation, adding one item to the buffer

17.1. threading — Thread-based parallelism 713

The Python Library Reference, Release 3.5.7

only needs to wake up one consumer thread.

class threading.Condition(lock=None)
This class implements condition variable objects. A condition variable allows one or more threads to
wait until they are notified by another thread.

If the lock argument is given and not None, it must be a Lock or RLock object, and it is used as the
underlying lock. Otherwise, a new RLock object is created and used as the underlying lock.

Changed in version 3.3: changed from a factory function to a class.

acquire(*args)
Acquire the underlying lock. This method calls the corresponding method on the underlying lock;
the return value is whatever that method returns.

release()
Release the underlying lock. This method calls the corresponding method on the underlying lock;
there is no return value.

wait(timeout=None)
Wait until notified or until a timeout occurs. If the calling thread has not acquired the lock when
this method is called, a RuntimeError is raised.

This method releases the underlying lock, and then blocks until it is awakened by a notify() or
notify_all() call for the same condition variable in another thread, or until the optional timeout
occurs. Once awakened or timed out, it re-acquires the lock and returns.

When the timeout argument is present and not None, it should be a floating point number
specifying a timeout for the operation in seconds (or fractions thereof).

When the underlying lock is an RLock, it is not released using its release() method, since this may
not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal
interface of the RLock class is used, which really unlocks it even when it has been recursively
acquired several times. Another internal interface is then used to restore the recursion level when
the lock is reacquired.

The return value is True unless a given timeout expired, in which case it is False.

Changed in version 3.2: Previously, the method always returned None.

wait_for(predicate, timeout=None)
Wait until a condition evaluates to true. predicate should be a callable which result will be
interpreted as a boolean value. A timeout may be provided giving the maximum time to wait.

This utility method may call wait() repeatedly until the predicate is satisfied, or until a timeout
occurs. The return value is the last return value of the predicate and will evaluate to False if the
method timed out.

Ignoring the timeout feature, calling this method is roughly equivalent to writing:

while not predicate():
cv.wait()

Therefore, the same rules apply as with wait(): The lock must be held when called and is re-
acquired on return. The predicate is evaluated with the lock held.

New in version 3.2.

notify(n=1)
By default, wake up one thread waiting on this condition, if any. If the calling thread has not
acquired the lock when this method is called, a RuntimeError is raised.

714 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

This method wakes up at most n of the threads waiting for the condition variable; it is a no-op if
no threads are waiting.

The current implementation wakes up exactly n threads, if at least n threads are waiting. However,
it’s not safe to rely on this behavior. A future, optimized implementation may occasionally wake
up more than n threads.

Note: an awakened thread does not actually return from its wait() call until it can reacquire the
lock. Since notify() does not release the lock, its caller should.

notify_all()
Wake up all threads waiting on this condition. This method acts like notify(), but wakes up all
waiting threads instead of one. If the calling thread has not acquired the lock when this method
is called, a RuntimeError is raised.

17.1.6 Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer science, invented by the early
Dutch computer scientist Edsger W. Dijkstra (he used the names P() and V() instead of acquire() and
release()).

A semaphore manages an internal counter which is decremented by each acquire() call and incremented by
each release() call. The counter can never go below zero; when acquire() finds that it is zero, it blocks,
waiting until some other thread calls release().

Semaphores also support the context management protocol.

class threading.Semaphore(value=1)
This class implements semaphore objects. A semaphore manages a counter representing the number of
release() calls minus the number of acquire() calls, plus an initial value. The acquire() method blocks
if necessary until it can return without making the counter negative. If not given, value defaults to 1.

The optional argument gives the initial value for the internal counter; it defaults to 1. If the value
given is less than 0, ValueError is raised.

Changed in version 3.3: changed from a factory function to a class.

acquire(blocking=True, timeout=None)
Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than zero on entry, decrement
it by one and return immediately. If it is zero on entry, block, waiting until some other thread has
called release() to make it larger than zero. This is done with proper interlocking so that if multiple
acquire() calls are blocked, release() will wake exactly one of them up. The implementation may
pick one at random, so the order in which blocked threads are awakened should not be relied on.
Returns true (or blocks indefinitely).

When invoked with blocking set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and
return true.

When invoked with a timeout other than None, it will block for at most timeout seconds. If
acquire does not complete successfully in that interval, return false. Return true otherwise.

Changed in version 3.2: The timeout parameter is new.

release()
Release a semaphore, incrementing the internal counter by one. When it was zero on entry and
another thread is waiting for it to become larger than zero again, wake up that thread.

17.1. threading — Thread-based parallelism 715

The Python Library Reference, Release 3.5.7

class threading.BoundedSemaphore(value=1)
Class implementing bounded semaphore objects. A bounded semaphore checks to make sure its current
value doesn’t exceed its initial value. If it does, ValueError is raised. In most situations semaphores
are used to guard resources with limited capacity. If the semaphore is released too many times it’s a
sign of a bug. If not given, value defaults to 1.

Changed in version 3.3: changed from a factory function to a class.

Semaphore Example

Semaphores are often used to guard resources with limited capacity, for example, a database server. In any
situation where the size of the resource is fixed, you should use a bounded semaphore. Before spawning any
worker threads, your main thread would initialize the semaphore:

maxconnections = 5
...
pool_sema = BoundedSemaphore(value=maxconnections)

Once spawned, worker threads call the semaphore’s acquire and release methods when they need to connect
to the server:

with pool_sema:
conn = connectdb()
try:

... use connection ...
finally:

conn.close()

The use of a bounded semaphore reduces the chance that a programming error which causes the semaphore
to be released more than it’s acquired will go undetected.

17.1.7 Event Objects

This is one of the simplest mechanisms for communication between threads: one thread signals an event and
other threads wait for it.

An event object manages an internal flag that can be set to true with the set() method and reset to false
with the clear() method. The wait() method blocks until the flag is true.

class threading.Event
Class implementing event objects. An event manages a flag that can be set to true with the set()
method and reset to false with the clear() method. The wait() method blocks until the flag is true.
The flag is initially false.

Changed in version 3.3: changed from a factory function to a class.

is_set()
Return true if and only if the internal flag is true.

set()
Set the internal flag to true. All threads waiting for it to become true are awakened. Threads
that call wait() once the flag is true will not block at all.

clear()
Reset the internal flag to false. Subsequently, threads calling wait() will block until set() is called
to set the internal flag to true again.

716 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

wait(timeout=None)
Block until the internal flag is true. If the internal flag is true on entry, return immediately.
Otherwise, block until another thread calls set() to set the flag to true, or until the optional
timeout occurs.

When the timeout argument is present and not None, it should be a floating point number
specifying a timeout for the operation in seconds (or fractions thereof).

This method returns true if and only if the internal flag has been set to true, either before the
wait call or after the wait starts, so it will always return True except if a timeout is given and the
operation times out.

Changed in version 3.1: Previously, the method always returned None.

17.1.8 Timer Objects

This class represents an action that should be run only after a certain amount of time has passed — a timer.
Timer is a subclass of Thread and as such also functions as an example of creating custom threads.

Timers are started, as with threads, by calling their start() method. The timer can be stopped (before its
action has begun) by calling the cancel() method. The interval the timer will wait before executing its action
may not be exactly the same as the interval specified by the user.

For example:

def hello():
print("hello, world")

t = Timer(30.0, hello)
t.start() # after 30 seconds, "hello, world" will be printed

class threading.Timer(interval, function, args=None, kwargs=None)
Create a timer that will run function with arguments args and keyword arguments kwargs, after interval
seconds have passed. If args is None (the default) then an empty list will be used. If kwargs is None
(the default) then an empty dict will be used.

Changed in version 3.3: changed from a factory function to a class.

cancel()
Stop the timer, and cancel the execution of the timer’s action. This will only work if the timer is
still in its waiting stage.

17.1.9 Barrier Objects

New in version 3.2.

This class provides a simple synchronization primitive for use by a fixed number of threads that need to wait
for each other. Each of the threads tries to pass the barrier by calling the wait() method and will block until
all of the threads have made the call. At this points, the threads are released simultaneously.

The barrier can be reused any number of times for the same number of threads.

As an example, here is a simple way to synchronize a client and server thread:

b = Barrier(2, timeout=5)

def server():

(continues on next page)

17.1. threading — Thread-based parallelism 717

The Python Library Reference, Release 3.5.7

(continued from previous page)

start_server()
b.wait()
while True:

connection = accept_connection()
process_server_connection(connection)

def client():
b.wait()
while True:

connection = make_connection()
process_client_connection(connection)

class threading.Barrier(parties, action=None, timeout=None)
Create a barrier object for parties number of threads. An action, when provided, is a callable to be
called by one of the threads when they are released. timeout is the default timeout value if none is
specified for the wait() method.

wait(timeout=None)
Pass the barrier. When all the threads party to the barrier have called this function, they are all
released simultaneously. If a timeout is provided, it is used in preference to any that was supplied
to the class constructor.

The return value is an integer in the range 0 to parties – 1, different for each thread. This can be
used to select a thread to do some special housekeeping, e.g.:

i = barrier.wait()
if i == 0:

Only one thread needs to print this
print("passed the barrier")

If an action was provided to the constructor, one of the threads will have called it prior to being
released. Should this call raise an error, the barrier is put into the broken state.

If the call times out, the barrier is put into the broken state.

This method may raise a BrokenBarrierError exception if the barrier is broken or reset while a
thread is waiting.

reset()
Return the barrier to the default, empty state. Any threads waiting on it will receive the Broken-
BarrierError exception.

Note that using this function may can require some external synchronization if there are other
threads whose state is unknown. If a barrier is broken it may be better to just leave it and create
a new one.

abort()
Put the barrier into a broken state. This causes any active or future calls to wait() to fail with
the BrokenBarrierError. Use this for example if one of the needs to abort, to avoid deadlocking
the application.

It may be preferable to simply create the barrier with a sensible timeout value to automatically
guard against one of the threads going awry.

parties
The number of threads required to pass the barrier.

n_waiting
The number of threads currently waiting in the barrier.

718 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

broken
A boolean that is True if the barrier is in the broken state.

exception threading.BrokenBarrierError
This exception, a subclass of RuntimeError, is raised when the Barrier object is reset or broken.

17.1.10 Using locks, conditions, and semaphores in the with statement

All of the objects provided by this module that have acquire() and release() methods can be used as context
managers for a with statement. The acquire() method will be called when the block is entered, and release()
will be called when the block is exited. Hence, the following snippet:

with some_lock:
do something...

is equivalent to:

some_lock.acquire()
try:

do something...
finally:

some_lock.release()

Currently, Lock, RLock, Condition, Semaphore, and BoundedSemaphore objects may be used as with state-
ment context managers.

17.2 multiprocessing — Process-based parallelism

Source code: Lib/multiprocessing/

17.2.1 Introduction

multiprocessing is a package that supports spawning processes using an API similar to the threading module.
The multiprocessing package offers both local and remote concurrency, effectively side-stepping the Global
Interpreter Lock by using subprocesses instead of threads. Due to this, the multiprocessing module allows
the programmer to fully leverage multiple processors on a given machine. It runs on both Unix and Windows.

The multiprocessing module also introduces APIs which do not have analogs in the threading module. A
prime example of this is the Pool object which offers a convenient means of parallelizing the execution of a
function across multiple input values, distributing the input data across processes (data parallelism). The
following example demonstrates the common practice of defining such functions in a module so that child
processes can successfully import that module. This basic example of data parallelism using Pool,

from multiprocessing import Pool

def f(x):
return x*x

if __name__ == '__main__':
with Pool(5) as p:

print(p.map(f, [1, 2, 3]))

17.2. multiprocessing — Process-based parallelism 719

https://github.com/python/cpython/tree/3.5/Lib/multiprocessing/

The Python Library Reference, Release 3.5.7

will print to standard output

[1, 4, 9]

The Process class

In multiprocessing, processes are spawned by creating a Process object and then calling its start() method.
Process follows the API of threading.Thread. A trivial example of a multiprocess program is

from multiprocessing import Process

def f(name):
print('hello', name)

if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
p.join()

To show the individual process IDs involved, here is an expanded example:

from multiprocessing import Process
import os

def info(title):
print(title)
print('module name:', __name__)
print('parent process:', os.getppid())
print('process id:', os.getpid())

def f(name):
info('function f')
print('hello', name)

if __name__ == '__main__':
info('main line')
p = Process(target=f, args=('bob',))
p.start()
p.join()

For an explanation of why the if __name__ == '__main__' part is necessary, see Programming guide-
lines.

Contexts and start methods

Depending on the platform, multiprocessing supports three ways to start a process. These start methods
are

spawn The parent process starts a fresh python interpreter process. The child process will only
inherit those resources necessary to run the process objects run() method. In particular, un-
necessary file descriptors and handles from the parent process will not be inherited. Starting
a process using this method is rather slow compared to using fork or forkserver.

Available on Unix and Windows. The default on Windows.

720 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

fork The parent process uses os.fork() to fork the Python interpreter. The child process, when it
begins, is effectively identical to the parent process. All resources of the parent are inherited
by the child process. Note that safely forking a multithreaded process is problematic.

Available on Unix only. The default on Unix.

forkserver When the program starts and selects the forkserver start method, a server process is
started. From then on, whenever a new process is needed, the parent process connects to
the server and requests that it fork a new process. The fork server process is single threaded
so it is safe for it to use os.fork(). No unnecessary resources are inherited.

Available on Unix platforms which support passing file descriptors over Unix pipes.

Changed in version 3.4: spawn added on all unix platforms, and forkserver added for some unix platforms.
Child processes no longer inherit all of the parents inheritable handles on Windows.

On Unix using the spawn or forkserver start methods will also start a semaphore tracker process which
tracks the unlinked named semaphores created by processes of the program. When all processes have exited
the semaphore tracker unlinks any remaining semaphores. Usually there should be none, but if a process
was killed by a signal there may some “leaked” semaphores. (Unlinking the named semaphores is a serious
matter since the system allows only a limited number, and they will not be automatically unlinked until the
next reboot.)

To select a start method you use the set_start_method() in the if __name__ == '__main__' clause
of the main module. For example:

import multiprocessing as mp

def foo(q):
q.put('hello')

if __name__ == '__main__':
mp.set_start_method('spawn')
q = mp.Queue()
p = mp.Process(target=foo, args=(q,))
p.start()
print(q.get())
p.join()

set_start_method() should not be used more than once in the program.

Alternatively, you can use get_context() to obtain a context object. Context objects have the same API as
the multiprocessing module, and allow one to use multiple start methods in the same program.

import multiprocessing as mp

def foo(q):
q.put('hello')

if __name__ == '__main__':
ctx = mp.get_context('spawn')
q = ctx.Queue()
p = ctx.Process(target=foo, args=(q,))
p.start()
print(q.get())
p.join()

Note that objects related to one context may not be compatible with processes for a different context. In
particular, locks created using the fork context cannot be passed to a processes started using the spawn or
forkserver start methods.

17.2. multiprocessing — Process-based parallelism 721

The Python Library Reference, Release 3.5.7

A library which wants to use a particular start method should probably use get_context() to avoid interfering
with the choice of the library user.

Exchanging objects between processes

multiprocessing supports two types of communication channel between processes:

Queues

The Queue class is a near clone of queue.Queue. For example:

from multiprocessing import Process, Queue

def f(q):
q.put([42, None, 'hello'])

if __name__ == '__main__':
q = Queue()
p = Process(target=f, args=(q,))
p.start()
print(q.get()) # prints "[42, None, 'hello']"
p.join()

Queues are thread and process safe.

Pipes

The Pipe() function returns a pair of connection objects connected by a pipe which by default is
duplex (two-way). For example:

from multiprocessing import Process, Pipe

def f(conn):
conn.send([42, None, 'hello'])
conn.close()

if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(child_conn,))
p.start()
print(parent_conn.recv()) # prints "[42, None, 'hello']"
p.join()

The two connection objects returned by Pipe() represent the two ends of the pipe. Each connec-
tion object has send() and recv() methods (among others). Note that data in a pipe may become
corrupted if two processes (or threads) try to read from or write to the same end of the pipe at
the same time. Of course there is no risk of corruption from processes using different ends of the
pipe at the same time.

Synchronization between processes

multiprocessing contains equivalents of all the synchronization primitives from threading. For instance one
can use a lock to ensure that only one process prints to standard output at a time:

from multiprocessing import Process, Lock

(continues on next page)

722 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

(continued from previous page)

def f(l, i):
l.acquire()
try:

print('hello world', i)
finally:

l.release()

if __name__ == '__main__':
lock = Lock()

for num in range(10):
Process(target=f, args=(lock, num)).start()

Without using the lock output from the different processes is liable to get all mixed up.

Sharing state between processes

As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as
far as possible. This is particularly true when using multiple processes.

However, if you really do need to use some shared data then multiprocessing provides a couple of ways of
doing so.

Shared memory

Data can be stored in a shared memory map using Value or Array. For example, the following
code

from multiprocessing import Process, Value, Array

def f(n, a):
n.value = 3.1415927
for i in range(len(a)):

a[i] = -a[i]

if __name__ == '__main__':
num = Value('d', 0.0)
arr = Array('i', range(10))

p = Process(target=f, args=(num, arr))
p.start()
p.join()

print(num.value)
print(arr[:])

will print

3.1415927
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

The 'd' and 'i' arguments used when creating num and arr are typecodes of the kind used
by the array module: 'd' indicates a double precision float and 'i' indicates a signed integer.
These shared objects will be process and thread-safe.

For more flexibility in using shared memory one can use the multiprocessing.sharedctypes module
which supports the creation of arbitrary ctypes objects allocated from shared memory.

17.2. multiprocessing — Process-based parallelism 723

The Python Library Reference, Release 3.5.7

Server process

A manager object returned by Manager() controls a server process which holds Python objects
and allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock,
Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array. For exam-
ple,

from multiprocessing import Process, Manager

def f(d, l):
d[1] = '1'
d['2'] = 2
d[0.25] = None
l.reverse()

if __name__ == '__main__':
with Manager() as manager:

d = manager.dict()
l = manager.list(range(10))

p = Process(target=f, args=(d, l))
p.start()
p.join()

print(d)
print(l)

will print

{0.25: None, 1: '1', '2': 2}
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Server process managers are more flexible than using shared memory objects because they can
be made to support arbitrary object types. Also, a single manager can be shared by processes
on different computers over a network. They are, however, slower than using shared memory.

Using a pool of workers

The Pool class represents a pool of worker processes. It has methods which allows tasks to be offloaded to
the worker processes in a few different ways.

For example:

from multiprocessing import Pool, TimeoutError
import time
import os

def f(x):
return x*x

if __name__ == '__main__':
start 4 worker processes
with Pool(processes=4) as pool:

print "[0, 1, 4,..., 81]"

(continues on next page)

724 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

(continued from previous page)

print(pool.map(f, range(10)))

print same numbers in arbitrary order
for i in pool.imap_unordered(f, range(10)):

print(i)

evaluate "f(20)" asynchronously
res = pool.apply_async(f, (20,)) # runs in *only* one process
print(res.get(timeout=1)) # prints "400"

evaluate "os.getpid()" asynchronously
res = pool.apply_async(os.getpid, ()) # runs in *only* one process
print(res.get(timeout=1)) # prints the PID of that process

launching multiple evaluations asynchronously *may* use more processes
multiple_results = [pool.apply_async(os.getpid, ()) for i in range(4)]
print([res.get(timeout=1) for res in multiple_results])

make a single worker sleep for 10 secs
res = pool.apply_async(time.sleep, (10,))
try:

print(res.get(timeout=1))
except TimeoutError:

print("We lacked patience and got a multiprocessing.TimeoutError")

print("For the moment, the pool remains available for more work")

exiting the 'with'-block has stopped the pool
print("Now the pool is closed and no longer available")

Note that the methods of a pool should only ever be used by the process which created it.

Note: Functionality within this package requires that the __main__ module be importable by the children.
This is covered in Programming guidelines however it is worth pointing out here. This means that some
examples, such as the multiprocessing.pool.Pool examples will not work in the interactive interpreter. For
example:

>>> from multiprocessing import Pool
>>> p = Pool(5)
>>> def f(x):
... return x*x
...
>>> p.map(f, [1,2,3])
Process PoolWorker-1:
Process PoolWorker-2:
Process PoolWorker-3:
Traceback (most recent call last):
AttributeError: 'module' object has no attribute 'f'
AttributeError: 'module' object has no attribute 'f'
AttributeError: 'module' object has no attribute 'f'

(If you try this it will actually output three full tracebacks interleaved in a semi-random fashion, and then
you may have to stop the master process somehow.)

17.2. multiprocessing — Process-based parallelism 725

The Python Library Reference, Release 3.5.7

17.2.2 Reference

The multiprocessing package mostly replicates the API of the threading module.

Process and exceptions

class multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, dae-
mon=None)

Process objects represent activity that is run in a separate process. The Process class has equivalents
of all the methods of threading.Thread.

The constructor should always be called with keyword arguments. group should always be None; it
exists solely for compatibility with threading.Thread. target is the callable object to be invoked by
the run() method. It defaults to None, meaning nothing is called. name is the process name (see
name for more details). args is the argument tuple for the target invocation. kwargs is a dictionary
of keyword arguments for the target invocation. If provided, the keyword-only daemon argument sets
the process daemon flag to True or False. If None (the default), this flag will be inherited from the
creating process.

By default, no arguments are passed to target.

If a subclass overrides the constructor, it must make sure it invokes the base class constructor (Process.
__init__()) before doing anything else to the process.

Changed in version 3.3: Added the daemon argument.

run()
Method representing the process’s activity.

You may override this method in a subclass. The standard run() method invokes the callable
object passed to the object’s constructor as the target argument, if any, with sequential and
keyword arguments taken from the args and kwargs arguments, respectively.

start()
Start the process’s activity.

This must be called at most once per process object. It arranges for the object’s run() method to
be invoked in a separate process.

join([timeout])
If the optional argument timeout is None (the default), the method blocks until the process whose
join() method is called terminates. If timeout is a positive number, it blocks at most timeout
seconds. Note that the method returns None if its process terminates or if the method times out.
Check the process’s exitcode to determine if it terminated.

A process can be joined many times.

A process cannot join itself because this would cause a deadlock. It is an error to attempt to join
a process before it has been started.

name
The process’s name. The name is a string used for identification purposes only. It has no semantics.
Multiple processes may be given the same name.

The initial name is set by the constructor. If no explicit name is provided to the constructor, a
name of the form ‘Process-N1:N2:. . . :Nk’ is constructed, where each Nk is the N-th child of its
parent.

is_alive()
Return whether the process is alive.

726 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

Roughly, a process object is alive from the moment the start() method returns until the child
process terminates.

daemon
The process’s daemon flag, a Boolean value. This must be set before start() is called.

The initial value is inherited from the creating process.

When a process exits, it attempts to terminate all of its daemonic child processes.

Note that a daemonic process is not allowed to create child processes. Otherwise a daemonic
process would leave its children orphaned if it gets terminated when its parent process exits.
Additionally, these are not Unix daemons or services, they are normal processes that will be
terminated (and not joined) if non-daemonic processes have exited.

In addition to the threading.Thread API, Process objects also support the following attributes and
methods:

pid
Return the process ID. Before the process is spawned, this will be None.

exitcode
The child’s exit code. This will be None if the process has not yet terminated. A negative value
-N indicates that the child was terminated by signal N.

authkey
The process’s authentication key (a byte string).

When multiprocessing is initialized the main process is assigned a random string using os.
urandom().

When a Process object is created, it will inherit the authentication key of its parent process,
although this may be changed by setting authkey to another byte string.

See Authentication keys.

sentinel
A numeric handle of a system object which will become “ready” when the process ends.

You can use this value if you want to wait on several events at once using multiprocessing.
connection.wait(). Otherwise calling join() is simpler.

On Windows, this is an OS handle usable with the WaitForSingleObject and WaitForMultipleOb-
jects family of API calls. On Unix, this is a file descriptor usable with primitives from the select
module.

New in version 3.3.

terminate()
Terminate the process. On Unix this is done using the SIGTERM signal; on Windows Termi-
nateProcess() is used. Note that exit handlers and finally clauses, etc., will not be executed.

Note that descendant processes of the process will not be terminated – they will simply become
orphaned.

Warning: If this method is used when the associated process is using a pipe or queue then
the pipe or queue is liable to become corrupted and may become unusable by other process.
Similarly, if the process has acquired a lock or semaphore etc. then terminating it is liable to
cause other processes to deadlock.

17.2. multiprocessing — Process-based parallelism 727

The Python Library Reference, Release 3.5.7

Note that the start(), join(), is_alive(), terminate() and exitcode methods should only be called by
the process that created the process object.

Example usage of some of the methods of Process:

>>> import multiprocessing, time, signal
>>> p = multiprocessing.Process(target=time.sleep, args=(1000,))
>>> print(p, p.is_alive())
<Process(Process-1, initial)> False
>>> p.start()
>>> print(p, p.is_alive())
<Process(Process-1, started)> True
>>> p.terminate()
>>> time.sleep(0.1)
>>> print(p, p.is_alive())
<Process(Process-1, stopped[SIGTERM])> False
>>> p.exitcode == -signal.SIGTERM
True

exception multiprocessing.ProcessError
The base class of all multiprocessing exceptions.

exception multiprocessing.BufferTooShort
Exception raised by Connection.recv_bytes_into() when the supplied buffer object is too small for the
message read.

If e is an instance of BufferTooShort then e.args[0] will give the message as a byte string.

exception multiprocessing.AuthenticationError
Raised when there is an authentication error.

exception multiprocessing.TimeoutError
Raised by methods with a timeout when the timeout expires.

Pipes and Queues

When using multiple processes, one generally uses message passing for communication between processes
and avoids having to use any synchronization primitives like locks.

For passing messages one can use Pipe() (for a connection between two processes) or a queue (which allows
multiple producers and consumers).

The Queue, SimpleQueue and JoinableQueue types are multi-producer, multi-consumer FIFO queues mod-
elled on the queue.Queue class in the standard library. They differ in that Queue lacks the task_done() and
join() methods introduced into Python 2.5’s queue.Queue class.

If you use JoinableQueue then you must call JoinableQueue.task_done() for each task removed from the
queue or else the semaphore used to count the number of unfinished tasks may eventually overflow, raising
an exception.

Note that one can also create a shared queue by using a manager object – see Managers.

Note: multiprocessing uses the usual queue.Empty and queue.Full exceptions to signal a timeout. They are
not available in the multiprocessing namespace so you need to import them from queue.

Note: When an object is put on a queue, the object is pickled and a background thread later flushes the
pickled data to an underlying pipe. This has some consequences which are a little surprising, but should not

728 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

cause any practical difficulties – if they really bother you then you can instead use a queue created with a
manager.

(1) After putting an object on an empty queue there may be an infinitesimal delay before the queue’s
empty() method returns False and get_nowait() can return without raising queue.Empty.

(2) If multiple processes are enqueuing objects, it is possible for the objects to be received at the other
end out-of-order. However, objects enqueued by the same process will always be in the expected order
with respect to each other.

Warning: If a process is killed using Process.terminate() or os.kill() while it is trying to use a Queue,
then the data in the queue is likely to become corrupted. This may cause any other process to get an
exception when it tries to use the queue later on.

Warning: As mentioned above, if a child process has put items on a queue (and it has not used
JoinableQueue.cancel_join_thread), then that process will not terminate until all buffered items have
been flushed to the pipe.

This means that if you try joining that process you may get a deadlock unless you are sure that all items
which have been put on the queue have been consumed. Similarly, if the child process is non-daemonic
then the parent process may hang on exit when it tries to join all its non-daemonic children.

Note that a queue created using a manager does not have this issue. See Programming guidelines.

For an example of the usage of queues for interprocess communication see Examples.

multiprocessing.Pipe([duplex])
Returns a pair (conn1, conn2) of Connection objects representing the ends of a pipe.

If duplex is True (the default) then the pipe is bidirectional. If duplex is False then the pipe is
unidirectional: conn1 can only be used for receiving messages and conn2 can only be used for sending
messages.

class multiprocessing.Queue([maxsize])
Returns a process shared queue implemented using a pipe and a few locks/semaphores. When a process
first puts an item on the queue a feeder thread is started which transfers objects from a buffer into the
pipe.

The usual queue.Empty and queue.Full exceptions from the standard library’s queue module are raised
to signal timeouts.

Queue implements all the methods of queue.Queue except for task_done() and join().

qsize()
Return the approximate size of the queue. Because of multithreading/multiprocessing semantics,
this number is not reliable.

Note that this may raise NotImplementedError on Unix platforms like Mac OS X where
sem_getvalue() is not implemented.

empty()
Return True if the queue is empty, False otherwise. Because of multithreading/multiprocessing
semantics, this is not reliable.

17.2. multiprocessing — Process-based parallelism 729

The Python Library Reference, Release 3.5.7

full()
Return True if the queue is full, False otherwise. Because of multithreading/multiprocessing
semantics, this is not reliable.

put(obj[, block[, timeout]])
Put obj into the queue. If the optional argument block is True (the default) and timeout is None
(the default), block if necessary until a free slot is available. If timeout is a positive number, it
blocks at most timeout seconds and raises the queue.Full exception if no free slot was available
within that time. Otherwise (block is False), put an item on the queue if a free slot is immediately
available, else raise the queue.Full exception (timeout is ignored in that case).

put_nowait(obj)
Equivalent to put(obj, False).

get([block[, timeout]])
Remove and return an item from the queue. If optional args block is True (the default) and
timeout is None (the default), block if necessary until an item is available. If timeout is a positive
number, it blocks at most timeout seconds and raises the queue.Empty exception if no item
was available within that time. Otherwise (block is False), return an item if one is immediately
available, else raise the queue.Empty exception (timeout is ignored in that case).

get_nowait()
Equivalent to get(False).

multiprocessing.Queue has a few additional methods not found in queue.Queue. These methods are
usually unnecessary for most code:

close()
Indicate that no more data will be put on this queue by the current process. The background
thread will quit once it has flushed all buffered data to the pipe. This is called automatically
when the queue is garbage collected.

join_thread()
Join the background thread. This can only be used after close() has been called. It blocks until
the background thread exits, ensuring that all data in the buffer has been flushed to the pipe.

By default if a process is not the creator of the queue then on exit it will attempt to join the
queue’s background thread. The process can call cancel_join_thread() to make join_thread() do
nothing.

cancel_join_thread()
Prevent join_thread() from blocking. In particular, this prevents the background thread from
being joined automatically when the process exits – see join_thread().

A better name for this method might be allow_exit_without_flush(). It is likely to cause en-
queued data to lost, and you almost certainly will not need to use it. It is really only there if
you need the current process to exit immediately without waiting to flush enqueued data to the
underlying pipe, and you don’t care about lost data.

Note: This class’s functionality requires a functioning shared semaphore implementation on the
host operating system. Without one, the functionality in this class will be disabled, and attempts to
instantiate a Queue will result in an ImportError. See bpo-3770 for additional information. The same
holds true for any of the specialized queue types listed below.

class multiprocessing.SimpleQueue
It is a simplified Queue type, very close to a locked Pipe.

730 Chapter 17. Concurrent Execution

https://bugs.python.org/issue3770

The Python Library Reference, Release 3.5.7

empty()
Return True if the queue is empty, False otherwise.

get()
Remove and return an item from the queue.

put(item)
Put item into the queue.

class multiprocessing.JoinableQueue([maxsize])
JoinableQueue, a Queue subclass, is a queue which additionally has task_done() and join() methods.

task_done()
Indicate that a formerly enqueued task is complete. Used by queue consumers. For each get()
used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the
task is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that
a task_done() call was received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

join()
Block until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes
down whenever a consumer calls task_done() to indicate that the item was retrieved and all work
on it is complete. When the count of unfinished tasks drops to zero, join() unblocks.

Miscellaneous

multiprocessing.active_children()
Return list of all live children of the current process.

Calling this has the side effect of “joining” any processes which have already finished.

multiprocessing.cpu_count()
Return the number of CPUs in the system. May raise NotImplementedError.

See also:

os.cpu_count()

multiprocessing.current_process()
Return the Process object corresponding to the current process.

An analogue of threading.current_thread().

multiprocessing.freeze_support()
Add support for when a program which uses multiprocessing has been frozen to produce a Windows
executable. (Has been tested with py2exe, PyInstaller and cx_Freeze.)

One needs to call this function straight after the if __name__ == '__main__' line of the main
module. For example:

from multiprocessing import Process, freeze_support

def f():
print('hello world!')

if __name__ == '__main__':

(continues on next page)

17.2. multiprocessing — Process-based parallelism 731

The Python Library Reference, Release 3.5.7

(continued from previous page)

freeze_support()
Process(target=f).start()

If the freeze_support() line is omitted then trying to run the frozen executable will raise RuntimeError.

Calling freeze_support() has no effect when invoked on any operating system other than Windows. In
addition, if the module is being run normally by the Python interpreter on Windows (the program has
not been frozen), then freeze_support() has no effect.

multiprocessing.get_all_start_methods()
Returns a list of the supported start methods, the first of which is the default. The possible start
methods are 'fork', 'spawn' and 'forkserver'. On Windows only 'spawn' is available. On Unix
'fork' and 'spawn' are always supported, with 'fork' being the default.

New in version 3.4.

multiprocessing.get_context(method=None)
Return a context object which has the same attributes as the multiprocessing module.

If method is None then the default context is returned. Otherwise method should be 'fork', 'spawn',
'forkserver'. ValueError is raised if the specified start method is not available.

New in version 3.4.

multiprocessing.get_start_method(allow_none=False)
Return the name of start method used for starting processes.

If the start method has not been fixed and allow_none is false, then the start method is fixed to the
default and the name is returned. If the start method has not been fixed and allow_none is true then
None is returned.

The return value can be 'fork', 'spawn', 'forkserver' or None. 'fork' is the default on Unix, while
'spawn' is the default on Windows.

New in version 3.4.

multiprocessing.set_executable()
Sets the path of the Python interpreter to use when starting a child process. (By default sys.executable
is used). Embedders will probably need to do some thing like

set_executable(os.path.join(sys.exec_prefix, 'pythonw.exe'))

before they can create child processes.

Changed in version 3.4: Now supported on Unix when the 'spawn' start method is used.

multiprocessing.set_start_method(method)
Set the method which should be used to start child processes. method can be 'fork', 'spawn' or
'forkserver'.

Note that this should be called at most once, and it should be protected inside the if __name__ ==
'__main__' clause of the main module.

New in version 3.4.

Note: multiprocessing contains no analogues of threading.active_count(), threading.enumerate(), threading.
settrace(), threading.setprofile(), threading.Timer, or threading.local.

732 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

Connection Objects

Connection objects allow the sending and receiving of picklable objects or strings. They can be thought of
as message oriented connected sockets.

Connection objects are usually created using Pipe() – see also Listeners and Clients.

class multiprocessing.Connection

send(obj)
Send an object to the other end of the connection which should be read using recv().

The object must be picklable. Very large pickles (approximately 32 MB+, though it depends on
the OS) may raise a ValueError exception.

recv()
Return an object sent from the other end of the connection using send(). Blocks until there is
something to receive. Raises EOFError if there is nothing left to receive and the other end was
closed.

fileno()
Return the file descriptor or handle used by the connection.

close()
Close the connection.

This is called automatically when the connection is garbage collected.

poll([timeout])
Return whether there is any data available to be read.

If timeout is not specified then it will return immediately. If timeout is a number then this
specifies the maximum time in seconds to block. If timeout is None then an infinite timeout is
used.

Note that multiple connection objects may be polled at once by using multiprocessing.connection.
wait().

send_bytes(buffer[, offset[, size]])
Send byte data from a bytes-like object as a complete message.

If offset is given then data is read from that position in buffer. If size is given then that many
bytes will be read from buffer. Very large buffers (approximately 32 MB+, though it depends on
the OS) may raise a ValueError exception

recv_bytes([maxlength])
Return a complete message of byte data sent from the other end of the connection as a string.
Blocks until there is something to receive. Raises EOFError if there is nothing left to receive and
the other end has closed.

If maxlength is specified and the message is longer than maxlength then OSError is raised and
the connection will no longer be readable.

Changed in version 3.3: This function used to raise IOError, which is now an alias of OSError.

recv_bytes_into(buffer[, offset])
Read into buffer a complete message of byte data sent from the other end of the connection and
return the number of bytes in the message. Blocks until there is something to receive. Raises
EOFError if there is nothing left to receive and the other end was closed.

17.2. multiprocessing — Process-based parallelism 733

The Python Library Reference, Release 3.5.7

buffer must be a writable bytes-like object. If offset is given then the message will be written into
the buffer from that position. Offset must be a non-negative integer less than the length of buffer
(in bytes).

If the buffer is too short then a BufferTooShort exception is raised and the complete message is
available as e.args[0] where e is the exception instance.

Changed in version 3.3: Connection objects themselves can now be transferred between processes using
Connection.send() and Connection.recv().

New in version 3.3: Connection objects now support the context management protocol – see Context
Manager Types. __enter__() returns the connection object, and __exit__() calls close().

For example:

>>> from multiprocessing import Pipe
>>> a, b = Pipe()
>>> a.send([1, 'hello', None])
>>> b.recv()
[1, 'hello', None]
>>> b.send_bytes(b'thank you')
>>> a.recv_bytes()
b'thank you'
>>> import array
>>> arr1 = array.array('i', range(5))
>>> arr2 = array.array('i', [0] * 10)
>>> a.send_bytes(arr1)
>>> count = b.recv_bytes_into(arr2)
>>> assert count == len(arr1) * arr1.itemsize
>>> arr2
array('i', [0, 1, 2, 3, 4, 0, 0, 0, 0, 0])

Warning: The Connection.recv() method automatically unpickles the data it receives, which can be a
security risk unless you can trust the process which sent the message.

Therefore, unless the connection object was produced using Pipe() you should only use the recv() and
send() methods after performing some sort of authentication. See Authentication keys.

Warning: If a process is killed while it is trying to read or write to a pipe then the data in the pipe is
likely to become corrupted, because it may become impossible to be sure where the message boundaries
lie.

Synchronization primitives

Generally synchronization primitives are not as necessary in a multiprocess program as they are in a multi-
threaded program. See the documentation for threading module.

Note that one can also create synchronization primitives by using a manager object – see Managers.

class multiprocessing.Barrier(parties[, action[, timeout]])
A barrier object: a clone of threading.Barrier.

New in version 3.3.

734 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

class multiprocessing.BoundedSemaphore([value])
A bounded semaphore object: a close analog of threading.BoundedSemaphore.

A solitary difference from its close analog exists: its acquire method’s first argument is named block,
as is consistent with Lock.acquire().

Note: On Mac OS X, this is indistinguishable from Semaphore because sem_getvalue() is not imple-
mented on that platform.

class multiprocessing.Condition([lock])
A condition variable: an alias for threading.Condition.

If lock is specified then it should be a Lock or RLock object from multiprocessing.

Changed in version 3.3: The wait_for() method was added.

class multiprocessing.Event
A clone of threading.Event.

class multiprocessing.Lock
A non-recursive lock object: a close analog of threading.Lock. Once a process or thread has acquired
a lock, subsequent attempts to acquire it from any process or thread will block until it is released; any
process or thread may release it. The concepts and behaviors of threading.Lock as it applies to threads
are replicated here in multiprocessing.Lock as it applies to either processes or threads, except as noted.

Note that Lock is actually a factory function which returns an instance of multiprocessing.synchronize.
Lock initialized with a default context.

Lock supports the context manager protocol and thus may be used in with statements.

acquire(block=True, timeout=None)
Acquire a lock, blocking or non-blocking.

With the block argument set to True (the default), the method call will block until the lock is in
an unlocked state, then set it to locked and return True. Note that the name of this first argument
differs from that in threading.Lock.acquire().

With the block argument set to False, the method call does not block. If the lock is currently in
a locked state, return False; otherwise set the lock to a locked state and return True.

When invoked with a positive, floating-point value for timeout, block for at most the number
of seconds specified by timeout as long as the lock can not be acquired. Invocations with a
negative value for timeout are equivalent to a timeout of zero. Invocations with a timeout value
of None (the default) set the timeout period to infinite. Note that the treatment of negative or
None values for timeout differs from the implemented behavior in threading.Lock.acquire(). The
timeout argument has no practical implications if the block argument is set to False and is thus
ignored. Returns True if the lock has been acquired or False if the timeout period has elapsed.

release()
Release a lock. This can be called from any process or thread, not only the process or thread
which originally acquired the lock.

Behavior is the same as in threading.Lock.release() except that when invoked on an unlocked lock,
a ValueError is raised.

class multiprocessing.RLock
A recursive lock object: a close analog of threading.RLock. A recursive lock must be released by the
process or thread that acquired it. Once a process or thread has acquired a recursive lock, the same
process or thread may acquire it again without blocking; that process or thread must release it once
for each time it has been acquired.

17.2. multiprocessing — Process-based parallelism 735

The Python Library Reference, Release 3.5.7

Note that RLock is actually a factory function which returns an instance of multiprocessing.synchronize.
RLock initialized with a default context.

RLock supports the context manager protocol and thus may be used in with statements.

acquire(block=True, timeout=None)
Acquire a lock, blocking or non-blocking.

When invoked with the block argument set to True, block until the lock is in an unlocked state
(not owned by any process or thread) unless the lock is already owned by the current process or
thread. The current process or thread then takes ownership of the lock (if it does not already have
ownership) and the recursion level inside the lock increments by one, resulting in a return value
of True. Note that there are several differences in this first argument’s behavior compared to the
implementation of threading.RLock.acquire(), starting with the name of the argument itself.

When invoked with the block argument set to False, do not block. If the lock has already been
acquired (and thus is owned) by another process or thread, the current process or thread does
not take ownership and the recursion level within the lock is not changed, resulting in a return
value of False. If the lock is in an unlocked state, the current process or thread takes ownership
and the recursion level is incremented, resulting in a return value of True.

Use and behaviors of the timeout argument are the same as in Lock.acquire(). Note that some of
these behaviors of timeout differ from the implemented behaviors in threading.RLock.acquire().

release()
Release a lock, decrementing the recursion level. If after the decrement the recursion level is zero,
reset the lock to unlocked (not owned by any process or thread) and if any other processes or
threads are blocked waiting for the lock to become unlocked, allow exactly one of them to proceed.
If after the decrement the recursion level is still nonzero, the lock remains locked and owned by
the calling process or thread.

Only call this method when the calling process or thread owns the lock. An AssertionError is
raised if this method is called by a process or thread other than the owner or if the lock is in an
unlocked (unowned) state. Note that the type of exception raised in this situation differs from
the implemented behavior in threading.RLock.release().

class multiprocessing.Semaphore([value])
A semaphore object: a close analog of threading.Semaphore.

A solitary difference from its close analog exists: its acquire method’s first argument is named block,
as is consistent with Lock.acquire().

Note: On Mac OS X, sem_timedwait is unsupported, so calling acquire() with a timeout will emulate that
function’s behavior using a sleeping loop.

Note: If the SIGINT signal generated by Ctrl-C arrives while the main thread is blocked by a call to
BoundedSemaphore.acquire(), Lock.acquire(), RLock.acquire(), Semaphore.acquire(), Condition.acquire() or
Condition.wait() then the call will be immediately interrupted and KeyboardInterrupt will be raised.

This differs from the behaviour of threading where SIGINT will be ignored while the equivalent blocking
calls are in progress.

Note: Some of this package’s functionality requires a functioning shared semaphore implementation on the
host operating system. Without one, the multiprocessing.synchronize module will be disabled, and attempts

736 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

to import it will result in an ImportError. See bpo-3770 for additional information.

Shared ctypes Objects

It is possible to create shared objects using shared memory which can be inherited by child processes.

multiprocessing.Value(typecode_or_type, *args, lock=True)
Return a ctypes object allocated from shared memory. By default the return value is actually a
synchronized wrapper for the object. The object itself can be accessed via the value attribute of a
Value.

typecode_or_type determines the type of the returned object: it is either a ctypes type or a one
character typecode of the kind used by the array module. *args is passed on to the constructor for the
type.

If lock is True (the default) then a new recursive lock object is created to synchronize access to the
value. If lock is a Lock or RLock object then that will be used to synchronize access to the value. If
lock is False then access to the returned object will not be automatically protected by a lock, so it will
not necessarily be “process-safe”.

Operations like += which involve a read and write are not atomic. So if, for instance, you want to
atomically increment a shared value it is insufficient to just do

counter.value += 1

Assuming the associated lock is recursive (which it is by default) you can instead do

with counter.get_lock():
counter.value += 1

Note that lock is a keyword-only argument.

multiprocessing.Array(typecode_or_type, size_or_initializer, *, lock=True)
Return a ctypes array allocated from shared memory. By default the return value is actually a syn-
chronized wrapper for the array.

typecode_or_type determines the type of the elements of the returned array: it is either a ctypes
type or a one character typecode of the kind used by the array module. If size_or_initializer is an
integer, then it determines the length of the array, and the array will be initially zeroed. Otherwise,
size_or_initializer is a sequence which is used to initialize the array and whose length determines the
length of the array.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If
lock is a Lock or RLock object then that will be used to synchronize access to the value. If lock is
False then access to the returned object will not be automatically protected by a lock, so it will not
necessarily be “process-safe”.

Note that lock is a keyword only argument.

Note that an array of ctypes.c_char has value and raw attributes which allow one to use it to store
and retrieve strings.

The multiprocessing.sharedctypes module

The multiprocessing.sharedctypes module provides functions for allocating ctypes objects from shared mem-
ory which can be inherited by child processes.

17.2. multiprocessing — Process-based parallelism 737

https://bugs.python.org/issue3770

The Python Library Reference, Release 3.5.7

Note: Although it is possible to store a pointer in shared memory remember that this will refer to a location
in the address space of a specific process. However, the pointer is quite likely to be invalid in the context of
a second process and trying to dereference the pointer from the second process may cause a crash.

multiprocessing.sharedctypes.RawArray(typecode_or_type, size_or_initializer)
Return a ctypes array allocated from shared memory.

typecode_or_type determines the type of the elements of the returned array: it is either a ctypes
type or a one character typecode of the kind used by the array module. If size_or_initializer is an
integer then it determines the length of the array, and the array will be initially zeroed. Otherwise
size_or_initializer is a sequence which is used to initialize the array and whose length determines the
length of the array.

Note that setting and getting an element is potentially non-atomic – use Array() instead to make sure
that access is automatically synchronized using a lock.

multiprocessing.sharedctypes.RawValue(typecode_or_type, *args)
Return a ctypes object allocated from shared memory.

typecode_or_type determines the type of the returned object: it is either a ctypes type or a one
character typecode of the kind used by the array module. *args is passed on to the constructor for the
type.

Note that setting and getting the value is potentially non-atomic – use Value() instead to make sure
that access is automatically synchronized using a lock.

Note that an array of ctypes.c_char has value and raw attributes which allow one to use it to store
and retrieve strings – see documentation for ctypes.

multiprocessing.sharedctypes.Array(typecode_or_type, size_or_initializer, *, lock=True)
The same as RawArray() except that depending on the value of lock a process-safe synchronization
wrapper may be returned instead of a raw ctypes array.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If
lock is a Lock or RLock object then that will be used to synchronize access to the value. If lock is
False then access to the returned object will not be automatically protected by a lock, so it will not
necessarily be “process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.sharedctypes.Value(typecode_or_type, *args, lock=True)
The same as RawValue() except that depending on the value of lock a process-safe synchronization
wrapper may be returned instead of a raw ctypes object.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If
lock is a Lock or RLock object then that will be used to synchronize access to the value. If lock is
False then access to the returned object will not be automatically protected by a lock, so it will not
necessarily be “process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.sharedctypes.copy(obj)
Return a ctypes object allocated from shared memory which is a copy of the ctypes object obj.

multiprocessing.sharedctypes.synchronized(obj[, lock])
Return a process-safe wrapper object for a ctypes object which uses lock to synchronize access. If lock
is None (the default) then a multiprocessing.RLock object is created automatically.

A synchronized wrapper will have two methods in addition to those of the object it wraps: get_obj()
returns the wrapped object and get_lock() returns the lock object used for synchronization.

738 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

Note that accessing the ctypes object through the wrapper can be a lot slower than accessing the raw
ctypes object.

Changed in version 3.5: Synchronized objects support the context manager protocol.

The table below compares the syntax for creating shared ctypes objects from shared memory with the normal
ctypes syntax. (In the table MyStruct is some subclass of ctypes.Structure.)

ctypes sharedctypes using type sharedctypes using typecode
c_double(2.4) RawValue(c_double, 2.4) RawValue(‘d’, 2.4)
MyStruct(4, 6) RawValue(MyStruct, 4, 6)
(c_short * 7)() RawArray(c_short, 7) RawArray(‘h’, 7)
(c_int * 3)(9, 2, 8) RawArray(c_int, (9, 2, 8)) RawArray(‘i’, (9, 2, 8))

Below is an example where a number of ctypes objects are modified by a child process:

from multiprocessing import Process, Lock
from multiprocessing.sharedctypes import Value, Array
from ctypes import Structure, c_double

class Point(Structure):
fields = [('x', c_double), ('y', c_double)]

def modify(n, x, s, A):
n.value **= 2
x.value **= 2
s.value = s.value.upper()
for a in A:

a.x **= 2
a.y **= 2

if __name__ == '__main__':
lock = Lock()

n = Value('i', 7)
x = Value(c_double, 1.0/3.0, lock=False)
s = Array('c', b'hello world', lock=lock)
A = Array(Point, [(1.875,-6.25), (-5.75,2.0), (2.375,9.5)], lock=lock)

p = Process(target=modify, args=(n, x, s, A))
p.start()
p.join()

print(n.value)
print(x.value)
print(s.value)
print([(a.x, a.y) for a in A])

The results printed are

49
0.1111111111111111
HELLO WORLD
[(3.515625, 39.0625), (33.0625, 4.0), (5.640625, 90.25)]

17.2. multiprocessing — Process-based parallelism 739

The Python Library Reference, Release 3.5.7

Managers

Managers provide a way to create data which can be shared between different processes, including sharing
over a network between processes running on different machines. A manager object controls a server process
which manages shared objects. Other processes can access the shared objects by using proxies.

multiprocessing.Manager()
Returns a started SyncManager object which can be used for sharing objects between processes. The
returned manager object corresponds to a spawned child process and has methods which will create
shared objects and return corresponding proxies.

Manager processes will be shutdown as soon as they are garbage collected or their parent process exits. The
manager classes are defined in the multiprocessing.managers module:

class multiprocessing.managers.BaseManager([address[, authkey]])
Create a BaseManager object.

Once created one should call start() or get_server().serve_forever() to ensure that the manager object
refers to a started manager process.

address is the address on which the manager process listens for new connections. If address is None
then an arbitrary one is chosen.

authkey is the authentication key which will be used to check the validity of incoming connections to
the server process. If authkey is None then current_process().authkey is used. Otherwise authkey is
used and it must be a byte string.

start([initializer[, initargs]])
Start a subprocess to start the manager. If initializer is not None then the subprocess will call
initializer(*initargs) when it starts.

get_server()
Returns a Server object which represents the actual server under the control of the Manager. The
Server object supports the serve_forever() method:

>>> from multiprocessing.managers import BaseManager
>>> manager = BaseManager(address=('', 50000), authkey=b'abc')
>>> server = manager.get_server()
>>> server.serve_forever()

Server additionally has an address attribute.

connect()
Connect a local manager object to a remote manager process:

>>> from multiprocessing.managers import BaseManager
>>> m = BaseManager(address=('127.0.0.1', 5000), authkey=b'abc')
>>> m.connect()

shutdown()
Stop the process used by the manager. This is only available if start() has been used to start the
server process.

This can be called multiple times.

register(typeid[, callable[, proxytype[, exposed[, method_to_typeid[, create_method]]]]])
A classmethod which can be used for registering a type or callable with the manager class.

typeid is a “type identifier” which is used to identify a particular type of shared object. This must
be a string.

740 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

callable is a callable used for creating objects for this type identifier. If a manager instance will be
connected to the server using the connect() method, or if the create_method argument is False
then this can be left as None.

proxytype is a subclass of BaseProxy which is used to create proxies for shared objects with this
typeid. If None then a proxy class is created automatically.

exposed is used to specify a sequence of method names which proxies for this typeid should be
allowed to access using BaseProxy._callmethod(). (If exposed is None then proxytype._exposed_
is used instead if it exists.) In the case where no exposed list is specified, all “public methods” of
the shared object will be accessible. (Here a “public method” means any attribute which has a
__call__() method and whose name does not begin with '_'.)

method_to_typeid is a mapping used to specify the return type of those exposed methods which
should return a proxy. It maps method names to typeid strings. (If method_to_typeid is None
then proxytype._method_to_typeid_ is used instead if it exists.) If a method’s name is not a
key of this mapping or if the mapping is None then the object returned by the method will be
copied by value.

create_method determines whether a method should be created with name typeid which can be
used to tell the server process to create a new shared object and return a proxy for it. By default
it is True.

BaseManager instances also have one read-only property:

address
The address used by the manager.

Changed in version 3.3: Manager objects support the context management protocol – see Context
Manager Types. __enter__() starts the server process (if it has not already started) and then
returns the manager object. __exit__() calls shutdown().

In previous versions __enter__() did not start the manager’s server process if it was not already
started.

class multiprocessing.managers.SyncManager
A subclass of BaseManager which can be used for the synchronization of processes. Objects of this
type are returned by multiprocessing.Manager().

It also supports creation of shared lists and dictionaries.

Barrier(parties[, action[, timeout]])
Create a shared threading.Barrier object and return a proxy for it.

New in version 3.3.

BoundedSemaphore([value])
Create a shared threading.BoundedSemaphore object and return a proxy for it.

Condition([lock])
Create a shared threading.Condition object and return a proxy for it.

If lock is supplied then it should be a proxy for a threading.Lock or threading.RLock object.

Changed in version 3.3: The wait_for() method was added.

Event()
Create a shared threading.Event object and return a proxy for it.

Lock()
Create a shared threading.Lock object and return a proxy for it.

17.2. multiprocessing — Process-based parallelism 741

The Python Library Reference, Release 3.5.7

Namespace()
Create a shared Namespace object and return a proxy for it.

Queue([maxsize])
Create a shared queue.Queue object and return a proxy for it.

RLock()
Create a shared threading.RLock object and return a proxy for it.

Semaphore([value])
Create a shared threading.Semaphore object and return a proxy for it.

Array(typecode, sequence)
Create an array and return a proxy for it.

Value(typecode, value)
Create an object with a writable value attribute and return a proxy for it.

dict()
dict(mapping)
dict(sequence)

Create a shared dict object and return a proxy for it.

list()
list(sequence)

Create a shared list object and return a proxy for it.

Note: Modifications to mutable values or items in dict and list proxies will not be propagated through
the manager, because the proxy has no way of knowing when its values or items are modified. To
modify such an item, you can re-assign the modified object to the container proxy:

create a list proxy and append a mutable object (a dictionary)
lproxy = manager.list()
lproxy.append({})
now mutate the dictionary
d = lproxy[0]
d['a'] = 1
d['b'] = 2
at this point, the changes to d are not yet synced, but by
reassigning the dictionary, the proxy is notified of the change
lproxy[0] = d

class multiprocessing.managers.Namespace
A type that can register with SyncManager.

A namespace object has no public methods, but does have writable attributes. Its representation shows
the values of its attributes.

However, when using a proxy for a namespace object, an attribute beginning with '_' will be an
attribute of the proxy and not an attribute of the referent:

>>> manager = multiprocessing.Manager()
>>> Global = manager.Namespace()
>>> Global.x = 10
>>> Global.y = 'hello'
>>> Global._z = 12.3 # this is an attribute of the proxy
>>> print(Global)
Namespace(x=10, y='hello')

742 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

Customized managers

To create one’s own manager, one creates a subclass of BaseManager and uses the register() classmethod to
register new types or callables with the manager class. For example:

from multiprocessing.managers import BaseManager

class MathsClass:
def add(self, x, y):

return x + y
def mul(self, x, y):

return x * y

class MyManager(BaseManager):
pass

MyManager.register('Maths', MathsClass)

if __name__ == '__main__':
with MyManager() as manager:

maths = manager.Maths()
print(maths.add(4, 3)) # prints 7
print(maths.mul(7, 8)) # prints 56

Using a remote manager

It is possible to run a manager server on one machine and have clients use it from other machines (assuming
that the firewalls involved allow it).

Running the following commands creates a server for a single shared queue which remote clients can access:

>>> from multiprocessing.managers import BaseManager
>>> import queue
>>> queue = queue.Queue()
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue', callable=lambda:queue)
>>> m = QueueManager(address=('', 50000), authkey=b'abracadabra')
>>> s = m.get_server()
>>> s.serve_forever()

One client can access the server as follows:

>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue')
>>> m = QueueManager(address=('foo.bar.org', 50000), authkey=b'abracadabra')
>>> m.connect()
>>> queue = m.get_queue()
>>> queue.put('hello')

Another client can also use it:

>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue')
>>> m = QueueManager(address=('foo.bar.org', 50000), authkey=b'abracadabra')

(continues on next page)

17.2. multiprocessing — Process-based parallelism 743

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> m.connect()
>>> queue = m.get_queue()
>>> queue.get()
'hello'

Local processes can also access that queue, using the code from above on the client to access it remotely:

>>> from multiprocessing import Process, Queue
>>> from multiprocessing.managers import BaseManager
>>> class Worker(Process):
... def __init__(self, q):
... self.q = q
... super(Worker, self).__init__()
... def run(self):
... self.q.put('local hello')
...
>>> queue = Queue()
>>> w = Worker(queue)
>>> w.start()
>>> class QueueManager(BaseManager): pass
...
>>> QueueManager.register('get_queue', callable=lambda: queue)
>>> m = QueueManager(address=('', 50000), authkey=b'abracadabra')
>>> s = m.get_server()
>>> s.serve_forever()

Proxy Objects

A proxy is an object which refers to a shared object which lives (presumably) in a different process. The
shared object is said to be the referent of the proxy. Multiple proxy objects may have the same referent.

A proxy object has methods which invoke corresponding methods of its referent (although not every method
of the referent will necessarily be available through the proxy). A proxy can usually be used in most of the
same ways that its referent can:

>>> from multiprocessing import Manager
>>> manager = Manager()
>>> l = manager.list([i*i for i in range(10)])
>>> print(l)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> print(repr(l))
<ListProxy object, typeid 'list' at 0x...>
>>> l[4]
16
>>> l[2:5]
[4, 9, 16]

Notice that applying str() to a proxy will return the representation of the referent, whereas applying repr()
will return the representation of the proxy.

An important feature of proxy objects is that they are picklable so they can be passed between processes.
Note, however, that if a proxy is sent to the corresponding manager’s process then unpickling it will produce
the referent itself. This means, for example, that one shared object can contain a second:

744 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

>>> a = manager.list()
>>> b = manager.list()
>>> a.append(b) # referent of a now contains referent of b
>>> print(a, b)
[[]] []
>>> b.append('hello')
>>> print(a, b)
[['hello']] ['hello']

Note: The proxy types in multiprocessing do nothing to support comparisons by value. So, for instance,
we have:

>>> manager.list([1,2,3]) == [1,2,3]
False

One should just use a copy of the referent instead when making comparisons.

class multiprocessing.managers.BaseProxy
Proxy objects are instances of subclasses of BaseProxy.

_callmethod(methodname[, args[, kwds]])
Call and return the result of a method of the proxy’s referent.

If proxy is a proxy whose referent is obj then the expression

proxy._callmethod(methodname, args, kwds)

will evaluate the expression

getattr(obj, methodname)(*args, **kwds)

in the manager’s process.

The returned value will be a copy of the result of the call or a proxy to a new shared object – see
documentation for the method_to_typeid argument of BaseManager.register().

If an exception is raised by the call, then is re-raised by _callmethod(). If some other exception is
raised in the manager’s process then this is converted into a RemoteError exception and is raised
by _callmethod().

Note in particular that an exception will be raised if methodname has not been exposed.

An example of the usage of _callmethod():

>>> l = manager.list(range(10))
>>> l._callmethod('__len__')
10
>>> l._callmethod('__getitem__', (slice(2, 7),)) # equivalent to l[2:7]
[2, 3, 4, 5, 6]
>>> l._callmethod('__getitem__', (20,)) # equivalent to l[20]
Traceback (most recent call last):
...
IndexError: list index out of range

_getvalue()
Return a copy of the referent.

If the referent is unpicklable then this will raise an exception.

17.2. multiprocessing — Process-based parallelism 745

The Python Library Reference, Release 3.5.7

__repr__()
Return a representation of the proxy object.

__str__()
Return the representation of the referent.

Cleanup

A proxy object uses a weakref callback so that when it gets garbage collected it deregisters itself from the
manager which owns its referent.

A shared object gets deleted from the manager process when there are no longer any proxies referring to it.

Process Pools

One can create a pool of processes which will carry out tasks submitted to it with the Pool class.

class multiprocessing.pool.Pool([processes[, initializer[, initargs[, maxtasksperchild[, context]]]]])
A process pool object which controls a pool of worker processes to which jobs can be submitted. It
supports asynchronous results with timeouts and callbacks and has a parallel map implementation.

processes is the number of worker processes to use. If processes is None then the number returned by
os.cpu_count() is used.

If initializer is not None then each worker process will call initializer(*initargs) when it starts.

maxtasksperchild is the number of tasks a worker process can complete before it will exit and be replaced
with a fresh worker process, to enable unused resources to be freed. The default maxtasksperchild is
None, which means worker processes will live as long as the pool.

context can be used to specify the context used for starting the worker processes. Usually a pool is
created using the function multiprocessing.Pool() or the Pool() method of a context object. In both
cases context is set appropriately.

Note that the methods of the pool object should only be called by the process which created the pool.

New in version 3.2: maxtasksperchild

New in version 3.4: context

Note: Worker processes within a Pool typically live for the complete duration of the Pool’s work
queue. A frequent pattern found in other systems (such as Apache, mod_wsgi, etc) to free resources
held by workers is to allow a worker within a pool to complete only a set amount of work before being
exiting, being cleaned up and a new process spawned to replace the old one. The maxtasksperchild
argument to the Pool exposes this ability to the end user.

apply(func[, args[, kwds]])
Call func with arguments args and keyword arguments kwds. It blocks until the result is ready.
Given this blocks, apply_async() is better suited for performing work in parallel. Additionally,
func is only executed in one of the workers of the pool.

apply_async(func[, args[, kwds[, callback[, error_callback]]]])
A variant of the apply() method which returns a result object.

If callback is specified then it should be a callable which accepts a single argument. When the
result becomes ready callback is applied to it, that is unless the call failed, in which case the
error_callback is applied instead.

746 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

If error_callback is specified then it should be a callable which accepts a single argument. If the
target function fails, then the error_callback is called with the exception instance.

Callbacks should complete immediately since otherwise the thread which handles the results will
get blocked.

map(func, iterable[, chunksize])
A parallel equivalent of the map() built-in function (it supports only one iterable argument
though). It blocks until the result is ready.

This method chops the iterable into a number of chunks which it submits to the process pool as
separate tasks. The (approximate) size of these chunks can be specified by setting chunksize to a
positive integer.

map_async(func, iterable[, chunksize[, callback[, error_callback]]])
A variant of the map() method which returns a result object.

If callback is specified then it should be a callable which accepts a single argument. When the
result becomes ready callback is applied to it, that is unless the call failed, in which case the
error_callback is applied instead.

If error_callback is specified then it should be a callable which accepts a single argument. If the
target function fails, then the error_callback is called with the exception instance.

Callbacks should complete immediately since otherwise the thread which handles the results will
get blocked.

imap(func, iterable[, chunksize])
A lazier version of map().

The chunksize argument is the same as the one used by the map() method. For very long iterables
using a large value for chunksize can make the job complete much faster than using the default
value of 1.

Also if chunksize is 1 then the next() method of the iterator returned by the imap() method has an
optional timeout parameter: next(timeout) will raise multiprocessing.TimeoutError if the result
cannot be returned within timeout seconds.

imap_unordered(func, iterable[, chunksize])
The same as imap() except that the ordering of the results from the returned iterator should be
considered arbitrary. (Only when there is only one worker process is the order guaranteed to be
“correct”.)

starmap(func, iterable[, chunksize])
Like map() except that the elements of the iterable are expected to be iterables that are unpacked
as arguments.

Hence an iterable of [(1,2), (3, 4)] results in [func(1,2), func(3,4)].

New in version 3.3.

starmap_async(func, iterable[, chunksize[, callback[, error_back]]])
A combination of starmap() and map_async() that iterates over iterable of iterables and calls
func with the iterables unpacked. Returns a result object.

New in version 3.3.

close()
Prevents any more tasks from being submitted to the pool. Once all the tasks have been completed
the worker processes will exit.

17.2. multiprocessing — Process-based parallelism 747

The Python Library Reference, Release 3.5.7

terminate()
Stops the worker processes immediately without completing outstanding work. When the pool
object is garbage collected terminate() will be called immediately.

join()
Wait for the worker processes to exit. One must call close() or terminate() before using join().

New in version 3.3: Pool objects now support the context management protocol – see Context Manager
Types. __enter__() returns the pool object, and __exit__() calls terminate().

class multiprocessing.pool.AsyncResult
The class of the result returned by Pool.apply_async() and Pool.map_async().

get([timeout])
Return the result when it arrives. If timeout is not None and the result does not arrive within
timeout seconds then multiprocessing.TimeoutError is raised. If the remote call raised an excep-
tion then that exception will be reraised by get().

wait([timeout])
Wait until the result is available or until timeout seconds pass.

ready()
Return whether the call has completed.

successful()
Return whether the call completed without raising an exception. Will raise AssertionError if the
result is not ready.

The following example demonstrates the use of a pool:

from multiprocessing import Pool
import time

def f(x):
return x*x

if __name__ == '__main__':
with Pool(processes=4) as pool: # start 4 worker processes

result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously in a single process
print(result.get(timeout=1)) # prints "100" unless your computer is *very* slow

print(pool.map(f, range(10))) # prints "[0, 1, 4,..., 81]"

it = pool.imap(f, range(10))
print(next(it)) # prints "0"
print(next(it)) # prints "1"
print(it.next(timeout=1)) # prints "4" unless your computer is *very* slow

result = pool.apply_async(time.sleep, (10,))
print(result.get(timeout=1)) # raises multiprocessing.TimeoutError

Listeners and Clients

Usually message passing between processes is done using queues or by using Connection objects returned by
Pipe().

However, the multiprocessing.connection module allows some extra flexibility. It basically gives a high level
message oriented API for dealing with sockets or Windows named pipes. It also has support for digest
authentication using the hmac module, and for polling multiple connections at the same time.

748 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

multiprocessing.connection.deliver_challenge(connection, authkey)
Send a randomly generated message to the other end of the connection and wait for a reply.

If the reply matches the digest of the message using authkey as the key then a welcome message is sent
to the other end of the connection. Otherwise AuthenticationError is raised.

multiprocessing.connection.answer_challenge(connection, authkey)
Receive a message, calculate the digest of the message using authkey as the key, and then send the
digest back.

If a welcome message is not received, then AuthenticationError is raised.

multiprocessing.connection.Client(address[, family[, authenticate[, authkey]]])
Attempt to set up a connection to the listener which is using address address, returning a Connection.

The type of the connection is determined by family argument, but this can generally be omitted since
it can usually be inferred from the format of address. (See Address Formats)

If authenticate is True or authkey is a byte string then digest authentication is used. The key used for
authentication will be either authkey or current_process().authkey if authkey is None. If authentica-
tion fails then AuthenticationError is raised. See Authentication keys.

class multiprocessing.connection.Listener([address[, family[, backlog[, authenticate[, authkey]]]]])
A wrapper for a bound socket or Windows named pipe which is ‘listening’ for connections.

address is the address to be used by the bound socket or named pipe of the listener object.

Note: If an address of ‘0.0.0.0’ is used, the address will not be a connectable end point on Windows.
If you require a connectable end-point, you should use ‘127.0.0.1’.

family is the type of socket (or named pipe) to use. This can be one of the strings 'AF_INET' (for a
TCP socket), 'AF_UNIX' (for a Unix domain socket) or 'AF_PIPE' (for a Windows named pipe).
Of these only the first is guaranteed to be available. If family is None then the family is inferred from
the format of address. If address is also None then a default is chosen. This default is the family which
is assumed to be the fastest available. See Address Formats. Note that if family is 'AF_UNIX'
and address is None then the socket will be created in a private temporary directory created using
tempfile.mkstemp().

If the listener object uses a socket then backlog (1 by default) is passed to the listen() method of the
socket once it has been bound.

If authenticate is True (False by default) or authkey is not None then digest authentication is used.

If authkey is a byte string then it will be used as the authentication key; otherwise it must be None.

If authkey is None and authenticate is True then current_process().authkey is used as the authentica-
tion key. If authkey is None and authenticate is False then no authentication is done. If authentication
fails then AuthenticationError is raised. See Authentication keys.

accept()
Accept a connection on the bound socket or named pipe of the listener object and return a
Connection object. If authentication is attempted and fails, then AuthenticationError is raised.

close()
Close the bound socket or named pipe of the listener object. This is called automatically when
the listener is garbage collected. However it is advisable to call it explicitly.

Listener objects have the following read-only properties:

address
The address which is being used by the Listener object.

17.2. multiprocessing — Process-based parallelism 749

The Python Library Reference, Release 3.5.7

last_accepted
The address from which the last accepted connection came. If this is unavailable then it is None.

New in version 3.3: Listener objects now support the context management protocol – see Context
Manager Types. __enter__() returns the listener object, and __exit__() calls close().

multiprocessing.connection.wait(object_list, timeout=None)
Wait till an object in object_list is ready. Returns the list of those objects in object_list which are
ready. If timeout is a float then the call blocks for at most that many seconds. If timeout is None then
it will block for an unlimited period. A negative timeout is equivalent to a zero timeout.

For both Unix and Windows, an object can appear in object_list if it is

• a readable Connection object;

• a connected and readable socket.socket object; or

• the sentinel attribute of a Process object.

A connection or socket object is ready when there is data available to be read from it, or the other end
has been closed.

Unix: wait(object_list, timeout) almost equivalent select.select(object_list, [], [], timeout). The dif-
ference is that, if select.select() is interrupted by a signal, it can raise OSError with an error number
of EINTR, whereas wait() will not.

Windows: An item in object_list must either be an integer handle which is waitable (according to the
definition used by the documentation of the Win32 function WaitForMultipleObjects()) or it can be an
object with a fileno() method which returns a socket handle or pipe handle. (Note that pipe handles
and socket handles are not waitable handles.)

New in version 3.3.

Examples

The following server code creates a listener which uses 'secret password' as an authentication key. It then
waits for a connection and sends some data to the client:

from multiprocessing.connection import Listener
from array import array

address = ('localhost', 6000) # family is deduced to be 'AF_INET'

with Listener(address, authkey=b'secret password') as listener:
with listener.accept() as conn:

print('connection accepted from', listener.last_accepted)

conn.send([2.25, None, 'junk', float])

conn.send_bytes(b'hello')

conn.send_bytes(array('i', [42, 1729]))

The following code connects to the server and receives some data from the server:

from multiprocessing.connection import Client
from array import array

address = ('localhost', 6000)

with Client(address, authkey=b'secret password') as conn:

(continues on next page)

750 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

(continued from previous page)

print(conn.recv()) # => [2.25, None, 'junk', float]

print(conn.recv_bytes()) # => 'hello'

arr = array('i', [0, 0, 0, 0, 0])
print(conn.recv_bytes_into(arr)) # => 8
print(arr) # => array('i', [42, 1729, 0, 0, 0])

The following code uses wait() to wait for messages from multiple processes at once:

import time, random
from multiprocessing import Process, Pipe, current_process
from multiprocessing.connection import wait

def foo(w):
for i in range(10):

w.send((i, current_process().name))
w.close()

if __name__ == '__main__':
readers = []

for i in range(4):
r, w = Pipe(duplex=False)
readers.append(r)
p = Process(target=foo, args=(w,))
p.start()
We close the writable end of the pipe now to be sure that
p is the only process which owns a handle for it. This
ensures that when p closes its handle for the writable end,
wait() will promptly report the readable end as being ready.
w.close()

while readers:
for r in wait(readers):

try:
msg = r.recv()

except EOFError:
readers.remove(r)

else:
print(msg)

Address Formats

• An 'AF_INET' address is a tuple of the form (hostname, port) where hostname is a string and port
is an integer.

• An 'AF_UNIX' address is a string representing a filename on the filesystem.

• An 'AF_PIPE' address is a string of the form r'\\.\pipe{PipeName}'. To use Client() to connect
to a named pipe on a remote computer called ServerName one should use an address of the form
r'\ServerName\pipe{PipeName}' instead.

Note that any string beginning with two backslashes is assumed by default to be an 'AF_PIPE' address
rather than an 'AF_UNIX' address.

17.2. multiprocessing — Process-based parallelism 751

The Python Library Reference, Release 3.5.7

Authentication keys

When one uses Connection.recv, the data received is automatically unpickled. Unfortunately unpickling
data from an untrusted source is a security risk. Therefore Listener and Client() use the hmac module to
provide digest authentication.

An authentication key is a byte string which can be thought of as a password: once a connection is established
both ends will demand proof that the other knows the authentication key. (Demonstrating that both ends
are using the same key does not involve sending the key over the connection.)

If authentication is requested but no authentication key is specified then the return value of
current_process().authkey is used (see Process). This value will be automatically inherited by any Pro-
cess object that the current process creates. This means that (by default) all processes of a multi-process
program will share a single authentication key which can be used when setting up connections between
themselves.

Suitable authentication keys can also be generated by using os.urandom().

Logging

Some support for logging is available. Note, however, that the logging package does not use process shared
locks so it is possible (depending on the handler type) for messages from different processes to get mixed up.

multiprocessing.get_logger()
Returns the logger used by multiprocessing. If necessary, a new one will be created.

When first created the logger has level logging.NOTSET and no default handler. Messages sent to this
logger will not by default propagate to the root logger.

Note that on Windows child processes will only inherit the level of the parent process’s logger – any
other customization of the logger will not be inherited.

multiprocessing.log_to_stderr()
This function performs a call to get_logger() but in addition to returning the logger created by
get_logger, it adds a handler which sends output to sys.stderr using format '[%(levelname)s/
%(processName)s] %(message)s'.

Below is an example session with logging turned on:

>>> import multiprocessing, logging
>>> logger = multiprocessing.log_to_stderr()
>>> logger.setLevel(logging.INFO)
>>> logger.warning('doomed')
[WARNING/MainProcess] doomed
>>> m = multiprocessing.Manager()
[INFO/SyncManager-...] child process calling self.run()
[INFO/SyncManager-...] created temp directory /.../pymp-...
[INFO/SyncManager-...] manager serving at '/.../listener-...'
>>> del m
[INFO/MainProcess] sending shutdown message to manager
[INFO/SyncManager-...] manager exiting with exitcode 0

For a full table of logging levels, see the logging module.

752 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

The multiprocessing.dummy module

multiprocessing.dummy replicates the API of multiprocessing but is no more than a wrapper around the
threading module.

17.2.3 Programming guidelines

There are certain guidelines and idioms which should be adhered to when using multiprocessing.

All start methods

The following applies to all start methods.

Avoid shared state

As far as possible one should try to avoid shifting large amounts of data between processes.

It is probably best to stick to using queues or pipes for communication between processes rather
than using the lower level synchronization primitives.

Picklability

Ensure that the arguments to the methods of proxies are picklable.

Thread safety of proxies

Do not use a proxy object from more than one thread unless you protect it with a lock.

(There is never a problem with different processes using the same proxy.)

Joining zombie processes

On Unix when a process finishes but has not been joined it becomes a zombie. There should
never be very many because each time a new process starts (or active_children() is called) all
completed processes which have not yet been joined will be joined. Also calling a finished process’s
Process.is_alive will join the process. Even so it is probably good practice to explicitly join all
the processes that you start.

Better to inherit than pickle/unpickle

When using the spawn or forkserver start methods many types from multiprocessing need to
be picklable so that child processes can use them. However, one should generally avoid sending
shared objects to other processes using pipes or queues. Instead you should arrange the program
so that a process which needs access to a shared resource created elsewhere can inherit it from
an ancestor process.

Avoid terminating processes

Using the Process.terminate method to stop a process is liable to cause any shared resources
(such as locks, semaphores, pipes and queues) currently being used by the process to become
broken or unavailable to other processes.

Therefore it is probably best to only consider using Process.terminate on processes which never
use any shared resources.

Joining processes that use queues

Bear in mind that a process that has put items in a queue will wait before terminating until all
the buffered items are fed by the “feeder” thread to the underlying pipe. (The child process can
call the Queue.cancel_join_thread method of the queue to avoid this behaviour.)

17.2. multiprocessing — Process-based parallelism 753

The Python Library Reference, Release 3.5.7

This means that whenever you use a queue you need to make sure that all items which have been
put on the queue will eventually be removed before the process is joined. Otherwise you cannot
be sure that processes which have put items on the queue will terminate. Remember also that
non-daemonic processes will be joined automatically.

An example which will deadlock is the following:

from multiprocessing import Process, Queue

def f(q):
q.put('X' * 1000000)

if __name__ == '__main__':
queue = Queue()
p = Process(target=f, args=(queue,))
p.start()
p.join() # this deadlocks
obj = queue.get()

A fix here would be to swap the last two lines (or simply remove the p.join() line).

Explicitly pass resources to child processes

On Unix using the fork start method, a child process can make use of a shared resource created in
a parent process using a global resource. However, it is better to pass the object as an argument
to the constructor for the child process.

Apart from making the code (potentially) compatible with Windows and the other start methods
this also ensures that as long as the child process is still alive the object will not be garbage
collected in the parent process. This might be important if some resource is freed when the
object is garbage collected in the parent process.

So for instance

from multiprocessing import Process, Lock

def f():
... do something using "lock" ...

if __name__ == '__main__':
lock = Lock()
for i in range(10):

Process(target=f).start()

should be rewritten as

from multiprocessing import Process, Lock

def f(l):
... do something using "l" ...

if __name__ == '__main__':
lock = Lock()
for i in range(10):

Process(target=f, args=(lock,)).start()

Beware of replacing sys.stdin with a “file like object”

multiprocessing originally unconditionally called:

754 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

os.close(sys.stdin.fileno())

in the multiprocessing.Process._bootstrap() method — this resulted in issues with processes-in-
processes. This has been changed to:

sys.stdin.close()
sys.stdin = open(os.open(os.devnull, os.O_RDONLY), closefd=False)

Which solves the fundamental issue of processes colliding with each other resulting in a bad file
descriptor error, but introduces a potential danger to applications which replace sys.stdin() with
a “file-like object” with output buffering. This danger is that if multiple processes call close() on
this file-like object, it could result in the same data being flushed to the object multiple times,
resulting in corruption.

If you write a file-like object and implement your own caching, you can make it fork-safe by storing
the pid whenever you append to the cache, and discarding the cache when the pid changes. For
example:

@property
def cache(self):

pid = os.getpid()
if pid != self._pid:

self._pid = pid
self._cache = []

return self._cache

For more information, see bpo-5155, bpo-5313 and bpo-5331

The spawn and forkserver start methods

There are a few extra restriction which don’t apply to the fork start method.

More picklability

Ensure that all arguments to Process.__init__() are picklable. Also, if you subclass Process
then make sure that instances will be picklable when the Process.start method is called.

Global variables

Bear in mind that if code run in a child process tries to access a global variable, then the value it
sees (if any) may not be the same as the value in the parent process at the time that Process.start
was called.

However, global variables which are just module level constants cause no problems.

Safe importing of main module

Make sure that the main module can be safely imported by a new Python interpreter without
causing unintended side effects (such a starting a new process).

For example, using the spawn or forkserver start method running the following module would
fail with a RuntimeError:

from multiprocessing import Process

def foo():
print('hello')

(continues on next page)

17.2. multiprocessing — Process-based parallelism 755

https://bugs.python.org/issue5155
https://bugs.python.org/issue5313
https://bugs.python.org/issue5331

The Python Library Reference, Release 3.5.7

(continued from previous page)

p = Process(target=foo)
p.start()

Instead one should protect the “entry point” of the program by using if __name__ ==
'__main__': as follows:

from multiprocessing import Process, freeze_support, set_start_method

def foo():
print('hello')

if __name__ == '__main__':
freeze_support()
set_start_method('spawn')
p = Process(target=foo)
p.start()

(The freeze_support() line can be omitted if the program will be run normally instead of frozen.)

This allows the newly spawned Python interpreter to safely import the module and then run the
module’s foo() function.

Similar restrictions apply if a pool or manager is created in the main module.

17.2.4 Examples

Demonstration of how to create and use customized managers and proxies:

from multiprocessing import freeze_support
from multiprocessing.managers import BaseManager, BaseProxy
import operator

##

class Foo:
def f(self):

print('you called Foo.f()')
def g(self):

print('you called Foo.g()')
def _h(self):

print('you called Foo._h()')

A simple generator function
def baz():

for i in range(10):
yield i*i

Proxy type for generator objects
class GeneratorProxy(BaseProxy):

exposed = ['__next__']
def __iter__(self):

return self
def __next__(self):

return self._callmethod('__next__')

Function to return the operator module

(continues on next page)

756 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

(continued from previous page)

def get_operator_module():
return operator

##

class MyManager(BaseManager):
pass

register the Foo class; make `f()` and `g()` accessible via proxy
MyManager.register('Foo1', Foo)

register the Foo class; make `g()` and `_h()` accessible via proxy
MyManager.register('Foo2', Foo, exposed=('g', '_h'))

register the generator function baz; use `GeneratorProxy` to make proxies
MyManager.register('baz', baz, proxytype=GeneratorProxy)

register get_operator_module(); make public functions accessible via proxy
MyManager.register('operator', get_operator_module)

##

def test():
manager = MyManager()
manager.start()

print('-' * 20)

f1 = manager.Foo1()
f1.f()
f1.g()
assert not hasattr(f1, '_h')
assert sorted(f1._exposed_) == sorted(['f', 'g'])

print('-' * 20)

f2 = manager.Foo2()
f2.g()
f2._h()
assert not hasattr(f2, 'f')
assert sorted(f2._exposed_) == sorted(['g', '_h'])

print('-' * 20)

it = manager.baz()
for i in it:

print('<%d>' % i, end=' ')
print()

print('-' * 20)

op = manager.operator()
print('op.add(23, 45) =', op.add(23, 45))
print('op.pow(2, 94) =', op.pow(2, 94))
print('op._exposed_ =', op._exposed_)

(continues on next page)

17.2. multiprocessing — Process-based parallelism 757

The Python Library Reference, Release 3.5.7

(continued from previous page)

##

if __name__ == '__main__':
freeze_support()
test()

Using Pool:

import multiprocessing
import time
import random
import sys

#
Functions used by test code
#

def calculate(func, args):
result = func(*args)
return '%s says that %s%s = %s' % (

multiprocessing.current_process().name,
func.__name__, args, result
)

def calculatestar(args):
return calculate(*args)

def mul(a, b):
time.sleep(0.5 * random.random())
return a * b

def plus(a, b):
time.sleep(0.5 * random.random())
return a + b

def f(x):
return 1.0 / (x - 5.0)

def pow3(x):
return x ** 3

def noop(x):
pass

#
Test code
#

def test():
PROCESSES = 4
print('Creating pool with %d processes\n' % PROCESSES)

with multiprocessing.Pool(PROCESSES) as pool:
#
Tests
#

(continues on next page)

758 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

(continued from previous page)

TASKS = [(mul, (i, 7)) for i in range(10)] + \
[(plus, (i, 8)) for i in range(10)]

results = [pool.apply_async(calculate, t) for t in TASKS]
imap_it = pool.imap(calculatestar, TASKS)
imap_unordered_it = pool.imap_unordered(calculatestar, TASKS)

print('Ordered results using pool.apply_async():')
for r in results:

print('\t', r.get())
print()

print('Ordered results using pool.imap():')
for x in imap_it:

print('\t', x)
print()

print('Unordered results using pool.imap_unordered():')
for x in imap_unordered_it:

print('\t', x)
print()

print('Ordered results using pool.map() --- will block till complete:')
for x in pool.map(calculatestar, TASKS):

print('\t', x)
print()

#
Test error handling
#

print('Testing error handling:')

try:
print(pool.apply(f, (5,)))

except ZeroDivisionError:
print('\tGot ZeroDivisionError as expected from pool.apply()')

else:
raise AssertionError('expected ZeroDivisionError')

try:
print(pool.map(f, list(range(10))))

except ZeroDivisionError:
print('\tGot ZeroDivisionError as expected from pool.map()')

else:
raise AssertionError('expected ZeroDivisionError')

try:
print(list(pool.imap(f, list(range(10)))))

except ZeroDivisionError:
print('\tGot ZeroDivisionError as expected from list(pool.imap())')

else:
raise AssertionError('expected ZeroDivisionError')

it = pool.imap(f, list(range(10)))

(continues on next page)

17.2. multiprocessing — Process-based parallelism 759

The Python Library Reference, Release 3.5.7

(continued from previous page)

for i in range(10):
try:

x = next(it)
except ZeroDivisionError:

if i == 5:
pass

except StopIteration:
break

else:
if i == 5:

raise AssertionError('expected ZeroDivisionError')

assert i == 9
print('\tGot ZeroDivisionError as expected from IMapIterator.next()')
print()

#
Testing timeouts
#

print('Testing ApplyResult.get() with timeout:', end=' ')
res = pool.apply_async(calculate, TASKS[0])
while 1:

sys.stdout.flush()
try:

sys.stdout.write('\n\t%s' % res.get(0.02))
break

except multiprocessing.TimeoutError:
sys.stdout.write('.')

print()
print()

print('Testing IMapIterator.next() with timeout:', end=' ')
it = pool.imap(calculatestar, TASKS)
while 1:

sys.stdout.flush()
try:

sys.stdout.write('\n\t%s' % it.next(0.02))
except StopIteration:

break
except multiprocessing.TimeoutError:

sys.stdout.write('.')
print()
print()

if __name__ == '__main__':
multiprocessing.freeze_support()
test()

An example showing how to use queues to feed tasks to a collection of worker processes and collect the
results:

import time
import random

(continues on next page)

760 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

(continued from previous page)

from multiprocessing import Process, Queue, current_process, freeze_support

#
Function run by worker processes
#

def worker(input, output):
for func, args in iter(input.get, 'STOP'):

result = calculate(func, args)
output.put(result)

#
Function used to calculate result
#

def calculate(func, args):
result = func(*args)
return '%s says that %s%s = %s' % \

(current_process().name, func.__name__, args, result)

#
Functions referenced by tasks
#

def mul(a, b):
time.sleep(0.5*random.random())
return a * b

def plus(a, b):
time.sleep(0.5*random.random())
return a + b

#
#
#

def test():
NUMBER_OF_PROCESSES = 4
TASKS1 = [(mul, (i, 7)) for i in range(20)]
TASKS2 = [(plus, (i, 8)) for i in range(10)]

Create queues
task_queue = Queue()
done_queue = Queue()

Submit tasks
for task in TASKS1:

task_queue.put(task)

Start worker processes
for i in range(NUMBER_OF_PROCESSES):

Process(target=worker, args=(task_queue, done_queue)).start()

Get and print results
print('Unordered results:')
for i in range(len(TASKS1)):

(continues on next page)

17.2. multiprocessing — Process-based parallelism 761

The Python Library Reference, Release 3.5.7

(continued from previous page)

print('\t', done_queue.get())

Add more tasks using `put()`
for task in TASKS2:

task_queue.put(task)

Get and print some more results
for i in range(len(TASKS2)):

print('\t', done_queue.get())

Tell child processes to stop
for i in range(NUMBER_OF_PROCESSES):

task_queue.put('STOP')

if __name__ == '__main__':
freeze_support()
test()

17.3 The concurrent package

Currently, there is only one module in this package:

• concurrent.futures – Launching parallel tasks

17.4 concurrent.futures — Launching parallel tasks

New in version 3.2.

Source code: Lib/concurrent/futures/thread.py and Lib/concurrent/futures/process.py

The concurrent.futures module provides a high-level interface for asynchronously executing callables.

The asynchronous execution can be performed with threads, using ThreadPoolExecutor, or separate pro-
cesses, using ProcessPoolExecutor. Both implement the same interface, which is defined by the abstract
Executor class.

17.4.1 Executor Objects

class concurrent.futures.Executor
An abstract class that provides methods to execute calls asynchronously. It should not be used directly,
but through its concrete subclasses.

submit(fn, *args, **kwargs)
Schedules the callable, fn, to be executed as fn(*args **kwargs) and returns a Future
object representing the execution of the callable.

with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(pow, 323, 1235)
print(future.result())

762 Chapter 17. Concurrent Execution

https://github.com/python/cpython/tree/3.5/Lib/concurrent/futures/thread.py
https://github.com/python/cpython/tree/3.5/Lib/concurrent/futures/process.py

The Python Library Reference, Release 3.5.7

map(func, *iterables, timeout=None, chunksize=1)
Equivalent to map(func, *iterables) except func is executed asynchronously and several
calls to func may be made concurrently. The returned iterator raises a concurrent.futures.
TimeoutError if __next__() is called and the result isn’t available after timeout seconds
from the original call to Executor.map(). timeout can be an int or a float. If timeout
is not specified or None, there is no limit to the wait time. If a call raises an exception,
then that exception will be raised when its value is retrieved from the iterator. When
using ProcessPoolExecutor, this method chops iterables into a number of chunks which
it submits to the pool as separate tasks. The (approximate) size of these chunks can be
specified by setting chunksize to a positive integer. For very long iterables, using a large
value for chunksize can significantly improve performance compared to the default size
of 1. With ThreadPoolExecutor, chunksize has no effect.

Changed in version 3.5: Added the chunksize argument.

shutdown(wait=True)
Signal the executor that it should free any resources that it is using when the currently
pending futures are done executing. Calls to Executor.submit() and Executor.map()
made after shutdown will raise RuntimeError.

If wait is True then this method will not return until all the pending futures are done
executing and the resources associated with the executor have been freed. If wait is
False then this method will return immediately and the resources associated with the
executor will be freed when all pending futures are done executing. Regardless of the
value of wait, the entire Python program will not exit until all pending futures are done
executing.

You can avoid having to call this method explicitly if you use the with statement, which
will shutdown the Executor (waiting as if Executor.shutdown() were called with wait set
to True):

import shutil
with ThreadPoolExecutor(max_workers=4) as e:

e.submit(shutil.copy, 'src1.txt', 'dest1.txt')
e.submit(shutil.copy, 'src2.txt', 'dest2.txt')
e.submit(shutil.copy, 'src3.txt', 'dest3.txt')
e.submit(shutil.copy, 'src4.txt', 'dest4.txt')

17.4.2 ThreadPoolExecutor

ThreadPoolExecutor is an Executor subclass that uses a pool of threads to execute calls asynchronously.

Deadlocks can occur when the callable associated with a Future waits on the results of another Future. For
example:

import time
def wait_on_b():

time.sleep(5)
print(b.result()) # b will never complete because it is waiting on a.
return 5

def wait_on_a():
time.sleep(5)
print(a.result()) # a will never complete because it is waiting on b.
return 6

(continues on next page)

17.4. concurrent.futures — Launching parallel tasks 763

The Python Library Reference, Release 3.5.7

(continued from previous page)

executor = ThreadPoolExecutor(max_workers=2)
a = executor.submit(wait_on_b)
b = executor.submit(wait_on_a)

And:

def wait_on_future():
f = executor.submit(pow, 5, 2)
This will never complete because there is only one worker thread and
it is executing this function.
print(f.result())

executor = ThreadPoolExecutor(max_workers=1)
executor.submit(wait_on_future)

class concurrent.futures.ThreadPoolExecutor(max_workers=None)
An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously.

Changed in version 3.5: If max_workers is None or not given, it will default to the number of processors
on the machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap I/O
instead of CPU work and the number of workers should be higher than the number of workers for
ProcessPoolExecutor.

ThreadPoolExecutor Example

import concurrent.futures
import urllib.request

URLS = ['http://www.foxnews.com/',
'http://www.cnn.com/',
'http://europe.wsj.com/',
'http://www.bbc.co.uk/',
'http://some-made-up-domain.com/']

Retrieve a single page and report the URL and contents
def load_url(url, timeout):

with urllib.request.urlopen(url, timeout=timeout) as conn:
return conn.read()

We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:

Start the load operations and mark each future with its URL
future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
for future in concurrent.futures.as_completed(future_to_url):

url = future_to_url[future]
try:

data = future.result()
except Exception as exc:

print('%r generated an exception: %s' % (url, exc))
else:

print('%r page is %d bytes' % (url, len(data)))

764 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

17.4.3 ProcessPoolExecutor

The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls asyn-
chronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global
Interpreter Lock but also means that only picklable objects can be executed and returned.

The __main__ module must be importable by worker subprocesses. This means that ProcessPoolExecutor
will not work in the interactive interpreter.

Calling Executor or Future methods from a callable submitted to a ProcessPoolExecutor will result in
deadlock.

class concurrent.futures.ProcessPoolExecutor(max_workers=None)
An Executor subclass that executes calls asynchronously using a pool of at most max_workers pro-
cesses. If max_workers is None or not given, it will default to the number of processors on the machine.
If max_workers is lower or equal to 0, then a ValueError will be raised.

Changed in version 3.3: When one of the worker processes terminates abruptly, a BrokenProcessPool
error is now raised. Previously, behaviour was undefined but operations on the executor or its futures
would often freeze or deadlock.

ProcessPoolExecutor Example

import concurrent.futures
import math

PRIMES = [
112272535095293,
112582705942171,
112272535095293,
115280095190773,
115797848077099,
1099726899285419]

def is_prime(n):
if n % 2 == 0:

return False

sqrt_n = int(math.floor(math.sqrt(n)))
for i in range(3, sqrt_n + 1, 2):

if n % i == 0:
return False

return True

def main():
with concurrent.futures.ProcessPoolExecutor() as executor:

for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):
print('%d is prime: %s' % (number, prime))

if __name__ == '__main__':
main()

17.4.4 Future Objects

The Future class encapsulates the asynchronous execution of a callable. Future instances are created by
Executor.submit().

17.4. concurrent.futures — Launching parallel tasks 765

The Python Library Reference, Release 3.5.7

class concurrent.futures.Future
Encapsulates the asynchronous execution of a callable. Future instances are created by Executor.
submit() and should not be created directly except for testing.

cancel()
Attempt to cancel the call. If the call is currently being executed and cannot be cancelled
then the method will return False, otherwise the call will be cancelled and the method
will return True.

cancelled()
Return True if the call was successfully cancelled.

running()
Return True if the call is currently being executed and cannot be cancelled.

done()
Return True if the call was successfully cancelled or finished running.

result(timeout=None)
Return the value returned by the call. If the call hasn’t yet completed then this method
will wait up to timeout seconds. If the call hasn’t completed in timeout seconds, then
a concurrent.futures.TimeoutError will be raised. timeout can be an int or float. If
timeout is not specified or None, there is no limit to the wait time.

If the future is cancelled before completing then CancelledError will be raised.

If the call raised, this method will raise the same exception.

exception(timeout=None)
Return the exception raised by the call. If the call hasn’t yet completed then this method
will wait up to timeout seconds. If the call hasn’t completed in timeout seconds, then
a concurrent.futures.TimeoutError will be raised. timeout can be an int or float. If
timeout is not specified or None, there is no limit to the wait time.

If the future is cancelled before completing then CancelledError will be raised.

If the call completed without raising, None is returned.

add_done_callback(fn)
Attaches the callable fn to the future. fn will be called, with the future as its only
argument, when the future is cancelled or finishes running.

Added callables are called in the order that they were added and are always called in
a thread belonging to the process that added them. If the callable raises an Exception
subclass, it will be logged and ignored. If the callable raises a BaseException subclass,
the behavior is undefined.

If the future has already completed or been cancelled, fn will be called immediately.

The following Future methods are meant for use in unit tests and Executor implementations.

set_running_or_notify_cancel()
This method should only be called by Executor implementations before executing the
work associated with the Future and by unit tests.

If the method returns False then the Future was cancelled, i.e. Future.cancel() was
called and returned True. Any threads waiting on the Future completing (i.e. through
as_completed() or wait()) will be woken up.

If the method returns True then the Future was not cancelled and has been put in the
running state, i.e. calls to Future.running() will return True.

766 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

This method can only be called once and cannot be called after Future.set_result() or
Future.set_exception() have been called.

set_result(result)
Sets the result of the work associated with the Future to result.

This method should only be used by Executor implementations and unit tests.

set_exception(exception)
Sets the result of the work associated with the Future to the Exception exception.

This method should only be used by Executor implementations and unit tests.

17.4.5 Module Functions

concurrent.futures.wait(fs, timeout=None, return_when=ALL_COMPLETED)
Wait for the Future instances (possibly created by different Executor instances) given by fs to complete.
Returns a named 2-tuple of sets. The first set, named done, contains the futures that completed
(finished or were cancelled) before the wait completed. The second set, named not_done, contains
uncompleted futures.

timeout can be used to control the maximum number of seconds to wait before returning. timeout can
be an int or float. If timeout is not specified or None, there is no limit to the wait time.

return_when indicates when this function should return. It must be one of the following constants:

Constant Description
FIRST_COMPLETED The function will return when any future finishes or is cancelled.
FIRST_EXCEPTION The function will return when any future finishes by raising an

exception. If no future raises an exception then it is equivalent to
ALL_COMPLETED.

ALL_COMPLETED The function will return when all futures finish or are cancelled.

concurrent.futures.as_completed(fs, timeout=None)
Returns an iterator over the Future instances (possibly created by different Executor instances) given
by fs that yields futures as they complete (finished or were cancelled). Any futures given by fs that are
duplicated will be returned once. Any futures that completed before as_completed() is called will be
yielded first. The returned iterator raises a concurrent.futures.TimeoutError if __next__() is called
and the result isn’t available after timeout seconds from the original call to as_completed(). timeout
can be an int or float. If timeout is not specified or None, there is no limit to the wait time.

See also:

PEP 3148 – futures - execute computations asynchronously The proposal which described this feature for
inclusion in the Python standard library.

17.4.6 Exception classes

exception concurrent.futures.CancelledError
Raised when a future is cancelled.

exception concurrent.futures.TimeoutError
Raised when a future operation exceeds the given timeout.

exception concurrent.futures.process.BrokenProcessPool
Derived from RuntimeError, this exception class is raised when one of the workers of a ProcessPoolEx-
ecutor has terminated in a non-clean fashion (for example, if it was killed from the outside).

17.4. concurrent.futures — Launching parallel tasks 767

https://www.python.org/dev/peps/pep-3148

The Python Library Reference, Release 3.5.7

New in version 3.3.

17.5 subprocess — Subprocess management

Source code: Lib/subprocess.py

The subprocess module allows you to spawn new processes, connect to their input/output/error pipes, and
obtain their return codes. This module intends to replace several older modules and functions:

os.system
os.spawn*

Information about how the subprocess module can be used to replace these modules and functions can be
found in the following sections.

See also:

PEP 324 – PEP proposing the subprocess module

17.5.1 Using the subprocess Module

The recommended approach to invoking subprocesses is to use the run() function for all use cases it can
handle. For more advanced use cases, the underlying Popen interface can be used directly.

The run() function was added in Python 3.5; if you need to retain compatibility with older versions, see the
Older high-level API section.

subprocess.run(args, *, stdin=None, input=None, stdout=None, stderr=None, shell=False, time-
out=None, check=False)

Run the command described by args. Wait for command to complete, then return a CompletedProcess
instance.

The arguments shown above are merely the most common ones, described below in Frequently Used
Arguments (hence the use of keyword-only notation in the abbreviated signature). The full function
signature is largely the same as that of the Popen constructor - apart from timeout, input and check,
all the arguments to this function are passed through to that interface.

This does not capture stdout or stderr by default. To do so, pass PIPE for the stdout and/or stderr
arguments.

The timeout argument is passed to Popen.communicate(). If the timeout expires, the child process
will be killed and waited for. The TimeoutExpired exception will be re-raised after the child process
has terminated.

The input argument is passed to Popen.communicate() and thus to the subprocess’s stdin. If used
it must be a byte sequence, or a string if universal_newlines=True. When used, the internal Popen
object is automatically created with stdin=PIPE, and the stdin argument may not be used as well.

If check is true, and the process exits with a non-zero exit code, a CalledProcessError exception will
be raised. Attributes of that exception hold the arguments, the exit code, and stdout and stderr if
they were captured.

Examples:

768 Chapter 17. Concurrent Execution

https://github.com/python/cpython/tree/3.5/Lib/subprocess.py
https://www.python.org/dev/peps/pep-0324

The Python Library Reference, Release 3.5.7

>>> subprocess.run(["ls", "-l"]) # doesn't capture output
CompletedProcess(args=['ls', '-l'], returncode=0)

>>> subprocess.run("exit 1", shell=True, check=True)
Traceback (most recent call last):
...

subprocess.CalledProcessError: Command 'exit 1' returned non-zero exit status 1

>>> subprocess.run(["ls", "-l", "/dev/null"], stdout=subprocess.PIPE)
CompletedProcess(args=['ls', '-l', '/dev/null'], returncode=0,
stdout=b'crw-rw-rw- 1 root root 1, 3 Jan 23 16:23 /dev/null\n')

New in version 3.5.

class subprocess.CompletedProcess
The return value from run(), representing a process that has finished.

args
The arguments used to launch the process. This may be a list or a string.

returncode
Exit status of the child process. Typically, an exit status of 0 indicates that it ran successfully.

A negative value -N indicates that the child was terminated by signal N (POSIX only).

stdout
Captured stdout from the child process. A bytes sequence, or a string if run() was called with
universal_newlines=True. None if stdout was not captured.

If you ran the process with stderr=subprocess.STDOUT, stdout and stderr will be combined in
this attribute, and stderr will be None.

stderr
Captured stderr from the child process. A bytes sequence, or a string if run() was called with
universal_newlines=True. None if stderr was not captured.

check_returncode()
If returncode is non-zero, raise a CalledProcessError.

New in version 3.5.

subprocess.DEVNULL
Special value that can be used as the stdin, stdout or stderr argument to Popen and indicates that the
special file os.devnull will be used.

New in version 3.3.

subprocess.PIPE
Special value that can be used as the stdin, stdout or stderr argument to Popen and indicates that a
pipe to the standard stream should be opened. Most useful with Popen.communicate().

subprocess.STDOUT
Special value that can be used as the stderr argument to Popen and indicates that standard error
should go into the same handle as standard output.

exception subprocess.SubprocessError
Base class for all other exceptions from this module.

New in version 3.3.

exception subprocess.TimeoutExpired
Subclass of SubprocessError, raised when a timeout expires while waiting for a child process.

17.5. subprocess — Subprocess management 769

The Python Library Reference, Release 3.5.7

cmd
Command that was used to spawn the child process.

timeout
Timeout in seconds.

output
Output of the child process if it was captured by run() or check_output(). Otherwise, None.

stdout
Alias for output, for symmetry with stderr.

stderr
Stderr output of the child process if it was captured by run(). Otherwise, None.

New in version 3.3.

Changed in version 3.5: stdout and stderr attributes added

exception subprocess.CalledProcessError
Subclass of SubprocessError, raised when a process run by check_call() or check_output() returns a
non-zero exit status.

returncode
Exit status of the child process. If the process exited due to a signal, this will be the negative
signal number.

cmd
Command that was used to spawn the child process.

output
Output of the child process if it was captured by run() or check_output(). Otherwise, None.

stdout
Alias for output, for symmetry with stderr.

stderr
Stderr output of the child process if it was captured by run(). Otherwise, None.

Changed in version 3.5: stdout and stderr attributes added

Frequently Used Arguments

To support a wide variety of use cases, the Popen constructor (and the convenience functions) accept a large
number of optional arguments. For most typical use cases, many of these arguments can be safely left at
their default values. The arguments that are most commonly needed are:

args is required for all calls and should be a string, or a sequence of program arguments. Providing
a sequence of arguments is generally preferred, as it allows the module to take care of any required
escaping and quoting of arguments (e.g. to permit spaces in file names). If passing a single
string, either shell must be True (see below) or else the string must simply name the program to
be executed without specifying any arguments.

stdin, stdout and stderr specify the executed program’s standard input, standard output and
standard error file handles, respectively. Valid values are PIPE, DEVNULL, an existing file
descriptor (a positive integer), an existing file object, and None. PIPE indicates that a new
pipe to the child should be created. DEVNULL indicates that the special file os.devnull will be
used. With the default settings of None, no redirection will occur; the child’s file handles will be
inherited from the parent. Additionally, stderr can be STDOUT, which indicates that the stderr
data from the child process should be captured into the same file handle as for stdout.

770 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

If universal_newlines is False the file objects stdin, stdout and stderr will be opened as binary
streams, and no line ending conversion is done.

If universal_newlines is True, these file objects will be opened as text streams in universal
newlines mode using the encoding returned by locale.getpreferredencoding(False). For stdin, line
ending characters '\n' in the input will be converted to the default line separator os.linesep.
For stdout and stderr, all line endings in the output will be converted to '\n'. For more
information see the documentation of the io.TextIOWrapper class when the newline argument to
its constructor is None.

Note: The newlines attribute of the file objects Popen.stdin, Popen.stdout and Popen.stderr are
not updated by the Popen.communicate() method.

If shell is True, the specified command will be executed through the shell. This can be useful if
you are using Python primarily for the enhanced control flow it offers over most system shells
and still want convenient access to other shell features such as shell pipes, filename wildcards,
environment variable expansion, and expansion of ~ to a user’s home directory. However, note
that Python itself offers implementations of many shell-like features (in particular, glob, fnmatch,
os.walk(), os.path.expandvars(), os.path.expanduser(), and shutil).

Changed in version 3.3: When universal_newlines is True, the class uses the encoding locale.
getpreferredencoding(False) instead of locale.getpreferredencoding(). See the io.TextIOWrapper
class for more information on this change.

Note: Read the Security Considerations section before using shell=True.

These options, along with all of the other options, are described in more detail in the Popen constructor
documentation.

Popen Constructor

The underlying process creation and management in this module is handled by the Popen class. It offers a
lot of flexibility so that developers are able to handle the less common cases not covered by the convenience
functions.

class subprocess.Popen(args, bufsize=-1, executable=None, stdin=None, stdout=None, stderr=None,
preexec_fn=None, close_fds=True, shell=False, cwd=None, env=None,
universal_newlines=False, startupinfo=None, creationflags=0, re-
store_signals=True, start_new_session=False, pass_fds=())

Execute a child program in a new process. On POSIX, the class uses os.execvp()-like behavior to
execute the child program. On Windows, the class uses the Windows CreateProcess() function. The
arguments to Popen are as follows.

args should be a sequence of program arguments or else a single string. By default, the program to
execute is the first item in args if args is a sequence. If args is a string, the interpretation is platform-
dependent and described below. See the shell and executable arguments for additional differences from
the default behavior. Unless otherwise stated, it is recommended to pass args as a sequence.

On POSIX, if args is a string, the string is interpreted as the name or path of the program to execute.
However, this can only be done if not passing arguments to the program.

Note: shlex.split() can be useful when determining the correct tokenization for args, especially in
complex cases:

17.5. subprocess — Subprocess management 771

The Python Library Reference, Release 3.5.7

>>> import shlex, subprocess
>>> command_line = input()
/bin/vikings -input eggs.txt -output "spam spam.txt" -cmd "echo '$MONEY'"
>>> args = shlex.split(command_line)
>>> print(args)
['/bin/vikings', '-input', 'eggs.txt', '-output', 'spam spam.txt', '-cmd', "echo '$MONEY'"]
>>> p = subprocess.Popen(args) # Success!

Note in particular that options (such as -input) and arguments (such as eggs.txt) that are separated
by whitespace in the shell go in separate list elements, while arguments that need quoting or backslash
escaping when used in the shell (such as filenames containing spaces or the echo command shown
above) are single list elements.

On Windows, if args is a sequence, it will be converted to a string in a manner described in Converting
an argument sequence to a string on Windows. This is because the underlying CreateProcess() operates
on strings.

The shell argument (which defaults to False) specifies whether to use the shell as the program to
execute. If shell is True, it is recommended to pass args as a string rather than as a sequence.

On POSIX with shell=True, the shell defaults to /bin/sh. If args is a string, the string specifies the
command to execute through the shell. This means that the string must be formatted exactly as it
would be when typed at the shell prompt. This includes, for example, quoting or backslash escaping
filenames with spaces in them. If args is a sequence, the first item specifies the command string, and
any additional items will be treated as additional arguments to the shell itself. That is to say, Popen
does the equivalent of:

Popen(['/bin/sh', '-c', args[0], args[1], ...])

On Windows with shell=True, the COMSPEC environment variable specifies the default shell. The
only time you need to specify shell=True on Windows is when the command you wish to execute is
built into the shell (e.g. dir or copy). You do not need shell=True to run a batch file or console-based
executable.

Note: Read the Security Considerations section before using shell=True.

bufsize will be supplied as the corresponding argument to the open() function when creating the
stdin/stdout/stderr pipe file objects:

• 0 means unbuffered (read and write are one system call and can return short)

• 1 means line buffered (only usable if universal_newlines=True i.e., in a text mode)

• any other positive value means use a buffer of approximately that size

• negative bufsize (the default) means the system default of io.DEFAULT_BUFFER_SIZE will be
used.

Changed in version 3.3.1: bufsize now defaults to -1 to enable buffering by default to match the behavior
that most code expects. In versions prior to Python 3.2.4 and 3.3.1 it incorrectly defaulted to 0 which
was unbuffered and allowed short reads. This was unintentional and did not match the behavior of
Python 2 as most code expected.

The executable argument specifies a replacement program to execute. It is very seldom needed. When
shell=False, executable replaces the program to execute specified by args. However, the original args is
still passed to the program. Most programs treat the program specified by args as the command name,
which can then be different from the program actually executed. On POSIX, the args name becomes

772 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

the display name for the executable in utilities such as ps. If shell=True, on POSIX the executable
argument specifies a replacement shell for the default /bin/sh.

stdin, stdout and stderr specify the executed program’s standard input, standard output and standard
error file handles, respectively. Valid values are PIPE, DEVNULL, an existing file descriptor (a positive
integer), an existing file object, and None. PIPE indicates that a new pipe to the child should be
created. DEVNULL indicates that the special file os.devnull will be used. With the default settings of
None, no redirection will occur; the child’s file handles will be inherited from the parent. Additionally,
stderr can be STDOUT, which indicates that the stderr data from the applications should be captured
into the same file handle as for stdout.

If preexec_fn is set to a callable object, this object will be called in the child process just before the
child is executed. (POSIX only)

Warning: The preexec_fn parameter is not safe to use in the presence of threads in your appli-
cation. The child process could deadlock before exec is called. If you must use it, keep it trivial!
Minimize the number of libraries you call into.

Note: If you need to modify the environment for the child use the env parameter rather than doing
it in a preexec_fn. The start_new_session parameter can take the place of a previously common use
of preexec_fn to call os.setsid() in the child.

If close_fds is true, all file descriptors except 0, 1 and 2 will be closed before the child process is
executed. (POSIX only). The default varies by platform: Always true on POSIX. On Windows it is
true when stdin/stdout/stderr are None, false otherwise. On Windows, if close_fds is true then no
handles will be inherited by the child process. Note that on Windows, you cannot set close_fds to true
and also redirect the standard handles by setting stdin, stdout or stderr.

Changed in version 3.2: The default for close_fds was changed from False to what is described above.

pass_fds is an optional sequence of file descriptors to keep open between the parent and child. Providing
any pass_fds forces close_fds to be True. (POSIX only)

New in version 3.2: The pass_fds parameter was added.

If cwd is not None, the function changes the working directory to cwd before executing the child.
In particular, the function looks for executable (or for the first item in args) relative to cwd if the
executable path is a relative path.

If restore_signals is true (the default) all signals that Python has set to SIG_IGN are restored to
SIG_DFL in the child process before the exec. Currently this includes the SIGPIPE, SIGXFZ and
SIGXFSZ signals. (POSIX only)

Changed in version 3.2: restore_signals was added.

If start_new_session is true the setsid() system call will be made in the child process prior to the
execution of the subprocess. (POSIX only)

Changed in version 3.2: start_new_session was added.

If env is not None, it must be a mapping that defines the environment variables for the new process;
these are used instead of the default behavior of inheriting the current process’ environment.

Note: If specified, env must provide any variables required for the program to execute. On Windows,
in order to run a side-by-side assembly the specified env must include a valid SystemRoot.

17.5. subprocess — Subprocess management 773

https://en.wikipedia.org/wiki/Side-by-Side_Assembly

The Python Library Reference, Release 3.5.7

If universal_newlines is True, the file objects stdin, stdout and stderr are opened as text streams in
universal newlines mode, as described above in Frequently Used Arguments, otherwise they are opened
as binary streams.

If given, startupinfo will be a STARTUPINFO object, which is passed to the underlying Cre-
ateProcess function. creationflags, if given, can be CREATE_NEW_CONSOLE or CRE-
ATE_NEW_PROCESS_GROUP. (Windows only)

Popen objects are supported as context managers via the with statement: on exit, standard file de-
scriptors are closed, and the process is waited for.

with Popen(["ifconfig"], stdout=PIPE) as proc:
log.write(proc.stdout.read())

Changed in version 3.2: Added context manager support.

Exceptions

Exceptions raised in the child process, before the new program has started to execute, will be re-raised in
the parent. Additionally, the exception object will have one extra attribute called child_traceback, which is
a string containing traceback information from the child’s point of view.

The most common exception raised is OSError. This occurs, for example, when trying to execute a non-
existent file. Applications should prepare for OSError exceptions.

A ValueError will be raised if Popen is called with invalid arguments.

check_call() and check_output() will raise CalledProcessError if the called process returns a non-zero return
code.

All of the functions and methods that accept a timeout parameter, such as call() and Popen.communicate()
will raise TimeoutExpired if the timeout expires before the process exits.

Exceptions defined in this module all inherit from SubprocessError.

New in version 3.3: The SubprocessError base class was added.

17.5.2 Security Considerations

Unlike some other popen functions, this implementation will never implicitly call a system shell. This means
that all characters, including shell metacharacters, can safely be passed to child processes. If the shell is
invoked explicitly, via shell=True, it is the application’s responsibility to ensure that all whitespace and
metacharacters are quoted appropriately to avoid shell injection vulnerabilities.

When using shell=True, the shlex.quote() function can be used to properly escape whitespace and shell
metacharacters in strings that are going to be used to construct shell commands.

17.5.3 Popen Objects

Instances of the Popen class have the following methods:

Popen.poll()
Check if child process has terminated. Set and return returncode attribute.

Popen.wait(timeout=None)
Wait for child process to terminate. Set and return returncode attribute.

774 Chapter 17. Concurrent Execution

https://en.wikipedia.org/wiki/Shell_injection#Shell_injection

The Python Library Reference, Release 3.5.7

If the process does not terminate after timeout seconds, raise a TimeoutExpired exception. It is safe
to catch this exception and retry the wait.

Note: This will deadlock when using stdout=PIPE or stderr=PIPE and the child process generates
enough output to a pipe such that it blocks waiting for the OS pipe buffer to accept more data. Use
Popen.communicate() when using pipes to avoid that.

Note: The function is implemented using a busy loop (non-blocking call and short sleeps). Use the
asyncio module for an asynchronous wait: see asyncio.create_subprocess_exec.

Changed in version 3.3: timeout was added.

Deprecated since version 3.4: Do not use the endtime parameter. It is was unintentionally exposed in
3.3 but was left undocumented as it was intended to be private for internal use. Use timeout instead.

Popen.communicate(input=None, timeout=None)
Interact with process: Send data to stdin. Read data from stdout and stderr, until end-of-file is
reached. Wait for process to terminate. The optional input argument should be data to be sent to the
child process, or None, if no data should be sent to the child. The type of input must be bytes or, if
universal_newlines was True, a string.

communicate() returns a tuple (stdout_data, stderr_data). The data will be bytes or, if univer-
sal_newlines was True, strings.

Note that if you want to send data to the process’s stdin, you need to create the Popen object with
stdin=PIPE. Similarly, to get anything other than None in the result tuple, you need to give std-
out=PIPE and/or stderr=PIPE too.

If the process does not terminate after timeout seconds, a TimeoutExpired exception will be raised.
Catching this exception and retrying communication will not lose any output.

The child process is not killed if the timeout expires, so in order to cleanup properly a well-behaved
application should kill the child process and finish communication:

proc = subprocess.Popen(...)
try:

outs, errs = proc.communicate(timeout=15)
except TimeoutExpired:

proc.kill()
outs, errs = proc.communicate()

Note: The data read is buffered in memory, so do not use this method if the data size is large or
unlimited.

Changed in version 3.3: timeout was added.

Popen.send_signal(signal)
Sends the signal signal to the child.

Note: On Windows, SIGTERM is an alias for terminate(). CTRL_C_EVENT and
CTRL_BREAK_EVENT can be sent to processes started with a creationflags parameter which in-
cludes CREATE_NEW_PROCESS_GROUP.

17.5. subprocess — Subprocess management 775

The Python Library Reference, Release 3.5.7

Popen.terminate()
Stop the child. On Posix OSs the method sends SIGTERM to the child. On Windows the Win32 API
function TerminateProcess() is called to stop the child.

Popen.kill()
Kills the child. On Posix OSs the function sends SIGKILL to the child. On Windows kill() is an alias
for terminate().

The following attributes are also available:

Popen.args
The args argument as it was passed to Popen – a sequence of program arguments or else a single string.

New in version 3.3.

Popen.stdin
If the stdin argument was PIPE, this attribute is a writeable stream object as returned by open(). If
the universal_newlines argument was True, the stream is a text stream, otherwise it is a byte stream.
If the stdin argument was not PIPE, this attribute is None.

Popen.stdout
If the stdout argument was PIPE, this attribute is a readable stream object as returned by open().
Reading from the stream provides output from the child process. If the universal_newlines argument
was True, the stream is a text stream, otherwise it is a byte stream. If the stdout argument was not
PIPE, this attribute is None.

Popen.stderr
If the stderr argument was PIPE, this attribute is a readable stream object as returned by open().
Reading from the stream provides error output from the child process. If the universal_newlines
argument was True, the stream is a text stream, otherwise it is a byte stream. If the stderr argument
was not PIPE, this attribute is None.

Warning: Use communicate() rather than .stdin.write, .stdout.read or .stderr.read to avoid deadlocks
due to any of the other OS pipe buffers filling up and blocking the child process.

Popen.pid
The process ID of the child process.

Note that if you set the shell argument to True, this is the process ID of the spawned shell.

Popen.returncode
The child return code, set by poll() and wait() (and indirectly by communicate()). A None value
indicates that the process hasn’t terminated yet.

A negative value -N indicates that the child was terminated by signal N (POSIX only).

17.5.4 Windows Popen Helpers

The STARTUPINFO class and following constants are only available on Windows.

class subprocess.STARTUPINFO
Partial support of the Windows STARTUPINFO structure is used for Popen creation.

dwFlags
A bit field that determines whether certain STARTUPINFO attributes are used when the process
creates a window.

776 Chapter 17. Concurrent Execution

https://msdn.microsoft.com/en-us/library/ms686331(v=vs.85).aspx

The Python Library Reference, Release 3.5.7

si = subprocess.STARTUPINFO()
si.dwFlags = subprocess.STARTF_USESTDHANDLES | subprocess.STARTF_USESHOWWINDOW

hStdInput
If dwFlags specifies STARTF_USESTDHANDLES, this attribute is the standard input handle
for the process. If STARTF_USESTDHANDLES is not specified, the default for standard input
is the keyboard buffer.

hStdOutput
If dwFlags specifies STARTF_USESTDHANDLES, this attribute is the standard output handle
for the process. Otherwise, this attribute is ignored and the default for standard output is the
console window’s buffer.

hStdError
If dwFlags specifies STARTF_USESTDHANDLES, this attribute is the standard error handle for
the process. Otherwise, this attribute is ignored and the default for standard error is the console
window’s buffer.

wShowWindow
If dwFlags specifies STARTF_USESHOWWINDOW, this attribute can be any of the values
that can be specified in the nCmdShow parameter for the ShowWindow function, except for
SW_SHOWDEFAULT. Otherwise, this attribute is ignored.

SW_HIDE is provided for this attribute. It is used when Popen is called with shell=True.

Constants

The subprocess module exposes the following constants.

subprocess.STD_INPUT_HANDLE
The standard input device. Initially, this is the console input buffer, CONIN$.

subprocess.STD_OUTPUT_HANDLE
The standard output device. Initially, this is the active console screen buffer, CONOUT$.

subprocess.STD_ERROR_HANDLE
The standard error device. Initially, this is the active console screen buffer, CONOUT$.

subprocess.SW_HIDE
Hides the window. Another window will be activated.

subprocess.STARTF_USESTDHANDLES
Specifies that the STARTUPINFO.hStdInput, STARTUPINFO.hStdOutput, and STARTUPINFO.
hStdError attributes contain additional information.

subprocess.STARTF_USESHOWWINDOW
Specifies that the STARTUPINFO.wShowWindow attribute contains additional information.

subprocess.CREATE_NEW_CONSOLE
The new process has a new console, instead of inheriting its parent’s console (the default).

subprocess.CREATE_NEW_PROCESS_GROUP
A Popen creationflags parameter to specify that a new process group will be created. This flag is
necessary for using os.kill() on the subprocess.

This flag is ignored if CREATE_NEW_CONSOLE is specified.

17.5. subprocess — Subprocess management 777

https://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx

The Python Library Reference, Release 3.5.7

17.5.5 Older high-level API

Prior to Python 3.5, these three functions comprised the high level API to subprocess. You can now use
run() in many cases, but lots of existing code calls these functions.

subprocess.call(args, *, stdin=None, stdout=None, stderr=None, shell=False, timeout=None)
Run the command described by args. Wait for command to complete, then return the returncode
attribute.

This is equivalent to:

run(...).returncode

(except that the input and check parameters are not supported)

The arguments shown above are merely the most common ones. The full function signature is largely
the same as that of the Popen constructor - this function passes all supplied arguments other than
timeout directly through to that interface.

Note: Do not use stdout=PIPE or stderr=PIPE with this function. The child process will block if it
generates enough output to a pipe to fill up the OS pipe buffer as the pipes are not being read from.

Changed in version 3.3: timeout was added.

subprocess.check_call(args, *, stdin=None, stdout=None, stderr=None, shell=False, timeout=None)
Run command with arguments. Wait for command to complete. If the return code was zero then
return, otherwise raise CalledProcessError. The CalledProcessError object will have the return code
in the returncode attribute.

This is equivalent to:

run(..., check=True)

(except that the input parameter is not supported)

The arguments shown above are merely the most common ones. The full function signature is largely
the same as that of the Popen constructor - this function passes all supplied arguments other than
timeout directly through to that interface.

Note: Do not use stdout=PIPE or stderr=PIPE with this function. The child process will block if it
generates enough output to a pipe to fill up the OS pipe buffer as the pipes are not being read from.

Changed in version 3.3: timeout was added.

subprocess.check_output(args, *, stdin=None, stderr=None, shell=False, universal_newlines=False,
timeout=None)

Run command with arguments and return its output.

If the return code was non-zero it raises a CalledProcessError. The CalledProcessError object will
have the return code in the returncode attribute and any output in the output attribute.

This is equivalent to:

run(..., check=True, stdout=PIPE).stdout

778 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

The arguments shown above are merely the most common ones. The full function signature is largely
the same as that of run() - most arguments are passed directly through to that interface. However,
explicitly passing input=None to inherit the parent’s standard input file handle is not supported.

By default, this function will return the data as encoded bytes. The actual encoding of the output
data may depend on the command being invoked, so the decoding to text will often need to be handled
at the application level.

This behaviour may be overridden by setting universal_newlines to True as described above in Fre-
quently Used Arguments.

To also capture standard error in the result, use stderr=subprocess.STDOUT:

>>> subprocess.check_output(
... "ls non_existent_file; exit 0",
... stderr=subprocess.STDOUT,
... shell=True)
'ls: non_existent_file: No such file or directory\n'

New in version 3.1.

Changed in version 3.3: timeout was added.

Changed in version 3.4: Support for the input keyword argument was added.

17.5.6 Replacing Older Functions with the subprocess Module

In this section, “a becomes b” means that b can be used as a replacement for a.

Note: All “a” functions in this section fail (more or less) silently if the executed program cannot be found;
the “b” replacements raise OSError instead.

In addition, the replacements using check_output() will fail with a CalledProcessError if the requested
operation produces a non-zero return code. The output is still available as the output attribute of the raised
exception.

In the following examples, we assume that the relevant functions have already been imported from the
subprocess module.

Replacing /bin/sh shell backquote

output=`mycmd myarg`

becomes:

output = check_output(["mycmd", "myarg"])

Replacing shell pipeline

output=`dmesg | grep hda`

becomes:

17.5. subprocess — Subprocess management 779

The Python Library Reference, Release 3.5.7

p1 = Popen(["dmesg"], stdout=PIPE)
p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)
p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits.
output = p2.communicate()[0]

The p1.stdout.close() call after starting the p2 is important in order for p1 to receive a SIGPIPE if p2 exits
before p1.

Alternatively, for trusted input, the shell’s own pipeline support may still be used directly:

output=`dmesg | grep hda`

becomes:

output=check_output("dmesg | grep hda", shell=True)

Replacing os.system()

sts = os.system("mycmd" + " myarg")
becomes
sts = call("mycmd" + " myarg", shell=True)

Notes:

• Calling the program through the shell is usually not required.

A more realistic example would look like this:

try:
retcode = call("mycmd" + " myarg", shell=True)
if retcode < 0:

print("Child was terminated by signal", -retcode, file=sys.stderr)
else:

print("Child returned", retcode, file=sys.stderr)
except OSError as e:

print("Execution failed:", e, file=sys.stderr)

Replacing the os.spawn family

P_NOWAIT example:

pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")
==>
pid = Popen(["/bin/mycmd", "myarg"]).pid

P_WAIT example:

retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")
==>
retcode = call(["/bin/mycmd", "myarg"])

Vector example:

780 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

os.spawnvp(os.P_NOWAIT, path, args)
==>
Popen([path] + args[1:])

Environment example:

os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)
==>
Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})

Replacing os.popen(), os.popen2(), os.popen3()

(child_stdin, child_stdout) = os.popen2(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdin, child_stdout) = (p.stdin, p.stdout)

(child_stdin,
child_stdout,
child_stderr) = os.popen3(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)
(child_stdin,
child_stdout,
child_stderr) = (p.stdin, p.stdout, p.stderr)

(child_stdin, child_stdout_and_stderr) = os.popen4(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)
(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)

Return code handling translates as follows:

pipe = os.popen(cmd, 'w')
...
rc = pipe.close()
if rc is not None and rc >> 8:

print("There were some errors")
==>
process = Popen(cmd, stdin=PIPE)
...
process.stdin.close()
if process.wait() != 0:

print("There were some errors")

Replacing functions from the popen2 module

Note: If the cmd argument to popen2 functions is a string, the command is executed through /bin/sh. If
it is a list, the command is directly executed.

17.5. subprocess — Subprocess management 781

The Python Library Reference, Release 3.5.7

(child_stdout, child_stdin) = popen2.popen2("somestring", bufsize, mode)
==>
p = Popen("somestring", shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

(child_stdout, child_stdin) = popen2.popen2(["mycmd", "myarg"], bufsize, mode)
==>
p = Popen(["mycmd", "myarg"], bufsize=bufsize,

stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

popen2.Popen3 and popen2.Popen4 basically work as subprocess.Popen, except that:

• Popen raises an exception if the execution fails.

• the capturestderr argument is replaced with the stderr argument.

• stdin=PIPE and stdout=PIPE must be specified.

• popen2 closes all file descriptors by default, but you have to specify close_fds=True with Popen to
guarantee this behavior on all platforms or past Python versions.

17.5.7 Legacy Shell Invocation Functions

This module also provides the following legacy functions from the 2.x commands module. These operations
implicitly invoke the system shell and none of the guarantees described above regarding security and exception
handling consistency are valid for these functions.

subprocess.getstatusoutput(cmd)
Return (status, output) of executing cmd in a shell.

Execute the string cmd in a shell with Popen.check_output() and return a 2-tuple (status, output).
Universal newlines mode is used; see the notes on Frequently Used Arguments for more details.

A trailing newline is stripped from the output. The exit status for the command can be interpreted
according to the rules for the C function wait(). Example:

>>> subprocess.getstatusoutput('ls /bin/ls')
(0, '/bin/ls')
>>> subprocess.getstatusoutput('cat /bin/junk')
(256, 'cat: /bin/junk: No such file or directory')
>>> subprocess.getstatusoutput('/bin/junk')
(256, 'sh: /bin/junk: not found')

Availability: POSIX & Windows

Changed in version 3.3.4: Windows support added

subprocess.getoutput(cmd)
Return output (stdout and stderr) of executing cmd in a shell.

Like getstatusoutput(), except the exit status is ignored and the return value is a string containing the
command’s output. Example:

>>> subprocess.getoutput('ls /bin/ls')
'/bin/ls'

782 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

Availability: POSIX & Windows

Changed in version 3.3.4: Windows support added

17.5.8 Notes

Converting an argument sequence to a string on Windows

On Windows, an args sequence is converted to a string that can be parsed using the following rules (which
correspond to the rules used by the MS C runtime):

1. Arguments are delimited by white space, which is either a space or a tab.

2. A string surrounded by double quotation marks is interpreted as a single argument, regardless of white
space contained within. A quoted string can be embedded in an argument.

3. A double quotation mark preceded by a backslash is interpreted as a literal double quotation mark.

4. Backslashes are interpreted literally, unless they immediately precede a double quotation mark.

5. If backslashes immediately precede a double quotation mark, every pair of backslashes is interpreted
as a literal backslash. If the number of backslashes is odd, the last backslash escapes the next double
quotation mark as described in rule 3.

See also:

shlex Module which provides function to parse and escape command lines.

17.6 sched — Event scheduler

Source code: Lib/sched.py

The sched module defines a class which implements a general purpose event scheduler:

class sched.scheduler(timefunc=time.monotonic, delayfunc=time.sleep)
The scheduler class defines a generic interface to scheduling events. It needs two functions to actually
deal with the “outside world” — timefunc should be callable without arguments, and return a number
(the “time”, in any units whatsoever). If time.monotonic is not available, the timefunc default is
time.time instead. The delayfunc function should be callable with one argument, compatible with the
output of timefunc, and should delay that many time units. delayfunc will also be called with the
argument 0 after each event is run to allow other threads an opportunity to run in multi-threaded
applications.

Changed in version 3.3: timefunc and delayfunc parameters are optional.

Changed in version 3.3: scheduler class can be safely used in multi-threaded environments.

Example:

>>> import sched, time
>>> s = sched.scheduler(time.time, time.sleep)
>>> def print_time(a='default'):
... print("From print_time", time.time(), a)
...
>>> def print_some_times():
... print(time.time())

(continues on next page)

17.6. sched — Event scheduler 783

https://github.com/python/cpython/tree/3.5/Lib/sched.py

The Python Library Reference, Release 3.5.7

(continued from previous page)

... s.enter(10, 1, print_time)

... s.enter(5, 2, print_time, argument=('positional',))

... s.enter(5, 1, print_time, kwargs={'a': 'keyword'})

... s.run()

... print(time.time())

...
>>> print_some_times()
930343690.257
From print_time 930343695.274 positional
From print_time 930343695.275 keyword
From print_time 930343700.273 default
930343700.276

17.6.1 Scheduler Objects

scheduler instances have the following methods and attributes:

scheduler.enterabs(time, priority, action, argument=(), kwargs={})
Schedule a new event. The time argument should be a numeric type compatible with the return value
of the timefunc function passed to the constructor. Events scheduled for the same time will be executed
in the order of their priority.

Executing the event means executing action(*argument, **kwargs). argument is a sequence holding
the positional arguments for action. kwargs is a dictionary holding the keyword arguments for action.

Return value is an event which may be used for later cancellation of the event (see cancel()).

Changed in version 3.3: argument parameter is optional.

New in version 3.3: kwargs parameter was added.

scheduler.enter(delay, priority, action, argument=(), kwargs={})
Schedule an event for delay more time units. Other than the relative time, the other arguments, the
effect and the return value are the same as those for enterabs().

Changed in version 3.3: argument parameter is optional.

New in version 3.3: kwargs parameter was added.

scheduler.cancel(event)
Remove the event from the queue. If event is not an event currently in the queue, this method will
raise a ValueError.

scheduler.empty()
Return true if the event queue is empty.

scheduler.run(blocking=True)
Run all scheduled events. This method will wait (using the delayfunc() function passed to the con-
structor) for the next event, then execute it and so on until there are no more scheduled events.

If blocking is false executes the scheduled events due to expire soonest (if any) and then return the
deadline of the next scheduled call in the scheduler (if any).

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a consistent
state and propagate the exception. If an exception is raised by action, the event will not be attempted
in future calls to run().

784 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

If a sequence of events takes longer to run than the time available before the next event, the scheduler
will simply fall behind. No events will be dropped; the calling code is responsible for canceling events
which are no longer pertinent.

New in version 3.3: blocking parameter was added.

scheduler.queue
Read-only attribute returning a list of upcoming events in the order they will be run. Each event is
shown as a named tuple with the following fields: time, priority, action, argument, kwargs.

17.7 queue — A synchronized queue class

Source code: Lib/queue.py

The queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded
programming when information must be exchanged safely between multiple threads. The Queue class in this
module implements all the required locking semantics. It depends on the availability of thread support in
Python; see the threading module.

The module implements three types of queue, which differ only in the order in which the entries are retrieved.
In a FIFO queue, the first tasks added are the first retrieved. In a LIFO queue, the most recently added
entry is the first retrieved (operating like a stack). With a priority queue, the entries are kept sorted (using
the heapq module) and the lowest valued entry is retrieved first.

Internally, the module uses locks to temporarily block competing threads; however, it is not designed to
handle reentrancy within a thread.

The queue module defines the following classes and exceptions:

class queue.Queue(maxsize=0)
Constructor for a FIFO queue. maxsize is an integer that sets the upperbound limit on the number of
items that can be placed in the queue. Insertion will block once this size has been reached, until queue
items are consumed. If maxsize is less than or equal to zero, the queue size is infinite.

class queue.LifoQueue(maxsize=0)
Constructor for a LIFO queue. maxsize is an integer that sets the upperbound limit on the number of
items that can be placed in the queue. Insertion will block once this size has been reached, until queue
items are consumed. If maxsize is less than or equal to zero, the queue size is infinite.

class queue.PriorityQueue(maxsize=0)
Constructor for a priority queue. maxsize is an integer that sets the upperbound limit on the number
of items that can be placed in the queue. Insertion will block once this size has been reached, until
queue items are consumed. If maxsize is less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the one returned by
sorted(list(entries))[0]). A typical pattern for entries is a tuple in the form: (priority_number, data).

exception queue.Empty
Exception raised when non-blocking get() (or get_nowait()) is called on a Queue object which is empty.

exception queue.Full
Exception raised when non-blocking put() (or put_nowait()) is called on a Queue object which is full.

17.7. queue — A synchronized queue class 785

https://github.com/python/cpython/tree/3.5/Lib/queue.py

The Python Library Reference, Release 3.5.7

17.7.1 Queue Objects

Queue objects (Queue, LifoQueue, or PriorityQueue) provide the public methods described below.

Queue.qsize()
Return the approximate size of the queue. Note, qsize() > 0 doesn’t guarantee that a subsequent get()
will not block, nor will qsize() < maxsize guarantee that put() will not block.

Queue.empty()
Return True if the queue is empty, False otherwise. If empty() returns True it doesn’t guarantee that
a subsequent call to put() will not block. Similarly, if empty() returns False it doesn’t guarantee that
a subsequent call to get() will not block.

Queue.full()
Return True if the queue is full, False otherwise. If full() returns True it doesn’t guarantee that a
subsequent call to get() will not block. Similarly, if full() returns False it doesn’t guarantee that a
subsequent call to put() will not block.

Queue.put(item, block=True, timeout=None)
Put item into the queue. If optional args block is true and timeout is None (the default), block if
necessary until a free slot is available. If timeout is a positive number, it blocks at most timeout
seconds and raises the Full exception if no free slot was available within that time. Otherwise (block
is false), put an item on the queue if a free slot is immediately available, else raise the Full exception
(timeout is ignored in that case).

Queue.put_nowait(item)
Equivalent to put(item, False).

Queue.get(block=True, timeout=None)
Remove and return an item from the queue. If optional args block is true and timeout is None (the
default), block if necessary until an item is available. If timeout is a positive number, it blocks at most
timeout seconds and raises the Empty exception if no item was available within that time. Otherwise
(block is false), return an item if one is immediately available, else raise the Empty exception (timeout
is ignored in that case).

Queue.get_nowait()
Equivalent to get(False).

Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon
consumer threads.

Queue.task_done()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get()
used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the task
is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

Queue.join()
Blocks until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down
whenever a consumer thread calls task_done() to indicate that the item was retrieved and all work on
it is complete. When the count of unfinished tasks drops to zero, join() unblocks.

Example of how to wait for enqueued tasks to be completed:

786 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

def worker():
while True:

item = q.get()
if item is None:

break
do_work(item)
q.task_done()

q = queue.Queue()
threads = []
for i in range(num_worker_threads):

t = threading.Thread(target=worker)
t.start()
threads.append(t)

for item in source():
q.put(item)

block until all tasks are done
q.join()

stop workers
for i in range(num_worker_threads):

q.put(None)
for t in threads:

t.join()

See also:

Class multiprocessing.Queue A queue class for use in a multi-processing (rather than multi-threading) con-
text.

collections.deque is an alternative implementation of unbounded queues with fast atomic append() and
popleft() operations that do not require locking.

The following are support modules for some of the above services:

17.8 dummy_threading — Drop-in replacement for the threading module

Source code: Lib/dummy_threading.py

This module provides a duplicate interface to the threading module. It is meant to be imported when the
_thread module is not provided on a platform.

Suggested usage is:

try:
import threading

except ImportError:
import dummy_threading as threading

Be careful to not use this module where deadlock might occur from a thread being created that blocks
waiting for another thread to be created. This often occurs with blocking I/O.

17.8. dummy_threading — Drop-in replacement for the threading module 787

https://github.com/python/cpython/tree/3.5/Lib/dummy_threading.py

The Python Library Reference, Release 3.5.7

17.9 _thread — Low-level threading API

This module provides low-level primitives for working with multiple threads (also called light-weight processes
or tasks) — multiple threads of control sharing their global data space. For synchronization, simple locks
(also called mutexes or binary semaphores) are provided. The threading module provides an easier to use
and higher-level threading API built on top of this module.

The module is optional. It is supported on Windows, Linux, SGI IRIX, Solaris 2.x, as well as on systems
that have a POSIX thread (a.k.a. “pthread”) implementation. For systems lacking the _thread module, the
_dummy_thread module is available. It duplicates this module’s interface and can be used as a drop-in
replacement.

It defines the following constants and functions:

exception _thread.error
Raised on thread-specific errors.

Changed in version 3.3: This is now a synonym of the built-in RuntimeError.

_thread.LockType
This is the type of lock objects.

_thread.start_new_thread(function, args[, kwargs])
Start a new thread and return its identifier. The thread executes the function function with the
argument list args (which must be a tuple). The optional kwargs argument specifies a dictionary
of keyword arguments. When the function returns, the thread silently exits. When the function
terminates with an unhandled exception, a stack trace is printed and then the thread exits (but other
threads continue to run).

_thread.interrupt_main()
Raise a KeyboardInterrupt exception in the main thread. A subthread can use this function to interrupt
the main thread.

_thread.exit()
Raise the SystemExit exception. When not caught, this will cause the thread to exit silently.

_thread.allocate_lock()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

_thread.get_ident()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct
meaning; it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data.
Thread identifiers may be recycled when a thread exits and another thread is created.

_thread.stack_size([size])
Return the thread stack size used when creating new threads. The optional size argument specifies
the stack size to be used for subsequently created threads, and must be 0 (use platform or configured
default) or a positive integer value of at least 32,768 (32 KiB). If size is not specified, 0 is used. If
changing the thread stack size is unsupported, a RuntimeError is raised. If the specified stack size
is invalid, a ValueError is raised and the stack size is unmodified. 32 KiB is currently the minimum
supported stack size value to guarantee sufficient stack space for the interpreter itself. Note that some
platforms may have particular restrictions on values for the stack size, such as requiring a minimum
stack size > 32 KiB or requiring allocation in multiples of the system memory page size - platform
documentation should be referred to for more information (4 KiB pages are common; using multiples
of 4096 for the stack size is the suggested approach in the absence of more specific information).
Availability: Windows, systems with POSIX threads.

788 Chapter 17. Concurrent Execution

The Python Library Reference, Release 3.5.7

_thread.TIMEOUT_MAX
The maximum value allowed for the timeout parameter of Lock.acquire(). Specifying a timeout greater
than this value will raise an OverflowError.

New in version 3.2.

Lock objects have the following methods:

lock.acquire(waitflag=1, timeout=-1)
Without any optional argument, this method acquires the lock unconditionally, if necessary waiting
until it is released by another thread (only one thread at a time can acquire a lock — that’s their reason
for existence).

If the integer waitflag argument is present, the action depends on its value: if it is zero, the lock is only
acquired if it can be acquired immediately without waiting, while if it is nonzero, the lock is acquired
unconditionally as above.

If the floating-point timeout argument is present and positive, it specifies the maximum wait time
in seconds before returning. A negative timeout argument specifies an unbounded wait. You cannot
specify a timeout if waitflag is zero.

The return value is True if the lock is acquired successfully, False if not.

Changed in version 3.2: The timeout parameter is new.

Changed in version 3.2: Lock acquires can now be interrupted by signals on POSIX.

lock.release()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.

lock.locked()
Return the status of the lock: True if it has been acquired by some thread, False if not.

In addition to these methods, lock objects can also be used via the with statement, e.g.:

import _thread

a_lock = _thread.allocate_lock()

with a_lock:
print("a_lock is locked while this executes")

Caveats:

• Threads interact strangely with interrupts: the KeyboardInterrupt exception will be received by an
arbitrary thread. (When the signal module is available, interrupts always go to the main thread.)

• Calling sys.exit() or raising the SystemExit exception is equivalent to calling _thread.exit().

• It is not possible to interrupt the acquire() method on a lock — the KeyboardInterrupt exception will
happen after the lock has been acquired.

• When the main thread exits, it is system defined whether the other threads survive. On most systems,
they are killed without executing try . . . finally clauses or executing object destructors.

• When the main thread exits, it does not do any of its usual cleanup (except that try . . . finally clauses
are honored), and the standard I/O files are not flushed.

17.9. _thread — Low-level threading API 789

The Python Library Reference, Release 3.5.7

17.10 _dummy_thread — Drop-in replacement for the _thread module

Source code: Lib/_dummy_thread.py

This module provides a duplicate interface to the _thread module. It is meant to be imported when the
_thread module is not provided on a platform.

Suggested usage is:

try:
import _thread

except ImportError:
import _dummy_thread as _thread

Be careful to not use this module where deadlock might occur from a thread being created that blocks
waiting for another thread to be created. This often occurs with blocking I/O.

790 Chapter 17. Concurrent Execution

https://github.com/python/cpython/tree/3.5/Lib/_dummy_thread.py

CHAPTER

EIGHTEEN

INTERPROCESS COMMUNICATION AND NETWORKING

The modules described in this chapter provide mechanisms for different processes to communicate.

Some modules only work for two processes that are on the same machine, e.g. signal and mmap. Other
modules support networking protocols that two or more processes can use to communicate across machines.

The list of modules described in this chapter is:

18.1 socket — Low-level networking interface

Source code: Lib/socket.py

This module provides access to the BSD socket interface. It is available on all modern Unix systems,
Windows, MacOS, and probably additional platforms.

Note: Some behavior may be platform dependent, since calls are made to the operating system socket APIs.

The Python interface is a straightforward transliteration of the Unix system call and library interface for
sockets to Python’s object-oriented style: the socket() function returns a socket object whose methods
implement the various socket system calls. Parameter types are somewhat higher-level than in the C interface:
as with read() and write() operations on Python files, buffer allocation on receive operations is automatic,
and buffer length is implicit on send operations.

See also:

Module socketserver Classes that simplify writing network servers.

Module ssl A TLS/SSL wrapper for socket objects.

18.1.1 Socket families

Depending on the system and the build options, various socket families are supported by this module.

The address format required by a particular socket object is automatically selected based on the address
family specified when the socket object was created. Socket addresses are represented as follows:

• The address of an AF_UNIX socket bound to a file system node is represented as a string, using the
file system encoding and the 'surrogateescape' error handler (see PEP 383). An address in Linux’s
abstract namespace is returned as a bytes-like object with an initial null byte; note that sockets in this
namespace can communicate with normal file system sockets, so programs intended to run on Linux

791

https://github.com/python/cpython/tree/3.5/Lib/socket.py
https://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.5.7

may need to deal with both types of address. A string or bytes-like object can be used for either type
of address when passing it as an argument.

Changed in version 3.3: Previously, AF_UNIX socket paths were assumed to use UTF-8
encoding.

Changed in version 3.5: Writable bytes-like object is now accepted.

• A pair (host, port) is used for the AF_INET address family, where host is a string representing either
a hostname in Internet domain notation like 'daring.cwi.nl' or an IPv4 address like '100.50.200.5',
and port is an integer.

• For AF_INET6 address family, a four-tuple (host, port, flowinfo, scopeid) is used, where flowinfo and
scopeid represent the sin6_flowinfo and sin6_scope_id members in struct sockaddr_in6 in C. For
socket module methods, flowinfo and scopeid can be omitted just for backward compatibility. Note,
however, omission of scopeid can cause problems in manipulating scoped IPv6 addresses.

• AF_NETLINK sockets are represented as pairs (pid, groups).

• Linux-only support for TIPC is available using the AF_TIPC address family. TIPC is an open,
non-IP based networked protocol designed for use in clustered computer environments. Addresses
are represented by a tuple, and the fields depend on the address type. The general tuple form is
(addr_type, v1, v2, v3 [, scope]), where:

– addr_type is one of TIPC_ADDR_NAMESEQ, TIPC_ADDR_NAME, or TIPC_ADDR_ID.

– scope is one of TIPC_ZONE_SCOPE, TIPC_CLUSTER_SCOPE, and
TIPC_NODE_SCOPE.

– If addr_type is TIPC_ADDR_NAME, then v1 is the server type, v2 is the port identifier, and
v3 should be 0.

If addr_type is TIPC_ADDR_NAMESEQ, then v1 is the server type, v2 is the lower port
number, and v3 is the upper port number.

If addr_type is TIPC_ADDR_ID, then v1 is the node, v2 is the reference, and v3 should be set
to 0.

• A tuple (interface,) is used for the AF_CAN address family, where interface is a string representing
a network interface name like 'can0'. The network interface name '' can be used to receive packets
from all network interfaces of this family.

• A string or a tuple (id, unit) is used for the SYSPROTO_CONTROL protocol of the PF_SYSTEM
family. The string is the name of a kernel control using a dynamically-assigned ID. The tuple can be
used if ID and unit number of the kernel control are known or if a registered ID is used.

New in version 3.3.

• AF_BLUETOOTH supports the following protocols and address formats:

– BTPROTO_L2CAP accepts (bdaddr, psm) where bdaddr is the Bluetooth address as a string
and psm is an integer.

– BTPROTO_RFCOMM accepts (bdaddr, channel) where bdaddr is the Bluetooth address as a
string and channel is an integer.

– BTPROTO_HCI accepts (device_id,) where device_id is either an integer or a string with the
Bluetooth address of the interface. (This depends on your OS; NetBSD and DragonFlyBSD
expect a Bluetooth address while everything else expects an integer.)

Changed in version 3.2: NetBSD and DragonFlyBSD support added.

– BTPROTO_SCO accepts bdaddr where bdaddr is a bytes object containing the Bluetooth address
in a string format. (ex. b'12:23:34:45:56:67') This protocol is not supported under FreeBSD.

792 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

• Certain other address families (AF_PACKET, AF_CAN) support specific representations.

For IPv4 addresses, two special forms are accepted instead of a host address: the empty string represents
INADDR_ANY, and the string '<broadcast>' represents INADDR_BROADCAST. This behavior is not
compatible with IPv6, therefore, you may want to avoid these if you intend to support IPv6 with your
Python programs.

If you use a hostname in the host portion of IPv4/v6 socket address, the programmay show a nondeterministic
behavior, as Python uses the first address returned from the DNS resolution. The socket address will be
resolved differently into an actual IPv4/v6 address, depending on the results from DNS resolution and/or
the host configuration. For deterministic behavior use a numeric address in host portion.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions
can be raised; starting from Python 3.3, errors related to socket or address semantics raise OSError or one
of its subclasses (they used to raise socket.error).

Non-blocking mode is supported through setblocking(). A generalization of this based on timeouts is sup-
ported through settimeout().

18.1.2 Module contents

The module socket exports the following elements.

Exceptions

exception socket.error
A deprecated alias of OSError.

Changed in version 3.3: Following PEP 3151, this class was made an alias of OSError.

exception socket.herror
A subclass of OSError, this exception is raised for address-related errors, i.e. for functions that use
h_errno in the POSIX C API, including gethostbyname_ex() and gethostbyaddr(). The accompanying
value is a pair (h_errno, string) representing an error returned by a library call. h_errno is a numeric
value, while string represents the description of h_errno, as returned by the hstrerror() C function.

Changed in version 3.3: This class was made a subclass of OSError.

exception socket.gaierror
A subclass of OSError, this exception is raised for address-related errors by getaddrinfo() and getname-
info(). The accompanying value is a pair (error, string) representing an error returned by a library call.
string represents the description of error, as returned by the gai_strerror() C function. The numeric
error value will match one of the EAI_* constants defined in this module.

Changed in version 3.3: This class was made a subclass of OSError.

exception socket.timeout
A subclass of OSError, this exception is raised when a timeout occurs on a socket which has had
timeouts enabled via a prior call to settimeout() (or implicitly through setdefaulttimeout()). The
accompanying value is a string whose value is currently always “timed out”.

Changed in version 3.3: This class was made a subclass of OSError.

Constants

The AF_* and SOCK_* constants are now AddressFamily and SocketKind IntEnum collections.

New in version 3.4.

18.1. socket — Low-level networking interface 793

https://www.python.org/dev/peps/pep-3151

The Python Library Reference, Release 3.5.7

socket.AF_UNIX
socket.AF_INET
socket.AF_INET6

These constants represent the address (and protocol) families, used for the first argument to socket().
If the AF_UNIX constant is not defined then this protocol is unsupported. More constants may be
available depending on the system.

socket.SOCK_STREAM
socket.SOCK_DGRAM
socket.SOCK_RAW
socket.SOCK_RDM
socket.SOCK_SEQPACKET

These constants represent the socket types, used for the second argument to socket(). More constants
may be available depending on the system. (Only SOCK_STREAM and SOCK_DGRAM appear to
be generally useful.)

socket.SOCK_CLOEXEC
socket.SOCK_NONBLOCK

These two constants, if defined, can be combined with the socket types and allow you to set some flags
atomically (thus avoiding possible race conditions and the need for separate calls).

See also:

Secure File Descriptor Handling for a more thorough explanation.

Availability: Linux >= 2.6.27.

New in version 3.2.

SO_*
socket.SOMAXCONN
MSG_*
SOL_*
SCM_*
IPPROTO_*
IPPORT_*
INADDR_*
IP_*
IPV6_*
EAI_*
AI_*
NI_*
TCP_*

Many constants of these forms, documented in the Unix documentation on sockets and/or the IP pro-
tocol, are also defined in the socket module. They are generally used in arguments to the setsockopt()
and getsockopt() methods of socket objects. In most cases, only those symbols that are defined in the
Unix header files are defined; for a few symbols, default values are provided.

socket.AF_CAN
socket.PF_CAN
SOL_CAN_*
CAN_*

Many constants of these forms, documented in the Linux documentation, are also defined in the socket
module.

Availability: Linux >= 2.6.25.

New in version 3.3.

794 Chapter 18. Interprocess Communication and Networking

http://udrepper.livejournal.com/20407.html

The Python Library Reference, Release 3.5.7

socket.CAN_BCM
CAN_BCM_*

CAN_BCM, in the CAN protocol family, is the broadcast manager (BCM) protocol. Broadcast man-
ager constants, documented in the Linux documentation, are also defined in the socket module.

Availability: Linux >= 2.6.25.

New in version 3.4.

socket.CAN_RAW_FD_FRAMES
Enables CAN FD support in a CAN_RAW socket. This is disabled by default. This allows your
application to send both CAN and CAN FD frames; however, you one must accept both CAN and
CAN FD frames when reading from the socket.

This constant is documented in the Linux documentation.

Availability: Linux >= 3.6.

New in version 3.5.

socket.AF_RDS
socket.PF_RDS
socket.SOL_RDS
RDS_*

Many constants of these forms, documented in the Linux documentation, are also defined in the socket
module.

Availability: Linux >= 2.6.30.

New in version 3.3.

SIO_*
RCVALL_*

Constants for Windows’ WSAIoctl(). The constants are used as arguments to the ioctl() method of
socket objects.

TIPC_*
TIPC related constants, matching the ones exported by the C socket API. See the TIPC documentation
for more information.

socket.AF_LINK
Availability: BSD, OSX.

New in version 3.4.

socket.has_ipv6
This constant contains a boolean value which indicates if IPv6 is supported on this platform.

socket.BDADDR_ANY
socket.BDADDR_LOCAL

These are string constants containing Bluetooth addresses with special meanings. For example,
BDADDR_ANY can be used to indicate any address when specifying the binding socket with BT-
PROTO_RFCOMM.

socket.HCI_FILTER
socket.HCI_TIME_STAMP
socket.HCI_DATA_DIR

For use with BTPROTO_HCI. HCI_FILTER is not available for NetBSD or DragonFlyBSD.
HCI_TIME_STAMP and HCI_DATA_DIR are not available for FreeBSD, NetBSD, or DragonFly-
BSD.

18.1. socket — Low-level networking interface 795

The Python Library Reference, Release 3.5.7

Functions

Creating sockets

The following functions all create socket objects.

socket.socket(family=AF_INET, type=SOCK_STREAM, proto=0, fileno=None)
Create a new socket using the given address family, socket type and protocol number. The address
family should be AF_INET (the default), AF_INET6, AF_UNIX, AF_CAN or AF_RDS. The socket
type should be SOCK_STREAM (the default), SOCK_DGRAM, SOCK_RAW or perhaps one of the
other SOCK_ constants. The protocol number is usually zero and may be omitted or in the case where
the address family is AF_CAN the protocol should be one of CAN_RAW or CAN_BCM. If fileno
is specified, the other arguments are ignored, causing the socket with the specified file descriptor to
return. Unlike socket.fromfd(), fileno will return the same socket and not a duplicate. This may help
close a detached socket using socket.close().

The newly created socket is non-inheritable.

Changed in version 3.3: The AF_CAN family was added. The AF_RDS family was added.

Changed in version 3.4: The CAN_BCM protocol was added.

Changed in version 3.4: The returned socket is now non-inheritable.

socket.socketpair([family[, type[, proto]]])
Build a pair of connected socket objects using the given address family, socket type, and protocol
number. Address family, socket type, and protocol number are as for the socket() function above. The
default family is AF_UNIX if defined on the platform; otherwise, the default is AF_INET.

The newly created sockets are non-inheritable.

Changed in version 3.2: The returned socket objects now support the whole socket API, rather than
a subset.

Changed in version 3.4: The returned sockets are now non-inheritable.

Changed in version 3.5: Windows support added.

socket.create_connection(address[, timeout[, source_address]])
Connect to a TCP service listening on the Internet address (a 2-tuple (host, port)), and return the
socket object. This is a higher-level function than socket.connect(): if host is a non-numeric hostname,
it will try to resolve it for both AF_INET and AF_INET6, and then try to connect to all possible
addresses in turn until a connection succeeds. This makes it easy to write clients that are compatible
to both IPv4 and IPv6.

Passing the optional timeout parameter will set the timeout on the socket instance before attempting to
connect. If no timeout is supplied, the global default timeout setting returned by getdefaulttimeout()
is used.

If supplied, source_address must be a 2-tuple (host, port) for the socket to bind to as its source address
before connecting. If host or port are ‘’ or 0 respectively the OS default behavior will be used.

Changed in version 3.2: source_address was added.

socket.fromfd(fd, family, type, proto=0)
Duplicate the file descriptor fd (an integer as returned by a file object’s fileno() method) and build a
socket object from the result. Address family, socket type and protocol number are as for the socket()
function above. The file descriptor should refer to a socket, but this is not checked — subsequent
operations on the object may fail if the file descriptor is invalid. This function is rarely needed, but
can be used to get or set socket options on a socket passed to a program as standard input or output
(such as a server started by the Unix inet daemon). The socket is assumed to be in blocking mode.

796 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

The newly created socket is non-inheritable.

Changed in version 3.4: The returned socket is now non-inheritable.

socket.fromshare(data)
Instantiate a socket from data obtained from the socket.share() method. The socket is assumed to be
in blocking mode.

Availability: Windows.

New in version 3.3.

socket.SocketType
This is a Python type object that represents the socket object type. It is the same as type(socket(...)).

Other functions

The socket module also offers various network-related services:

socket.getaddrinfo(host, port, family=0, type=0, proto=0, flags=0)
Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments
for creating a socket connected to that service. host is a domain name, a string representation of an
IPv4/v6 address or None. port is a string service name such as 'http', a numeric port number or
None. By passing None as the value of host and port, you can pass NULL to the underlying C API.

The family, type and proto arguments can be optionally specified in order to narrow the list of addresses
returned. Passing zero as a value for each of these arguments selects the full range of results. The flags
argument can be one or several of the AI_* constants, and will influence how results are computed
and returned. For example, AI_NUMERICHOST will disable domain name resolution and will raise
an error if host is a domain name.

The function returns a list of 5-tuples with the following structure:

(family, type, proto, canonname, sockaddr)

In these tuples, family, type, proto are all integers and are meant to be passed to the socket() function.
canonname will be a string representing the canonical name of the host if AI_CANONNAME is part
of the flags argument; else canonname will be empty. sockaddr is a tuple describing a socket address,
whose format depends on the returned family (a (address, port) 2-tuple for AF_INET, a (address,
port, flow info, scope id) 4-tuple for AF_INET6), and is meant to be passed to the socket.connect()
method.

The following example fetches address information for a hypothetical TCP connection to example.org
on port 80 (results may differ on your system if IPv6 isn’t enabled):

>>> socket.getaddrinfo("example.org", 80, proto=socket.IPPROTO_TCP)
[(<AddressFamily.AF_INET6: 10>, <SocketType.SOCK_STREAM: 1>,
6, '', ('2606:2800:220:1:248:1893:25c8:1946', 80, 0, 0)),
(<AddressFamily.AF_INET: 2>, <SocketType.SOCK_STREAM: 1>,
6, '', ('93.184.216.34', 80))]

Changed in version 3.2: parameters can now be passed using keyword arguments.

socket.getfqdn([name])
Return a fully qualified domain name for name. If name is omitted or empty, it is interpreted as the
local host. To find the fully qualified name, the hostname returned by gethostbyaddr() is checked,
followed by aliases for the host, if available. The first name which includes a period is selected. In case
no fully qualified domain name is available, the hostname as returned by gethostname() is returned.

18.1. socket — Low-level networking interface 797

The Python Library Reference, Release 3.5.7

socket.gethostbyname(hostname)
Translate a host name to IPv4 address format. The IPv4 address is returned as a string, such as '100.50.
200.5'. If the host name is an IPv4 address itself it is returned unchanged. See gethostbyname_ex() for
a more complete interface. gethostbyname() does not support IPv6 name resolution, and getaddrinfo()
should be used instead for IPv4/v6 dual stack support.

socket.gethostbyname_ex(hostname)
Translate a host name to IPv4 address format, extended interface. Return a triple (hostname, aliaslist,
ipaddrlist) where hostname is the primary host name responding to the given ip_address, aliaslist
is a (possibly empty) list of alternative host names for the same address, and ipaddrlist is a list
of IPv4 addresses for the same interface on the same host (often but not always a single address).
gethostbyname_ex() does not support IPv6 name resolution, and getaddrinfo() should be used instead
for IPv4/v6 dual stack support.

socket.gethostname()
Return a string containing the hostname of the machine where the Python interpreter is currently
executing.

Note: gethostname() doesn’t always return the fully qualified domain name; use getfqdn() for that.

socket.gethostbyaddr(ip_address)
Return a triple (hostname, aliaslist, ipaddrlist) where hostname is the primary host name responding
to the given ip_address, aliaslist is a (possibly empty) list of alternative host names for the same
address, and ipaddrlist is a list of IPv4/v6 addresses for the same interface on the same host (most
likely containing only a single address). To find the fully qualified domain name, use the function
getfqdn(). gethostbyaddr() supports both IPv4 and IPv6.

socket.getnameinfo(sockaddr, flags)
Translate a socket address sockaddr into a 2-tuple (host, port). Depending on the settings of flags, the
result can contain a fully-qualified domain name or numeric address representation in host. Similarly,
port can contain a string port name or a numeric port number.

socket.getprotobyname(protocolname)
Translate an Internet protocol name (for example, 'icmp') to a constant suitable for passing as the
(optional) third argument to the socket() function. This is usually only needed for sockets opened in
“raw” mode (SOCK_RAW); for the normal socket modes, the correct protocol is chosen automatically
if the protocol is omitted or zero.

socket.getservbyname(servicename[, protocolname])
Translate an Internet service name and protocol name to a port number for that service. The optional
protocol name, if given, should be 'tcp' or 'udp', otherwise any protocol will match.

socket.getservbyport(port[, protocolname])
Translate an Internet port number and protocol name to a service name for that service. The optional
protocol name, if given, should be 'tcp' or 'udp', otherwise any protocol will match.

socket.ntohl(x)
Convert 32-bit positive integers from network to host byte order. On machines where the host byte
order is the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

socket.ntohs(x)
Convert 16-bit positive integers from network to host byte order. On machines where the host byte
order is the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

socket.htonl(x)
Convert 32-bit positive integers from host to network byte order. On machines where the host byte
order is the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

socket.htons(x)
Convert 16-bit positive integers from host to network byte order. On machines where the host byte

798 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

order is the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

socket.inet_aton(ip_string)
Convert an IPv4 address from dotted-quad string format (for example, ‘123.45.67.89’) to 32-bit packed
binary format, as a bytes object four characters in length. This is useful when conversing with a
program that uses the standard C library and needs objects of type struct in_addr, which is the C
type for the 32-bit packed binary this function returns.

inet_aton() also accepts strings with less than three dots; see the Unix manual page inet(3) for details.

If the IPv4 address string passed to this function is invalid, OSError will be raised. Note that exactly
what is valid depends on the underlying C implementation of inet_aton().

inet_aton() does not support IPv6, and inet_pton() should be used instead for IPv4/v6 dual stack
support.

socket.inet_ntoa(packed_ip)
Convert a 32-bit packed IPv4 address (a bytes-like object four bytes in length) to its standard dotted-
quad string representation (for example, ‘123.45.67.89’). This is useful when conversing with a program
that uses the standard C library and needs objects of type struct in_addr, which is the C type for the
32-bit packed binary data this function takes as an argument.

If the byte sequence passed to this function is not exactly 4 bytes in length, OSError will be raised.
inet_ntoa() does not support IPv6, and inet_ntop() should be used instead for IPv4/v6 dual stack
support.

Changed in version 3.5: Writable bytes-like object is now accepted.

socket.inet_pton(address_family, ip_string)
Convert an IP address from its family-specific string format to a packed, binary format. inet_pton()
is useful when a library or network protocol calls for an object of type struct in_addr (similar to
inet_aton()) or struct in6_addr.

Supported values for address_family are currently AF_INET and AF_INET6. If the IP address string
ip_string is invalid, OSError will be raised. Note that exactly what is valid depends on both the value
of address_family and the underlying implementation of inet_pton().

Availability: Unix (maybe not all platforms), Windows.

Changed in version 3.4: Windows support added

socket.inet_ntop(address_family, packed_ip)
Convert a packed IP address (a bytes-like object of some number of bytes) to its standard, family-
specific string representation (for example, '7.10.0.5' or '5aef:2b::8'). inet_ntop() is useful when a
library or network protocol returns an object of type struct in_addr (similar to inet_ntoa()) or struct
in6_addr.

Supported values for address_family are currently AF_INET and AF_INET6. If the bytes object
packed_ip is not the correct length for the specified address family, ValueError will be raised. OSError
is raised for errors from the call to inet_ntop().

Availability: Unix (maybe not all platforms), Windows.

Changed in version 3.4: Windows support added

Changed in version 3.5: Writable bytes-like object is now accepted.

socket.CMSG_LEN(length)
Return the total length, without trailing padding, of an ancillary data item with associated data of the
given length. This value can often be used as the buffer size for recvmsg() to receive a single item of
ancillary data, but RFC 3542 requires portable applications to use CMSG_SPACE() and thus include

18.1. socket — Low-level networking interface 799

https://tools.ietf.org/html/rfc3542.html

The Python Library Reference, Release 3.5.7

space for padding, even when the item will be the last in the buffer. Raises OverflowError if length is
outside the permissible range of values.

Availability: most Unix platforms, possibly others.

New in version 3.3.

socket.CMSG_SPACE(length)
Return the buffer size needed for recvmsg() to receive an ancillary data item with associated data of
the given length, along with any trailing padding. The buffer space needed to receive multiple items
is the sum of the CMSG_SPACE() values for their associated data lengths. Raises OverflowError if
length is outside the permissible range of values.

Note that some systems might support ancillary data without providing this function. Also note that
setting the buffer size using the results of this function may not precisely limit the amount of ancillary
data that can be received, since additional data may be able to fit into the padding area.

Availability: most Unix platforms, possibly others.

New in version 3.3.

socket.getdefaulttimeout()
Return the default timeout in seconds (float) for new socket objects. A value of None indicates that
new socket objects have no timeout. When the socket module is first imported, the default is None.

socket.setdefaulttimeout(timeout)
Set the default timeout in seconds (float) for new socket objects. When the socket module is first
imported, the default is None. See settimeout() for possible values and their respective meanings.

socket.sethostname(name)
Set the machine’s hostname to name. This will raise an OSError if you don’t have enough rights.

Availability: Unix.

New in version 3.3.

socket.if_nameindex()
Return a list of network interface information (index int, name string) tuples. OSError if the system
call fails.

Availability: Unix.

New in version 3.3.

socket.if_nametoindex(if_name)
Return a network interface index number corresponding to an interface name. OSError if no interface
with the given name exists.

Availability: Unix.

New in version 3.3.

socket.if_indextoname(if_index)
Return a network interface name corresponding to an interface index number. OSError if no interface
with the given index exists.

Availability: Unix.

New in version 3.3.

800 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

18.1.3 Socket Objects

Socket objects have the following methods. Except for makefile(), these correspond to Unix system calls
applicable to sockets.

Changed in version 3.2: Support for the context manager protocol was added. Exiting the context manager
is equivalent to calling close().

socket.accept()
Accept a connection. The socket must be bound to an address and listening for connections. The
return value is a pair (conn, address) where conn is a new socket object usable to send and receive data
on the connection, and address is the address bound to the socket on the other end of the connection.

The newly created socket is non-inheritable.

Changed in version 3.4: The socket is now non-inheritable.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the method now retries the system call instead of raising an InterruptedError exception (see
PEP 475 for the rationale).

socket.bind(address)
Bind the socket to address. The socket must not already be bound. (The format of address depends
on the address family — see above.)

socket.close()
Mark the socket closed. The underlying system resource (e.g. a file descriptor) is also closed when all
file objects from makefile() are closed. Once that happens, all future operations on the socket object
will fail. The remote end will receive no more data (after queued data is flushed).

Sockets are automatically closed when they are garbage-collected, but it is recommended to close()
them explicitly, or to use a with statement around them.

Note: close() releases the resource associated with a connection but does not necessarily close the
connection immediately. If you want to close the connection in a timely fashion, call shutdown() before
close().

socket.connect(address)
Connect to a remote socket at address. (The format of address depends on the address family — see
above.)

If the connection is interrupted by a signal, the method waits until the connection completes, or raise
a socket.timeout on timeout, if the signal handler doesn’t raise an exception and the socket is blocking
or has a timeout. For non-blocking sockets, the method raises an InterruptedError exception if the
connection is interrupted by a signal (or the exception raised by the signal handler).

Changed in version 3.5: The method now waits until the connection completes instead of raising an
InterruptedError exception if the connection is interrupted by a signal, the signal handler doesn’t raise
an exception and the socket is blocking or has a timeout (see the PEP 475 for the rationale).

socket.connect_ex(address)
Like connect(address), but return an error indicator instead of raising an exception for errors returned
by the C-level connect() call (other problems, such as “host not found,” can still raise exceptions). The
error indicator is 0 if the operation succeeded, otherwise the value of the errno variable. This is useful
to support, for example, asynchronous connects.

socket.detach()
Put the socket object into closed state without actually closing the underlying file descriptor. The file
descriptor is returned, and can be reused for other purposes.

18.1. socket — Low-level networking interface 801

https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

New in version 3.2.

socket.dup()
Duplicate the socket.

The newly created socket is non-inheritable.

Changed in version 3.4: The socket is now non-inheritable.

socket.fileno()
Return the socket’s file descriptor (a small integer), or -1 on failure. This is useful with select.select().

Under Windows the small integer returned by this method cannot be used where a file descriptor can
be used (such as os.fdopen()). Unix does not have this limitation.

socket.get_inheritable()
Get the inheritable flag of the socket’s file descriptor or socket’s handle: True if the socket can be
inherited in child processes, False if it cannot.

New in version 3.4.

socket.getpeername()
Return the remote address to which the socket is connected. This is useful to find out the port number
of a remote IPv4/v6 socket, for instance. (The format of the address returned depends on the address
family — see above.) On some systems this function is not supported.

socket.getsockname()
Return the socket’s own address. This is useful to find out the port number of an IPv4/v6 socket, for
instance. (The format of the address returned depends on the address family — see above.)

socket.getsockopt(level, optname[, buflen])
Return the value of the given socket option (see the Unix man page getsockopt(2)). The needed
symbolic constants (SO_* etc.) are defined in this module. If buflen is absent, an integer option is
assumed and its integer value is returned by the function. If buflen is present, it specifies the maximum
length of the buffer used to receive the option in, and this buffer is returned as a bytes object. It is up
to the caller to decode the contents of the buffer (see the optional built-in module struct for a way to
decode C structures encoded as byte strings).

socket.gettimeout()
Return the timeout in seconds (float) associated with socket operations, or None if no timeout is set.
This reflects the last call to setblocking() or settimeout().

socket.ioctl(control, option)

Platform Windows

The ioctl() method is a limited interface to the WSAIoctl system interface. Please refer to the Win32
documentation for more information.

On other platforms, the generic fcntl.fcntl() and fcntl.ioctl() functions may be used; they accept a
socket object as their first argument.

socket.listen([backlog])
Enable a server to accept connections. If backlog is specified, it must be at least 0 (if it is lower, it is
set to 0); it specifies the number of unaccepted connections that the system will allow before refusing
new connections. If not specified, a default reasonable value is chosen.

Changed in version 3.5: The backlog parameter is now optional.

socket.makefile(mode=’r’, buffering=None, *, encoding=None, errors=None, newline=None)
Return a file object associated with the socket. The exact returned type depends on the arguments
given to makefile(). These arguments are interpreted the same way as by the built-in open() function,
except the only supported mode values are 'r' (default), 'w' and 'b'.

802 Chapter 18. Interprocess Communication and Networking

https://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx
https://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx

The Python Library Reference, Release 3.5.7

The socket must be in blocking mode; it can have a timeout, but the file object’s internal buffer may
end up in an inconsistent state if a timeout occurs.

Closing the file object returned by makefile() won’t close the original socket unless all other file objects
have been closed and socket.close() has been called on the socket object.

Note: On Windows, the file-like object created by makefile() cannot be used where a file object with
a file descriptor is expected, such as the stream arguments of subprocess.Popen().

socket.recv(bufsize[, flags])
Receive data from the socket. The return value is a bytes object representing the data received. The
maximum amount of data to be received at once is specified by bufsize. See the Unix manual page
recv(2) for the meaning of the optional argument flags; it defaults to zero.

Note: For best match with hardware and network realities, the value of bufsize should be a relatively
small power of 2, for example, 4096.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the method now retries the system call instead of raising an InterruptedError exception (see
PEP 475 for the rationale).

socket.recvfrom(bufsize[, flags])
Receive data from the socket. The return value is a pair (bytes, address) where bytes is a bytes object
representing the data received and address is the address of the socket sending the data. See the Unix
manual page recv(2) for the meaning of the optional argument flags; it defaults to zero. (The format
of address depends on the address family — see above.)

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the method now retries the system call instead of raising an InterruptedError exception (see
PEP 475 for the rationale).

socket.recvmsg(bufsize[, ancbufsize[, flags]])
Receive normal data (up to bufsize bytes) and ancillary data from the socket. The ancbufsize argu-
ment sets the size in bytes of the internal buffer used to receive the ancillary data; it defaults to 0,
meaning that no ancillary data will be received. Appropriate buffer sizes for ancillary data can be
calculated using CMSG_SPACE() or CMSG_LEN(), and items which do not fit into the buffer might
be truncated or discarded. The flags argument defaults to 0 and has the same meaning as for recv().

The return value is a 4-tuple: (data, ancdata, msg_flags, address). The data item is a bytes ob-
ject holding the non-ancillary data received. The ancdata item is a list of zero or more tuples
(cmsg_level, cmsg_type, cmsg_data) representing the ancillary data (control messages) received:
cmsg_level and cmsg_type are integers specifying the protocol level and protocol-specific type re-
spectively, and cmsg_data is a bytes object holding the associated data. The msg_flags item is the
bitwise OR of various flags indicating conditions on the received message; see your system documen-
tation for details. If the receiving socket is unconnected, address is the address of the sending socket,
if available; otherwise, its value is unspecified.

On some systems, sendmsg() and recvmsg() can be used to pass file descriptors between processes
over an AF_UNIX socket. When this facility is used (it is often restricted to SOCK_STREAM
sockets), recvmsg() will return, in its ancillary data, items of the form (socket.SOL_SOCKET, socket.
SCM_RIGHTS, fds), where fds is a bytes object representing the new file descriptors as a binary array
of the native C int type. If recvmsg() raises an exception after the system call returns, it will first
attempt to close any file descriptors received via this mechanism.

Some systems do not indicate the truncated length of ancillary data items which have been only

18.1. socket — Low-level networking interface 803

https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

partially received. If an item appears to extend beyond the end of the buffer, recvmsg() will issue a
RuntimeWarning, and will return the part of it which is inside the buffer provided it has not been
truncated before the start of its associated data.

On systems which support the SCM_RIGHTS mechanism, the following function will receive up to
maxfds file descriptors, returning the message data and a list containing the descriptors (while ignoring
unexpected conditions such as unrelated control messages being received). See also sendmsg().

import socket, array

def recv_fds(sock, msglen, maxfds):
fds = array.array("i") # Array of ints
msg, ancdata, flags, addr = sock.recvmsg(msglen, socket.CMSG_LEN(maxfds * fds.itemsize))
for cmsg_level, cmsg_type, cmsg_data in ancdata:

if (cmsg_level == socket.SOL_SOCKET and cmsg_type == socket.SCM_RIGHTS):
Append data, ignoring any truncated integers at the end.
fds.fromstring(cmsg_data[:len(cmsg_data) - (len(cmsg_data) % fds.itemsize)])

return msg, list(fds)

Availability: most Unix platforms, possibly others.

New in version 3.3.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the method now retries the system call instead of raising an InterruptedError exception (see
PEP 475 for the rationale).

socket.recvmsg_into(buffers[, ancbufsize[, flags]])
Receive normal data and ancillary data from the socket, behaving as recvmsg() would, but scatter
the non-ancillary data into a series of buffers instead of returning a new bytes object. The buffers
argument must be an iterable of objects that export writable buffers (e.g. bytearray objects); these
will be filled with successive chunks of the non-ancillary data until it has all been written or there
are no more buffers. The operating system may set a limit (sysconf() value SC_IOV_MAX) on the
number of buffers that can be used. The ancbufsize and flags arguments have the same meaning as for
recvmsg().

The return value is a 4-tuple: (nbytes, ancdata, msg_flags, address), where nbytes is the total number
of bytes of non-ancillary data written into the buffers, and ancdata, msg_flags and address are the
same as for recvmsg().

Example:

>>> import socket
>>> s1, s2 = socket.socketpair()
>>> b1 = bytearray(b'----')
>>> b2 = bytearray(b'0123456789')
>>> b3 = bytearray(b'--------------')
>>> s1.send(b'Mary had a little lamb')
22
>>> s2.recvmsg_into([b1, memoryview(b2)[2:9], b3])
(22, [], 0, None)
>>> [b1, b2, b3]
[bytearray(b'Mary'), bytearray(b'01 had a 9'), bytearray(b'little lamb---')]

Availability: most Unix platforms, possibly others.

New in version 3.3.

socket.recvfrom_into(buffer[, nbytes[, flags]])
Receive data from the socket, writing it into buffer instead of creating a new bytestring. The return

804 Chapter 18. Interprocess Communication and Networking

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

value is a pair (nbytes, address) where nbytes is the number of bytes received and address is the
address of the socket sending the data. See the Unix manual page recv(2) for the meaning of the
optional argument flags; it defaults to zero. (The format of address depends on the address family —
see above.)

socket.recv_into(buffer[, nbytes[, flags]])
Receive up to nbytes bytes from the socket, storing the data into a buffer rather than creating a new
bytestring. If nbytes is not specified (or 0), receive up to the size available in the given buffer. Returns
the number of bytes received. See the Unix manual page recv(2) for the meaning of the optional
argument flags; it defaults to zero.

socket.send(bytes[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optional flags
argument has the same meaning as for recv() above. Returns the number of bytes sent. Applications
are responsible for checking that all data has been sent; if only some of the data was transmitted, the
application needs to attempt delivery of the remaining data. For further information on this topic,
consult the socket-howto.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the method now retries the system call instead of raising an InterruptedError exception (see
PEP 475 for the rationale).

socket.sendall(bytes[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument
has the same meaning as for recv() above. Unlike send(), this method continues to send data from
bytes until either all data has been sent or an error occurs. None is returned on success. On error, an
exception is raised, and there is no way to determine how much data, if any, was successfully sent.

Changed in version 3.5: The socket timeout is no more reset each time data is sent successfully. The
socket timeout is now the maximum total duration to send all data.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the method now retries the system call instead of raising an InterruptedError exception (see
PEP 475 for the rationale).

socket.sendto(bytes, address)
socket.sendto(bytes, flags, address)

Send data to the socket. The socket should not be connected to a remote socket, since the destination
socket is specified by address. The optional flags argument has the same meaning as for recv() above.
Return the number of bytes sent. (The format of address depends on the address family — see above.)

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the method now retries the system call instead of raising an InterruptedError exception (see
PEP 475 for the rationale).

socket.sendmsg(buffers[, ancdata[, flags[, address]]])
Send normal and ancillary data to the socket, gathering the non-ancillary data from a series of buffers
and concatenating it into a single message. The buffers argument specifies the non-ancillary data as
an iterable of bytes-like objects (e.g. bytes objects); the operating system may set a limit (sysconf()
value SC_IOV_MAX) on the number of buffers that can be used. The ancdata argument specifies
the ancillary data (control messages) as an iterable of zero or more tuples (cmsg_level, cmsg_type,
cmsg_data), where cmsg_level and cmsg_type are integers specifying the protocol level and protocol-
specific type respectively, and cmsg_data is a bytes-like object holding the associated data. Note
that some systems (in particular, systems without CMSG_SPACE()) might support sending only one
control message per call. The flags argument defaults to 0 and has the same meaning as for send(). If
address is supplied and not None, it sets a destination address for the message. The return value is
the number of bytes of non-ancillary data sent.

18.1. socket — Low-level networking interface 805

https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

The following function sends the list of file descriptors fds over an AF_UNIX socket, on systems which
support the SCM_RIGHTS mechanism. See also recvmsg().

import socket, array

def send_fds(sock, msg, fds):
return sock.sendmsg([msg], [(socket.SOL_SOCKET, socket.SCM_RIGHTS, array.array("i", fds))])

Availability: most Unix platforms, possibly others.

New in version 3.3.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an
exception, the method now retries the system call instead of raising an InterruptedError exception (see
PEP 475 for the rationale).

socket.sendfile(file, offset=0, count=None)
Send a file until EOF is reached by using high-performance os.sendfile and return the total number
of bytes which were sent. file must be a regular file object opened in binary mode. If os.sendfile is
not available (e.g. Windows) or file is not a regular file send() will be used instead. offset tells from
where to start reading the file. If specified, count is the total number of bytes to transmit as opposed
to sending the file until EOF is reached. File position is updated on return or also in case of error in
which case file.tell() can be used to figure out the number of bytes which were sent. The socket must
be of SOCK_STREAM type. Non-blocking sockets are not supported.

New in version 3.5.

socket.set_inheritable(inheritable)
Set the inheritable flag of the socket’s file descriptor or socket’s handle.

New in version 3.4.

socket.setblocking(flag)
Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else
to blocking mode.

This method is a shorthand for certain settimeout() calls:

• sock.setblocking(True) is equivalent to sock.settimeout(None)

• sock.setblocking(False) is equivalent to sock.settimeout(0.0)

socket.settimeout(value)
Set a timeout on blocking socket operations. The value argument can be a nonnegative floating point
number expressing seconds, or None. If a non-zero value is given, subsequent socket operations will
raise a timeout exception if the timeout period value has elapsed before the operation has completed.
If zero is given, the socket is put in non-blocking mode. If None is given, the socket is put in blocking
mode.

For further information, please consult the notes on socket timeouts.

socket.setsockopt(level, optname, value)
Set the value of the given socket option (see the Unix manual page setsockopt(2)). The needed symbolic
constants are defined in the socket module (SO_* etc.). The value can be an integer or a bytes-like
object representing a buffer. In the latter case it is up to the caller to ensure that the bytestring
contains the proper bits (see the optional built-in module struct for a way to encode C structures as
bytestrings).

Changed in version 3.5: Writable bytes-like object is now accepted.

socket.shutdown(how)
Shut down one or both halves of the connection. If how is SHUT_RD, further receives are disallowed.

806 Chapter 18. Interprocess Communication and Networking

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

If how is SHUT_WR, further sends are disallowed. If how is SHUT_RDWR, further sends and
receives are disallowed.

socket.share(process_id)
Duplicate a socket and prepare it for sharing with a target process. The target process must be provided
with process_id. The resulting bytes object can then be passed to the target process using some form
of interprocess communication and the socket can be recreated there using fromshare(). Once this
method has been called, it is safe to close the socket since the operating system has already duplicated
it for the target process.

Availability: Windows.

New in version 3.3.

Note that there are no methods read() or write(); use recv() and send() without flags argument instead.

Socket objects also have these (read-only) attributes that correspond to the values given to the socket
constructor.

socket.family
The socket family.

socket.type
The socket type.

socket.proto
The socket protocol.

18.1.4 Notes on socket timeouts

A socket object can be in one of three modes: blocking, non-blocking, or timeout. Sockets are by default
always created in blocking mode, but this can be changed by calling setdefaulttimeout().

• In blocking mode, operations block until complete or the system returns an error (such as connection
timed out).

• In non-blocking mode, operations fail (with an error that is unfortunately system-dependent) if they
cannot be completed immediately: functions from the select can be used to know when and whether a
socket is available for reading or writing.

• In timeout mode, operations fail if they cannot be completed within the timeout specified for the socket
(they raise a timeout exception) or if the system returns an error.

Note: At the operating system level, sockets in timeout mode are internally set in non-blocking mode. Also,
the blocking and timeout modes are shared between file descriptors and socket objects that refer to the same
network endpoint. This implementation detail can have visible consequences if e.g. you decide to use the
fileno() of a socket.

Timeouts and the connect method

The connect() operation is also subject to the timeout setting, and in general it is recommended to call
settimeout() before calling connect() or pass a timeout parameter to create_connection(). However, the
system network stack may also return a connection timeout error of its own regardless of any Python socket
timeout setting.

18.1. socket — Low-level networking interface 807

The Python Library Reference, Release 3.5.7

Timeouts and the accept method

If getdefaulttimeout() is not None, sockets returned by the accept() method inherit that timeout. Otherwise,
the behaviour depends on settings of the listening socket:

• if the listening socket is in blocking mode or in timeout mode, the socket returned by accept() is in
blocking mode;

• if the listening socket is in non-blocking mode, whether the socket returned by accept() is in blocking
or non-blocking mode is operating system-dependent. If you want to ensure cross-platform behaviour,
it is recommended you manually override this setting.

18.1.5 Example

Here are four minimal example programs using the TCP/IP protocol: a server that echoes all data that it
receives back (servicing only one client), and a client using it. Note that a server must perform the sequence
socket(), bind(), listen(), accept() (possibly repeating the accept() to service more than one client), while a
client only needs the sequence socket(), connect(). Also note that the server does not sendall()/recv() on
the socket it is listening on but on the new socket returned by accept().

The first two examples support IPv4 only.

Echo server program
import socket

HOST = '' # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
with conn:

print('Connected by', addr)
while True:

data = conn.recv(1024)
if not data: break
conn.sendall(data)

Echo client program
import socket

HOST = 'daring.cwi.nl' # The remote host
PORT = 50007 # The same port as used by the server
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

s.connect((HOST, PORT))
s.sendall(b'Hello, world')
data = s.recv(1024)

print('Received', repr(data))

The next two examples are identical to the above two, but support both IPv4 and IPv6. The server side will
listen to the first address family available (it should listen to both instead). On most of IPv6-ready systems,
IPv6 will take precedence and the server may not accept IPv4 traffic. The client side will try to connect
to the all addresses returned as a result of the name resolution, and sends traffic to the first one connected
successfully.

808 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

Echo server program
import socket
import sys

HOST = None # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC,

socket.SOCK_STREAM, 0, socket.AI_PASSIVE):
af, socktype, proto, canonname, sa = res
try:

s = socket.socket(af, socktype, proto)
except OSError as msg:

s = None
continue

try:
s.bind(sa)
s.listen(1)

except OSError as msg:
s.close()
s = None
continue

break
if s is None:

print('could not open socket')
sys.exit(1)

conn, addr = s.accept()
with conn:

print('Connected by', addr)
while True:

data = conn.recv(1024)
if not data: break
conn.send(data)

Echo client program
import socket
import sys

HOST = 'daring.cwi.nl' # The remote host
PORT = 50007 # The same port as used by the server
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC, socket.SOCK_STREAM):

af, socktype, proto, canonname, sa = res
try:

s = socket.socket(af, socktype, proto)
except OSError as msg:

s = None
continue

try:
s.connect(sa)

except OSError as msg:
s.close()
s = None
continue

break
if s is None:

print('could not open socket')

(continues on next page)

18.1. socket — Low-level networking interface 809

The Python Library Reference, Release 3.5.7

(continued from previous page)

sys.exit(1)
with s:

s.sendall(b'Hello, world')
data = s.recv(1024)

print('Received', repr(data))

The next example shows how to write a very simple network sniffer with raw sockets on Windows. The
example requires administrator privileges to modify the interface:

import socket

the public network interface
HOST = socket.gethostbyname(socket.gethostname())

create a raw socket and bind it to the public interface
s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_IP)
s.bind((HOST, 0))

Include IP headers
s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

receive all packages
s.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)

receive a package
print(s.recvfrom(65565))

disabled promiscuous mode
s.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

The last example shows how to use the socket interface to communicate to a CAN network using the raw
socket protocol. To use CAN with the broadcast manager protocol instead, open a socket with:

socket.socket(socket.AF_CAN, socket.SOCK_DGRAM, socket.CAN_BCM)

After binding (CAN_RAW) or connecting (CAN_BCM) the socket, you can use the socket.send(), and the
socket.recv() operations (and their counterparts) on the socket object as usual.

This example might require special privileges:

import socket
import struct

CAN frame packing/unpacking (see 'struct can_frame' in <linux/can.h>)

can_frame_fmt = "=IB3x8s"
can_frame_size = struct.calcsize(can_frame_fmt)

def build_can_frame(can_id, data):
can_dlc = len(data)
data = data.ljust(8, b'\x00')
return struct.pack(can_frame_fmt, can_id, can_dlc, data)

def dissect_can_frame(frame):
can_id, can_dlc, data = struct.unpack(can_frame_fmt, frame)

(continues on next page)

810 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

(continued from previous page)

return (can_id, can_dlc, data[:can_dlc])

create a raw socket and bind it to the 'vcan0' interface
s = socket.socket(socket.AF_CAN, socket.SOCK_RAW, socket.CAN_RAW)
s.bind(('vcan0',))

while True:
cf, addr = s.recvfrom(can_frame_size)

print('Received: can_id=%x, can_dlc=%x, data=%s' % dissect_can_frame(cf))

try:
s.send(cf)

except OSError:
print('Error sending CAN frame')

try:
s.send(build_can_frame(0x01, b'\x01\x02\x03'))

except OSError:
print('Error sending CAN frame')

Running an example several times with too small delay between executions, could lead to this error:

OSError: [Errno 98] Address already in use

This is because the previous execution has left the socket in a TIME_WAIT state, and can’t be immediately
reused.

There is a socket flag to set, in order to prevent this, socket.SO_REUSEADDR:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((HOST, PORT))

the SO_REUSEADDR flag tells the kernel to reuse a local socket in TIME_WAIT state, without waiting
for its natural timeout to expire.

See also:

For an introduction to socket programming (in C), see the following papers:

• An Introductory 4.3BSD Interprocess Communication Tutorial, by Stuart Sechrest

• An Advanced 4.3BSD Interprocess Communication Tutorial, by Samuel J. Leffler et al,

both in the UNIX Programmer’s Manual, Supplementary Documents 1 (sections PS1:7 and PS1:8). The
platform-specific reference material for the various socket-related system calls are also a valuable source of
information on the details of socket semantics. For Unix, refer to the manual pages; for Windows, see the
WinSock (or Winsock 2) specification. For IPv6-ready APIs, readers may want to refer to RFC 3493 titled
Basic Socket Interface Extensions for IPv6.

18.2 ssl — TLS/SSL wrapper for socket objects

Source code: Lib/ssl.py

18.2. ssl — TLS/SSL wrapper for socket objects 811

https://tools.ietf.org/html/rfc3493.html
https://github.com/python/cpython/tree/3.5/Lib/ssl.py

The Python Library Reference, Release 3.5.7

This module provides access to Transport Layer Security (often known as “Secure Sockets Layer”) encryption
and peer authentication facilities for network sockets, both client-side and server-side. This module uses the
OpenSSL library. It is available on all modern Unix systems, Windows, Mac OS X, and probably additional
platforms, as long as OpenSSL is installed on that platform.

Note: Some behavior may be platform dependent, since calls are made to the operating system socket
APIs. The installed version of OpenSSL may also cause variations in behavior. For example, TLSv1.1 and
TLSv1.2 come with openssl version 1.0.1.

Warning: Don’t use this module without reading the Security considerations. Doing so may lead to a
false sense of security, as the default settings of the ssl module are not necessarily appropriate for your
application.

This section documents the objects and functions in the ssl module; for more general information about
TLS, SSL, and certificates, the reader is referred to the documents in the “See Also” section at the bottom.

This module provides a class, ssl.SSLSocket, which is derived from the socket.socket type, and provides a
socket-like wrapper that also encrypts and decrypts the data going over the socket with SSL. It supports
additional methods such as getpeercert(), which retrieves the certificate of the other side of the connection,
and cipher(),which retrieves the cipher being used for the secure connection.

For more sophisticated applications, the ssl.SSLContext class helps manage settings and certificates, which
can then be inherited by SSL sockets created through the SSLContext.wrap_socket() method.

18.2.1 Functions, Constants, and Exceptions

exception ssl.SSLError
Raised to signal an error from the underlying SSL implementation (currently provided by the OpenSSL
library). This signifies some problem in the higher-level encryption and authentication layer that’s
superimposed on the underlying network connection. This error is a subtype of OSError. The error
code and message of SSLError instances are provided by the OpenSSL library.

Changed in version 3.3: SSLError used to be a subtype of socket.error.

library
A string mnemonic designating the OpenSSL submodule in which the error occurred, such as SSL,
PEM or X509. The range of possible values depends on the OpenSSL version.

New in version 3.3.

reason
A string mnemonic designating the reason this error occurred, for example CERTIFI-
CATE_VERIFY_FAILED. The range of possible values depends on the OpenSSL version.

New in version 3.3.

exception ssl.SSLZeroReturnError
A subclass of SSLError raised when trying to read or write and the SSL connection has been closed
cleanly. Note that this doesn’t mean that the underlying transport (read TCP) has been closed.

New in version 3.3.

exception ssl.SSLWantReadError
A subclass of SSLError raised by a non-blocking SSL socket when trying to read or write data, but
more data needs to be received on the underlying TCP transport before the request can be fulfilled.

812 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

New in version 3.3.

exception ssl.SSLWantWriteError
A subclass of SSLError raised by a non-blocking SSL socket when trying to read or write data, but
more data needs to be sent on the underlying TCP transport before the request can be fulfilled.

New in version 3.3.

exception ssl.SSLSyscallError
A subclass of SSLError raised when a system error was encountered while trying to fulfill an operation
on a SSL socket. Unfortunately, there is no easy way to inspect the original errno number.

New in version 3.3.

exception ssl.SSLEOFError
A subclass of SSLError raised when the SSL connection has been terminated abruptly. Generally, you
shouldn’t try to reuse the underlying transport when this error is encountered.

New in version 3.3.

exception ssl.CertificateError
Raised to signal an error with a certificate (such as mismatching hostname). Certificate errors detected
by OpenSSL, though, raise an SSLError.

Socket creation

The following function allows for standalone socket creation. Starting from Python 3.2, it can be more
flexible to use SSLContext.wrap_socket() instead.

ssl.wrap_socket(sock, keyfile=None, certfile=None, server_side=False, cert_reqs=CERT_NONE,
ssl_version={see docs}, ca_certs=None, do_handshake_on_connect=True, sup-
press_ragged_eofs=True, ciphers=None)

Takes an instance sock of socket.socket, and returns an instance of ssl.SSLSocket, a subtype of socket.
socket, which wraps the underlying socket in an SSL context. sock must be a SOCK_STREAM socket;
other socket types are unsupported.

For client-side sockets, the context construction is lazy; if the underlying socket isn’t connected yet, the
context construction will be performed after connect() is called on the socket. For server-side sockets, if
the socket has no remote peer, it is assumed to be a listening socket, and the server-side SSL wrapping
is automatically performed on client connections accepted via the accept() method. wrap_socket()
may raise SSLError.

The keyfile and certfile parameters specify optional files which contain a certificate to be used to identify
the local side of the connection. See the discussion of Certificates for more information on how the
certificate is stored in the certfile.

The parameter server_side is a boolean which identifies whether server-side or client-side behavior is
desired from this socket.

The parameter cert_reqs specifies whether a certificate is required from the other side of the connection,
and whether it will be validated if provided. It must be one of the three values CERT_NONE (certifi-
cates ignored), CERT_OPTIONAL (not required, but validated if provided), or CERT_REQUIRED
(required and validated). If the value of this parameter is not CERT_NONE, then the ca_certs
parameter must point to a file of CA certificates.

The ca_certs file contains a set of concatenated “certification authority” certificates, which are used to
validate certificates passed from the other end of the connection. See the discussion of Certificates for
more information about how to arrange the certificates in this file.

18.2. ssl — TLS/SSL wrapper for socket objects 813

The Python Library Reference, Release 3.5.7

The parameter ssl_version specifies which version of the SSL protocol to use. Typically, the server
chooses a particular protocol version, and the client must adapt to the server’s choice. Most of the ver-
sions are not interoperable with the other versions. If not specified, the default is PROTOCOL_TLS;
it provides the most compatibility with other versions.

Here’s a table showing which versions in a client (down the side) can connect to which versions in a
server (along the top):

client / server SSLv2 SSLv3 TLS TLSv1 TLSv1.1 TLSv1.2
SSLv2 yes no yes no no no
SSLv3 no yes yes no no no
TLS (SSLv23) no yes yes yes yes yes
TLSv1 no no yes yes no no
TLSv1.1 no no yes no yes no
TLSv1.2 no no yes no no yes

Note: Which connections succeed will vary depending on the version of OpenSSL. For example, before
OpenSSL 1.0.0, an SSLv23 client would always attempt SSLv2 connections.

The ciphers parameter sets the available ciphers for this SSL object. It should be a string in the
OpenSSL cipher list format.

The parameter do_handshake_on_connect specifies whether to do the SSL handshake automatically
after doing a socket.connect(), or whether the application program will call it explicitly, by invoking the
SSLSocket.do_handshake() method. Calling SSLSocket.do_handshake() explicitly gives the program
control over the blocking behavior of the socket I/O involved in the handshake.

The parameter suppress_ragged_eofs specifies how the SSLSocket.recv() method should signal unex-
pected EOF from the other end of the connection. If specified as True (the default), it returns a normal
EOF (an empty bytes object) in response to unexpected EOF errors raised from the underlying socket;
if False, it will raise the exceptions back to the caller.

Changed in version 3.2: New optional argument ciphers.

Context creation

A convenience function helps create SSLContext objects for common purposes.

ssl.create_default_context(purpose=Purpose.SERVER_AUTH, cafile=None, capath=None, ca-
data=None)

Return a new SSLContext object with default settings for the given purpose. The settings are chosen
by the ssl module, and usually represent a higher security level than when calling the SSLContext
constructor directly.

cafile, capath, cadata represent optional CA certificates to trust for certificate verification, as in
SSLContext.load_verify_locations(). If all three are None, this function can choose to trust the
system’s default CA certificates instead.

The settings are: PROTOCOL_TLS, OP_NO_SSLv2, and OP_NO_SSLv3 with high encryption
cipher suites without RC4 and without unauthenticated cipher suites. Passing SERVER_AUTH as
purpose sets verify_mode to CERT_REQUIRED and either loads CA certificates (when at least one
of cafile, capath or cadata is given) or uses SSLContext.load_default_certs() to load default CA
certificates.

814 Chapter 18. Interprocess Communication and Networking

https://www.openssl.org/docs/apps/ciphers.html#CIPHER-LIST-FORMAT

The Python Library Reference, Release 3.5.7

Note: The protocol, options, cipher and other settings may change to more restrictive values anytime
without prior deprecation. The values represent a fair balance between compatibility and security.

If your application needs specific settings, you should create a SSLContext and apply the settings
yourself.

Note: If you find that when certain older clients or servers attempt to connect with a SSLContext
created by this function that they get an error stating “Protocol or cipher suite mismatch”, it may
be that they only support SSL3.0 which this function excludes using the OP_NO_SSLv3. SSL3.0 is
widely considered to be completely broken. If you still wish to continue to use this function but still
allow SSL 3.0 connections you can re-enable them using:

ctx = ssl.create_default_context(Purpose.CLIENT_AUTH)
ctx.options &= ~ssl.OP_NO_SSLv3

New in version 3.4.

Changed in version 3.4.4: RC4 was dropped from the default cipher string.

Changed in version 3.5.3: ChaCha20/Poly1305 was added to the default cipher string.

3DES was dropped from the default cipher string.

Random generation

ssl.RAND_bytes(num)
Return num cryptographically strong pseudo-random bytes. Raises an SSLError if the PRNG has not
been seeded with enough data or if the operation is not supported by the current RAND method.
RAND_status() can be used to check the status of the PRNG and RAND_add() can be used to seed
the PRNG.

For almost all applications os.urandom() is preferable.

Read the Wikipedia article, Cryptographically secure pseudorandom number generator (CSPRNG), to
get the requirements of a cryptographically generator.

New in version 3.3.

ssl.RAND_pseudo_bytes(num)
Return (bytes, is_cryptographic): bytes are num pseudo-random bytes, is_cryptographic is True if
the bytes generated are cryptographically strong. Raises an SSLError if the operation is not supported
by the current RAND method.

Generated pseudo-random byte sequences will be unique if they are of sufficient length, but are not
necessarily unpredictable. They can be used for non-cryptographic purposes and for certain purposes
in cryptographic protocols, but usually not for key generation etc.

For almost all applications os.urandom() is preferable.

New in version 3.3.

Deprecated since version 3.5.3: OpenSSL has deprecated ssl.RAND_pseudo_bytes(), use ssl.
RAND_bytes() instead.

ssl.RAND_status()
Return True if the SSL pseudo-random number generator has been seeded with ‘enough’ randomness,

18.2. ssl — TLS/SSL wrapper for socket objects 815

https://en.wikipedia.org/wiki/POODLE
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

The Python Library Reference, Release 3.5.7

and False otherwise. You can use ssl.RAND_egd() and ssl.RAND_add() to increase the randomness
of the pseudo-random number generator.

ssl.RAND_egd(path)
If you are running an entropy-gathering daemon (EGD) somewhere, and path is the pathname of a
socket connection open to it, this will read 256 bytes of randomness from the socket, and add it to
the SSL pseudo-random number generator to increase the security of generated secret keys. This is
typically only necessary on systems without better sources of randomness.

See http://egd.sourceforge.net/ or http://prngd.sourceforge.net/ for sources of entropy-gathering dae-
mons.

Availability: not available with LibreSSL and OpenSSL > 1.1.0

ssl.RAND_add(bytes, entropy)
Mix the given bytes into the SSL pseudo-random number generator. The parameter entropy (a float)
is a lower bound on the entropy contained in string (so you can always use 0.0). See RFC 1750 for
more information on sources of entropy.

Changed in version 3.5: Writable bytes-like object is now accepted.

Certificate handling

ssl.match_hostname(cert, hostname)
Verify that cert (in decoded format as returned by SSLSocket.getpeercert()) matches the given host-
name. The rules applied are those for checking the identity of HTTPS servers as outlined in RFC 2818
and RFC 6125. In addition to HTTPS, this function should be suitable for checking the identity of
servers in various SSL-based protocols such as FTPS, IMAPS, POPS and others.

CertificateError is raised on failure. On success, the function returns nothing:

>>> cert = {'subject': ((('commonName', 'example.com'),),)}
>>> ssl.match_hostname(cert, "example.com")
>>> ssl.match_hostname(cert, "example.org")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/py3k/Lib/ssl.py", line 130, in match_hostname

ssl.CertificateError: hostname 'example.org' doesn't match 'example.com'

New in version 3.2.

Changed in version 3.3.3: The function now follows RFC 6125, section 6.4.3 and does neither match
multiple wildcards (e.g. *.*.com or *a*.example.org) nor a wildcard inside an internationalized domain
names (IDN) fragment. IDN A-labels such as www*.xn--pthon-kva.org are still supported, but x*.
python.org no longer matches xn--tda.python.org.

Changed in version 3.5: Matching of IP addresses, when present in the subjectAltName field of the
certificate, is now supported.

ssl.cert_time_to_seconds(cert_time)
Return the time in seconds since the Epoch, given the cert_time string representing the “notBefore”
or “notAfter” date from a certificate in "%b %d %H:%M:%S %Y %Z" strptime format (C locale).

Here’s an example:

>>> import ssl
>>> timestamp = ssl.cert_time_to_seconds("Jan 5 09:34:43 2018 GMT")
>>> timestamp
1515144883

(continues on next page)

816 Chapter 18. Interprocess Communication and Networking

http://egd.sourceforge.net/
http://prngd.sourceforge.net/
https://tools.ietf.org/html/rfc1750.html
https://tools.ietf.org/html/rfc2818.html
https://tools.ietf.org/html/rfc6125.html
https://tools.ietf.org/html/rfc6125.html

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> from datetime import datetime
>>> print(datetime.utcfromtimestamp(timestamp))
2018-01-05 09:34:43

“notBefore” or “notAfter” dates must use GMT (RFC 5280).

Changed in version 3.5: Interpret the input time as a time in UTC as specified by ‘GMT’ timezone in
the input string. Local timezone was used previously. Return an integer (no fractions of a second in
the input format)

ssl.get_server_certificate(addr, ssl_version=PROTOCOL_TLS, ca_certs=None)
Given the address addr of an SSL-protected server, as a (hostname, port-number) pair, fetches the
server’s certificate, and returns it as a PEM-encoded string. If ssl_version is specified, uses that version
of the SSL protocol to attempt to connect to the server. If ca_certs is specified, it should be a file
containing a list of root certificates, the same format as used for the same parameter in wrap_socket().
The call will attempt to validate the server certificate against that set of root certificates, and will fail
if the validation attempt fails.

Changed in version 3.3: This function is now IPv6-compatible.

Changed in version 3.5: The default ssl_version is changed from PROTOCOL_SSLv3 to PROTO-
COL_TLS for maximum compatibility with modern servers.

ssl.DER_cert_to_PEM_cert(DER_cert_bytes)
Given a certificate as a DER-encoded blob of bytes, returns a PEM-encoded string version of the same
certificate.

ssl.PEM_cert_to_DER_cert(PEM_cert_string)
Given a certificate as an ASCII PEM string, returns a DER-encoded sequence of bytes for that same
certificate.

ssl.get_default_verify_paths()
Returns a named tuple with paths to OpenSSL’s default cafile and capath. The paths are the same
as used by SSLContext.set_default_verify_paths(). The return value is a named tuple DefaultVeri-
fyPaths:

• cafile - resolved path to cafile or None if the file doesn’t exist,

• capath - resolved path to capath or None if the directory doesn’t exist,

• openssl_cafile_env - OpenSSL’s environment key that points to a cafile,

• openssl_cafile - hard coded path to a cafile,

• openssl_capath_env - OpenSSL’s environment key that points to a capath,

• openssl_capath - hard coded path to a capath directory

Availability: LibreSSL ignores the environment vars openssl_cafile_env and openssl_capath_env

New in version 3.4.

ssl.enum_certificates(store_name)
Retrieve certificates from Windows’ system cert store. store_name may be one of CA, ROOT or MY.
Windows may provide additional cert stores, too.

The function returns a list of (cert_bytes, encoding_type, trust) tuples. The encoding_type specifies
the encoding of cert_bytes. It is either x509_asn for X.509 ASN.1 data or pkcs_7_asn for PKCS#7
ASN.1 data. Trust specifies the purpose of the certificate as a set of OIDS or exactly True if the
certificate is trustworthy for all purposes.

Example:

18.2. ssl — TLS/SSL wrapper for socket objects 817

https://tools.ietf.org/html/rfc5280.html

The Python Library Reference, Release 3.5.7

>>> ssl.enum_certificates("CA")
[(b'data...', 'x509_asn', {'1.3.6.1.5.5.7.3.1', '1.3.6.1.5.5.7.3.2'}),
(b'data...', 'x509_asn', True)]

Availability: Windows.

New in version 3.4.

ssl.enum_crls(store_name)
Retrieve CRLs from Windows’ system cert store. store_name may be one of CA, ROOT or MY.
Windows may provide additional cert stores, too.

The function returns a list of (cert_bytes, encoding_type, trust) tuples. The encoding_type specifies
the encoding of cert_bytes. It is either x509_asn for X.509 ASN.1 data or pkcs_7_asn for PKCS#7
ASN.1 data.

Availability: Windows.

New in version 3.4.

Constants

ssl.CERT_NONE
Possible value for SSLContext.verify_mode, or the cert_reqs parameter to wrap_socket(). In this
mode (the default), no certificates will be required from the other side of the socket connection. If a
certificate is received from the other end, no attempt to validate it is made.

See the discussion of Security considerations below.

ssl.CERT_OPTIONAL
Possible value for SSLContext.verify_mode, or the cert_reqs parameter to wrap_socket(). In this
mode no certificates will be required from the other side of the socket connection; but if they are
provided, validation will be attempted and an SSLError will be raised on failure.

Use of this setting requires a valid set of CA certificates to be passed, either to SSLContext.
load_verify_locations() or as a value of the ca_certs parameter to wrap_socket().

ssl.CERT_REQUIRED
Possible value for SSLContext.verify_mode, or the cert_reqs parameter to wrap_socket(). In this
mode, certificates are required from the other side of the socket connection; an SSLError will be raised
if no certificate is provided, or if its validation fails.

Use of this setting requires a valid set of CA certificates to be passed, either to SSLContext.
load_verify_locations() or as a value of the ca_certs parameter to wrap_socket().

ssl.VERIFY_DEFAULT
Possible value for SSLContext.verify_flags. In this mode, certificate revocation lists (CRLs) are not
checked. By default OpenSSL does neither require nor verify CRLs.

New in version 3.4.

ssl.VERIFY_CRL_CHECK_LEAF
Possible value for SSLContext.verify_flags. In this mode, only the peer cert is check but non of the
intermediate CA certificates. The mode requires a valid CRL that is signed by the peer cert’s issuer
(its direct ancestor CA). If no proper has been loaded SSLContext.load_verify_locations, validation
will fail.

New in version 3.4.

818 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

ssl.VERIFY_CRL_CHECK_CHAIN
Possible value for SSLContext.verify_flags. In this mode, CRLs of all certificates in the peer cert chain
are checked.

New in version 3.4.

ssl.VERIFY_X509_STRICT
Possible value for SSLContext.verify_flags to disable workarounds for broken X.509 certificates.

New in version 3.4.

ssl.VERIFY_X509_TRUSTED_FIRST
Possible value for SSLContext.verify_flags. It instructs OpenSSL to prefer trusted certificates when
building the trust chain to validate a certificate. This flag is enabled by default.

New in version 3.4.4.

ssl.PROTOCOL_TLS
Selects the highest protocol version that both the client and server support. Despite the name, this
option can select “TLS” protocols as well as “SSL”.

New in version 3.5.3.

ssl.PROTOCOL_SSLv23
Alias for data:PROTOCOL_TLS.

Deprecated since version 3.5.3: Use data:PROTOCOL_TLS instead.

ssl.PROTOCOL_SSLv2
Selects SSL version 2 as the channel encryption protocol.

This protocol is not available if OpenSSL is compiled with the OPENSSL_NO_SSL2 flag.

Warning: SSL version 2 is insecure. Its use is highly discouraged.

Deprecated since version 3.5.3: OpenSSL has removed support for SSLv2.

ssl.PROTOCOL_SSLv3
Selects SSL version 3 as the channel encryption protocol.

This protocol is not be available if OpenSSL is compiled with the OPENSSL_NO_SSLv3 flag.

Warning: SSL version 3 is insecure. Its use is highly discouraged.

Deprecated since version 3.5.3: OpenSSL has deprecated all version specific protocols. Use the default
protocol data:PROTOCOL_TLS with flags like data:OP_NO_SSLv3 instead.

ssl.PROTOCOL_TLSv1
Selects TLS version 1.0 as the channel encryption protocol.

Deprecated since version 3.5.3: OpenSSL has deprecated all version specific protocols. Use the default
protocol data:PROTOCOL_TLS with flags like data:OP_NO_SSLv3 instead.

ssl.PROTOCOL_TLSv1_1
Selects TLS version 1.1 as the channel encryption protocol. Available only with openssl version 1.0.1+.

New in version 3.4.

Deprecated since version 3.5.3: OpenSSL has deprecated all version specific protocols. Use the default
protocol data:PROTOCOL_TLS with flags like data:OP_NO_SSLv3 instead.

18.2. ssl — TLS/SSL wrapper for socket objects 819

The Python Library Reference, Release 3.5.7

ssl.PROTOCOL_TLSv1_2
Selects TLS version 1.2 as the channel encryption protocol. This is the most modern version, and
probably the best choice for maximum protection, if both sides can speak it. Available only with
openssl version 1.0.1+.

New in version 3.4.

Deprecated since version 3.5.3: OpenSSL has deprecated all version specific protocols. Use the default
protocol data:PROTOCOL_TLS with flags like data:OP_NO_SSLv3 instead.

ssl.OP_ALL
Enables workarounds for various bugs present in other SSL implementations. This option is set by
default. It does not necessarily set the same flags as OpenSSL’s SSL_OP_ALL constant.

New in version 3.2.

ssl.OP_NO_SSLv2
Prevents an SSLv2 connection. This option is only applicable in conjunction with PROTOCOL_TLS.
It prevents the peers from choosing SSLv2 as the protocol version.

New in version 3.2.

Deprecated since version 3.5.3: SSLv2 is deprecated

ssl.OP_NO_SSLv3
Prevents an SSLv3 connection. This option is only applicable in conjunction with PROTOCOL_TLS.
It prevents the peers from choosing SSLv3 as the protocol version.

New in version 3.2.

Deprecated since version 3.5.3: SSLv3 is deprecated

ssl.OP_NO_TLSv1
Prevents a TLSv1 connection. This option is only applicable in conjunction with PROTOCOL_TLS.
It prevents the peers from choosing TLSv1 as the protocol version.

New in version 3.2.

ssl.OP_NO_TLSv1_1
Prevents a TLSv1.1 connection. This option is only applicable in conjunction with PROTOCOL_TLS.
It prevents the peers from choosing TLSv1.1 as the protocol version. Available only with openssl version
1.0.1+.

New in version 3.4.

ssl.OP_NO_TLSv1_2
Prevents a TLSv1.2 connection. This option is only applicable in conjunction with PROTOCOL_TLS.
It prevents the peers from choosing TLSv1.2 as the protocol version. Available only with openssl version
1.0.1+.

New in version 3.4.

ssl.OP_CIPHER_SERVER_PREFERENCE
Use the server’s cipher ordering preference, rather than the client’s. This option has no effect on client
sockets and SSLv2 server sockets.

New in version 3.3.

ssl.OP_SINGLE_DH_USE
Prevents re-use of the same DH key for distinct SSL sessions. This improves forward secrecy but
requires more computational resources. This option only applies to server sockets.

New in version 3.3.

820 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

ssl.OP_SINGLE_ECDH_USE
Prevents re-use of the same ECDH key for distinct SSL sessions. This improves forward secrecy but
requires more computational resources. This option only applies to server sockets.

New in version 3.3.

ssl.OP_NO_COMPRESSION
Disable compression on the SSL channel. This is useful if the application protocol supports its own
compression scheme.

This option is only available with OpenSSL 1.0.0 and later.

New in version 3.3.

ssl.HAS_ALPN
Whether the OpenSSL library has built-in support for the Application-Layer Protocol Negotiation TLS
extension as described in RFC 7301.

New in version 3.5.

ssl.HAS_ECDH
Whether the OpenSSL library has built-in support for Elliptic Curve-based Diffie-Hellman key ex-
change. This should be true unless the feature was explicitly disabled by the distributor.

New in version 3.3.

ssl.HAS_SNI
Whether the OpenSSL library has built-in support for the Server Name Indication extension (as defined
in RFC 4366).

New in version 3.2.

ssl.HAS_NPN
Whether the OpenSSL library has built-in support for Next Protocol Negotiation as described in the
NPN draft specification. When true, you can use the SSLContext.set_npn_protocols() method to
advertise which protocols you want to support.

New in version 3.3.

ssl.CHANNEL_BINDING_TYPES
List of supported TLS channel binding types. Strings in this list can be used as arguments to SSLSocket.
get_channel_binding().

New in version 3.3.

ssl.OPENSSL_VERSION
The version string of the OpenSSL library loaded by the interpreter:

>>> ssl.OPENSSL_VERSION
'OpenSSL 0.9.8k 25 Mar 2009'

New in version 3.2.

ssl.OPENSSL_VERSION_INFO
A tuple of five integers representing version information about the OpenSSL library:

>>> ssl.OPENSSL_VERSION_INFO
(0, 9, 8, 11, 15)

New in version 3.2.

ssl.OPENSSL_VERSION_NUMBER
The raw version number of the OpenSSL library, as a single integer:

18.2. ssl — TLS/SSL wrapper for socket objects 821

https://tools.ietf.org/html/rfc7301.html
https://tools.ietf.org/html/rfc4366.html
https://tools.ietf.org/html/draft-agl-tls-nextprotoneg

The Python Library Reference, Release 3.5.7

>>> ssl.OPENSSL_VERSION_NUMBER
9470143
>>> hex(ssl.OPENSSL_VERSION_NUMBER)
'0x9080bf'

New in version 3.2.

ssl.ALERT_DESCRIPTION_HANDSHAKE_FAILURE
ssl.ALERT_DESCRIPTION_INTERNAL_ERROR
ALERT_DESCRIPTION_*

Alert Descriptions from RFC 5246 and others. The IANA TLS Alert Registry contains this list and
references to the RFCs where their meaning is defined.

Used as the return value of the callback function in SSLContext.set_servername_callback().

New in version 3.4.

Purpose.SERVER_AUTH
Option for create_default_context() and SSLContext.load_default_certs(). This value indicates that
the context may be used to authenticate Web servers (therefore, it will be used to create client-side
sockets).

New in version 3.4.

Purpose.CLIENT_AUTH
Option for create_default_context() and SSLContext.load_default_certs(). This value indicates that
the context may be used to authenticate Web clients (therefore, it will be used to create server-side
sockets).

New in version 3.4.

18.2.2 SSL Sockets

class ssl.SSLSocket(socket.socket)
SSL sockets provide the following methods of Socket Objects:

• accept()

• bind()

• close()

• connect()

• detach()

• fileno()

• getpeername(), getsockname()

• getsockopt(), setsockopt()

• gettimeout(), settimeout(), setblocking()

• listen()

• makefile()

• recv(), recv_into() (but passing a non-zero flags argument is not allowed)

• send(), sendall() (with the same limitation)

• sendfile() (but os.sendfile will be used for plain-text sockets only, else send() will be used)

822 Chapter 18. Interprocess Communication and Networking

https://tools.ietf.org/html/rfc5246.html
https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-6

The Python Library Reference, Release 3.5.7

• shutdown()

However, since the SSL (and TLS) protocol has its own framing atop of TCP, the SSL sockets abstrac-
tion can, in certain respects, diverge from the specification of normal, OS-level sockets. See especially
the notes on non-blocking sockets.

Usually, SSLSocket are not created directly, but using the wrap_socket() function or the SSLContext.
wrap_socket() method.

Changed in version 3.5: The sendfile() method was added.

Changed in version 3.5: The shutdown() does not reset the socket timeout each time bytes are received
or sent. The socket timeout is now to maximum total duration of the shutdown.

SSL sockets also have the following additional methods and attributes:

SSLSocket.read(len=1024, buffer=None)
Read up to len bytes of data from the SSL socket and return the result as a bytes instance. If buffer
is specified, then read into the buffer instead, and return the number of bytes read.

Raise SSLWantReadError or SSLWantWriteError if the socket is non-blocking and the read would
block.

As at any time a re-negotiation is possible, a call to read() can also cause write operations.

Changed in version 3.5: The socket timeout is no more reset each time bytes are received or sent. The
socket timeout is now to maximum total duration to read up to len bytes.

SSLSocket.write(buf)
Write buf to the SSL socket and return the number of bytes written. The buf argument must be an
object supporting the buffer interface.

Raise SSLWantReadError or SSLWantWriteError if the socket is non-blocking and the write would
block.

As at any time a re-negotiation is possible, a call to write() can also cause read operations.

Changed in version 3.5: The socket timeout is no more reset each time bytes are received or sent. The
socket timeout is now to maximum total duration to write buf.

Note: The read() and write() methods are the low-level methods that read and write unencrypted,
application-level data and decrypt/encrypt it to encrypted, wire-level data. These methods require an
active SSL connection, i.e. the handshake was completed and SSLSocket.unwrap() was not called.

Normally you should use the socket API methods like recv() and send() instead of these methods.

SSLSocket.do_handshake()
Perform the SSL setup handshake.

Changed in version 3.4: The handshake method also performs match_hostname() when the
check_hostname attribute of the socket’s context is true.

Changed in version 3.5: The socket timeout is no more reset each time bytes are received or sent. The
socket timeout is now to maximum total duration of the handshake.

SSLSocket.getpeercert(binary_form=False)
If there is no certificate for the peer on the other end of the connection, return None. If the SSL
handshake hasn’t been done yet, raise ValueError.

If the binary_form parameter is False, and a certificate was received from the peer, this method returns
a dict instance. If the certificate was not validated, the dict is empty. If the certificate was validated,
it returns a dict with several keys, amongst them subject (the principal for which the certificate was

18.2. ssl — TLS/SSL wrapper for socket objects 823

The Python Library Reference, Release 3.5.7

issued) and issuer (the principal issuing the certificate). If a certificate contains an instance of the
Subject Alternative Name extension (see RFC 3280), there will also be a subjectAltName key in the
dictionary.

The subject and issuer fields are tuples containing the sequence of relative distinguished names (RDNs)
given in the certificate’s data structure for the respective fields, and each RDN is a sequence of name-
value pairs. Here is a real-world example:

{'issuer': ((('countryName', 'IL'),),
(('organizationName', 'StartCom Ltd.'),),
(('organizationalUnitName',
'Secure Digital Certificate Signing'),),

(('commonName',
'StartCom Class 2 Primary Intermediate Server CA'),)),

'notAfter': 'Nov 22 08:15:19 2013 GMT',
'notBefore': 'Nov 21 03:09:52 2011 GMT',
'serialNumber': '95F0',
'subject': ((('description', '571208-SLe257oHY9fVQ07Z'),),

(('countryName', 'US'),),
(('stateOrProvinceName', 'California'),),
(('localityName', 'San Francisco'),),
(('organizationName', 'Electronic Frontier Foundation, Inc.'),),
(('commonName', '*.eff.org'),),
(('emailAddress', 'hostmaster@eff.org'),)),

'subjectAltName': (('DNS', '*.eff.org'), ('DNS', 'eff.org')),
'version': 3}

Note: To validate a certificate for a particular service, you can use the match_hostname() function.

If the binary_form parameter is True, and a certificate was provided, this method returns the DER-
encoded form of the entire certificate as a sequence of bytes, or None if the peer did not provide a
certificate. Whether the peer provides a certificate depends on the SSL socket’s role:

• for a client SSL socket, the server will always provide a certificate, regardless of whether validation
was required;

• for a server SSL socket, the client will only provide a certificate when requested by the server; there-
fore getpeercert() will return None if you used CERT_NONE (rather than CERT_OPTIONAL
or CERT_REQUIRED).

Changed in version 3.2: The returned dictionary includes additional items such as issuer and notBefore.

Changed in version 3.4: ValueError is raised when the handshake isn’t done. The returned dictionary
includes additional X509v3 extension items such as crlDistributionPoints, caIssuers and OCSP URIs.

SSLSocket.cipher()
Returns a three-value tuple containing the name of the cipher being used, the version of the SSL
protocol that defines its use, and the number of secret bits being used. If no connection has been
established, returns None.

SSLSocket.shared_ciphers()
Return the list of ciphers shared by the client during the handshake. Each entry of the returned list
is a three-value tuple containing the name of the cipher, the version of the SSL protocol that defines
its use, and the number of secret bits the cipher uses. shared_ciphers() returns None if no connection
has been established or the socket is a client socket.

New in version 3.5.

824 Chapter 18. Interprocess Communication and Networking

https://tools.ietf.org/html/rfc3280.html

The Python Library Reference, Release 3.5.7

SSLSocket.compression()
Return the compression algorithm being used as a string, or None if the connection isn’t compressed.

If the higher-level protocol supports its own compression mechanism, you can use
OP_NO_COMPRESSION to disable SSL-level compression.

New in version 3.3.

SSLSocket.get_channel_binding(cb_type="tls-unique")
Get channel binding data for current connection, as a bytes object. Returns None if not connected or
the handshake has not been completed.

The cb_type parameter allow selection of the desired channel binding type. Valid channel binding
types are listed in the CHANNEL_BINDING_TYPES list. Currently only the ‘tls-unique’ channel
binding, defined by RFC 5929, is supported. ValueError will be raised if an unsupported channel
binding type is requested.

New in version 3.3.

SSLSocket.selected_alpn_protocol()
Return the protocol that was selected during the TLS handshake. If SSLContext.set_alpn_protocols()
was not called, if the other party does not support ALPN, if this socket does not support any of the
client’s proposed protocols, or if the handshake has not happened yet, None is returned.

New in version 3.5.

SSLSocket.selected_npn_protocol()
Return the higher-level protocol that was selected during the TLS/SSL handshake. If SSLContext.
set_npn_protocols() was not called, or if the other party does not support NPN, or if the handshake
has not yet happened, this will return None.

New in version 3.3.

SSLSocket.unwrap()
Performs the SSL shutdown handshake, which removes the TLS layer from the underlying socket,
and returns the underlying socket object. This can be used to go from encrypted operation over a
connection to unencrypted. The returned socket should always be used for further communication
with the other side of the connection, rather than the original socket.

SSLSocket.version()
Return the actual SSL protocol version negotiated by the connection as a string, or None is no se-
cure connection is established. As of this writing, possible return values include "SSLv2", "SSLv3",
"TLSv1", "TLSv1.1" and "TLSv1.2". Recent OpenSSL versions may define more return values.

New in version 3.5.

SSLSocket.pending()
Returns the number of already decrypted bytes available for read, pending on the connection.

SSLSocket.context
The SSLContext object this SSL socket is tied to. If the SSL socket was created using the top-
level wrap_socket() function (rather than SSLContext.wrap_socket()), this is a custom context object
created for this SSL socket.

New in version 3.2.

SSLSocket.server_side
A boolean which is True for server-side sockets and False for client-side sockets.

New in version 3.2.

18.2. ssl — TLS/SSL wrapper for socket objects 825

https://tools.ietf.org/html/rfc5929.html

The Python Library Reference, Release 3.5.7

SSLSocket.server_hostname
Hostname of the server: str type, or None for server-side socket or if the hostname was not specified
in the constructor.

New in version 3.2.

18.2.3 SSL Contexts

New in version 3.2.

An SSL context holds various data longer-lived than single SSL connections, such as SSL configuration
options, certificate(s) and private key(s). It also manages a cache of SSL sessions for server-side sockets, in
order to speed up repeated connections from the same clients.

class ssl.SSLContext(protocol=PROTOCOL_TLS)
Create a new SSL context. You may pass protocol which must be one of the PROTOCOL_* constants
defined in this module. PROTOCOL_TLS is currently recommended for maximum interoperability
and default value.

See also:

create_default_context() lets the ssl module choose security settings for a given purpose.

Changed in version 3.5.3: PROTOCOL_TLS is the default value.

SSLContext objects have the following methods and attributes:

SSLContext.cert_store_stats()
Get statistics about quantities of loaded X.509 certificates, count of X.509 certificates flagged as CA
certificates and certificate revocation lists as dictionary.

Example for a context with one CA cert and one other cert:

>>> context.cert_store_stats()
{'crl': 0, 'x509_ca': 1, 'x509': 2}

New in version 3.4.

SSLContext.load_cert_chain(certfile, keyfile=None, password=None)
Load a private key and the corresponding certificate. The certfile string must be the path to a single file
in PEM format containing the certificate as well as any number of CA certificates needed to establish
the certificate’s authenticity. The keyfile string, if present, must point to a file containing the private
key in. Otherwise the private key will be taken from certfile as well. See the discussion of Certificates
for more information on how the certificate is stored in the certfile.

The password argument may be a function to call to get the password for decrypting the private key.
It will only be called if the private key is encrypted and a password is necessary. It will be called with
no arguments, and it should return a string, bytes, or bytearray. If the return value is a string it will
be encoded as UTF-8 before using it to decrypt the key. Alternatively a string, bytes, or bytearray
value may be supplied directly as the password argument. It will be ignored if the private key is not
encrypted and no password is needed.

If the password argument is not specified and a password is required, OpenSSL’s built-in password
prompting mechanism will be used to interactively prompt the user for a password.

An SSLError is raised if the private key doesn’t match with the certificate.

Changed in version 3.3: New optional argument password.

SSLContext.load_default_certs(purpose=Purpose.SERVER_AUTH)
Load a set of default “certification authority” (CA) certificates from default locations. On Windows

826 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

it loads CA certs from the CA and ROOT system stores. On other systems it calls SSLContext.
set_default_verify_paths(). In the future the method may load CA certificates from other locations,
too.

The purpose flag specifies what kind of CA certificates are loaded. The default settings Purpose.
SERVER_AUTH loads certificates, that are flagged and trusted for TLS web server authentication
(client side sockets). Purpose.CLIENT_AUTH loads CA certificates for client certificate verification
on the server side.

New in version 3.4.

SSLContext.load_verify_locations(cafile=None, capath=None, cadata=None)
Load a set of “certification authority” (CA) certificates used to validate other peers’ certificates when
verify_mode is other than CERT_NONE. At least one of cafile or capath must be specified.

This method can also load certification revocation lists (CRLs) in PEM or DER format. In order to
make use of CRLs, SSLContext.verify_flags must be configured properly.

The cafile string, if present, is the path to a file of concatenated CA certificates in PEM format. See
the discussion of Certificates for more information about how to arrange the certificates in this file.

The capath string, if present, is the path to a directory containing several CA certificates in PEM
format, following an OpenSSL specific layout.

The cadata object, if present, is either an ASCII string of one or more PEM-encoded certificates or
a bytes-like object of DER-encoded certificates. Like with capath extra lines around PEM-encoded
certificates are ignored but at least one certificate must be present.

Changed in version 3.4: New optional argument cadata

SSLContext.get_ca_certs(binary_form=False)
Get a list of loaded “certification authority” (CA) certificates. If the binary_form parameter is False
each list entry is a dict like the output of SSLSocket.getpeercert(). Otherwise the method returns a
list of DER-encoded certificates. The returned list does not contain certificates from capath unless a
certificate was requested and loaded by a SSL connection.

Note: Certificates in a capath directory aren’t loaded unless they have been used at least once.

New in version 3.4.

SSLContext.set_default_verify_paths()
Load a set of default “certification authority” (CA) certificates from a filesystem path defined when
building the OpenSSL library. Unfortunately, there’s no easy way to know whether this method
succeeds: no error is returned if no certificates are to be found. When the OpenSSL library is provided
as part of the operating system, though, it is likely to be configured properly.

SSLContext.set_ciphers(ciphers)
Set the available ciphers for sockets created with this context. It should be a string in the OpenSSL
cipher list format. If no cipher can be selected (because compile-time options or other configuration
forbids use of all the specified ciphers), an SSLError will be raised.

Note: when connected, the SSLSocket.cipher() method of SSL sockets will give the currently selected
cipher.

SSLContext.set_alpn_protocols(protocols)
Specify which protocols the socket should advertise during the SSL/TLS handshake. It should be a list
of ASCII strings, like ['http/1.1', 'spdy/2'], ordered by preference. The selection of a protocol will

18.2. ssl — TLS/SSL wrapper for socket objects 827

https://www.openssl.org/docs/ssl/SSL_CTX_load_verify_locations.html
https://www.openssl.org/docs/apps/ciphers.html#CIPHER-LIST-FORMAT
https://www.openssl.org/docs/apps/ciphers.html#CIPHER-LIST-FORMAT

The Python Library Reference, Release 3.5.7

happen during the handshake, and will play out according to RFC 7301. After a successful handshake,
the SSLSocket.selected_alpn_protocol() method will return the agreed-upon protocol.

This method will raise NotImplementedError if HAS_ALPN is False.

OpenSSL 1.1.0+ will abort the handshake and raise SSLError when both sides support ALPN but
cannot agree on a protocol.

New in version 3.5.

SSLContext.set_npn_protocols(protocols)
Specify which protocols the socket should advertise during the SSL/TLS handshake. It should be a list
of strings, like ['http/1.1', 'spdy/2'], ordered by preference. The selection of a protocol will happen
during the handshake, and will play out according to the NPN draft specification. After a successful
handshake, the SSLSocket.selected_npn_protocol() method will return the agreed-upon protocol.

This method will raise NotImplementedError if HAS_NPN is False.

New in version 3.3.

SSLContext.set_servername_callback(server_name_callback)
Register a callback function that will be called after the TLS Client Hello handshake message has been
received by the SSL/TLS server when the TLS client specifies a server name indication. The server
name indication mechanism is specified in RFC 6066 section 3 - Server Name Indication.

Only one callback can be set per SSLContext. If server_name_callback is None then the callback is
disabled. Calling this function a subsequent time will disable the previously registered callback.

The callback function, server_name_callback, will be called with three arguments; the first being the
ssl.SSLSocket, the second is a string that represents the server name that the client is intending to
communicate (or None if the TLS Client Hello does not contain a server name) and the third argument
is the original SSLContext. The server name argument is the IDNA decoded server name.

A typical use of this callback is to change the ssl.SSLSocket’s SSLSocket.context attribute to a new
object of type SSLContext representing a certificate chain that matches the server name.

Due to the early negotiation phase of the TLS connection, only limited methods and attributes
are usable like SSLSocket.selected_alpn_protocol() and SSLSocket.context. SSLSocket.getpeercert(),
SSLSocket.getpeercert(), SSLSocket.cipher() and SSLSocket.compress() methods require that the TLS
connection has progressed beyond the TLS Client Hello and therefore will not contain return meaningful
values nor can they be called safely.

The server_name_callback function must return None to allow the TLS negotiation to continue. If a
TLS failure is required, a constant ALERT_DESCRIPTION_* can be returned. Other return values
will result in a TLS fatal error with ALERT_DESCRIPTION_INTERNAL_ERROR.

If there is an IDNA decoding error on the server name, the TLS connection will terminate with an
ALERT_DESCRIPTION_INTERNAL_ERROR fatal TLS alert message to the client.

If an exception is raised from the server_name_callback function the TLS connection will terminate
with a fatal TLS alert message ALERT_DESCRIPTION_HANDSHAKE_FAILURE.

This method will raise NotImplementedError if the OpenSSL library had OPENSSL_NO_TLSEXT
defined when it was built.

New in version 3.4.

SSLContext.load_dh_params(dhfile)
Load the key generation parameters for Diffie-Helman (DH) key exchange. Using DH key exchange
improves forward secrecy at the expense of computational resources (both on the server and on the
client). The dhfile parameter should be the path to a file containing DH parameters in PEM format.

828 Chapter 18. Interprocess Communication and Networking

https://tools.ietf.org/html/rfc7301.html
https://tools.ietf.org/html/draft-agl-tls-nextprotoneg
https://tools.ietf.org/html/rfc6066.html

The Python Library Reference, Release 3.5.7

This setting doesn’t apply to client sockets. You can also use the OP_SINGLE_DH_USE option to
further improve security.

New in version 3.3.

SSLContext.set_ecdh_curve(curve_name)
Set the curve name for Elliptic Curve-based Diffie-Hellman (ECDH) key exchange. ECDH is signifi-
cantly faster than regular DH while arguably as secure. The curve_name parameter should be a string
describing a well-known elliptic curve, for example prime256v1 for a widely supported curve.

This setting doesn’t apply to client sockets. You can also use the OP_SINGLE_ECDH_USE option
to further improve security.

This method is not available if HAS_ECDH is False.

New in version 3.3.

See also:

SSL/TLS & Perfect Forward Secrecy Vincent Bernat.

SSLContext.wrap_socket(sock, server_side=False, do_handshake_on_connect=True, sup-
press_ragged_eofs=True, server_hostname=None)

Wrap an existing Python socket sock and return an SSLSocket object. sock must be a
SOCK_STREAM socket; other socket types are unsupported.

The returned SSL socket is tied to the context, its settings and certificates. The parameters server_side,
do_handshake_on_connect and suppress_ragged_eofs have the same meaning as in the top-level
wrap_socket() function.

On client connections, the optional parameter server_hostname specifies the hostname of the service
which we are connecting to. This allows a single server to host multiple SSL-based services with distinct
certificates, quite similarly to HTTP virtual hosts. Specifying server_hostname will raise a ValueError
if server_side is true.

Changed in version 3.5: Always allow a server_hostname to be passed, even if OpenSSL does not have
SNI.

SSLContext.wrap_bio(incoming, outgoing, server_side=False, server_hostname=None)
Create a new SSLObject instance by wrapping the BIO objects incoming and outgoing. The SSL
routines will read input data from the incoming BIO and write data to the outgoing BIO.

The server_side and server_hostname parameters have the same meaning as in SSLContext.
wrap_socket().

SSLContext.session_stats()
Get statistics about the SSL sessions created or managed by this context. A dictionary is returned
which maps the names of each piece of information to their numeric values. For example, here is the
total number of hits and misses in the session cache since the context was created:

>>> stats = context.session_stats()
>>> stats['hits'], stats['misses']
(0, 0)

SSLContext.check_hostname
Whether to match the peer cert’s hostname with match_hostname() in SSLSocket.do_handshake().
The context’s verify_mode must be set to CERT_OPTIONAL or CERT_REQUIRED, and you must
pass server_hostname to wrap_socket() in order to match the hostname.

Example:

18.2. ssl — TLS/SSL wrapper for socket objects 829

http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
https://www.openssl.org/docs/ssl/SSL_CTX_sess_number.html

The Python Library Reference, Release 3.5.7

import socket, ssl

context = ssl.SSLContext(ssl.PROTOCOL_TLSv1)
context.verify_mode = ssl.CERT_REQUIRED
context.check_hostname = True
context.load_default_certs()

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
ssl_sock = context.wrap_socket(s, server_hostname='www.verisign.com')
ssl_sock.connect(('www.verisign.com', 443))

New in version 3.4.

Note: This features requires OpenSSL 0.9.8f or newer.

SSLContext.options
An integer representing the set of SSL options enabled on this context. The default value is OP_ALL,
but you can specify other options such as OP_NO_SSLv2 by ORing them together.

Note: With versions of OpenSSL older than 0.9.8m, it is only possible to set options, not to clear
them. Attempting to clear an option (by resetting the corresponding bits) will raise a ValueError.

SSLContext.protocol
The protocol version chosen when constructing the context. This attribute is read-only.

SSLContext.verify_flags
The flags for certificate verification operations. You can set flags like VERIFY_CRL_CHECK_LEAF
by ORing them together. By default OpenSSL does neither require nor verify certificate revocation
lists (CRLs). Available only with openssl version 0.9.8+.

New in version 3.4.

SSLContext.verify_mode
Whether to try to verify other peers’ certificates and how to behave if verification fails. This attribute
must be one of CERT_NONE, CERT_OPTIONAL or CERT_REQUIRED.

18.2.4 Certificates

Certificates in general are part of a public-key / private-key system. In this system, each principal, (which
may be a machine, or a person, or an organization) is assigned a unique two-part encryption key. One part
of the key is public, and is called the public key; the other part is kept secret, and is called the private key.
The two parts are related, in that if you encrypt a message with one of the parts, you can decrypt it with
the other part, and only with the other part.

A certificate contains information about two principals. It contains the name of a subject, and the subject’s
public key. It also contains a statement by a second principal, the issuer, that the subject is who he claims to
be, and that this is indeed the subject’s public key. The issuer’s statement is signed with the issuer’s private
key, which only the issuer knows. However, anyone can verify the issuer’s statement by finding the issuer’s
public key, decrypting the statement with it, and comparing it to the other information in the certificate.
The certificate also contains information about the time period over which it is valid. This is expressed as
two fields, called “notBefore” and “notAfter”.

In the Python use of certificates, a client or server can use a certificate to prove who they are. The other side
of a network connection can also be required to produce a certificate, and that certificate can be validated

830 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

to the satisfaction of the client or server that requires such validation. The connection attempt can be set
to raise an exception if the validation fails. Validation is done automatically, by the underlying OpenSSL
framework; the application need not concern itself with its mechanics. But the application does usually need
to provide sets of certificates to allow this process to take place.

Python uses files to contain certificates. They should be formatted as “PEM” (see RFC 1422), which is a
base-64 encoded form wrapped with a header line and a footer line:

-----BEGIN CERTIFICATE-----
... (certificate in base64 PEM encoding) ...
-----END CERTIFICATE-----

Certificate chains

The Python files which contain certificates can contain a sequence of certificates, sometimes called a certificate
chain. This chain should start with the specific certificate for the principal who “is” the client or server, and
then the certificate for the issuer of that certificate, and then the certificate for the issuer of that certificate,
and so on up the chain till you get to a certificate which is self-signed, that is, a certificate which has the same
subject and issuer, sometimes called a root certificate. The certificates should just be concatenated together
in the certificate file. For example, suppose we had a three certificate chain, from our server certificate to
the certificate of the certification authority that signed our server certificate, to the root certificate of the
agency which issued the certification authority’s certificate:

-----BEGIN CERTIFICATE-----
... (certificate for your server)...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
... (the certificate for the CA)...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
... (the root certificate for the CA's issuer)...
-----END CERTIFICATE-----

CA certificates

If you are going to require validation of the other side of the connection’s certificate, you need to provide a
“CA certs” file, filled with the certificate chains for each issuer you are willing to trust. Again, this file just
contains these chains concatenated together. For validation, Python will use the first chain it finds in the
file which matches. The platform’s certificates file can be used by calling SSLContext.load_default_certs(),
this is done automatically with create_default_context().

Combined key and certificate

Often the private key is stored in the same file as the certificate; in this case, only the certfile parameter to
SSLContext.load_cert_chain() and wrap_socket() needs to be passed. If the private key is stored with the
certificate, it should come before the first certificate in the certificate chain:

-----BEGIN RSA PRIVATE KEY-----
... (private key in base64 encoding) ...
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
... (certificate in base64 PEM encoding) ...
-----END CERTIFICATE-----

18.2. ssl — TLS/SSL wrapper for socket objects 831

https://tools.ietf.org/html/rfc1422.html

The Python Library Reference, Release 3.5.7

Self-signed certificates

If you are going to create a server that provides SSL-encrypted connection services, you will need to acquire
a certificate for that service. There are many ways of acquiring appropriate certificates, such as buying one
from a certification authority. Another common practice is to generate a self-signed certificate. The simplest
way to do this is with the OpenSSL package, using something like the following:

% openssl req -new -x509 -days 365 -nodes -out cert.pem -keyout cert.pem
Generating a 1024 bit RSA private key
.......++++++
.............................++++++
writing new private key to 'cert.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:MyState
Locality Name (eg, city) []:Some City
Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Organization, Inc.
Organizational Unit Name (eg, section) []:My Group
Common Name (eg, YOUR name) []:myserver.mygroup.myorganization.com
Email Address []:ops@myserver.mygroup.myorganization.com
%

The disadvantage of a self-signed certificate is that it is its own root certificate, and no one else will have it
in their cache of known (and trusted) root certificates.

18.2.5 Examples

Testing for SSL support

To test for the presence of SSL support in a Python installation, user code should use the following idiom:

try:
import ssl

except ImportError:
pass

else:
... # do something that requires SSL support

Client-side operation

This example creates a SSL context with the recommended security settings for client sockets, including
automatic certificate verification:

>>> context = ssl.create_default_context()

If you prefer to tune security settings yourself, you might create a context from scratch (but beware that
you might not get the settings right):

832 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

>>> context = ssl.SSLContext(ssl.PROTOCOL_TLS)
>>> context.verify_mode = ssl.CERT_REQUIRED
>>> context.check_hostname = True
>>> context.load_verify_locations("/etc/ssl/certs/ca-bundle.crt")

(this snippet assumes your operating system places a bundle of all CA certificates in /etc/ssl/certs/ca-bundle.
crt; if not, you’ll get an error and have to adjust the location)

When you use the context to connect to a server, CERT_REQUIRED validates the server certificate: it
ensures that the server certificate was signed with one of the CA certificates, and checks the signature for
correctness:

>>> conn = context.wrap_socket(socket.socket(socket.AF_INET),
... server_hostname="www.python.org")
>>> conn.connect(("www.python.org", 443))

You may then fetch the certificate:

>>> cert = conn.getpeercert()

Visual inspection shows that the certificate does identify the desired service (that is, the HTTPS host
www.python.org):

>>> pprint.pprint(cert)
{'OCSP': ('http://ocsp.digicert.com',),
'caIssuers': ('http://cacerts.digicert.com/DigiCertSHA2ExtendedValidationServerCA.crt',),
'crlDistributionPoints': ('http://crl3.digicert.com/sha2-ev-server-g1.crl',

'http://crl4.digicert.com/sha2-ev-server-g1.crl'),
'issuer': ((('countryName', 'US'),),

(('organizationName', 'DigiCert Inc'),),
(('organizationalUnitName', 'www.digicert.com'),),
(('commonName', 'DigiCert SHA2 Extended Validation Server CA'),)),

'notAfter': 'Sep 9 12:00:00 2016 GMT',
'notBefore': 'Sep 5 00:00:00 2014 GMT',
'serialNumber': '01BB6F00122B177F36CAB49CEA8B6B26',
'subject': ((('businessCategory', 'Private Organization'),),

(('1.3.6.1.4.1.311.60.2.1.3', 'US'),),
(('1.3.6.1.4.1.311.60.2.1.2', 'Delaware'),),
(('serialNumber', '3359300'),),
(('streetAddress', '16 Allen Rd'),),
(('postalCode', '03894-4801'),),
(('countryName', 'US'),),
(('stateOrProvinceName', 'NH'),),
(('localityName', 'Wolfeboro,'),),
(('organizationName', 'Python Software Foundation'),),
(('commonName', 'www.python.org'),)),

'subjectAltName': (('DNS', 'www.python.org'),
('DNS', 'python.org'),
('DNS', 'pypi.python.org'),
('DNS', 'docs.python.org'),
('DNS', 'testpypi.python.org'),
('DNS', 'bugs.python.org'),
('DNS', 'wiki.python.org'),
('DNS', 'hg.python.org'),
('DNS', 'mail.python.org'),
('DNS', 'packaging.python.org'),
('DNS', 'pythonhosted.org'),

(continues on next page)

18.2. ssl — TLS/SSL wrapper for socket objects 833

The Python Library Reference, Release 3.5.7

(continued from previous page)

('DNS', 'www.pythonhosted.org'),
('DNS', 'test.pythonhosted.org'),
('DNS', 'us.pycon.org'),
('DNS', 'id.python.org')),

'version': 3}

Now the SSL channel is established and the certificate verified, you can proceed to talk with the server:

>>> conn.sendall(b"HEAD / HTTP/1.0\r\nHost: linuxfr.org\r\n\r\n")
>>> pprint.pprint(conn.recv(1024).split(b"\r\n"))
[b'HTTP/1.1 200 OK',
b'Date: Sat, 18 Oct 2014 18:27:20 GMT',
b'Server: nginx',
b'Content-Type: text/html; charset=utf-8',
b'X-Frame-Options: SAMEORIGIN',
b'Content-Length: 45679',
b'Accept-Ranges: bytes',
b'Via: 1.1 varnish',
b'Age: 2188',
b'X-Served-By: cache-lcy1134-LCY',
b'X-Cache: HIT',
b'X-Cache-Hits: 11',
b'Vary: Cookie',
b'Strict-Transport-Security: max-age=63072000; includeSubDomains',
b'Connection: close',
b'',
b'']

See the discussion of Security considerations below.

Server-side operation

For server operation, typically you’ll need to have a server certificate, and private key, each in a file. You’ll
first create a context holding the key and the certificate, so that clients can check your authenticity. Then
you’ll open a socket, bind it to a port, call listen() on it, and start waiting for clients to connect:

import socket, ssl

context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
context.load_cert_chain(certfile="mycertfile", keyfile="mykeyfile")

bindsocket = socket.socket()
bindsocket.bind(('myaddr.mydomain.com', 10023))
bindsocket.listen(5)

When a client connects, you’ll call accept() on the socket to get the new socket from the other end, and use
the context’s SSLContext.wrap_socket() method to create a server-side SSL socket for the connection:

while True:
newsocket, fromaddr = bindsocket.accept()
connstream = context.wrap_socket(newsocket, server_side=True)
try:

deal_with_client(connstream)
finally:

(continues on next page)

834 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

(continued from previous page)

connstream.shutdown(socket.SHUT_RDWR)
connstream.close()

Then you’ll read data from the connstream and do something with it till you are finished with the client (or
the client is finished with you):

def deal_with_client(connstream):
data = connstream.recv(1024)
empty data means the client is finished with us
while data:

if not do_something(connstream, data):
we'll assume do_something returns False
when we're finished with client
break

data = connstream.recv(1024)
finished with client

And go back to listening for new client connections (of course, a real server would probably handle each
client connection in a separate thread, or put the sockets in non-blocking mode and use an event loop).

18.2.6 Notes on non-blocking sockets

SSL sockets behave slightly different than regular sockets in non-blocking mode. When working with non-
blocking sockets, there are thus several things you need to be aware of:

• Most SSLSocket methods will raise either SSLWantWriteError or SSLWantReadError instead of
BlockingIOError if an I/O operation would block. SSLWantReadError will be raised if a read op-
eration on the underlying socket is necessary, and SSLWantWriteError for a write operation on the
underlying socket. Note that attempts to write to an SSL socket may require reading from the under-
lying socket first, and attempts to read from the SSL socket may require a prior write to the underlying
socket.

Changed in version 3.5: In earlier Python versions, the SSLSocket.send() method returned zero instead
of raising SSLWantWriteError or SSLWantReadError.

• Calling select() tells you that the OS-level socket can be read from (or written to), but it does not
imply that there is sufficient data at the upper SSL layer. For example, only part of an SSL frame
might have arrived. Therefore, you must be ready to handle SSLSocket.recv() and SSLSocket.send()
failures, and retry after another call to select().

• Conversely, since the SSL layer has its own framing, a SSL socket may still have data available for
reading without select() being aware of it. Therefore, you should first call SSLSocket.recv() to drain
any potentially available data, and then only block on a select() call if still necessary.

(of course, similar provisions apply when using other primitives such as poll(), or those in the selectors
module)

• The SSL handshake itself will be non-blocking: the SSLSocket.do_handshake() method has to be
retried until it returns successfully. Here is a synopsis using select() to wait for the socket’s readiness:

while True:
try:

sock.do_handshake()
break

except ssl.SSLWantReadError:
select.select([sock], [], [])

(continues on next page)

18.2. ssl — TLS/SSL wrapper for socket objects 835

The Python Library Reference, Release 3.5.7

(continued from previous page)

except ssl.SSLWantWriteError:
select.select([], [sock], [])

See also:

The asyncio module supports non-blocking SSL sockets and provides a higher level API. It polls for events
using the selectors module and handles SSLWantWriteError, SSLWantReadError and BlockingIOError ex-
ceptions. It runs the SSL handshake asynchronously as well.

18.2.7 Memory BIO Support

New in version 3.5.

Ever since the SSL module was introduced in Python 2.6, the SSLSocket class has provided two related but
distinct areas of functionality:

• SSL protocol handling

• Network IO

The network IO API is identical to that provided by socket.socket, from which SSLSocket also inherits. This
allows an SSL socket to be used as a drop-in replacement for a regular socket, making it very easy to add
SSL support to an existing application.

Combining SSL protocol handling and network IO usually works well, but there are some cases where it
doesn’t. An example is async IO frameworks that want to use a different IO multiplexing model than the
“select/poll on a file descriptor” (readiness based) model that is assumed by socket.socket and by the internal
OpenSSL socket IO routines. This is mostly relevant for platforms like Windows where this model is not
efficient. For this purpose, a reduced scope variant of SSLSocket called SSLObject is provided.

class ssl.SSLObject
A reduced-scope variant of SSLSocket representing an SSL protocol instance that does not contain
any network IO methods. This class is typically used by framework authors that want to implement
asynchronous IO for SSL through memory buffers.

This class implements an interface on top of a low-level SSL object as implemented by OpenSSL. This
object captures the state of an SSL connection but does not provide any network IO itself. IO needs
to be performed through separate “BIO” objects which are OpenSSL’s IO abstraction layer.

An SSLObject instance can be created using the wrap_bio() method. This method will create the
SSLObject instance and bind it to a pair of BIOs. The incoming BIO is used to pass data from Python
to the SSL protocol instance, while the outgoing BIO is used to pass data the other way around.

The following methods are available:

• context

• server_side

• server_hostname

• read()

• write()

• getpeercert()

• selected_npn_protocol()

• cipher()

836 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

• shared_ciphers()

• compression()

• pending()

• do_handshake()

• unwrap()

• get_channel_binding()

When compared to SSLSocket, this object lacks the following features:

• Any form of network IO incluging methods such as recv() and send().

• There is no do_handshake_on_connect machinery. You must always manually call
do_handshake() to start the handshake.

• There is no handling of suppress_ragged_eofs. All end-of-file conditions that are in violation of
the protocol are reported via the SSLEOFError exception.

• The method unwrap() call does not return anything, unlike for an SSL socket where it returns
the underlying socket.

• The server_name_callback callback passed to SSLContext.set_servername_callback() will get
an SSLObject instance instead of a SSLSocket instance as its first parameter.

Some notes related to the use of SSLObject:

• All IO on an SSLObject is non-blocking. This means that for example read() will raise an
SSLWantReadError if it needs more data than the incoming BIO has available.

• There is no module-level wrap_bio() call like there is for wrap_socket(). An SSLObject is always
created via an SSLContext.

An SSLObject communicates with the outside world using memory buffers. The class MemoryBIO provides
a memory buffer that can be used for this purpose. It wraps an OpenSSL memory BIO (Basic IO) object:

class ssl.MemoryBIO
A memory buffer that can be used to pass data between Python and an SSL protocol instance.

pending
Return the number of bytes currently in the memory buffer.

eof
A boolean indicating whether the memory BIO is current at the end-of-file position.

read(n=-1)
Read up to n bytes from the memory buffer. If n is not specified or negative, all bytes are returned.

write(buf)
Write the bytes from buf to the memory BIO. The buf argument must be an object supporting
the buffer protocol.

The return value is the number of bytes written, which is always equal to the length of buf.

write_eof()
Write an EOF marker to the memory BIO. After this method has been called, it is illegal to call
write(). The attribute eof will become true after all data currently in the buffer has been read.

18.2. ssl — TLS/SSL wrapper for socket objects 837

The Python Library Reference, Release 3.5.7

18.2.8 Security considerations

Best defaults

For client use, if you don’t have any special requirements for your security policy, it is highly recommended
that you use the create_default_context() function to create your SSL context. It will load the system’s
trusted CA certificates, enable certificate validation and hostname checking, and try to choose reasonably
secure protocol and cipher settings.

For example, here is how you would use the smtplib.SMTP class to create a trusted, secure connection to a
SMTP server:

>>> import ssl, smtplib
>>> smtp = smtplib.SMTP("mail.python.org", port=587)
>>> context = ssl.create_default_context()
>>> smtp.starttls(context=context)
(220, b'2.0.0 Ready to start TLS')

If a client certificate is needed for the connection, it can be added with SSLContext.load_cert_chain().

By contrast, if you create the SSL context by calling the SSLContext constructor yourself, it will not have
certificate validation nor hostname checking enabled by default. If you do so, please read the paragraphs
below to achieve a good security level.

Manual settings

Verifying certificates

When calling the SSLContext constructor directly, CERT_NONE is the default. Since it does not authenti-
cate the other peer, it can be insecure, especially in client mode where most of time you would like to ensure
the authenticity of the server you’re talking to. Therefore, when in client mode, it is highly recommended
to use CERT_REQUIRED. However, it is in itself not sufficient; you also have to check that the server
certificate, which can be obtained by calling SSLSocket.getpeercert(), matches the desired service. For many
protocols and applications, the service can be identified by the hostname; in this case, the match_hostname()
function can be used. This common check is automatically performed when SSLContext.check_hostname is
enabled.

In server mode, if you want to authenticate your clients using the SSL layer (rather than using a higher-level
authentication mechanism), you’ll also have to specify CERT_REQUIRED and similarly check the client
certificate.

Note: In client mode, CERT_OPTIONAL and CERT_REQUIRED are equivalent unless
anonymous ciphers are enabled (they are disabled by default).

Protocol versions

SSL versions 2 and 3 are considered insecure and are therefore dangerous to use. If you want maximum
compatibility between clients and servers, it is recommended to use PROTOCOL_TLS as the protocol
version and then disable SSLv2 and SSLv3 explicitly using the SSLContext.options attribute:

838 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

context = ssl.SSLContext(ssl.PROTOCOL_TLS)
context.options |= ssl.OP_NO_SSLv2
context.options |= ssl.OP_NO_SSLv3
context.options |= ssl.OP_NO_TLSv1
context.options |= ssl.OP_NO_TLSv1_1

The SSL context created above will only allow TLSv1.2 and later (if supported by your system) connections.

Cipher selection

If you have advanced security requirements, fine-tuning of the ciphers enabled when negotiating a SSL
session is possible through the SSLContext.set_ciphers() method. Starting from Python 3.2.3, the ssl module
disables certain weak ciphers by default, but you may want to further restrict the cipher choice. Be sure to
read OpenSSL’s documentation about the cipher list format. If you want to check which ciphers are enabled
by a given cipher list, use the openssl ciphers command on your system.

Multi-processing

If using this module as part of a multi-processed application (using, for example the multiprocessing or
concurrent.futures modules), be aware that OpenSSL’s internal random number generator does not properly
handle forked processes. Applications must change the PRNG state of the parent process if they use any
SSL feature with os.fork(). Any successful call of RAND_add(), RAND_bytes() or RAND_pseudo_bytes()
is sufficient.

See also:

Class socket.socket Documentation of underlying socket class

SSL/TLS Strong Encryption: An Introduction Intro from the Apache webserver documentation

RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key Management
Steve Kent

RFC 1750: Randomness Recommendations for Security D. Eastlake et. al.

RFC 3280: Internet X.509 Public Key Infrastructure Certificate and CRL Profile Housley et. al.

RFC 4366: Transport Layer Security (TLS) Extensions Blake-Wilson et. al.

RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2 T. Dierks et. al.

RFC 6066: Transport Layer Security (TLS) Extensions D. Eastlake

IANA TLS: Transport Layer Security (TLS) Parameters IANA

18.3 select — Waiting for I/O completion

This module provides access to the select() and poll() functions available in most operating systems, devpoll()
available on Solaris and derivatives, epoll() available on Linux 2.5+ and kqueue() available on most BSD.
Note that on Windows, it only works for sockets; on other operating systems, it also works for other file
types (in particular, on Unix, it works on pipes). It cannot be used on regular files to determine whether a
file has grown since it was last read.

18.3. select — Waiting for I/O completion 839

https://www.openssl.org/docs/apps/ciphers.html#CIPHER-LIST-FORMAT
https://httpd.apache.org/docs/trunk/en/ssl/ssl_intro.html
https://www.ietf.org/rfc/rfc1422
https://www.ietf.org/rfc/rfc1750
https://www.ietf.org/rfc/rfc3280
https://www.ietf.org/rfc/rfc4366
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6066
https://www.iana.org/assignments/tls-parameters/tls-parameters.xml

The Python Library Reference, Release 3.5.7

Note: The selectors module allows high-level and efficient I/O multiplexing, built upon the select module
primitives. Users are encouraged to use the selectors module instead, unless they want precise control over
the OS-level primitives used.

The module defines the following:

exception select.error
A deprecated alias of OSError.

Changed in version 3.3: Following PEP 3151, this class was made an alias of OSError.

select.devpoll()
(Only supported on Solaris and derivatives.) Returns a /dev/poll polling object; see section /dev/poll
Polling Objects below for the methods supported by devpoll objects.

devpoll() objects are linked to the number of file descriptors allowed at the time of instantiation. If
your program reduces this value, devpoll() will fail. If your program increases this value, devpoll()
may return an incomplete list of active file descriptors.

The new file descriptor is non-inheritable.

New in version 3.3.

Changed in version 3.4: The new file descriptor is now non-inheritable.

select.epoll(sizehint=-1, flags=0)
(Only supported on Linux 2.5.44 and newer.) Return an edge polling object, which can be used as
Edge or Level Triggered interface for I/O events. sizehint and flags are deprecated and completely
ignored.

See the Edge and Level Trigger Polling (epoll) Objects section below for the methods supported by
epolling objects.

epoll objects support the context management protocol: when used in a with statement, the new file
descriptor is automatically closed at the end of the block.

The new file descriptor is non-inheritable.

Changed in version 3.3: Added the flags parameter.

Changed in version 3.4: Support for the with statement was added. The new file descriptor is now
non-inheritable.

Deprecated since version 3.4: The flags parameter. select.EPOLL_CLOEXEC is used by default now.
Use os.set_inheritable() to make the file descriptor inheritable.

select.poll()
(Not supported by all operating systems.) Returns a polling object, which supports registering and
unregistering file descriptors, and then polling them for I/O events; see section Polling Objects below
for the methods supported by polling objects.

select.kqueue()
(Only supported on BSD.) Returns a kernel queue object; see section Kqueue Objects below for the
methods supported by kqueue objects.

The new file descriptor is non-inheritable.

Changed in version 3.4: The new file descriptor is now non-inheritable.

select.kevent(ident, filter=KQ_FILTER_READ, flags=KQ_EV_ADD, fflags=0, data=0, udata=0)
(Only supported on BSD.) Returns a kernel event object; see section Kevent Objects below for the
methods supported by kevent objects.

840 Chapter 18. Interprocess Communication and Networking

https://www.python.org/dev/peps/pep-3151

The Python Library Reference, Release 3.5.7

select.select(rlist, wlist, xlist[, timeout])
This is a straightforward interface to the Unix select() system call. The first three arguments are
sequences of ‘waitable objects’: either integers representing file descriptors or objects with a parame-
terless method named fileno() returning such an integer:

• rlist: wait until ready for reading

• wlist: wait until ready for writing

• xlist: wait for an “exceptional condition” (see the manual page for what your system considers
such a condition)

Empty sequences are allowed, but acceptance of three empty sequences is platform-dependent. (It is
known to work on Unix but not on Windows.) The optional timeout argument specifies a time-out as
a floating point number in seconds. When the timeout argument is omitted the function blocks until
at least one file descriptor is ready. A time-out value of zero specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments.
When the time-out is reached without a file descriptor becoming ready, three empty lists are returned.

Among the acceptable object types in the sequences are Python file objects (e.g. sys.stdin, or objects
returned by open() or os.popen()), socket objects returned by socket.socket(). You may also define
a wrapper class yourself, as long as it has an appropriate fileno() method (that really returns a file
descriptor, not just a random integer).

Note: File objects on Windows are not acceptable, but sockets are. On Windows, the underlying
select() function is provided by the WinSock library, and does not handle file descriptors that don’t
originate from WinSock.

Changed in version 3.5: The function is now retried with a recomputed timeout when interrupted by
a signal, except if the signal handler raises an exception (see PEP 475 for the rationale), instead of
raising InterruptedError.

select.PIPE_BUF
The minimum number of bytes which can be written without blocking to a pipe when the pipe has
been reported as ready for writing by select(), poll() or another interface in this module. This doesn’t
apply to other kind of file-like objects such as sockets.

This value is guaranteed by POSIX to be at least 512. Availability: Unix.

New in version 3.2.

18.3.1 /dev/poll Polling Objects

Solaris and derivatives have /dev/poll. While select() is O(highest file descriptor) and poll() is O(number of
file descriptors), /dev/poll is O(active file descriptors).

/dev/poll behaviour is very close to the standard poll() object.

devpoll.close()
Close the file descriptor of the polling object.

New in version 3.4.

devpoll.closed
True if the polling object is closed.

New in version 3.4.

18.3. select — Waiting for I/O completion 841

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

devpoll.fileno()
Return the file descriptor number of the polling object.

New in version 3.4.

devpoll.register(fd[, eventmask])
Register a file descriptor with the polling object. Future calls to the poll() method will then check
whether the file descriptor has any pending I/O events. fd can be either an integer, or an object with
a fileno() method that returns an integer. File objects implement fileno(), so they can also be used as
the argument.

eventmask is an optional bitmask describing the type of events you want to check for. The constants
are the same that with poll() object. The default value is a combination of the constants POLLIN,
POLLPRI, and POLLOUT.

Warning: Registering a file descriptor that’s already registered is not an error, but the result is
undefined. The appropriate action is to unregister or modify it first. This is an important difference
compared with poll().

devpoll.modify(fd[, eventmask])
This method does an unregister() followed by a register(). It is (a bit) more efficient that doing the
same explicitly.

devpoll.unregister(fd)
Remove a file descriptor being tracked by a polling object. Just like the register() method, fd can be
an integer or an object with a fileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered is safely ignored.

devpoll.poll([timeout])
Polls the set of registered file descriptors, and returns a possibly-empty list containing (fd, event)
2-tuples for the descriptors that have events or errors to report. fd is the file descriptor, and event
is a bitmask with bits set for the reported events for that descriptor — POLLIN for waiting input,
POLLOUT to indicate that the descriptor can be written to, and so forth. An empty list indicates
that the call timed out and no file descriptors had any events to report. If timeout is given, it specifies
the length of time in milliseconds which the system will wait for events before returning. If timeout is
omitted, -1, or None, the call will block until there is an event for this poll object.

Changed in version 3.5: The function is now retried with a recomputed timeout when interrupted by
a signal, except if the signal handler raises an exception (see PEP 475 for the rationale), instead of
raising InterruptedError.

18.3.2 Edge and Level Trigger Polling (epoll) Objects

http://linux.die.net/man/4/epoll

eventmask

842 Chapter 18. Interprocess Communication and Networking

https://www.python.org/dev/peps/pep-0475
http://linux.die.net/man/4/epoll

The Python Library Reference, Release 3.5.7

Constant Meaning
EPOLLIN Available for read
EPOLLOUT Available for write
EPOLLPRI Urgent data for read
EPOLLERR Error condition happened on the assoc. fd
EPOLLHUP Hang up happened on the assoc. fd
EPOLLET Set Edge Trigger behavior, the default is Level Trigger behavior
EPOL-
LONESHOT

Set one-shot behavior. After one event is pulled out, the fd is internally
disabled

EPOLLRD-
NORM

Equivalent to EPOLLIN

EPOLLRD-
BAND

Priority data band can be read.

EPOLL-
WRNORM

Equivalent to EPOLLOUT

EPOLLWR-
BAND

Priority data may be written.

EPOLLMSG Ignored.

epoll.close()
Close the control file descriptor of the epoll object.

epoll.closed
True if the epoll object is closed.

epoll.fileno()
Return the file descriptor number of the control fd.

epoll.fromfd(fd)
Create an epoll object from a given file descriptor.

epoll.register(fd[, eventmask])
Register a fd descriptor with the epoll object.

epoll.modify(fd, eventmask)
Modify a registered file descriptor.

epoll.unregister(fd)
Remove a registered file descriptor from the epoll object.

epoll.poll(timeout=-1, maxevents=-1)
Wait for events. timeout in seconds (float)

Changed in version 3.5: The function is now retried with a recomputed timeout when interrupted by
a signal, except if the signal handler raises an exception (see PEP 475 for the rationale), instead of
raising InterruptedError.

18.3.3 Polling Objects

The poll() system call, supported on most Unix systems, provides better scalability for network servers that
service many, many clients at the same time. poll() scales better because the system call only requires listing
the file descriptors of interest, while select() builds a bitmap, turns on bits for the fds of interest, and then
afterward the whole bitmap has to be linearly scanned again. select() is O(highest file descriptor), while
poll() is O(number of file descriptors).

18.3. select — Waiting for I/O completion 843

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

poll.register(fd[, eventmask])
Register a file descriptor with the polling object. Future calls to the poll() method will then check
whether the file descriptor has any pending I/O events. fd can be either an integer, or an object with
a fileno() method that returns an integer. File objects implement fileno(), so they can also be used as
the argument.

eventmask is an optional bitmask describing the type of events you want to check for, and can be a
combination of the constants POLLIN, POLLPRI, and POLLOUT, described in the table below. If
not specified, the default value used will check for all 3 types of events.

Constant Meaning
POLLIN There is data to read
POLLPRI There is urgent data to read
POLLOUT Ready for output: writing will not block
POLLERR Error condition of some sort
POLLHUP Hung up
POLLNVAL Invalid request: descriptor not open

Registering a file descriptor that’s already registered is not an error, and has the same effect as regis-
tering the descriptor exactly once.

poll.modify(fd, eventmask)
Modifies an already registered fd. This has the same effect as register(fd, eventmask). Attempting to
modify a file descriptor that was never registered causes an OSError exception with errno ENOENT
to be raised.

poll.unregister(fd)
Remove a file descriptor being tracked by a polling object. Just like the register() method, fd can be
an integer or an object with a fileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered causes a KeyError exception to be
raised.

poll.poll([timeout])
Polls the set of registered file descriptors, and returns a possibly-empty list containing (fd, event)
2-tuples for the descriptors that have events or errors to report. fd is the file descriptor, and event
is a bitmask with bits set for the reported events for that descriptor — POLLIN for waiting input,
POLLOUT to indicate that the descriptor can be written to, and so forth. An empty list indicates
that the call timed out and no file descriptors had any events to report. If timeout is given, it specifies
the length of time in milliseconds which the system will wait for events before returning. If timeout is
omitted, negative, or None, the call will block until there is an event for this poll object.

Changed in version 3.5: The function is now retried with a recomputed timeout when interrupted by
a signal, except if the signal handler raises an exception (see PEP 475 for the rationale), instead of
raising InterruptedError.

18.3.4 Kqueue Objects

kqueue.close()
Close the control file descriptor of the kqueue object.

kqueue.closed
True if the kqueue object is closed.

kqueue.fileno()
Return the file descriptor number of the control fd.

844 Chapter 18. Interprocess Communication and Networking

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

kqueue.fromfd(fd)
Create a kqueue object from a given file descriptor.

kqueue.control(changelist, max_events[, timeout=None]) → eventlist
Low level interface to kevent

• changelist must be an iterable of kevent object or None

• max_events must be 0 or a positive integer

• timeout in seconds (floats possible)

Changed in version 3.5: The function is now retried with a recomputed timeout when interrupted by
a signal, except if the signal handler raises an exception (see PEP 475 for the rationale), instead of
raising InterruptedError.

18.3.5 Kevent Objects

https://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

kevent.ident
Value used to identify the event. The interpretation depends on the filter but it’s usually the file
descriptor. In the constructor ident can either be an int or an object with a fileno() method. kevent
stores the integer internally.

kevent.filter
Name of the kernel filter.

Constant Meaning
KQ_FILTER_READ Takes a descriptor and returns whenever there is data available to read
KQ_FILTER_WRITE Takes a descriptor and returns whenever there is data available to write
KQ_FILTER_AIO AIO requests
KQ_FILTER_VNODE Returns when one or more of the requested events watched in fflag occurs
KQ_FILTER_PROC Watch for events on a process id
KQ_FILTER_NETDEV Watch for events on a network device [not available on Mac OS X]
KQ_FILTER_SIGNAL Returns whenever the watched signal is delivered to the process
KQ_FILTER_TIMER Establishes an arbitrary timer

kevent.flags
Filter action.

Constant Meaning
KQ_EV_ADD Adds or modifies an event
KQ_EV_DELETE Removes an event from the queue
KQ_EV_ENABLE Permitscontrol() to returns the event
KQ_EV_DISABLE Disablesevent
KQ_EV_ONESHOT Removes event after first occurrence
KQ_EV_CLEAR Reset the state after an event is retrieved
KQ_EV_SYSFLAGS internal event
KQ_EV_FLAG1 internal event
KQ_EV_EOF Filter specific EOF condition
KQ_EV_ERROR See return values

kevent.fflags
Filter specific flags.

18.3. select — Waiting for I/O completion 845

https://www.python.org/dev/peps/pep-0475
https://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

The Python Library Reference, Release 3.5.7

KQ_FILTER_READ and KQ_FILTER_WRITE filter flags:

Constant Meaning
KQ_NOTE_LOWAT low water mark of a socket buffer

KQ_FILTER_VNODE filter flags:

Constant Meaning
KQ_NOTE_DELETE unlink() was called
KQ_NOTE_WRITE a write occurred
KQ_NOTE_EXTEND the file was extended
KQ_NOTE_ATTRIB an attribute was changed
KQ_NOTE_LINK the link count has changed
KQ_NOTE_RENAME the file was renamed
KQ_NOTE_REVOKE access to the file was revoked

KQ_FILTER_PROC filter flags:

Constant Meaning
KQ_NOTE_EXIT the process has exited
KQ_NOTE_FORK the process has called fork()
KQ_NOTE_EXEC the process has executed a new process
KQ_NOTE_PCTRLMASK internal filter flag
KQ_NOTE_PDATAMASK internal filter flag
KQ_NOTE_TRACK follow a process across fork()
KQ_NOTE_CHILD returned on the child process for NOTE_TRACK
KQ_NOTE_TRACKERR unable to attach to a child

KQ_FILTER_NETDEV filter flags (not available on Mac OS X):

Constant Meaning
KQ_NOTE_LINKUP link is up
KQ_NOTE_LINKDOWN link is down
KQ_NOTE_LINKINV link state is invalid

kevent.data
Filter specific data.

kevent.udata
User defined value.

18.4 selectors — High-level I/O multiplexing

New in version 3.4.

Source code: Lib/selectors.py

846 Chapter 18. Interprocess Communication and Networking

https://github.com/python/cpython/tree/3.5/Lib/selectors.py

The Python Library Reference, Release 3.5.7

18.4.1 Introduction

This module allows high-level and efficient I/O multiplexing, built upon the select module primitives. Users
are encouraged to use this module instead, unless they want precise control over the OS-level primitives
used.

It defines a BaseSelector abstract base class, along with several concrete implementations (KqueueSelector,
EpollSelector. . .), that can be used to wait for I/O readiness notification on multiple file objects. In the
following, “file object” refers to any object with a fileno() method, or a raw file descriptor. See file object.

DefaultSelector is an alias to the most efficient implementation available on the current platform: this should
be the default choice for most users.

Note: The type of file objects supported depends on the platform: on Windows, sockets are supported, but
not pipes, whereas on Unix, both are supported (some other types may be supported as well, such as fifos
or special file devices).

See also:

select Low-level I/O multiplexing module.

18.4.2 Classes

Classes hierarchy:

BaseSelector
+-- SelectSelector
+-- PollSelector
+-- EpollSelector
+-- DevpollSelector
+-- KqueueSelector

In the following, events is a bitwise mask indicating which I/O events should be waited for on a given file
object. It can be a combination of the modules constants below:

Constant Meaning
EVENT_READ Available for read
EVENT_WRITE Available for write

class selectors.SelectorKey
A SelectorKey is a namedtuple used to associate a file object to its underlying file descriptor, selected
event mask and attached data. It is returned by several BaseSelector methods.

fileobj
File object registered.

fd
Underlying file descriptor.

events
Events that must be waited for on this file object.

data
Optional opaque data associated to this file object: for example, this could be used to store a
per-client session ID.

18.4. selectors — High-level I/O multiplexing 847

The Python Library Reference, Release 3.5.7

class selectors.BaseSelector
A BaseSelector is used to wait for I/O event readiness on multiple file objects. It supports file stream
registration, unregistration, and a method to wait for I/O events on those streams, with an optional
timeout. It’s an abstract base class, so cannot be instantiated. Use DefaultSelector instead, or one
of SelectSelector, KqueueSelector etc. if you want to specifically use an implementation, and your
platform supports it. BaseSelector and its concrete implementations support the context manager
protocol.

abstractmethod register(fileobj, events, data=None)
Register a file object for selection, monitoring it for I/O events.

fileobj is the file object to monitor. It may either be an integer file descriptor or an object with
a fileno() method. events is a bitwise mask of events to monitor. data is an opaque object.

This returns a new SelectorKey instance, or raises a ValueError in case of invalid event mask or
file descriptor, or KeyError if the file object is already registered.

abstractmethod unregister(fileobj)
Unregister a file object from selection, removing it from monitoring. A file object shall be unreg-
istered prior to being closed.

fileobj must be a file object previously registered.

This returns the associated SelectorKey instance, or raises a KeyError if fileobj is not registered.
It will raise ValueError if fileobj is invalid (e.g. it has no fileno() method or its fileno() method
has an invalid return value).

modify(fileobj, events, data=None)
Change a registered file object’s monitored events or attached data.

This is equivalent to BaseSelector.unregister(fileobj)() followed by BaseSelector.register(fileobj,
events, data)(), except that it can be implemented more efficiently.

This returns a new SelectorKey instance, or raises a ValueError in case of invalid event mask or
file descriptor, or KeyError if the file object is not registered.

abstractmethod select(timeout=None)
Wait until some registered file objects become ready, or the timeout expires.

If timeout > 0, this specifies the maximum wait time, in seconds. If timeout <= 0, the call won’t
block, and will report the currently ready file objects. If timeout is None, the call will block until
a monitored file object becomes ready.

This returns a list of (key, events) tuples, one for each ready file object.

key is the SelectorKey instance corresponding to a ready file object. events is a bitmask of events
ready on this file object.

Note: This method can return before any file object becomes ready or the timeout has elapsed
if the current process receives a signal: in this case, an empty list will be returned.

Changed in version 3.5: The selector is now retried with a recomputed timeout when interrupted
by a signal if the signal handler did not raise an exception (see PEP 475 for the rationale), instead
of returning an empty list of events before the timeout.

close()
Close the selector.

This must be called to make sure that any underlying resource is freed. The selector shall not be
used once it has been closed.

848 Chapter 18. Interprocess Communication and Networking

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

get_key(fileobj)
Return the key associated with a registered file object.

This returns the SelectorKey instance associated to this file object, or raises KeyError if the file
object is not registered.

abstractmethod get_map()
Return a mapping of file objects to selector keys.

This returns a Mapping instance mapping registered file objects to their associated SelectorKey
instance.

class selectors.DefaultSelector
The default selector class, using the most efficient implementation available on the current platform.
This should be the default choice for most users.

class selectors.SelectSelector
select.select()-based selector.

class selectors.PollSelector
select.poll()-based selector.

class selectors.EpollSelector
select.epoll()-based selector.

fileno()
This returns the file descriptor used by the underlying select.epoll() object.

class selectors.DevpollSelector
select.devpoll()-based selector.

fileno()
This returns the file descriptor used by the underlying select.devpoll() object.

New in version 3.5.

class selectors.KqueueSelector
select.kqueue()-based selector.

fileno()
This returns the file descriptor used by the underlying select.kqueue() object.

18.4.3 Examples

Here is a simple echo server implementation:

import selectors
import socket

sel = selectors.DefaultSelector()

def accept(sock, mask):
conn, addr = sock.accept() # Should be ready
print('accepted', conn, 'from', addr)
conn.setblocking(False)
sel.register(conn, selectors.EVENT_READ, read)

def read(conn, mask):
data = conn.recv(1000) # Should be ready
if data:

(continues on next page)

18.4. selectors — High-level I/O multiplexing 849

The Python Library Reference, Release 3.5.7

(continued from previous page)

print('echoing', repr(data), 'to', conn)
conn.send(data) # Hope it won't block

else:
print('closing', conn)
sel.unregister(conn)
conn.close()

sock = socket.socket()
sock.bind(('localhost', 1234))
sock.listen(100)
sock.setblocking(False)
sel.register(sock, selectors.EVENT_READ, accept)

while True:
events = sel.select()
for key, mask in events:

callback = key.data
callback(key.fileobj, mask)

18.5 asyncio — Asynchronous I/O, event loop, coroutines and tasks

New in version 3.4.

Source code: Lib/asyncio/

Note: The asyncio package has been included in the standard library on a provisional basis. Backwards
incompatible changes (up to and including removal of the module) may occur if deemed necessary by the
core developers.

This module provides infrastructure for writing single-threaded concurrent code using coroutines, multi-
plexing I/O access over sockets and other resources, running network clients and servers, and other related
primitives. Here is a more detailed list of the package contents:

• a pluggable event loop with various system-specific implementations;

• transport and protocol abstractions (similar to those in Twisted);

• concrete support for TCP, UDP, SSL, subprocess pipes, delayed calls, and others (some may be system-
dependent);

• a Future class that mimics the one in the concurrent.futures module, but adapted for use with the
event loop;

• coroutines and tasks based on yield from (PEP 380), to help write concurrent code in a sequential
fashion;

• cancellation support for Futures and coroutines;

• synchronization primitives for use between coroutines in a single thread, mimicking those in the thread-
ing module;

• an interface for passing work off to a threadpool, for times when you absolutely, positively have to use
a library that makes blocking I/O calls.

850 Chapter 18. Interprocess Communication and Networking

https://github.com/python/cpython/tree/3.5/Lib/asyncio/
https://twistedmatrix.com/trac/
https://www.python.org/dev/peps/pep-0380

The Python Library Reference, Release 3.5.7

Asynchronous programming is more complex than classical “sequential” programming: see the Develop with
asyncio page which lists common traps and explains how to avoid them. Enable the debug mode during
development to detect common issues.

Table of contents:

18.5.1 Base Event Loop

The event loop is the central execution device provided by asyncio. It provides multiple facilities, including:

• Registering, executing and cancelling delayed calls (timeouts).

• Creating client and server transports for various kinds of communication.

• Launching subprocesses and the associated transports for communication with an external program.

• Delegating costly function calls to a pool of threads.

class asyncio.BaseEventLoop
This class is an implementation detail. It is a subclass of AbstractEventLoop and may be a base
class of concrete event loop implementations found in asyncio. It should not be used directly; use
AbstractEventLoop instead. BaseEventLoop should not be subclassed by third-party code; the internal
interface is not stable.

class asyncio.AbstractEventLoop
Abstract base class of event loops.

This class is not thread safe.

Run an event loop

AbstractEventLoop.run_forever()
Run until stop() is called. If stop() is called before run_forever() is called, this polls the I/O selector
once with a timeout of zero, runs all callbacks scheduled in response to I/O events (and those that
were already scheduled), and then exits. If stop() is called while run_forever() is running, this will run
the current batch of callbacks and then exit. Note that callbacks scheduled by callbacks will not run
in that case; they will run the next time run_forever() is called.

Changed in version 3.5.1.

AbstractEventLoop.run_until_complete(future)
Run until the Future is done.

If the argument is a coroutine object, it is wrapped by ensure_future().

Return the Future’s result, or raise its exception.

AbstractEventLoop.is_running()
Returns running status of event loop.

AbstractEventLoop.stop()
Stop running the event loop.

This causes run_forever() to exit at the next suitable opportunity (see there for more details).

Changed in version 3.5.1.

AbstractEventLoop.is_closed()
Returns True if the event loop was closed.

New in version 3.4.2.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 851

The Python Library Reference, Release 3.5.7

AbstractEventLoop.close()
Close the event loop. The loop must not be running. Pending callbacks will be lost.

This clears the queues and shuts down the executor, but does not wait for the executor to finish.

This is idempotent and irreversible. No other methods should be called after this one.

Calls

Most asyncio functions don’t accept keywords. If you want to pass keywords to your callback, use functools.
partial(). For example, loop.call_soon(functools.partial(print, "Hello", flush=True)) will call print("Hello",
flush=True).

Note: functools.partial() is better than lambda functions, because asyncio can inspect functools.partial()
object to display parameters in debug mode, whereas lambda functions have a poor representation.

AbstractEventLoop.call_soon(callback, *args)
Arrange for a callback to be called as soon as possible. The callback is called after call_soon() returns,
when control returns to the event loop.

This operates as a FIFO queue, callbacks are called in the order in which they are registered. Each
callback will be called exactly once.

Any positional arguments after the callback will be passed to the callback when it is called.

An instance of asyncio.Handle is returned, which can be used to cancel the callback.

Use functools.partial to pass keywords to the callback.

AbstractEventLoop.call_soon_threadsafe(callback, *args)
Like call_soon(), but thread safe.

See the concurrency and multithreading section of the documentation.

Delayed calls

The event loop has its own internal clock for computing timeouts. Which clock is used depends on the
(platform-specific) event loop implementation; ideally it is a monotonic clock. This will generally be a
different clock than time.time().

Note: Timeouts (relative delay or absolute when) should not exceed one day.

AbstractEventLoop.call_later(delay, callback, *args)
Arrange for the callback to be called after the given delay seconds (either an int or float).

An instance of asyncio.Handle is returned, which can be used to cancel the callback.

callback will be called exactly once per call to call_later(). If two callbacks are scheduled for exactly
the same time, it is undefined which will be called first.

The optional positional args will be passed to the callback when it is called. If you want the callback
to be called with some named arguments, use a closure or functools.partial().

Use functools.partial to pass keywords to the callback.

852 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

AbstractEventLoop.call_at(when, callback, *args)
Arrange for the callback to be called at the given absolute timestamp when (an int or float), using the
same time reference as AbstractEventLoop.time().

This method’s behavior is the same as call_later().

An instance of asyncio.Handle is returned, which can be used to cancel the callback.

Use functools.partial to pass keywords to the callback.

AbstractEventLoop.time()
Return the current time, as a float value, according to the event loop’s internal clock.

See also:

The asyncio.sleep() function.

Futures

AbstractEventLoop.create_future()
Create an asyncio.Future object attached to the loop.

This is a preferred way to create futures in asyncio, as event loop implementations can provide alter-
native implementations of the Future class (with better performance or instrumentation).

New in version 3.5.2.

Tasks

AbstractEventLoop.create_task(coro)
Schedule the execution of a coroutine object: wrap it in a future. Return a Task object.

Third-party event loops can use their own subclass of Task for interoperability. In this case, the result
type is a subclass of Task.

This method was added in Python 3.4.2. Use the async() function to support also older Python
versions.

New in version 3.4.2.

AbstractEventLoop.set_task_factory(factory)
Set a task factory that will be used by AbstractEventLoop.create_task().

If factory is None the default task factory will be set.

If factory is a callable, it should have a signature matching (loop, coro), where loop will be a reference
to the active event loop, coro will be a coroutine object. The callable must return an asyncio.Future
compatible object.

New in version 3.4.4.

AbstractEventLoop.get_task_factory()
Return a task factory, or None if the default one is in use.

New in version 3.4.4.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 853

The Python Library Reference, Release 3.5.7

Creating connections

coroutine AbstractEventLoop.create_connection(protocol_factory, host=None, port=None, *,
ssl=None, family=0, proto=0, flags=0, sock=None,
local_addr=None, server_hostname=None)

Create a streaming transport connection to a given Internet host and port: socket family AF_INET or
AF_INET6 depending on host (or family if specified), socket type SOCK_STREAM. protocol_factory
must be a callable returning a protocol instance.

This method is a coroutine which will try to establish the connection in the background. When
successful, the coroutine returns a (transport, protocol) pair.

The chronological synopsis of the underlying operation is as follows:

1. The connection is established, and a transport is created to represent it.

2. protocol_factory is called without arguments and must return a protocol instance.

3. The protocol instance is tied to the transport, and its connection_made() method is called.

4. The coroutine returns successfully with the (transport, protocol) pair.

The created transport is an implementation-dependent bidirectional stream.

Note: protocol_factory can be any kind of callable, not necessarily a class. For example, if you want
to use a pre-created protocol instance, you can pass lambda: my_protocol.

Options that change how the connection is created:

• ssl: if given and not false, a SSL/TLS transport is created (by default a plain TCP transport is
created). If ssl is a ssl.SSLContext object, this context is used to create the transport; if ssl is
True, a context with some unspecified default settings is used.

See also:

SSL/TLS security considerations

• server_hostname, is only for use together with ssl, and sets or overrides the hostname that the
target server’s certificate will be matched against. By default the value of the host argument is
used. If host is empty, there is no default and you must pass a value for server_hostname. If
server_hostname is an empty string, hostname matching is disabled (which is a serious security
risk, allowing for man-in-the-middle-attacks).

• family, proto, flags are the optional address family, protocol and flags to be passed through to
getaddrinfo() for host resolution. If given, these should all be integers from the corresponding
socket module constants.

• sock, if given, should be an existing, already connected socket.socket object to be used by the
transport. If sock is given, none of host, port, family, proto, flags and local_addr should be
specified.

• local_addr, if given, is a (local_host, local_port) tuple used to bind the socket to locally. The
local_host and local_port are looked up using getaddrinfo(), similarly to host and port.

Changed in version 3.5: On Windows with ProactorEventLoop, SSL/TLS is now supported.

See also:

The open_connection() function can be used to get a pair of (StreamReader, StreamWriter) instead
of a protocol.

854 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

coroutine AbstractEventLoop.create_datagram_endpoint(protocol_factory, local_addr=None,
remote_addr=None, *, fam-
ily=0, proto=0, flags=0,
reuse_address=None, reuse_port=None,
allow_broadcast=None, sock=None)

Create datagram connection: socket family AF_INET or AF_INET6 depending on host (or family
if specified), socket type SOCK_DGRAM. protocol_factory must be a callable returning a protocol
instance.

This method is a coroutine which will try to establish the connection in the background. When
successful, the coroutine returns a (transport, protocol) pair.

Options changing how the connection is created:

• local_addr, if given, is a (local_host, local_port) tuple used to bind the socket to locally. The
local_host and local_port are looked up using getaddrinfo().

• remote_addr, if given, is a (remote_host, remote_port) tuple used to connect the socket to a
remote address. The remote_host and remote_port are looked up using getaddrinfo().

• family, proto, flags are the optional address family, protocol and flags to be passed through to
getaddrinfo() for host resolution. If given, these should all be integers from the corresponding
socket module constants.

• reuse_address tells the kernel to reuse a local socket in TIME_WAIT state, without waiting for
its natural timeout to expire. If not specified will automatically be set to True on UNIX.

• reuse_port tells the kernel to allow this endpoint to be bound to the same port as other existing
endpoints are bound to, so long as they all set this flag when being created. This option is not
supported on Windows and some UNIX’s. If the SO_REUSEPORT constant is not defined then
this capability is unsupported.

• allow_broadcast tells the kernel to allow this endpoint to send messages to the broadcast address.

• sock can optionally be specified in order to use a preexisting, already connected, socket.socket
object to be used by the transport. If specified, local_addr and remote_addr should be omitted
(must be None).

On Windows with ProactorEventLoop, this method is not supported.

See UDP echo client protocol and UDP echo server protocol examples.

coroutine AbstractEventLoop.create_unix_connection(protocol_factory, path, *, ssl=None,
sock=None, server_hostname=None)

Create UNIX connection: socket family AF_UNIX, socket type SOCK_STREAM. The AF_UNIX
socket family is used to communicate between processes on the same machine efficiently.

This method is a coroutine which will try to establish the connection in the background. When
successful, the coroutine returns a (transport, protocol) pair.

path is the name of a UNIX domain socket, and is required unless a sock parameter is specified.
Abstract UNIX sockets, str, and bytes paths are supported.

See the AbstractEventLoop.create_connection() method for parameters.

Availability: UNIX.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 855

The Python Library Reference, Release 3.5.7

Creating listening connections

coroutine AbstractEventLoop.create_server(protocol_factory, host=None, port=None, *, fam-
ily=socket.AF_UNSPEC, flags=socket.AI_PASSIVE,
sock=None, backlog=100, ssl=None,
reuse_address=None, reuse_port=None)

Create a TCP server (socket type SOCK_STREAM) bound to host and port.

Return a Server object, its sockets attribute contains created sockets. Use the Server.close() method
to stop the server: close listening sockets.

Parameters:

• The host parameter can be a string, in that case the TCP server is bound to host and port. The
host parameter can also be a sequence of strings and in that case the TCP server is bound to all
hosts of the sequence. If host is an empty string or None, all interfaces are assumed and a list of
multiple sockets will be returned (most likely one for IPv4 and another one for IPv6).

• family can be set to either socket.AF_INET or AF_INET6 to force the socket to use IPv4 or
IPv6. If not set it will be determined from host (defaults to socket.AF_UNSPEC).

• flags is a bitmask for getaddrinfo().

• sock can optionally be specified in order to use a preexisting socket object. If specified, host and
port should be omitted (must be None).

• backlog is the maximum number of queued connections passed to listen() (defaults to 100).

• ssl can be set to an SSLContext to enable SSL over the accepted connections.

• reuse_address tells the kernel to reuse a local socket in TIME_WAIT state, without waiting for
its natural timeout to expire. If not specified will automatically be set to True on UNIX.

• reuse_port tells the kernel to allow this endpoint to be bound to the same port as other existing
endpoints are bound to, so long as they all set this flag when being created. This option is not
supported on Windows.

This method is a coroutine.

Changed in version 3.5: On Windows with ProactorEventLoop, SSL/TLS is now supported.

See also:

The function start_server() creates a (StreamReader, StreamWriter) pair and calls back a function
with this pair.

Changed in version 3.5.1: The host parameter can now be a sequence of strings.

coroutine AbstractEventLoop.create_unix_server(protocol_factory, path=None, *, sock=None,
backlog=100, ssl=None)

Similar to AbstractEventLoop.create_server(), but specific to the socket family AF_UNIX.

This method is a coroutine.

Availability: UNIX.

coroutine BaseEventLoop.connect_accepted_socket(protocol_factory, sock, *, ssl=None)
Handle an accepted connection.

This is used by servers that accept connections outside of asyncio but that use asyncio to handle them.

Parameters:

• sock is a preexisting socket object returned from an accept call.

856 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

• ssl can be set to an SSLContext to enable SSL over the accepted connections.

This method is a coroutine. When completed, the coroutine returns a (transport, protocol) pair.

Watch file descriptors

On Windows with SelectorEventLoop, only socket handles are supported (ex: pipe file descriptors are not
supported).

On Windows with ProactorEventLoop, these methods are not supported.

AbstractEventLoop.add_reader(fd, callback, *args)
Start watching the file descriptor for read availability and then call the callback with specified argu-
ments.

Use functools.partial to pass keywords to the callback.

AbstractEventLoop.remove_reader(fd)
Stop watching the file descriptor for read availability.

AbstractEventLoop.add_writer(fd, callback, *args)
Start watching the file descriptor for write availability and then call the callback with specified argu-
ments.

Use functools.partial to pass keywords to the callback.

AbstractEventLoop.remove_writer(fd)
Stop watching the file descriptor for write availability.

The watch a file descriptor for read events example uses the low-level AbstractEventLoop.add_reader()
method to register the file descriptor of a socket.

Low-level socket operations

coroutine AbstractEventLoop.sock_recv(sock, nbytes)
Receive data from the socket. Modeled after blocking socket.socket.recv() method.

The return value is a bytes object representing the data received. The maximum amount of data to
be received at once is specified by nbytes.

With SelectorEventLoop event loop, the socket sock must be non-blocking.

This method is a coroutine.

coroutine AbstractEventLoop.sock_sendall(sock, data)
Send data to the socket. Modeled after blocking socket.socket.sendall() method.

The socket must be connected to a remote socket. This method continues to send data from data until
either all data has been sent or an error occurs. None is returned on success. On error, an exception
is raised, and there is no way to determine how much data, if any, was successfully processed by the
receiving end of the connection.

With SelectorEventLoop event loop, the socket sock must be non-blocking.

This method is a coroutine.

coroutine AbstractEventLoop.sock_connect(sock, address)
Connect to a remote socket at address. Modeled after blocking socket.socket.connect() method.

With SelectorEventLoop event loop, the socket sock must be non-blocking.

This method is a coroutine.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 857

The Python Library Reference, Release 3.5.7

Changed in version 3.5.2: address no longer needs to be resolved. sock_connect will try to check if
the address is already resolved by calling socket.inet_pton(). If not, AbstractEventLoop.getaddrinfo()
will be used to resolve the address.

See also:

AbstractEventLoop.create_connection() and asyncio.open_connection().

coroutine AbstractEventLoop.sock_accept(sock)
Accept a connection. Modeled after blocking socket.socket.accept().

The socket must be bound to an address and listening for connections. The return value is a pair
(conn, address) where conn is a new socket object usable to send and receive data on the connection,
and address is the address bound to the socket on the other end of the connection.

The socket sock must be non-blocking.

This method is a coroutine.

See also:

AbstractEventLoop.create_server() and start_server().

Resolve host name

coroutine AbstractEventLoop.getaddrinfo(host, port, *, family=0, type=0, proto=0, flags=0)
This method is a coroutine, similar to socket.getaddrinfo() function but non-blocking.

coroutine AbstractEventLoop.getnameinfo(sockaddr, flags=0)
This method is a coroutine, similar to socket.getnameinfo() function but non-blocking.

Connect pipes

On Windows with SelectorEventLoop, these methods are not supported. Use ProactorEventLoop to support
pipes on Windows.

coroutine AbstractEventLoop.connect_read_pipe(protocol_factory, pipe)
Register read pipe in eventloop.

protocol_factory should instantiate object with Protocol interface. pipe is a file-like object. Return
pair (transport, protocol), where transport supports the ReadTransport interface.

With SelectorEventLoop event loop, the pipe is set to non-blocking mode.

This method is a coroutine.

coroutine AbstractEventLoop.connect_write_pipe(protocol_factory, pipe)
Register write pipe in eventloop.

protocol_factory should instantiate object with BaseProtocol interface. pipe is file-like object. Return
pair (transport, protocol), where transport supports WriteTransport interface.

With SelectorEventLoop event loop, the pipe is set to non-blocking mode.

This method is a coroutine.

See also:

The AbstractEventLoop.subprocess_exec() and AbstractEventLoop.subprocess_shell() methods.

858 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

UNIX signals

Availability: UNIX only.

AbstractEventLoop.add_signal_handler(signum, callback, *args)
Add a handler for a signal.

Raise ValueError if the signal number is invalid or uncatchable. Raise RuntimeError if there is a
problem setting up the handler.

Use functools.partial to pass keywords to the callback.

AbstractEventLoop.remove_signal_handler(sig)
Remove a handler for a signal.

Return True if a signal handler was removed, False if not.

See also:

The signal module.

Executor

Call a function in an Executor (pool of threads or pool of processes). By default, an event loop uses a thread
pool executor (ThreadPoolExecutor).

coroutine AbstractEventLoop.run_in_executor(executor, func, *args)
Arrange for a func to be called in the specified executor.

The executor argument should be an Executor instance. The default executor is used if executor is
None.

Use functools.partial to pass keywords to the *func*.

This method is a coroutine.

Changed in version 3.5.3: BaseEventLoop.run_in_executor() no longer configures the max_workers
of the thread pool executor it creates, instead leaving it up to the thread pool executor (ThreadPoolEx-
ecutor) to set the default.

AbstractEventLoop.set_default_executor(executor)
Set the default executor used by run_in_executor().

Error Handling API

Allows customizing how exceptions are handled in the event loop.

AbstractEventLoop.set_exception_handler(handler)
Set handler as the new event loop exception handler.

If handler is None, the default exception handler will be set.

If handler is a callable object, it should have a matching signature to (loop, context), where loop will
be a reference to the active event loop, context will be a dict object (see call_exception_handler()
documentation for details about context).

AbstractEventLoop.get_exception_handler()
Return the exception handler, or None if the default one is in use.

New in version 3.5.2.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 859

The Python Library Reference, Release 3.5.7

AbstractEventLoop.default_exception_handler(context)
Default exception handler.

This is called when an exception occurs and no exception handler is set, and can be called by a custom
exception handler that wants to defer to the default behavior.

context parameter has the same meaning as in call_exception_handler().

AbstractEventLoop.call_exception_handler(context)
Call the current event loop exception handler.

context is a dict object containing the following keys (new keys may be introduced later):

• ‘message’: Error message;

• ‘exception’ (optional): Exception object;

• ‘future’ (optional): asyncio.Future instance;

• ‘handle’ (optional): asyncio.Handle instance;

• ‘protocol’ (optional): Protocol instance;

• ‘transport’ (optional): Transport instance;

• ‘socket’ (optional): socket.socket instance.

Note: Note: this method should not be overloaded in subclassed event loops. For any custom exception
handling, use set_exception_handler() method.

Debug mode

AbstractEventLoop.get_debug()
Get the debug mode (bool) of the event loop.

The default value is True if the environment variable PYTHONASYNCIODEBUG is set to a non-empty
string, False otherwise.

New in version 3.4.2.

AbstractEventLoop.set_debug(enabled: bool)
Set the debug mode of the event loop.

New in version 3.4.2.

See also:

The debug mode of asyncio.

Server

class asyncio.Server
Server listening on sockets.

Object created by the AbstractEventLoop.create_server() method and the start_server() function.
Don’t instantiate the class directly.

close()
Stop serving: close listening sockets and set the sockets attribute to None.

The sockets that represent existing incoming client connections are left open.

860 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

The server is closed asynchronously, use the wait_closed() coroutine to wait until the server is
closed.

coroutine wait_closed()
Wait until the close() method completes.

This method is a coroutine.

sockets
List of socket.socket objects the server is listening to, or None if the server is closed.

Handle

class asyncio.Handle
A callback wrapper object returned by AbstractEventLoop.call_soon(), AbstractEventLoop.
call_soon_threadsafe(), AbstractEventLoop.call_later(), and AbstractEventLoop.call_at().

cancel()
Cancel the call. If the callback is already canceled or executed, this method has no effect.

Event loop examples

Hello World with call_soon()

Example using the AbstractEventLoop.call_soon() method to schedule a callback. The callback displays
"Hello World" and then stops the event loop:

import asyncio

def hello_world(loop):
print('Hello World')
loop.stop()

loop = asyncio.get_event_loop()

Schedule a call to hello_world()
loop.call_soon(hello_world, loop)

Blocking call interrupted by loop.stop()
loop.run_forever()
loop.close()

See also:

The Hello World coroutine example uses a coroutine.

Display the current date with call_later()

Example of callback displaying the current date every second. The callback uses the AbstractEventLoop.
call_later() method to reschedule itself during 5 seconds, and then stops the event loop:

import asyncio
import datetime

def display_date(end_time, loop):

(continues on next page)

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 861

The Python Library Reference, Release 3.5.7

(continued from previous page)

print(datetime.datetime.now())
if (loop.time() + 1.0) < end_time:

loop.call_later(1, display_date, end_time, loop)
else:

loop.stop()

loop = asyncio.get_event_loop()

Schedule the first call to display_date()
end_time = loop.time() + 5.0
loop.call_soon(display_date, end_time, loop)

Blocking call interrupted by loop.stop()
loop.run_forever()
loop.close()

See also:

The coroutine displaying the current date example uses a coroutine.

Watch a file descriptor for read events

Wait until a file descriptor received some data using the AbstractEventLoop.add_reader() method and then
close the event loop:

import asyncio
try:

from socket import socketpair
except ImportError:

from asyncio.windows_utils import socketpair

Create a pair of connected file descriptors
rsock, wsock = socketpair()
loop = asyncio.get_event_loop()

def reader():
data = rsock.recv(100)
print("Received:", data.decode())
We are done: unregister the file descriptor
loop.remove_reader(rsock)
Stop the event loop
loop.stop()

Register the file descriptor for read event
loop.add_reader(rsock, reader)

Simulate the reception of data from the network
loop.call_soon(wsock.send, 'abc'.encode())

Run the event loop
loop.run_forever()

We are done, close sockets and the event loop
rsock.close()
wsock.close()
loop.close()

862 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

See also:

The register an open socket to wait for data using a protocol example uses a low-level protocol created by
the AbstractEventLoop.create_connection() method.

The register an open socket to wait for data using streams example uses high-level streams created by the
open_connection() function in a coroutine.

Set signal handlers for SIGINT and SIGTERM

Register handlers for signals SIGINT and SIGTERM using the AbstractEventLoop.add_signal_handler()
method:

import asyncio
import functools
import os
import signal

def ask_exit(signame):
print("got signal %s: exit" % signame)
loop.stop()

loop = asyncio.get_event_loop()
for signame in ('SIGINT', 'SIGTERM'):

loop.add_signal_handler(getattr(signal, signame),
functools.partial(ask_exit, signame))

print("Event loop running forever, press Ctrl+C to interrupt.")
print("pid %s: send SIGINT or SIGTERM to exit." % os.getpid())
try:

loop.run_forever()
finally:

loop.close()

This example only works on UNIX.

18.5.2 Event loops

Event loop functions

The following functions are convenient shortcuts to accessing the methods of the global policy. Note that this
provides access to the default policy, unless an alternative policy was set by calling set_event_loop_policy()
earlier in the execution of the process.

asyncio.get_event_loop()
Equivalent to calling get_event_loop_policy().get_event_loop().

asyncio.set_event_loop(loop)
Equivalent to calling get_event_loop_policy().set_event_loop(loop).

asyncio.new_event_loop()
Equivalent to calling get_event_loop_policy().new_event_loop().

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 863

The Python Library Reference, Release 3.5.7

Available event loops

asyncio currently provides two implementations of event loops: SelectorEventLoop and ProactorEventLoop.

class asyncio.SelectorEventLoop
Event loop based on the selectors module. Subclass of AbstractEventLoop.

Use the most efficient selector available on the platform.

On Windows, only sockets are supported (ex: pipes are not supported): see the MSDN documentation
of select.

class asyncio.ProactorEventLoop
Proactor event loop for Windows using “I/O Completion Ports” aka IOCP. Subclass of AbstractEvent-
Loop.

Availability: Windows.

See also:

MSDN documentation on I/O Completion Ports.

Example to use a ProactorEventLoop on Windows:

import asyncio, sys

if sys.platform == 'win32':
loop = asyncio.ProactorEventLoop()
asyncio.set_event_loop(loop)

Platform support

The asyncio module has been designed to be portable, but each platform still has subtle differences and may
not support all asyncio features.

Windows

Common limits of Windows event loops:

• create_unix_connection() and create_unix_server() are not supported: the socket family socket.
AF_UNIX is specific to UNIX

• add_signal_handler() and remove_signal_handler() are not supported

• EventLoopPolicy.set_child_watcher() is not supported. ProactorEventLoop supports subprocesses.
It has only one implementation to watch child processes, there is no need to configure it.

SelectorEventLoop specific limits:

• SelectSelector is used which only supports sockets and is limited to 512 sockets.

• add_reader() and add_writer() only accept file descriptors of sockets

• Pipes are not supported (ex: connect_read_pipe(), connect_write_pipe())

• Subprocesses are not supported (ex: subprocess_exec(), subprocess_shell())

ProactorEventLoop specific limits:

• create_datagram_endpoint() (UDP) is not supported

864 Chapter 18. Interprocess Communication and Networking

https://msdn.microsoft.com/en-us/library/windows/desktop/ms740141%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740141%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365198%28v=vs.85%29.aspx

The Python Library Reference, Release 3.5.7

• add_reader() and add_writer() are not supported

The resolution of the monotonic clock on Windows is usually around 15.6 msec. The best resolution is 0.5
msec. The resolution depends on the hardware (availability of HPET) and on the Windows configuration.
See asyncio delayed calls.

Changed in version 3.5: ProactorEventLoop now supports SSL.

Mac OS X

Character devices like PTY are only well supported since Mavericks (Mac OS 10.9). They are not supported
at all on Mac OS 10.5 and older.

On Mac OS 10.6, 10.7 and 10.8, the default event loop is SelectorEventLoop which uses selectors.
KqueueSelector. selectors.KqueueSelector does not support character devices on these versions. The Selec-
torEventLoop can be used with SelectSelector or PollSelector to support character devices on these versions
of Mac OS X. Example:

import asyncio
import selectors

selector = selectors.SelectSelector()
loop = asyncio.SelectorEventLoop(selector)
asyncio.set_event_loop(loop)

Event loop policies and the default policy

Event loop management is abstracted with a policy pattern, to provide maximal flexibility for custom
platforms and frameworks. Throughout the execution of a process, a single global policy object manages the
event loops available to the process based on the calling context. A policy is an object implementing the
AbstractEventLoopPolicy interface.

For most users of asyncio, policies never have to be dealt with explicitly, since the default global policy is
sufficient.

The default policy defines context as the current thread, and manages an event loop per thread that interacts
with asyncio. The module-level functions get_event_loop() and set_event_loop() provide convenient access
to event loops managed by the default policy.

Event loop policy interface

An event loop policy must implement the following interface:

class asyncio.AbstractEventLoopPolicy
Event loop policy.

get_event_loop()
Get the event loop for the current context.

Returns an event loop object implementing the AbstractEventLoop interface.

Raises an exception in case no event loop has been set for the current context and the current
policy does not specify to create one. It must never return None.

set_event_loop(loop)
Set the event loop for the current context to loop.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 865

https://en.wikipedia.org/wiki/High_Precision_Event_Timer

The Python Library Reference, Release 3.5.7

new_event_loop()
Create and return a new event loop object according to this policy’s rules.

If there’s need to set this loop as the event loop for the current context, set_event_loop() must
be called explicitly.

Access to the global loop policy

asyncio.get_event_loop_policy()
Get the current event loop policy.

asyncio.set_event_loop_policy(policy)
Set the current event loop policy. If policy is None, the default policy is restored.

18.5.3 Tasks and coroutines

Coroutines

Coroutines used with asyncio may be implemented using the async def statement, or by using generators.
The async def type of coroutine was added in Python 3.5, and is recommended if there is no need to support
older Python versions.

Generator-based coroutines should be decorated with @asyncio.coroutine, although this is not strictly en-
forced. The decorator enables compatibility with async def coroutines, and also serves as documentation.
Generator-based coroutines use the yield from syntax introduced in PEP 380, instead of the original yield
syntax.

The word “coroutine”, like the word “generator”, is used for two different (though related) concepts:

• The function that defines a coroutine (a function definition using async def or decorated with @asyncio.
coroutine). If disambiguation is needed we will call this a coroutine function (iscoroutinefunction()
returns True).

• The object obtained by calling a coroutine function. This object represents a computation or an I/O
operation (usually a combination) that will complete eventually. If disambiguation is needed we will
call it a coroutine object (iscoroutine() returns True).

Things a coroutine can do:

• result = await future or result = yield from future – suspends the coroutine until the future is done,
then returns the future’s result, or raises an exception, which will be propagated. (If the future is
cancelled, it will raise a CancelledError exception.) Note that tasks are futures, and everything said
about futures also applies to tasks.

• result = await coroutine or result = yield from coroutine – wait for another coroutine to produce a
result (or raise an exception, which will be propagated). The coroutine expression must be a call to
another coroutine.

• return expression – produce a result to the coroutine that is waiting for this one using await or yield
from.

• raise exception – raise an exception in the coroutine that is waiting for this one using await or yield
from.

Calling a coroutine does not start its code running – the coroutine object returned by the call doesn’t do
anything until you schedule its execution. There are two basic ways to start it running: call await coroutine or
yield from coroutine from another coroutine (assuming the other coroutine is already running!), or schedule
its execution using the ensure_future() function or the AbstractEventLoop.create_task() method.

866 Chapter 18. Interprocess Communication and Networking

https://www.python.org/dev/peps/pep-0380

The Python Library Reference, Release 3.5.7

Coroutines (and tasks) can only run when the event loop is running.

@asyncio.coroutine
Decorator to mark generator-based coroutines. This enables the generator use yield from to call async
def coroutines, and also enables the generator to be called by async def coroutines, for instance using
an await expression.

There is no need to decorate async def coroutines themselves.

If the generator is not yielded from before it is destroyed, an error message is logged. See Detect
coroutines never scheduled.

Note: In this documentation, some methods are documented as coroutines, even if they are plain Python
functions returning a Future. This is intentional to have a freedom of tweaking the implementation of these
functions in the future. If such a function is needed to be used in a callback-style code, wrap its result with
ensure_future().

Example: Hello World coroutine

Example of coroutine displaying "Hello World":

import asyncio

async def hello_world():
print("Hello World!")

loop = asyncio.get_event_loop()
Blocking call which returns when the hello_world() coroutine is done
loop.run_until_complete(hello_world())
loop.close()

See also:

The Hello World with call_soon() example uses the AbstractEventLoop.call_soon() method to schedule a
callback.

Example: Coroutine displaying the current date

Example of coroutine displaying the current date every second during 5 seconds using the sleep() function:

import asyncio
import datetime

async def display_date(loop):
end_time = loop.time() + 5.0
while True:

print(datetime.datetime.now())
if (loop.time() + 1.0) >= end_time:

break
await asyncio.sleep(1)

loop = asyncio.get_event_loop()
Blocking call which returns when the display_date() coroutine is done

(continues on next page)

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 867

The Python Library Reference, Release 3.5.7

(continued from previous page)

loop.run_until_complete(display_date(loop))
loop.close()

See also:

The display the current date with call_later() example uses a callback with the AbstractEventLoop.
call_later() method.

Example: Chain coroutines

Example chaining coroutines:

import asyncio

async def compute(x, y):
print("Compute %s + %s ..." % (x, y))
await asyncio.sleep(1.0)
return x + y

async def print_sum(x, y):
result = await compute(x, y)
print("%s + %s = %s" % (x, y, result))

loop = asyncio.get_event_loop()
loop.run_until_complete(print_sum(1, 2))
loop.close()

compute() is chained to print_sum(): print_sum() coroutine waits until compute() is completed before
returning its result.

Sequence diagram of the example:

The “Task” is created by the AbstractEventLoop.run_until_complete() method when it gets a coroutine
object instead of a task.

868 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

The diagram shows the control flow, it does not describe exactly how things work internally. For example,
the sleep coroutine creates an internal future which uses AbstractEventLoop.call_later() to wake up the task
in 1 second.

InvalidStateError

exception asyncio.InvalidStateError
The operation is not allowed in this state.

TimeoutError

exception asyncio.TimeoutError
The operation exceeded the given deadline.

Note: This exception is different from the builtin TimeoutError exception!

Future

class asyncio.Future(*, loop=None)
This class is almost compatible with concurrent.futures.Future.

Differences:

• result() and exception() do not take a timeout argument and raise an exception when the future
isn’t done yet.

• Callbacks registered with add_done_callback() are always called via the event loop’s
call_soon_threadsafe().

• This class is not compatible with the wait() and as_completed() functions in the concurrent.
futures package.

This class is not thread safe.

cancel()
Cancel the future and schedule callbacks.

If the future is already done or cancelled, return False. Otherwise, change the future’s state to
cancelled, schedule the callbacks and return True.

cancelled()
Return True if the future was cancelled.

done()
Return True if the future is done.

Done means either that a result / exception are available, or that the future was cancelled.

result()
Return the result this future represents.

If the future has been cancelled, raises CancelledError. If the future’s result isn’t yet available,
raises InvalidStateError. If the future is done and has an exception set, this exception is raised.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 869

The Python Library Reference, Release 3.5.7

exception()
Return the exception that was set on this future.

The exception (or None if no exception was set) is returned only if the future is done. If the future
has been cancelled, raises CancelledError. If the future isn’t done yet, raises InvalidStateError.

add_done_callback(fn)
Add a callback to be run when the future becomes done.

The callback is called with a single argument - the future object. If the future is already done
when this is called, the callback is scheduled with call_soon().

Use functools.partial to pass parameters to the callback. For example, fut.
add_done_callback(functools.partial(print, "Future:", flush=True)) will call print("Future:",
fut, flush=True).

remove_done_callback(fn)
Remove all instances of a callback from the “call when done” list.

Returns the number of callbacks removed.

set_result(result)
Mark the future done and set its result.

If the future is already done when this method is called, raises InvalidStateError.

set_exception(exception)
Mark the future done and set an exception.

If the future is already done when this method is called, raises InvalidStateError.

Example: Future with run_until_complete()

Example combining a Future and a coroutine function:

import asyncio

async def slow_operation(future):
await asyncio.sleep(1)
future.set_result('Future is done!')

loop = asyncio.get_event_loop()
future = asyncio.Future()
asyncio.ensure_future(slow_operation(future))
loop.run_until_complete(future)
print(future.result())
loop.close()

The coroutine function is responsible for the computation (which takes 1 second) and it stores the result
into the future. The run_until_complete() method waits for the completion of the future.

Note: The run_until_complete() method uses internally the add_done_callback() method to be notified
when the future is done.

870 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

Example: Future with run_forever()

The previous example can be written differently using the Future.add_done_callback() method to describe
explicitly the control flow:

import asyncio

async def slow_operation(future):
await asyncio.sleep(1)
future.set_result('Future is done!')

def got_result(future):
print(future.result())
loop.stop()

loop = asyncio.get_event_loop()
future = asyncio.Future()
asyncio.ensure_future(slow_operation(future))
future.add_done_callback(got_result)
try:

loop.run_forever()
finally:

loop.close()

In this example, the future is used to link slow_operation() to got_result(): when slow_operation() is done,
got_result() is called with the result.

Task

class asyncio.Task(coro, *, loop=None)
Schedule the execution of a coroutine: wrap it in a future. A task is a subclass of Future.

A task is responsible for executing a coroutine object in an event loop. If the wrapped coroutine yields
from a future, the task suspends the execution of the wrapped coroutine and waits for the completion
of the future. When the future is done, the execution of the wrapped coroutine restarts with the result
or the exception of the future.

Event loops use cooperative scheduling: an event loop only runs one task at a time. Other tasks
may run in parallel if other event loops are running in different threads. While a task waits for the
completion of a future, the event loop executes a new task.

The cancellation of a task is different from the cancelation of a future. Calling cancel() will throw a
CancelledError to the wrapped coroutine. cancelled() only returns True if the wrapped coroutine did
not catch the CancelledError exception, or raised a CancelledError exception.

If a pending task is destroyed, the execution of its wrapped coroutine did not complete. It is probably
a bug and a warning is logged: see Pending task destroyed.

Don’t directly create Task instances: use the ensure_future() function or the AbstractEventLoop.
create_task() method.

This class is not thread safe.

classmethod all_tasks(loop=None)
Return a set of all tasks for an event loop.

By default all tasks for the current event loop are returned.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 871

The Python Library Reference, Release 3.5.7

classmethod current_task(loop=None)
Return the currently running task in an event loop or None.

By default the current task for the current event loop is returned.

None is returned when called not in the context of a Task.

cancel()
Request that this task cancel itself.

This arranges for a CancelledError to be thrown into the wrapped coroutine on the next cycle
through the event loop. The coroutine then has a chance to clean up or even deny the request
using try/except/finally.

Unlike Future.cancel(), this does not guarantee that the task will be cancelled: the exception
might be caught and acted upon, delaying cancellation of the task or preventing cancellation
completely. The task may also return a value or raise a different exception.

Immediately after this method is called, cancelled() will not return True (unless the task was
already cancelled). A task will be marked as cancelled when the wrapped coroutine terminates
with a CancelledError exception (even if cancel() was not called).

get_stack(*, limit=None)
Return the list of stack frames for this task’s coroutine.

If the coroutine is not done, this returns the stack where it is suspended. If the coroutine has
completed successfully or was cancelled, this returns an empty list. If the coroutine was terminated
by an exception, this returns the list of traceback frames.

The frames are always ordered from oldest to newest.

The optional limit gives the maximum number of frames to return; by default all available frames
are returned. Its meaning differs depending on whether a stack or a traceback is returned: the
newest frames of a stack are returned, but the oldest frames of a traceback are returned. (This
matches the behavior of the traceback module.)

For reasons beyond our control, only one stack frame is returned for a suspended coroutine.

print_stack(*, limit=None, file=None)
Print the stack or traceback for this task’s coroutine.

This produces output similar to that of the traceback module, for the frames retrieved by
get_stack(). The limit argument is passed to get_stack(). The file argument is an I/O stream to
which the output is written; by default output is written to sys.stderr.

Example: Parallel execution of tasks

Example executing 3 tasks (A, B, C) in parallel:

import asyncio

async def factorial(name, number):
f = 1
for i in range(2, number+1):

print("Task %s: Compute factorial(%s)..." % (name, i))
await asyncio.sleep(1)
f *= i

print("Task %s: factorial(%s) = %s" % (name, number, f))

loop = asyncio.get_event_loop()

(continues on next page)

872 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

(continued from previous page)

loop.run_until_complete(asyncio.gather(
factorial("A", 2),
factorial("B", 3),
factorial("C", 4),

))
loop.close()

Output:

Task A: Compute factorial(2)...
Task B: Compute factorial(2)...
Task C: Compute factorial(2)...
Task A: factorial(2) = 2
Task B: Compute factorial(3)...
Task C: Compute factorial(3)...
Task B: factorial(3) = 6
Task C: Compute factorial(4)...
Task C: factorial(4) = 24

A task is automatically scheduled for execution when it is created. The event loop stops when all tasks are
done.

Task functions

Note: In the functions below, the optional loop argument allows explicitly setting the event loop object
used by the underlying task or coroutine. If it’s not provided, the default event loop is used.

asyncio.as_completed(fs, *, loop=None, timeout=None)
Return an iterator whose values, when waited for, are Future instances.

Raises asyncio.TimeoutError if the timeout occurs before all Futures are done.

Example:

for f in as_completed(fs):
result = yield from f # The 'yield from' may raise
Use result

Note: The futures f are not necessarily members of fs.

asyncio.ensure_future(coro_or_future, *, loop=None)
Schedule the execution of a coroutine object: wrap it in a future. Return a Task object.

If the argument is a Future, it is returned directly.

New in version 3.4.4.

Changed in version 3.5.1: The function accepts any awaitable object.

See also:

The AbstractEventLoop.create_task() method.

asyncio.async(coro_or_future, *, loop=None)
A deprecated alias to ensure_future().

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 873

The Python Library Reference, Release 3.5.7

Deprecated since version 3.4.4.

asyncio.wrap_future(future, *, loop=None)
Wrap a concurrent.futures.Future object in a Future object.

asyncio.gather(*coros_or_futures, loop=None, return_exceptions=False)
Return a future aggregating results from the given coroutine objects or futures.

All futures must share the same event loop. If all the tasks are done successfully, the returned future’s
result is the list of results (in the order of the original sequence, not necessarily the order of results
arrival). If return_exceptions is true, exceptions in the tasks are treated the same as successful results,
and gathered in the result list; otherwise, the first raised exception will be immediately propagated to
the returned future.

Cancellation: if the outer Future is cancelled, all children (that have not completed yet) are also
cancelled. If any child is cancelled, this is treated as if it raised CancelledError – the outer Future is
not cancelled in this case. (This is to prevent the cancellation of one child to cause other children to
be cancelled.)

asyncio.iscoroutine(obj)
Return True if obj is a coroutine object, which may be based on a generator or an async def coroutine.

asyncio.iscoroutinefunction(func)
Return True if func is determined to be a coroutine function, which may be a decorated generator
function or an async def function.

asyncio.run_coroutine_threadsafe(coro, loop)
Submit a coroutine object to a given event loop.

Return a concurrent.futures.Future to access the result.

This function is meant to be called from a different thread than the one where the event loop is running.
Usage:

Create a coroutine
coro = asyncio.sleep(1, result=3)
Submit the coroutine to a given loop
future = asyncio.run_coroutine_threadsafe(coro, loop)
Wait for the result with an optional timeout argument
assert future.result(timeout) == 3

If an exception is raised in the coroutine, the returned future will be notified. It can also be used to
cancel the task in the event loop:

try:
result = future.result(timeout)

except asyncio.TimeoutError:
print('The coroutine took too long, cancelling the task...')
future.cancel()

except Exception as exc:
print('The coroutine raised an exception: {!r}'.format(exc))

else:
print('The coroutine returned: {!r}'.format(result))

See the concurrency and multithreading section of the documentation.

Note: Unlike other functions from the module, run_coroutine_threadsafe() requires the loop argu-
ment to be passed explicitly.

874 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

New in version 3.5.1.

coroutine asyncio.sleep(delay, result=None, *, loop=None)
Create a coroutine that completes after a given time (in seconds). If result is provided, it is produced
to the caller when the coroutine completes.

The resolution of the sleep depends on the granularity of the event loop.

This function is a coroutine.

asyncio.shield(arg, *, loop=None)
Wait for a future, shielding it from cancellation.

The statement:

res = yield from shield(something())

is exactly equivalent to the statement:

res = yield from something()

except that if the coroutine containing it is cancelled, the task running in something() is not cancelled.
From the point of view of something(), the cancellation did not happen. But its caller is still cancelled,
so the yield-from expression still raises CancelledError. Note: If something() is cancelled by other
means this will still cancel shield().

If you want to completely ignore cancellation (not recommended) you can combine shield() with a
try/except clause, as follows:

try:
res = yield from shield(something())

except CancelledError:
res = None

coroutine asyncio.wait(futures, *, loop=None, timeout=None, return_when=ALL_COMPLETED)
Wait for the Futures and coroutine objects given by the sequence futures to complete. Coroutines will
be wrapped in Tasks. Returns two sets of Future: (done, pending).

The sequence futures must not be empty.

timeout can be used to control the maximum number of seconds to wait before returning. timeout can
be an int or float. If timeout is not specified or None, there is no limit to the wait time.

return_when indicates when this function should return. It must be one of the following constants of
the concurrent.futures module:

Constant Description
FIRST_COMPLETED The function will return when any future finishes or is cancelled.
FIRST_EXCEPTION The function will return when any future finishes by raising an

exception. If no future raises an exception then it is equivalent to
ALL_COMPLETED.

ALL_COMPLETED The function will return when all futures finish or are cancelled.

This function is a coroutine.

Usage:

done, pending = yield from asyncio.wait(fs)

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 875

The Python Library Reference, Release 3.5.7

Note: This does not raise asyncio.TimeoutError! Futures that aren’t done when the timeout occurs
are returned in the second set.

coroutine asyncio.wait_for(fut, timeout, *, loop=None)
Wait for the single Future or coroutine object to complete with timeout. If timeout is None, block
until the future completes.

Coroutine will be wrapped in Task.

Returns result of the Future or coroutine. When a timeout occurs, it cancels the task and raises
asyncio.TimeoutError. To avoid the task cancellation, wrap it in shield().

If the wait is cancelled, the future fut is also cancelled.

This function is a coroutine, usage:

result = yield from asyncio.wait_for(fut, 60.0)

Changed in version 3.4.3: If the wait is cancelled, the future fut is now also cancelled.

18.5.4 Transports and protocols (callback based API)

Transports

Transports are classes provided by asyncio in order to abstract various kinds of communication channels.
You generally won’t instantiate a transport yourself; instead, you will call an AbstractEventLoop method
which will create the transport and try to initiate the underlying communication channel, calling you back
when it succeeds.

Once the communication channel is established, a transport is always paired with a protocol instance. The
protocol can then call the transport’s methods for various purposes.

asyncio currently implements transports for TCP, UDP, SSL, and subprocess pipes. The methods available
on a transport depend on the transport’s kind.

The transport classes are not thread safe.

BaseTransport

class asyncio.BaseTransport
Base class for transports.

close()
Close the transport. If the transport has a buffer for outgoing data, buffered data will be flushed
asynchronously. No more data will be received. After all buffered data is flushed, the protocol’s
connection_lost() method will be called with None as its argument.

is_closing()
Return True if the transport is closing or is closed.

New in version 3.5.1.

get_extra_info(name, default=None)
Return optional transport information. name is a string representing the piece of transport-specific
information to get, default is the value to return if the information doesn’t exist.

This method allows transport implementations to easily expose channel-specific information.

876 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

• socket:

– 'peername': the remote address to which the socket is connected, result of socket.socket.
getpeername() (None on error)

– 'socket': socket.socket instance

– 'sockname': the socket’s own address, result of socket.socket.getsockname()

• SSL socket:

– 'compression': the compression algorithm being used as a string, or None if the connec-
tion isn’t compressed; result of ssl.SSLSocket.compression()

– 'cipher': a three-value tuple containing the name of the cipher being used, the version
of the SSL protocol that defines its use, and the number of secret bits being used; result
of ssl.SSLSocket.cipher()

– 'peercert': peer certificate; result of ssl.SSLSocket.getpeercert()

– 'sslcontext': ssl.SSLContext instance

– 'ssl_object': ssl.SSLObject or ssl.SSLSocket instance

• pipe:

– 'pipe': pipe object

• subprocess:

– 'subprocess': subprocess.Popen instance

set_protocol(protocol)
Set a new protocol. Switching protocol should only be done when both protocols are documented
to support the switch.

New in version 3.5.3.

get_protocol()
Return the current protocol.

New in version 3.5.3.

Changed in version 3.5.1: 'ssl_object' info was added to SSL sockets.

ReadTransport

class asyncio.ReadTransport
Interface for read-only transports.

pause_reading()
Pause the receiving end of the transport. No data will be passed to the protocol’s data_received()
method until resume_reading() is called.

resume_reading()
Resume the receiving end. The protocol’s data_received() method will be called once again if
some data is available for reading.

WriteTransport

class asyncio.WriteTransport
Interface for write-only transports.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 877

The Python Library Reference, Release 3.5.7

abort()
Close the transport immediately, without waiting for pending operations to complete. Buffered
data will be lost. No more data will be received. The protocol’s connection_lost() method will
eventually be called with None as its argument.

can_write_eof()
Return True if the transport supports write_eof(), False if not.

get_write_buffer_size()
Return the current size of the output buffer used by the transport.

get_write_buffer_limits()
Get the high- and low-water limits for write flow control. Return a tuple (low, high) where low
and high are positive number of bytes.

Use set_write_buffer_limits() to set the limits.

New in version 3.4.2.

set_write_buffer_limits(high=None, low=None)
Set the high- and low-water limits for write flow control.

These two values (measured in number of bytes) control when the protocol’s pause_writing() and
resume_writing() methods are called. If specified, the low-water limit must be less than or equal
to the high-water limit. Neither high nor low can be negative.

pause_writing() is called when the buffer size becomes greater than or equal to the high value.
If writing has been paused, resume_writing() is called when the buffer size becomes less than or
equal to the low value.

The defaults are implementation-specific. If only the high-water limit is given, the low-water limit
defaults to an implementation-specific value less than or equal to the high-water limit. Setting
high to zero forces low to zero as well, and causes pause_writing() to be called whenever the
buffer becomes non-empty. Setting low to zero causes resume_writing() to be called only once
the buffer is empty. Use of zero for either limit is generally sub-optimal as it reduces opportunities
for doing I/O and computation concurrently.

Use get_write_buffer_limits() to get the limits.

write(data)
Write some data bytes to the transport.

This method does not block; it buffers the data and arranges for it to be sent out asynchronously.

writelines(list_of_data)
Write a list (or any iterable) of data bytes to the transport. This is functionally equivalent to
calling write() on each element yielded by the iterable, but may be implemented more efficiently.

write_eof()
Close the write end of the transport after flushing buffered data. Data may still be received.

This method can raise NotImplementedError if the transport (e.g. SSL) doesn’t support half-
closes.

DatagramTransport

DatagramTransport.sendto(data, addr=None)
Send the data bytes to the remote peer given by addr (a transport-dependent target address). If addr
is None, the data is sent to the target address given on transport creation.

This method does not block; it buffers the data and arranges for it to be sent out asynchronously.

878 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

DatagramTransport.abort()
Close the transport immediately, without waiting for pending operations to complete. Buffered data
will be lost. No more data will be received. The protocol’s connection_lost() method will eventually
be called with None as its argument.

BaseSubprocessTransport

class asyncio.BaseSubprocessTransport

get_pid()
Return the subprocess process id as an integer.

get_pipe_transport(fd)
Return the transport for the communication pipe corresponding to the integer file descriptor fd:

• 0: readable streaming transport of the standard input (stdin), or None if the subprocess was
not created with stdin=PIPE

• 1: writable streaming transport of the standard output (stdout), or None if the subprocess
was not created with stdout=PIPE

• 2: writable streaming transport of the standard error (stderr), or None if the subprocess was
not created with stderr=PIPE

• other fd: None

get_returncode()
Return the subprocess returncode as an integer or None if it hasn’t returned, similarly to the
subprocess.Popen.returncode attribute.

kill()
Kill the subprocess, as in subprocess.Popen.kill().

On POSIX systems, the function sends SIGKILL to the subprocess. On Windows, this method
is an alias for terminate().

send_signal(signal)
Send the signal number to the subprocess, as in subprocess.Popen.send_signal().

terminate()
Ask the subprocess to stop, as in subprocess.Popen.terminate(). This method is an alias for the
close() method.

On POSIX systems, this method sends SIGTERM to the subprocess. On Windows, the Windows
API function TerminateProcess() is called to stop the subprocess.

close()
Ask the subprocess to stop by calling the terminate() method if the subprocess hasn’t returned
yet, and close transports of all pipes (stdin, stdout and stderr).

Protocols

asyncio provides base classes that you can subclass to implement your network protocols. Those classes are
used in conjunction with transports (see below): the protocol parses incoming data and asks for the writing
of outgoing data, while the transport is responsible for the actual I/O and buffering.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 879

The Python Library Reference, Release 3.5.7

When subclassing a protocol class, it is recommended you override certain methods. Those methods are
callbacks: they will be called by the transport on certain events (for example when some data is received);
you shouldn’t call them yourself, unless you are implementing a transport.

Note: All callbacks have default implementations, which are empty. Therefore, you only need to implement
the callbacks for the events in which you are interested.

Protocol classes

class asyncio.Protocol
The base class for implementing streaming protocols (for use with e.g. TCP and SSL transports).

class asyncio.DatagramProtocol
The base class for implementing datagram protocols (for use with e.g. UDP transports).

class asyncio.SubprocessProtocol
The base class for implementing protocols communicating with child processes (through a set of uni-
directional pipes).

Connection callbacks

These callbacks may be called on Protocol, DatagramProtocol and SubprocessProtocol instances:

BaseProtocol.connection_made(transport)
Called when a connection is made.

The transport argument is the transport representing the connection. You are responsible for storing
it somewhere (e.g. as an attribute) if you need to.

BaseProtocol.connection_lost(exc)
Called when the connection is lost or closed.

The argument is either an exception object or None. The latter means a regular EOF is received, or
the connection was aborted or closed by this side of the connection.

connection_made() and connection_lost() are called exactly once per successful connection. All other call-
backs will be called between those two methods, which allows for easier resource management in your protocol
implementation.

The following callbacks may be called only on SubprocessProtocol instances:

SubprocessProtocol.pipe_data_received(fd, data)
Called when the child process writes data into its stdout or stderr pipe. fd is the integer file descriptor
of the pipe. data is a non-empty bytes object containing the data.

SubprocessProtocol.pipe_connection_lost(fd, exc)
Called when one of the pipes communicating with the child process is closed. fd is the integer file
descriptor that was closed.

SubprocessProtocol.process_exited()
Called when the child process has exited.

Streaming protocols

The following callbacks are called on Protocol instances:

880 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

Protocol.data_received(data)
Called when some data is received. data is a non-empty bytes object containing the incoming data.

Note: Whether the data is buffered, chunked or reassembled depends on the transport. In general,
you shouldn’t rely on specific semantics and instead make your parsing generic and flexible enough.
However, data is always received in the correct order.

Protocol.eof_received()
Called when the other end signals it won’t send any more data (for example by calling write_eof(), if
the other end also uses asyncio).

This method may return a false value (including None), in which case the transport will close itself.
Conversely, if this method returns a true value, closing the transport is up to the protocol. Since the
default implementation returns None, it implicitly closes the connection.

Note: Some transports such as SSL don’t support half-closed connections, in which case returning
true from this method will not prevent closing the connection.

data_received() can be called an arbitrary number of times during a connection. However, eof_received()
is called at most once and, if called, data_received() won’t be called after it.

State machine:

start -> connection_made() [-> data_received() *] [-> eof_received() ?] -> connection_lost()
-> end

Datagram protocols

The following callbacks are called on DatagramProtocol instances.

DatagramProtocol.datagram_received(data, addr)
Called when a datagram is received. data is a bytes object containing the incoming data. addr is the
address of the peer sending the data; the exact format depends on the transport.

DatagramProtocol.error_received(exc)
Called when a previous send or receive operation raises an OSError. exc is the OSError instance.

This method is called in rare conditions, when the transport (e.g. UDP) detects that a datagram
couldn’t be delivered to its recipient. In many conditions though, undeliverable datagrams will be
silently dropped.

Flow control callbacks

These callbacks may be called on Protocol, DatagramProtocol and SubprocessProtocol instances:

BaseProtocol.pause_writing()
Called when the transport’s buffer goes over the high-water mark.

BaseProtocol.resume_writing()
Called when the transport’s buffer drains below the low-water mark.

pause_writing() and resume_writing() calls are paired – pause_writing() is called once when the buffer
goes strictly over the high-water mark (even if subsequent writes increases the buffer size even more), and
eventually resume_writing() is called once when the buffer size reaches the low-water mark.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 881

The Python Library Reference, Release 3.5.7

Note: If the buffer size equals the high-water mark, pause_writing() is not called – it must go strictly over.
Conversely, resume_writing() is called when the buffer size is equal or lower than the low-water mark. These
end conditions are important to ensure that things go as expected when either mark is zero.

Note: On BSD systems (OS X, FreeBSD, etc.) flow control is not supported for DatagramProtocol, because
send failures caused by writing too many packets cannot be detected easily. The socket always appears ‘ready’
and excess packets are dropped; an OSError with errno set to errno.ENOBUFS may or may not be raised;
if it is raised, it will be reported to DatagramProtocol.error_received() but otherwise ignored.

Coroutines and protocols

Coroutines can be scheduled in a protocol method using ensure_future(), but there is no guarantee made
about the execution order. Protocols are not aware of coroutines created in protocol methods and so will
not wait for them.

To have a reliable execution order, use stream objects in a coroutine with yield from. For example, the
StreamWriter.drain() coroutine can be used to wait until the write buffer is flushed.

Protocol examples

TCP echo client protocol

TCP echo client using the AbstractEventLoop.create_connection() method, send data and wait until the
connection is closed:

import asyncio

class EchoClientProtocol(asyncio.Protocol):
def __init__(self, message, loop):

self.message = message
self.loop = loop

def connection_made(self, transport):
transport.write(self.message.encode())
print('Data sent: {!r}'.format(self.message))

def data_received(self, data):
print('Data received: {!r}'.format(data.decode()))

def connection_lost(self, exc):
print('The server closed the connection')
print('Stop the event loop')
self.loop.stop()

loop = asyncio.get_event_loop()
message = 'Hello World!'
coro = loop.create_connection(lambda: EchoClientProtocol(message, loop),

'127.0.0.1', 8888)
loop.run_until_complete(coro)
loop.run_forever()
loop.close()

882 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

The event loop is running twice. The run_until_complete() method is preferred in this short example to
raise an exception if the server is not listening, instead of having to write a short coroutine to handle the
exception and stop the running loop. At run_until_complete() exit, the loop is no longer running, so there
is no need to stop the loop in case of an error.

See also:

The TCP echo client using streams example uses the asyncio.open_connection() function.

TCP echo server protocol

TCP echo server using the AbstractEventLoop.create_server() method, send back received data and close
the connection:

import asyncio

class EchoServerClientProtocol(asyncio.Protocol):
def connection_made(self, transport):

peername = transport.get_extra_info('peername')
print('Connection from {}'.format(peername))
self.transport = transport

def data_received(self, data):
message = data.decode()
print('Data received: {!r}'.format(message))

print('Send: {!r}'.format(message))
self.transport.write(data)

print('Close the client socket')
self.transport.close()

loop = asyncio.get_event_loop()
Each client connection will create a new protocol instance
coro = loop.create_server(EchoServerClientProtocol, '127.0.0.1', 8888)
server = loop.run_until_complete(coro)

Serve requests until Ctrl+C is pressed
print('Serving on {}'.format(server.sockets[0].getsockname()))
try:

loop.run_forever()
except KeyboardInterrupt:

pass

Close the server
server.close()
loop.run_until_complete(server.wait_closed())
loop.close()

Transport.close() can be called immediately after WriteTransport.write() even if data are not sent yet on
the socket: both methods are asynchronous. yield from is not needed because these transport methods are
not coroutines.

See also:

The TCP echo server using streams example uses the asyncio.start_server() function.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 883

The Python Library Reference, Release 3.5.7

UDP echo client protocol

UDP echo client using the AbstractEventLoop.create_datagram_endpoint() method, send data and close
the transport when we received the answer:

import asyncio

class EchoClientProtocol:
def __init__(self, message, loop):

self.message = message
self.loop = loop
self.transport = None

def connection_made(self, transport):
self.transport = transport
print('Send:', self.message)
self.transport.sendto(self.message.encode())

def datagram_received(self, data, addr):
print("Received:", data.decode())

print("Close the socket")
self.transport.close()

def error_received(self, exc):
print('Error received:', exc)

def connection_lost(self, exc):
print("Socket closed, stop the event loop")
loop = asyncio.get_event_loop()
loop.stop()

loop = asyncio.get_event_loop()
message = "Hello World!"
connect = loop.create_datagram_endpoint(

lambda: EchoClientProtocol(message, loop),
remote_addr=('127.0.0.1', 9999))

transport, protocol = loop.run_until_complete(connect)
loop.run_forever()
transport.close()
loop.close()

UDP echo server protocol

UDP echo server using the AbstractEventLoop.create_datagram_endpoint() method, send back received
data:

import asyncio

class EchoServerProtocol:
def connection_made(self, transport):

self.transport = transport

def datagram_received(self, data, addr):
message = data.decode()

(continues on next page)

884 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

(continued from previous page)

print('Received %r from %s' % (message, addr))
print('Send %r to %s' % (message, addr))
self.transport.sendto(data, addr)

loop = asyncio.get_event_loop()
print("Starting UDP server")
One protocol instance will be created to serve all client requests
listen = loop.create_datagram_endpoint(

EchoServerProtocol, local_addr=('127.0.0.1', 9999))
transport, protocol = loop.run_until_complete(listen)

try:
loop.run_forever()

except KeyboardInterrupt:
pass

transport.close()
loop.close()

Register an open socket to wait for data using a protocol

Wait until a socket receives data using the AbstractEventLoop.create_connection() method with a protocol,
and then close the event loop

import asyncio
try:

from socket import socketpair
except ImportError:

from asyncio.windows_utils import socketpair

Create a pair of connected sockets
rsock, wsock = socketpair()
loop = asyncio.get_event_loop()

class MyProtocol(asyncio.Protocol):
transport = None

def connection_made(self, transport):
self.transport = transport

def data_received(self, data):
print("Received:", data.decode())

We are done: close the transport (it will call connection_lost())
self.transport.close()

def connection_lost(self, exc):
The socket has been closed, stop the event loop
loop.stop()

Register the socket to wait for data
connect_coro = loop.create_connection(MyProtocol, sock=rsock)
transport, protocol = loop.run_until_complete(connect_coro)

Simulate the reception of data from the network
(continues on next page)

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 885

The Python Library Reference, Release 3.5.7

(continued from previous page)

loop.call_soon(wsock.send, 'abc'.encode())

Run the event loop
loop.run_forever()

We are done, close sockets and the event loop
rsock.close()
wsock.close()
loop.close()

See also:

The watch a file descriptor for read events example uses the low-level AbstractEventLoop.add_reader()
method to register the file descriptor of a socket.

The register an open socket to wait for data using streams example uses high-level streams created by the
open_connection() function in a coroutine.

18.5.5 Streams (coroutine based API)

Stream functions

Note: The top-level functions in this module are meant as convenience wrappers only; there’s really nothing
special there, and if they don’t do exactly what you want, feel free to copy their code.

coroutine asyncio.open_connection(host=None, port=None, *, loop=None, limit=None, **kwds)
A wrapper for create_connection() returning a (reader, writer) pair.

The reader returned is a StreamReader instance; the writer is a StreamWriter instance.

The arguments are all the usual arguments to AbstractEventLoop.create_connection() except proto-
col_factory; most common are positional host and port, with various optional keyword arguments
following.

Additional optional keyword arguments are loop (to set the event loop instance to use) and limit (to
set the buffer limit passed to the StreamReader).

This function is a coroutine.

coroutine asyncio.start_server(client_connected_cb, host=None, port=None, *, loop=None,
limit=None, **kwds)

Start a socket server, with a callback for each client connected. The return value is the same as
create_server().

The client_connected_cb parameter is called with two parameters: client_reader, client_writer.
client_reader is a StreamReader object, while client_writer is a StreamWriter object. The
client_connected_cb parameter can either be a plain callback function or a coroutine function; if
it is a coroutine function, it will be automatically converted into a Task.

The rest of the arguments are all the usual arguments to create_server() except protocol_factory;
most common are positional host and port, with various optional keyword arguments following.

Additional optional keyword arguments are loop (to set the event loop instance to use) and limit (to
set the buffer limit passed to the StreamReader).

This function is a coroutine.

886 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

coroutine asyncio.open_unix_connection(path=None, *, loop=None, limit=None, **kwds)
A wrapper for create_unix_connection() returning a (reader, writer) pair.

See open_connection() for information about return value and other details.

This function is a coroutine.

Availability: UNIX.

coroutine asyncio.start_unix_server(client_connected_cb, path=None, *, loop=None, limit=None,
**kwds)

Start a UNIX Domain Socket server, with a callback for each client connected.

See start_server() for information about return value and other details.

This function is a coroutine.

Availability: UNIX.

StreamReader

class asyncio.StreamReader(limit=None, loop=None)
This class is not thread safe.

exception()
Get the exception.

feed_eof()
Acknowledge the EOF.

feed_data(data)
Feed data bytes in the internal buffer. Any operations waiting for the data will be resumed.

set_exception(exc)
Set the exception.

set_transport(transport)
Set the transport.

coroutine read(n=-1)
Read up to n bytes. If n is not provided, or set to -1, read until EOF and return all read bytes.

If the EOF was received and the internal buffer is empty, return an empty bytes object.

This method is a coroutine.

coroutine readline()
Read one line, where “line” is a sequence of bytes ending with \n.

If EOF is received, and \n was not found, the method will return the partial read bytes.

If the EOF was received and the internal buffer is empty, return an empty bytes object.

This method is a coroutine.

coroutine readexactly(n)
Read exactly n bytes. Raise an IncompleteReadError if the end of the stream is reached before n
can be read, the IncompleteReadError.partial attribute of the exception contains the partial read
bytes.

This method is a coroutine.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 887

The Python Library Reference, Release 3.5.7

coroutine readuntil(separator=b’\n’)
Read data from the stream until separator is found.

On success, the data and separator will be removed from the internal buffer (consumed). Returned
data will include the separator at the end.

Configured stream limit is used to check result. Limit sets the maximal length of data that can
be returned, not counting the separator.

If an EOF occurs and the complete separator is still not found, an IncompleteReadError exception
will be raised, and the internal buffer will be reset. The IncompleteReadError.partial attribute
may contain the separator partially.

If the data cannot be read because of over limit, a LimitOverrunError exception will be raised,
and the data will be left in the internal buffer, so it can be read again.

New in version 3.5.2.

at_eof()
Return True if the buffer is empty and feed_eof() was called.

StreamWriter

class asyncio.StreamWriter(transport, protocol, reader, loop)
Wraps a Transport.

This exposes write(), writelines(), can_write_eof(), write_eof(), get_extra_info() and close(). It
adds drain() which returns an optional Future on which you can wait for flow control. It also adds a
transport attribute which references the Transport directly.

This class is not thread safe.

transport
Transport.

can_write_eof()
Return True if the transport supports write_eof(), False if not. See WriteTransport.
can_write_eof().

close()
Close the transport: see BaseTransport.close().

coroutine drain()
Let the write buffer of the underlying transport a chance to be flushed.

The intended use is to write:

w.write(data)
yield from w.drain()

When the size of the transport buffer reaches the high-water limit (the protocol is paused), block
until the size of the buffer is drained down to the low-water limit and the protocol is resumed.
When there is nothing to wait for, the yield-from continues immediately.

Yielding from drain() gives the opportunity for the loop to schedule the write operation and flush
the buffer. It should especially be used when a possibly large amount of data is written to the
transport, and the coroutine does not yield-from between calls to write().

This method is a coroutine.

get_extra_info(name, default=None)
Return optional transport information: see BaseTransport.get_extra_info().

888 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

write(data)
Write some data bytes to the transport: see WriteTransport.write().

writelines(data)
Write a list (or any iterable) of data bytes to the transport: see WriteTransport.writelines().

write_eof()
Close the write end of the transport after flushing buffered data: see WriteTransport.write_eof().

StreamReaderProtocol

class asyncio.StreamReaderProtocol(stream_reader, client_connected_cb=None, loop=None)
Trivial helper class to adapt between Protocol and StreamReader. Subclass of Protocol.

stream_reader is a StreamReader instance, client_connected_cb is an optional function called with
(stream_reader, stream_writer) when a connection is made, loop is the event loop instance to use.

(This is a helper class instead of making StreamReader itself a Protocol subclass, because the Stream-
Reader has other potential uses, and to prevent the user of the StreamReader from accidentally calling
inappropriate methods of the protocol.)

IncompleteReadError

exception asyncio.IncompleteReadError

Incomplete read error, subclass of EOFError.

expected
Total number of expected bytes (int).

partial
Read bytes string before the end of stream was reached (bytes).

LimitOverrunError

exception asyncio.LimitOverrunError
Reached the buffer limit while looking for a separator.

consumed
Total number of to be consumed bytes.

Stream examples

TCP echo client using streams

TCP echo client using the asyncio.open_connection() function:

import asyncio

@asyncio.coroutine
def tcp_echo_client(message, loop):

reader, writer = yield from asyncio.open_connection('127.0.0.1', 8888,
loop=loop)

print('Send: %r' % message)

(continues on next page)

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 889

The Python Library Reference, Release 3.5.7

(continued from previous page)

writer.write(message.encode())

data = yield from reader.read(100)
print('Received: %r' % data.decode())

print('Close the socket')
writer.close()

message = 'Hello World!'
loop = asyncio.get_event_loop()
loop.run_until_complete(tcp_echo_client(message, loop))
loop.close()

See also:

The TCP echo client protocol example uses the AbstractEventLoop.create_connection() method.

TCP echo server using streams

TCP echo server using the asyncio.start_server() function:

import asyncio

@asyncio.coroutine
def handle_echo(reader, writer):

data = yield from reader.read(100)
message = data.decode()
addr = writer.get_extra_info('peername')
print("Received %r from %r" % (message, addr))

print("Send: %r" % message)
writer.write(data)
yield from writer.drain()

print("Close the client socket")
writer.close()

loop = asyncio.get_event_loop()
coro = asyncio.start_server(handle_echo, '127.0.0.1', 8888, loop=loop)
server = loop.run_until_complete(coro)

Serve requests until Ctrl+C is pressed
print('Serving on {}'.format(server.sockets[0].getsockname()))
try:

loop.run_forever()
except KeyboardInterrupt:

pass

Close the server
server.close()
loop.run_until_complete(server.wait_closed())
loop.close()

See also:

The TCP echo server protocol example uses the AbstractEventLoop.create_server() method.

890 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

Get HTTP headers

Simple example querying HTTP headers of the URL passed on the command line:

import asyncio
import urllib.parse
import sys

@asyncio.coroutine
def print_http_headers(url):

url = urllib.parse.urlsplit(url)
if url.scheme == 'https':

connect = asyncio.open_connection(url.hostname, 443, ssl=True)
else:

connect = asyncio.open_connection(url.hostname, 80)
reader, writer = yield from connect
query = ('HEAD {path} HTTP/1.0\r\n'

'Host: {hostname}\r\n'
'\r\n').format(path=url.path or '/', hostname=url.hostname)

writer.write(query.encode('latin-1'))
while True:

line = yield from reader.readline()
if not line:

break
line = line.decode('latin1').rstrip()
if line:

print('HTTP header> %s' % line)

Ignore the body, close the socket
writer.close()

url = sys.argv[1]
loop = asyncio.get_event_loop()
task = asyncio.ensure_future(print_http_headers(url))
loop.run_until_complete(task)
loop.close()

Usage:

python example.py http://example.com/path/page.html

or with HTTPS:

python example.py https://example.com/path/page.html

Register an open socket to wait for data using streams

Coroutine waiting until a socket receives data using the open_connection() function:

import asyncio
try:

from socket import socketpair
except ImportError:

from asyncio.windows_utils import socketpair

(continues on next page)

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 891

The Python Library Reference, Release 3.5.7

(continued from previous page)

@asyncio.coroutine
def wait_for_data(loop):

Create a pair of connected sockets
rsock, wsock = socketpair()

Register the open socket to wait for data
reader, writer = yield from asyncio.open_connection(sock=rsock, loop=loop)

Simulate the reception of data from the network
loop.call_soon(wsock.send, 'abc'.encode())

Wait for data
data = yield from reader.read(100)

Got data, we are done: close the socket
print("Received:", data.decode())
writer.close()

Close the second socket
wsock.close()

loop = asyncio.get_event_loop()
loop.run_until_complete(wait_for_data(loop))
loop.close()

See also:

The register an open socket to wait for data using a protocol example uses a low-level protocol created by
the AbstractEventLoop.create_connection() method.

The watch a file descriptor for read events example uses the low-level AbstractEventLoop.add_reader()
method to register the file descriptor of a socket.

18.5.6 Subprocess

Windows event loop

On Windows, the default event loop is SelectorEventLoop which does not support subprocesses. Proac-
torEventLoop should be used instead. Example to use it on Windows:

import asyncio, sys

if sys.platform == 'win32':
loop = asyncio.ProactorEventLoop()
asyncio.set_event_loop(loop)

See also:

Available event loops and Platform support.

Create a subprocess: high-level API using Process

coroutine asyncio.create_subprocess_exec(*args, stdin=None, stdout=None, stderr=None,
loop=None, limit=None, **kwds)

Create a subprocess.

892 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

The limit parameter sets the buffer limit passed to the StreamReader. See AbstractEventLoop.
subprocess_exec() for other parameters.

Return a Process instance.

This function is a coroutine.

coroutine asyncio.create_subprocess_shell(cmd, stdin=None, stdout=None, stderr=None,
loop=None, limit=None, **kwds)

Run the shell command cmd.

The limit parameter sets the buffer limit passed to the StreamReader. See AbstractEventLoop.
subprocess_shell() for other parameters.

Return a Process instance.

It is the application’s responsibility to ensure that all whitespace and metacharacters are quoted ap-
propriately to avoid shell injection vulnerabilities. The shlex.quote() function can be used to properly
escape whitespace and shell metacharacters in strings that are going to be used to construct shell
commands.

This function is a coroutine.

Use the AbstractEventLoop.connect_read_pipe() and AbstractEventLoop.connect_write_pipe() methods
to connect pipes.

Create a subprocess: low-level API using subprocess.Popen

Run subprocesses asynchronously using the subprocess module.

coroutine AbstractEventLoop.subprocess_exec(protocol_factory, *args, stdin=subprocess.PIPE,
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
**kwargs)

Create a subprocess from one or more string arguments (character strings or bytes strings encoded to
the filesystem encoding), where the first string specifies the program to execute, and the remaining
strings specify the program’s arguments. (Thus, together the string arguments form the sys.argv value
of the program, assuming it is a Python script.) This is similar to the standard library subprocess.Popen
class called with shell=False and the list of strings passed as the first argument; however, where Popen
takes a single argument which is list of strings, subprocess_exec() takes multiple string arguments.

The protocol_factory must instantiate a subclass of the asyncio.SubprocessProtocol class.

Other parameters:

• stdin: Either a file-like object representing the pipe to be connected to the subprocess’s standard
input stream using connect_write_pipe(), or the constant subprocess.PIPE (the default). By
default a new pipe will be created and connected.

• stdout: Either a file-like object representing the pipe to be connected to the subprocess’s standard
output stream using connect_read_pipe(), or the constant subprocess.PIPE (the default). By
default a new pipe will be created and connected.

• stderr: Either a file-like object representing the pipe to be connected to the subprocess’s standard
error stream using connect_read_pipe(), or one of the constants subprocess.PIPE (the default)
or subprocess.STDOUT. By default a new pipe will be created and connected. When subprocess.
STDOUT is specified, the subprocess’s standard error stream will be connected to the same pipe
as the standard output stream.

• All other keyword arguments are passed to subprocess.Popen without interpretation, except for
bufsize, universal_newlines and shell, which should not be specified at all.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 893

https://en.wikipedia.org/wiki/Shell_injection#Shell_injection

The Python Library Reference, Release 3.5.7

Returns a pair of (transport, protocol), where transport is an instance of BaseSubprocessTransport.

This method is a coroutine.

See the constructor of the subprocess.Popen class for parameters.

coroutine AbstractEventLoop.subprocess_shell(protocol_factory, cmd, *, stdin=subprocess.PIPE,
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
**kwargs)

Create a subprocess from cmd, which is a character string or a bytes string encoded to the filesystem
encoding, using the platform’s “shell” syntax. This is similar to the standard library subprocess.Popen
class called with shell=True.

The protocol_factory must instantiate a subclass of the asyncio.SubprocessProtocol class.

See subprocess_exec() for more details about the remaining arguments.

Returns a pair of (transport, protocol), where transport is an instance of BaseSubprocessTransport.

It is the application’s responsibility to ensure that all whitespace and metacharacters are quoted ap-
propriately to avoid shell injection vulnerabilities. The shlex.quote() function can be used to properly
escape whitespace and shell metacharacters in strings that are going to be used to construct shell
commands.

This method is a coroutine.

See also:

The AbstractEventLoop.connect_read_pipe() and AbstractEventLoop.connect_write_pipe() methods.

Constants

asyncio.subprocess.PIPE
Special value that can be used as the stdin, stdout or stderr argument to create_subprocess_shell()
and create_subprocess_exec() and indicates that a pipe to the standard stream should be opened.

asyncio.subprocess.STDOUT
Special value that can be used as the stderr argument to create_subprocess_shell() and cre-
ate_subprocess_exec() and indicates that standard error should go into the same handle as standard
output.

asyncio.subprocess.DEVNULL
Special value that can be used as the stdin, stdout or stderr argument to create_subprocess_shell()
and create_subprocess_exec() and indicates that the special file os.devnull will be used.

Process

class asyncio.subprocess.Process
A subprocess created by the create_subprocess_exec() or the create_subprocess_shell() function.

The API of the Process class was designed to be close to the API of the subprocess.Popen class, but
there are some differences:

• There is no explicit poll() method

• The communicate() and wait() methods don’t take a timeout parameter: use the wait_for()
function

• The universal_newlines parameter is not supported (only bytes strings are supported)

894 Chapter 18. Interprocess Communication and Networking

https://en.wikipedia.org/wiki/Shell_injection#Shell_injection

The Python Library Reference, Release 3.5.7

• The wait() method of the Process class is asynchronous whereas the wait() method of the Popen
class is implemented as a busy loop.

This class is not thread safe. See also the Subprocess and threads section.

coroutine wait()
Wait for child process to terminate. Set and return returncode attribute.

This method is a coroutine.

Note: This will deadlock when using stdout=PIPE or stderr=PIPE and the child process gen-
erates enough output to a pipe such that it blocks waiting for the OS pipe buffer to accept more
data. Use the communicate() method when using pipes to avoid that.

coroutine communicate(input=None)
Interact with process: Send data to stdin. Read data from stdout and stderr, until end-of-file is
reached. Wait for process to terminate. The optional input argument should be data to be sent
to the child process, or None, if no data should be sent to the child. The type of input must be
bytes.

communicate() returns a tuple (stdout_data, stderr_data).

If a BrokenPipeError or ConnectionResetError exception is raised when writing input into stdin,
the exception is ignored. It occurs when the process exits before all data are written into stdin.

Note that if you want to send data to the process’s stdin, you need to create the Process object
with stdin=PIPE. Similarly, to get anything other than None in the result tuple, you need to give
stdout=PIPE and/or stderr=PIPE too.

This method is a coroutine.

Note: The data read is buffered in memory, so do not use this method if the data size is large or
unlimited.

Changed in version 3.4.2: The method now ignores BrokenPipeError and ConnectionResetError.

send_signal(signal)
Sends the signal signal to the child process.

Note: On Windows, SIGTERM is an alias for terminate(). CTRL_C_EVENT and
CTRL_BREAK_EVENT can be sent to processes started with a creationflags parameter which
includes CREATE_NEW_PROCESS_GROUP.

terminate()
Stop the child. On Posix OSs the method sends signal.SIGTERM to the child. On Windows the
Win32 API function TerminateProcess() is called to stop the child.

kill()
Kills the child. On Posix OSs the function sends SIGKILL to the child. On Windows kill() is an
alias for terminate().

stdin
Standard input stream (StreamWriter), None if the process was created with stdin=None.

stdout
Standard output stream (StreamReader), None if the process was created with stdout=None.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 895

The Python Library Reference, Release 3.5.7

stderr
Standard error stream (StreamReader), None if the process was created with stderr=None.

Warning: Use the communicate() method rather than .stdin.write, .stdout.read or .stderr.read to
avoid deadlocks due to streams pausing reading or writing and blocking the child process.

pid
The identifier of the process.

Note that for processes created by the create_subprocess_shell() function, this attribute is the
process identifier of the spawned shell.

returncode
Return code of the process when it exited. A None value indicates that the process has not
terminated yet.

A negative value -N indicates that the child was terminated by signal N (Unix only).

Subprocess and threads

asyncio supports running subprocesses from different threads, but there are limits:

• An event loop must run in the main thread

• The child watcher must be instantiated in the main thread, before executing subprocesses from other
threads. Call the get_child_watcher() function in the main thread to instantiate the child watcher.

The asyncio.subprocess.Process class is not thread safe.

See also:

The Concurrency and multithreading in asyncio section.

Subprocess examples

Subprocess using transport and protocol

Example of a subprocess protocol using to get the output of a subprocess and to wait for the subprocess
exit. The subprocess is created by the AbstractEventLoop.subprocess_exec() method:

import asyncio
import sys

class DateProtocol(asyncio.SubprocessProtocol):
def __init__(self, exit_future):

self.exit_future = exit_future
self.output = bytearray()

def pipe_data_received(self, fd, data):
self.output.extend(data)

def process_exited(self):
self.exit_future.set_result(True)

@asyncio.coroutine

(continues on next page)

896 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

(continued from previous page)

def get_date(loop):
code = 'import datetime; print(datetime.datetime.now())'
exit_future = asyncio.Future(loop=loop)

Create the subprocess controlled by the protocol DateProtocol,
redirect the standard output into a pipe
create = loop.subprocess_exec(lambda: DateProtocol(exit_future),

sys.executable, '-c', code,
stdin=None, stderr=None)

transport, protocol = yield from create

Wait for the subprocess exit using the process_exited() method
of the protocol
yield from exit_future

Close the stdout pipe
transport.close()

Read the output which was collected by the pipe_data_received()
method of the protocol
data = bytes(protocol.output)
return data.decode('ascii').rstrip()

if sys.platform == "win32":
loop = asyncio.ProactorEventLoop()
asyncio.set_event_loop(loop)

else:
loop = asyncio.get_event_loop()

date = loop.run_until_complete(get_date(loop))
print("Current date: %s" % date)
loop.close()

Subprocess using streams

Example using the Process class to control the subprocess and the StreamReader class to read from the
standard output. The subprocess is created by the create_subprocess_exec() function:

import asyncio.subprocess
import sys

@asyncio.coroutine
def get_date():

code = 'import datetime; print(datetime.datetime.now())'

Create the subprocess, redirect the standard output into a pipe
create = asyncio.create_subprocess_exec(sys.executable, '-c', code,

stdout=asyncio.subprocess.PIPE)
proc = yield from create

Read one line of output
data = yield from proc.stdout.readline()
line = data.decode('ascii').rstrip()

Wait for the subprocess exit
(continues on next page)

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 897

The Python Library Reference, Release 3.5.7

(continued from previous page)

yield from proc.wait()
return line

if sys.platform == "win32":
loop = asyncio.ProactorEventLoop()
asyncio.set_event_loop(loop)

else:
loop = asyncio.get_event_loop()

date = loop.run_until_complete(get_date())
print("Current date: %s" % date)
loop.close()

18.5.7 Synchronization primitives

Locks:

• Lock

• Event

• Condition

Semaphores:

• Semaphore

• BoundedSemaphore

asyncio lock API was designed to be close to classes of the threading module (Lock, Event, Condition,
Semaphore, BoundedSemaphore), but it has no timeout parameter. The asyncio.wait_for() function can be
used to cancel a task after a timeout.

Locks

Lock

class asyncio.Lock(*, loop=None)
Primitive lock objects.

A primitive lock is a synchronization primitive that is not owned by a particular coroutine when locked.
A primitive lock is in one of two states, ‘locked’ or ‘unlocked’.

It is created in the unlocked state. It has two basic methods, acquire() and release(). When the state
is unlocked, acquire() changes the state to locked and returns immediately. When the state is locked,
acquire() blocks until a call to release() in another coroutine changes it to unlocked, then the acquire()
call resets it to locked and returns. The release() method should only be called in the locked state; it
changes the state to unlocked and returns immediately. If an attempt is made to release an unlocked
lock, a RuntimeError will be raised.

When more than one coroutine is blocked in acquire() waiting for the state to turn to unlocked, only
one coroutine proceeds when a release() call resets the state to unlocked; first coroutine which is blocked
in acquire() is being processed.

acquire() is a coroutine and should be called with yield from.

898 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

Locks also support the context management protocol. (yield from lock) should be used as the context
manager expression.

This class is not thread safe.

Usage:

lock = Lock()
...
yield from lock
try:

...
finally:

lock.release()

Context manager usage:

lock = Lock()
...
with (yield from lock):

...

Lock objects can be tested for locking state:

if not lock.locked():
yield from lock

else:
lock is acquired
...

locked()
Return True if the lock is acquired.

coroutine acquire()
Acquire a lock.

This method blocks until the lock is unlocked, then sets it to locked and returns True.

This method is a coroutine.

release()
Release a lock.

When the lock is locked, reset it to unlocked, and return. If any other coroutines are blocked
waiting for the lock to become unlocked, allow exactly one of them to proceed.

When invoked on an unlocked lock, a RuntimeError is raised.

There is no return value.

Event

class asyncio.Event(*, loop=None)
An Event implementation, asynchronous equivalent to threading.Event.

Class implementing event objects. An event manages a flag that can be set to true with the set()
method and reset to false with the clear() method. The wait() method blocks until the flag is true.
The flag is initially false.

This class is not thread safe.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 899

The Python Library Reference, Release 3.5.7

clear()
Reset the internal flag to false. Subsequently, coroutines calling wait() will block until set() is
called to set the internal flag to true again.

is_set()
Return True if and only if the internal flag is true.

set()
Set the internal flag to true. All coroutines waiting for it to become true are awakened. Coroutine
that call wait() once the flag is true will not block at all.

coroutine wait()
Block until the internal flag is true.

If the internal flag is true on entry, return True immediately. Otherwise, block until another
coroutine calls set() to set the flag to true, then return True.

This method is a coroutine.

Condition

class asyncio.Condition(lock=None, *, loop=None)
A Condition implementation, asynchronous equivalent to threading.Condition.

This class implements condition variable objects. A condition variable allows one or more coroutines
to wait until they are notified by another coroutine.

If the lock argument is given and not None, it must be a Lock object, and it is used as the underlying
lock. Otherwise, a new Lock object is created and used as the underlying lock.

This class is not thread safe.

coroutine acquire()
Acquire the underlying lock.

This method blocks until the lock is unlocked, then sets it to locked and returns True.

This method is a coroutine.

notify(n=1)
By default, wake up one coroutine waiting on this condition, if any. If the calling coroutine has
not acquired the lock when this method is called, a RuntimeError is raised.

This method wakes up at most n of the coroutines waiting for the condition variable; it is a no-op
if no coroutines are waiting.

Note: An awakened coroutine does not actually return from its wait() call until it can reacquire
the lock. Since notify() does not release the lock, its caller should.

locked()
Return True if the underlying lock is acquired.

notify_all()
Wake up all coroutines waiting on this condition. This method acts like notify(), but wakes up
all waiting coroutines instead of one. If the calling coroutine has not acquired the lock when this
method is called, a RuntimeError is raised.

release()
Release the underlying lock.

900 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

When the lock is locked, reset it to unlocked, and return. If any other coroutines are blocked
waiting for the lock to become unlocked, allow exactly one of them to proceed.

When invoked on an unlocked lock, a RuntimeError is raised.

There is no return value.

coroutine wait()
Wait until notified.

If the calling coroutine has not acquired the lock when this method is called, a RuntimeError is
raised.

This method releases the underlying lock, and then blocks until it is awakened by a notify()
or notify_all() call for the same condition variable in another coroutine. Once awakened, it
re-acquires the lock and returns True.

This method is a coroutine.

coroutine wait_for(predicate)
Wait until a predicate becomes true.

The predicate should be a callable which result will be interpreted as a boolean value. The final
predicate value is the return value.

This method is a coroutine.

Semaphores

Semaphore

class asyncio.Semaphore(value=1, *, loop=None)
A Semaphore implementation.

A semaphore manages an internal counter which is decremented by each acquire() call and incremented
by each release() call. The counter can never go below zero; when acquire() finds that it is zero, it
blocks, waiting until some other coroutine calls release().

Semaphores also support the context management protocol.

The optional argument gives the initial value for the internal counter; it defaults to 1. If the value
given is less than 0, ValueError is raised.

This class is not thread safe.

coroutine acquire()
Acquire a semaphore.

If the internal counter is larger than zero on entry, decrement it by one and return True immedi-
ately. If it is zero on entry, block, waiting until some other coroutine has called release() to make
it larger than 0, and then return True.

This method is a coroutine.

locked()
Returns True if semaphore can not be acquired immediately.

release()
Release a semaphore, incrementing the internal counter by one. When it was zero on entry and
another coroutine is waiting for it to become larger than zero again, wake up that coroutine.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 901

The Python Library Reference, Release 3.5.7

BoundedSemaphore

class asyncio.BoundedSemaphore(value=1, *, loop=None)
A bounded semaphore implementation. Inherit from Semaphore.

This raises ValueError in release() if it would increase the value above the initial value.

18.5.8 Queues

Queues:

• Queue

• PriorityQueue

• LifoQueue

asyncio queue API was designed to be close to classes of the queue module (Queue, PriorityQueue, Lifo-
Queue), but it has no timeout parameter. The asyncio.wait_for() function can be used to cancel a task after
a timeout.

Queue

class asyncio.Queue(maxsize=0, *, loop=None)
A queue, useful for coordinating producer and consumer coroutines.

If maxsize is less than or equal to zero, the queue size is infinite. If it is an integer greater than 0, then
yield from put() will block when the queue reaches maxsize, until an item is removed by get().

Unlike the standard library queue, you can reliably know this Queue’s size with qsize(), since your
single-threaded asyncio application won’t be interrupted between calling qsize() and doing an operation
on the Queue.

This class is not thread safe.

Changed in version 3.4.4: New join() and task_done() methods.

empty()
Return True if the queue is empty, False otherwise.

full()
Return True if there are maxsize items in the queue.

Note: If the Queue was initialized with maxsize=0 (the default), then full() is never True.

coroutine get()
Remove and return an item from the queue. If queue is empty, wait until an item is available.

This method is a coroutine.

See also:

The empty() method.

get_nowait()
Remove and return an item from the queue.

Return an item if one is immediately available, else raise QueueEmpty.

902 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

coroutine join()
Block until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes
down whenever a consumer thread calls task_done() to indicate that the item was retrieved and
all work on it is complete. When the count of unfinished tasks drops to zero, join() unblocks.

This method is a coroutine.

New in version 3.4.4.

coroutine put(item)
Put an item into the queue. If the queue is full, wait until a free slot is available before adding
item.

This method is a coroutine.

See also:

The full() method.

put_nowait(item)
Put an item into the queue without blocking.

If no free slot is immediately available, raise QueueFull.

qsize()
Number of items in the queue.

task_done()
Indicate that a formerly enqueued task is complete.

Used by queue consumers. For each get() used to fetch a task, a subsequent call to task_done()
tells the queue that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that
a task_done() call was received for every item that had been put() into the queue).

Raises ValueError if called more times than there were items placed in the queue.

New in version 3.4.4.

maxsize
Number of items allowed in the queue.

PriorityQueue

class asyncio.PriorityQueue
A subclass of Queue; retrieves entries in priority order (lowest first).

Entries are typically tuples of the form: (priority number, data).

LifoQueue

class asyncio.LifoQueue
A subclass of Queue that retrieves most recently added entries first.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 903

The Python Library Reference, Release 3.5.7

Exceptions

exception asyncio.QueueEmpty
Exception raised when the get_nowait() method is called on a Queue object which is empty.

exception asyncio.QueueFull
Exception raised when the put_nowait() method is called on a Queue object which is full.

18.5.9 Develop with asyncio

Asynchronous programming is different than classical “sequential” programming. This page lists common
traps and explains how to avoid them.

Debug mode of asyncio

The implementation of asyncio has been written for performance. In order to ease the development of
asynchronous code, you may wish to enable debug mode.

To enable all debug checks for an application:

• Enable the asyncio debug mode globally by setting the environment variable PYTHONASYNCIODE-
BUG to 1, or by calling AbstractEventLoop.set_debug().

• Set the log level of the asyncio logger to logging.DEBUG. For example, call logging.
basicConfig(level=logging.DEBUG) at startup.

• Configure the warnings module to display ResourceWarning warnings. For example, use the -Wdefault
command line option of Python to display them.

Examples debug checks:

• Log coroutines defined but never “yielded from”

• call_soon() and call_at() methods raise an exception if they are called from the wrong thread.

• Log the execution time of the selector

• Log callbacks taking more than 100 ms to be executed. The AbstractEventLoop.
slow_callback_duration attribute is the minimum duration in seconds of “slow” callbacks.

• ResourceWarning warnings are emitted when transports and event loops are not closed explicitly.

See also:

The AbstractEventLoop.set_debug() method and the asyncio logger.

Cancellation

Cancellation of tasks is not common in classic programming. In asynchronous programming, not only it is
something common, but you have to prepare your code to handle it.

Futures and tasks can be cancelled explicitly with their Future.cancel() method. The wait_for() function
cancels the waited task when the timeout occurs. There are many other cases where a task can be cancelled
indirectly.

Don’t call set_result() or set_exception() method of Future if the future is cancelled: it would fail with an
exception. For example, write:

904 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

if not fut.cancelled():
fut.set_result('done')

Don’t schedule directly a call to the set_result() or the set_exception() method of a future with
AbstractEventLoop.call_soon(): the future can be cancelled before its method is called.

If you wait for a future, you should check early if the future was cancelled to avoid useless operations.
Example:

@coroutine
def slow_operation(fut):

if fut.cancelled():
return

... slow computation ...
yield from fut
...

The shield() function can also be used to ignore cancellation.

Concurrency and multithreading

An event loop runs in a thread and executes all callbacks and tasks in the same thread. While a task is
running in the event loop, no other task is running in the same thread. But when the task uses yield from,
the task is suspended and the event loop executes the next task.

To schedule a callback from a different thread, the AbstractEventLoop.call_soon_threadsafe() method
should be used. Example:

loop.call_soon_threadsafe(callback, *args)

Most asyncio objects are not thread safe. You should only worry if you access objects outside the event loop.
For example, to cancel a future, don’t call directly its Future.cancel() method, but:

loop.call_soon_threadsafe(fut.cancel)

To handle signals and to execute subprocesses, the event loop must be run in the main thread.

To schedule a coroutine object from a different thread, the run_coroutine_threadsafe() function should be
used. It returns a concurrent.futures.Future to access the result:

future = asyncio.run_coroutine_threadsafe(coro_func(), loop)
result = future.result(timeout) # Wait for the result with a timeout

The AbstractEventLoop.run_in_executor() method can be used with a thread pool executor to execute a
callback in different thread to not block the thread of the event loop.

See also:

The Synchronization primitives section describes ways to synchronize tasks.

The Subprocess and threads section lists asyncio limitations to run subprocesses from different threads.

Handle blocking functions correctly

Blocking functions should not be called directly. For example, if a function blocks for 1 second, other tasks
are delayed by 1 second which can have an important impact on reactivity.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 905

The Python Library Reference, Release 3.5.7

For networking and subprocesses, the asyncio module provides high-level APIs like protocols.

An executor can be used to run a task in a different thread or even in a different process, to not block the
thread of the event loop. See the AbstractEventLoop.run_in_executor() method.

See also:

The Delayed calls section details how the event loop handles time.

Logging

The asyncio module logs information with the logging module in the logger 'asyncio'.

The default log level for the asyncio module is logging.INFO. For those not wanting such verbosity from
asyncio the log level can be changed. For example, to change the level to logging.WARNING:

logging.getLogger('asyncio').setLevel(logging.WARNING)

Detect coroutine objects never scheduled

When a coroutine function is called and its result is not passed to ensure_future() or to the
AbstractEventLoop.create_task() method, the execution of the coroutine object will never be scheduled
which is probably a bug. Enable the debug mode of asyncio to log a warning to detect it.

Example with the bug:

import asyncio

@asyncio.coroutine
def test():

print("never scheduled")

test()

Output in debug mode:

Coroutine test() at test.py:3 was never yielded from
Coroutine object created at (most recent call last):
File "test.py", line 7, in <module>
test()

The fix is to call the ensure_future() function or the AbstractEventLoop.create_task() method with the
coroutine object.

See also:

Pending task destroyed.

Detect exceptions never consumed

Python usually calls sys.displayhook() on unhandled exceptions. If Future.set_exception() is called, but the
exception is never consumed, sys.displayhook() is not called. Instead, a log is emitted when the future is
deleted by the garbage collector, with the traceback where the exception was raised.

Example of unhandled exception:

906 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

import asyncio

@asyncio.coroutine
def bug():

raise Exception("not consumed")

loop = asyncio.get_event_loop()
asyncio.ensure_future(bug())
loop.run_forever()
loop.close()

Output:

Task exception was never retrieved
future: <Task finished coro=<coro() done, defined at asyncio/coroutines.py:139> exception=Exception('not␣
→˓consumed',)>
Traceback (most recent call last):
File "asyncio/tasks.py", line 237, in _step
result = next(coro)

File "asyncio/coroutines.py", line 141, in coro
res = func(*args, **kw)

File "test.py", line 5, in bug
raise Exception("not consumed")

Exception: not consumed

Enable the debug mode of asyncio to get the traceback where the task was created. Output in debug mode:

Task exception was never retrieved
future: <Task finished coro=<bug() done, defined at test.py:3> exception=Exception('not consumed',) created␣
→˓at test.py:8>
source_traceback: Object created at (most recent call last):
File "test.py", line 8, in <module>
asyncio.ensure_future(bug())

Traceback (most recent call last):
File "asyncio/tasks.py", line 237, in _step
result = next(coro)

File "asyncio/coroutines.py", line 79, in __next__
return next(self.gen)

File "asyncio/coroutines.py", line 141, in coro
res = func(*args, **kw)

File "test.py", line 5, in bug
raise Exception("not consumed")

Exception: not consumed

There are different options to fix this issue. The first option is to chain the coroutine in another coroutine
and use classic try/except:

@asyncio.coroutine
def handle_exception():

try:
yield from bug()

except Exception:
print("exception consumed")

loop = asyncio.get_event_loop()
asyncio.ensure_future(handle_exception())
loop.run_forever()
loop.close()

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 907

The Python Library Reference, Release 3.5.7

Another option is to use the AbstractEventLoop.run_until_complete() function:

task = asyncio.ensure_future(bug())
try:

loop.run_until_complete(task)
except Exception:

print("exception consumed")

See also:

The Future.exception() method.

Chain coroutines correctly

When a coroutine function calls other coroutine functions and tasks, they should be chained explicitly with
yield from. Otherwise, the execution is not guaranteed to be sequential.

Example with different bugs using asyncio.sleep() to simulate slow operations:

import asyncio

@asyncio.coroutine
def create():

yield from asyncio.sleep(3.0)
print("(1) create file")

@asyncio.coroutine
def write():

yield from asyncio.sleep(1.0)
print("(2) write into file")

@asyncio.coroutine
def close():

print("(3) close file")

@asyncio.coroutine
def test():

asyncio.ensure_future(create())
asyncio.ensure_future(write())
asyncio.ensure_future(close())
yield from asyncio.sleep(2.0)
loop.stop()

loop = asyncio.get_event_loop()
asyncio.ensure_future(test())
loop.run_forever()
print("Pending tasks at exit: %s" % asyncio.Task.all_tasks(loop))
loop.close()

Expected output:

(1) create file
(2) write into file
(3) close file
Pending tasks at exit: set()

Actual output:

908 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

(3) close file
(2) write into file
Pending tasks at exit: {<Task pending create() at test.py:7 wait_for=<Future pending cb=[Task._wakeup()]>>}
Task was destroyed but it is pending!
task: <Task pending create() done at test.py:5 wait_for=<Future pending cb=[Task._wakeup()]>>

The loop stopped before the create() finished, close() has been called before write(), whereas coroutine
functions were called in this order: create(), write(), close().

To fix the example, tasks must be marked with yield from:

@asyncio.coroutine
def test():

yield from asyncio.ensure_future(create())
yield from asyncio.ensure_future(write())
yield from asyncio.ensure_future(close())
yield from asyncio.sleep(2.0)
loop.stop()

Or without asyncio.ensure_future():

@asyncio.coroutine
def test():

yield from create()
yield from write()
yield from close()
yield from asyncio.sleep(2.0)
loop.stop()

Pending task destroyed

If a pending task is destroyed, the execution of its wrapped coroutine did not complete. It is probably a bug
and so a warning is logged.

Example of log:

Task was destroyed but it is pending!
task: <Task pending coro=<kill_me() done, defined at test.py:5> wait_for=<Future pending cb=[Task._
→˓wakeup()]>>

Enable the debug mode of asyncio to get the traceback where the task was created. Example of log in debug
mode:

Task was destroyed but it is pending!
source_traceback: Object created at (most recent call last):
File "test.py", line 15, in <module>
task = asyncio.ensure_future(coro, loop=loop)

task: <Task pending coro=<kill_me() done, defined at test.py:5> wait_for=<Future pending cb=[Task._
→˓wakeup()] created at test.py:7> created at test.py:15>

See also:

Detect coroutine objects never scheduled.

18.5. asyncio — Asynchronous I/O, event loop, coroutines and tasks 909

The Python Library Reference, Release 3.5.7

Close transports and event loops

When a transport is no more needed, call its close() method to release resources. Event loops must also be
closed explicitly.

If a transport or an event loop is not closed explicitly, a ResourceWarning warning will be emitted in its
destructor. By default, ResourceWarning warnings are ignored. The Debug mode of asyncio section explains
how to display them.

See also:

The asyncio module was designed in PEP 3156. For a motivational primer on transports and protocols, see
PEP 3153.

18.6 asyncore — Asynchronous socket handler

Source code: Lib/asyncore.py

Note: This module exists for backwards compatibility only. For new code we recommend using asyncio.

This module provides the basic infrastructure for writing asynchronous socket service clients and servers.

There are only two ways to have a program on a single processor do “more than one thing at a time.” Multi-
threaded programming is the simplest and most popular way to do it, but there is another very different
technique, that lets you have nearly all the advantages of multi-threading, without actually using multiple
threads. It’s really only practical if your program is largely I/O bound. If your program is processor bound,
then pre-emptive scheduled threads are probably what you really need. Network servers are rarely processor
bound, however.

If your operating system supports the select() system call in its I/O library (and nearly all do), then you
can use it to juggle multiple communication channels at once; doing other work while your I/O is taking
place in the “background.” Although this strategy can seem strange and complex, especially at first, it is in
many ways easier to understand and control than multi-threaded programming. The asyncore module solves
many of the difficult problems for you, making the task of building sophisticated high-performance network
servers and clients a snap. For “conversational” applications and protocols the companion asynchat module
is invaluable.

The basic idea behind both modules is to create one or more network channels, instances of class asyncore.
dispatcher and asynchat.async_chat. Creating the channels adds them to a global map, used by the loop()
function if you do not provide it with your own map.

Once the initial channel(s) is(are) created, calling the loop() function activates channel service, which con-
tinues until the last channel (including any that have been added to the map during asynchronous service)
is closed.

asyncore.loop([timeout[, use_poll[, map[, count]]]])
Enter a polling loop that terminates after count passes or all open channels have been closed. All
arguments are optional. The count parameter defaults to None, resulting in the loop terminating
only when all channels have been closed. The timeout argument sets the timeout parameter for the
appropriate select() or poll() call, measured in seconds; the default is 30 seconds. The use_poll
parameter, if true, indicates that poll() should be used in preference to select() (the default is False).

The map parameter is a dictionary whose items are the channels to watch. As channels are closed
they are deleted from their map. If map is omitted, a global map is used. Channels (instances of
asyncore.dispatcher, asynchat.async_chat and subclasses thereof) can freely be mixed in the map.

910 Chapter 18. Interprocess Communication and Networking

https://www.python.org/dev/peps/pep-3156
https://www.python.org/dev/peps/pep-3153
https://github.com/python/cpython/tree/3.5/Lib/asyncore.py

The Python Library Reference, Release 3.5.7

class asyncore.dispatcher
The dispatcher class is a thin wrapper around a low-level socket object. To make it more useful, it has
a few methods for event-handling which are called from the asynchronous loop. Otherwise, it can be
treated as a normal non-blocking socket object.

The firing of low-level events at certain times or in certain connection states tells the asynchronous loop
that certain higher-level events have taken place. For example, if we have asked for a socket to connect
to another host, we know that the connection has been made when the socket becomes writable for
the first time (at this point you know that you may write to it with the expectation of success). The
implied higher-level events are:

Event Description
handle_connect() Implied by the first read or write event
handle_close() Implied by a read event with no data available
handle_accepted() Implied by a read event on a listening socket

During asynchronous processing, each mapped channel’s readable() and writable() methods are used
to determine whether the channel’s socket should be added to the list of channels select()ed or poll()ed
for read and write events.

Thus, the set of channel events is larger than the basic socket events. The full set of methods that can
be overridden in your subclass follows:

handle_read()
Called when the asynchronous loop detects that a read() call on the channel’s socket will succeed.

handle_write()
Called when the asynchronous loop detects that a writable socket can be written. Often this
method will implement the necessary buffering for performance. For example:

def handle_write(self):
sent = self.send(self.buffer)
self.buffer = self.buffer[sent:]

handle_expt()
Called when there is out of band (OOB) data for a socket connection. This will almost never
happen, as OOB is tenuously supported and rarely used.

handle_connect()
Called when the active opener’s socket actually makes a connection. Might send a “welcome”
banner, or initiate a protocol negotiation with the remote endpoint, for example.

handle_close()
Called when the socket is closed.

handle_error()
Called when an exception is raised and not otherwise handled. The default version prints a
condensed traceback.

handle_accept()
Called on listening channels (passive openers) when a connection can be established with a new
remote endpoint that has issued a connect() call for the local endpoint. Deprecated in version
3.2; use handle_accepted() instead.

Deprecated since version 3.2.

handle_accepted(sock, addr)
Called on listening channels (passive openers) when a connection has been established with a new
remote endpoint that has issued a connect() call for the local endpoint. sock is a new socket

18.6. asyncore — Asynchronous socket handler 911

The Python Library Reference, Release 3.5.7

object usable to send and receive data on the connection, and addr is the address bound to the
socket on the other end of the connection.

New in version 3.2.

readable()
Called each time around the asynchronous loop to determine whether a channel’s socket should
be added to the list on which read events can occur. The default method simply returns True,
indicating that by default, all channels will be interested in read events.

writable()
Called each time around the asynchronous loop to determine whether a channel’s socket should
be added to the list on which write events can occur. The default method simply returns True,
indicating that by default, all channels will be interested in write events.

In addition, each channel delegates or extends many of the socket methods. Most of these are nearly
identical to their socket partners.

create_socket(family=socket.AF_INET, type=socket.SOCK_STREAM)
This is identical to the creation of a normal socket, and will use the same options for creation.
Refer to the socket documentation for information on creating sockets.

Changed in version 3.3: family and type arguments can be omitted.

connect(address)
As with the normal socket object, address is a tuple with the first element the host to connect to,
and the second the port number.

send(data)
Send data to the remote end-point of the socket.

recv(buffer_size)
Read at most buffer_size bytes from the socket’s remote end-point. An empty bytes object implies
that the channel has been closed from the other end.

Note that recv() may raise BlockingIOError , even though select.select() or select.poll() has re-
ported the socket ready for reading.

listen(backlog)
Listen for connections made to the socket. The backlog argument specifies the maximum number
of queued connections and should be at least 1; the maximum value is system-dependent (usually
5).

bind(address)
Bind the socket to address. The socket must not already be bound. (The format of address
depends on the address family — refer to the socket documentation for more information.) To
mark the socket as re-usable (setting the SO_REUSEADDR option), call the dispatcher object’s
set_reuse_addr() method.

accept()
Accept a connection. The socket must be bound to an address and listening for connections. The
return value can be either None or a pair (conn, address) where conn is a new socket object usable
to send and receive data on the connection, and address is the address bound to the socket on the
other end of the connection. When None is returned it means the connection didn’t take place,
in which case the server should just ignore this event and keep listening for further incoming
connections.

close()
Close the socket. All future operations on the socket object will fail. The remote end-point will
receive no more data (after queued data is flushed). Sockets are automatically closed when they
are garbage-collected.

912 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

class asyncore.dispatcher_with_send
A dispatcher subclass which adds simple buffered output capability, useful for simple clients. For more
sophisticated usage use asynchat.async_chat.

class asyncore.file_dispatcher
A file_dispatcher takes a file descriptor or file object along with an optional map argument and wraps
it for use with the poll() or loop() functions. If provided a file object or anything with a fileno()
method, that method will be called and passed to the file_wrapper constructor. Availability: UNIX.

class asyncore.file_wrapper
A file_wrapper takes an integer file descriptor and calls os.dup() to duplicate the handle so that the
original handle may be closed independently of the file_wrapper. This class implements sufficient
methods to emulate a socket for use by the file_dispatcher class. Availability: UNIX.

18.6.1 asyncore Example basic HTTP client

Here is a very basic HTTP client that uses the dispatcher class to implement its socket handling:

import asyncore

class HTTPClient(asyncore.dispatcher):

def __init__(self, host, path):
asyncore.dispatcher.__init__(self)
self.create_socket()
self.connect((host, 80))
self.buffer = bytes('GET %s HTTP/1.0\r\nHost: %s\r\n\r\n' %

(path, host), 'ascii')

def handle_connect(self):
pass

def handle_close(self):
self.close()

def handle_read(self):
print(self.recv(8192))

def writable(self):
return (len(self.buffer) > 0)

def handle_write(self):
sent = self.send(self.buffer)
self.buffer = self.buffer[sent:]

client = HTTPClient('www.python.org', '/')
asyncore.loop()

18.6.2 asyncore Example basic echo server

Here is a basic echo server that uses the dispatcher class to accept connections and dispatches the incoming
connections to a handler:

18.6. asyncore — Asynchronous socket handler 913

The Python Library Reference, Release 3.5.7

import asyncore

class EchoHandler(asyncore.dispatcher_with_send):

def handle_read(self):
data = self.recv(8192)
if data:

self.send(data)

class EchoServer(asyncore.dispatcher):

def __init__(self, host, port):
asyncore.dispatcher.__init__(self)
self.create_socket()
self.set_reuse_addr()
self.bind((host, port))
self.listen(5)

def handle_accepted(self, sock, addr):
print('Incoming connection from %s' % repr(addr))
handler = EchoHandler(sock)

server = EchoServer('localhost', 8080)
asyncore.loop()

18.7 asynchat — Asynchronous socket command/response handler

Source code: Lib/asynchat.py

Note: This module exists for backwards compatibility only. For new code we recommend using asyncio.

This module builds on the asyncore infrastructure, simplifying asynchronous clients and servers and making
it easier to handle protocols whose elements are terminated by arbitrary strings, or are of variable length.
asynchat defines the abstract class async_chat that you subclass, providing implementations of the col-
lect_incoming_data() and found_terminator() methods. It uses the same asynchronous loop as asyncore,
and the two types of channel, asyncore.dispatcher and asynchat.async_chat, can freely be mixed in the
channel map. Typically an asyncore.dispatcher server channel generates new asynchat.async_chat channel
objects as it receives incoming connection requests.

class asynchat.async_chat
This class is an abstract subclass of asyncore.dispatcher. To make practical use of the code you must
subclass async_chat, providing meaningful collect_incoming_data() and found_terminator() meth-
ods. The asyncore.dispatcher methods can be used, although not all make sense in a message/response
context.

Like asyncore.dispatcher, async_chat defines a set of events that are generated by an analysis of socket
conditions after a select() call. Once the polling loop has been started the async_chat object’s methods
are called by the event-processing framework with no action on the part of the programmer.

Two class attributes can be modified, to improve performance, or possibly even to conserve memory.

ac_in_buffer_size
The asynchronous input buffer size (default 4096).

914 Chapter 18. Interprocess Communication and Networking

https://github.com/python/cpython/tree/3.5/Lib/asynchat.py

The Python Library Reference, Release 3.5.7

ac_out_buffer_size
The asynchronous output buffer size (default 4096).

Unlike asyncore.dispatcher, async_chat allows you to define a first-in-first-out queue (fifo) of produc-
ers. A producer need have only one method, more(), which should return data to be transmitted
on the channel. The producer indicates exhaustion (i.e. that it contains no more data) by having
its more() method return the empty bytes object. At this point the async_chat object removes the
producer from the fifo and starts using the next producer, if any. When the producer fifo is empty
the handle_write() method does nothing. You use the channel object’s set_terminator() method to
describe how to recognize the end of, or an important breakpoint in, an incoming transmission from
the remote endpoint.

To build a functioning async_chat subclass your input methods collect_incoming_data() and
found_terminator() must handle the data that the channel receives asynchronously. The methods
are described below.

async_chat.close_when_done()
Pushes a None on to the producer fifo. When this producer is popped off the fifo it causes the channel
to be closed.

async_chat.collect_incoming_data(data)
Called with data holding an arbitrary amount of received data. The default method, which must be
overridden, raises a NotImplementedError exception.

async_chat.discard_buffers()
In emergencies this method will discard any data held in the input and/or output buffers and the
producer fifo.

async_chat.found_terminator()
Called when the incoming data stream matches the termination condition set by set_terminator().
The default method, which must be overridden, raises a NotImplementedError exception. The buffered
input data should be available via an instance attribute.

async_chat.get_terminator()
Returns the current terminator for the channel.

async_chat.push(data)
Pushes data on to the channel’s fifo to ensure its transmission. This is all you need to do to have the
channel write the data out to the network, although it is possible to use your own producers in more
complex schemes to implement encryption and chunking, for example.

async_chat.push_with_producer(producer)
Takes a producer object and adds it to the producer fifo associated with the channel. When all
currently-pushed producers have been exhausted the channel will consume this producer’s data by
calling its more() method and send the data to the remote endpoint.

async_chat.set_terminator(term)
Sets the terminating condition to be recognized on the channel. term may be any of three types of
value, corresponding to three different ways to handle incoming protocol data.

term Description
string Will call found_terminator() when the string is found in the input stream
integer Will call found_terminator() when the indicated number of characters have been received
None The channel continues to collect data forever

Note that any data following the terminator will be available for reading by the channel after
found_terminator() is called.

18.7. asynchat — Asynchronous socket command/response handler 915

The Python Library Reference, Release 3.5.7

18.7.1 asynchat Example

The following partial example shows how HTTP requests can be read with async_chat. A web server might
create an http_request_handler object for each incoming client connection. Notice that initially the channel
terminator is set to match the blank line at the end of the HTTP headers, and a flag indicates that the
headers are being read.

Once the headers have been read, if the request is of type POST (indicating that further data are present
in the input stream) then the Content-Length: header is used to set a numeric terminator to read the right
amount of data from the channel.

The handle_request() method is called once all relevant input has been marshalled, after setting the channel
terminator to None to ensure that any extraneous data sent by the web client are ignored.

import asynchat

class http_request_handler(asynchat.async_chat):

def __init__(self, sock, addr, sessions, log):
asynchat.async_chat.__init__(self, sock=sock)
self.addr = addr
self.sessions = sessions
self.ibuffer = []
self.obuffer = b""
self.set_terminator(b"\r\n\r\n")
self.reading_headers = True
self.handling = False
self.cgi_data = None
self.log = log

def collect_incoming_data(self, data):
"""Buffer the data"""
self.ibuffer.append(data)

def found_terminator(self):
if self.reading_headers:

self.reading_headers = False
self.parse_headers(b"".join(self.ibuffer))
self.ibuffer = []
if self.op.upper() == b"POST":

clen = self.headers.getheader("content-length")
self.set_terminator(int(clen))

else:
self.handling = True
self.set_terminator(None)
self.handle_request()

elif not self.handling:
self.set_terminator(None) # browsers sometimes over-send
self.cgi_data = parse(self.headers, b"".join(self.ibuffer))
self.handling = True
self.ibuffer = []
self.handle_request()

18.8 signal — Set handlers for asynchronous events

916 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

This module provides mechanisms to use signal handlers in Python.

18.8.1 General rules

The signal.signal() function allows defining custom handlers to be executed when a signal is received. A
small number of default handlers are installed: SIGPIPE is ignored (so write errors on pipes and sockets can
be reported as ordinary Python exceptions) and SIGINT is translated into a KeyboardInterrupt exception.

A handler for a particular signal, once set, remains installed until it is explicitly reset (Python emulates
the BSD style interface regardless of the underlying implementation), with the exception of the handler for
SIGCHLD, which follows the underlying implementation.

Execution of Python signal handlers

A Python signal handler does not get executed inside the low-level (C) signal handler. Instead, the low-level
signal handler sets a flag which tells the virtual machine to execute the corresponding Python signal handler
at a later point(for example at the next bytecode instruction). This has consequences:

• It makes little sense to catch synchronous errors like SIGFPE or SIGSEGV that are caused by an
invalid operation in C code. Python will return from the signal handler to the C code, which is likely
to raise the same signal again, causing Python to apparently hang. From Python 3.3 onwards, you can
use the faulthandler module to report on synchronous errors.

• A long-running calculation implemented purely in C (such as regular expression matching on a large
body of text) may run uninterrupted for an arbitrary amount of time, regardless of any signals received.
The Python signal handlers will be called when the calculation finishes.

Signals and threads

Python signal handlers are always executed in the main Python thread, even if the signal was received in
another thread. This means that signals can’t be used as a means of inter-thread communication. You can
use the synchronization primitives from the threading module instead.

Besides, only the main thread is allowed to set a new signal handler.

18.8.2 Module contents

Changed in version 3.5: signal (SIG*), handler (SIG_DFL, SIG_IGN) and sigmask (SIG_BLOCK,
SIG_UNBLOCK, SIG_SETMASK) related constants listed below were turned into enums. getsignal(),
pthread_sigmask(), sigpending() and sigwait() functions return human-readable enums.

The variables defined in the signal module are:

signal.SIG_DFL
This is one of two standard signal handling options; it will simply perform the default function for the
signal. For example, on most systems the default action for SIGQUIT is to dump core and exit, while
the default action for SIGCHLD is to simply ignore it.

signal.SIG_IGN
This is another standard signal handler, which will simply ignore the given signal.

SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defined as signal.
SIGHUP; the variable names are identical to the names used in C programs, as found in <signal.h>.
The Unix man page for ‘signal()’ lists the existing signals (on some systems this is signal(2), on others

18.8. signal — Set handlers for asynchronous events 917

The Python Library Reference, Release 3.5.7

the list is in signal(7)). Note that not all systems define the same set of signal names; only those names
defined by the system are defined by this module.

signal.CTRL_C_EVENT
The signal corresponding to the Ctrl+C keystroke event. This signal can only be used with os.kill().

Availability: Windows.

New in version 3.2.

signal.CTRL_BREAK_EVENT
The signal corresponding to the Ctrl+Break keystroke event. This signal can only be used with os.kill().

Availability: Windows.

New in version 3.2.

signal.NSIG
One more than the number of the highest signal number.

signal.ITIMER_REAL
Decrements interval timer in real time, and delivers SIGALRM upon expiration.

signal.ITIMER_VIRTUAL
Decrements interval timer only when the process is executing, and delivers SIGVTALRM upon expi-
ration.

signal.ITIMER_PROF
Decrements interval timer both when the process executes and when the system is executing on behalf
of the process. Coupled with ITIMER_VIRTUAL, this timer is usually used to profile the time spent
by the application in user and kernel space. SIGPROF is delivered upon expiration.

signal.SIG_BLOCK
A possible value for the how parameter to pthread_sigmask() indicating that signals are to be blocked.

New in version 3.3.

signal.SIG_UNBLOCK
A possible value for the how parameter to pthread_sigmask() indicating that signals are to be un-
blocked.

New in version 3.3.

signal.SIG_SETMASK
A possible value for the how parameter to pthread_sigmask() indicating that the signal mask is to be
replaced.

New in version 3.3.

The signal module defines one exception:

exception signal.ItimerError
Raised to signal an error from the underlying setitimer() or getitimer() implementation. Expect this
error if an invalid interval timer or a negative time is passed to setitimer(). This error is a subtype of
OSError.

New in version 3.3: This error used to be a subtype of IOError, which is now an alias of OSError.

The signal module defines the following functions:

signal.alarm(time)
If time is non-zero, this function requests that a SIGALRM signal be sent to the process in time
seconds. Any previously scheduled alarm is canceled (only one alarm can be scheduled at any time).
The returned value is then the number of seconds before any previously set alarm was to have been

918 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

delivered. If time is zero, no alarm is scheduled, and any scheduled alarm is canceled. If the return
value is zero, no alarm is currently scheduled. (See the Unix man page alarm(2).) Availability: Unix.

signal.getsignal(signalnum)
Return the current signal handler for the signal signalnum. The returned value may be a callable
Python object, or one of the special values signal.SIG_IGN, signal.SIG_DFL or None. Here, signal.
SIG_IGN means that the signal was previously ignored, signal.SIG_DFL means that the default way
of handling the signal was previously in use, and None means that the previous signal handler was not
installed from Python.

signal.pause()
Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns
nothing. Not on Windows. (See the Unix man page signal(2).)

See also sigwait(), sigwaitinfo(), sigtimedwait() and sigpending().

signal.pthread_kill(thread_id, signalnum)
Send the signal signalnum to the thread thread_id, another thread in the same process as the caller.
The target thread can be executing any code (Python or not). However, if the target thread is executing
the Python interpreter, the Python signal handlers will be executed by the main thread. Therefore,
the only point of sending a signal to a particular Python thread would be to force a running system
call to fail with InterruptedError.

Use threading.get_ident() or the ident attribute of threading.Thread objects to get a suitable value
for thread_id.

If signalnum is 0, then no signal is sent, but error checking is still performed; this can be used to check
if the target thread is still running.

Availability: Unix (see the man page pthread_kill(3) for further information).

See also os.kill().

New in version 3.3.

signal.pthread_sigmask(how, mask)
Fetch and/or change the signal mask of the calling thread. The signal mask is the set of signals whose
delivery is currently blocked for the caller. Return the old signal mask as a set of signals.

The behavior of the call is dependent on the value of how, as follows.

• SIG_BLOCK: The set of blocked signals is the union of the current set and the mask argument.

• SIG_UNBLOCK: The signals in mask are removed from the current set of blocked signals. It is
permissible to attempt to unblock a signal which is not blocked.

• SIG_SETMASK: The set of blocked signals is set to the mask argument.

mask is a set of signal numbers (e.g. {signal.SIGINT, signal.SIGTERM}). Use range(1, signal.NSIG)
for a full mask including all signals.

For example, signal.pthread_sigmask(signal.SIG_BLOCK, []) reads the signal mask of the calling
thread.

Availability: Unix. See the man page sigprocmask(3) and pthread_sigmask(3) for further information.

See also pause(), sigpending() and sigwait().

New in version 3.3.

signal.setitimer(which, seconds[, interval])
Sets given interval timer (one of signal.ITIMER_REAL, signal.ITIMER_VIRTUAL or signal.
ITIMER_PROF) specified by which to fire after seconds (float is accepted, different from alarm())

18.8. signal — Set handlers for asynchronous events 919

The Python Library Reference, Release 3.5.7

and after that every interval seconds. The interval timer specified by which can be cleared by setting
seconds to zero.

When an interval timer fires, a signal is sent to the process. The signal sent is dependent on the
timer being used; signal.ITIMER_REAL will deliver SIGALRM, signal.ITIMER_VIRTUAL sends
SIGVTALRM, and signal.ITIMER_PROF will deliver SIGPROF.

The old values are returned as a tuple: (delay, interval).

Attempting to pass an invalid interval timer will cause an ItimerError. Availability: Unix.

signal.getitimer(which)
Returns current value of a given interval timer specified by which. Availability: Unix.

signal.set_wakeup_fd(fd)
Set the wakeup file descriptor to fd. When a signal is received, the signal number is written as a single
byte into the fd. This can be used by a library to wakeup a poll or select call, allowing the signal to
be fully processed.

The old wakeup fd is returned (or -1 if file descriptor wakeup was not enabled). If fd is -1, file descriptor
wakeup is disabled. If not -1, fd must be non-blocking. It is up to the library to remove any bytes
from fd before calling poll or select again.

Use for example struct.unpack('%uB' % len(data), data) to decode the signal numbers list.

When threads are enabled, this function can only be called from the main thread; attempting to call
it from other threads will cause a ValueError exception to be raised.

Changed in version 3.5: On Windows, the function now also supports socket handles.

signal.siginterrupt(signalnum, flag)
Change system call restart behaviour: if flag is False, system calls will be restarted when interrupted
by signal signalnum, otherwise system calls will be interrupted. Returns nothing. Availability: Unix
(see the man page siginterrupt(3) for further information).

Note that installing a signal handler with signal() will reset the restart behaviour to interruptible by
implicitly calling siginterrupt() with a true flag value for the given signal.

signal.signal(signalnum, handler)
Set the handler for signal signalnum to the function handler. handler can be a callable Python object
taking two arguments (see below), or one of the special values signal.SIG_IGN or signal.SIG_DFL.
The previous signal handler will be returned (see the description of getsignal() above). (See the Unix
man page signal(2).)

When threads are enabled, this function can only be called from the main thread; attempting to call
it from other threads will cause a ValueError exception to be raised.

The handler is called with two arguments: the signal number and the current stack frame (None or a
frame object; for a description of frame objects, see the description in the type hierarchy or see the
attribute descriptions in the inspect module).

On Windows, signal() can only be called with SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV,
SIGTERM, or SIGBREAK. A ValueError will be raised in any other case. Note that not all systems
define the same set of signal names; an AttributeError will be raised if a signal name is not defined as
SIG* module level constant.

signal.sigpending()
Examine the set of signals that are pending for delivery to the calling thread (i.e., the signals which
have been raised while blocked). Return the set of the pending signals.

Availability: Unix (see the man page sigpending(2) for further information).

See also pause(), pthread_sigmask() and sigwait().

920 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

New in version 3.3.

signal.sigwait(sigset)
Suspend execution of the calling thread until the delivery of one of the signals specified in the signal
set sigset. The function accepts the signal (removes it from the pending list of signals), and returns
the signal number.

Availability: Unix (see the man page sigwait(3) for further information).

See also pause(), pthread_sigmask(), sigpending(), sigwaitinfo() and sigtimedwait().

New in version 3.3.

signal.sigwaitinfo(sigset)
Suspend execution of the calling thread until the delivery of one of the signals specified in the signal
set sigset. The function accepts the signal and removes it from the pending list of signals. If one of the
signals in sigset is already pending for the calling thread, the function will return immediately with
information about that signal. The signal handler is not called for the delivered signal. The function
raises an InterruptedError if it is interrupted by a signal that is not in sigset.

The return value is an object representing the data contained in the siginfo_t structure, namely:
si_signo, si_code, si_errno, si_pid, si_uid, si_status, si_band.

Availability: Unix (see the man page sigwaitinfo(2) for further information).

See also pause(), sigwait() and sigtimedwait().

New in version 3.3.

Changed in version 3.5: The function is now retried if interrupted by a signal not in sigset and the
signal handler does not raise an exception (see PEP 475 for the rationale).

signal.sigtimedwait(sigset, timeout)
Like sigwaitinfo(), but takes an additional timeout argument specifying a timeout. If timeout is
specified as 0, a poll is performed. Returns None if a timeout occurs.

Availability: Unix (see the man page sigtimedwait(2) for further information).

See also pause(), sigwait() and sigwaitinfo().

New in version 3.3.

Changed in version 3.5: The function is now retried with the recomputed timeout if interrupted by a
signal not in sigset and the signal handler does not raise an exception (see PEP 475 for the rationale).

18.8.3 Example

Here is a minimal example program. It uses the alarm() function to limit the time spent waiting to open
a file; this is useful if the file is for a serial device that may not be turned on, which would normally cause
the os.open() to hang indefinitely. The solution is to set a 5-second alarm before opening the file; if the
operation takes too long, the alarm signal will be sent, and the handler raises an exception.

import signal, os

def handler(signum, frame):
print('Signal handler called with signal', signum)
raise OSError("Couldn't open device!")

Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)

(continues on next page)

18.8. signal — Set handlers for asynchronous events 921

https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.7

(continued from previous page)

This open() may hang indefinitely
fd = os.open('/dev/ttyS0', os.O_RDWR)

signal.alarm(0) # Disable the alarm

18.9 mmap — Memory-mapped file support

Memory-mapped file objects behave like both bytearray and like file objects. You can use mmap objects
in most places where bytearray are expected; for example, you can use the re module to search through a
memory-mapped file. You can also change a single byte by doing obj[index] = 97, or change a subsequence
by assigning to a slice: obj[i1:i2] = b'...'. You can also read and write data starting at the current file
position, and seek() through the file to different positions.

A memory-mapped file is created by the mmap constructor, which is different on Unix and on Windows. In
either case you must provide a file descriptor for a file opened for update. If you wish to map an existing
Python file object, use its fileno() method to obtain the correct value for the fileno parameter. Otherwise,
you can open the file using the os.open() function, which returns a file descriptor directly (the file still needs
to be closed when done).

Note: If you want to create a memory-mapping for a writable, buffered file, you should flush() the file first.
This is necessary to ensure that local modifications to the buffers are actually available to the mapping.

For both the Unix and Windows versions of the constructor, access may be specified as an optional keyword
parameter. access accepts one of three values: ACCESS_READ, ACCESS_WRITE, or ACCESS_COPY to
specify read-only, write-through or copy-on-write memory respectively. access can be used on both Unix and
Windows. If access is not specified, Windows mmap returns a write-through mapping. The initial memory
values for all three access types are taken from the specified file. Assignment to an ACCESS_READ memory
map raises a TypeError exception. Assignment to an ACCESS_WRITE memory map affects both memory
and the underlying file. Assignment to an ACCESS_COPY memory map affects memory but does not
update the underlying file.

To map anonymous memory, -1 should be passed as the fileno along with the length.

class mmap.mmap(fileno, length, tagname=None, access=ACCESS_DEFAULT[, offset])
(Windows version) Maps length bytes from the file specified by the file handle fileno, and creates a
mmap object. If length is larger than the current size of the file, the file is extended to contain length
bytes. If length is 0, the maximum length of the map is the current size of the file, except that if the
file is empty Windows raises an exception (you cannot create an empty mapping on Windows).

tagname, if specified and not None, is a string giving a tag name for the mapping. Windows allows
you to have many different mappings against the same file. If you specify the name of an existing tag,
that tag is opened, otherwise a new tag of this name is created. If this parameter is omitted or None,
the mapping is created without a name. Avoiding the use of the tag parameter will assist in keeping
your code portable between Unix and Windows.

offset may be specified as a non-negative integer offset. mmap references will be relative to the offset
from the beginning of the file. offset defaults to 0. offset must be a multiple of the ALLOCATION-
GRANULARITY.

922 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

class mmap.mmap(fileno, length, flags=MAP_SHARED, prot=PROT_WRITE|PROT_READ, ac-

cess=ACCESS_DEFAULT[, offset])
(Unix version) Maps length bytes from the file specified by the file descriptor fileno, and returns a
mmap object. If length is 0, the maximum length of the map will be the current size of the file when
mmap is called.

flags specifies the nature of the mapping. MAP_PRIVATE creates a private copy-on-write mapping,
so changes to the contents of the mmap object will be private to this process, and MAP_SHARED
creates a mapping that’s shared with all other processes mapping the same areas of the file. The default
value is MAP_SHARED.

prot, if specified, gives the desired memory protection; the two most useful values are PROT_READ
and PROT_WRITE, to specify that the pages may be read or written. prot defaults to PROT_READ
| PROT_WRITE.

access may be specified in lieu of flags and prot as an optional keyword parameter. It is an error to
specify both flags, prot and access. See the description of access above for information on how to use
this parameter.

offset may be specified as a non-negative integer offset. mmap references will be relative to the offset
from the beginning of the file. offset defaults to 0. offset must be a multiple of the PAGESIZE or
ALLOCATIONGRANULARITY.

To ensure validity of the created memory mapping the file specified by the descriptor fileno is internally
automatically synchronized with physical backing store on Mac OS X and OpenVMS.

This example shows a simple way of using mmap:

import mmap

write a simple example file
with open("hello.txt", "wb") as f:

f.write(b"Hello Python!\n")

with open("hello.txt", "r+b") as f:
memory-map the file, size 0 means whole file
mm = mmap.mmap(f.fileno(), 0)
read content via standard file methods
print(mm.readline()) # prints b"Hello Python!\n"
read content via slice notation
print(mm[:5]) # prints b"Hello"
update content using slice notation;
note that new content must have same size
mm[6:] = b" world!\n"
... and read again using standard file methods
mm.seek(0)
print(mm.readline()) # prints b"Hello world!\n"
close the map
mm.close()

mmap can also be used as a context manager in a with statement.:

import mmap

with mmap.mmap(-1, 13) as mm:
mm.write(b"Hello world!")

New in version 3.2: Context manager support.

18.9. mmap — Memory-mapped file support 923

The Python Library Reference, Release 3.5.7

The next example demonstrates how to create an anonymous map and exchange data between the
parent and child processes:

import mmap
import os

mm = mmap.mmap(-1, 13)
mm.write(b"Hello world!")

pid = os.fork()

if pid == 0: # In a child process
mm.seek(0)
print(mm.readline())

mm.close()

Memory-mapped file objects support the following methods:

close()
Closes the mmap. Subsequent calls to other methods of the object will result in a ValueError
exception being raised. This will not close the open file.

closed
True if the file is closed.

New in version 3.2.

find(sub[, start[, end]])
Returns the lowest index in the object where the subsequence sub is found, such that sub is
contained in the range [start, end]. Optional arguments start and end are interpreted as in slice
notation. Returns -1 on failure.

Changed in version 3.5: Writable bytes-like object is now accepted.

flush([offset[, size]])
Flushes changes made to the in-memory copy of a file back to disk. Without use of this call there
is no guarantee that changes are written back before the object is destroyed. If offset and size are
specified, only changes to the given range of bytes will be flushed to disk; otherwise, the whole
extent of the mapping is flushed.

(Windows version) A nonzero value returned indicates success; zero indicates failure.

(Unix version) A zero value is returned to indicate success. An exception is raised when the call
failed.

move(dest, src, count)
Copy the count bytes starting at offset src to the destination index dest. If the mmap was created
with ACCESS_READ, then calls to move will raise a TypeError exception.

read([n])
Return a bytes containing up to n bytes starting from the current file position. If the argument
is omitted, None or negative, return all bytes from the current file position to the end of the
mapping. The file position is updated to point after the bytes that were returned.

Changed in version 3.3: Argument can be omitted or None.

read_byte()
Returns a byte at the current file position as an integer, and advances the file position by 1.

924 Chapter 18. Interprocess Communication and Networking

The Python Library Reference, Release 3.5.7

readline()
Returns a single line, starting at the current file position and up to the next newline.

resize(newsize)
Resizes the map and the underlying file, if any. If the mmap was created with ACCESS_READ
or ACCESS_COPY, resizing the map will raise a TypeError exception.

rfind(sub[, start[, end]])
Returns the highest index in the object where the subsequence sub is found, such that sub is
contained in the range [start, end]. Optional arguments start and end are interpreted as in slice
notation. Returns -1 on failure.

Changed in version 3.5: Writable bytes-like object is now accepted.

seek(pos[, whence])
Set the file’s current position. whence argument is optional and defaults to os.SEEK_SET or
0 (absolute file positioning); other values are os.SEEK_CUR or 1 (seek relative to the current
position) and os.SEEK_END or 2 (seek relative to the file’s end).

size()
Return the length of the file, which can be larger than the size of the memory-mapped area.

tell()
Returns the current position of the file pointer.

write(bytes)
Write the bytes in bytes into memory at the current position of the file pointer; the file po-
sition is updated to point after the bytes that were written. If the mmap was created with
ACCESS_READ, then writing to it will raise a TypeError exception.

Changed in version 3.5: Writable bytes-like object is now accepted.

write_byte(byte)
Write the integer byte into memory at the current position of the file pointer; the file position is
advanced by 1. If the mmap was created with ACCESS_READ, then writing to it will raise a
TypeError exception.

18.9. mmap — Memory-mapped file support 925

The Python Library Reference, Release 3.5.7

926 Chapter 18. Interprocess Communication and Networking

CHAPTER

NINETEEN

INTERNET DATA HANDLING

This chapter describes modules which support handling data formats commonly used on the Internet.

19.1 email — An email and MIME handling package

Source code: Lib/email/__init__.py

The email package is a library for managing email messages, including MIME and other RFC 2822-based
message documents. It is specifically not designed to do any sending of email messages to SMTP (RFC 2821),
NNTP, or other servers; those are functions of modules such as smtplib and nntplib. The email package
attempts to be as RFC-compliant as possible, supporting in addition to RFC 2822, such MIME-related RFCs
as RFC 2045, RFC 2046, RFC 2047, and RFC 2231.

The primary distinguishing feature of the email package is that it splits the parsing and generating of email
messages from the internal object model representation of email. Applications using the email package deal
primarily with objects; you can add sub-objects to messages, remove sub-objects from messages, completely
re-arrange the contents, etc. There is a separate parser and a separate generator which handles the transfor-
mation from flat text to the object model, and then back to flat text again. There are also handy subclasses
for some common MIME object types, and a few miscellaneous utilities that help with such common tasks
as extracting and parsing message field values, creating RFC-compliant dates, etc.

The following sections describe the functionality of the email package. The ordering follows a progression
that should be common in applications: an email message is read as flat text from a file or other source,
the text is parsed to produce the object structure of the email message, this structure is manipulated, and
finally, the object tree is rendered back into flat text.

It is perfectly feasible to create the object structure out of whole cloth — i.e. completely from scratch. From
there, a similar progression can be taken as above.

Also included are detailed specifications of all the classes and modules that the email package provides, the
exception classes you might encounter while using the email package, some auxiliary utilities, and a few
examples. For users of the older mimelib package, or previous versions of the email package, a section on
differences and porting is provided.

Contents of the email package documentation:

19.1.1 email.message: Representing an email message

Source code: Lib/email/message.py

927

https://github.com/python/cpython/tree/3.5/Lib/email/__init__.py
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2821.html
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2045.html
https://tools.ietf.org/html/rfc2046.html
https://tools.ietf.org/html/rfc2047.html
https://tools.ietf.org/html/rfc2231.html
https://github.com/python/cpython/tree/3.5/Lib/email/message.py

The Python Library Reference, Release 3.5.7

The central class in the email package is the Message class, imported from the email.message module. It is
the base class for the email object model. Message provides the core functionality for setting and querying
header fields, and for accessing message bodies.

Conceptually, a Message object consists of headers and payloads. Headers are RFC 2822 style field names
and values where the field name and value are separated by a colon. The colon is not part of either the field
name or the field value.

Headers are stored and returned in case-preserving form but are matched case-insensitively. There may also
be a single envelope header, also known as the Unix-From header or the From_ header. The payload is either
a string in the case of simple message objects or a list of Message objects for MIME container documents
(e.g. multipart/* and message/rfc822).

Message objects provide a mapping style interface for accessing the message headers, and an explicit interface
for accessing both the headers and the payload. It provides convenience methods for generating a flat text
representation of the message object tree, for accessing commonly used header parameters, and for recursively
walking over the object tree.

Here are the methods of the Message class:

class email.message.Message(policy=compat32)
If policy is specified (it must be an instance of a policy class) use the rules it specifies to update and
serialize the representation of the message. If policy is not set, use the compat32 policy, which maintains
backward compatibility with the Python 3.2 version of the email package. For more information see
the policy documentation.

Changed in version 3.3: The policy keyword argument was added.

as_string(unixfrom=False, maxheaderlen=0, policy=None)
Return the entire message flattened as a string. When optional unixfrom is true, the envelope
header is included in the returned string. unixfrom defaults to False. For backward compatibility
reasons, maxheaderlen defaults to 0, so if you want a different value you must override it explicitly
(the value specified for max_line_length in the policy will be ignored by this method). The policy
argument may be used to override the default policy obtained from the message instance. This
can be used to control some of the formatting produced by the method, since the specified policy
will be passed to the Generator.

Flattening the message may trigger changes to the Message if defaults need to be filled in to
complete the transformation to a string (for example, MIME boundaries may be generated or
modified).

Note that this method is provided as a convenience and may not always format the message the
way you want. For example, by default it does not do the mangling of lines that begin with From
that is required by the unix mbox format. For more flexibility, instantiate a Generator instance
and use its flatten() method directly. For example:

from io import StringIO
from email.generator import Generator
fp = StringIO()
g = Generator(fp, mangle_from_=True, maxheaderlen=60)
g.flatten(msg)
text = fp.getvalue()

If the message object contains binary data that is not encoded according to RFC standards,
the non-compliant data will be replaced by unicode “unknown character” code points. (See also
as_bytes() and BytesGenerator.)

Changed in version 3.4: the policy keyword argument was added.

928 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.5.7

__str__()
Equivalent to as_string(). Allows str(msg) to produce a string containing the formatted message.

as_bytes(unixfrom=False, policy=None)
Return the entire message flattened as a bytes object. When optional unixfrom is true, the enve-
lope header is included in the returned string. unixfrom defaults to False. The policy argument
may be used to override the default policy obtained from the message instance. This can be
used to control some of the formatting produced by the method, since the specified policy will be
passed to the BytesGenerator.

Flattening the message may trigger changes to the Message if defaults need to be filled in to
complete the transformation to a string (for example, MIME boundaries may be generated or
modified).

Note that this method is provided as a convenience and may not always format the message the
way you want. For example, by default it does not do the mangling of lines that begin with From
that is required by the unix mbox format. For more flexibility, instantiate a BytesGenerator
instance and use its flatten() method directly. For example:

from io import BytesIO
from email.generator import BytesGenerator
fp = BytesIO()
g = BytesGenerator(fp, mangle_from_=True, maxheaderlen=60)
g.flatten(msg)
text = fp.getvalue()

New in version 3.4.

__bytes__()
Equivalent to as_bytes(). Allows bytes(msg) to produce a bytes object containing the formatted
message.

New in version 3.4.

is_multipart()
Return True if the message’s payload is a list of sub-Message objects, otherwise return False. When
is_multipart() returns False, the payload should be a string object. (Note that is_multipart()
returning True does not necessarily mean that “msg.get_content_maintype() == ‘multipart’ ”
will return the True. For example, is_multipart will return True when the Message is of type
message/rfc822.)

set_unixfrom(unixfrom)
Set the message’s envelope header to unixfrom, which should be a string.

get_unixfrom()
Return the message’s envelope header. Defaults to None if the envelope header was never set.

attach(payload)
Add the given payload to the current payload, which must be None or a list of Message objects
before the call. After the call, the payload will always be a list of Message objects. If you want
to set the payload to a scalar object (e.g. a string), use set_payload() instead.

get_payload(i=None, decode=False)
Return the current payload, which will be a list of Message objects when is_multipart() is True,
or a string when is_multipart() is False. If the payload is a list and you mutate the list object,
you modify the message’s payload in place.

With optional argument i, get_payload() will return the i-th element of the payload, counting
from zero, if is_multipart() is True. An IndexError will be raised if i is less than 0 or greater than

19.1. email — An email and MIME handling package 929

The Python Library Reference, Release 3.5.7

or equal to the number of items in the payload. If the payload is a string (i.e. is_multipart() is
False) and i is given, a TypeError is raised.

Optional decode is a flag indicating whether the payload should be decoded or not, according to the
Content-Transfer-Encoding header. When True and the message is not a multipart, the payload
will be decoded if this header’s value is quoted-printable or base64. If some other encoding is used,
or Content-Transfer-Encoding header is missing, the payload is returned as-is (undecoded). In all
cases the returned value is binary data. If the message is a multipart and the decode flag is True,
then None is returned. If the payload is base64 and it was not perfectly formed (missing padding,
characters outside the base64 alphabet), then an appropriate defect will be added to the message’s
defect property (InvalidBase64PaddingDefect or InvalidBase64CharactersDefect, respectively).

When decode is False (the default) the body is returned as a string without decoding the Content-
Transfer-Encoding. However, for a Content-Transfer-Encoding of 8bit, an attempt is made to
decode the original bytes using the charset specified by the Content-Type header, using the
replace error handler. If no charset is specified, or if the charset given is not recognized by the
email package, the body is decoded using the default ASCII charset.

set_payload(payload, charset=None)
Set the entire message object’s payload to payload. It is the client’s responsibility to ensure the
payload invariants. Optional charset sets the message’s default character set; see set_charset()
for details.

set_charset(charset)
Set the character set of the payload to charset, which can either be a Charset instance (see email.
charset), a string naming a character set, or None. If it is a string, it will be converted to a Charset
instance. If charset is None, the charset parameter will be removed from the Content-Type header
(the message will not be otherwise modified). Anything else will generate a TypeError.

If there is no existing MIME-Version header one will be added. If there is no existing Content-Type
header, one will be added with a value of text/plain. Whether the Content-Type header already
exists or not, its charset parameter will be set to charset.output_charset. If charset.input_charset
and charset.output_charset differ, the payload will be re-encoded to the output_charset. If there
is no existing Content-Transfer-Encoding header, then the payload will be transfer-encoded, if
needed, using the specified Charset, and a header with the appropriate value will be added. If a
Content-Transfer-Encoding header already exists, the payload is assumed to already be correctly
encoded using that Content-Transfer-Encoding and is not modified.

get_charset()
Return the Charset instance associated with the message’s payload.

The following methods implement a mapping-like interface for accessing the message’s RFC 2822
headers. Note that there are some semantic differences between these methods and a normal mapping
(i.e. dictionary) interface. For example, in a dictionary there are no duplicate keys, but here there
may be duplicate message headers. Also, in dictionaries there is no guaranteed order to the keys
returned by keys(), but in a Message object, headers are always returned in the order they appeared
in the original message, or were added to the message later. Any header deleted and then re-added are
always appended to the end of the header list.

These semantic differences are intentional and are biased toward maximal convenience.

Note that in all cases, any envelope header present in the message is not included in the mapping
interface.

In a model generated from bytes, any header values that (in contravention of the RFCs) contain non-
ASCII bytes will, when retrieved through this interface, be represented as Header objects with a charset
of unknown-8bit.

930 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.5.7

__len__()
Return the total number of headers, including duplicates.

__contains__(name)
Return true if the message object has a field named name. Matching is done case-insensitively
and name should not include the trailing colon. Used for the in operator, e.g.:

if 'message-id' in myMessage:
print('Message-ID:', myMessage['message-id'])

__getitem__(name)
Return the value of the named header field. name should not include the colon field separator. If
the header is missing, None is returned; a KeyError is never raised.

Note that if the named field appears more than once in the message’s headers, exactly which of
those field values will be returned is undefined. Use the get_all() method to get the values of all
the extant named headers.

__setitem__(name, val)
Add a header to the message with field name name and value val. The field is appended to the
end of the message’s existing fields.

Note that this does not overwrite or delete any existing header with the same name. If you want
to ensure that the new header is the only one present in the message with field name name, delete
the field first, e.g.:

del msg['subject']
msg['subject'] = 'Python roolz!'

__delitem__(name)
Delete all occurrences of the field with name name from the message’s headers. No exception is
raised if the named field isn’t present in the headers.

keys()
Return a list of all the message’s header field names.

values()
Return a list of all the message’s field values.

items()
Return a list of 2-tuples containing all the message’s field headers and values.

get(name, failobj=None)
Return the value of the named header field. This is identical to __getitem__() except that
optional failobj is returned if the named header is missing (defaults to None).

Here are some additional useful methods:

get_all(name, failobj=None)
Return a list of all the values for the field named name. If there are no such named headers in
the message, failobj is returned (defaults to None).

add_header(_name, _value, **_params)
Extended header setting. This method is similar to __setitem__() except that additional header
parameters can be provided as keyword arguments. _name is the header field to add and _value
is the primary value for the header.

For each item in the keyword argument dictionary _params, the key is taken as the parameter
name, with underscores converted to dashes (since dashes are illegal in Python identifiers). Nor-
mally, the parameter will be added as key="value" unless the value is None, in which case only
the key will be added. If the value contains non-ASCII characters, it can be specified as a three

19.1. email — An email and MIME handling package 931

The Python Library Reference, Release 3.5.7

tuple in the format (CHARSET, LANGUAGE, VALUE), where CHARSET is a string naming
the charset to be used to encode the value, LANGUAGE can usually be set to None or the empty
string (see RFC 2231 for other possibilities), and VALUE is the string value containing non-
ASCII code points. If a three tuple is not passed and the value contains non-ASCII characters, it
is automatically encoded in RFC 2231 format using a CHARSET of utf-8 and a LANGUAGE of
None.

Here’s an example:

msg.add_header('Content-Disposition', 'attachment', filename='bud.gif')

This will add a header that looks like

Content-Disposition: attachment; filename="bud.gif"

An example with non-ASCII characters:

msg.add_header('Content-Disposition', 'attachment',
filename=('iso-8859-1', '', 'Fußballer.ppt'))

Which produces

Content-Disposition: attachment; filename*="iso-8859-1''Fu%DFballer.ppt"

replace_header(_name, _value)
Replace a header. Replace the first header found in the message that matches _name, retaining
header order and field name case. If no matching header was found, a KeyError is raised.

get_content_type()
Return the message’s content type. The returned string is coerced to lower case of the form
maintype/subtype. If there was no Content-Type header in the message the default type as given
by get_default_type() will be returned. Since according to RFC 2045, messages always have a
default type, get_content_type() will always return a value.

RFC 2045 defines a message’s default type to be text/plain unless it appears inside a multipart/
digest container, in which case it would be message/rfc822. If the Content-Type header has an
invalid type specification, RFC 2045 mandates that the default type be text/plain.

get_content_maintype()
Return the message’s main content type. This is the maintype part of the string returned by
get_content_type().

get_content_subtype()
Return the message’s sub-content type. This is the subtype part of the string returned by
get_content_type().

get_default_type()
Return the default content type. Most messages have a default content type of text/plain, except
for messages that are subparts of multipart/digest containers. Such subparts have a default
content type of message/rfc822.

set_default_type(ctype)
Set the default content type. ctype should either be text/plain or message/rfc822, although this
is not enforced. The default content type is not stored in the Content-Type header.

get_params(failobj=None, header=’content-type’, unquote=True)
Return the message’s Content-Type parameters, as a list. The elements of the returned list are
2-tuples of key/value pairs, as split on the '=' sign. The left hand side of the '=' is the key,
while the right hand side is the value. If there is no '=' sign in the parameter the value is

932 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc2231.html
https://tools.ietf.org/html/rfc2231.html
https://tools.ietf.org/html/rfc2045.html
https://tools.ietf.org/html/rfc2045.html
https://tools.ietf.org/html/rfc2045.html

The Python Library Reference, Release 3.5.7

the empty string, otherwise the value is as described in get_param() and is unquoted if optional
unquote is True (the default).

Optional failobj is the object to return if there is no Content-Type header. Optional header is
the header to search instead of Content-Type.

get_param(param, failobj=None, header=’content-type’, unquote=True)
Return the value of the Content-Type header’s parameter param as a string. If the message has
no Content-Type header or if there is no such parameter, then failobj is returned (defaults to
None).

Optional header if given, specifies the message header to use instead of Content-Type.

Parameter keys are always compared case insensitively. The return value can either be a string,
or a 3-tuple if the parameter was RFC 2231 encoded. When it’s a 3-tuple, the elements of
the value are of the form (CHARSET, LANGUAGE, VALUE). Note that both CHARSET and
LANGUAGE can be None, in which case you should consider VALUE to be encoded in the us-ascii
charset. You can usually ignore LANGUAGE.

If your application doesn’t care whether the parameter was encoded as in RFC 2231, you can
collapse the parameter value by calling email.utils.collapse_rfc2231_value(), passing in the return
value from get_param(). This will return a suitably decoded Unicode string when the value is a
tuple, or the original string unquoted if it isn’t. For example:

rawparam = msg.get_param('foo')
param = email.utils.collapse_rfc2231_value(rawparam)

In any case, the parameter value (either the returned string, or the VALUE item in the 3-tuple)
is always unquoted, unless unquote is set to False.

set_param(param, value, header=’Content-Type’, requote=True, charset=None, language=”, re-
place=False)

Set a parameter in the Content-Type header. If the parameter already exists in the header, its
value will be replaced with value. If the Content-Type header as not yet been defined for this
message, it will be set to text/plain and the new parameter value will be appended as per RFC
2045.

Optional header specifies an alternative header to Content-Type, and all parameters will be quoted
as necessary unless optional requote is False (the default is True).

If optional charset is specified, the parameter will be encoded according to RFC 2231. Optional
language specifies the RFC 2231 language, defaulting to the empty string. Both charset and
language should be strings.

If replace is False (the default) the header is moved to the end of the list of headers. If replace is
True, the header will be updated in place.

Changed in version 3.4: replace keyword was added.

del_param(param, header=’content-type’, requote=True)
Remove the given parameter completely from the Content-Type header. The header will be re-
written in place without the parameter or its value. All values will be quoted as necessary unless
requote is False (the default is True). Optional header specifies an alternative to Content-Type.

set_type(type, header=’Content-Type’, requote=True)
Set the main type and subtype for the Content-Type header. type must be a string in the form
maintype/subtype, otherwise a ValueError is raised.

This method replaces the Content-Type header, keeping all the parameters in place. If requote
is False, this leaves the existing header’s quoting as is, otherwise the parameters will be quoted
(the default).

19.1. email — An email and MIME handling package 933

https://tools.ietf.org/html/rfc2231.html
https://tools.ietf.org/html/rfc2231.html
https://tools.ietf.org/html/rfc2045.html
https://tools.ietf.org/html/rfc2045.html
https://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 3.5.7

An alternative header can be specified in the header argument. When the Content-Type header
is set a MIME-Version header is also added.

get_filename(failobj=None)
Return the value of the filename parameter of the Content-Disposition header of the message. If
the header does not have a filename parameter, this method falls back to looking for the name
parameter on the Content-Type header. If neither is found, or the header is missing, then failobj
is returned. The returned string will always be unquoted as per email.utils.unquote().

get_boundary(failobj=None)
Return the value of the boundary parameter of the Content-Type header of the message, or failobj
if either the header is missing, or has no boundary parameter. The returned string will always be
unquoted as per email.utils.unquote().

set_boundary(boundary)
Set the boundary parameter of the Content-Type header to boundary. set_boundary() will
always quote boundary if necessary. A HeaderParseError is raised if the message object has no
Content-Type header.

Note that using this method is subtly different than deleting the old Content-Type header and
adding a new one with the new boundary via add_header(), because set_boundary() preserves
the order of the Content-Type header in the list of headers. However, it does not preserve any
continuation lines which may have been present in the original Content-Type header.

get_content_charset(failobj=None)
Return the charset parameter of the Content-Type header, coerced to lower case. If there is no
Content-Type header, or if that header has no charset parameter, failobj is returned.

Note that this method differs from get_charset() which returns the Charset instance for the
default encoding of the message body.

get_charsets(failobj=None)
Return a list containing the character set names in the message. If the message is a multipart,
then the list will contain one element for each subpart in the payload, otherwise, it will be a list
of length 1.

Each item in the list will be a string which is the value of the charset parameter in the Content-
Type header for the represented subpart. However, if the subpart has no Content-Type header,
no charset parameter, or is not of the text main MIME type, then that item in the returned list
will be failobj.

get_content_disposition()
Return the lowercased value (without parameters) of the message’s Content-Disposition header
if it has one, or None. The possible values for this method are inline, attachment or None if the
message follows RFC 2183.

New in version 3.5.

walk()
The walk() method is an all-purpose generator which can be used to iterate over all the parts and
subparts of a message object tree, in depth-first traversal order. You will typically use walk() as
the iterator in a for loop; each iteration returns the next subpart.

Here’s an example that prints the MIME type of every part of a multipart message structure:

>>> for part in msg.walk():
... print(part.get_content_type())
multipart/report
text/plain
message/delivery-status

(continues on next page)

934 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc2183.html

The Python Library Reference, Release 3.5.7

(continued from previous page)

text/plain
text/plain
message/rfc822
text/plain

walk iterates over the subparts of any part where is_multipart() returns True, even though msg.
get_content_maintype() == 'multipart' may return False. We can see this in our example by
making use of the _structure debug helper function:

>>> for part in msg.walk():
... print(part.get_content_maintype() == 'multipart',
... part.is_multipart())
True True
False False
False True
False False
False False
False True
False False
>>> _structure(msg)
multipart/report

text/plain
message/delivery-status

text/plain
text/plain

message/rfc822
text/plain

Here the message parts are not multiparts, but they do contain subparts. is_multipart() returns
True and walk descends into the subparts.

Message objects can also optionally contain two instance attributes, which can be used when generating
the plain text of a MIME message.

preamble
The format of a MIME document allows for some text between the blank line following the headers,
and the first multipart boundary string. Normally, this text is never visible in a MIME-aware
mail reader because it falls outside the standard MIME armor. However, when viewing the raw
text of the message, or when viewing the message in a non-MIME aware reader, this text can
become visible.

The preamble attribute contains this leading extra-armor text for MIME documents. When the
Parser discovers some text after the headers but before the first boundary string, it assigns this
text to the message’s preamble attribute. When the Generator is writing out the plain text
representation of a MIME message, and it finds the message has a preamble attribute, it will
write this text in the area between the headers and the first boundary. See email.parser and
email.generator for details.

Note that if the message object has no preamble, the preamble attribute will be None.

epilogue
The epilogue attribute acts the same way as the preamble attribute, except that it contains text
that appears between the last boundary and the end of the message.

You do not need to set the epilogue to the empty string in order for the Generator to print a
newline at the end of the file.

defects

19.1. email — An email and MIME handling package 935

The Python Library Reference, Release 3.5.7

The defects attribute contains a list of all the problems found when parsing this message. See
email.errors for a detailed description of the possible parsing defects.

19.1.2 email.parser: Parsing email messages

Source code: Lib/email/parser.py

Message object structures can be created in one of two ways: they can be created from whole cloth by
instantiating Message objects and stringing them together via attach() and set_payload() calls, or they can
be created by parsing a flat text representation of the email message.

The email package provides a standard parser that understands most email document structures, including
MIME documents. You can pass the parser a string or a file object, and the parser will return to you the
root Message instance of the object structure. For simple, non-MIME messages the payload of this root
object will likely be a string containing the text of the message. For MIME messages, the root object will
return True from its is_multipart() method, and the subparts can be accessed via the get_payload() and
walk() methods.

There are actually two parser interfaces available for use, the classic Parser API and the incremental Feed-
Parser API. The classic Parser API is fine if you have the entire text of the message in memory as a string,
or if the entire message lives in a file on the file system. FeedParser is more appropriate for when you’re
reading the message from a stream which might block waiting for more input (e.g. reading an email message
from a socket). The FeedParser can consume and parse the message incrementally, and only returns the root
object when you close the parser1.

Note that the parser can be extended in limited ways, and of course you can implement your own parser
completely from scratch. There is no magical connection between the email package’s bundled parser and
the Message class, so your custom parser can create message object trees any way it finds necessary.

FeedParser API

The FeedParser, imported from the email.feedparser module, provides an API that is conducive to incremen-
tal parsing of email messages, such as would be necessary when reading the text of an email message from a
source that can block (e.g. a socket). The FeedParser can of course be used to parse an email message fully
contained in a string or a file, but the classic Parser API may be more convenient for such use cases. The
semantics and results of the two parser APIs are identical.

The FeedParser’s API is simple; you create an instance, feed it a bunch of text until there’s no more to
feed it, then close the parser to retrieve the root message object. The FeedParser is extremely accurate
when parsing standards-compliant messages, and it does a very good job of parsing non-compliant messages,
providing information about how a message was deemed broken. It will populate a message object’s defects
attribute with a list of any problems it found in a message. See the email.errors module for the list of defects
that it can find.

Here is the API for the FeedParser:

class email.parser.FeedParser(_factory=email.message.Message, *, policy=policy.compat32)
Create a FeedParser instance. Optional _factory is a no-argument callable that will be called whenever
a new message object is needed. It defaults to the email.message.Message class.

If policy is specified (it must be an instance of a policy class) use the rules it specifies to update the
representation of the message. If policy is not set, use the compat32 policy, which maintains backward

1 As of email package version 3.0, introduced in Python 2.4, the classic Parser was re-implemented in terms of the FeedParser,
so the semantics and results are identical between the two parsers.

936 Chapter 19. Internet Data Handling

https://github.com/python/cpython/tree/3.5/Lib/email/parser.py

The Python Library Reference, Release 3.5.7

compatibility with the Python 3.2 version of the email package. For more information see the policy
documentation.

Changed in version 3.3: Added the policy keyword.

feed(data)
Feed the FeedParser some more data. data should be a string containing one or more lines. The
lines can be partial and the FeedParser will stitch such partial lines together properly. The lines
in the string can have any of the common three line endings, carriage return, newline, or carriage
return and newline (they can even be mixed).

close()
Closing a FeedParser completes the parsing of all previously fed data, and returns the root message
object. It is undefined what happens if you feed more data to a closed FeedParser.

class email.parser.BytesFeedParser(_factory=email.message.Message)
Works exactly like FeedParser except that the input to the feed() method must be bytes and not string.

New in version 3.2.

Parser class API

The Parser class, imported from the email.parser module, provides an API that can be used to parse a
message when the complete contents of the message are available in a string or file. The email.parser module
also provides header-only parsers, called HeaderParser and BytesHeaderParser, which can be used if you’re
only interested in the headers of the message. HeaderParser and BytesHeaderParser can be much faster in
these situations, since they do not attempt to parse the message body, instead setting the payload to the
raw body as a string. They have the same API as the Parser and BytesParser classes.

New in version 3.3: The BytesHeaderParser class.

class email.parser.Parser(_class=email.message.Message, *, policy=policy.compat32)
The constructor for the Parser class takes an optional argument _class. This must be a callable factory
(such as a function or a class), and it is used whenever a sub-message object needs to be created. It
defaults to Message (see email.message). The factory will be called without arguments.

If policy is specified (it must be an instance of a policy class) use the rules it specifies to update the
representation of the message. If policy is not set, use the compat32 policy, which maintains backward
compatibility with the Python 3.2 version of the email package. For more information see the policy
documentation.

Changed in version 3.3: Removed the strict argument that was deprecated in 2.4. Added the policy
keyword.

The other public Parser methods are:

parse(fp, headersonly=False)
Read all the data from the file-like object fp, parse the resulting text, and return the root message
object. fp must support both the readline() and the read() methods on file-like objects.

The text contained in fp must be formatted as a block of RFC 2822 style headers and header
continuation lines, optionally preceded by an envelope header. The header block is terminated
either by the end of the data or by a blank line. Following the header block is the body of the
message (which may contain MIME-encoded subparts).

Optional headersonly is a flag specifying whether to stop parsing after reading the headers or not.
The default is False, meaning it parses the entire contents of the file.

parsestr(text, headersonly=False)
Similar to the parse() method, except it takes a string object instead of a file-like object. Calling

19.1. email — An email and MIME handling package 937

https://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.5.7

this method on a string is exactly equivalent to wrapping text in a StringIO instance first and
calling parse().

Optional headersonly is as with the parse() method.

class email.parser.BytesParser(_class=email.message.Message, *, policy=policy.compat32)
This class is exactly parallel to Parser, but handles bytes input. The _class and strict arguments are
interpreted in the same way as for the Parser constructor.

If policy is specified (it must be an instance of a policy class) use the rules it specifies to update the
representation of the message. If policy is not set, use the compat32 policy, which maintains backward
compatibility with the Python 3.2 version of the email package. For more information see the policy
documentation.

Changed in version 3.3: Removed the strict argument. Added the policy keyword.

parse(fp, headersonly=False)
Read all the data from the binary file-like object fp, parse the resulting bytes, and return the
message object. fp must support both the readline() and the read() methods on file-like objects.

The bytes contained in fp must be formatted as a block of RFC 2822 style headers and header
continuation lines, optionally preceded by an envelope header. The header block is terminated
either by the end of the data or by a blank line. Following the header block is the body of
the message (which may contain MIME-encoded subparts, including subparts with a Content-
Transfer-Encoding of 8bit.

Optional headersonly is a flag specifying whether to stop parsing after reading the headers or not.
The default is False, meaning it parses the entire contents of the file.

parsebytes(text, headersonly=False)
Similar to the parse() method, except it takes a bytes-like object instead of a file-like object.
Calling this method is equivalent to wrapping text in a BytesIO instance first and calling parse().

Optional headersonly is as with the parse() method.

New in version 3.2.

Since creating a message object structure from a string or a file object is such a common task, four functions
are provided as a convenience. They are available in the top-level email package namespace.

email.message_from_string(s, _class=email.message.Message, *, policy=policy.compat32)
Return a message object structure from a string. This is exactly equivalent to Parser().parsestr(s).
_class and policy are interpreted as with the Parser class constructor.

Changed in version 3.3: Removed the strict argument. Added the policy keyword.

email.message_from_bytes(s, _class=email.message.Message, *, policy=policy.compat32)
Return a message object structure from a bytes-like object. This is exactly equivalent to BytesParser().
parsebytes(s). Optional _class and strict are interpreted as with the Parser class constructor.

New in version 3.2.

Changed in version 3.3: Removed the strict argument. Added the policy keyword.

email.message_from_file(fp, _class=email.message.Message, *, policy=policy.compat32)
Return a message object structure tree from an open file object. This is exactly equivalent to Parser().
parse(fp). _class and policy are interpreted as with the Parser class constructor.

Changed in version 3.3: Removed the strict argument. Added the policy keyword.

email.message_from_binary_file(fp, _class=email.message.Message, *, policy=policy.compat32)
Return a message object structure tree from an open binary file object. This is exactly equivalent to
BytesParser().parse(fp). _class and policy are interpreted as with the Parser class constructor.

938 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.5.7

New in version 3.2.

Changed in version 3.3: Removed the strict argument. Added the policy keyword.

Here’s an example of how you might use this at an interactive Python prompt:

>>> import email
>>> msg = email.message_from_string(myString)

Additional notes

Here are some notes on the parsing semantics:

• Most non-multipart type messages are parsed as a single message object with a string payload. These
objects will return False for is_multipart(). Their get_payload() method will return a string object.

• All multipart type messages will be parsed as a container message object with a list of sub-message
objects for their payload. The outer container message will return True for is_multipart() and their
get_payload() method will return the list of Message subparts.

• Most messages with a content type of message/* (e.g. message/delivery-status and message/rfc822)
will also be parsed as container object containing a list payload of length 1. Their is_multipart()
method will return True. The single element in the list payload will be a sub-message object.

• Some non-standards compliant messages may not be internally consistent about their multipart-edness.
Such messages may have a Content-Type header of type multipart, but their is_multipart() method
may return False. If such messages were parsed with the FeedParser, they will have an instance of the
MultipartInvariantViolationDefect class in their defects attribute list. See email.errors for details.

19.1.3 email.generator: Generating MIME documents

Source code: Lib/email/generator.py

One of the most common tasks is to generate the flat text of the email message represented by a message
object structure. You will need to do this if you want to send your message via the smtplib module or the
nntplib module, or print the message on the console. Taking a message object structure and producing a
flat text document is the job of the Generator class.

Again, as with the email.parser module, you aren’t limited to the functionality of the bundled generator; you
could write one from scratch yourself. However the bundled generator knows how to generate most email in
a standards-compliant way, should handle MIME and non-MIME email messages just fine, and is designed
so that the transformation from flat text, to a message structure via the Parser class, and back to flat text,
is idempotent (the input is identical to the output)1. On the other hand, using the Generator on a Message
constructed by program may result in changes to the Message object as defaults are filled in.

bytes output can be generated using the BytesGenerator class. If the message object structure contains
non-ASCII bytes, this generator’s flatten() method will emit the original bytes. Parsing a binary message
and then flattening it with BytesGenerator should be idempotent for standards compliant messages.

Here are the public methods of the Generator class, imported from the email.generator module:

1 This statement assumes that you use the appropriate setting for the unixfrom argument, and that you set maxheaderlen=0
(which will preserve whatever the input line lengths were). It is also not strictly true, since in many cases runs of whitespace
in headers are collapsed into single blanks. The latter is a bug that will eventually be fixed.

19.1. email — An email and MIME handling package 939

https://github.com/python/cpython/tree/3.5/Lib/email/generator.py

The Python Library Reference, Release 3.5.7

class email.generator.Generator(outfp, mangle_from_=True, maxheaderlen=78, *, policy=None)
The constructor for the Generator class takes a file-like object called outfp for an argument. outfp
must support the write() method and be usable as the output file for the print() function.

Optional mangle_from_ is a flag that, when True, puts a > character in front of any line in the
body that starts exactly as From, i.e. From followed by a space at the beginning of the line. This is
the only guaranteed portable way to avoid having such lines be mistaken for a Unix mailbox format
envelope header separator (see WHY THE CONTENT-LENGTH FORMAT IS BAD for details).
mangle_from_ defaults to True, but you might want to set this to False if you are not writing Unix
mailbox format files.

Optional maxheaderlen specifies the longest length for a non-continued header. When a header line is
longer than maxheaderlen (in characters, with tabs expanded to 8 spaces), the header will be split as
defined in the Header class. Set to zero to disable header wrapping. The default is 78, as recommended
(but not required) by RFC 2822.

The policy keyword specifies a policy object that controls a number of aspects of the generator’s
operation. If no policy is specified, then the policy attached to the message object passed to flatten is
used.

Changed in version 3.3: Added the policy keyword.

The other public Generator methods are:

flatten(msg, unixfrom=False, linesep=None)
Print the textual representation of the message object structure rooted at msg to the output
file specified when the Generator instance was created. Subparts are visited depth-first and the
resulting text will be properly MIME encoded.

Optional unixfrom is a flag that forces the printing of the envelope header delimiter before the
first RFC 2822 header of the root message object. If the root object has no envelope header, a
standard one is crafted. By default, this is set to False to inhibit the printing of the envelope
delimiter.

Note that for subparts, no envelope header is ever printed.

Optional linesep specifies the line separator character used to terminate lines in the output. If
specified it overrides the value specified by the msg’s or Generator’s policy.

Because strings cannot represent non-ASCII bytes, if the policy that applies when flatten is run
has cte_type set to 8bit, Generator will operate as if it were set to 7bit. This means that messages
parsed with a Bytes parser that have a Content-Transfer-Encoding of 8bit will be converted to a
use a 7bit Content-Transfer-Encoding. Non-ASCII bytes in the headers will be RFC 2047 encoded
with a charset of unknown-8bit.

Changed in version 3.2: Added support for re-encoding 8bit message bodies, and the linesep
argument.

clone(fp)
Return an independent clone of this Generator instance with the exact same options.

write(s)
Write the string s to the underlying file object, i.e. outfp passed to Generator’s constructor. This
provides just enough file-like API for Generator instances to be used in the print() function.

As a convenience, see the Message methods as_string() and str(aMessage), a.k.a. __str__(), which simplify
the generation of a formatted string representation of a message object. For more detail, see email.message.

class email.generator.BytesGenerator(outfp, mangle_from_=True, maxheaderlen=78, *, pol-
icy=None)

940 Chapter 19. Internet Data Handling

https://www.jwz.org/doc/content-length.html
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2047.html

The Python Library Reference, Release 3.5.7

The constructor for the BytesGenerator class takes a binary file-like object called outfp for an argument.
outfp must support a write() method that accepts binary data.

Optional mangle_from_ is a flag that, when True, puts a > character in front of any line in the
body that starts exactly as From, i.e. From followed by a space at the beginning of the line. This is
the only guaranteed portable way to avoid having such lines be mistaken for a Unix mailbox format
envelope header separator (see WHY THE CONTENT-LENGTH FORMAT IS BAD for details).
mangle_from_ defaults to True, but you might want to set this to False if you are not writing Unix
mailbox format files.

Optional maxheaderlen specifies the longest length for a non-continued header. When a header line is
longer than maxheaderlen (in characters, with tabs expanded to 8 spaces), the header will be split as
defined in the Header class. Set to zero to disable header wrapping. The default is 78, as recommended
(but not required) by RFC 2822.

The policy keyword specifies a policy object that controls a number of aspects of the generator’s
operation. If no policy is specified, then the policy attached to the message object passed to flatten is
used.

Changed in version 3.3: Added the policy keyword.

The other public BytesGenerator methods are:

flatten(msg, unixfrom=False, linesep=None)
Print the textual representation of the message object structure rooted at msg to the output file
specified when the BytesGenerator instance was created. Subparts are visited depth-first and the
resulting text will be properly MIME encoded. If the policy option cte_type is 8bit (the default),
then any bytes with the high bit set in the original parsed message that have not been modified
will be copied faithfully to the output. If cte_type is 7bit, the bytes will be converted as needed
using an ASCII-compatible Content-Transfer-Encoding. In particular, RFC-invalid non-ASCII
bytes in headers will be encoded using the MIME unknown-8bit character set, thus rendering
them RFC-compliant.

Messages parsed with a Bytes parser that have a Content-Transfer-Encoding of 8bit will be re-
constructed as 8bit if they have not been modified.

Optional unixfrom is a flag that forces the printing of the envelope header delimiter before the
first RFC 2822 header of the root message object. If the root object has no envelope header, a
standard one is crafted. By default, this is set to False to inhibit the printing of the envelope
delimiter.

Note that for subparts, no envelope header is ever printed.

Optional linesep specifies the line separator character used to terminate lines in the output. If
specified it overrides the value specified by the Generatoror msg’s policy.

clone(fp)
Return an independent clone of this BytesGenerator instance with the exact same options.

write(s)
Write the string s to the underlying file object. s is encoded using the ASCII codec and written
to the write method of the outfp outfp passed to the BytesGenerator’s constructor. This provides
just enough file-like API for BytesGenerator instances to be used in the print() function.

New in version 3.2.

The email.generator module also provides a derived class, called DecodedGenerator which is like the Gen-
erator base class, except that non-text parts are substituted with a format string representing the part.

19.1. email — An email and MIME handling package 941

https://www.jwz.org/doc/content-length.html
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.5.7

class email.generator.DecodedGenerator(outfp, mangle_from_=True, maxheaderlen=78, fmt=None)
This class, derived from Generator walks through all the subparts of a message. If the subpart is of
main type text, then it prints the decoded payload of the subpart. Optional _mangle_from_ and
maxheaderlen are as with the Generator base class.

If the subpart is not of main type text, optional fmt is a format string that is used instead of the
message payload. fmt is expanded with the following keywords, %(keyword)s format:

• type – Full MIME type of the non-text part

• maintype – Main MIME type of the non-text part

• subtype – Sub-MIME type of the non-text part

• filename – Filename of the non-text part

• description – Description associated with the non-text part

• encoding – Content transfer encoding of the non-text part

The default value for fmt is None, meaning

[Non-text (%(type)s) part of message omitted, filename %(filename)s]

19.1.4 email.policy: Policy Objects

New in version 3.3.

Source code: Lib/email/policy.py

The email package’s prime focus is the handling of email messages as described by the various email and
MIME RFCs. However, the general format of email messages (a block of header fields each consisting of
a name followed by a colon followed by a value, the whole block followed by a blank line and an arbitrary
‘body’), is a format that has found utility outside of the realm of email. Some of these uses conform fairly
closely to the main RFCs, some do not. And even when working with email, there are times when it is
desirable to break strict compliance with the RFCs.

Policy objects give the email package the flexibility to handle all these disparate use cases.

A Policy object encapsulates a set of attributes and methods that control the behavior of various components
of the email package during use. Policy instances can be passed to various classes and methods in the email
package to alter the default behavior. The settable values and their defaults are described below.

There is a default policy used by all classes in the email package. This policy is named Compat32, with a
corresponding pre-defined instance named compat32. It provides for complete backward compatibility (in
some cases, including bug compatibility) with the pre-Python3.3 version of the email package.

The first part of this documentation covers the features of Policy, an abstract base class that defines the
features that are common to all policy objects, including compat32. This includes certain hook methods that
are called internally by the email package, which a custom policy could override to obtain different behavior.

When a Message object is created, it acquires a policy. By default this will be compat32, but a different
policy can be specified. If the Message is created by a parser, a policy passed to the parser will be the policy
used by the Message it creates. If the Message is created by the program, then the policy can be specified
when it is created. When a Message is passed to a generator, the generator uses the policy from the Message
by default, but you can also pass a specific policy to the generator that will override the one stored on the
Message object.

942 Chapter 19. Internet Data Handling

https://github.com/python/cpython/tree/3.5/Lib/email/policy.py

The Python Library Reference, Release 3.5.7

Policy instances are immutable, but they can be cloned, accepting the same keyword arguments as the class
constructor and returning a new Policy instance that is a copy of the original but with the specified attributes
values changed.

As an example, the following code could be used to read an email message from a file on disk and pass it to
the system sendmail program on a Unix system:

>>> from email import message_from_binary_file
>>> from email.generator import BytesGenerator
>>> from email import policy
>>> from subprocess import Popen, PIPE
>>> with open('mymsg.txt', 'rb') as f:
... msg = message_from_binary_file(f, policy=policy.default)
>>> p = Popen(['sendmail', msg['To'].addresses[0]], stdin=PIPE)
>>> g = BytesGenerator(p.stdin, policy=msg.policy.clone(linesep='\r\n'))
>>> g.flatten(msg)
>>> p.stdin.close()
>>> rc = p.wait()

Here we are telling BytesGenerator to use the RFC correct line separator characters when creating the binary
string to feed into sendmail's stdin, where the default policy would use \n line separators.

Some email package methods accept a policy keyword argument, allowing the policy to be overridden for that
method. For example, the following code uses the as_bytes() method of the msg object from the previous
example and writes the message to a file using the native line separators for the platform on which it is
running:

>>> import os
>>> with open('converted.txt', 'wb') as f:
... f.write(msg.as_bytes(policy=msg.policy.clone(linesep=os.linesep)))
17

Policy objects can also be combined using the addition operator, producing a policy object whose settings
are a combination of the non-default values of the summed objects:

>>> compat_SMTP = policy.compat32.clone(linesep='\r\n')
>>> compat_strict = policy.compat32.clone(raise_on_defect=True)
>>> compat_strict_SMTP = compat_SMTP + compat_strict

This operation is not commutative; that is, the order in which the objects are added matters. To illustrate:

>>> policy100 = policy.compat32.clone(max_line_length=100)
>>> policy80 = policy.compat32.clone(max_line_length=80)
>>> apolicy = policy100 + policy80
>>> apolicy.max_line_length
80
>>> apolicy = policy80 + policy100
>>> apolicy.max_line_length
100

class email.policy.Policy(**kw)
This is the abstract base class for all policy classes. It provides default implementations for a couple of
trivial methods, as well as the implementation of the immutability property, the clone() method, and
the constructor semantics.

The constructor of a policy class can be passed various keyword arguments. The arguments that may
be specified are any non-method properties on this class, plus any additional non-method properties
on the concrete class. A value specified in the constructor will override the default value for the
corresponding attribute.

19.1. email — An email and MIME handling package 943

The Python Library Reference, Release 3.5.7

This class defines the following properties, and thus values for the following may be passed in the
constructor of any policy class:

max_line_length
The maximum length of any line in the serialized output, not counting the end of line character(s).
Default is 78, per RFC 5322. A value of 0 or None indicates that no line wrapping should be
done at all.

linesep
The string to be used to terminate lines in serialized output. The default is \n because that’s the
internal end-of-line discipline used by Python, though \r\n is required by the RFCs.

cte_type
Controls the type of Content Transfer Encodings that may be or are required to be used. The
possible values are:

7bit all data must be “7 bit clean” (ASCII-only). This means that where necessary data
will be encoded using either quoted-printable or base64 encoding.

8bit data is not constrained to be 7 bit clean. Data in headers is still required to be
ASCII-only and so will be encoded (see ‘binary_fold’ below for an exception), but
body parts may use the 8bit CTE.

A cte_type value of 8bit only works with BytesGenerator, not Generator, because strings cannot
contain binary data. If a Generator is operating under a policy that specifies cte_type=8bit, it
will act as if cte_type is 7bit.

raise_on_defect
If True, any defects encountered will be raised as errors. If False (the default), defects will be
passed to the register_defect() method.

mangle_from_
If True, lines starting with “From “ in the body are escaped by putting a > in front of them. This
parameter is used when the message is being serialized by a generator. Default: False.

New in version 3.5: The mangle_from_ parameter.

The following Policy method is intended to be called by code using the email library to create policy
instances with custom settings:

clone(**kw)
Return a new Policy instance whose attributes have the same values as the current instance,
except where those attributes are given new values by the keyword arguments.

The remaining Policy methods are called by the email package code, and are not intended to be called
by an application using the email package. A custom policy must implement all of these methods.

handle_defect(obj, defect)
Handle a defect found on obj. When the email package calls this method, defect will always be a
subclass of Defect.

The default implementation checks the raise_on_defect flag. If it is True, defect is raised as an
exception. If it is False (the default), obj and defect are passed to register_defect().

register_defect(obj, defect)
Register a defect on obj. In the email package, defect will always be a subclass of Defect.

The default implementation calls the append method of the defects attribute of obj. When the
email package calls handle_defect, obj will normally have a defects attribute that has an append
method. Custom object types used with the email package (for example, custom Message objects)

944 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc5322.html

The Python Library Reference, Release 3.5.7

should also provide such an attribute, otherwise defects in parsed messages will raise unexpected
errors.

header_max_count(name)
Return the maximum allowed number of headers named name.

Called when a header is added to a Message object. If the returned value is not 0 or None,
and there are already a number of headers with the name name equal to the value returned, a
ValueError is raised.

Because the default behavior of Message.__setitem__ is to append the value to the list of
headers, it is easy to create duplicate headers without realizing it. This method allows certain
headers to be limited in the number of instances of that header that may be added to a Message
programmatically. (The limit is not observed by the parser, which will faithfully produce as many
headers as exist in the message being parsed.)

The default implementation returns None for all header names.

header_source_parse(sourcelines)
The email package calls this method with a list of strings, each string ending with the line sepa-
ration characters found in the source being parsed. The first line includes the field header name
and separator. All whitespace in the source is preserved. The method should return the (name,
value) tuple that is to be stored in the Message to represent the parsed header.

If an implementation wishes to retain compatibility with the existing email package policies, name
should be the case preserved name (all characters up to the ‘:’ separator), while value should be
the unfolded value (all line separator characters removed, but whitespace kept intact), stripped
of leading whitespace.

sourcelines may contain surrogateescaped binary data.

There is no default implementation

header_store_parse(name, value)
The email package calls this method with the name and value provided by the application program
when the application program is modifying a Message programmatically (as opposed to a Message
created by a parser). The method should return the (name, value) tuple that is to be stored in
the Message to represent the header.

If an implementation wishes to retain compatibility with the existing email package policies, the
name and value should be strings or string subclasses that do not change the content of the passed
in arguments.

There is no default implementation

header_fetch_parse(name, value)
The email package calls this method with the name and value currently stored in the Message
when that header is requested by the application program, and whatever the method returns is
what is passed back to the application as the value of the header being retrieved. Note that there
may be more than one header with the same name stored in the Message; the method is passed
the specific name and value of the header destined to be returned to the application.

value may contain surrogateescaped binary data. There should be no surrogateescaped binary
data in the value returned by the method.

There is no default implementation

fold(name, value)
The email package calls this method with the name and value currently stored in the Message for
a given header. The method should return a string that represents that header “folded” correctly
(according to the policy settings) by composing the name with the value and inserting linesep

19.1. email — An email and MIME handling package 945

The Python Library Reference, Release 3.5.7

characters at the appropriate places. See RFC 5322 for a discussion of the rules for folding email
headers.

value may contain surrogateescaped binary data. There should be no surrogateescaped binary
data in the string returned by the method.

fold_binary(name, value)
The same as fold(), except that the returned value should be a bytes object rather than a string.

value may contain surrogateescaped binary data. These could be converted back into binary data
in the returned bytes object.

class email.policy.Compat32(**kw)
This concrete Policy is the backward compatibility policy. It replicates the behavior of the email
package in Python 3.2. The policy module also defines an instance of this class, compat32, that is used
as the default policy. Thus the default behavior of the email package is to maintain compatibility with
Python 3.2.

The following attributes have values that are different from the Policy default:

mangle_from_
The default is True.

The class provides the following concrete implementations of the abstract methods of Policy:

header_source_parse(sourcelines)
The name is parsed as everything up to the ‘:’ and returned unmodified. The value is determined
by stripping leading whitespace off the remainder of the first line, joining all subsequent lines
together, and stripping any trailing carriage return or linefeed characters.

header_store_parse(name, value)
The name and value are returned unmodified.

header_fetch_parse(name, value)
If the value contains binary data, it is converted into a Header object using the unknown-8bit
charset. Otherwise it is returned unmodified.

fold(name, value)
Headers are folded using the Header folding algorithm, which preserves existing line breaks in the
value, and wraps each resulting line to the max_line_length. Non-ASCII binary data are CTE
encoded using the unknown-8bit charset.

fold_binary(name, value)
Headers are folded using the Header folding algorithm, which preserves existing line breaks in the
value, and wraps each resulting line to the max_line_length. If cte_type is 7bit, non-ascii binary
data is CTE encoded using the unknown-8bit charset. Otherwise the original source header is
used, with its existing line breaks and any (RFC invalid) binary data it may contain.

An instance of Compat32 is provided as a module constant:

email.policy.compat32
An instance of Compat32, providing backward compatibility with the behavior of the email package in
Python 3.2.

Note: The documentation below describes new policies that are included in the standard library on a
provisional basis. Backwards incompatible changes (up to and including removal of the feature) may occur
if deemed necessary by the core developers.

946 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc5322.html

The Python Library Reference, Release 3.5.7

class email.policy.EmailPolicy(**kw)
This concrete Policy provides behavior that is intended to be fully compliant with the current email
RFCs. These include (but are not limited to) RFC 5322, RFC 2047, and the current MIME RFCs.

This policy adds new header parsing and folding algorithms. Instead of simple strings, headers are
str subclasses with attributes that depend on the type of the field. The parsing and folding algorithm
fully implement RFC 2047 and RFC 5322.

In addition to the settable attributes listed above that apply to all policies, this policy adds the following
additional attributes:

utf8
If False, follow RFC 5322, supporting non-ASCII characters in headers by encoding them as
“encoded words”. If True, follow RFC 6532 and use utf-8 encoding for headers. Messages formatted
in this way may be passed to SMTP servers that support the SMTPUTF8 extension (RFC 6531).

refold_source
If the value for a header in the Message object originated from a parser (as opposed to being set
by a program), this attribute indicates whether or not a generator should refold that value when
transforming the message back into stream form. The possible values are:

none all source values use original folding
long source values that have any line that is longer than max_line_length will be refolded
all all values are refolded.

The default is long.

header_factory
A callable that takes two arguments, name and value, where name is a header field name and
value is an unfolded header field value, and returns a string subclass that represents that header.
A default header_factory (see headerregistry) is provided that understands some of the RFC 5322
header field types. (Currently address fields and date fields have special treatment, while all other
fields are treated as unstructured. This list will be completed before the extension is marked
stable.)

content_manager
An object with at least two methods: get_content and set_content. When the get_content() or
set_content() method of a Message object is called, it calls the corresponding method of this ob-
ject, passing it the message object as its first argument, and any arguments or keywords that were
passed to it as additional arguments. By default content_manager is set to raw_data_manager.

New in version 3.4.

The class provides the following concrete implementations of the abstract methods of Policy:

header_max_count(name)
Returns the value of the max_count attribute of the specialized class used to represent the header
with the given name.

header_source_parse(sourcelines)
The implementation of this method is the same as that for the Compat32 policy.

header_store_parse(name, value)
The name is returned unchanged. If the input value has a name attribute and it matches name
ignoring case, the value is returned unchanged. Otherwise the name and value are passed to
header_factory, and the resulting header object is returned as the value. In this case a ValueError
is raised if the input value contains CR or LF characters.

19.1. email — An email and MIME handling package 947

https://tools.ietf.org/html/rfc5322.html
https://tools.ietf.org/html/rfc2047.html
https://tools.ietf.org/html/rfc2047.html
https://tools.ietf.org/html/rfc5322.html
https://tools.ietf.org/html/rfc5322.html
https://tools.ietf.org/html/rfc6532.html
https://tools.ietf.org/html/rfc6531.html
https://tools.ietf.org/html/rfc5322.html

The Python Library Reference, Release 3.5.7

header_fetch_parse(name, value)
If the value has a name attribute, it is returned to unmodified. Otherwise the name, and the value
with any CR or LF characters removed, are passed to the header_factory, and the resulting header
object is returned. Any surrogateescaped bytes get turned into the unicode unknown-character
glyph.

fold(name, value)
Header folding is controlled by the refold_source policy setting. A value is considered to be a
‘source value’ if and only if it does not have a name attribute (having a name attribute means it is
a header object of some sort). If a source value needs to be refolded according to the policy, it is
converted into a header object by passing the name and the value with any CR and LF characters
removed to the header_factory. Folding of a header object is done by calling its fold method with
the current policy.

Source values are split into lines using splitlines(). If the value is not to be refolded, the lines
are rejoined using the linesep from the policy and returned. The exception is lines containing
non-ascii binary data. In that case the value is refolded regardless of the refold_source setting,
which causes the binary data to be CTE encoded using the unknown-8bit charset.

fold_binary(name, value)
The same as fold() if cte_type is 7bit, except that the returned value is bytes.

If cte_type is 8bit, non-ASCII binary data is converted back into bytes. Headers with binary data
are not refolded, regardless of the refold_header setting, since there is no way to know whether
the binary data consists of single byte characters or multibyte characters.

The following instances of EmailPolicy provide defaults suitable for specific application domains. Note that
in the future the behavior of these instances (in particular the HTTP instance) may be adjusted to conform
even more closely to the RFCs relevant to their domains.

email.policy.default
An instance of EmailPolicy with all defaults unchanged. This policy uses the standard Python \n line
endings rather than the RFC-correct \r\n.

email.policy.SMTP
Suitable for serializing messages in conformance with the email RFCs. Like default, but with linesep
set to \r\n, which is RFC compliant.

email.policy.SMTPUTF8
The same as SMTP except that utf8 is True. Useful for serializing messages to a message store without
using encoded words in the headers. Should only be used for SMTP transmission if the sender or
recipient addresses have non-ASCII characters (the smtplib.SMTP.send_message() method handles
this automatically).

email.policy.HTTP
Suitable for serializing headers with for use in HTTP traffic. Like SMTP except that max_line_length
is set to None (unlimited).

email.policy.strict
Convenience instance. The same as default except that raise_on_defect is set to True. This allows
any policy to be made strict by writing:

somepolicy + policy.strict

With all of these EmailPolicies, the effective API of the email package is changed from the Python 3.2 API
in the following ways:

• Setting a header on a Message results in that header being parsed and a header object created.

948 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

• Fetching a header value from a Message results in that header being parsed and a header object created
and returned.

• Any header object, or any header that is refolded due to the policy settings, is folded using an algorithm
that fully implements the RFC folding algorithms, including knowing where encoded words are required
and allowed.

From the application view, this means that any header obtained through the Message is a header object
with extra attributes, whose string value is the fully decoded unicode value of the header. Likewise, a header
may be assigned a new value, or a new header created, using a unicode string, and the policy will take care
of converting the unicode string into the correct RFC encoded form.

The header objects and their attributes are described in headerregistry.

19.1.5 email.headerregistry: Custom Header Objects

New in version 3.3: as a provisional module.

Source code: Lib/email/headerregistry.py

Note: The headerregistry module has been included in the standard library on a provisional basis. Back-
wards incompatible changes (up to and including removal of the module) may occur if deemed necessary by
the core developers.

Headers are represented by customized subclasses of str. The particular class used to represent a given
header is determined by the header_factory of the policy in effect when the headers are created. This
section documents the particular header_factory implemented by the email package for handling RFC 5322
compliant email messages, which not only provides customized header objects for various header types, but
also provides an extension mechanism for applications to add their own custom header types.

When using any of the policy objects derived from EmailPolicy, all headers are produced by HeaderRegistry
and have BaseHeader as their last base class. Each header class has an additional base class that is determined
by the type of the header. For example, many headers have the class UnstructuredHeader as their other
base class. The specialized second class for a header is determined by the name of the header, using a lookup
table stored in the HeaderRegistry. All of this is managed transparently for the typical application program,
but interfaces are provided for modifying the default behavior for use by more complex applications.

The sections below first document the header base classes and their attributes, followed by the API for
modifying the behavior of HeaderRegistry, and finally the support classes used to represent the data parsed
from structured headers.

class email.headerregistry.BaseHeader(name, value)
name and value are passed to BaseHeader from the header_factory call. The string value of any header
object is the value fully decoded to unicode.

This base class defines the following read-only properties:

name
The name of the header (the portion of the field before the ‘:’). This is exactly the value passed
in the header_factory call for name; that is, case is preserved.

defects
A tuple of HeaderDefect instances reporting any RFC compliance problems found during parsing.
The email package tries to be complete about detecting compliance issues. See the errors module
for a discussion of the types of defects that may be reported.

19.1. email — An email and MIME handling package 949

https://github.com/python/cpython/tree/3.5/Lib/email/headerregistry.py
https://tools.ietf.org/html/rfc5322.html

The Python Library Reference, Release 3.5.7

max_count
The maximum number of headers of this type that can have the same name. A value of None
means unlimited. The BaseHeader value for this attribute is None; it is expected that specialized
header classes will override this value as needed.

BaseHeader also provides the following method, which is called by the email library code and should
not in general be called by application programs:

fold(*, policy)
Return a string containing linesep characters as required to correctly fold the header according to
policy. A cte_type of 8bit will be treated as if it were 7bit, since strings may not contain binary
data.

BaseHeader by itself cannot be used to create a header object. It defines a protocol that each specialized
header cooperates with in order to produce the header object. Specifically, BaseHeader requires that
the specialized class provide a classmethod() named parse. This method is called as follows:

parse(string, kwds)

kwds is a dictionary containing one pre-initialized key, defects. defects is an empty list. The parse
method should append any detected defects to this list. On return, the kwds dictionary must contain
values for at least the keys decoded and defects. decoded should be the string value for the header
(that is, the header value fully decoded to unicode). The parse method should assume that string may
contain transport encoded parts, but should correctly handle all valid unicode characters as well so
that it can parse un-encoded header values.

BaseHeader’s __new__ then creates the header instance, and calls its init method. The specialized
class only needs to provide an init method if it wishes to set additional attributes beyond those provided
by BaseHeader itself. Such an init method should look like this:

def init(self, *args, **kw):
self._myattr = kw.pop('myattr')
super().init(*args, **kw)

That is, anything extra that the specialized class puts in to the kwds dictionary should be removed
and handled, and the remaining contents of kw (and args) passed to the BaseHeader init method.

class email.headerregistry.UnstructuredHeader
An “unstructured” header is the default type of header in RFC 5322. Any header that does not have
a specified syntax is treated as unstructured. The classic example of an unstructured header is the
Subject header.

In RFC 5322, an unstructured header is a run of arbitrary text in the ASCII character set. RFC 2047,
however, has an RFC 5322 compatible mechanism for encoding non-ASCII text as ASCII characters
within a header value. When a value containing encoded words is passed to the constructor, the
UnstructuredHeader parser converts such encoded words back in to the original unicode, following
the RFC 2047 rules for unstructured text. The parser uses heuristics to attempt to decode certain
non-compliant encoded words. Defects are registered in such cases, as well as defects for issues such as
invalid characters within the encoded words or the non-encoded text.

This header type provides no additional attributes.

class email.headerregistry.DateHeader
RFC 5322 specifies a very specific format for dates within email headers. The DateHeader parser
recognizes that date format, as well as recognizing a number of variant forms that are sometimes found
“in the wild”.

This header type provides the following additional attributes:

950 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc5322.html
https://tools.ietf.org/html/rfc5322.html
https://tools.ietf.org/html/rfc2047.html
https://tools.ietf.org/html/rfc5322.html
https://tools.ietf.org/html/rfc2047.html
https://tools.ietf.org/html/rfc5322.html

The Python Library Reference, Release 3.5.7

datetime
If the header value can be recognized as a valid date of one form or another, this attribute will
contain a datetime instance representing that date. If the timezone of the input date is specified
as -0000 (indicating it is in UTC but contains no information about the source timezone), then
datetime will be a naive datetime. If a specific timezone offset is found (including +0000), then
datetime will contain an aware datetime that uses datetime.timezone to record the timezone offset.

The decoded value of the header is determined by formatting the datetime according to the RFC 5322
rules; that is, it is set to:

email.utils.format_datetime(self.datetime)

When creating a DateHeader, value may be datetime instance. This means, for example, that the
following code is valid and does what one would expect:

msg['Date'] = datetime(2011, 7, 15, 21)

Because this is a naive datetime it will be interpreted as a UTC timestamp, and the resulting value will
have a timezone of -0000. Much more useful is to use the localtime() function from the utils module:

msg['Date'] = utils.localtime()

This example sets the date header to the current time and date using the current timezone offset.

class email.headerregistry.AddressHeader
Address headers are one of the most complex structured header types. The AddressHeader class
provides a generic interface to any address header.

This header type provides the following additional attributes:

groups
A tuple of Group objects encoding the addresses and groups found in the header value. Ad-
dresses that are not part of a group are represented in this list as single-address Groups whose
display_name is None.

addresses
A tuple of Address objects encoding all of the individual addresses from the header value. If the
header value contains any groups, the individual addresses from the group are included in the list
at the point where the group occurs in the value (that is, the list of addresses is “flattened” into
a one dimensional list).

The decoded value of the header will have all encoded words decoded to unicode. idna encoded domain
names are also decoded to unicode. The decoded value is set by joining the str value of the elements
of the groups attribute with ', '.

A list of Address and Group objects in any combination may be used to set the value of an address
header. Group objects whose display_name is None will be interpreted as single addresses, which
allows an address list to be copied with groups intact by using the list obtained groups attribute of the
source header.

class email.headerregistry.SingleAddressHeader
A subclass of AddressHeader that adds one additional attribute:

address
The single address encoded by the header value. If the header value actually contains more than
one address (which would be a violation of the RFC under the default policy), accessing this
attribute will result in a ValueError.

Many of the above classes also have a Unique variant (for example, UniqueUnstructuredHeader). The only
difference is that in the Unique variant, max_count is set to 1.

19.1. email — An email and MIME handling package 951

https://tools.ietf.org/html/rfc5322.html

The Python Library Reference, Release 3.5.7

class email.headerregistry.MIMEVersionHeader
There is really only one valid value for the MIME-Version header, and that is 1.0. For future proofing,
this header class supports other valid version numbers. If a version number has a valid value per RFC
2045, then the header object will have non-None values for the following attributes:

version
The version number as a string, with any whitespace and/or comments removed.

major
The major version number as an integer

minor
The minor version number as an integer

class email.headerregistry.ParameterizedMIMEHeader
MOME headers all start with the prefix ‘Content-‘. Each specific header has a certain value, described
under the class for that header. Some can also take a list of supplemental parameters, which have a
common format. This class serves as a base for all the MIME headers that take parameters.

params
A dictionary mapping parameter names to parameter values.

class email.headerregistry.ContentTypeHeader
A ParameterizedMIMEHeader class that handles the Content-Type header.

content_type
The content type string, in the form maintype/subtype.

maintype

subtype

class email.headerregistry.ContentDispositionHeader
A ParameterizedMIMEHeader class that handles the Content-Disposition header.

content-disposition
inline and attachment are the only valid values in common use.

class email.headerregistry.ContentTransferEncoding
Handles the Content-Transfer-Encoding header.

cte
Valid values are 7bit, 8bit, base64, and quoted-printable. See RFC 2045 for more information.

class email.headerregistry.HeaderRegistry(base_class=BaseHeader, de-
fault_class=UnstructuredHeader,
use_default_map=True)

This is the factory used by EmailPolicy by default. HeaderRegistry builds the class used to create a
header instance dynamically, using base_class and a specialized class retrieved from a registry that it
holds. When a given header name does not appear in the registry, the class specified by default_class
is used as the specialized class. When use_default_map is True (the default), the standard mapping
of header names to classes is copied in to the registry during initialization. base_class is always the
last class in the generated class’s __bases__ list.

The default mappings are:

subject UniqueUnstructuredHeader

date UniqueDateHeader

resent-date DateHeader

orig-date UniqueDateHeader

952 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc2045.html
https://tools.ietf.org/html/rfc2045.html
https://tools.ietf.org/html/rfc2045.html

The Python Library Reference, Release 3.5.7

sender UniqueSingleAddressHeader

resent-sender SingleAddressHeader

to UniqueAddressHeader

resent-to AddressHeader

cc UniqueAddressHeader

resent-cc AddressHeader

from UniqueAddressHeader

resent-from AddressHeader

reply-to UniqueAddressHeader

HeaderRegistry has the following methods:

map_to_type(self, name, cls)
name is the name of the header to be mapped. It will be converted to lower case in the registry.
cls is the specialized class to be used, along with base_class, to create the class used to instantiate
headers that match name.

__getitem__(name)
Construct and return a class to handle creating a name header.

__call__(name, value)
Retrieves the specialized header associated with name from the registry (using default_class if
name does not appear in the registry) and composes it with base_class to produce a class, calls
the constructed class’s constructor, passing it the same argument list, and finally returns the class
instance created thereby.

The following classes are the classes used to represent data parsed from structured headers and can, in
general, be used by an application program to construct structured values to assign to specific headers.

class email.headerregistry.Address(display_name=”, username=”, domain=”, addr_spec=None)
The class used to represent an email address. The general form of an address is:

[display_name] <username@domain>

or:

username@domain

where each part must conform to specific syntax rules spelled out in RFC 5322.

As a convenience addr_spec can be specified instead of username and domain, in which case username
and domain will be parsed from the addr_spec. An addr_spec must be a properly RFC quoted string;
if it is not Address will raise an error. Unicode characters are allowed and will be property encoded
when serialized. However, per the RFCs, unicode is not allowed in the username portion of the address.

display_name
The display name portion of the address, if any, with all quoting removed. If the address does
not have a display name, this attribute will be an empty string.

username
The username portion of the address, with all quoting removed.

domain
The domain portion of the address.

19.1. email — An email and MIME handling package 953

https://tools.ietf.org/html/rfc5322.html

The Python Library Reference, Release 3.5.7

addr_spec
The username@domain portion of the address, correctly quoted for use as a bare address (the
second form shown above). This attribute is not mutable.

__str__()
The str value of the object is the address quoted according to RFC 5322 rules, but with no Content
Transfer Encoding of any non-ASCII characters.

To support SMTP (RFC 5321), Address handles one special case: if username and domain are both
the empty string (or None), then the string value of the Address is <>.

class email.headerregistry.Group(display_name=None, addresses=None)
The class used to represent an address group. The general form of an address group is:

display_name: [address-list];

As a convenience for processing lists of addresses that consist of a mixture of groups and single ad-
dresses, a Group may also be used to represent single addresses that are not part of a group by setting
display_name to None and providing a list of the single address as addresses.

display_name
The display_name of the group. If it is None and there is exactly one Address in addresses, then
the Group represents a single address that is not in a group.

addresses
A possibly empty tuple of Address objects representing the addresses in the group.

__str__()
The str value of a Group is formatted according to RFC 5322, but with no Content Transfer
Encoding of any non-ASCII characters. If display_name is none and there is a single Address in
the addresses list, the str value will be the same as the str of that single Address.

19.1.6 email.contentmanager: Managing MIME Content

New in version 3.4: as a provisional module.

Source code: Lib/email/contentmanager.py

Note: The contentmanager module has been included in the standard library on a provisional basis.
Backwards incompatible changes (up to and including removal of the module) may occur if deemed necessary
by the core developers.

The message module provides a class that can represent an arbitrary email message. That basic message
model has a useful and flexible API, but it provides only a lower-level API for interacting with the generic
parts of a message (the headers, generic header parameters, and the payload, which may be a list of sub-
parts). This module provides classes and tools that provide an enhanced and extensible API for dealing
with various specific types of content, including the ability to retrieve the content of the message as a
specialized object type rather than as a simple bytes object. The module automatically takes care of the
RFC-specified MIME details (required headers and parameters, etc.) for the certain common content types
content properties, and support for additional types can be added by an application using the extension
mechanisms.

This module defines the eponymous “Content Manager” classes. The base ContentManager class defines an
API for registering content management functions which extract data from Message objects or insert data
and headers into Message objects, thus providing a way of converting between Message objects containing

954 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc5322.html
https://tools.ietf.org/html/rfc5321.html
https://tools.ietf.org/html/rfc5322.html
https://github.com/python/cpython/tree/3.5/Lib/email/contentmanager.py

The Python Library Reference, Release 3.5.7

data and other representations of that data (Python data types, specialized Python objects, external files,
etc). The module also defines one concrete content manager: raw_data_manager converts between MIME
content types and str or bytes data. It also provides a convenient API for managing the MIME parameters
when inserting content into Messages. It also handles inserting and extracting Message objects when dealing
with the message/rfc822 content type.

Another part of the enhanced interface is subclasses of Message that provide new convenience API functions,
including convenience methods for calling the Content Managers derived from this module.

Note: Although EmailMessage and MIMEPart are currently documented in this module because of the
provisional nature of the code, the implementation lives in the email.message module.

class email.message.EmailMessage(policy=default)
If policy is specified (it must be an instance of a policy class) use the rules it specifies to update and
serialize the representation of the message. If policy is not set, use the default policy, which follows
the rules of the email RFCs except for line endings (instead of the RFC mandated \r\n, it uses the
Python standard \n line endings). For more information see the policy documentation.

This class is a subclass of Message. It adds the following methods:

is_attachment()
Return True if there is a Content-Disposition header and its (case insensitive) value is attachment,
False otherwise.

Changed in version 3.4.2: is_attachment is now a method instead of a property, for consistency
with is_multipart().

get_body(preferencelist=(’related’, ’html’, ’plain’))
Return the MIME part that is the best candidate to be the “body” of the message.

preferencelist must be a sequence of strings from the set related, html, and plain, and indicates
the order of preference for the content type of the part returned.

Start looking for candidate matches with the object on which the get_body method is called.

If related is not included in preferencelist, consider the root part (or subpart of the root part) of
any related encountered as a candidate if the (sub-)part matches a preference.

When encountering a multipart/related, check the start parameter and if a part with a matching
Content-ID is found, consider only it when looking for candidate matches. Otherwise consider
only the first (default root) part of the multipart/related.

If a part has a Content-Disposition header, only consider the part a candidate match if the value
of the header is inline.

If none of the candidates matches any of the preferences in preferencelist, return None.

Notes: (1) For most applications the only preferencelist combinations that really make sense
are ('plain',), ('html', 'plain'), and the default, ('related', 'html', 'plain'). (2) Because
matching starts with the object on which get_body is called, calling get_body on a multipart/
related will return the object itself unless preferencelist has a non-default value. (3) Messages (or
message parts) that do not specify a Content-Type or whose Content-Type header is invalid will
be treated as if they are of type text/plain, which may occasionally cause get_body to return
unexpected results.

iter_attachments()
Return an iterator over all of the parts of the message that are not candidate “body” parts. That
is, skip the first occurrence of each of text/plain, text/html, multipart/related, or multipart/
alternative (unless they are explicitly marked as attachments via Content-Disposition: attach-

19.1. email — An email and MIME handling package 955

The Python Library Reference, Release 3.5.7

ment), and return all remaining parts. When applied directly to a multipart/related, return
an iterator over the all the related parts except the root part (ie: the part pointed to by the
start parameter, or the first part if there is no start parameter or the start parameter doesn’t
match the Content-ID of any of the parts). When applied directly to a multipart/alternative or
a non-multipart, return an empty iterator.

iter_parts()
Return an iterator over all of the immediate sub-parts of the message, which will be empty for a
non-multipart. (See also walk().)

get_content(*args, content_manager=None, **kw)
Call the get_content method of the content_manager, passing self as the message object, and
passing along any other arguments or keywords as additional arguments. If content_manager is
not specified, use the content_manager specified by the current policy.

set_content(*args, content_manager=None, **kw)
Call the set_content method of the content_manager, passing self as the message object, and
passing along any other arguments or keywords as additional arguments. If content_manager is
not specified, use the content_manager specified by the current policy.

make_related(boundary=None)
Convert a non-multipart message into a multipart/related message, moving any existing Content-
headers and payload into a (new) first part of the multipart. If boundary is specified, use it as
the boundary string in the multipart, otherwise leave the boundary to be automatically created
when it is needed (for example, when the message is serialized).

make_alternative(boundary=None)
Convert a non-multipart or a multipart/related into a multipart/alternative, moving any existing
Content- headers and payload into a (new) first part of the multipart. If boundary is specified,
use it as the boundary string in the multipart, otherwise leave the boundary to be automatically
created when it is needed (for example, when the message is serialized).

make_mixed(boundary=None)
Convert a non-multipart, a multipart/related, or a multipart-alternative into a multipart/mixed,
moving any existing Content- headers and payload into a (new) first part of the multipart. If
boundary is specified, use it as the boundary string in the multipart, otherwise leave the boundary
to be automatically created when it is needed (for example, when the message is serialized).

add_related(*args, content_manager=None, **kw)
If the message is a multipart/related, create a new message object, pass all of the arguments to
its set_content() method, and attach() it to the multipart. If the message is a non-multipart,
call make_related() and then proceed as above. If the message is any other type of multipart,
raise a TypeError. If content_manager is not specified, use the content_manager specified by
the current policy. If the added part has no Content-Disposition header, add one with the value
inline.

add_alternative(*args, content_manager=None, **kw)
If the message is a multipart/alternative, create a new message object, pass all of the arguments
to its set_content() method, and attach() it to the multipart. If the message is a non-multipart
or multipart/related, call make_alternative() and then proceed as above. If the message is any
other type of multipart, raise a TypeError. If content_manager is not specified, use the con-
tent_manager specified by the current policy.

add_attachment(*args, content_manager=None, **kw)
If the message is a multipart/mixed, create a new message object, pass all of the arguments to
its set_content() method, and attach() it to the multipart. If the message is a non-multipart,
multipart/related, or multipart/alternative, call make_mixed() and then proceed as above. If con-
tent_manager is not specified, use the content_manager specified by the current policy. If the

956 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

added part has no Content-Disposition header, add one with the value attachment. This method
can be used both for explicit attachments (Content-Disposition: attachment and inline attach-
ments (Content-Disposition: inline), by passing appropriate options to the content_manager.

clear()
Remove the payload and all of the headers.

clear_content()
Remove the payload and all of the Content- headers, leaving all other headers intact and in their
original order.

class email.message.MIMEPart(policy=default)
This class represents a subpart of a MIME message. It is identical to EmailMessage, except that no
MIME-Version headers are added when set_content() is called, since sub-parts do not need their own
MIME-Version headers.

class email.contentmanager.ContentManager
Base class for content managers. Provides the standard registry mechanisms to register converters
between MIME content and other representations, as well as the get_content and set_content dispatch
methods.

get_content(msg, *args, **kw)
Look up a handler function based on the mimetype of msg (see next paragraph), call it, passing
through all arguments, and return the result of the call. The expectation is that the handler will
extract the payload from msg and return an object that encodes information about the extracted
data.

To find the handler, look for the following keys in the registry, stopping with the first one found:

• the string representing the full MIME type (maintype/subtype)

• the string representing the maintype

• the empty string

If none of these keys produce a handler, raise a KeyError for the full MIME type.

set_content(msg, obj, *args, **kw)
If the maintype is multipart, raise a TypeError; otherwise look up a handler function based on the
type of obj (see next paragraph), call clear_content() on the msg, and call the handler function,
passing through all arguments. The expectation is that the handler will transform and store obj
into msg, possibly making other changes to msg as well, such as adding various MIME headers to
encode information needed to interpret the stored data.

To find the handler, obtain the type of obj (typ = type(obj)), and look for the following keys in
the registry, stopping with the first one found:

• the type itself (typ)

• the type’s fully qualified name (typ.__module__ + '.' + typ.__qualname__).

• the type’s qualname (typ.__qualname__)

• the type’s name (typ.__name__).

If none of the above match, repeat all of the checks above for each of the types in the MRO
(typ.__mro__). Finally, if no other key yields a handler, check for a handler for the key None.
If there is no handler for None, raise a KeyError for the fully qualified name of the type.

Also add a MIME-Version header if one is not present (see also MIMEPart).

19.1. email — An email and MIME handling package 957

The Python Library Reference, Release 3.5.7

add_get_handler(key, handler)
Record the function handler as the handler for key. For the possible values of key, see
get_content().

add_set_handler(typekey, handler)
Record handler as the function to call when an object of a type matching typekey is passed to
set_content(). For the possible values of typekey, see set_content().

Content Manager Instances

Currently the email package provides only one concrete content manager, raw_data_manager, although
more may be added in the future. raw_data_manager is the content_manager provided by EmailPolicy
and its derivatives.

email.contentmanager.raw_data_manager
This content manager provides only a minimum interface beyond that provided by Message itself:
it deals only with text, raw byte strings, and Message objects. Nevertheless, it provides significant
advantages compared to the base API: get_content on a text part will return a unicode string without
the application needing to manually decode it, set_content provides a rich set of options for controlling
the headers added to a part and controlling the content transfer encoding, and it enables the use of
the various add_ methods, thereby simplifying the creation of multipart messages.

email.contentmanager.get_content(msg, errors=’replace’)
Return the payload of the part as either a string (for text parts), an EmailMessage object (for
message/rfc822 parts), or a bytes object (for all other non-multipart types). Raise a KeyError if
called on a multipart. If the part is a text part and errors is specified, use it as the error handler
when decoding the payload to unicode. The default error handler is replace.

email.contentmanager.set_content(msg, <’str’>, subtype="plain", charset=’utf-8’ cte=None,
disposition=None, filename=None, cid=None, params=None,
headers=None)

email.contentmanager.set_content(msg, <’bytes’>, maintype, subtype, cte="base64", disposi-
tion=None, filename=None, cid=None, params=None, head-
ers=None)

email.contentmanager.set_content(msg, <’Message’>, cte=None, disposition=None, file-
name=None, cid=None, params=None, headers=None)

email.contentmanager.set_content(msg, <’list’>, subtype=’mixed’, disposition=None, file-
name=None, cid=None, params=None, headers=None)

Add headers and payload to msg:

Add a Content-Type header with a maintype/subtype value.

• For str, set the MIME maintype to text, and set the subtype to subtype if it is specified, or
plain if it is not.

• For bytes, use the specified maintype and subtype, or raise a TypeError if they are not
specified.

• For Message objects, set the maintype to message, and set the subtype to subtype if it is
specified or rfc822 if it is not. If subtype is partial, raise an error (bytes objects must be used
to construct message/partial parts).

• For <’list’>, which should be a list of Message objects, set the maintype to multipart, and
the subtype to subtype if it is specified, and mixed if it is not. If the message parts in the
<’list’> have MIME-Version headers, remove them.

If charset is provided (which is valid only for str), encode the string to bytes using the specified
character set. The default is utf-8. If the specified charset is a known alias for a standard MIME
charset name, use the standard charset instead.

958 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

If cte is set, encode the payload using the specified content transfer encoding, and set the Content-
Transfer-Encoding header to that value. For str objects, if it is not set use heuristics to determine
the most compact encoding. Possible values for cte are quoted-printable, base64, 7bit, 8bit, and
binary. If the input cannot be encoded in the specified encoding (eg: 7bit), raise a ValueError.
For Message, per RFC 2046, raise an error if a cte of quoted-printable or base64 is requested for
subtype rfc822, and for any cte other than 7bit for subtype external-body. For message/rfc822,
use 8bit if cte is not specified. For all other values of subtype, use 7bit.

Note: A cte of binary does not actually work correctly yet. The Message object as modified by
set_content is correct, but BytesGenerator does not serialize it correctly.

If disposition is set, use it as the value of the Content-Disposition header. If not specified, and
filename is specified, add the header with the value attachment. If it is not specified and filename
is also not specified, do not add the header. The only valid values for disposition are attachment
and inline.

If filename is specified, use it as the value of the filename parameter of the Content-Disposition
header. There is no default.

If cid is specified, add a Content-ID header with cid as its value.

If params is specified, iterate its items method and use the resulting (key, value) pairs to set
additional parameters on the Content-Type header.

If headers is specified and is a list of strings of the form headername: headervalue or a list of
header objects (distinguished from strings by having a name attribute), add the headers to msg.

19.1.7 email.mime: Creating email and MIME objects from scratch

Source code: Lib/email/mime/

Ordinarily, you get a message object structure by passing a file or some text to a parser, which parses the
text and returns the root message object. However you can also build a complete message structure from
scratch, or even individual Message objects by hand. In fact, you can also take an existing structure and add
new Message objects, move them around, etc. This makes a very convenient interface for slicing-and-dicing
MIME messages.

You can create a new object structure by creating Message instances, adding attachments and all the appro-
priate headers manually. For MIME messages though, the email package provides some convenient subclasses
to make things easier.

Here are the classes:

class email.mime.base.MIMEBase(_maintype, _subtype, **_params)
Module: email.mime.base

This is the base class for all the MIME-specific subclasses of Message. Ordinarily you won’t cre-
ate instances specifically of MIMEBase, although you could. MIMEBase is provided primarily as a
convenient base class for more specific MIME-aware subclasses.

_maintype is the Content-Type major type (e.g. text or image), and _subtype is the Content-Type
minor type (e.g. plain or gif). _params is a parameter key/value dictionary and is passed directly to
Message.add_header.

The MIMEBase class always adds a Content-Type header (based on _maintype, _subtype, and
_params), and a MIME-Version header (always set to 1.0).

19.1. email — An email and MIME handling package 959

https://tools.ietf.org/html/rfc2046.html
https://github.com/python/cpython/tree/3.5/Lib/email/mime/

The Python Library Reference, Release 3.5.7

class email.mime.nonmultipart.MIMENonMultipart
Module: email.mime.nonmultipart

A subclass of MIMEBase, this is an intermediate base class for MIME messages that are not multipart.
The primary purpose of this class is to prevent the use of the attach() method, which only makes sense
for multipart messages. If attach() is called, a MultipartConversionError exception is raised.

class email.mime.multipart.MIMEMultipart(_subtype=’mixed’, boundary=None, _subparts=None,
**_params)

Module: email.mime.multipart

A subclass of MIMEBase, this is an intermediate base class for MIME messages that are multipart.
Optional _subtype defaults to mixed, but can be used to specify the subtype of the message. A
Content-Type header of multipart/_subtype will be added to the message object. A MIME-Version
header will also be added.

Optional boundary is the multipart boundary string. When None (the default), the boundary is
calculated when needed (for example, when the message is serialized).

_subparts is a sequence of initial subparts for the payload. It must be possible to convert this sequence
to a list. You can always attach new subparts to the message by using the Message.attach method.

Additional parameters for the Content-Type header are taken from the keyword arguments, or passed
into the _params argument, which is a keyword dictionary.

class email.mime.application.MIMEApplication(_data, _subtype=’octet-stream’, _en-
coder=email.encoders.encode_base64, **_params)

Module: email.mime.application

A subclass of MIMENonMultipart, the MIMEApplication class is used to represent MIME message
objects of major type application. _data is a string containing the raw byte data. Optional _subtype
specifies the MIME subtype and defaults to octet-stream.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the data
for transport. This callable takes one argument, which is the MIMEApplication instance. It should
use get_payload() and set_payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding or other headers to the message object as necessary. The default encoding
is base64. See the email.encoders module for a list of the built-in encoders.

_params are passed straight through to the base class constructor.

class email.mime.audio.MIMEAudio(_audiodata, _subtype=None, _en-
coder=email.encoders.encode_base64, **_params)

Module: email.mime.audio

A subclass of MIMENonMultipart, the MIMEAudio class is used to create MIME message objects of
major type audio. _audiodata is a string containing the raw audio data. If this data can be decoded by
the standard Python module sndhdr, then the subtype will be automatically included in the Content-
Type header. Otherwise you can explicitly specify the audio subtype via the _subtype argument. If
the minor type could not be guessed and _subtype was not given, then TypeError is raised.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the audio
data for transport. This callable takes one argument, which is the MIMEAudio instance. It should
use get_payload() and set_payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding or other headers to the message object as necessary. The default encoding
is base64. See the email.encoders module for a list of the built-in encoders.

_params are passed straight through to the base class constructor.

class email.mime.image.MIMEImage(_imagedata, _subtype=None, _en-
coder=email.encoders.encode_base64, **_params)

Module: email.mime.image

960 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

A subclass of MIMENonMultipart, the MIMEImage class is used to create MIME message objects
of major type image. _imagedata is a string containing the raw image data. If this data can be
decoded by the standard Python module imghdr, then the subtype will be automatically included in
the Content-Type header. Otherwise you can explicitly specify the image subtype via the _subtype
argument. If the minor type could not be guessed and _subtype was not given, then TypeError is
raised.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the image
data for transport. This callable takes one argument, which is the MIMEImage instance. It should
use get_payload() and set_payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding or other headers to the message object as necessary. The default encoding
is base64. See the email.encoders module for a list of the built-in encoders.

_params are passed straight through to the MIMEBase constructor.

class email.mime.message.MIMEMessage(_msg, _subtype=’rfc822’)
Module: email.mime.message

A subclass of MIMENonMultipart, the MIMEMessage class is used to create MIME objects of main
type message. _msg is used as the payload, and must be an instance of class Message (or a subclass
thereof), otherwise a TypeError is raised.

Optional _subtype sets the subtype of the message; it defaults to rfc822.

class email.mime.text.MIMEText(_text, _subtype=’plain’, _charset=None)
Module: email.mime.text

A subclass of MIMENonMultipart, the MIMEText class is used to create MIME objects of major type
text. _text is the string for the payload. _subtype is the minor type and defaults to plain. _charset
is the character set of the text and is passed as an argument to the MIMENonMultipart constructor;
it defaults to us-ascii if the string contains only ascii code points, and utf-8 otherwise. The _charset
parameter accepts either a string or a Charset instance.

Unless the _charset argument is explicitly set to None, the MIMEText object created will have both a
Content-Type header with a charset parameter, and a Content-Transfer-Encoding header. This means
that a subsequent set_payload call will not result in an encoded payload, even if a charset is passed in
the set_payload command. You can “reset” this behavior by deleting the Content-Transfer-Encoding
header, after which a set_payload call will automatically encode the new payload (and add a new
Content-Transfer-Encoding header).

Changed in version 3.5: _charset also accepts Charset instances.

19.1.8 email.header: Internationalized headers

Source code: Lib/email/header.py

RFC 2822 is the base standard that describes the format of email messages. It derives from the older RFC
822 standard which came into widespread use at a time when most email was composed of ASCII characters
only. RFC 2822 is a specification written assuming email contains only 7-bit ASCII characters.

Of course, as email has been deployed worldwide, it has become internationalized, such that language specific
character sets can now be used in email messages. The base standard still requires email messages to be
transferred using only 7-bit ASCII characters, so a slew of RFCs have been written describing how to encode
email containing non-ASCII characters into RFC 2822-compliant format. These RFCs include RFC 2045,
RFC 2046, RFC 2047, and RFC 2231. The email package supports these standards in its email.header and
email.charset modules.

19.1. email — An email and MIME handling package 961

https://github.com/python/cpython/tree/3.5/Lib/email/header.py
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc822.html
https://tools.ietf.org/html/rfc822.html
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2045.html
https://tools.ietf.org/html/rfc2046.html
https://tools.ietf.org/html/rfc2047.html
https://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 3.5.7

If you want to include non-ASCII characters in your email headers, say in the Subject or To fields, you
should use the Header class and assign the field in the Message object to an instance of Header instead of
using a string for the header value. Import the Header class from the email.header module. For example:

>>> from email.message import Message
>>> from email.header import Header
>>> msg = Message()
>>> h = Header('p\xf6stal', 'iso-8859-1')
>>> msg['Subject'] = h
>>> msg.as_string()
'Subject: =?iso-8859-1?q?p=F6stal?=\n\n'

Notice here how we wanted the Subject field to contain a non-ASCII character? We did this by creating a
Header instance and passing in the character set that the byte string was encoded in. When the subsequent
Message instance was flattened, the Subject field was properly RFC 2047 encoded. MIME-aware mail readers
would show this header using the embedded ISO-8859-1 character.

Here is the Header class description:

class email.header.Header(s=None, charset=None, maxlinelen=None, header_name=None, continua-
tion_ws=’ ’, errors=’strict’)

Create a MIME-compliant header that can contain strings in different character sets.

Optional s is the initial header value. If None (the default), the initial header value is not set. You
can later append to the header with append() method calls. s may be an instance of bytes or str, but
see the append() documentation for semantics.

Optional charset serves two purposes: it has the same meaning as the charset argument to the append()
method. It also sets the default character set for all subsequent append() calls that omit the charset
argument. If charset is not provided in the constructor (the default), the us-ascii character set is used
both as s’s initial charset and as the default for subsequent append() calls.

The maximum line length can be specified explicitly via maxlinelen. For splitting the first line to a
shorter value (to account for the field header which isn’t included in s, e.g. Subject) pass in the name
of the field in header_name. The default maxlinelen is 76, and the default value for header_name is
None, meaning it is not taken into account for the first line of a long, split header.

Optional continuation_ws must be RFC 2822-compliant folding whitespace, and is usually either a
space or a hard tab character. This character will be prepended to continuation lines. continuation_ws
defaults to a single space character.

Optional errors is passed straight through to the append() method.

append(s, charset=None, errors=’strict’)
Append the string s to the MIME header.

Optional charset, if given, should be a Charset instance (see email.charset) or the name of a
character set, which will be converted to a Charset instance. A value of None (the default) means
that the charset given in the constructor is used.

s may be an instance of bytes or str. If it is an instance of bytes, then charset is the encoding
of that byte string, and a UnicodeError will be raised if the string cannot be decoded with that
character set.

If s is an instance of str, then charset is a hint specifying the character set of the characters in
the string.

In either case, when producing an RFC 2822-compliant header using RFC 2047 rules, the string
will be encoded using the output codec of the charset. If the string cannot be encoded using the
output codec, a UnicodeError will be raised.

962 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc2047.html
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2047.html

The Python Library Reference, Release 3.5.7

Optional errors is passed as the errors argument to the decode call if s is a byte string.

encode(splitchars=’;, \t’, maxlinelen=None, linesep=’\n’)
Encode a message header into an RFC-compliant format, possibly wrapping long lines and en-
capsulating non-ASCII parts in base64 or quoted-printable encodings.

Optional splitchars is a string containing characters which should be given extra weight by the
splitting algorithm during normal header wrapping. This is in very rough support of RFC 2822’s
‘higher level syntactic breaks’: split points preceded by a splitchar are preferred during line
splitting, with the characters preferred in the order in which they appear in the string. Space and
tab may be included in the string to indicate whether preference should be given to one over the
other as a split point when other split chars do not appear in the line being split. Splitchars does
not affect RFC 2047 encoded lines.

maxlinelen, if given, overrides the instance’s value for the maximum line length.

linesep specifies the characters used to separate the lines of the folded header. It defaults to the
most useful value for Python application code (\n), but \r\n can be specified in order to produce
headers with RFC-compliant line separators.

Changed in version 3.2: Added the linesep argument.

The Header class also provides a number of methods to support standard operators and built-in func-
tions.

__str__()
Returns an approximation of the Header as a string, using an unlimited line length. All pieces are
converted to unicode using the specified encoding and joined together appropriately. Any pieces
with a charset of 'unknown-8bit' are decoded as ASCII using the 'replace' error handler.

Changed in version 3.2: Added handling for the 'unknown-8bit' charset.

__eq__(other)
This method allows you to compare two Header instances for equality.

__ne__(other)
This method allows you to compare two Header instances for inequality.

The email.header module also provides the following convenient functions.

email.header.decode_header(header)
Decode a message header value without converting the character set. The header value is in header.

This function returns a list of (decoded_string, charset) pairs containing each of the decoded parts
of the header. charset is None for non-encoded parts of the header, otherwise a lower case string
containing the name of the character set specified in the encoded string.

Here’s an example:

>>> from email.header import decode_header
>>> decode_header('=?iso-8859-1?q?p=F6stal?=')
[(b'p\xf6stal', 'iso-8859-1')]

email.header.make_header(decoded_seq, maxlinelen=None, header_name=None, continua-
tion_ws=’ ’)

Create a Header instance from a sequence of pairs as returned by decode_header().

decode_header() takes a header value string and returns a sequence of pairs of the format
(decoded_string, charset) where charset is the name of the character set.

This function takes one of those sequence of pairs and returns a Header instance. Optional maxlinelen,
header_name, and continuation_ws are as in the Header constructor.

19.1. email — An email and MIME handling package 963

https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2047.html

The Python Library Reference, Release 3.5.7

19.1.9 email.charset: Representing character sets

Source code: Lib/email/charset.py

This module provides a class Charset for representing character sets and character set conversions in email
messages, as well as a character set registry and several convenience methods for manipulating this registry.
Instances of Charset are used in several other modules within the email package.

Import this class from the email.charset module.

class email.charset.Charset(input_charset=DEFAULT_CHARSET)
Map character sets to their email properties.

This class provides information about the requirements imposed on email for a specific character set.
It also provides convenience routines for converting between character sets, given the availability of the
applicable codecs. Given a character set, it will do its best to provide information on how to use that
character set in an email message in an RFC-compliant way.

Certain character sets must be encoded with quoted-printable or base64 when used in email headers
or bodies. Certain character sets must be converted outright, and are not allowed in email.

Optional input_charset is as described below; it is always coerced to lower case. After being alias
normalized it is also used as a lookup into the registry of character sets to find out the header en-
coding, body encoding, and output conversion codec to be used for the character set. For example, if
input_charset is iso-8859-1, then headers and bodies will be encoded using quoted-printable and no
output conversion codec is necessary. If input_charset is euc-jp, then headers will be encoded with
base64, bodies will not be encoded, but output text will be converted from the euc-jp character set to
the iso-2022-jp character set.

Charset instances have the following data attributes:

input_charset
The initial character set specified. Common aliases are converted to their official email names
(e.g. latin_1 is converted to iso-8859-1). Defaults to 7-bit us-ascii.

header_encoding
If the character set must be encoded before it can be used in an email header, this attribute will
be set to Charset.QP (for quoted-printable), Charset.BASE64 (for base64 encoding), or Charset.
SHORTEST for the shortest of QP or BASE64 encoding. Otherwise, it will be None.

body_encoding
Same as header_encoding, but describes the encoding for the mail message’s body, which
indeed may be different than the header encoding. Charset.SHORTEST is not allowed for
body_encoding.

output_charset
Some character sets must be converted before they can be used in email headers or bodies. If the
input_charset is one of them, this attribute will contain the name of the character set output will
be converted to. Otherwise, it will be None.

input_codec
The name of the Python codec used to convert the input_charset to Unicode. If no conversion
codec is necessary, this attribute will be None.

output_codec
The name of the Python codec used to convert Unicode to the output_charset. If no conversion
codec is necessary, this attribute will have the same value as the input_codec.

Charset instances also have the following methods:

964 Chapter 19. Internet Data Handling

https://github.com/python/cpython/tree/3.5/Lib/email/charset.py

The Python Library Reference, Release 3.5.7

get_body_encoding()
Return the content transfer encoding used for body encoding.

This is either the string quoted-printable or base64 depending on the encoding used, or it is a
function, in which case you should call the function with a single argument, the Message object
being encoded. The function should then set the Content-Transfer-Encoding header itself to
whatever is appropriate.

Returns the string quoted-printable if body_encoding is QP, returns the string base64 if
body_encoding is BASE64, and returns the string 7bit otherwise.

get_output_charset()
Return the output character set.

This is the output_charset attribute if that is not None, otherwise it is input_charset.

header_encode(string)
Header-encode the string string.

The type of encoding (base64 or quoted-printable) will be based on the header_encoding attribute.

header_encode_lines(string, maxlengths)
Header-encode a string by converting it first to bytes.

This is similar to header_encode() except that the string is fit into maximum line lengths as given
by the argument maxlengths, which must be an iterator: each element returned from this iterator
will provide the next maximum line length.

body_encode(string)
Body-encode the string string.

The type of encoding (base64 or quoted-printable) will be based on the body_encoding attribute.

The Charset class also provides a number of methods to support standard operations and built-in
functions.

__str__()
Returns input_charset as a string coerced to lower case. __repr__() is an alias for __str__().

__eq__(other)
This method allows you to compare two Charset instances for equality.

__ne__(other)
This method allows you to compare two Charset instances for inequality.

The email.charset module also provides the following functions for adding new entries to the global character
set, alias, and codec registries:

email.charset.add_charset(charset, header_enc=None, body_enc=None, output_charset=None)
Add character properties to the global registry.

charset is the input character set, and must be the canonical name of a character set.

Optional header_enc and body_enc is either Charset.QP for quoted-printable, Charset.BASE64 for
base64 encoding, Charset.SHORTEST for the shortest of quoted-printable or base64 encoding, or None
for no encoding. SHORTEST is only valid for header_enc. The default is None for no encoding.

Optional output_charset is the character set that the output should be in. Conversions will proceed
from input charset, to Unicode, to the output charset when the method Charset.convert() is called.
The default is to output in the same character set as the input.

Both input_charset and output_charset must have Unicode codec entries in the module’s character
set-to-codec mapping; use add_codec() to add codecs the module does not know about. See the codecs
module’s documentation for more information.

19.1. email — An email and MIME handling package 965

The Python Library Reference, Release 3.5.7

The global character set registry is kept in the module global dictionary CHARSETS.

email.charset.add_alias(alias, canonical)
Add a character set alias. alias is the alias name, e.g. latin-1. canonical is the character set’s canonical
name, e.g. iso-8859-1.

The global charset alias registry is kept in the module global dictionary ALIASES.

email.charset.add_codec(charset, codecname)
Add a codec that map characters in the given character set to and from Unicode.

charset is the canonical name of a character set. codecname is the name of a Python codec, as
appropriate for the second argument to the str’s encode() method.

19.1.10 email.encoders: Encoders

Source code: Lib/email/encoders.py

When creating Message objects from scratch, you often need to encode the payloads for transport through
compliant mail servers. This is especially true for image/* and text/* type messages containing binary data.

The email package provides some convenient encodings in its encoders module. These encoders are actually
used by the MIMEAudio and MIMEImage class constructors to provide default encodings. All encoder
functions take exactly one argument, the message object to encode. They usually extract the payload,
encode it, and reset the payload to this newly encoded value. They should also set the Content-Transfer-
Encoding header as appropriate.

Note that these functions are not meaningful for a multipart message. They must be applied to individual
subparts instead, and will raise a TypeError if passed a message whose type is multipart.

Here are the encoding functions provided:

email.encoders.encode_quopri(msg)
Encodes the payload into quoted-printable form and sets the Content-Transfer-Encoding header to
quoted-printable1. This is a good encoding to use when most of your payload is normal printable data,
but contains a few unprintable characters.

email.encoders.encode_base64(msg)
Encodes the payload into base64 form and sets the Content-Transfer-Encoding header to base64. This
is a good encoding to use when most of your payload is unprintable data since it is a more compact
form than quoted-printable. The drawback of base64 encoding is that it renders the text non-human
readable.

email.encoders.encode_7or8bit(msg)
This doesn’t actually modify the message’s payload, but it does set the Content-Transfer-Encoding
header to either 7bit or 8bit as appropriate, based on the payload data.

email.encoders.encode_noop(msg)
This does nothing; it doesn’t even set the Content-Transfer-Encoding header.

19.1.11 email.errors: Exception and Defect classes

Source code: Lib/email/errors.py

The following exception classes are defined in the email.errors module:

1 Note that encoding with encode_quopri() also encodes all tabs and space characters in the data.

966 Chapter 19. Internet Data Handling

https://github.com/python/cpython/tree/3.5/Lib/email/encoders.py
https://github.com/python/cpython/tree/3.5/Lib/email/errors.py

The Python Library Reference, Release 3.5.7

exception email.errors.MessageError
This is the base class for all exceptions that the email package can raise. It is derived from the standard
Exception class and defines no additional methods.

exception email.errors.MessageParseError
This is the base class for exceptions raised by the Parser class. It is derived from MessageError.

exception email.errors.HeaderParseError
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is
derived from MessageParseError. It can be raised from the Parser.parse or Parser.parsestr methods.

Situations where it can be raised include finding an envelope header after the first RFC 2822 header
of the message, finding a continuation line before the first RFC 2822 header is found, or finding a line
in the headers which is neither a header or a continuation line.

exception email.errors.BoundaryError
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is
derived from MessageParseError. It can be raised from the Parser.parse or Parser.parsestr methods.

Situations where it can be raised include not being able to find the starting or terminating boundary
in a multipart/* message when strict parsing is used.

exception email.errors.MultipartConversionError
Raised when a payload is added to a Message object using add_payload(), but the payload is already
a scalar and the message’s Content-Type main type is not either multipart or missing. MultipartCon-
versionError multiply inherits from MessageError and the built-in TypeError.

Since Message.add_payload() is deprecated, this exception is rarely raised in practice. However the
exception may also be raised if the attach() method is called on an instance of a class derived from
MIMENonMultipart (e.g. MIMEImage).

Here’s the list of the defects that the FeedParser can find while parsing messages. Note that the defects are
added to the message where the problem was found, so for example, if a message nested inside a multipart/
alternative had a malformed header, that nested message object would have a defect, but the containing
messages would not.

All defect classes are subclassed from email.errors.MessageDefect, but this class is not an exception!

• NoBoundaryInMultipartDefect – A message claimed to be a multipart, but had no boundary parameter.

• StartBoundaryNotFoundDefect – The start boundary claimed in the Content-Type header was never
found.

• CloseBoundaryNotFoundDefect – A start boundary was found, but no corresponding close boundary
was ever found.

New in version 3.3.

• FirstHeaderLineIsContinuationDefect – The message had a continuation line as its first header line.

• MisplacedEnvelopeHeaderDefect - A “Unix From” header was found in the middle of a header block.

• MissingHeaderBodySeparatorDefect - A line was found while parsing headers that had no leading white
space but contained no ‘:’. Parsing continues assuming that the line represents the first line of the
body.

New in version 3.3.

• MalformedHeaderDefect – A header was found that was missing a colon, or was otherwise malformed.

Deprecated since version 3.3: This defect has not been used for several Python versions.

19.1. email — An email and MIME handling package 967

https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.5.7

• MultipartInvariantViolationDefect – A message claimed to be a multipart, but no subparts were found.
Note that when a message has this defect, its is_multipart() method may return false even though its
content type claims to be multipart.

• InvalidBase64PaddingDefect – When decoding a block of base64 encoded bytes, the padding was not
correct. Enough padding is added to perform the decode, but the resulting decoded bytes may be
invalid.

• InvalidBase64CharactersDefect – When decoding a block of base64 encoded bytes, characters outside
the base64 alphabet were encountered. The characters are ignored, but the resulting decoded bytes
may be invalid.

19.1.12 email.utils: Miscellaneous utilities

Source code: Lib/email/utils.py

There are several useful utilities provided in the email.utils module:

email.utils.quote(str)
Return a new string with backslashes in str replaced by two backslashes, and double quotes replaced
by backslash-double quote.

email.utils.unquote(str)
Return a new string which is an unquoted version of str. If str ends and begins with double quotes,
they are stripped off. Likewise if str ends and begins with angle brackets, they are stripped off.

email.utils.parseaddr(address)
Parse address – which should be the value of some address-containing field such as To or Cc – into its
constituent realname and email address parts. Returns a tuple of that information, unless the parse
fails, in which case a 2-tuple of ('', '') is returned.

email.utils.formataddr(pair, charset=’utf-8’)
The inverse of parseaddr(), this takes a 2-tuple of the form (realname, email_address) and returns the
string value suitable for a To or Cc header. If the first element of pair is false, then the second element
is returned unmodified.

Optional charset is the character set that will be used in the RFC 2047 encoding of the realname if the
realname contains non-ASCII characters. Can be an instance of str or a Charset. Defaults to utf-8.

Changed in version 3.3: Added the charset option.

email.utils.getaddresses(fieldvalues)
This method returns a list of 2-tuples of the form returned by parseaddr(). fieldvalues is a sequence
of header field values as might be returned by Message.get_all. Here’s a simple example that gets all
the recipients of a message:

from email.utils import getaddresses

tos = msg.get_all('to', [])
ccs = msg.get_all('cc', [])
resent_tos = msg.get_all('resent-to', [])
resent_ccs = msg.get_all('resent-cc', [])
all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs)

email.utils.parsedate(date)
Attempts to parse a date according to the rules in RFC 2822. however, some mailers don’t follow that
format as specified, so parsedate() tries to guess correctly in such cases. date is a string containing

968 Chapter 19. Internet Data Handling

https://github.com/python/cpython/tree/3.5/Lib/email/utils.py
https://tools.ietf.org/html/rfc2047.html
https://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.5.7

an RFC 2822 date, such as "Mon, 20 Nov 1995 19:12:08 -0500". If it succeeds in parsing the date,
parsedate() returns a 9-tuple that can be passed directly to time.mktime(); otherwise None will be
returned. Note that indexes 6, 7, and 8 of the result tuple are not usable.

email.utils.parsedate_tz(date)
Performs the same function as parsedate(), but returns either None or a 10-tuple; the first 9 elements
make up a tuple that can be passed directly to time.mktime(), and the tenth is the offset of the date’s
timezone from UTC (which is the official term for Greenwich Mean Time)1. If the input string has no
timezone, the last element of the tuple returned is None. Note that indexes 6, 7, and 8 of the result
tuple are not usable.

email.utils.parsedate_to_datetime(date)
The inverse of format_datetime(). Performs the same function as parsedate(), but on success returns
a datetime. If the input date has a timezone of -0000, the datetime will be a naive datetime, and if the
date is conforming to the RFCs it will represent a time in UTC but with no indication of the actual
source timezone of the message the date comes from. If the input date has any other valid timezone
offset, the datetime will be an aware datetime with the corresponding a timezone tzinfo.

New in version 3.3.

email.utils.mktime_tz(tuple)
Turn a 10-tuple as returned by parsedate_tz() into a UTC timestamp (seconds since the Epoch). If
the timezone item in the tuple is None, assume local time.

email.utils.formatdate(timeval=None, localtime=False, usegmt=False)
Returns a date string as per RFC 2822, e.g.:

Fri, 09 Nov 2001 01:08:47 -0000

Optional timeval if given is a floating point time value as accepted by time.gmtime() and time.
localtime(), otherwise the current time is used.

Optional localtime is a flag that when True, interprets timeval, and returns a date relative to the local
timezone instead of UTC, properly taking daylight savings time into account. The default is False
meaning UTC is used.

Optional usegmt is a flag that when True, outputs a date string with the timezone as an ascii string
GMT, rather than a numeric -0000. This is needed for some protocols (such as HTTP). This only
applies when localtime is False. The default is False.

email.utils.format_datetime(dt, usegmt=False)
Like formatdate, but the input is a datetime instance. If it is a naive datetime, it is assumed to
be “UTC with no information about the source timezone”, and the conventional -0000 is used for the
timezone. If it is an aware datetime, then the numeric timezone offset is used. If it is an aware timezone
with offset zero, then usegmt may be set to True, in which case the string GMT is used instead of the
numeric timezone offset. This provides a way to generate standards conformant HTTP date headers.

New in version 3.3.

email.utils.localtime(dt=None)
Return local time as an aware datetime object. If called without arguments, return current time.
Otherwise dt argument should be a datetime instance, and it is converted to the local time zone
according to the system time zone database. If dt is naive (that is, dt.tzinfo is None), it is assumed to
be in local time. In this case, a positive or zero value for isdst causes localtime to presume initially that
summer time (for example, Daylight Saving Time) is or is not (respectively) in effect for the specified
time. A negative value for isdst causes the localtime to attempt to divine whether summer time is in
effect for the specified time.

1 Note that the sign of the timezone offset is the opposite of the sign of the time.timezone variable for the same timezone;
the latter variable follows the POSIX standard while this module follows RFC 2822.

19.1. email — An email and MIME handling package 969

https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.5.7

New in version 3.3.

email.utils.make_msgid(idstring=None, domain=None)
Returns a string suitable for an RFC 2822-compliant Message-ID header. Optional idstring if given, is
a string used to strengthen the uniqueness of the message id. Optional domain if given provides the
portion of the msgid after the ‘@’. The default is the local hostname. It is not normally necessary to
override this default, but may be useful certain cases, such as a constructing distributed system that
uses a consistent domain name across multiple hosts.

Changed in version 3.2: Added the domain keyword.

email.utils.decode_rfc2231(s)
Decode the string s according to RFC 2231.

email.utils.encode_rfc2231(s, charset=None, language=None)
Encode the string s according to RFC 2231. Optional charset and language, if given is the character
set name and language name to use. If neither is given, s is returned as-is. If charset is given but
language is not, the string is encoded using the empty string for language.

email.utils.collapse_rfc2231_value(value, errors=’replace’, fallback_charset=’us-ascii’)
When a header parameter is encoded in RFC 2231 format, Message.get_param may return a 3-tuple
containing the character set, language, and value. collapse_rfc2231_value() turns this into a unicode
string. Optional errors is passed to the errors argument of str’s encode() method; it defaults to
'replace'. Optional fallback_charset specifies the character set to use if the one in the RFC 2231
header is not known by Python; it defaults to 'us-ascii'.

For convenience, if the value passed to collapse_rfc2231_value() is not a tuple, it should be a string
and it is returned unquoted.

email.utils.decode_params(params)
Decode parameters list according to RFC 2231. params is a sequence of 2-tuples containing elements
of the form (content-type, string-value).

19.1.13 email.iterators: Iterators

Source code: Lib/email/iterators.py

Iterating over a message object tree is fairly easy with the Message.walk method. The email.iterators module
provides some useful higher level iterations over message object trees.

email.iterators.body_line_iterator(msg, decode=False)
This iterates over all the payloads in all the subparts of msg, returning the string payloads line-by-line.
It skips over all the subpart headers, and it skips over any subpart with a payload that isn’t a Python
string. This is somewhat equivalent to reading the flat text representation of the message from a file
using readline(), skipping over all the intervening headers.

Optional decode is passed through to Message.get_payload.

email.iterators.typed_subpart_iterator(msg, maintype=’text’, subtype=None)
This iterates over all the subparts of msg, returning only those subparts that match the MIME type
specified by maintype and subtype.

Note that subtype is optional; if omitted, then subpart MIME type matching is done only with the
main type. maintype is optional too; it defaults to text.

Thus, by default typed_subpart_iterator() returns each subpart that has a MIME type of text/*.

The following function has been added as a useful debugging tool. It should not be considered part of the
supported public interface for the package.

970 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc2231.html
https://tools.ietf.org/html/rfc2231.html
https://tools.ietf.org/html/rfc2231.html
https://tools.ietf.org/html/rfc2231.html
https://tools.ietf.org/html/rfc2231.html
https://github.com/python/cpython/tree/3.5/Lib/email/iterators.py

The Python Library Reference, Release 3.5.7

email.iterators._structure(msg, fp=None, level=0, include_default=False)
Prints an indented representation of the content types of the message object structure. For example:

>>> msg = email.message_from_file(somefile)
>>> _structure(msg)
multipart/mixed

text/plain
text/plain
multipart/digest

message/rfc822
text/plain

message/rfc822
text/plain

message/rfc822
text/plain

message/rfc822
text/plain

message/rfc822
text/plain

text/plain

Optional fp is a file-like object to print the output to. It must be suitable for Python’s print() function.
level is used internally. include_default, if true, prints the default type as well.

19.1.14 email: Examples

Here are a few examples of how to use the email package to read, write, and send simple email messages, as
well as more complex MIME messages.

First, let’s see how to create and send a simple text message:

Import smtplib for the actual sending function
import smtplib

Import the email modules we'll need
from email.mime.text import MIMEText

Open a plain text file for reading. For this example, assume that
the text file contains only ASCII characters.
with open(textfile) as fp:

Create a text/plain message
msg = MIMEText(fp.read())

me == the sender's email address
you == the recipient's email address
msg['Subject'] = 'The contents of %s' % textfile
msg['From'] = me
msg['To'] = you

Send the message via our own SMTP server.
s = smtplib.SMTP('localhost')
s.send_message(msg)
s.quit()

And parsing RFC822 headers can easily be done by the parse(filename) or parsestr(message_as_string)
methods of the Parser() class:

19.1. email — An email and MIME handling package 971

The Python Library Reference, Release 3.5.7

Import the email modules we'll need
from email.parser import Parser

If the e-mail headers are in a file, uncomment these two lines:
with open(messagefile) as fp:
headers = Parser().parse(fp)

Or for parsing headers in a string, use:
headers = Parser().parsestr('From: <user@example.com>\n'

'To: <someone_else@example.com>\n'
'Subject: Test message\n'
'\n'
'Body would go here\n')

Now the header items can be accessed as a dictionary:
print('To: %s' % headers['to'])
print('From: %s' % headers['from'])
print('Subject: %s' % headers['subject'])

Here’s an example of how to send a MIME message containing a bunch of family pictures that may be
residing in a directory:

Import smtplib for the actual sending function
import smtplib

Here are the email package modules we'll need
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart

COMMASPACE = ', '

Create the container (outer) email message.
msg = MIMEMultipart()
msg['Subject'] = 'Our family reunion'
me == the sender's email address
family = the list of all recipients' email addresses
msg['From'] = me
msg['To'] = COMMASPACE.join(family)
msg.preamble = 'Our family reunion'

Assume we know that the image files are all in PNG format
for file in pngfiles:

Open the files in binary mode. Let the MIMEImage class automatically
guess the specific image type.
with open(file, 'rb') as fp:

img = MIMEImage(fp.read())
msg.attach(img)

Send the email via our own SMTP server.
s = smtplib.SMTP('localhost')
s.send_message(msg)
s.quit()

Here’s an example of how to send the entire contents of a directory as an email message:1

1 Thanks to Matthew Dixon Cowles for the original inspiration and examples.

972 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

#!/usr/bin/env python3

"""Send the contents of a directory as a MIME message."""

import os
import sys
import smtplib
For guessing MIME type based on file name extension
import mimetypes

from argparse import ArgumentParser

from email import encoders
from email.message import Message
from email.mime.audio import MIMEAudio
from email.mime.base import MIMEBase
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

COMMASPACE = ', '

def main():
parser = ArgumentParser(description="""\

Send the contents of a directory as a MIME message.
Unless the -o option is given, the email is sent by forwarding to your local
SMTP server, which then does the normal delivery process. Your local machine
must be running an SMTP server.
""")

parser.add_argument('-d', '--directory',
help="""Mail the contents of the specified directory,
otherwise use the current directory. Only the regular
files in the directory are sent, and we don't recurse to
subdirectories.""")

parser.add_argument('-o', '--output',
metavar='FILE',
help="""Print the composed message to FILE instead of
sending the message to the SMTP server.""")

parser.add_argument('-s', '--sender', required=True,
help='The value of the From: header (required)')

parser.add_argument('-r', '--recipient', required=True,
action='append', metavar='RECIPIENT',
default=[], dest='recipients',
help='A To: header value (at least one required)')

args = parser.parse_args()
directory = args.directory
if not directory:

directory = '.'
Create the enclosing (outer) message
outer = MIMEMultipart()
outer['Subject'] = 'Contents of directory %s' % os.path.abspath(directory)
outer['To'] = COMMASPACE.join(args.recipients)
outer['From'] = args.sender
outer.preamble = 'You will not see this in a MIME-aware mail reader.\n'

for filename in os.listdir(directory):

(continues on next page)

19.1. email — An email and MIME handling package 973

The Python Library Reference, Release 3.5.7

(continued from previous page)

path = os.path.join(directory, filename)
if not os.path.isfile(path):

continue
Guess the content type based on the file's extension. Encoding
will be ignored, although we should check for simple things like
gzip'd or compressed files.
ctype, encoding = mimetypes.guess_type(path)
if ctype is None or encoding is not None:

No guess could be made, or the file is encoded (compressed), so
use a generic bag-of-bits type.
ctype = 'application/octet-stream'

maintype, subtype = ctype.split('/', 1)
if maintype == 'text':

with open(path) as fp:
Note: we should handle calculating the charset
msg = MIMEText(fp.read(), _subtype=subtype)

elif maintype == 'image':
with open(path, 'rb') as fp:

msg = MIMEImage(fp.read(), _subtype=subtype)
elif maintype == 'audio':

with open(path, 'rb') as fp:
msg = MIMEAudio(fp.read(), _subtype=subtype)

else:
with open(path, 'rb') as fp:

msg = MIMEBase(maintype, subtype)
msg.set_payload(fp.read())

Encode the payload using Base64
encoders.encode_base64(msg)

Set the filename parameter
msg.add_header('Content-Disposition', 'attachment', filename=filename)
outer.attach(msg)

Now send or store the message
composed = outer.as_string()
if args.output:

with open(args.output, 'w') as fp:
fp.write(composed)

else:
with smtplib.SMTP('localhost') as s:

s.sendmail(args.sender, args.recipients, composed)

if __name__ == '__main__':
main()

Here’s an example of how to unpack a MIME message like the one above, into a directory of files:

#!/usr/bin/env python3

"""Unpack a MIME message into a directory of files."""

import os
import sys
import email
import errno
import mimetypes

(continues on next page)

974 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

(continued from previous page)

from argparse import ArgumentParser

def main():
parser = ArgumentParser(description="""\

Unpack a MIME message into a directory of files.
""")

parser.add_argument('-d', '--directory', required=True,
help="""Unpack the MIME message into the named
directory, which will be created if it doesn't already
exist.""")

parser.add_argument('msgfile')
args = parser.parse_args()

with open(args.msgfile) as fp:
msg = email.message_from_file(fp)

try:
os.mkdir(args.directory)

except FileExistsError:
pass

counter = 1
for part in msg.walk():

multipart/* are just containers
if part.get_content_maintype() == 'multipart':

continue
Applications should really sanitize the given filename so that an
email message can't be used to overwrite important files
filename = part.get_filename()
if not filename:

ext = mimetypes.guess_extension(part.get_content_type())
if not ext:

Use a generic bag-of-bits extension
ext = '.bin'

filename = 'part-%03d%s' % (counter, ext)
counter += 1
with open(os.path.join(args.directory, filename), 'wb') as fp:

fp.write(part.get_payload(decode=True))

if __name__ == '__main__':
main()

Here’s an example of how to create an HTML message with an alternative plain text version:2

#!/usr/bin/env python3

import smtplib

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

me == my email address
you == recipient's email address

(continues on next page)

2 Contributed by Martin Matejek.

19.1. email — An email and MIME handling package 975

The Python Library Reference, Release 3.5.7

(continued from previous page)

me = "my@email.com"
you = "your@email.com"

Create message container - the correct MIME type is multipart/alternative.
msg = MIMEMultipart('alternative')
msg['Subject'] = "Link"
msg['From'] = me
msg['To'] = you

Create the body of the message (a plain-text and an HTML version).
text = "Hi!\nHow are you?\nHere is the link you wanted:\nhttps://www.python.org"
html = """\
<html>
<head></head>
<body>
<p>Hi!

How are you?

Here is the link you wanted.

</p>
</body>

</html>
"""

Record the MIME types of both parts - text/plain and text/html.
part1 = MIMEText(text, 'plain')
part2 = MIMEText(html, 'html')

Attach parts into message container.
According to RFC 2046, the last part of a multipart message, in this case
the HTML message, is best and preferred.
msg.attach(part1)
msg.attach(part2)

Send the message via local SMTP server.
s = smtplib.SMTP('localhost')
sendmail function takes 3 arguments: sender's address, recipient's address
and message to send - here it is sent as one string.
s.sendmail(me, you, msg.as_string())
s.quit()

Examples using the Provisional API

Here is a reworking of the last example using the provisional API. To make things a bit more interesting, we
include a related image in the html part, and we save a copy of what we are going to send to disk, as well
as sending it.

This example also shows how easy it is to include non-ASCII, and simplifies the sending of the message using
the send_message() method of the smtplib module.

#!/usr/bin/env python3

import smtplib

from email.message import EmailMessage
from email.headerregistry import Address

(continues on next page)

976 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

(continued from previous page)

from email.utils import make_msgid

Create the base text message.
msg = EmailMessage()
msg['Subject'] = "Ayons asperges pour le déjeuner"
msg['From'] = Address("Pepé Le Pew", "pepe", "example.com")
msg['To'] = (Address("Penelope Pussycat", "penelope", "example.com"),

Address("Fabrette Pussycat", "fabrette", "example.com"))
msg.set_content("""\
Salut!

Cela ressemble à un excellent recipie[1] déjeuner.

[1] http://www.yummly.com/recipe/Roasted-Asparagus-Epicurious-203718

--Pepé
""")

Add the html version. This converts the message into a multipart/alternative
container, with the original text message as the first part and the new html
message as the second part.
asparagus_cid = make_msgid()
msg.add_alternative("""\
<html>
<head></head>
<body>
<p>Salut!<\p>
<p>Cela ressemble à un excellent

recipie

 déjeuner.
</p>

</body>
</html>
""".format(asparagus_cid=asparagus_cid[1:-1]), subtype='html')
note that we needed to peel the <> off the msgid for use in the html.

Now add the related image to the html part.
with open("roasted-asparagus.jpg", 'rb') as img:

msg.get_payload()[1].add_related(img.read(), 'image', 'jpeg',
cid=asparagus_cid)

Make a local copy of what we are going to send.
with open('outgoing.msg', 'wb') as f:

f.write(bytes(msg))

Send the message via local SMTP server.
with smtplib.SMTP('localhost') as s:

s.send_message(msg)

If we were instead sent the message from the last example, here is one way we could process it:

import os
import sys
import tempfile

(continues on next page)

19.1. email — An email and MIME handling package 977

The Python Library Reference, Release 3.5.7

(continued from previous page)

import mimetypes
import webbrowser

Import the email modules we'll need
from email import policy
from email.parser import BytesParser

An imaginary module that would make this work and be safe.
from imaginary import magic_html_parser

In a real program you'd get the filename from the arguments.
with open('outgoing.msg', 'rb') as fp:

msg = BytesParser(policy=policy.default).parse(fp)

Now the header items can be accessed as a dictionary, and any non-ASCII will
be converted to unicode:
print('To:', msg['to'])
print('From:', msg['from'])
print('Subject:', msg['subject'])

If we want to print a priview of the message content, we can extract whatever
the least formatted payload is and print the first three lines. Of course,
if the message has no plain text part printing the first three lines of html
is probably useless, but this is just a conceptual example.
simplest = msg.get_body(preferencelist=('plain', 'html'))
print()
print(''.join(simplest.get_content().splitlines(keepends=True)[:3]))

ans = input("View full message?")
if ans.lower()[0] == 'n':

sys.exit()

We can extract the richest alternative in order to display it:
richest = msg.get_body()
partfiles = {}
if richest['content-type'].maintype == 'text':

if richest['content-type'].subtype == 'plain':
for line in richest.get_content().splitlines():

print(line)
sys.exit()

elif richest['content-type'].subtype == 'html':
body = richest

else:
print("Don't know how to display {}".format(richest.get_content_type()))
sys.exit()

elif richest['content-type'].content_type == 'multipart/related':
body = richest.get_body(preferencelist=('html'))
for part in richest.iter_attachments():

fn = part.get_filename()
if fn:

extension = os.path.splitext(part.get_filename())[1]
else:

extension = mimetypes.guess_extension(part.get_content_type())
with tempfile.NamedTemporaryFile(suffix=extension, delete=False) as f:

f.write(part.get_content())
again strip the <> to go from email form of cid to html form.

(continues on next page)

978 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

(continued from previous page)

partfiles[part['content-id'][1:-1]] = f.name
else:

print("Don't know how to display {}".format(richest.get_content_type()))
sys.exit()

with tempfile.NamedTemporaryFile(mode='w', delete=False) as f:
The magic_html_parser has to rewrite the href="cid:...." attributes to
point to the filenames in partfiles. It also has to do a safety-sanitize
of the html. It could be written using html.parser.
f.write(magic_html_parser(body.get_content(), partfiles))

webbrowser.open(f.name)
os.remove(f.name)
for fn in partfiles.values():

os.remove(fn)

Of course, there are lots of email messages that could break this simple
minded program, but it will handle the most common ones.

Up to the prompt, the output from the above is:

To: Penelope Pussycat <penelope@example.com>, Fabrette Pussycat <fabrette@example.com>
From: Pepé Le Pew <pepe@example.com>
Subject: Ayons asperges pour le déjeuner

Salut!

Cela ressemble à un excellent recipie[1] déjeuner.

See also:

Module smtplib SMTP protocol client

Module nntplib NNTP protocol client

19.1.15 Package History

This table describes the release history of the email package, corresponding to the version of Python that
the package was released with. For purposes of this document, when you see a note about change or added
versions, these refer to the Python version the change was made in, not the email package version. This
table also describes the Python compatibility of each version of the package.

email version distributed with compatible with
1.x Python 2.2.0 to Python 2.2.1 no longer supported
2.5 Python 2.2.2+ and Python 2.3 Python 2.1 to 2.5
3.0 Python 2.4 and Python 2.5 Python 2.3 to 2.6
4.0 Python 2.5 to Python 2.7 Python 2.3 to 2.7
5.0 Python 3.0 and Python 3.1 Python 3.0 to 3.2
5.1 Python 3.2 Python 3.2

After Version 5.1 (Python 3.2), the email package no longer has a version that is separate from the Python
version. (See the whatsnew-index documents for the respective Python versions for details on changes.)

Here are the major differences between email version 5.1 and version 5.0:

• It is once again possible to parse messages containing non-ASCII bytes, and to reproduce such messages
if the data containing the non-ASCII bytes is not modified.

19.1. email — An email and MIME handling package 979

The Python Library Reference, Release 3.5.7

• New functions message_from_bytes() and message_from_binary_file(), and new classes BytesFeed-
Parser and BytesParser allow binary message data to be parsed into model objects.

• Given bytes input to the model, get_payload() will by default decode a message body that has a
Content-Transfer-Encoding of 8bit using the charset specified in the MIME headers and return the
resulting string.

• Given bytes input to the model, Generator will convert message bodies that have a Content-Transfer-
Encoding of 8bit to instead have a 7bit Content-Transfer-Encoding.

• New class BytesGenerator produces bytes as output, preserving any unchanged non-ASCII data that
was present in the input used to build the model, including message bodies with a Content-Transfer-
Encoding of 8bit.

Here are the major differences between email version 5.0 and version 4:

• All operations are on unicode strings. Text inputs must be strings, text outputs are strings. Outputs
are limited to the ASCII character set and so can be encoded to ASCII for transmission. Inputs are
also limited to ASCII; this is an acknowledged limitation of email 5.0 and means it can only be used
to parse email that is 7bit clean.

Here are the major differences between email version 4 and version 3:

• All modules have been renamed according to PEP 8 standards. For example, the version 3 module
email.Message was renamed to email.message in version 4.

• A new subpackage email.mime was added and all the version 3 email.MIME* modules were renamed
and situated into the email.mime subpackage. For example, the version 3 module email.MIMEText
was renamed to email.mime.text.

Note that the version 3 names will continue to work until Python 2.6.

• The email.mime.application module was added, which contains the MIMEApplication class.

• Methods that were deprecated in version 3 have been removed. These include Generator.__call__(),
Message.get_type(), Message.get_main_type(), Message.get_subtype().

• Fixes have been added for RFC 2231 support which can change some of the return types for Message.
get_param and friends. Under some circumstances, values which used to return a 3-tuple now return
simple strings (specifically, if all extended parameter segments were unencoded, there is no language
and charset designation expected, so the return type is now a simple string). Also, %-decoding used
to be done for both encoded and unencoded segments; this decoding is now done only for encoded
segments.

Here are the major differences between email version 3 and version 2:

• The FeedParser class was introduced, and the Parser class was implemented in terms of the FeedParser.
All parsing therefore is non-strict, and parsing will make a best effort never to raise an exception.
Problems found while parsing messages are stored in the message’s defect attribute.

• All aspects of the API which raised DeprecationWarnings in version 2 have been removed. These
include the _encoder argument to the MIMEText constructor, the Message.add_payload() method,
the Utils.dump_address_pair() function, and the functions Utils.decode() and Utils.encode().

• New DeprecationWarnings have been added to: Generator.__call__(), Message.get_type(), Message.
get_main_type(), Message.get_subtype(), and the strict argument to the Parser class. These are
expected to be removed in future versions.

• Support for Pythons earlier than 2.3 has been removed.

Here are the differences between email version 2 and version 1:

• The email.Header and email.Charset modules have been added.

980 Chapter 19. Internet Data Handling

https://www.python.org/dev/peps/pep-0008
https://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 3.5.7

• The pickle format for Message instances has changed. Since this was never (and still isn’t) formally
defined, this isn’t considered a backward incompatibility. However if your application pickles and
unpickles Message instances, be aware that in email version 2, Message instances now have private
variables _charset and _default_type.

• Several methods in the Message class have been deprecated, or their signatures changed. Also, many
new methods have been added. See the documentation for the Message class for details. The changes
should be completely backward compatible.

• The object structure has changed in the face of message/rfc822 content types. In email version 1, such
a type would be represented by a scalar payload, i.e. the container message’s is_multipart() returned
false, get_payload() was not a list object, but a single Message instance.

This structure was inconsistent with the rest of the package, so the object representation for
message/rfc822 content types was changed. In email version 2, the container does return True from
is_multipart(), and get_payload() returns a list containing a single Message item.

Note that this is one place that backward compatibility could not be completely maintained. However,
if you’re already testing the return type of get_payload(), you should be fine. You just need to make
sure your code doesn’t do a set_payload() with a Message instance on a container with a content type
of message/rfc822.

• The Parser constructor’s strict argument was added, and its parse() and parsestr() methods grew a
headersonly argument. The strict flag was also added to functions email.message_from_file() and
email.message_from_string().

• Generator.__call__() is deprecated; use Generator.flatten instead. The Generator class has also
grown the clone() method.

• The DecodedGenerator class in the email.generator module was added.

• The intermediate base classes MIMENonMultipart and MIMEMultipart have been added, and inter-
posed in the class hierarchy for most of the other MIME-related derived classes.

• The _encoder argument to the MIMEText constructor has been deprecated. Encoding now happens
implicitly based on the _charset argument.

• The following functions in the email.Utils module have been deprecated: dump_address_pairs(), de-
code(), and encode(). The following functions have been added to the module: make_msgid(), de-
code_rfc2231(), encode_rfc2231(), and decode_params().

• The non-public function email.Iterators._structure() was added.

19.1.16 Differences from mimelib

The email package was originally prototyped as a separate library called mimelib. Changes have been made
so that method names are more consistent, and some methods or modules have either been added or removed.
The semantics of some of the methods have also changed. For the most part, any functionality available
in mimelib is still available in the email package, albeit often in a different way. Backward compatibility
between the mimelib package and the email package was not a priority.

Here is a brief description of the differences between the mimelib and the email packages, along with hints
on how to port your applications.

Of course, the most visible difference between the two packages is that the package name has been changed
to email. In addition, the top-level package has the following differences:

• messageFromString() has been renamed to message_from_string().

• messageFromFile() has been renamed to message_from_file().

19.1. email — An email and MIME handling package 981

http://mimelib.sourceforge.net/

The Python Library Reference, Release 3.5.7

The Message class has the following differences:

• The method asString() was renamed to as_string().

• The method ismultipart() was renamed to is_multipart().

• The get_payload() method has grown a decode optional argument.

• The method getall() was renamed to get_all().

• The method addheader() was renamed to add_header().

• The method gettype() was renamed to get_type().

• The method getmaintype() was renamed to get_main_type().

• The method getsubtype() was renamed to get_subtype().

• The method getparams() was renamed to get_params(). Also, whereas getparams() returned a list of
strings, get_params() returns a list of 2-tuples, effectively the key/value pairs of the parameters, split
on the '=' sign.

• The method getparam() was renamed to get_param().

• The method getcharsets() was renamed to get_charsets().

• The method getfilename() was renamed to get_filename().

• The method getboundary() was renamed to get_boundary().

• The method setboundary() was renamed to set_boundary().

• The method getdecodedpayload() was removed. To get similar functionality, pass the value 1 to the
decode flag of the get_payload() method.

• The method getpayloadastext() was removed. Similar functionality is supported by the DecodedGen-
erator class in the email.generator module.

• The method getbodyastext() was removed. You can get similar functionality by creating an iterator
with typed_subpart_iterator() in the email.iterators module.

The Parser class has no differences in its public interface. It does have some additional smarts to recog-
nize message/delivery-status type messages, which it represents as a Message instance containing separate
Message subparts for each header block in the delivery status notification1.

The Generator class has no differences in its public interface. There is a new class in the email.generator
module though, called DecodedGenerator which provides most of the functionality previously available in
the Message.getpayloadastext() method.

The following modules and classes have been changed:

• The MIMEBase class constructor arguments _major and _minor have changed to _maintype and
_subtype respectively.

• The Image class/module has been renamed to MIMEImage. The _minor argument has been renamed
to _subtype.

• The Text class/module has been renamed to MIMEText. The _minor argument has been renamed to
_subtype.

• The MessageRFC822 class/module has been renamed to MIMEMessage. Note that an earlier version of
mimelib called this class/module RFC822, but that clashed with the Python standard library module
rfc822 on some case-insensitive file systems.

1 Delivery Status Notifications (DSN) are defined in RFC 1894.

982 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc1894.html

The Python Library Reference, Release 3.5.7

Also, the MIMEMessage class now represents any kind of MIME message with main type message. It
takes an optional argument _subtype which is used to set the MIME subtype. _subtype defaults to
rfc822.

mimelib provided some utility functions in its address and date modules. All of these functions have been
moved to the email.utils module.

The MsgReader class/module has been removed. Its functionality is most closely supported in the
body_line_iterator() function in the email.iterators module.

19.2 json — JSON encoder and decoder

Source code: Lib/json/__init__.py

JSON (JavaScript Object Notation), specified by RFC 7159 (which obsoletes RFC 4627) and by ECMA-404,
is a lightweight data interchange format inspired by JavaScript object literal syntax (although it is not a
strict subset of JavaScript1).

json exposes an API familiar to users of the standard library marshal and pickle modules.

Encoding basic Python object hierarchies:

>>> import json
>>> json.dumps(['foo', {'bar': ('baz', None, 1.0, 2)}])
'["foo", {"bar": ["baz", null, 1.0, 2]}]'
>>> print(json.dumps("\"foo\bar"))
"\"foo\bar"
>>> print(json.dumps('\u1234'))
"\u1234"
>>> print(json.dumps('\\'))
"\\"
>>> print(json.dumps({"c": 0, "b": 0, "a": 0}, sort_keys=True))
{"a": 0, "b": 0, "c": 0}
>>> from io import StringIO
>>> io = StringIO()
>>> json.dump(['streaming API'], io)
>>> io.getvalue()
'["streaming API"]'

Compact encoding:

>>> import json
>>> json.dumps([1,2,3,{'4': 5, '6': 7}], separators=(',', ':'))
'[1,2,3,{"4":5,"6":7}]'

Pretty printing:

>>> import json
>>> print(json.dumps({'4': 5, '6': 7}, sort_keys=True, indent=4))
{

"4": 5,
"6": 7

}

1 As noted in the errata for RFC 7159, JSON permits literal U+2028 (LINE SEPARATOR) and U+2029 (PARAGRAPH
SEPARATOR) characters in strings, whereas JavaScript (as of ECMAScript Edition 5.1) does not.

19.2. json — JSON encoder and decoder 983

https://github.com/python/cpython/tree/3.5/Lib/json/__init__.py
http://json.org
https://tools.ietf.org/html/rfc7159.html
https://tools.ietf.org/html/rfc4627.html
http://www.ecma-international.org/publications/standards/Ecma-404.htm
https://en.wikipedia.org/wiki/JavaScript
https://www.rfc-editor.org/errata_search.php?rfc=7159

The Python Library Reference, Release 3.5.7

Decoding JSON:

>>> import json
>>> json.loads('["foo", {"bar":["baz", null, 1.0, 2]}]')
['foo', {'bar': ['baz', None, 1.0, 2]}]
>>> json.loads('"\\"foo\\bar"')
'"foo\x08ar'
>>> from io import StringIO
>>> io = StringIO('["streaming API"]')
>>> json.load(io)
['streaming API']

Specializing JSON object decoding:

>>> import json
>>> def as_complex(dct):
... if '__complex__' in dct:
... return complex(dct['real'], dct['imag'])
... return dct
...
>>> json.loads('{"__complex__": true, "real": 1, "imag": 2}',
... object_hook=as_complex)
(1+2j)
>>> import decimal
>>> json.loads('1.1', parse_float=decimal.Decimal)
Decimal('1.1')

Extending JSONEncoder:

>>> import json
>>> class ComplexEncoder(json.JSONEncoder):
... def default(self, obj):
... if isinstance(obj, complex):
... return [obj.real, obj.imag]
... # Let the base class default method raise the TypeError
... return json.JSONEncoder.default(self, obj)
...
>>> json.dumps(2 + 1j, cls=ComplexEncoder)
'[2.0, 1.0]'
>>> ComplexEncoder().encode(2 + 1j)
'[2.0, 1.0]'
>>> list(ComplexEncoder().iterencode(2 + 1j))
['[2.0', ', 1.0', ']']

Using json.tool from the shell to validate and pretty-print:

$ echo '{"json":"obj"}' | python -m json.tool
{

"json": "obj"
}
$ echo '{1.2:3.4}' | python -m json.tool
Expecting property name enclosed in double quotes: line 1 column 2 (char 1)

See Command Line Interface for detailed documentation.

Note: JSON is a subset of YAML 1.2. The JSON produced by this module’s default settings (in particular,
the default separators value) is also a subset of YAML 1.0 and 1.1. This module can thus also be used as a

984 Chapter 19. Internet Data Handling

http://yaml.org/

The Python Library Reference, Release 3.5.7

YAML serializer.

19.2.1 Basic Usage

json.dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw)

Serialize obj as a JSON formatted stream to fp (a .write()-supporting file-like object) using this con-
version table.

If skipkeys is true (default: False), then dict keys that are not of a basic type (str, int, float, bool,
None) will be skipped instead of raising a TypeError.

The json module always produces str objects, not bytes objects. Therefore, fp.write() must support
str input.

If ensure_ascii is true (the default), the output is guaranteed to have all incoming non-ASCII characters
escaped. If ensure_ascii is false, these characters will be output as-is.

If check_circular is false (default: True), then the circular reference check for container types will be
skipped and a circular reference will result in an OverflowError (or worse).

If allow_nan is false (default: True), then it will be a ValueError to serialize out of range float values
(nan, inf, -inf) in strict compliance of the JSON specification. If allow_nan is true, their JavaScript
equivalents (NaN, Infinity, -Infinity) will be used.

If indent is a non-negative integer or string, then JSON array elements and object members will be
pretty-printed with that indent level. An indent level of 0, negative, or "" will only insert newlines.
None (the default) selects the most compact representation. Using a positive integer indent indents
that many spaces per level. If indent is a string (such as "\t"), that string is used to indent each level.

Changed in version 3.2: Allow strings for indent in addition to integers.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (', ', ':
') if indent is None and (',', ': ') otherwise. To get the most compact JSON representation, you
should specify (',', ':') to eliminate whitespace.

Changed in version 3.4: Use (',', ': ') as default if indent is not None.

If specified, default should be a function that gets called for objects that can’t otherwise be serialized. It
should return a JSON encodable version of the object or raise a TypeError. If not specified, TypeError
is raised.

If sort_keys is true (default: False), then the output of dictionaries will be sorted by key.

To use a custom JSONEncoder subclass (e.g. one that overrides the default() method to serialize
additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.

json.dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw)

Serialize obj to a JSON formatted str using this conversion table. The arguments have the same
meaning as in dump().

Note: Unlike pickle and marshal, JSON is not a framed protocol, so trying to serialize multiple objects
with repeated calls to dump() using the same fp will result in an invalid JSON file.

Note: Keys in key/value pairs of JSON are always of the type str. When a dictionary is converted
into JSON, all the keys of the dictionary are coerced to strings. As a result of this, if a dictionary is

19.2. json — JSON encoder and decoder 985

The Python Library Reference, Release 3.5.7

converted into JSON and then back into a dictionary, the dictionary may not equal the original one.
That is, loads(dumps(x)) != x if x has non-string keys.

json.load(fp, cls=None, object_hook=None, parse_float=None, parse_int=None,
parse_constant=None, object_pairs_hook=None, **kw)

Deserialize fp (a .read()-supporting file-like object containing a JSON document) to a Python object
using this conversion table.

object_hook is an optional function that will be called with the result of any object literal decoded (a
dict). The return value of object_hook will be used instead of the dict. This feature can be used to
implement custom decoders (e.g. JSON-RPC class hinting).

object_pairs_hook is an optional function that will be called with the result of any object literal
decoded with an ordered list of pairs. The return value of object_pairs_hook will be used instead
of the dict. This feature can be used to implement custom decoders that rely on the order that the
key and value pairs are decoded (for example, collections.OrderedDict() will remember the order of
insertion). If object_hook is also defined, the object_pairs_hook takes priority.

Changed in version 3.1: Added support for object_pairs_hook.

parse_float, if specified, will be called with the string of every JSON float to be decoded. By default,
this is equivalent to float(num_str). This can be used to use another datatype or parser for JSON
floats (e.g. decimal.Decimal).

parse_int, if specified, will be called with the string of every JSON int to be decoded. By default, this
is equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers
(e.g. float).

parse_constant, if specified, will be called with one of the following strings: '-Infinity', 'Infinity',
'NaN'. This can be used to raise an exception if invalid JSON numbers are encountered.

Changed in version 3.1: parse_constant doesn’t get called on ‘null’, ‘true’, ‘false’ anymore.

To use a custom JSONDecoder subclass, specify it with the cls kwarg; otherwise JSONDecoder is used.
Additional keyword arguments will be passed to the constructor of the class.

If the data being deserialized is not a valid JSON document, a JSONDecodeError will be raised.

json.loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, parse_int=None,
parse_constant=None, object_pairs_hook=None, **kw)

Deserialize s (a str instance containing a JSON document) to a Python object using this conversion
table.

The other arguments have the same meaning as in load(), except encoding which is ignored and
deprecated.

If the data being deserialized is not a valid JSON document, a JSONDecodeError will be raised.

19.2.2 Encoders and Decoders

class json.JSONDecoder(object_hook=None, parse_float=None, parse_int=None,
parse_constant=None, strict=True, object_pairs_hook=None)

Simple JSON decoder.

Performs the following translations in decoding by default:

986 Chapter 19. Internet Data Handling

http://www.jsonrpc.org

The Python Library Reference, Release 3.5.7

JSON Python
object dict
array list
string str
number (int) int
number (real) float
true True
false False
null None

It also understands NaN, Infinity, and -Infinity as their corresponding float values, which is outside
the JSON spec.

object_hook, if specified, will be called with the result of every JSON object decoded and its return
value will be used in place of the given dict. This can be used to provide custom deserializations (e.g.
to support JSON-RPC class hinting).

object_pairs_hook, if specified will be called with the result of every JSON object decoded with an
ordered list of pairs. The return value of object_pairs_hook will be used instead of the dict. This
feature can be used to implement custom decoders that rely on the order that the key and value
pairs are decoded (for example, collections.OrderedDict() will remember the order of insertion). If
object_hook is also defined, the object_pairs_hook takes priority.

Changed in version 3.1: Added support for object_pairs_hook.

parse_float, if specified, will be called with the string of every JSON float to be decoded. By default,
this is equivalent to float(num_str). This can be used to use another datatype or parser for JSON
floats (e.g. decimal.Decimal).

parse_int, if specified, will be called with the string of every JSON int to be decoded. By default, this
is equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers
(e.g. float).

parse_constant, if specified, will be called with one of the following strings: '-Infinity', 'Infinity',
'NaN'. This can be used to raise an exception if invalid JSON numbers are encountered.

If strict is false (True is the default), then control characters will be allowed inside strings. Control
characters in this context are those with character codes in the 0–31 range, including '\t' (tab), '\n',
'\r' and '\0'.

If the data being deserialized is not a valid JSON document, a JSONDecodeError will be raised.

decode(s)
Return the Python representation of s (a str instance containing a JSON document).

JSONDecodeError will be raised if the given JSON document is not valid.

raw_decode(s)
Decode a JSON document from s (a str beginning with a JSON document) and return a 2-tuple
of the Python representation and the index in s where the document ended.

This can be used to decode a JSON document from a string that may have extraneous data at
the end.

class json.JSONEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None, default=None)

Extensible JSON encoder for Python data structures.

Supports the following objects and types by default:

19.2. json — JSON encoder and decoder 987

The Python Library Reference, Release 3.5.7

Python JSON
dict object
list, tuple array
str string
int, float, int- & float-derived Enums number
True true
False false
None null

Changed in version 3.4: Added support for int- and float-derived Enum classes.

To extend this to recognize other objects, subclass and implement a default() method with another
method that returns a serializable object for o if possible, otherwise it should call the superclass
implementation (to raise TypeError).

If skipkeys is false (the default), then it is a TypeError to attempt encoding of keys that are not str,
int, float or None. If skipkeys is true, such items are simply skipped.

If ensure_ascii is true (the default), the output is guaranteed to have all incoming non-ASCII characters
escaped. If ensure_ascii is false, these characters will be output as-is.

If check_circular is true (the default), then lists, dicts, and custom encoded objects will be checked
for circular references during encoding to prevent an infinite recursion (which would cause an Over-
flowError). Otherwise, no such check takes place.

If allow_nan is true (the default), then NaN, Infinity, and -Infinity will be encoded as such. This
behavior is not JSON specification compliant, but is consistent with most JavaScript based encoders
and decoders. Otherwise, it will be a ValueError to encode such floats.

If sort_keys is true (default: False), then the output of dictionaries will be sorted by key; this is useful
for regression tests to ensure that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer or string, then JSON array elements and object members will be
pretty-printed with that indent level. An indent level of 0, negative, or "" will only insert newlines.
None (the default) selects the most compact representation. Using a positive integer indent indents
that many spaces per level. If indent is a string (such as "\t"), that string is used to indent each level.

Changed in version 3.2: Allow strings for indent in addition to integers.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (', ', ':
') if indent is None and (',', ': ') otherwise. To get the most compact JSON representation, you
should specify (',', ':') to eliminate whitespace.

Changed in version 3.4: Use (',', ': ') as default if indent is not None.

If specified, default should be a function that gets called for objects that can’t otherwise be serialized. It
should return a JSON encodable version of the object or raise a TypeError. If not specified, TypeError
is raised.

default(o)
Implement this method in a subclass such that it returns a serializable object for o, or calls the
base implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

(continues on next page)

988 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

(continued from previous page)

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return json.JSONEncoder.default(self, o)

encode(o)
Return a JSON string representation of a Python data structure, o. For example:

>>> json.JSONEncoder().encode({"foo": ["bar", "baz"]})
'{"foo": ["bar", "baz"]}'

iterencode(o)
Encode the given object, o, and yield each string representation as available. For example:

for chunk in json.JSONEncoder().iterencode(bigobject):
mysocket.write(chunk)

19.2.3 Exceptions

exception json.JSONDecodeError(msg, doc, pos)
Subclass of ValueError with the following additional attributes:

msg
The unformatted error message.

doc
The JSON document being parsed.

pos
The start index of doc where parsing failed.

lineno
The line corresponding to pos.

colno
The column corresponding to pos.

New in version 3.5.

19.2.4 Standard Compliance and Interoperability

The JSON format is specified by RFC 7159 and by ECMA-404. This section details this module’s level
of compliance with the RFC. For simplicity, JSONEncoder and JSONDecoder subclasses, and parameters
other than those explicitly mentioned, are not considered.

This module does not comply with the RFC in a strict fashion, implementing some extensions that are valid
JavaScript but not valid JSON. In particular:

• Infinite and NaN number values are accepted and output;

• Repeated names within an object are accepted, and only the value of the last name-value pair is used.

Since the RFC permits RFC-compliant parsers to accept input texts that are not RFC-compliant, this
module’s deserializer is technically RFC-compliant under default settings.

19.2. json — JSON encoder and decoder 989

https://tools.ietf.org/html/rfc7159.html
http://www.ecma-international.org/publications/standards/Ecma-404.htm

The Python Library Reference, Release 3.5.7

Character Encodings

The RFC requires that JSON be represented using either UTF-8, UTF-16, or UTF-32, with UTF-8 being
the recommended default for maximum interoperability.

As permitted, though not required, by the RFC, this module’s serializer sets ensure_ascii=True by default,
thus escaping the output so that the resulting strings only contain ASCII characters.

Other than the ensure_ascii parameter, this module is defined strictly in terms of conversion between Python
objects and Unicode strings, and thus does not otherwise directly address the issue of character encodings.

The RFC prohibits adding a byte order mark (BOM) to the start of a JSON text, and this module’s serializer
does not add a BOM to its output. The RFC permits, but does not require, JSON deserializers to ignore an
initial BOM in their input. This module’s deserializer raises a ValueError when an initial BOM is present.

The RFC does not explicitly forbid JSON strings which contain byte sequences that don’t correspond to valid
Unicode characters (e.g. unpaired UTF-16 surrogates), but it does note that they may cause interoperability
problems. By default, this module accepts and outputs (when present in the original str) code points for
such sequences.

Infinite and NaN Number Values

The RFC does not permit the representation of infinite or NaN number values. Despite that, by default, this
module accepts and outputs Infinity, -Infinity, and NaN as if they were valid JSON number literal values:

>>> # Neither of these calls raises an exception, but the results are not valid JSON
>>> json.dumps(float('-inf'))
'-Infinity'
>>> json.dumps(float('nan'))
'NaN'
>>> # Same when deserializing
>>> json.loads('-Infinity')
-inf
>>> json.loads('NaN')
nan

In the serializer, the allow_nan parameter can be used to alter this behavior. In the deserializer, the
parse_constant parameter can be used to alter this behavior.

Repeated Names Within an Object

The RFC specifies that the names within a JSON object should be unique, but does not mandate how
repeated names in JSON objects should be handled. By default, this module does not raise an exception;
instead, it ignores all but the last name-value pair for a given name:

>>> weird_json = '{"x": 1, "x": 2, "x": 3}'
>>> json.loads(weird_json)
{'x': 3}

The object_pairs_hook parameter can be used to alter this behavior.

Top-level Non-Object, Non-Array Values

The old version of JSON specified by the obsolete RFC 4627 required that the top-level value of a JSON text
must be either a JSON object or array (Python dict or list), and could not be a JSON null, boolean, number,

990 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc4627.html

The Python Library Reference, Release 3.5.7

or string value. RFC 7159 removed that restriction, and this module does not and has never implemented
that restriction in either its serializer or its deserializer.

Regardless, for maximum interoperability, you may wish to voluntarily adhere to the restriction yourself.

Implementation Limitations

Some JSON deserializer implementations may set limits on:

• the size of accepted JSON texts

• the maximum level of nesting of JSON objects and arrays

• the range and precision of JSON numbers

• the content and maximum length of JSON strings

This module does not impose any such limits beyond those of the relevant Python datatypes themselves or
the Python interpreter itself.

When serializing to JSON, beware any such limitations in applications that may consume your JSON. In
particular, it is common for JSON numbers to be deserialized into IEEE 754 double precision numbers
and thus subject to that representation’s range and precision limitations. This is especially relevant when
serializing Python int values of extremely large magnitude, or when serializing instances of “exotic” numerical
types such as decimal.Decimal.

19.2.5 Command Line Interface

Source code: Lib/json/tool.py

The json.tool module provides a simple command line interface to validate and pretty-print JSON objects.

If the optional infile and outfile arguments are not specified, sys.stdin and sys.stdout will be used respectively:

$ echo '{"json": "obj"}' | python -m json.tool
{

"json": "obj"
}
$ echo '{1.2:3.4}' | python -m json.tool
Expecting property name enclosed in double quotes: line 1 column 2 (char 1)

Changed in version 3.5: The output is now in the same order as the input. Use the --sort-keys option to sort
the output of dictionaries alphabetically by key.

Command line options

infile
The JSON file to be validated or pretty-printed:

$ python -m json.tool mp_films.json
[

{
"title": "And Now for Something Completely Different",
"year": 1971

},

(continues on next page)

19.2. json — JSON encoder and decoder 991

https://tools.ietf.org/html/rfc7159.html
https://github.com/python/cpython/tree/3.5/Lib/json/tool.py

The Python Library Reference, Release 3.5.7

(continued from previous page)

{
"title": "Monty Python and the Holy Grail",
"year": 1975

}
]

If infile is not specified, read from sys.stdin.

outfile
Write the output of the infile to the given outfile. Otherwise, write it to sys.stdout.

--sort-keys
Sort the output of dictionaries alphabetically by key.

New in version 3.5.

-h, --help
Show the help message.

19.3 mailcap — Mailcap file handling

Source code: Lib/mailcap.py

Mailcap files are used to configure how MIME-aware applications such as mail readers and Web browsers
react to files with different MIME types. (The name “mailcap” is derived from the phrase “mail capability”.)
For example, a mailcap file might contain a line like video/mpeg; xmpeg %s. Then, if the user encounters
an email message or Web document with the MIME type video/mpeg, %s will be replaced by a filename
(usually one belonging to a temporary file) and the xmpeg program can be automatically started to view
the file.

The mailcap format is documented in RFC 1524, “A User Agent Configuration Mechanism For Multimedia
Mail Format Information,” but is not an Internet standard. However, mailcap files are supported on most
Unix systems.

mailcap.findmatch(caps, MIMEtype, key=’view’, filename=’/dev/null’, plist=[])
Return a 2-tuple; the first element is a string containing the command line to be executed (which can
be passed to os.system()), and the second element is the mailcap entry for a given MIME type. If no
matching MIME type can be found, (None, None) is returned.

key is the name of the field desired, which represents the type of activity to be performed; the default
value is ‘view’, since in the most common case you simply want to view the body of the MIME-typed
data. Other possible values might be ‘compose’ and ‘edit’, if you wanted to create a new body of the
given MIME type or alter the existing body data. See RFC 1524 for a complete list of these fields.

filename is the filename to be substituted for %s in the command line; the default value is '/dev/null'
which is almost certainly not what you want, so usually you’ll override it by specifying a filename.

plist can be a list containing named parameters; the default value is simply an empty list. Each entry
in the list must be a string containing the parameter name, an equals sign ('='), and the parameter’s
value. Mailcap entries can contain named parameters like %{foo}, which will be replaced by the
value of the parameter named ‘foo’. For example, if the command line showpartial %{id} %{number}
%{total} was in a mailcap file, and plist was set to ['id=1', 'number=2', 'total=3'], the resulting
command line would be 'showpartial 1 2 3'.

992 Chapter 19. Internet Data Handling

https://github.com/python/cpython/tree/3.5/Lib/mailcap.py
https://tools.ietf.org/html/rfc1524.html
https://tools.ietf.org/html/rfc1524.html

The Python Library Reference, Release 3.5.7

In a mailcap file, the “test” field can optionally be specified to test some external condition (such as
the machine architecture, or the window system in use) to determine whether or not the mailcap line
applies. findmatch() will automatically check such conditions and skip the entry if the check fails.

mailcap.getcaps()
Returns a dictionary mapping MIME types to a list of mailcap file entries. This dictionary must be
passed to the findmatch() function. An entry is stored as a list of dictionaries, but it shouldn’t be
necessary to know the details of this representation.

The information is derived from all of the mailcap files found on the system. Settings in the user’s
mailcap file $HOME/.mailcap will override settings in the system mailcap files /etc/mailcap, /usr/etc/
mailcap, and /usr/local/etc/mailcap.

An example usage:

>>> import mailcap
>>> d = mailcap.getcaps()
>>> mailcap.findmatch(d, 'video/mpeg', filename='tmp1223')
('xmpeg tmp1223', {'view': 'xmpeg %s'})

19.4 mailbox — Manipulate mailboxes in various formats

Source code: Lib/mailbox.py

This module defines two classes, Mailbox and Message, for accessing and manipulating on-disk mailboxes and
the messages they contain. Mailbox offers a dictionary-like mapping from keys to messages. Message extends
the email.message module’s Message class with format-specific state and behavior. Supported mailbox
formats are Maildir, mbox, MH, Babyl, and MMDF.

See also:

Module email Represent and manipulate messages.

19.4.1 Mailbox objects

class mailbox.Mailbox
A mailbox, which may be inspected and modified.

The Mailbox class defines an interface and is not intended to be instantiated. Instead, format-specific
subclasses should inherit from Mailbox and your code should instantiate a particular subclass.

The Mailbox interface is dictionary-like, with small keys corresponding to messages. Keys are issued by
the Mailbox instance with which they will be used and are only meaningful to that Mailbox instance. A
key continues to identify a message even if the corresponding message is modified, such as by replacing
it with another message.

Messages may be added to a Mailbox instance using the set-like method add() and removed using a
del statement or the set-like methods remove() and discard().

Mailbox interface semantics differ from dictionary semantics in some noteworthy ways. Each time a
message is requested, a new representation (typically a Message instance) is generated based upon
the current state of the mailbox. Similarly, when a message is added to a Mailbox instance, the
provided message representation’s contents are copied. In neither case is a reference to the message
representation kept by the Mailbox instance.

19.4. mailbox — Manipulate mailboxes in various formats 993

https://github.com/python/cpython/tree/3.5/Lib/mailbox.py

The Python Library Reference, Release 3.5.7

The default Mailbox iterator iterates over message representations, not keys as the default dictionary
iterator does. Moreover, modification of a mailbox during iteration is safe and well-defined. Messages
added to the mailbox after an iterator is created will not be seen by the iterator. Messages removed
from the mailbox before the iterator yields them will be silently skipped, though using a key from an
iterator may result in a KeyError exception if the corresponding message is subsequently removed.

Warning: Be very cautious when modifying mailboxes that might be simultaneously changed by
some other process. The safest mailbox format to use for such tasks is Maildir; try to avoid using
single-file formats such as mbox for concurrent writing. If you’re modifying a mailbox, you must
lock it by calling the lock() and unlock() methods before reading any messages in the file or making
any changes by adding or deleting a message. Failing to lock the mailbox runs the risk of losing
messages or corrupting the entire mailbox.

Mailbox instances have the following methods:

add(message)
Add message to the mailbox and return the key that has been assigned to it.

Parameter message may be a Message instance, an email.message.Message instance, a string, a
byte string, or a file-like object (which should be open in binary mode). If message is an instance
of the appropriate format-specific Message subclass (e.g., if it’s an mboxMessage instance and this
is an mbox instance), its format-specific information is used. Otherwise, reasonable defaults for
format-specific information are used.

Changed in version 3.2: Support for binary input was added.

remove(key)
__delitem__(key)
discard(key)

Delete the message corresponding to key from the mailbox.

If no such message exists, a KeyError exception is raised if the method was called as remove() or
__delitem__() but no exception is raised if the method was called as discard(). The behavior
of discard() may be preferred if the underlying mailbox format supports concurrent modification
by other processes.

__setitem__(key, message)
Replace the message corresponding to key with message. Raise a KeyError exception if no message
already corresponds to key.

As with add(), parameter message may be a Message instance, an email.message.Message instance,
a string, a byte string, or a file-like object (which should be open in binary mode). If message
is an instance of the appropriate format-specific Message subclass (e.g., if it’s an mboxMessage
instance and this is an mbox instance), its format-specific information is used. Otherwise, the
format-specific information of the message that currently corresponds to key is left unchanged.

iterkeys()
keys()

Return an iterator over all keys if called as iterkeys() or return a list of keys if called as keys().

itervalues()
__iter__()
values()

Return an iterator over representations of all messages if called as itervalues() or __iter__()
or return a list of such representations if called as values(). The messages are represented as
instances of the appropriate format-specific Message subclass unless a custom message factory
was specified when the Mailbox instance was initialized.

994 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

Note: The behavior of __iter__() is unlike that of dictionaries, which iterate over keys.

iteritems()
items()

Return an iterator over (key, message) pairs, where key is a key and message is a message repre-
sentation, if called as iteritems() or return a list of such pairs if called as items(). The messages
are represented as instances of the appropriate format-specific Message subclass unless a custom
message factory was specified when the Mailbox instance was initialized.

get(key, default=None)
__getitem__(key)

Return a representation of the message corresponding to key. If no such message exists, default
is returned if the method was called as get() and a KeyError exception is raised if the method
was called as __getitem__(). The message is represented as an instance of the appropriate
format-specific Message subclass unless a custom message factory was specified when the Mailbox
instance was initialized.

get_message(key)
Return a representation of the message corresponding to key as an instance of the appropriate
format-specific Message subclass, or raise a KeyError exception if no such message exists.

get_bytes(key)
Return a byte representation of the message corresponding to key, or raise a KeyError exception
if no such message exists.

New in version 3.2.

get_string(key)
Return a string representation of the message corresponding to key, or raise a KeyError exception
if no such message exists. The message is processed through email.message.Message to convert it
to a 7bit clean representation.

get_file(key)
Return a file-like representation of the message corresponding to key, or raise a KeyError exception
if no such message exists. The file-like object behaves as if open in binary mode. This file should
be closed once it is no longer needed.

Changed in version 3.2: The file object really is a binary file; previously it was incorrectly returned
in text mode. Also, the file-like object now supports the context management protocol: you can
use a with statement to automatically close it.

Note: Unlike other representations of messages, file-like representations are not necessarily inde-
pendent of the Mailbox instance that created them or of the underlying mailbox. More specific
documentation is provided by each subclass.

__contains__(key)
Return True if key corresponds to a message, False otherwise.

__len__()
Return a count of messages in the mailbox.

clear()
Delete all messages from the mailbox.

pop(key, default=None)
Return a representation of the message corresponding to key and delete the message. If no such

19.4. mailbox — Manipulate mailboxes in various formats 995

The Python Library Reference, Release 3.5.7

message exists, return default. The message is represented as an instance of the appropriate
format-specific Message subclass unless a custom message factory was specified when the Mailbox
instance was initialized.

popitem()
Return an arbitrary (key, message) pair, where key is a key and message is a message representa-
tion, and delete the corresponding message. If the mailbox is empty, raise a KeyError exception.
The message is represented as an instance of the appropriate format-specific Message subclass
unless a custom message factory was specified when the Mailbox instance was initialized.

update(arg)
Parameter arg should be a key-to-message mapping or an iterable of (key, message) pairs. Updates
the mailbox so that, for each given key and message, the message corresponding to key is set
to message as if by using __setitem__(). As with __setitem__(), each key must already
correspond to a message in the mailbox or else a KeyError exception will be raised, so in general
it is incorrect for arg to be a Mailbox instance.

Note: Unlike with dictionaries, keyword arguments are not supported.

flush()
Write any pending changes to the filesystem. For some Mailbox subclasses, changes are always
written immediately and flush() does nothing, but you should still make a habit of calling this
method.

lock()
Acquire an exclusive advisory lock on the mailbox so that other processes know not to modify it.
An ExternalClashError is raised if the lock is not available. The particular locking mechanisms
used depend upon the mailbox format. You should always lock the mailbox before making any
modifications to its contents.

unlock()
Release the lock on the mailbox, if any.

close()
Flush the mailbox, unlock it if necessary, and close any open files. For some Mailbox subclasses,
this method does nothing.

Maildir

class mailbox.Maildir(dirname, factory=None, create=True)
A subclass of Mailbox for mailboxes in Maildir format. Parameter factory is a callable object that
accepts a file-like message representation (which behaves as if opened in binary mode) and returns a
custom representation. If factory is None, MaildirMessage is used as the default message representation.
If create is True, the mailbox is created if it does not exist.

It is for historical reasons that dirname is named as such rather than path.

Maildir is a directory-based mailbox format invented for the qmail mail transfer agent and now widely
supported by other programs. Messages in a Maildir mailbox are stored in separate files within a
common directory structure. This design allows Maildir mailboxes to be accessed and modified by
multiple unrelated programs without data corruption, so file locking is unnecessary.

Maildir mailboxes contain three subdirectories, namely: tmp, new, and cur. Messages are created
momentarily in the tmp subdirectory and then moved to the new subdirectory to finalize delivery. A
mail user agent may subsequently move the message to the cur subdirectory and store information
about the state of the message in a special “info” section appended to its file name.

996 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

Folders of the style introduced by the Courier mail transfer agent are also supported. Any subdirectory
of the main mailbox is considered a folder if '.' is the first character in its name. Folder names are
represented by Maildir without the leading '.'. Each folder is itself a Maildir mailbox but should
not contain other folders. Instead, a logical nesting is indicated using '.' to delimit levels, e.g.,
“Archived.2005.07”.

Note: The Maildir specification requires the use of a colon (':') in certain message file names.
However, some operating systems do not permit this character in file names, If you wish to use a
Maildir-like format on such an operating system, you should specify another character to use instead.
The exclamation point ('!') is a popular choice. For example:

import mailbox
mailbox.Maildir.colon = '!'

The colon attribute may also be set on a per-instance basis.

Maildir instances have all of the methods of Mailbox in addition to the following:

list_folders()
Return a list of the names of all folders.

get_folder(folder)
Return a Maildir instance representing the folder whose name is folder. A NoSuchMailboxError
exception is raised if the folder does not exist.

add_folder(folder)
Create a folder whose name is folder and return a Maildir instance representing it.

remove_folder(folder)
Delete the folder whose name is folder. If the folder contains any messages, a NotEmptyError
exception will be raised and the folder will not be deleted.

clean()
Delete temporary files from the mailbox that have not been accessed in the last 36 hours. The
Maildir specification says that mail-reading programs should do this occasionally.

Some Mailbox methods implemented by Maildir deserve special remarks:

add(message)
__setitem__(key, message)
update(arg)

Warning: These methods generate unique file names based upon the current process ID.
When using multiple threads, undetected name clashes may occur and cause corruption of the
mailbox unless threads are coordinated to avoid using these methods to manipulate the same
mailbox simultaneously.

flush()
All changes to Maildir mailboxes are immediately applied, so this method does nothing.

lock()
unlock()

Maildir mailboxes do not support (or require) locking, so these methods do nothing.

19.4. mailbox — Manipulate mailboxes in various formats 997

The Python Library Reference, Release 3.5.7

close()
Maildir instances do not keep any open files and the underlying mailboxes do not support locking,
so this method does nothing.

get_file(key)
Depending upon the host platform, it may not be possible to modify or remove the underlying
message while the returned file remains open.

See also:

maildir man page from qmail The original specification of the format.

Using maildir format Notes on Maildir by its inventor. Includes an updated name-creation scheme and
details on “info” semantics.

maildir man page from Courier Another specification of the format. Describes a common extension for
supporting folders.

mbox

class mailbox.mbox(path, factory=None, create=True)
A subclass of Mailbox for mailboxes in mbox format. Parameter factory is a callable object that
accepts a file-like message representation (which behaves as if opened in binary mode) and returns a
custom representation. If factory is None, mboxMessage is used as the default message representation.
If create is True, the mailbox is created if it does not exist.

The mbox format is the classic format for storing mail on Unix systems. All messages in an mbox
mailbox are stored in a single file with the beginning of each message indicated by a line whose first
five characters are “From “.

Several variations of the mbox format exist to address perceived shortcomings in the original. In
the interest of compatibility, mbox implements the original format, which is sometimes referred to as
mboxo. This means that the Content-Length header, if present, is ignored and that any occurrences
of “From ” at the beginning of a line in a message body are transformed to “>From ” when storing the
message, although occurrences of “>From ” are not transformed to “From ” when reading the message.

Some Mailbox methods implemented by mbox deserve special remarks:

get_file(key)
Using the file after calling flush() or close() on the mbox instance may yield unpredictable results
or raise an exception.

lock()
unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf() system
calls.

See also:

mbox man page from qmail A specification of the format and its variations.

mbox man page from tin Another specification of the format, with details on locking.

Configuring Netscape Mail on Unix: Why The Content-Length Format is Bad An argument for using the
original mbox format rather than a variation.

“mbox” is a family of several mutually incompatible mailbox formats A history of mbox variations.

998 Chapter 19. Internet Data Handling

http://www.qmail.org/man/man5/maildir.html
https://cr.yp.to/proto/maildir.html
http://www.courier-mta.org/maildir.html
http://www.qmail.org/man/man5/mbox.html
http://www.tin.org/bin/man.cgi?section=5&topic=mbox
https://www.jwz.org/doc/content-length.html
http://homepage.ntlworld.com/jonathan.deboynepollard/FGA/mail-mbox-formats.html

The Python Library Reference, Release 3.5.7

MH

class mailbox.MH(path, factory=None, create=True)
A subclass of Mailbox for mailboxes in MH format. Parameter factory is a callable object that accepts
a file-like message representation (which behaves as if opened in binary mode) and returns a custom
representation. If factory is None, MHMessage is used as the default message representation. If create
is True, the mailbox is created if it does not exist.

MH is a directory-based mailbox format invented for the MH Message Handling System, a mail user
agent. Each message in an MH mailbox resides in its own file. An MH mailbox may contain other MH
mailboxes (called folders) in addition to messages. Folders may be nested indefinitely. MH mailboxes
also support sequences, which are named lists used to logically group messages without moving them
to sub-folders. Sequences are defined in a file called .mh_sequences in each folder.

The MH class manipulates MH mailboxes, but it does not attempt to emulate all of mh’s behaviors.
In particular, it does not modify and is not affected by the context or .mh_profile files that are used
by mh to store its state and configuration.

MH instances have all of the methods of Mailbox in addition to the following:

list_folders()
Return a list of the names of all folders.

get_folder(folder)
Return an MH instance representing the folder whose name is folder. A NoSuchMailboxError
exception is raised if the folder does not exist.

add_folder(folder)
Create a folder whose name is folder and return an MH instance representing it.

remove_folder(folder)
Delete the folder whose name is folder. If the folder contains any messages, a NotEmptyError
exception will be raised and the folder will not be deleted.

get_sequences()
Return a dictionary of sequence names mapped to key lists. If there are no sequences, the empty
dictionary is returned.

set_sequences(sequences)
Re-define the sequences that exist in the mailbox based upon sequences, a dictionary of names
mapped to key lists, like returned by get_sequences().

pack()
Rename messages in the mailbox as necessary to eliminate gaps in numbering. Entries in the
sequences list are updated correspondingly.

Note: Already-issued keys are invalidated by this operation and should not be subsequently used.

Some Mailbox methods implemented by MH deserve special remarks:

remove(key)
__delitem__(key)
discard(key)

These methods immediately delete the message. The MH convention of marking a message for
deletion by prepending a comma to its name is not used.

lock()
unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf() system

19.4. mailbox — Manipulate mailboxes in various formats 999

The Python Library Reference, Release 3.5.7

calls. For MH mailboxes, locking the mailbox means locking the .mh_sequences file and, only for
the duration of any operations that affect them, locking individual message files.

get_file(key)
Depending upon the host platform, it may not be possible to remove the underlying message while
the returned file remains open.

flush()
All changes to MH mailboxes are immediately applied, so this method does nothing.

close()
MH instances do not keep any open files, so this method is equivalent to unlock().

See also:

nmh - Message Handling System Home page of nmh, an updated version of the original mh.

MH & nmh: Email for Users & Programmers A GPL-licensed book on mh and nmh, with some information
on the mailbox format.

Babyl

class mailbox.Babyl(path, factory=None, create=True)
A subclass of Mailbox for mailboxes in Babyl format. Parameter factory is a callable object that
accepts a file-like message representation (which behaves as if opened in binary mode) and returns a
custom representation. If factory is None, BabylMessage is used as the default message representation.
If create is True, the mailbox is created if it does not exist.

Babyl is a single-file mailbox format used by the Rmail mail user agent included with Emacs. The
beginning of a message is indicated by a line containing the two characters Control-Underscore ('\037')
and Control-L ('\014'). The end of a message is indicated by the start of the next message or, in the
case of the last message, a line containing a Control-Underscore ('\037') character.

Messages in a Babyl mailbox have two sets of headers, original headers and so-called visible headers.
Visible headers are typically a subset of the original headers that have been reformatted or abridged to
be more attractive. Each message in a Babyl mailbox also has an accompanying list of labels, or short
strings that record extra information about the message, and a list of all user-defined labels found in
the mailbox is kept in the Babyl options section.

Babyl instances have all of the methods of Mailbox in addition to the following:

get_labels()
Return a list of the names of all user-defined labels used in the mailbox.

Note: The actual messages are inspected to determine which labels exist in the mailbox rather
than consulting the list of labels in the Babyl options section, but the Babyl section is updated
whenever the mailbox is modified.

Some Mailbox methods implemented by Babyl deserve special remarks:

get_file(key)
In Babyl mailboxes, the headers of a message are not stored contiguously with the body of the
message. To generate a file-like representation, the headers and body are copied together into an
io.BytesIO instance, which has an API identical to that of a file. As a result, the file-like object
is truly independent of the underlying mailbox but does not save memory compared to a string
representation.

lock()

1000 Chapter 19. Internet Data Handling

http://www.nongnu.org/nmh/
http://rand-mh.sourceforge.net/book/

The Python Library Reference, Release 3.5.7

unlock()
Three locking mechanisms are used—dot locking and, if available, the flock() and lockf() system
calls.

See also:

Format of Version 5 Babyl Files A specification of the Babyl format.

Reading Mail with Rmail The Rmail manual, with some information on Babyl semantics.

MMDF

class mailbox.MMDF(path, factory=None, create=True)
A subclass of Mailbox for mailboxes in MMDF format. Parameter factory is a callable object that
accepts a file-like message representation (which behaves as if opened in binary mode) and returns a
custom representation. If factory is None, MMDFMessage is used as the default message representation.
If create is True, the mailbox is created if it does not exist.

MMDF is a single-file mailbox format invented for the Multichannel Memorandum Distribution Facility,
a mail transfer agent. Each message is in the same form as an mbox message but is bracketed before
and after by lines containing four Control-A ('\001') characters. As with the mbox format, the
beginning of each message is indicated by a line whose first five characters are “From “, but additional
occurrences of “From ” are not transformed to “>From ” when storing messages because the extra
message separator lines prevent mistaking such occurrences for the starts of subsequent messages.

Some Mailbox methods implemented by MMDF deserve special remarks:

get_file(key)
Using the file after calling flush() or close() on the MMDF instance may yield unpredictable results
or raise an exception.

lock()
unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf() system
calls.

See also:

mmdf man page from tin A specification of MMDF format from the documentation of tin, a newsreader.

MMDF A Wikipedia article describing the Multichannel Memorandum Distribution Facility.

19.4.2 Message objects

class mailbox.Message(message=None)
A subclass of the email.message module’s Message. Subclasses of mailbox.Message add mailbox-format-
specific state and behavior.

If message is omitted, the new instance is created in a default, empty state. If message is an email.
message.Message instance, its contents are copied; furthermore, any format-specific information is
converted insofar as possible if message is a Message instance. If message is a string, a byte string, or
a file, it should contain an RFC 2822-compliant message, which is read and parsed. Files should be
open in binary mode, but text mode files are accepted for backward compatibility.

The format-specific state and behaviors offered by subclasses vary, but in general it is only the properties
that are not specific to a particular mailbox that are supported (although presumably the properties
are specific to a particular mailbox format). For example, file offsets for single-file mailbox formats
and file names for directory-based mailbox formats are not retained, because they are only applicable

19.4. mailbox — Manipulate mailboxes in various formats 1001

https://quimby.gnus.org/notes/BABYL
https://www.gnu.org/software/emacs/manual/html_node/emacs/Rmail.html
http://www.tin.org/bin/man.cgi?section=5&topic=mmdf
https://en.wikipedia.org/wiki/MMDF
https://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.5.7

to the original mailbox. But state such as whether a message has been read by the user or marked as
important is retained, because it applies to the message itself.

There is no requirement that Message instances be used to represent messages retrieved using Mailbox
instances. In some situations, the time and memory required to generate Message representations might
not be acceptable. For such situations, Mailbox instances also offer string and file-like representations,
and a custom message factory may be specified when a Mailbox instance is initialized.

MaildirMessage

class mailbox.MaildirMessage(message=None)
A message with Maildir-specific behaviors. Parameter message has the same meaning as with the
Message constructor.

Typically, a mail user agent application moves all of the messages in the new subdirectory to the cur
subdirectory after the first time the user opens and closes the mailbox, recording that the messages
are old whether or not they’ve actually been read. Each message in cur has an “info” section added to
its file name to store information about its state. (Some mail readers may also add an “info” section to
messages in new.) The “info” section may take one of two forms: it may contain “2,” followed by a list of
standardized flags (e.g., “2,FR”) or it may contain “1,” followed by so-called experimental information.
Standard flags for Maildir messages are as follows:

Flag Meaning Explanation
D Draft Under composition
F Flagged Marked as important
P Passed Forwarded, resent, or bounced
R Replied Replied to
S Seen Read
T Trashed Marked for subsequent deletion

MaildirMessage instances offer the following methods:

get_subdir()
Return either “new” (if the message should be stored in the new subdirectory) or “cur” (if the
message should be stored in the cur subdirectory).

Note: A message is typically moved from new to cur after its mailbox has been accessed, whether
or not the message is has been read. A message msg has been read if "S" in msg.get_flags() is
True.

set_subdir(subdir)
Set the subdirectory the message should be stored in. Parameter subdir must be either “new” or
“cur”.

get_flags()
Return a string specifying the flags that are currently set. If the message complies with the
standard Maildir format, the result is the concatenation in alphabetical order of zero or one
occurrence of each of 'D', 'F', 'P', 'R', 'S', and 'T'. The empty string is returned if no
flags are set or if “info” contains experimental semantics.

set_flags(flags)
Set the flags specified by flags and unset all others.

add_flag(flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a

1002 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

time, flag may be a string of more than one character. The current “info” is overwritten whether
or not it contains experimental information rather than flags.

remove_flag(flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a
time, flag maybe a string of more than one character. If “info” contains experimental information
rather than flags, the current “info” is not modified.

get_date()
Return the delivery date of the message as a floating-point number representing seconds since the
epoch.

set_date(date)
Set the delivery date of the message to date, a floating-point number representing seconds since
the epoch.

get_info()
Return a string containing the “info” for a message. This is useful for accessing and modifying
“info” that is experimental (i.e., not a list of flags).

set_info(info)
Set “info” to info, which should be a string.

When a MaildirMessage instance is created based upon an mboxMessage or MMDFMessage instance, the
Status and X-Status headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state
“cur” subdirectory O flag
F flag F flag
R flag A flag
S flag R flag
T flag D flag

When a MaildirMessage instance is created based upon an MHMessage instance, the following conversions
take place:

Resulting state MHMessage state
“cur” subdirectory “unseen” sequence
“cur” subdirectory and S flag no “unseen” sequence
F flag “flagged” sequence
R flag “replied” sequence

When a MaildirMessage instance is created based upon a BabylMessage instance, the following conversions
take place:

Resulting state BabylMessage state
“cur” subdirectory “unseen” label
“cur” subdirectory and S flag no “unseen” label
P flag “forwarded” or “resent” label
R flag “answered” label
T flag “deleted” label

19.4. mailbox — Manipulate mailboxes in various formats 1003

The Python Library Reference, Release 3.5.7

mboxMessage

class mailbox.mboxMessage(message=None)
A message with mbox-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Messages in an mbox mailbox are stored together in a single file. The sender’s envelope address and
the time of delivery are typically stored in a line beginning with “From ” that is used to indicate the
start of a message, though there is considerable variation in the exact format of this data among mbox
implementations. Flags that indicate the state of the message, such as whether it has been read or
marked as important, are typically stored in Status and X-Status headers.

Conventional flags for mbox messages are as follows:

Flag Meaning Explanation
R Read Read
O Old Previously detected by MUA
D Deleted Marked for subsequent deletion
F Flagged Marked as important
A Answered Replied to

The “R” and “O” flags are stored in the Status header, and the “D”, “F”, and “A” flags are stored in the
X-Status header. The flags and headers typically appear in the order mentioned.

mboxMessage instances offer the following methods:

get_from()
Return a string representing the “From ” line that marks the start of the message in an mbox
mailbox. The leading “From ” and the trailing newline are excluded.

set_from(from_, time_=None)
Set the “From ” line to from_, which should be specified without a leading “From ” or trailing
newline. For convenience, time_ may be specified and will be formatted appropriately and ap-
pended to from_. If time_ is specified, it should be a time.struct_time instance, a tuple suitable
for passing to time.strftime(), or True (to use time.gmtime()).

get_flags()
Return a string specifying the flags that are currently set. If the message complies with the
conventional format, the result is the concatenation in the following order of zero or one occurrence
of each of 'R', 'O', 'D', 'F', and 'A'.

set_flags(flags)
Set the flags specified by flags and unset all others. Parameter flags should be the concatenation
in any order of zero or more occurrences of each of 'R', 'O', 'D', 'F', and 'A'.

add_flag(flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a
time, flag may be a string of more than one character.

remove_flag(flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at
a time, flag maybe a string of more than one character.

When an mboxMessage instance is created based upon a MaildirMessage instance, a “From ” line is generated
based upon the MaildirMessage instance’s delivery date, and the following conversions take place:

1004 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

Resulting state MaildirMessage state
R flag S flag
O flag “cur” subdirectory
D flag T flag
F flag F flag
A flag R flag

When an mboxMessage instance is created based upon an MHMessage instance, the following conversions
take place:

Resulting state MHMessage state
R flag and O flag no “unseen” sequence
O flag “unseen” sequence
F flag “flagged” sequence
A flag “replied” sequence

When an mboxMessage instance is created based upon a BabylMessage instance, the following conversions
take place:

Resulting state BabylMessage state
R flag and O flag no “unseen” label
O flag “unseen” label
D flag “deleted” label
A flag “answered” label

When a Message instance is created based upon an MMDFMessage instance, the “From ” line is copied and
all flags directly correspond:

Resulting state MMDFMessage state
R flag R flag
O flag O flag
D flag D flag
F flag F flag
A flag A flag

MHMessage

class mailbox.MHMessage(message=None)
A message with MH-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

MH messages do not support marks or flags in the traditional sense, but they do support sequences,
which are logical groupings of arbitrary messages. Some mail reading programs (although not the
standard mh and nmh) use sequences in much the same way flags are used with other formats, as
follows:

Sequence Explanation
unseen Not read, but previously detected by MUA
replied Replied to
flagged Marked as important

19.4. mailbox — Manipulate mailboxes in various formats 1005

The Python Library Reference, Release 3.5.7

MHMessage instances offer the following methods:

get_sequences()
Return a list of the names of sequences that include this message.

set_sequences(sequences)
Set the list of sequences that include this message.

add_sequence(sequence)
Add sequence to the list of sequences that include this message.

remove_sequence(sequence)
Remove sequence from the list of sequences that include this message.

When an MHMessage instance is created based upon a MaildirMessage instance, the following conversions
take place:

Resulting state MaildirMessage state
“unseen” sequence no S flag
“replied” sequence R flag
“flagged” sequence F flag

When an MHMessage instance is created based upon an mboxMessage or MMDFMessage instance, the
Status and X-Status headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state
“unseen” sequence no R flag
“replied” sequence A flag
“flagged” sequence F flag

When an MHMessage instance is created based upon a BabylMessage instance, the following conversions
take place:

Resulting state BabylMessage state
“unseen” sequence “unseen” label
“replied” sequence “answered” label

BabylMessage

class mailbox.BabylMessage(message=None)
A message with Babyl-specific behaviors. Parameter message has the same meaning as with the
Message constructor.

Certain message labels, called attributes, are defined by convention to have special meanings. The
attributes are as follows:

Label Explanation
unseen Not read, but previously detected by MUA
deleted Marked for subsequent deletion
filed Copied to another file or mailbox
answered Replied to
forwarded Forwarded
edited Modified by the user
resent Resent

1006 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

By default, Rmail displays only visible headers. The BabylMessage class, though, uses the original
headers because they are more complete. Visible headers may be accessed explicitly if desired.

BabylMessage instances offer the following methods:

get_labels()
Return a list of labels on the message.

set_labels(labels)
Set the list of labels on the message to labels.

add_label(label)
Add label to the list of labels on the message.

remove_label(label)
Remove label from the list of labels on the message.

get_visible()
Return an Message instance whose headers are the message’s visible headers and whose body is
empty.

set_visible(visible)
Set the message’s visible headers to be the same as the headers in message. Parameter visible
should be a Message instance, an email.message.Message instance, a string, or a file-like object
(which should be open in text mode).

update_visible()
When a BabylMessage instance’s original headers are modified, the visible headers are not auto-
matically modified to correspond. This method updates the visible headers as follows: each visible
header with a corresponding original header is set to the value of the original header, each visible
header without a corresponding original header is removed, and any of Date, From, Reply-To, To,
CC, and Subject that are present in the original headers but not the visible headers are added to
the visible headers.

When a BabylMessage instance is created based upon a MaildirMessage instance, the following conversions
take place:

Resulting state MaildirMessage state
“unseen” label no S flag
“deleted” label T flag
“answered” label R flag
“forwarded” label P flag

When a BabylMessage instance is created based upon an mboxMessage or MMDFMessage instance, the
Status and X-Status headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state
“unseen” label no R flag
“deleted” label D flag
“answered” label A flag

When a BabylMessage instance is created based upon an MHMessage instance, the following conversions
take place:

Resulting state MHMessage state
“unseen” label “unseen” sequence
“answered” label “replied” sequence

19.4. mailbox — Manipulate mailboxes in various formats 1007

The Python Library Reference, Release 3.5.7

MMDFMessage

class mailbox.MMDFMessage(message=None)
A message with MMDF-specific behaviors. Parameter message has the same meaning as with the
Message constructor.

As with message in an mbox mailbox, MMDF messages are stored with the sender’s address and the
delivery date in an initial line beginning with “From “. Likewise, flags that indicate the state of the
message are typically stored in Status and X-Status headers.

Conventional flags for MMDF messages are identical to those of mbox message and are as follows:

Flag Meaning Explanation
R Read Read
O Old Previously detected by MUA
D Deleted Marked for subsequent deletion
F Flagged Marked as important
A Answered Replied to

The “R” and “O” flags are stored in the Status header, and the “D”, “F”, and “A” flags are stored in the
X-Status header. The flags and headers typically appear in the order mentioned.

MMDFMessage instances offer the following methods, which are identical to those offered by mboxMes-
sage:

get_from()
Return a string representing the “From ” line that marks the start of the message in an mbox
mailbox. The leading “From ” and the trailing newline are excluded.

set_from(from_, time_=None)
Set the “From ” line to from_, which should be specified without a leading “From ” or trailing
newline. For convenience, time_ may be specified and will be formatted appropriately and ap-
pended to from_. If time_ is specified, it should be a time.struct_time instance, a tuple suitable
for passing to time.strftime(), or True (to use time.gmtime()).

get_flags()
Return a string specifying the flags that are currently set. If the message complies with the
conventional format, the result is the concatenation in the following order of zero or one occurrence
of each of 'R', 'O', 'D', 'F', and 'A'.

set_flags(flags)
Set the flags specified by flags and unset all others. Parameter flags should be the concatenation
in any order of zero or more occurrences of each of 'R', 'O', 'D', 'F', and 'A'.

add_flag(flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a
time, flag may be a string of more than one character.

remove_flag(flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at
a time, flag maybe a string of more than one character.

When an MMDFMessage instance is created based upon a MaildirMessage instance, a “From ” line is gen-
erated based upon the MaildirMessage instance’s delivery date, and the following conversions take place:

1008 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

Resulting state MaildirMessage state
R flag S flag
O flag “cur” subdirectory
D flag T flag
F flag F flag
A flag R flag

When an MMDFMessage instance is created based upon an MHMessage instance, the following conversions
take place:

Resulting state MHMessage state
R flag and O flag no “unseen” sequence
O flag “unseen” sequence
F flag “flagged” sequence
A flag “replied” sequence

When an MMDFMessage instance is created based upon a BabylMessage instance, the following conversions
take place:

Resulting state BabylMessage state
R flag and O flag no “unseen” label
O flag “unseen” label
D flag “deleted” label
A flag “answered” label

When an MMDFMessage instance is created based upon an mboxMessage instance, the “From ” line is copied
and all flags directly correspond:

Resulting state mboxMessage state
R flag R flag
O flag O flag
D flag D flag
F flag F flag
A flag A flag

19.4.3 Exceptions

The following exception classes are defined in the mailbox module:

exception mailbox.Error
The based class for all other module-specific exceptions.

exception mailbox.NoSuchMailboxError
Raised when a mailbox is expected but is not found, such as when instantiating a Mailbox subclass
with a path that does not exist (and with the create parameter set to False), or when opening a folder
that does not exist.

exception mailbox.NotEmptyError
Raised when a mailbox is not empty but is expected to be, such as when deleting a folder that contains
messages.

19.4. mailbox — Manipulate mailboxes in various formats 1009

The Python Library Reference, Release 3.5.7

exception mailbox.ExternalClashError
Raised when some mailbox-related condition beyond the control of the program causes it to be unable
to proceed, such as when failing to acquire a lock that another program already holds a lock, or when
a uniquely-generated file name already exists.

exception mailbox.FormatError
Raised when the data in a file cannot be parsed, such as when an MH instance attempts to read a
corrupted .mh_sequences file.

19.4.4 Examples

A simple example of printing the subjects of all messages in a mailbox that seem interesting:

import mailbox
for message in mailbox.mbox('~/mbox'):

subject = message['subject'] # Could possibly be None.
if subject and 'python' in subject.lower():

print(subject)

To copy all mail from a Babyl mailbox to an MH mailbox, converting all of the format-specific information
that can be converted:

import mailbox
destination = mailbox.MH('~/Mail')
destination.lock()
for message in mailbox.Babyl('~/RMAIL'):

destination.add(mailbox.MHMessage(message))
destination.flush()
destination.unlock()

This example sorts mail from several mailing lists into different mailboxes, being careful to avoid mail
corruption due to concurrent modification by other programs, mail loss due to interruption of the program,
or premature termination due to malformed messages in the mailbox:

import mailbox
import email.errors

list_names = ('python-list', 'python-dev', 'python-bugs')

boxes = {name: mailbox.mbox('~/email/%s' % name) for name in list_names}
inbox = mailbox.Maildir('~/Maildir', factory=None)

for key in inbox.iterkeys():
try:

message = inbox[key]
except email.errors.MessageParseError:

continue # The message is malformed. Just leave it.

for name in list_names:
list_id = message['list-id']
if list_id and name in list_id:

Get mailbox to use
box = boxes[name]

Write copy to disk before removing original.
If there's a crash, you might duplicate a message, but

(continues on next page)

1010 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

(continued from previous page)

that's better than losing a message completely.
box.lock()
box.add(message)
box.flush()
box.unlock()

Remove original message
inbox.lock()
inbox.discard(key)
inbox.flush()
inbox.unlock()
break # Found destination, so stop looking.

for box in boxes.itervalues():
box.close()

19.5 mimetypes — Map filenames to MIME types

Source code: Lib/mimetypes.py

The mimetypes module converts between a filename or URL and the MIME type associated with the filename
extension. Conversions are provided from filename to MIME type and fromMIME type to filename extension;
encodings are not supported for the latter conversion.

The module provides one class and a number of convenience functions. The functions are the normal interface
to this module, but some applications may be interested in the class as well.

The functions described below provide the primary interface for this module. If the module has not been
initialized, they will call init() if they rely on the information init() sets up.

mimetypes.guess_type(url, strict=True)
Guess the type of a file based on its filename or URL, given by url. The return value is a tuple (type,
encoding) where type is None if the type can’t be guessed (missing or unknown suffix) or a string of
the form 'type/subtype', usable for a MIME content-type header.

encoding is None for no encoding or the name of the program used to encode (e.g. compress or gzip).
The encoding is suitable for use as a Content-Encoding header, not as a Content-Transfer-Encoding
header. The mappings are table driven. Encoding suffixes are case sensitive; type suffixes are first
tried case sensitively, then case insensitively.

The optional strict argument is a flag specifying whether the list of known MIME types is limited to
only the official types registered with IANA. When strict is True (the default), only the IANA types
are supported; when strict is False, some additional non-standard but commonly used MIME types are
also recognized.

mimetypes.guess_all_extensions(type, strict=True)
Guess the extensions for a file based on its MIME type, given by type. The return value is a list of
strings giving all possible filename extensions, including the leading dot ('.'). The extensions are not
guaranteed to have been associated with any particular data stream, but would be mapped to the
MIME type type by guess_type().

The optional strict argument has the same meaning as with the guess_type() function.

19.5. mimetypes — Map filenames to MIME types 1011

https://github.com/python/cpython/tree/3.5/Lib/mimetypes.py
https://www.iana.org/assignments/media-types/media-types.xhtml

The Python Library Reference, Release 3.5.7

mimetypes.guess_extension(type, strict=True)
Guess the extension for a file based on its MIME type, given by type. The return value is a string
giving a filename extension, including the leading dot ('.'). The extension is not guaranteed to have
been associated with any particular data stream, but would be mapped to the MIME type type by
guess_type(). If no extension can be guessed for type, None is returned.

The optional strict argument has the same meaning as with the guess_type() function.

Some additional functions and data items are available for controlling the behavior of the module.

mimetypes.init(files=None)
Initialize the internal data structures. If given, files must be a sequence of file names which should be
used to augment the default type map. If omitted, the file names to use are taken from knownfiles;
on Windows, the current registry settings are loaded. Each file named in files or knownfiles takes
precedence over those named before it. Calling init() repeatedly is allowed.

Specifying an empty list for files will prevent the system defaults from being applied: only the well-
known values will be present from a built-in list.

Changed in version 3.2: Previously, Windows registry settings were ignored.

mimetypes.read_mime_types(filename)
Load the type map given in the file filename, if it exists. The type map is returned as a dictionary
mapping filename extensions, including the leading dot ('.'), to strings of the form 'type/subtype'.
If the file filename does not exist or cannot be read, None is returned.

mimetypes.add_type(type, ext, strict=True)
Add a mapping from the MIME type type to the extension ext. When the extension is already known,
the new type will replace the old one. When the type is already known the extension will be added to
the list of known extensions.

When strict is True (the default), the mapping will be added to the official MIME types, otherwise to
the non-standard ones.

mimetypes.inited
Flag indicating whether or not the global data structures have been initialized. This is set to True by
init().

mimetypes.knownfiles
List of type map file names commonly installed. These files are typically named mime.types and are
installed in different locations by different packages.

mimetypes.suffix_map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the
encoding and the type are indicated by the same extension. For example, the .tgz extension is mapped
to .tar.gz to allow the encoding and type to be recognized separately.

mimetypes.encodings_map
Dictionary mapping filename extensions to encoding types.

mimetypes.types_map
Dictionary mapping filename extensions to MIME types.

mimetypes.common_types
Dictionary mapping filename extensions to non-standard, but commonly found MIME types.

An example usage of the module:

>>> import mimetypes
>>> mimetypes.init()
>>> mimetypes.knownfiles

(continues on next page)

1012 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

(continued from previous page)

['/etc/mime.types', '/etc/httpd/mime.types', ...]
>>> mimetypes.suffix_map['.tgz']
'.tar.gz'
>>> mimetypes.encodings_map['.gz']
'gzip'
>>> mimetypes.types_map['.tgz']
'application/x-tar-gz'

19.5.1 MimeTypes Objects

The MimeTypes class may be useful for applications which may want more than one MIME-type database;
it provides an interface similar to the one of the mimetypes module.

class mimetypes.MimeTypes(filenames=(), strict=True)
This class represents a MIME-types database. By default, it provides access to the same database as
the rest of this module. The initial database is a copy of that provided by the module, and may be
extended by loading additional mime.types-style files into the database using the read() or readfp()
methods. The mapping dictionaries may also be cleared before loading additional data if the default
data is not desired.

The optional filenames parameter can be used to cause additional files to be loaded “on top” of the
default database.

suffix_map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which
the encoding and the type are indicated by the same extension. For example, the .tgz extension
is mapped to .tar.gz to allow the encoding and type to be recognized separately. This is initially
a copy of the global suffix_map defined in the module.

encodings_map
Dictionary mapping filename extensions to encoding types. This is initially a copy of the global
encodings_map defined in the module.

types_map
Tuple containing two dictionaries, mapping filename extensions to MIME types: the first dic-
tionary is for the non-standards types and the second one is for the standard types. They are
initialized by common_types and types_map.

types_map_inv
Tuple containing two dictionaries, mapping MIME types to a list of filename extensions: the first
dictionary is for the non-standards types and the second one is for the standard types. They are
initialized by common_types and types_map.

guess_extension(type, strict=True)
Similar to the guess_extension() function, using the tables stored as part of the object.

guess_type(url, strict=True)
Similar to the guess_type() function, using the tables stored as part of the object.

guess_all_extensions(type, strict=True)
Similar to the guess_all_extensions() function, using the tables stored as part of the object.

read(filename, strict=True)
Load MIME information from a file named filename. This uses readfp() to parse the file.

If strict is True, information will be added to list of standard types, else to the list of non-standard
types.

19.5. mimetypes — Map filenames to MIME types 1013

The Python Library Reference, Release 3.5.7

readfp(fp, strict=True)
Load MIME type information from an open file fp. The file must have the format of the standard
mime.types files.

If strict is True, information will be added to the list of standard types, else to the list of non-
standard types.

read_windows_registry(strict=True)
Load MIME type information from the Windows registry. Availability: Windows.

If strict is True, information will be added to the list of standard types, else to the list of non-
standard types.

New in version 3.2.

19.6 base64 — Base16, Base32, Base64, Base85 Data Encodings

Source code: Lib/base64.py

This module provides functions for encoding binary data to printable ASCII characters and decoding such
encodings back to binary data. It provides encoding and decoding functions for the encodings specified in
RFC 3548, which defines the Base16, Base32, and Base64 algorithms, and for the de-facto standard Ascii85
and Base85 encodings.

The RFC 3548 encodings are suitable for encoding binary data so that it can safely sent by email, used as
parts of URLs, or included as part of an HTTP POST request. The encoding algorithm is not the same as
the uuencode program.

There are two interfaces provided by this module. The modern interface supports encoding bytes-like objects
to ASCII bytes, and decoding bytes-like objects or strings containing ASCII to bytes. Both base-64 alphabets
defined in RFC 3548 (normal, and URL- and filesystem-safe) are supported.

The legacy interface does not support decoding from strings, but it does provide functions for encoding and
decoding to and from file objects. It only supports the Base64 standard alphabet, and it adds newlines every
76 characters as per RFC 2045. Note that if you are looking for RFC 2045 support you probably want to
be looking at the email package instead.

Changed in version 3.3: ASCII-only Unicode strings are now accepted by the decoding functions of the
modern interface.

Changed in version 3.4: Any bytes-like objects are now accepted by all encoding and decoding functions in
this module. Ascii85/Base85 support added.

The modern interface provides:

base64.b64encode(s, altchars=None)
Encode the bytes-like object s using Base64 and return the encoded bytes.

Optional altchars must be a bytes-like object of at least length 2 (additional characters are ignored)
which specifies an alternative alphabet for the + and / characters. This allows an application to e.g.
generate URL or filesystem safe Base64 strings. The default is None, for which the standard Base64
alphabet is used.

base64.b64decode(s, altchars=None, validate=False)
Decode the Base64 encoded bytes-like object or ASCII string s and return the decoded bytes.

Optional altchars must be a bytes-like object or ASCII string of at least length 2 (additional characters
are ignored) which specifies the alternative alphabet used instead of the + and / characters.

1014 Chapter 19. Internet Data Handling

https://github.com/python/cpython/tree/3.5/Lib/base64.py
https://tools.ietf.org/html/rfc3548.html
https://tools.ietf.org/html/rfc3548.html
https://tools.ietf.org/html/rfc3548.html
https://tools.ietf.org/html/rfc2045.html
https://tools.ietf.org/html/rfc2045.html

The Python Library Reference, Release 3.5.7

A binascii.Error exception is raised if s is incorrectly padded.

If validate is False (the default), characters that are neither in the normal base-64 alphabet nor the
alternative alphabet are discarded prior to the padding check. If validate is True, these non-alphabet
characters in the input result in a binascii.Error.

base64.standard_b64encode(s)
Encode bytes-like object s using the standard Base64 alphabet and return the encoded bytes.

base64.standard_b64decode(s)
Decode bytes-like object or ASCII string s using the standard Base64 alphabet and return the decoded
bytes.

base64.urlsafe_b64encode(s)
Encode bytes-like object s using the URL- and filesystem-safe alphabet, which substitutes - instead of
+ and _ instead of / in the standard Base64 alphabet, and return the encoded bytes. The result can
still contain =.

base64.urlsafe_b64decode(s)
Decode bytes-like object or ASCII string s using the URL- and filesystem-safe alphabet, which sub-
stitutes - instead of + and _ instead of / in the standard Base64 alphabet, and return the decoded
bytes.

base64.b32encode(s)
Encode the bytes-like object s using Base32 and return the encoded bytes.

base64.b32decode(s, casefold=False, map01=None)
Decode the Base32 encoded bytes-like object or ASCII string s and return the decoded bytes.

Optional casefold is a flag specifying whether a lowercase alphabet is acceptable as input. For security
purposes, the default is False.

RFC 3548 allows for optional mapping of the digit 0 (zero) to the letter O (oh), and for optional
mapping of the digit 1 (one) to either the letter I (eye) or letter L (el). The optional argument map01
when not None, specifies which letter the digit 1 should be mapped to (when map01 is not None, the
digit 0 is always mapped to the letter O). For security purposes the default is None, so that 0 and 1
are not allowed in the input.

A binascii.Error is raised if s is incorrectly padded or if there are non-alphabet characters present in
the input.

base64.b16encode(s)
Encode the bytes-like object s using Base16 and return the encoded bytes.

base64.b16decode(s, casefold=False)
Decode the Base16 encoded bytes-like object or ASCII string s and return the decoded bytes.

Optional casefold is a flag specifying whether a lowercase alphabet is acceptable as input. For security
purposes, the default is False.

A binascii.Error is raised if s is incorrectly padded or if there are non-alphabet characters present in
the input.

base64.a85encode(b, *, foldspaces=False, wrapcol=0, pad=False, adobe=False)
Encode the bytes-like object b using Ascii85 and return the encoded bytes.

foldspaces is an optional flag that uses the special short sequence ‘y’ instead of 4 consecutive spaces
(ASCII 0x20) as supported by ‘btoa’. This feature is not supported by the “standard” Ascii85 encoding.

wrapcol controls whether the output should have newline (b'\n') characters added to it. If this is
non-zero, each output line will be at most this many characters long.

19.6. base64 — Base16, Base32, Base64, Base85 Data Encodings 1015

https://tools.ietf.org/html/rfc3548.html

The Python Library Reference, Release 3.5.7

pad controls whether the input is padded to a multiple of 4 before encoding. Note that the btoa
implementation always pads.

adobe controls whether the encoded byte sequence is framed with <~ and ~>, which is used by the
Adobe implementation.

New in version 3.4.

base64.a85decode(b, *, foldspaces=False, adobe=False, ignorechars=b’ \t\n\r\v’)
Decode the Ascii85 encoded bytes-like object or ASCII string b and return the decoded bytes.

foldspaces is a flag that specifies whether the ‘y’ short sequence should be accepted as shorthand for 4
consecutive spaces (ASCII 0x20). This feature is not supported by the “standard” Ascii85 encoding.

adobe controls whether the input sequence is in Adobe Ascii85 format (i.e. is framed with <~ and
~>).

ignorechars should be a bytes-like object or ASCII string containing characters to ignore from the input.
This should only contain whitespace characters, and by default contains all whitespace characters in
ASCII.

New in version 3.4.

base64.b85encode(b, pad=False)
Encode the bytes-like object b using base85 (as used in e.g. git-style binary diffs) and return the
encoded bytes.

If pad is true, the input is padded with b'\0' so its length is a multiple of 4 bytes before encoding.

New in version 3.4.

base64.b85decode(b)
Decode the base85-encoded bytes-like object or ASCII string b and return the decoded bytes. Padding
is implicitly removed, if necessary.

New in version 3.4.

Note: Both Base85 and Ascii85 have an expansion factor of 5 to 4 (5 Base85 or Ascii85 characters can
encode 4 binary bytes), while the better-known Base64 has an expansion factor of 6 to 4. They are therefore
more efficient when space expensive. They differ by details such as the character map used for encoding.

The legacy interface:

base64.decode(input, output)
Decode the contents of the binary input file and write the resulting binary data to the output file.
input and output must be file objects. input will be read until input.readline() returns an empty bytes
object.

base64.decodebytes(s)
Decode the bytes-like object s, which must contain one or more lines of base64 encoded data, and
return the decoded bytes.

New in version 3.1.

base64.decodestring(s)
Deprecated alias of decodebytes().

Deprecated since version 3.1.

base64.encode(input, output)
Encode the contents of the binary input file and write the resulting base64 encoded data to the output
file. input and output must be file objects. input will be read until input.read() returns an empty

1016 Chapter 19. Internet Data Handling

The Python Library Reference, Release 3.5.7

bytes object. encode() inserts a newline character (b'\n') after every 76 bytes of the output, as well
as ensuring that the output always ends with a newline, as per RFC 2045 (MIME).

base64.encodebytes(s)
Encode the bytes-like object s, which can contain arbitrary binary data, and return bytes containing
the base64-encoded data, with newlines (b'\n') inserted after every 76 bytes of output, and ensuring
that there is a trailing newline, as per RFC 2045 (MIME).

New in version 3.1.

base64.encodestring(s)
Deprecated alias of encodebytes().

Deprecated since version 3.1.

An example usage of the module:

>>> import base64
>>> encoded = base64.b64encode(b'data to be encoded')
>>> encoded
b'ZGF0YSB0byBiZSBlbmNvZGVk'
>>> data = base64.b64decode(encoded)
>>> data
b'data to be encoded'

See also:

Module binascii Support module containing ASCII-to-binary and binary-to-ASCII conversions.

RFC 1521 - MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies
Section 5.2, “Base64 Content-Transfer-Encoding,” provides the definition of the base64 encoding.

19.7 binhex — Encode and decode binhex4 files

Source code: Lib/binhex.py

This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh files
in ASCII. Only the data fork is handled.

The binhex module defines the following functions:

binhex.binhex(input, output)
Convert a binary file with filename input to binhex file output. The output parameter can either be a
filename or a file-like object (any object supporting a write() and close() method).

binhex.hexbin(input, output)
Decode a binhex file input. input may be a filename or a file-like object supporting read() and close()
methods. The resulting file is written to a file named output, unless the argument is None in which
case the output filename is read from the binhex file.

The following exception is also defined:

exception binhex.Error
Exception raised when something can’t be encoded using the binhex format (for example, a filename
is too long to fit in the filename field), or when input is not properly encoded binhex data.

See also:

Module binascii Support module containing ASCII-to-binary and binary-to-ASCII conversions.

19.7. binhex — Encode and decode binhex4 files 1017

https://tools.ietf.org/html/rfc2045.html
https://tools.ietf.org/html/rfc2045.html
https://tools.ietf.org/html/rfc1521.html
https://github.com/python/cpython/tree/3.5/Lib/binhex.py

The Python Library Reference, Release 3.5.7

19.7.1 Notes

There is an alternative, more powerful interface to the coder and decoder, see the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the old Macintosh newline
convention (carriage-return as end of line).

19.8 binascii — Convert between binary and ASCII

The binascii module contains a number of methods to convert between binary and various ASCII-encoded
binary representations. Normally, you will not use these functions directly but use wrapper modules like uu,
base64, or binhex instead. The binascii module contains low-level functions written in C for greater speed
that are used by the higher-level modules.

Note: a2b_* functions accept Unicode strings containing only ASCII characters. Other functions only
accept bytes-like objects (such as bytes, bytearray and other objects that support the buffer protocol).

Changed in version 3.3: ASCII-only unicode strings are now accepted by the a2b_* functions.

The binascii module defines the following functions:

binascii.a2b_uu(string)
Convert a single line of uuencoded data back to binary and return the binary data. Lines normally
contain 45 (binary) bytes, except for the last line. Line data may be followed by whitespace.

binascii.b2a_uu(data)
Convert binary data to a line of ASCII characters, the return value is the converted line, including a
newline char. The length of data should be at most 45.

binascii.a2b_base64(string)
Convert a block of base64 data back to binary and return the binary data. More than one line may be
passed at a time.

binascii.b2a_base64(data)
Convert binary data to a line of ASCII characters in base64 coding. The return value is the converted
line, including a newline char. The newline is added because the original use case for this function was
to feed it a series of 57 byte input lines to get output lines that conform to the MIME-base64 standard.
Otherwise the output conforms to RFC 3548.

binascii.a2b_qp(data, header=False)
Convert a block of quoted-printable data back to binary and return the binary data. More than one
line may be passed at a time. If the optional argument header is present and true, underscores will be
decoded as spaces.

binascii.b2a_qp(data, quotetabs=False, istext=True, header=False)
Convert binary data to a line(s) of ASCII characters in quoted-printable encoding. The return value
is the converted line(s). If the optional argument quotetabs is present and true, all tabs and spaces
will be encoded. If the optional argument istext is present and true, newlines are not encoded but
trailing whitespace will be encoded. If the optional argument header is present and true, spaces will
be encoded as underscores per RFC1522. If the optional argument header is present and false, newline
characters will be encoded as well; otherwise linefeed conversion might corrupt the binary data stream.

1018 Chapter 19. Internet Data Handling

https://tools.ietf.org/html/rfc3548.html

The Python Library Reference, Release 3.5.7

binascii.a2b_hqx(string)
Convert binhex4 formatted ASCII data to binary, without doing RLE-decompression. The string
should contain a complete number of binary bytes, or (in case of the last portion of the binhex4 data)
have the remaining bits zero.

binascii.rledecode_hqx(data)
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses 0x90 after
a byte as a repeat indicator, followed by a count. A count of 0 specifies a byte value of 0x90. The
routine returns the decompressed data, unless data input data ends in an orphaned repeat indicator,
in which case the Incomplete exception is raised.

Changed in version 3.2: Accept only bytestring or bytearray objects as input.

binascii.rlecode_hqx(data)
Perform binhex4 style RLE-compression on data and return the result.

binascii.b2a_hqx(data)
Perform hexbin4 binary-to-ASCII translation and return the resulting string. The argument should
already be RLE-coded, and have a length divisible by 3 (except possibly the last fragment).

binascii.crc_hqx(data, value)
Compute a 16-bit CRC value of data, starting with value as the initial CRC, and return the result.
This uses the CRC-CCITT polynomial x16 + x12 + x5 + 1, often represented as 0x1021. This CRC is
used in the binhex4 format.

binascii.crc32(data[, value])
Compute CRC-32, the 32-bit checksum of data, starting with an initial CRC of value. The default
initial CRC is zero. The algorithm is consistent with the ZIP file checksum. Since the algorithm is
designed for use as a checksum algorithm, it is not suitable for use as a general hash algorithm. Use
as follows:

print(binascii.crc32(b"hello world"))
Or, in two pieces:
crc = binascii.crc32(b"hello")
crc = binascii.crc32(b" world", crc)
print('crc32 = {:#010x}'.format(crc))

Changed in version 3.0: The result is always unsigned. To generate the same numeric value across all
Python versions and platforms, use crc32(data) & 0xffffffff.

binascii.b2a_hex(data)
binascii.hexlify(data)

Return the hexadecimal representation of the binary data. Every byte of data is converted into the
corresponding 2-digit hex representation. The returned bytes object is therefore twice as long as the
length of data.

binascii.a2b_hex(hexstr)
binascii.unhexlify(hexstr)

Return the binary data represented by the hexadecimal string hexstr. This function is the inverse of
b2a_hex(). hexstr must contain an even number of hexadecimal digits (which can be upper or lower
case), otherwise an Error exception is raised.

exception binascii.Error
Exception raised on errors. These are usually programming errors.

exception binascii.Incomplete
Exception raised on incomplete data. These are usually not programming errors, but may be handled
by reading a little more data and trying again.

See also:

19.8. binascii — Convert between binary and ASCII 1019

The Python Library Reference, Release 3.5.7

Module base64 Support for RFC compliant base64-style encoding in base 16, 32, 64, and 85.

Module binhex Support for the binhex format used on the Macintosh.

Module uu Support for UU encoding used on Unix.

Module quopri Support for quoted-printable encoding used in MIME email messages.

19.9 quopri — Encode and decode MIME quoted-printable data

Source code: Lib/quopri.py

This module performs quoted-printable transport encoding and decoding, as defined in RFC 1521: “MIME
(Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format
of Internet Message Bodies”. The quoted-printable encoding is designed for data where there are relatively
few nonprintable characters; the base64 encoding scheme available via the base64 module is more compact
if there are many such characters, as when sending a graphics file.

quopri.decode(input, output, header=False)
Decode the contents of the input file and write the resulting decoded binary data to the output file.
input and output must be binary file objects. If the optional argument header is present and true,
underscore will be decoded as space. This is used to decode “Q”-encoded headers as described in RFC
1522: “MIME (Multipurpose Internet Mail Extensions) Part Two: Message Header Extensions for
Non-ASCII Text”.

quopri.encode(input, output, quotetabs, header=False)
Encode the contents of the input file and write the resulting quoted-printable data to the output file.
input and output must be binary file objects. quotetabs, a flag which controls whether to encode
embedded spaces and tabs must be provideda and when true it encodes such embedded whitespace,
and when false it leaves them unencoded. Note that spaces and tabs appearing at the end of lines are
always encoded, as per RFC 1521. header is a flag which controls if spaces are encoded as underscores
as per RFC 1522.

quopri.decodestring(s, header=False)
Like decode(), except that it accepts a source bytes and returns the corresponding decoded bytes.

quopri.encodestring(s, quotetabs=False, header=False)
Like encode(), except that it accepts a source bytes and returns the corresponding encoded bytes. By
default, it sends a False value to quotetabs parameter of the encode() function.

See also:

Module base64 Encode and decode MIME base64 data

19.10 uu — Encode and decode uuencode files

Source code: Lib/uu.py

This module encodes and decodes files in uuencode format, allowing arbitrary binary data to be transferred
over ASCII-only connections. Wherever a file argument is expected, the methods accept a file-like object.
For backwards compatibility, a string containing a pathname is also accepted, and the corresponding file will
be opened for reading and writing; the pathname '-' is understood to mean the standard input or output.

1020 Chapter 19. Internet Data Handling

https://github.com/python/cpython/tree/3.5/Lib/quopri.py
https://tools.ietf.org/html/rfc1521.html
https://tools.ietf.org/html/rfc1522.html
https://tools.ietf.org/html/rfc1522.html
https://tools.ietf.org/html/rfc1521.html
https://tools.ietf.org/html/rfc1522.html
https://github.com/python/cpython/tree/3.5/Lib/uu.py

The Python Library Reference, Release 3.5.7

However, this interface is deprecated; it’s better for the caller to open the file itself, and be sure that, when
required, the mode is 'rb' or 'wb' on Windows.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

The uu module defines the following functions:

uu.encode(in_file, out_file, name=None, mode=None)
Uuencode file in_file into file out_file. The uuencoded file will have the header specifying name and
mode as the defaults for the results of decoding the file. The default defaults are taken from in_file,
or '-' and 0o666 respectively.

uu.decode(in_file, out_file=None, mode=None, quiet=False)
This call decodes uuencoded file in_file placing the result on file out_file. If out_file is a pathname,
mode is used to set the permission bits if the file must be created. Defaults for out_file and mode are
taken from the uuencode header. However, if the file specified in the header already exists, a uu.Error
is raised.

decode() may print a warning to standard error if the input was produced by an incorrect uuencoder
and Python could recover from that error. Setting quiet to a true value silences this warning.

exception uu.Error
Subclass of Exception, this can be raised by uu.decode() under various situations, such as described
above, but also including a badly formatted header, or truncated input file.

See also:

Module binascii Support module containing ASCII-to-binary and binary-to-ASCII conversions.

19.10. uu — Encode and decode uuencode files 1021

The Python Library Reference, Release 3.5.7

1022 Chapter 19. Internet Data Handling

CHAPTER

TWENTY

STRUCTURED MARKUP PROCESSING TOOLS

Python supports a variety of modules to work with various forms of structured data markup. This includes
modules to work with the Standard Generalized Markup Language (SGML) and the Hypertext Markup
Language (HTML), and several interfaces for working with the Extensible Markup Language (XML).

20.1 html — HyperText Markup Language support

Source code: Lib/html/__init__.py

This module defines utilities to manipulate HTML.

html.escape(s, quote=True)
Convert the characters &, < and > in string s to HTML-safe sequences. Use this if you need to display
text that might contain such characters in HTML. If the optional flag quote is true, the characters (")
and (') are also translated; this helps for inclusion in an HTML attribute value delimited by quotes,
as in .

New in version 3.2.

html.unescape(s)
Convert all named and numeric character references (e.g. >, >, &x3e;) in the string s to the
corresponding unicode characters. This function uses the rules defined by the HTML 5 standard for
both valid and invalid character references, and the list of HTML 5 named character references.

New in version 3.4.

Submodules in the html package are:

• html.parser – HTML/XHTML parser with lenient parsing mode

• html.entities – HTML entity definitions

20.2 html.parser — Simple HTML and XHTML parser

Source code: Lib/html/parser.py

This module defines a class HTMLParser which serves as the basis for parsing text files formatted in HTML
(HyperText Mark-up Language) and XHTML.

1023

https://github.com/python/cpython/tree/3.5/Lib/html/__init__.py
https://github.com/python/cpython/tree/3.5/Lib/html/parser.py

The Python Library Reference, Release 3.5.7

class html.parser.HTMLParser(*, convert_charrefs=True)
Create a parser instance able to parse invalid markup.

If convert_charrefs is True (the default), all character references (except the ones in script/style ele-
ments) are automatically converted to the corresponding Unicode characters.

An HTMLParser instance is fed HTML data and calls handler methods when start tags, end tags,
text, comments, and other markup elements are encountered. The user should subclass HTMLParser
and override its methods to implement the desired behavior.

This parser does not check that end tags match start tags or call the end-tag handler for elements
which are closed implicitly by closing an outer element.

Changed in version 3.4: convert_charrefs keyword argument added.

Changed in version 3.5: The default value for argument convert_charrefs is now True.

20.2.1 Example HTML Parser Application

As a basic example, below is a simple HTML parser that uses the HTMLParser class to print out start tags,
end tags, and data as they are encountered:

from html.parser import HTMLParser

class MyHTMLParser(HTMLParser):
def handle_starttag(self, tag, attrs):

print("Encountered a start tag:", tag)

def handle_endtag(self, tag):
print("Encountered an end tag :", tag)

def handle_data(self, data):
print("Encountered some data :", data)

parser = MyHTMLParser()
parser.feed('<html><head><title>Test</title></head>'

'<body><h1>Parse me!</h1></body></html>')

The output will then be:

Encountered a start tag: html
Encountered a start tag: head
Encountered a start tag: title
Encountered some data : Test
Encountered an end tag : title
Encountered an end tag : head
Encountered a start tag: body
Encountered a start tag: h1
Encountered some data : Parse me!
Encountered an end tag : h1
Encountered an end tag : body
Encountered an end tag : html

20.2.2 HTMLParser Methods

HTMLParser instances have the following methods:

1024 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

HTMLParser.feed(data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete
data is buffered until more data is fed or close() is called. data must be str.

HTMLParser.close()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be
redefined by a derived class to define additional processing at the end of the input, but the redefined
version should always call the HTMLParser base class method close().

HTMLParser.reset()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

HTMLParser.getpos()
Return current line number and offset.

HTMLParser.get_starttag_text()
Return the text of the most recently opened start tag. This should not normally be needed for
structured processing, but may be useful in dealing with HTML “as deployed” or for re-generating
input with minimal changes (whitespace between attributes can be preserved, etc.).

The following methods are called when data or markup elements are encountered and they are meant to be
overridden in a subclass. The base class implementations do nothing (except for handle_startendtag()):

HTMLParser.handle_starttag(tag, attrs)
This method is called to handle the start of a tag (e.g. <div id="main">).

The tag argument is the name of the tag converted to lower case. The attrs argument is a list of (name,
value) pairs containing the attributes found inside the tag’s <> brackets. The name will be translated
to lower case, and quotes in the value have been removed, and character and entity references have
been replaced.

For instance, for the tag , this method would be called as
handle_starttag('a', [('href', 'https://www.cwi.nl/')]).

All entity references from html.entities are replaced in the attribute values.

HTMLParser.handle_endtag(tag)
This method is called to handle the end tag of an element (e.g. </div>).

The tag argument is the name of the tag converted to lower case.

HTMLParser.handle_startendtag(tag, attrs)
Similar to handle_starttag(), but called when the parser encounters an XHTML-style empty tag (). This method may be overridden by subclasses which require this particular lexical information;
the default implementation simply calls handle_starttag() and handle_endtag().

HTMLParser.handle_data(data)
This method is called to process arbitrary data (e.g. text nodes and the content of <script>...</
script> and <style>...</style>).

HTMLParser.handle_entityref(name)
This method is called to process a named character reference of the form &name; (e.g. >), where
name is a general entity reference (e.g. 'gt'). This method is never called if convert_charrefs is True.

HTMLParser.handle_charref(name)
This method is called to process decimal and hexadecimal numeric character references of the form
&#NNN; and &#xNNN;. For example, the decimal equivalent for > is >, whereas the hex-
adecimal is >; in this case the method will receive '62' or 'x3E'. This method is never called
if convert_charrefs is True.

HTMLParser.handle_comment(data)
This method is called when a comment is encountered (e.g. <!--comment-->).

20.2. html.parser — Simple HTML and XHTML parser 1025

The Python Library Reference, Release 3.5.7

For example, the comment <!-- comment --> will cause this method to be called with the argument '
comment '.

The content of Internet Explorer conditional comments (condcoms) will also be sent to this method,
so, for <!--[if IE 9]>IE9-specific content<![endif]-->, this method will receive '[if IE 9]>IE9-specific
content<![endif]'.

HTMLParser.handle_decl(decl)
This method is called to handle an HTML doctype declaration (e.g. <!DOCTYPE html>).

The decl parameter will be the entire contents of the declaration inside the <!...> markup (e.g. 'DOC-
TYPE html').

HTMLParser.handle_pi(data)
Method called when a processing instruction is encountered. The data parameter will contain the entire
processing instruction. For example, for the processing instruction <?proc color='red'>, this method
would be called as handle_pi("proc color='red'"). It is intended to be overridden by a derived class;
the base class implementation does nothing.

Note: The HTMLParser class uses the SGML syntactic rules for processing instructions. An XHTML
processing instruction using the trailing '?' will cause the '?' to be included in data.

HTMLParser.unknown_decl(data)
This method is called when an unrecognized declaration is read by the parser.

The data parameter will be the entire contents of the declaration inside the <![...]> markup. It is
sometimes useful to be overridden by a derived class. The base class implementation does nothing.

20.2.3 Examples

The following class implements a parser that will be used to illustrate more examples:

from html.parser import HTMLParser
from html.entities import name2codepoint

class MyHTMLParser(HTMLParser):
def handle_starttag(self, tag, attrs):

print("Start tag:", tag)
for attr in attrs:

print(" attr:", attr)

def handle_endtag(self, tag):
print("End tag :", tag)

def handle_data(self, data):
print("Data :", data)

def handle_comment(self, data):
print("Comment :", data)

def handle_entityref(self, name):
c = chr(name2codepoint[name])
print("Named ent:", c)

def handle_charref(self, name):
if name.startswith('x'):

(continues on next page)

1026 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

c = chr(int(name[1:], 16))
else:

c = chr(int(name))
print("Num ent :", c)

def handle_decl(self, data):
print("Decl :", data)

parser = MyHTMLParser()

Parsing a doctype:

>>> parser.feed('<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" '
... '"http://www.w3.org/TR/html4/strict.dtd">')
Decl : DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.
→˓dtd"

Parsing an element with a few attributes and a title:

>>> parser.feed('')
Start tag: img

attr: ('src', 'python-logo.png')
attr: ('alt', 'The Python logo')

>>>
>>> parser.feed('<h1>Python</h1>')
Start tag: h1
Data : Python
End tag : h1

The content of script and style elements is returned as is, without further parsing:

>>> parser.feed('<style type="text/css">#python { color: green }</style>')
Start tag: style

attr: ('type', 'text/css')
Data : #python { color: green }
End tag : style

>>> parser.feed('<script type="text/javascript">'
... 'alert("hello!");</script>')
Start tag: script

attr: ('type', 'text/javascript')
Data : alert("hello!");
End tag : script

Parsing comments:

>>> parser.feed('<!-- a comment -->'
... '<!--[if IE 9]>IE-specific content<![endif]-->')
Comment : a comment
Comment : [if IE 9]>IE-specific content<![endif]

Parsing named and numeric character references and converting them to the correct char (note: these 3
references are all equivalent to '>'):

>>> parser.feed('>>>')
Named ent: >

(continues on next page)

20.2. html.parser — Simple HTML and XHTML parser 1027

The Python Library Reference, Release 3.5.7

(continued from previous page)

Num ent : >
Num ent : >

Feeding incomplete chunks to feed() works, but handle_data() might be called more than once (unless
convert_charrefs is set to True):

>>> for chunk in ['<sp', 'an>buff', 'ered ', 'text</s', 'pan>']:
... parser.feed(chunk)
...
Start tag: span
Data : buff
Data : ered
Data : text
End tag : span

Parsing invalid HTML (e.g. unquoted attributes) also works:

>>> parser.feed('<p>tag soup</p >')
Start tag: p
Start tag: a

attr: ('class', 'link')
attr: ('href', '#main')

Data : tag soup
End tag : p
End tag : a

20.3 html.entities — Definitions of HTML general entities

Source code: Lib/html/entities.py

This module defines four dictionaries, html5, name2codepoint, codepoint2name, and entitydefs.

html.entities.html5
A dictionary that maps HTML5 named character references1 to the equivalent Unicode character(s),
e.g. html5['gt;'] == '>'. Note that the trailing semicolon is included in the name (e.g. 'gt;'),
however some of the names are accepted by the standard even without the semicolon: in this case the
name is present with and without the ';'. See also html.unescape().

New in version 3.3.

html.entities.entitydefs
A dictionary mapping XHTML 1.0 entity definitions to their replacement text in ISO Latin-1.

html.entities.name2codepoint
A dictionary that maps HTML entity names to the Unicode code points.

html.entities.codepoint2name
A dictionary that maps Unicode code points to HTML entity names.

1 See https://www.w3.org/TR/html5/syntax.html#named-character-references

1028 Chapter 20. Structured Markup Processing Tools

https://github.com/python/cpython/tree/3.5/Lib/html/entities.py
https://www.w3.org/TR/html5/syntax.html#named-character-references

The Python Library Reference, Release 3.5.7

20.4 XML Processing Modules

Source code: Lib/xml/

Python’s interfaces for processing XML are grouped in the xml package.

Warning: The XML modules are not secure against erroneous or maliciously constructed data. If you
need to parse untrusted or unauthenticated data see the XML vulnerabilities and The defusedxml and
defusedexpat Packages sections.

It is important to note that modules in the xml package require that there be at least one SAX-compliant
XML parser available. The Expat parser is included with Python, so the xml.parsers.expat module will
always be available.

The documentation for the xml.dom and xml.sax packages are the definition of the Python bindings for the
DOM and SAX interfaces.

The XML handling submodules are:

• xml.etree.ElementTree: the ElementTree API, a simple and lightweight XML processor

• xml.dom: the DOM API definition

• xml.dom.minidom: a minimal DOM implementation

• xml.dom.pulldom: support for building partial DOM trees

• xml.sax: SAX2 base classes and convenience functions

• xml.parsers.expat: the Expat parser binding

20.4.1 XML vulnerabilities

The XML processing modules are not secure against maliciously constructed data. An attacker can abuse
XML features to carry out denial of service attacks, access local files, generate network connections to other
machines, or circumvent firewalls.

The following table gives an overview of the known attacks and whether the various modules are vulnerable
to them.

kind sax etree minidom pulldom xmlrpc
billion laughs Vulnerable Vulnerable Vulnerable Vulnerable Vulnerable
quadratic blowup Vulnerable Vulnerable Vulnerable Vulnerable Vulnerable
external entity expansion Vulnerable Safe (1) Safe (2) Vulnerable Safe (3)
DTD retrieval Vulnerable Safe Safe Vulnerable Safe
decompression bomb Safe Safe Safe Safe Vulnerable

1. xml.etree.ElementTree doesn’t expand external entities and raises a ParserError when an entity occurs.

2. xml.dom.minidom doesn’t expand external entities and simply returns the unexpanded entity verbatim.

3. xmlrpclib doesn’t expand external entities and omits them.

20.4. XML Processing Modules 1029

https://github.com/python/cpython/tree/3.5/Lib/xml/
https://en.wikipedia.org/wiki/Document_type_definition

The Python Library Reference, Release 3.5.7

billion laughs / exponential entity expansion The Billion Laughs attack – also known as exponential entity
expansion – uses multiple levels of nested entities. Each entity refers to another entity several times,
and the final entity definition contains a small string. The exponential expansion results in several
gigabytes of text and consumes lots of memory and CPU time.

quadratic blowup entity expansion A quadratic blowup attack is similar to a Billion Laughs attack; it abuses
entity expansion, too. Instead of nested entities it repeats one large entity with a couple of thousand
chars over and over again. The attack isn’t as efficient as the exponential case but it avoids triggering
parser countermeasures that forbid deeply-nested entities.

external entity expansion Entity declarations can contain more than just text for replacement. They can
also point to external resources or local files. The XML parser accesses the resource and embeds the
content into the XML document.

DTD retrieval Some XML libraries like Python’s xml.dom.pulldom retrieve document type definitions from
remote or local locations. The feature has similar implications as the external entity expansion issue.

decompression bomb Decompression bombs (aka ZIP bomb) apply to all XML libraries that can parse
compressed XML streams such as gzipped HTTP streams or LZMA-compressed files. For an attacker
it can reduce the amount of transmitted data by three magnitudes or more.

The documentation for defusedxml on PyPI has further information about all known attack vectors with
examples and references.

20.4.2 The defusedxml and defusedexpat Packages

defusedxml is a pure Python package with modified subclasses of all stdlib XML parsers that prevent any
potentially malicious operation. Use of this package is recommended for any server code that parses untrusted
XML data. The package also ships with example exploits and extended documentation on more XML exploits
such as XPath injection.

defusedexpat provides a modified libexpat and a patched pyexpat module that have countermeasures against
entity expansion DoS attacks. The defusedexpat module still allows a sane and configurable amount of entity
expansions. The modifications may be included in some future release of Python, but will not be included
in any bugfix releases of Python because they break backward compatibility.

20.5 xml.etree.ElementTree — The ElementTree XML API

Source code: Lib/xml/etree/ElementTree.py

The xml.etree.ElementTree module implements a simple and efficient API for parsing and creating XML
data.

Changed in version 3.3: This module will use a fast implementation whenever available. The xml.etree.
cElementTree module is deprecated.

Warning: The xml.etree.ElementTree module is not secure against maliciously constructed data. If you
need to parse untrusted or unauthenticated data see XML vulnerabilities.

1030 Chapter 20. Structured Markup Processing Tools

https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Document_type_definition
https://en.wikipedia.org/wiki/Zip_bomb
https://pypi.python.org/pypi/defusedxml/
https://pypi.python.org/pypi/defusedxml/
https://pypi.python.org/pypi/defusedexpat/
https://github.com/python/cpython/tree/3.5/Lib/xml/etree/ElementTree.py

The Python Library Reference, Release 3.5.7

20.5.1 Tutorial

This is a short tutorial for using xml.etree.ElementTree (ET in short). The goal is to demonstrate some of
the building blocks and basic concepts of the module.

XML tree and elements

XML is an inherently hierarchical data format, and the most natural way to represent it is with a tree. ET
has two classes for this purpose - ElementTree represents the whole XML document as a tree, and Element
represents a single node in this tree. Interactions with the whole document (reading and writing to/from
files) are usually done on the ElementTree level. Interactions with a single XML element and its sub-elements
are done on the Element level.

Parsing XML

We’ll be using the following XML document as the sample data for this section:

<?xml version="1.0"?>
<data>

<country name="Liechtenstein">
<rank>1</rank>
<year>2008</year>
<gdppc>141100</gdppc>
<neighbor name="Austria" direction="E"/>
<neighbor name="Switzerland" direction="W"/>

</country>
<country name="Singapore">

<rank>4</rank>
<year>2011</year>
<gdppc>59900</gdppc>
<neighbor name="Malaysia" direction="N"/>

</country>
<country name="Panama">

<rank>68</rank>
<year>2011</year>
<gdppc>13600</gdppc>
<neighbor name="Costa Rica" direction="W"/>
<neighbor name="Colombia" direction="E"/>

</country>
</data>

We can import this data by reading from a file:

import xml.etree.ElementTree as ET
tree = ET.parse('country_data.xml')
root = tree.getroot()

Or directly from a string:

root = ET.fromstring(country_data_as_string)

fromstring() parses XML from a string directly into an Element, which is the root element of the parsed
tree. Other parsing functions may create an ElementTree. Check the documentation to be sure.

As an Element, root has a tag and a dictionary of attributes:

20.5. xml.etree.ElementTree — The ElementTree XML API 1031

The Python Library Reference, Release 3.5.7

>>> root.tag
'data'
>>> root.attrib
{}

It also has children nodes over which we can iterate:

>>> for child in root:
... print(child.tag, child.attrib)
...
country {'name': 'Liechtenstein'}
country {'name': 'Singapore'}
country {'name': 'Panama'}

Children are nested, and we can access specific child nodes by index:

>>> root[0][1].text
'2008'

Note: Not all elements of the XML input will end up as elements of the parsed tree. Currently, this
module skips over any XML comments, processing instructions, and document type declarations in the input.
Nevertheless, trees built using this module’s API rather than parsing from XML text can have comments
and processing instructions in them; they will be included when generating XML output. A document type
declaration may be accessed by passing a custom TreeBuilder instance to the XMLParser constructor.

Pull API for non-blocking parsing

Most parsing functions provided by this module require the whole document to be read at once before
returning any result. It is possible to use an XMLParser and feed data into it incrementally, but it is a
push API that calls methods on a callback target, which is too low-level and inconvenient for most needs.
Sometimes what the user really wants is to be able to parse XML incrementally, without blocking operations,
while enjoying the convenience of fully constructed Element objects.

The most powerful tool for doing this is XMLPullParser. It does not require a blocking read to obtain the
XML data, and is instead fed with data incrementally with XMLPullParser.feed() calls. To get the parsed
XML elements, call XMLPullParser.read_events(). Here is an example:

>>> parser = ET.XMLPullParser(['start', 'end'])
>>> parser.feed('<mytag>sometext')
>>> list(parser.read_events())
[('start', <Element 'mytag' at 0x7fa66db2be58>)]
>>> parser.feed(' more text</mytag>')
>>> for event, elem in parser.read_events():
... print(event)
... print(elem.tag, 'text=', elem.text)
...
end

The obvious use case is applications that operate in a non-blocking fashion where the XML data is being
received from a socket or read incrementally from some storage device. In such cases, blocking reads are
unacceptable.

Because it’s so flexible, XMLPullParser can be inconvenient to use for simpler use-cases. If you don’t mind
your application blocking on reading XML data but would still like to have incremental parsing capabilities,

1032 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

take a look at iterparse(). It can be useful when you’re reading a large XML document and don’t want to
hold it wholly in memory.

Finding interesting elements

Element has some useful methods that help iterate recursively over all the sub-tree below it (its children,
their children, and so on). For example, Element.iter():

>>> for neighbor in root.iter('neighbor'):
... print(neighbor.attrib)
...
{'name': 'Austria', 'direction': 'E'}
{'name': 'Switzerland', 'direction': 'W'}
{'name': 'Malaysia', 'direction': 'N'}
{'name': 'Costa Rica', 'direction': 'W'}
{'name': 'Colombia', 'direction': 'E'}

Element.findall() finds only elements with a tag which are direct children of the current element. Element.
find() finds the first child with a particular tag, and Element.text accesses the element’s text content.
Element.get() accesses the element’s attributes:

>>> for country in root.findall('country'):
... rank = country.find('rank').text
... name = country.get('name')
... print(name, rank)
...
Liechtenstein 1
Singapore 4
Panama 68

More sophisticated specification of which elements to look for is possible by using XPath.

Modifying an XML File

ElementTree provides a simple way to build XML documents and write them to files. The ElementTree.
write() method serves this purpose.

Once created, an Element object may be manipulated by directly changing its fields (such as Element.text),
adding and modifying attributes (Element.set() method), as well as adding new children (for example with
Element.append()).

Let’s say we want to add one to each country’s rank, and add an updated attribute to the rank element:

>>> for rank in root.iter('rank'):
... new_rank = int(rank.text) + 1
... rank.text = str(new_rank)
... rank.set('updated', 'yes')
...
>>> tree.write('output.xml')

Our XML now looks like this:

<?xml version="1.0"?>
<data>

<country name="Liechtenstein">
<rank updated="yes">2</rank>

(continues on next page)

20.5. xml.etree.ElementTree — The ElementTree XML API 1033

The Python Library Reference, Release 3.5.7

(continued from previous page)

<year>2008</year>
<gdppc>141100</gdppc>
<neighbor name="Austria" direction="E"/>
<neighbor name="Switzerland" direction="W"/>

</country>
<country name="Singapore">

<rank updated="yes">5</rank>
<year>2011</year>
<gdppc>59900</gdppc>
<neighbor name="Malaysia" direction="N"/>

</country>
<country name="Panama">

<rank updated="yes">69</rank>
<year>2011</year>
<gdppc>13600</gdppc>
<neighbor name="Costa Rica" direction="W"/>
<neighbor name="Colombia" direction="E"/>

</country>
</data>

We can remove elements using Element.remove(). Let’s say we want to remove all countries with a rank
higher than 50:

>>> for country in root.findall('country'):
... rank = int(country.find('rank').text)
... if rank > 50:
... root.remove(country)
...
>>> tree.write('output.xml')

Our XML now looks like this:

<?xml version="1.0"?>
<data>

<country name="Liechtenstein">
<rank updated="yes">2</rank>
<year>2008</year>
<gdppc>141100</gdppc>
<neighbor name="Austria" direction="E"/>
<neighbor name="Switzerland" direction="W"/>

</country>
<country name="Singapore">

<rank updated="yes">5</rank>
<year>2011</year>
<gdppc>59900</gdppc>
<neighbor name="Malaysia" direction="N"/>

</country>
</data>

Building XML documents

The SubElement() function also provides a convenient way to create new sub-elements for a given element:

>>> a = ET.Element('a')
>>> b = ET.SubElement(a, 'b')

(continues on next page)

1034 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> c = ET.SubElement(a, 'c')
>>> d = ET.SubElement(c, 'd')
>>> ET.dump(a)
<a><c><d /></c>

Parsing XML with Namespaces

If the XML input has namespaces, tags and attributes with prefixes in the form prefix:sometag get expanded
to {uri}sometag where the prefix is replaced by the full URI. Also, if there is a default namespace, that full
URI gets prepended to all of the non-prefixed tags.

Here is an XML example that incorporates two namespaces, one with the prefix “fictional” and the other
serving as the default namespace:

<?xml version="1.0"?>
<actors xmlns:fictional="http://characters.example.com"

xmlns="http://people.example.com">
<actor>

<name>John Cleese</name>
<fictional:character>Lancelot</fictional:character>
<fictional:character>Archie Leach</fictional:character>

</actor>
<actor>

<name>Eric Idle</name>
<fictional:character>Sir Robin</fictional:character>
<fictional:character>Gunther</fictional:character>
<fictional:character>Commander Clement</fictional:character>

</actor>
</actors>

One way to search and explore this XML example is to manually add the URI to every tag or attribute in
the xpath of a find() or findall():

root = fromstring(xml_text)
for actor in root.findall('{http://people.example.com}actor'):

name = actor.find('{http://people.example.com}name')
print(name.text)
for char in actor.findall('{http://characters.example.com}character'):

print(' |-->', char.text)

A better way to search the namespaced XML example is to create a dictionary with your own prefixes and
use those in the search functions:

ns = {'real_person': 'http://people.example.com',
'role': 'http://characters.example.com'}

for actor in root.findall('real_person:actor', ns):
name = actor.find('real_person:name', ns)
print(name.text)
for char in actor.findall('role:character', ns):

print(' |-->', char.text)

These two approaches both output:

20.5. xml.etree.ElementTree — The ElementTree XML API 1035

https://en.wikipedia.org/wiki/XML_namespace
https://www.w3.org/TR/2006/REC-xml-names-20060816/#defaulting

The Python Library Reference, Release 3.5.7

John Cleese
|--> Lancelot
|--> Archie Leach
Eric Idle
|--> Sir Robin
|--> Gunther
|--> Commander Clement

Additional resources

See http://effbot.org/zone/element-index.htm for tutorials and links to other docs.

20.5.2 XPath support

This module provides limited support for XPath expressions for locating elements in a tree. The goal is to
support a small subset of the abbreviated syntax; a full XPath engine is outside the scope of the module.

Example

Here’s an example that demonstrates some of the XPath capabilities of the module. We’ll be using the
countrydata XML document from the Parsing XML section:

import xml.etree.ElementTree as ET

root = ET.fromstring(countrydata)

Top-level elements
root.findall(".")

All 'neighbor' grand-children of 'country' children of the top-level
elements
root.findall("./country/neighbor")

Nodes with name='Singapore' that have a 'year' child
root.findall(".//year/..[@name='Singapore']")

'year' nodes that are children of nodes with name='Singapore'
root.findall(".//*[@name='Singapore']/year")

All 'neighbor' nodes that are the second child of their parent
root.findall(".//neighbor[2]")

1036 Chapter 20. Structured Markup Processing Tools

http://effbot.org/zone/element-index.htm
https://www.w3.org/TR/xpath

The Python Library Reference, Release 3.5.7

Supported XPath syntax

Syntax Meaning
tag Selects all child elements with the given tag. For example, spam selects all child

elements named spam, and spam/egg selects all grandchildren named egg in all
children named spam.

* Selects all child elements. For example, */egg selects all grandchildren named egg.
. Selects the current node. This is mostly useful at the beginning of the path, to

indicate that it’s a relative path.
// Selects all subelements, on all levels beneath the current element. For example,

.//egg selects all egg elements in the entire tree.
.. Selects the parent element. Returns None if the path attempts to reach the

ancestors of the start element (the element find was called on).
[@attrib] Selects all elements that have the given attribute.
[@attrib='value'] Selects all elements for which the given attribute has the given value. The value

cannot contain quotes.
[tag] Selects all elements that have a child named tag. Only immediate children are

supported.
[tag='text'] Selects all elements that have a child named tag whose complete text content,

including descendants, equals the given text.
[position] Selects all elements that are located at the given position. The position can be

either an integer (1 is the first position), the expression last() (for the last
position), or a position relative to the last position (e.g. last()-1).

Predicates (expressions within square brackets) must be preceded by a tag name, an asterisk, or another
predicate. position predicates must be preceded by a tag name.

20.5.3 Reference

Functions

xml.etree.ElementTree.Comment(text=None)
Comment element factory. This factory function creates a special element that will be serialized as an
XML comment by the standard serializer. The comment string can be either a bytestring or a Unicode
string. text is a string containing the comment string. Returns an element instance representing a
comment.

Note that XMLParser skips over comments in the input instead of creating comment objects for them.
An ElementTree will only contain comment nodes if they have been inserted into to the tree using one
of the Element methods.

xml.etree.ElementTree.dump(elem)
Writes an element tree or element structure to sys.stdout. This function should be used for debugging
only.

The exact output format is implementation dependent. In this version, it’s written as an ordinary
XML file.

elem is an element tree or an individual element.

xml.etree.ElementTree.fromstring(text)
Parses an XML section from a string constant. Same as XML(). text is a string containing XML data.
Returns an Element instance.

20.5. xml.etree.ElementTree — The ElementTree XML API 1037

The Python Library Reference, Release 3.5.7

xml.etree.ElementTree.fromstringlist(sequence, parser=None)
Parses an XML document from a sequence of string fragments. sequence is a list or other sequence
containing XML data fragments. parser is an optional parser instance. If not given, the standard
XMLParser parser is used. Returns an Element instance.

New in version 3.2.

xml.etree.ElementTree.iselement(element)
Checks if an object appears to be a valid element object. element is an element instance. Returns a
true value if this is an element object.

xml.etree.ElementTree.iterparse(source, events=None, parser=None)
Parses an XML section into an element tree incrementally, and reports what’s going on to the user.
source is a filename or file object containing XML data. events is a sequence of events to report back.
The supported events are the strings "start", "end", "start-ns" and "end-ns" (the “ns” events are used
to get detailed namespace information). If events is omitted, only "end" events are reported. parser
is an optional parser instance. If not given, the standard XMLParser parser is used. parser must be
a subclass of XMLParser and can only use the default TreeBuilder as a target. Returns an iterator
providing (event, elem) pairs.

Note that while iterparse() builds the tree incrementally, it issues blocking reads on source (or the
file it names). As such, it’s unsuitable for applications where blocking reads can’t be made. For fully
non-blocking parsing, see XMLPullParser.

Note: iterparse() only guarantees that it has seen the “>” character of a starting tag when it emits a
“start” event, so the attributes are defined, but the contents of the text and tail attributes are undefined
at that point. The same applies to the element children; they may or may not be present.

If you need a fully populated element, look for “end” events instead.

Deprecated since version 3.4: The parser argument.

xml.etree.ElementTree.parse(source, parser=None)
Parses an XML section into an element tree. source is a filename or file object containing XML data.
parser is an optional parser instance. If not given, the standard XMLParser parser is used. Returns
an ElementTree instance.

xml.etree.ElementTree.ProcessingInstruction(target, text=None)
PI element factory. This factory function creates a special element that will be serialized as an XML
processing instruction. target is a string containing the PI target. text is a string containing the PI
contents, if given. Returns an element instance, representing a processing instruction.

Note that XMLParser skips over processing instructions in the input instead of creating comment
objects for them. An ElementTree will only contain processing instruction nodes if they have been
inserted into to the tree using one of the Element methods.

xml.etree.ElementTree.register_namespace(prefix, uri)
Registers a namespace prefix. The registry is global, and any existing mapping for either the given
prefix or the namespace URI will be removed. prefix is a namespace prefix. uri is a namespace uri.
Tags and attributes in this namespace will be serialized with the given prefix, if at all possible.

New in version 3.2.

xml.etree.ElementTree.SubElement(parent, tag, attrib={}, **extra)
Subelement factory. This function creates an element instance, and appends it to an existing element.

The element name, attribute names, and attribute values can be either bytestrings or Unicode strings.
parent is the parent element. tag is the subelement name. attrib is an optional dictionary, containing

1038 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

element attributes. extra contains additional attributes, given as keyword arguments. Returns an
element instance.

xml.etree.ElementTree.tostring(element, encoding="us-ascii", method="xml", *,
short_empty_elements=True)

Generates a string representation of an XML element, including all subelements. element is an Element
instance. encoding1 is the output encoding (default is US-ASCII). Use encoding="unicode" to generate
a Unicode string (otherwise, a bytestring is generated). method is either "xml", "html" or "text"
(default is "xml"). short_empty_elements has the same meaning as in ElementTree.write(). Returns
an (optionally) encoded string containing the XML data.

New in version 3.4: The short_empty_elements parameter.

xml.etree.ElementTree.tostringlist(element, encoding="us-ascii", method="xml", *,
short_empty_elements=True)

Generates a string representation of an XML element, including all subelements. element is an Element
instance. encoding1 is the output encoding (default is US-ASCII). Use encoding="unicode" to generate
a Unicode string (otherwise, a bytestring is generated). method is either "xml", "html" or "text"
(default is "xml"). short_empty_elements has the same meaning as in ElementTree.write(). Returns
a list of (optionally) encoded strings containing the XML data. It does not guarantee any specific
sequence, except that b"".join(tostringlist(element)) == tostring(element).

New in version 3.2.

New in version 3.4: The short_empty_elements parameter.

xml.etree.ElementTree.XML(text, parser=None)
Parses an XML section from a string constant. This function can be used to embed “XML literals” in
Python code. text is a string containing XML data. parser is an optional parser instance. If not given,
the standard XMLParser parser is used. Returns an Element instance.

xml.etree.ElementTree.XMLID(text, parser=None)
Parses an XML section from a string constant, and also returns a dictionary which maps from element
id:s to elements. text is a string containing XML data. parser is an optional parser instance. If not
given, the standard XMLParser parser is used. Returns a tuple containing an Element instance and a
dictionary.

Element Objects

class xml.etree.ElementTree.Element(tag, attrib={}, **extra)
Element class. This class defines the Element interface, and provides a reference implementation of
this interface.

The element name, attribute names, and attribute values can be either bytestrings or Unicode strings.
tag is the element name. attrib is an optional dictionary, containing element attributes. extra contains
additional attributes, given as keyword arguments.

tag
A string identifying what kind of data this element represents (the element type, in other words).

text
tail

These attributes can be used to hold additional data associated with the element. Their values
are usually strings but may be any application-specific object. If the element is created from an
XML file, the text attribute holds either the text between the element’s start tag and its first

1 The encoding string included in XML output should conform to the appropriate standards. For example, “UTF-8” is valid,
but “UTF8” is not. See https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and https://www.iana.org/
assignments/character-sets/character-sets.xhtml.

20.5. xml.etree.ElementTree — The ElementTree XML API 1039

https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
https://www.iana.org/assignments/character-sets/character-sets.xhtml
https://www.iana.org/assignments/character-sets/character-sets.xhtml

The Python Library Reference, Release 3.5.7

child or end tag, or None, and the tail attribute holds either the text between the element’s end
tag and the next tag, or None. For the XML data

<a>1<c>2<d/>3</c>4

the a element has None for both text and tail attributes, the b element has text "1" and tail "4",
the c element has text "2" and tail None, and the d element has text None and tail "3".

To collect the inner text of an element, see itertext(), for example "".join(element.itertext()).

Applications may store arbitrary objects in these attributes.

attrib
A dictionary containing the element’s attributes. Note that while the attrib value is always a real
mutable Python dictionary, an ElementTree implementation may choose to use another internal
representation, and create the dictionary only if someone asks for it. To take advantage of such
implementations, use the dictionary methods below whenever possible.

The following dictionary-like methods work on the element attributes.

clear()
Resets an element. This function removes all subelements, clears all attributes, and sets the text
and tail attributes to None.

get(key, default=None)
Gets the element attribute named key.

Returns the attribute value, or default if the attribute was not found.

items()
Returns the element attributes as a sequence of (name, value) pairs. The attributes are returned
in an arbitrary order.

keys()
Returns the elements attribute names as a list. The names are returned in an arbitrary order.

set(key, value)
Set the attribute key on the element to value.

The following methods work on the element’s children (subelements).

append(subelement)
Adds the element subelement to the end of this element’s internal list of subelements. Raises
TypeError if subelement is not an Element.

extend(subelements)
Appends subelements from a sequence object with zero or more elements. Raises TypeError if a
subelement is not an Element.

New in version 3.2.

find(match, namespaces=None)
Finds the first subelement matching match. match may be a tag name or a path. Returns an
element instance or None. namespaces is an optional mapping from namespace prefix to full name.

findall(match, namespaces=None)
Finds all matching subelements, by tag name or path. Returns a list containing all matching
elements in document order. namespaces is an optional mapping from namespace prefix to full
name.

findtext(match, default=None, namespaces=None)
Finds text for the first subelement matching match. match may be a tag name or a path. Returns
the text content of the first matching element, or default if no element was found. Note that if

1040 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

the matching element has no text content an empty string is returned. namespaces is an optional
mapping from namespace prefix to full name.

getchildren()
Deprecated since version 3.2: Use list(elem) or iteration.

getiterator(tag=None)
Deprecated since version 3.2: Use method Element.iter() instead.

insert(index, subelement)
Inserts subelement at the given position in this element. Raises TypeError if subelement is not
an Element.

iter(tag=None)
Creates a tree iterator with the current element as the root. The iterator iterates over this
element and all elements below it, in document (depth first) order. If tag is not None or '*',
only elements whose tag equals tag are returned from the iterator. If the tree structure is modified
during iteration, the result is undefined.

New in version 3.2.

iterfind(match, namespaces=None)
Finds all matching subelements, by tag name or path. Returns an iterable yielding all matching
elements in document order. namespaces is an optional mapping from namespace prefix to full
name.

New in version 3.2.

itertext()
Creates a text iterator. The iterator loops over this element and all subelements, in document
order, and returns all inner text.

New in version 3.2.

makeelement(tag, attrib)
Creates a new element object of the same type as this element. Do not call this method, use the
SubElement() factory function instead.

remove(subelement)
Removes subelement from the element. Unlike the find* methods this method compares elements
based on the instance identity, not on tag value or contents.

Element objects also support the following sequence type methods for working with subelements:
__delitem__(), __getitem__(), __setitem__(), __len__().

Caution: Elements with no subelements will test as False. This behavior will change in future versions.
Use specific len(elem) or elem is None test instead.

element = root.find('foo')

if not element: # careful!
print("element not found, or element has no subelements")

if element is None:
print("element not found")

ElementTree Objects

class xml.etree.ElementTree.ElementTree(element=None, file=None)
ElementTree wrapper class. This class represents an entire element hierarchy, and adds some extra

20.5. xml.etree.ElementTree — The ElementTree XML API 1041

The Python Library Reference, Release 3.5.7

support for serialization to and from standard XML.

element is the root element. The tree is initialized with the contents of the XML file if given.

_setroot(element)
Replaces the root element for this tree. This discards the current contents of the tree, and replaces
it with the given element. Use with care. element is an element instance.

find(match, namespaces=None)
Same as Element.find(), starting at the root of the tree.

findall(match, namespaces=None)
Same as Element.findall(), starting at the root of the tree.

findtext(match, default=None, namespaces=None)
Same as Element.findtext(), starting at the root of the tree.

getiterator(tag=None)
Deprecated since version 3.2: Use method ElementTree.iter() instead.

getroot()
Returns the root element for this tree.

iter(tag=None)
Creates and returns a tree iterator for the root element. The iterator loops over all elements in
this tree, in section order. tag is the tag to look for (default is to return all elements).

iterfind(match, namespaces=None)
Same as Element.iterfind(), starting at the root of the tree.

New in version 3.2.

parse(source, parser=None)
Loads an external XML section into this element tree. source is a file name or file object. parser
is an optional parser instance. If not given, the standard XMLParser parser is used. Returns the
section root element.

write(file, encoding="us-ascii", xml_declaration=None, default_namespace=None,
method="xml", *, short_empty_elements=True)
Writes the element tree to a file, as XML. file is a file name, or a file object opened for writing.
encoding1 is the output encoding (default is US-ASCII). xml_declaration controls if an XML
declaration should be added to the file. Use False for never, True for always, None for only
if not US-ASCII or UTF-8 or Unicode (default is None). default_namespace sets the default
XML namespace (for “xmlns”). method is either "xml", "html" or "text" (default is "xml"). The
keyword-only short_empty_elements parameter controls the formatting of elements that contain
no content. If True (the default), they are emitted as a single self-closed tag, otherwise they are
emitted as a pair of start/end tags.

The output is either a string (str) or binary (bytes). This is controlled by the encoding argument.
If encoding is "unicode", the output is a string; otherwise, it’s binary. Note that this may conflict
with the type of file if it’s an open file object; make sure you do not try to write a string to a
binary stream and vice versa.

New in version 3.4: The short_empty_elements parameter.

This is the XML file that is going to be manipulated:

<html>
<head>

<title>Example page</title>
</head>

(continues on next page)

1042 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

<body>
<p>Moved to example.org
or example.com.</p>

</body>
</html>

Example of changing the attribute “target” of every link in first paragraph:

>>> from xml.etree.ElementTree import ElementTree
>>> tree = ElementTree()
>>> tree.parse("index.xhtml")
<Element 'html' at 0xb77e6fac>
>>> p = tree.find("body/p") # Finds first occurrence of tag p in body
>>> p
<Element 'p' at 0xb77ec26c>
>>> links = list(p.iter("a")) # Returns list of all links
>>> links
[<Element 'a' at 0xb77ec2ac>, <Element 'a' at 0xb77ec1cc>]
>>> for i in links: # Iterates through all found links
... i.attrib["target"] = "blank"
>>> tree.write("output.xhtml")

QName Objects

class xml.etree.ElementTree.QName(text_or_uri, tag=None)
QName wrapper. This can be used to wrap a QName attribute value, in order to get proper namespace
handling on output. text_or_uri is a string containing the QName value, in the form {uri}local, or, if
the tag argument is given, the URI part of a QName. If tag is given, the first argument is interpreted
as a URI, and this argument is interpreted as a local name. QName instances are opaque.

TreeBuilder Objects

class xml.etree.ElementTree.TreeBuilder(element_factory=None)
Generic element structure builder. This builder converts a sequence of start, data, and end method
calls to a well-formed element structure. You can use this class to build an element structure using a
custom XML parser, or a parser for some other XML-like format. element_factory, when given, must
be a callable accepting two positional arguments: a tag and a dict of attributes. It is expected to
return a new element instance.

close()
Flushes the builder buffers, and returns the toplevel document element. Returns an Element
instance.

data(data)
Adds text to the current element. data is a string. This should be either a bytestring, or a Unicode
string.

end(tag)
Closes the current element. tag is the element name. Returns the closed element.

start(tag, attrs)
Opens a new element. tag is the element name. attrs is a dictionary containing element attributes.
Returns the opened element.

In addition, a custom TreeBuilder object can provide the following method:

20.5. xml.etree.ElementTree — The ElementTree XML API 1043

The Python Library Reference, Release 3.5.7

doctype(name, pubid, system)
Handles a doctype declaration. name is the doctype name. pubid is the public identifier. system
is the system identifier. This method does not exist on the default TreeBuilder class.

New in version 3.2.

XMLParser Objects

class xml.etree.ElementTree.XMLParser(html=0, target=None, encoding=None)
This class is the low-level building block of the module. It uses xml.parsers.expat for efficient, event-
based parsing of XML. It can be fed XML data incrementally with the feed() method, and parsing
events are translated to a push API - by invoking callbacks on the target object. If target is omitted,
the standard TreeBuilder is used. The html argument was historically used for backwards compatibility
and is now deprecated. If encoding1 is given, the value overrides the encoding specified in the XML
file.

Deprecated since version 3.4: The html argument. The remaining arguments should be passed via
keyword to prepare for the removal of the html argument.

close()
Finishes feeding data to the parser. Returns the result of calling the close() method of the target
passed during construction; by default, this is the toplevel document element.

doctype(name, pubid, system)
Deprecated since version 3.2: Define the TreeBuilder.doctype() method on a custom TreeBuilder
target.

feed(data)
Feeds data to the parser. data is encoded data.

XMLParser.feed() calls target’s start(tag, attrs_dict) method for each opening tag, its end(tag) method
for each closing tag, and data is processed by method data(data). XMLParser.close() calls target’s
method close(). XMLParser can be used not only for building a tree structure. This is an example of
counting the maximum depth of an XML file:

>>> from xml.etree.ElementTree import XMLParser
>>> class MaxDepth: # The target object of the parser
... maxDepth = 0
... depth = 0
... def start(self, tag, attrib): # Called for each opening tag.
... self.depth += 1
... if self.depth > self.maxDepth:
... self.maxDepth = self.depth
... def end(self, tag): # Called for each closing tag.
... self.depth -= 1
... def data(self, data):
... pass # We do not need to do anything with data.
... def close(self): # Called when all data has been parsed.
... return self.maxDepth
...
>>> target = MaxDepth()
>>> parser = XMLParser(target=target)
>>> exampleXml = """
... <a>
...
...
...

(continues on next page)

1044 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

... <c>

... <d>

... </d>

... </c>

...

... """
>>> parser.feed(exampleXml)
>>> parser.close()
4

XMLPullParser Objects

class xml.etree.ElementTree.XMLPullParser(events=None)
A pull parser suitable for non-blocking applications. Its input-side API is similar to that of XMLParser,
but instead of pushing calls to a callback target, XMLPullParser collects an internal list of parsing
events and lets the user read from it. events is a sequence of events to report back. The supported
events are the strings "start", "end", "start-ns" and "end-ns" (the “ns” events are used to get detailed
namespace information). If events is omitted, only "end" events are reported.

feed(data)
Feed the given bytes data to the parser.

close()
Signal the parser that the data stream is terminated. Unlike XMLParser.close(), this method
always returns None. Any events not yet retrieved when the parser is closed can still be read with
read_events().

read_events()
Return an iterator over the events which have been encountered in the data fed to the parser.
The iterator yields (event, elem) pairs, where event is a string representing the type of event (e.g.
"end") and elem is the encountered Element object.

Events provided in a previous call to read_events() will not be yielded again. Events are consumed
from the internal queue only when they are retrieved from the iterator, so multiple readers iterating
in parallel over iterators obtained from read_events() will have unpredictable results.

Note: XMLPullParser only guarantees that it has seen the “>” character of a starting tag when it
emits a “start” event, so the attributes are defined, but the contents of the text and tail attributes are
undefined at that point. The same applies to the element children; they may or may not be present.

If you need a fully populated element, look for “end” events instead.

New in version 3.4.

Exceptions

class xml.etree.ElementTree.ParseError
XML parse error, raised by the various parsing methods in this module when parsing fails. The string
representation of an instance of this exception will contain a user-friendly error message. In addition,
it will have the following attributes available:

code
A numeric error code from the expat parser. See the documentation of xml.parsers.expat for the
list of error codes and their meanings.

20.5. xml.etree.ElementTree — The ElementTree XML API 1045

The Python Library Reference, Release 3.5.7

position
A tuple of line, column numbers, specifying where the error occurred.

20.6 xml.dom — The Document Object Model API

Source code: Lib/xml/dom/__init__.py

The Document Object Model, or “DOM,” is a cross-language API from the World Wide Web Consortium
(W3C) for accessing and modifying XML documents. A DOM implementation presents an XML document
as a tree structure, or allows client code to build such a structure from scratch. It then gives access to the
structure through a set of objects which provided well-known interfaces.

The DOM is extremely useful for random-access applications. SAX only allows you a view of one bit of
the document at a time. If you are looking at one SAX element, you have no access to another. If you are
looking at a text node, you have no access to a containing element. When you write a SAX application, you
need to keep track of your program’s position in the document somewhere in your own code. SAX does not
do it for you. Also, if you need to look ahead in the XML document, you are just out of luck.

Some applications are simply impossible in an event driven model with no access to a tree. Of course you
could build some sort of tree yourself in SAX events, but the DOM allows you to avoid writing that code.
The DOM is a standard tree representation for XML data.

The Document Object Model is being defined by the W3C in stages, or “levels” in their terminology. The
Python mapping of the API is substantially based on the DOM Level 2 recommendation.

DOM applications typically start by parsing some XML into a DOM. How this is accomplished is not
covered at all by DOM Level 1, and Level 2 provides only limited improvements: There is a DOMImple-
mentation object class which provides access to Document creation methods, but no way to access an XML
reader/parser/Document builder in an implementation-independent way. There is also no well-defined way
to access these methods without an existing Document object. In Python, each DOM implementation will
provide a function getDOMImplementation(). DOM Level 3 adds a Load/Store specification, which defines
an interface to the reader, but this is not yet available in the Python standard library.

Once you have a DOM document object, you can access the parts of your XML document through its
properties and methods. These properties are defined in the DOM specification; this portion of the reference
manual describes the interpretation of the specification in Python.

The specification provided by the W3C defines the DOM API for Java, ECMAScript, and OMG IDL.
The Python mapping defined here is based in large part on the IDL version of the specification, but strict
compliance is not required (though implementations are free to support the strict mapping from IDL). See
section Conformance for a detailed discussion of mapping requirements.

See also:

Document Object Model (DOM) Level 2 Specification The W3C recommendation upon which the Python
DOM API is based.

Document Object Model (DOM) Level 1 Specification The W3C recommendation for the DOM supported
by xml.dom.minidom.

Python Language Mapping Specification This specifies the mapping from OMG IDL to Python.

20.6.1 Module Contents

The xml.dom contains the following functions:

1046 Chapter 20. Structured Markup Processing Tools

https://github.com/python/cpython/tree/3.5/Lib/xml/dom/__init__.py
https://www.w3.org/TR/DOM-Level-2-Core/
https://www.w3.org/TR/REC-DOM-Level-1/
http://www.omg.org/spec/PYTH/1.2/PDF

The Python Library Reference, Release 3.5.7

xml.dom.registerDOMImplementation(name, factory)
Register the factory function with the name name. The factory function should return an object which
implements the DOMImplementation interface. The factory function can return the same object
every time, or a new one for each call, as appropriate for the specific implementation (e.g. if that
implementation supports some customization).

xml.dom.getDOMImplementation(name=None, features=())
Return a suitable DOM implementation. The name is either well-known, the module name of a
DOM implementation, or None. If it is not None, imports the corresponding module and returns
a DOMImplementation object if the import succeeds. If no name is given, and if the environment
variable PYTHON_DOM is set, this variable is used to find the implementation.

If name is not given, this examines the available implementations to find one with the required feature
set. If no implementation can be found, raise an ImportError. The features list must be a sequence of
(feature, version) pairs which are passed to the hasFeature() method on available DOMImplementation
objects.

Some convenience constants are also provided:

xml.dom.EMPTY_NAMESPACE
The value used to indicate that no namespace is associated with a node in the DOM. This is typically
found as the namespaceURI of a node, or used as the namespaceURI parameter to a namespaces-specific
method.

xml.dom.XML_NAMESPACE
The namespace URI associated with the reserved prefix xml, as defined by Namespaces in XML (section
4).

xml.dom.XMLNS_NAMESPACE
The namespace URI for namespace declarations, as defined by Document Object Model (DOM) Level
2 Core Specification (section 1.1.8).

xml.dom.XHTML_NAMESPACE
The URI of the XHTML namespace as defined by XHTML 1.0: The Extensible HyperText Markup
Language (section 3.1.1).

In addition, xml.dom contains a base Node class and the DOM exception classes. The Node class provided
by this module does not implement any of the methods or attributes defined by the DOM specification;
concrete DOM implementations must provide those. The Node class provided as part of this module does
provide the constants used for the nodeType attribute on concrete Node objects; they are located within the
class rather than at the module level to conform with the DOM specifications.

20.6.2 Objects in the DOM

The definitive documentation for the DOM is the DOM specification from the W3C.

Note that DOM attributes may also be manipulated as nodes instead of as simple strings. It is fairly rare
that you must do this, however, so this usage is not yet documented.

20.6. xml.dom — The Document Object Model API 1047

https://www.w3.org/TR/REC-xml-names/
https://www.w3.org/TR/DOM-Level-2-Core/core.html
https://www.w3.org/TR/DOM-Level-2-Core/core.html
https://www.w3.org/TR/xhtml1/
https://www.w3.org/TR/xhtml1/

The Python Library Reference, Release 3.5.7

Interface Section Purpose
DOMImplemen-
tation

DOMImplementation Ob-
jects

Interface to the underlying implementation.

Node Node Objects Base interface for most objects in a document.
NodeList NodeList Objects Interface for a sequence of nodes.
DocumentType DocumentType Objects Information about the declarations needed to process

a document.
Document Document Objects Object which represents an entire document.
Element Element Objects Element nodes in the document hierarchy.
Attr Attr Objects Attribute value nodes on element nodes.
Comment Comment Objects Representation of comments in the source document.
Text Text and CDATASection

Objects
Nodes containing textual content from the document.

ProcessingIn-
struction

ProcessingInstruction Ob-
jects

Processing instruction representation.

An additional section describes the exceptions defined for working with the DOM in Python.

DOMImplementation Objects

The DOMImplementation interface provides a way for applications to determine the availability of partic-
ular features in the DOM they are using. DOM Level 2 added the ability to create new Document and
DocumentType objects using the DOMImplementation as well.

DOMImplementation.hasFeature(feature, version)
Return true if the feature identified by the pair of strings feature and version is implemented.

DOMImplementation.createDocument(namespaceUri, qualifiedName, doctype)
Return a new Document object (the root of the DOM), with a child Element object having the
given namespaceUri and qualifiedName. The doctype must be a DocumentType object created by
createDocumentType(), or None. In the Python DOM API, the first two arguments can also be None
in order to indicate that no Element child is to be created.

DOMImplementation.createDocumentType(qualifiedName, publicId, systemId)
Return a new DocumentType object that encapsulates the given qualifiedName, publicId, and systemId
strings, representing the information contained in an XML document type declaration.

Node Objects

All of the components of an XML document are subclasses of Node.

Node.nodeType
An integer representing the node type. Symbolic constants for the types are on the Node ob-
ject: ELEMENT_NODE, ATTRIBUTE_NODE, TEXT_NODE, CDATA_SECTION_NODE,
ENTITY_NODE, PROCESSING_INSTRUCTION_NODE, COMMENT_NODE, DOCU-
MENT_NODE, DOCUMENT_TYPE_NODE, NOTATION_NODE. This is a read-only attribute.

Node.parentNode
The parent of the current node, or None for the document node. The value is always a Node object or
None. For Element nodes, this will be the parent element, except for the root element, in which case
it will be the Document object. For Attr nodes, this is always None. This is a read-only attribute.

1048 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

Node.attributes
A NamedNodeMap of attribute objects. Only elements have actual values for this; others provide None
for this attribute. This is a read-only attribute.

Node.previousSibling
The node that immediately precedes this one with the same parent. For instance the element with an
end-tag that comes just before the self element’s start-tag. Of course, XML documents are made up
of more than just elements so the previous sibling could be text, a comment, or something else. If this
node is the first child of the parent, this attribute will be None. This is a read-only attribute.

Node.nextSibling
The node that immediately follows this one with the same parent. See also previousSibling. If this is
the last child of the parent, this attribute will be None. This is a read-only attribute.

Node.childNodes
A list of nodes contained within this node. This is a read-only attribute.

Node.firstChild
The first child of the node, if there are any, or None. This is a read-only attribute.

Node.lastChild
The last child of the node, if there are any, or None. This is a read-only attribute.

Node.localName
The part of the tagName following the colon if there is one, else the entire tagName. The value is a
string.

Node.prefix
The part of the tagName preceding the colon if there is one, else the empty string. The value is a
string, or None.

Node.namespaceURI
The namespace associated with the element name. This will be a string or None. This is a read-only
attribute.

Node.nodeName
This has a different meaning for each node type; see the DOM specification for details. You can
always get the information you would get here from another property such as the tagName property
for elements or the name property for attributes. For all node types, the value of this attribute will be
either a string or None. This is a read-only attribute.

Node.nodeValue
This has a different meaning for each node type; see the DOM specification for details. The situation
is similar to that with nodeName. The value is a string or None.

Node.hasAttributes()
Returns true if the node has any attributes.

Node.hasChildNodes()
Returns true if the node has any child nodes.

Node.isSameNode(other)
Returns true if other refers to the same node as this node. This is especially useful for DOM imple-
mentations which use any sort of proxy architecture (because more than one object can refer to the
same node).

Note: This is based on a proposed DOM Level 3 API which is still in the “working draft” stage, but
this particular interface appears uncontroversial. Changes from the W3C will not necessarily affect this
method in the Python DOM interface (though any new W3C API for this would also be supported).

20.6. xml.dom — The Document Object Model API 1049

The Python Library Reference, Release 3.5.7

Node.appendChild(newChild)
Add a new child node to this node at the end of the list of children, returning newChild. If the node
was already in the tree, it is removed first.

Node.insertBefore(newChild, refChild)
Insert a new child node before an existing child. It must be the case that refChild is a child of this
node; if not, ValueError is raised. newChild is returned. If refChild is None, it inserts newChild at the
end of the children’s list.

Node.removeChild(oldChild)
Remove a child node. oldChild must be a child of this node; if not, ValueError is raised. oldChild is
returned on success. If oldChild will not be used further, its unlink() method should be called.

Node.replaceChild(newChild, oldChild)
Replace an existing node with a new node. It must be the case that oldChild is a child of this node; if
not, ValueError is raised.

Node.normalize()
Join adjacent text nodes so that all stretches of text are stored as single Text instances. This simplifies
processing text from a DOM tree for many applications.

Node.cloneNode(deep)
Clone this node. Setting deep means to clone all child nodes as well. This returns the clone.

NodeList Objects

A NodeList represents a sequence of nodes. These objects are used in two ways in the DOM Core recom-
mendation: an Element object provides one as its list of child nodes, and the getElementsByTagName() and
getElementsByTagNameNS() methods of Node return objects with this interface to represent query results.

The DOM Level 2 recommendation defines one method and one attribute for these objects:

NodeList.item(i)
Return the i’th item from the sequence, if there is one, or None. The index i is not allowed to be less
than zero or greater than or equal to the length of the sequence.

NodeList.length
The number of nodes in the sequence.

In addition, the Python DOM interface requires that some additional support is provided to allow NodeList
objects to be used as Python sequences. All NodeList implementations must include support for __len__()
and __getitem__(); this allows iteration over the NodeList in for statements and proper support for the
len() built-in function.

If a DOM implementation supports modification of the document, the NodeList implementation must also
support the __setitem__() and __delitem__() methods.

DocumentType Objects

Information about the notations and entities declared by a document (including the external subset if the
parser uses it and can provide the information) is available from a DocumentType object. The Document-
Type for a document is available from the Document object’s doctype attribute; if there is no DOCTYPE
declaration for the document, the document’s doctype attribute will be set to None instead of an instance
of this interface.

DocumentType is a specialization of Node, and adds the following attributes:

1050 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

DocumentType.publicId
The public identifier for the external subset of the document type definition. This will be a string or
None.

DocumentType.systemId
The system identifier for the external subset of the document type definition. This will be a URI as a
string, or None.

DocumentType.internalSubset
A string giving the complete internal subset from the document. This does not include the brackets
which enclose the subset. If the document has no internal subset, this should be None.

DocumentType.name
The name of the root element as given in the DOCTYPE declaration, if present.

DocumentType.entities
This is a NamedNodeMap giving the definitions of external entities. For entity names defined more than
once, only the first definition is provided (others are ignored as required by the XML recommendation).
This may be None if the information is not provided by the parser, or if no entities are defined.

DocumentType.notations
This is a NamedNodeMap giving the definitions of notations. For notation names defined more than
once, only the first definition is provided (others are ignored as required by the XML recommendation).
This may be None if the information is not provided by the parser, or if no notations are defined.

Document Objects

A Document represents an entire XML document, including its constituent elements, attributes, processing
instructions, comments etc. Remember that it inherits properties from Node.

Document.documentElement
The one and only root element of the document.

Document.createElement(tagName)
Create and return a new element node. The element is not inserted into the document when it is
created. You need to explicitly insert it with one of the other methods such as insertBefore() or
appendChild().

Document.createElementNS(namespaceURI, tagName)
Create and return a new element with a namespace. The tagName may have a prefix. The element
is not inserted into the document when it is created. You need to explicitly insert it with one of the
other methods such as insertBefore() or appendChild().

Document.createTextNode(data)
Create and return a text node containing the data passed as a parameter. As with the other creation
methods, this one does not insert the node into the tree.

Document.createComment(data)
Create and return a comment node containing the data passed as a parameter. As with the other
creation methods, this one does not insert the node into the tree.

Document.createProcessingInstruction(target, data)
Create and return a processing instruction node containing the target and data passed as parameters.
As with the other creation methods, this one does not insert the node into the tree.

Document.createAttribute(name)
Create and return an attribute node. This method does not associate the attribute node with any
particular element. You must use setAttributeNode() on the appropriate Element object to use the
newly created attribute instance.

20.6. xml.dom — The Document Object Model API 1051

The Python Library Reference, Release 3.5.7

Document.createAttributeNS(namespaceURI, qualifiedName)
Create and return an attribute node with a namespace. The tagName may have a prefix. This method
does not associate the attribute node with any particular element. You must use setAttributeNode()
on the appropriate Element object to use the newly created attribute instance.

Document.getElementsByTagName(tagName)
Search for all descendants (direct children, children’s children, etc.) with a particular element type
name.

Document.getElementsByTagNameNS(namespaceURI, localName)
Search for all descendants (direct children, children’s children, etc.) with a particular namespace URI
and localname. The localname is the part of the namespace after the prefix.

Element Objects

Element is a subclass of Node, so inherits all the attributes of that class.

Element.tagName
The element type name. In a namespace-using document it may have colons in it. The value is a
string.

Element.getElementsByTagName(tagName)
Same as equivalent method in the Document class.

Element.getElementsByTagNameNS(namespaceURI, localName)
Same as equivalent method in the Document class.

Element.hasAttribute(name)
Returns true if the element has an attribute named by name.

Element.hasAttributeNS(namespaceURI, localName)
Returns true if the element has an attribute named by namespaceURI and localName.

Element.getAttribute(name)
Return the value of the attribute named by name as a string. If no such attribute exists, an empty
string is returned, as if the attribute had no value.

Element.getAttributeNode(attrname)
Return the Attr node for the attribute named by attrname.

Element.getAttributeNS(namespaceURI, localName)
Return the value of the attribute named by namespaceURI and localName as a string. If no such
attribute exists, an empty string is returned, as if the attribute had no value.

Element.getAttributeNodeNS(namespaceURI, localName)
Return an attribute value as a node, given a namespaceURI and localName.

Element.removeAttribute(name)
Remove an attribute by name. If there is no matching attribute, a NotFoundErr is raised.

Element.removeAttributeNode(oldAttr)
Remove and return oldAttr from the attribute list, if present. If oldAttr is not present, NotFoundErr
is raised.

Element.removeAttributeNS(namespaceURI, localName)
Remove an attribute by name. Note that it uses a localName, not a qname. No exception is raised if
there is no matching attribute.

Element.setAttribute(name, value)
Set an attribute value from a string.

1052 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

Element.setAttributeNode(newAttr)
Add a new attribute node to the element, replacing an existing attribute if necessary if the name
attribute matches. If a replacement occurs, the old attribute node will be returned. If newAttr is
already in use, InuseAttributeErr will be raised.

Element.setAttributeNodeNS(newAttr)
Add a new attribute node to the element, replacing an existing attribute if necessary if the names-
paceURI and localName attributes match. If a replacement occurs, the old attribute node will be
returned. If newAttr is already in use, InuseAttributeErr will be raised.

Element.setAttributeNS(namespaceURI, qname, value)
Set an attribute value from a string, given a namespaceURI and a qname. Note that a qname is the
whole attribute name. This is different than above.

Attr Objects

Attr inherits from Node, so inherits all its attributes.

Attr.name
The attribute name. In a namespace-using document it may include a colon.

Attr.localName
The part of the name following the colon if there is one, else the entire name. This is a read-only
attribute.

Attr.prefix
The part of the name preceding the colon if there is one, else the empty string.

Attr.value
The text value of the attribute. This is a synonym for the nodeValue attribute.

NamedNodeMap Objects

NamedNodeMap does not inherit from Node.

NamedNodeMap.length
The length of the attribute list.

NamedNodeMap.item(index)
Return an attribute with a particular index. The order you get the attributes in is arbitrary but will be
consistent for the life of a DOM. Each item is an attribute node. Get its value with the value attribute.

There are also experimental methods that give this class more mapping behavior. You can use them or you
can use the standardized getAttribute*() family of methods on the Element objects.

Comment Objects

Comment represents a comment in the XML document. It is a subclass of Node, but cannot have child
nodes.

Comment.data
The content of the comment as a string. The attribute contains all characters between the leading <!--
and trailing -->, but does not include them.

20.6. xml.dom — The Document Object Model API 1053

The Python Library Reference, Release 3.5.7

Text and CDATASection Objects

The Text interface represents text in the XML document. If the parser and DOM implementation support the
DOM’s XML extension, portions of the text enclosed in CDATAmarked sections are stored in CDATASection
objects. These two interfaces are identical, but provide different values for the nodeType attribute.

These interfaces extend the Node interface. They cannot have child nodes.

Text.data
The content of the text node as a string.

Note: The use of a CDATASection node does not indicate that the node represents a complete CDATA
marked section, only that the content of the node was part of a CDATA section. A single CDATA section
may be represented by more than one node in the document tree. There is no way to determine whether
two adjacent CDATASection nodes represent different CDATA marked sections.

ProcessingInstruction Objects

Represents a processing instruction in the XML document; this inherits from the Node interface and cannot
have child nodes.

ProcessingInstruction.target
The content of the processing instruction up to the first whitespace character. This is a read-only
attribute.

ProcessingInstruction.data
The content of the processing instruction following the first whitespace character.

Exceptions

The DOM Level 2 recommendation defines a single exception, DOMException, and a number of constants
that allow applications to determine what sort of error occurred. DOMException instances carry a code
attribute that provides the appropriate value for the specific exception.

The Python DOM interface provides the constants, but also expands the set of exceptions so that a specific
exception exists for each of the exception codes defined by the DOM. The implementations must raise the
appropriate specific exception, each of which carries the appropriate value for the code attribute.

exception xml.dom.DOMException
Base exception class used for all specific DOM exceptions. This exception class cannot be directly
instantiated.

exception xml.dom.DomstringSizeErr
Raised when a specified range of text does not fit into a string. This is not known to be used in
the Python DOM implementations, but may be received from DOM implementations not written in
Python.

exception xml.dom.HierarchyRequestErr
Raised when an attempt is made to insert a node where the node type is not allowed.

exception xml.dom.IndexSizeErr
Raised when an index or size parameter to a method is negative or exceeds the allowed values.

exception xml.dom.InuseAttributeErr
Raised when an attempt is made to insert an Attr node that is already present elsewhere in the
document.

1054 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

exception xml.dom.InvalidAccessErr
Raised if a parameter or an operation is not supported on the underlying object.

exception xml.dom.InvalidCharacterErr
This exception is raised when a string parameter contains a character that is not permitted in the
context it’s being used in by the XML 1.0 recommendation. For example, attempting to create an
Element node with a space in the element type name will cause this error to be raised.

exception xml.dom.InvalidModificationErr
Raised when an attempt is made to modify the type of a node.

exception xml.dom.InvalidStateErr
Raised when an attempt is made to use an object that is not defined or is no longer usable.

exception xml.dom.NamespaceErr
If an attempt is made to change any object in a way that is not permitted with regard to the Namespaces
in XML recommendation, this exception is raised.

exception xml.dom.NotFoundErr
Exception when a node does not exist in the referenced context. For example, NamedNodeMap.
removeNamedItem() will raise this if the node passed in does not exist in the map.

exception xml.dom.NotSupportedErr
Raised when the implementation does not support the requested type of object or operation.

exception xml.dom.NoDataAllowedErr
This is raised if data is specified for a node which does not support data.

exception xml.dom.NoModificationAllowedErr
Raised on attempts to modify an object where modifications are not allowed (such as for read-only
nodes).

exception xml.dom.SyntaxErr
Raised when an invalid or illegal string is specified.

exception xml.dom.WrongDocumentErr
Raised when a node is inserted in a different document than it currently belongs to, and the imple-
mentation does not support migrating the node from one document to the other.

The exception codes defined in the DOM recommendation map to the exceptions described above according
to this table:

Constant Exception
DOMSTRING_SIZE_ERR DomstringSizeErr
HIERARCHY_REQUEST_ERR HierarchyRequestErr
INDEX_SIZE_ERR IndexSizeErr
INUSE_ATTRIBUTE_ERR InuseAttributeErr
INVALID_ACCESS_ERR InvalidAccessErr
INVALID_CHARACTER_ERR InvalidCharacterErr
INVALID_MODIFICATION_ERR InvalidModificationErr
INVALID_STATE_ERR InvalidStateErr
NAMESPACE_ERR NamespaceErr
NOT_FOUND_ERR NotFoundErr
NOT_SUPPORTED_ERR NotSupportedErr
NO_DATA_ALLOWED_ERR NoDataAllowedErr
NO_MODIFICATION_ALLOWED_ERR NoModificationAllowedErr
SYNTAX_ERR SyntaxErr
WRONG_DOCUMENT_ERR WrongDocumentErr

20.6. xml.dom — The Document Object Model API 1055

https://www.w3.org/TR/REC-xml-names/
https://www.w3.org/TR/REC-xml-names/

The Python Library Reference, Release 3.5.7

20.6.3 Conformance

This section describes the conformance requirements and relationships between the Python DOM API, the
W3C DOM recommendations, and the OMG IDL mapping for Python.

Type Mapping

The IDL types used in the DOM specification are mapped to Python types according to the following table.

IDL Type Python Type
boolean bool or int
int int
long int int
unsigned int int
DOMString str or bytes
null None

Accessor Methods

The mapping from OMG IDL to Python defines accessor functions for IDL attribute declarations in much
the way the Java mapping does. Mapping the IDL declarations

readonly attribute string someValue;
attribute string anotherValue;

yields three accessor functions: a “get” method for someValue (_get_someValue()), and “get” and “set”
methods for anotherValue (_get_anotherValue() and _set_anotherValue()). The mapping, in particular,
does not require that the IDL attributes are accessible as normal Python attributes: object.someValue is not
required to work, and may raise an AttributeError.

The Python DOM API, however, does require that normal attribute access work. This means that the
typical surrogates generated by Python IDL compilers are not likely to work, and wrapper objects may be
needed on the client if the DOM objects are accessed via CORBA. While this does require some additional
consideration for CORBA DOM clients, the implementers with experience using DOM over CORBA from
Python do not consider this a problem. Attributes that are declared readonly may not restrict write access
in all DOM implementations.

In the Python DOM API, accessor functions are not required. If provided, they should take the form defined
by the Python IDL mapping, but these methods are considered unnecessary since the attributes are accessible
directly from Python. “Set” accessors should never be provided for readonly attributes.

The IDL definitions do not fully embody the requirements of the W3C DOM API, such as the notion of
certain objects, such as the return value of getElementsByTagName(), being “live”. The Python DOM API
does not require implementations to enforce such requirements.

20.7 xml.dom.minidom — Minimal DOM implementation

Source code: Lib/xml/dom/minidom.py

xml.dom.minidom is a minimal implementation of the Document Object Model interface, with an API similar
to that in other languages. It is intended to be simpler than the full DOM and also significantly smaller.

1056 Chapter 20. Structured Markup Processing Tools

https://github.com/python/cpython/tree/3.5/Lib/xml/dom/minidom.py

The Python Library Reference, Release 3.5.7

Users who are not already proficient with the DOM should consider using the xml.etree.ElementTree module
for their XML processing instead.

Warning: The xml.dom.minidom module is not secure against maliciously constructed data. If you need
to parse untrusted or unauthenticated data see XML vulnerabilities.

DOM applications typically start by parsing some XML into a DOM. With xml.dom.minidom, this is done
through the parse functions:

from xml.dom.minidom import parse, parseString

dom1 = parse('c:\\temp\\mydata.xml') # parse an XML file by name

datasource = open('c:\\temp\\mydata.xml')
dom2 = parse(datasource) # parse an open file

dom3 = parseString('<myxml>Some data<empty/> some more data</myxml>')

The parse() function can take either a filename or an open file object.

xml.dom.minidom.parse(filename_or_file, parser=None, bufsize=None)
Return a Document from the given input. filename_or_file may be either a file name, or a file-like
object. parser, if given, must be a SAX2 parser object. This function will change the document handler
of the parser and activate namespace support; other parser configuration (like setting an entity resolver)
must have been done in advance.

If you have XML in a string, you can use the parseString() function instead:

xml.dom.minidom.parseString(string, parser=None)
Return a Document that represents the string. This method creates an io.StringIO object for the string
and passes that on to parse().

Both functions return a Document object representing the content of the document.

What the parse() and parseString() functions do is connect an XML parser with a “DOM builder” that can
accept parse events from any SAX parser and convert them into a DOM tree. The name of the functions
are perhaps misleading, but are easy to grasp when learning the interfaces. The parsing of the document
will be completed before these functions return; it’s simply that these functions do not provide a parser
implementation themselves.

You can also create a Document by calling a method on a “DOM Implementation” object. You can get
this object either by calling the getDOMImplementation() function in the xml.dom package or the xml.dom.
minidom module. Once you have a Document, you can add child nodes to it to populate the DOM:

from xml.dom.minidom import getDOMImplementation

impl = getDOMImplementation()

newdoc = impl.createDocument(None, "some_tag", None)
top_element = newdoc.documentElement
text = newdoc.createTextNode('Some textual content.')
top_element.appendChild(text)

Once you have a DOM document object, you can access the parts of your XML document through its
properties and methods. These properties are defined in the DOM specification. The main property of the
document object is the documentElement property. It gives you the main element in the XML document:
the one that holds all others. Here is an example program:

20.7. xml.dom.minidom — Minimal DOM implementation 1057

The Python Library Reference, Release 3.5.7

dom3 = parseString("<myxml>Some data</myxml>")
assert dom3.documentElement.tagName == "myxml"

When you are finished with a DOM tree, you may optionally call the unlink() method to encourage early
cleanup of the now-unneeded objects. unlink() is an xml.dom.minidom-specific extension to the DOM API
that renders the node and its descendants are essentially useless. Otherwise, Python’s garbage collector will
eventually take care of the objects in the tree.

See also:

Document Object Model (DOM) Level 1 Specification The W3C recommendation for the DOM supported
by xml.dom.minidom.

20.7.1 DOM Objects

The definition of the DOM API for Python is given as part of the xml.dom module documentation. This
section lists the differences between the API and xml.dom.minidom.

Node.unlink()
Break internal references within the DOM so that it will be garbage collected on versions of Python
without cyclic GC. Even when cyclic GC is available, using this can make large amounts of memory
available sooner, so calling this on DOM objects as soon as they are no longer needed is good practice.
This only needs to be called on the Document object, but may be called on child nodes to discard
children of that node.

You can avoid calling this method explicitly by using the with statement. The following code will
automatically unlink dom when the with block is exited:

with xml.dom.minidom.parse(datasource) as dom:
... # Work with dom.

Node.writexml(writer, indent="", addindent="", newl="")
Write XML to the writer object. The writer should have a write() method which matches that of
the file object interface. The indent parameter is the indentation of the current node. The addindent
parameter is the incremental indentation to use for subnodes of the current one. The newl parameter
specifies the string to use to terminate newlines.

For the Document node, an additional keyword argument encoding can be used to specify the encoding
field of the XML header.

Node.toxml(encoding=None)
Return a string or byte string containing the XML represented by the DOM node.

With an explicit encoding1 argument, the result is a byte string in the specified encoding. With no
encoding argument, the result is a Unicode string, and the XML declaration in the resulting string
does not specify an encoding. Encoding this string in an encoding other than UTF-8 is likely incorrect,
since UTF-8 is the default encoding of XML.

Node.toprettyxml(indent="", newl="", encoding="")
Return a pretty-printed version of the document. indent specifies the indentation string and defaults
to a tabulator; newl specifies the string emitted at the end of each line and defaults to \n.

The encoding argument behaves like the corresponding argument of toxml().

1 The encoding name included in the XML output should conform to the appropriate standards. For example, “UTF-
8” is valid, but “UTF8” is not valid in an XML document’s declaration, even though Python accepts it as an encoding
name. See https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and https://www.iana.org/assignments/
character-sets/character-sets.xhtml.

1058 Chapter 20. Structured Markup Processing Tools

https://www.w3.org/TR/REC-DOM-Level-1/
https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
https://www.iana.org/assignments/character-sets/character-sets.xhtml
https://www.iana.org/assignments/character-sets/character-sets.xhtml

The Python Library Reference, Release 3.5.7

20.7.2 DOM Example

This example program is a fairly realistic example of a simple program. In this particular case, we do not
take much advantage of the flexibility of the DOM.

import xml.dom.minidom

document = """\
<slideshow>
<title>Demo slideshow</title>
<slide><title>Slide title</title>
<point>This is a demo</point>
<point>Of a program for processing slides</point>
</slide>

<slide><title>Another demo slide</title>
<point>It is important</point>
<point>To have more than</point>
<point>one slide</point>
</slide>
</slideshow>
"""

dom = xml.dom.minidom.parseString(document)

def getText(nodelist):
rc = []
for node in nodelist:

if node.nodeType == node.TEXT_NODE:
rc.append(node.data)

return ''.join(rc)

def handleSlideshow(slideshow):
print("<html>")
handleSlideshowTitle(slideshow.getElementsByTagName("title")[0])
slides = slideshow.getElementsByTagName("slide")
handleToc(slides)
handleSlides(slides)
print("</html>")

def handleSlides(slides):
for slide in slides:

handleSlide(slide)

def handleSlide(slide):
handleSlideTitle(slide.getElementsByTagName("title")[0])
handlePoints(slide.getElementsByTagName("point"))

def handleSlideshowTitle(title):
print("<title>%s</title>" % getText(title.childNodes))

def handleSlideTitle(title):
print("<h2>%s</h2>" % getText(title.childNodes))

def handlePoints(points):
print("")
for point in points:

handlePoint(point)
(continues on next page)

20.7. xml.dom.minidom — Minimal DOM implementation 1059

The Python Library Reference, Release 3.5.7

(continued from previous page)

print("")

def handlePoint(point):
print("%s" % getText(point.childNodes))

def handleToc(slides):
for slide in slides:

title = slide.getElementsByTagName("title")[0]
print("<p>%s</p>" % getText(title.childNodes))

handleSlideshow(dom)

20.7.3 minidom and the DOM standard

The xml.dom.minidom module is essentially a DOM 1.0-compatible DOM with some DOM 2 features (pri-
marily namespace features).

Usage of the DOM interface in Python is straight-forward. The following mapping rules apply:

• Interfaces are accessed through instance objects. Applications should not instantiate the classes them-
selves; they should use the creator functions available on the Document object. Derived interfaces
support all operations (and attributes) from the base interfaces, plus any new operations.

• Operations are used as methods. Since the DOM uses only in parameters, the arguments are passed
in normal order (from left to right). There are no optional arguments. void operations return None.

• IDL attributes map to instance attributes. For compatibility with the OMG IDL language mapping for
Python, an attribute foo can also be accessed through accessor methods _get_foo() and _set_foo().
readonly attributes must not be changed; this is not enforced at runtime.

• The types short int, unsigned int, unsigned long long, and boolean all map to Python integer objects.

• The type DOMString maps to Python strings. xml.dom.minidom supports either bytes or strings, but
will normally produce strings. Values of type DOMString may also be None where allowed to have the
IDL null value by the DOM specification from the W3C.

• const declarations map to variables in their respective scope (e.g. xml.dom.minidom.Node.
PROCESSING_INSTRUCTION_NODE); they must not be changed.

• DOMException is currently not supported in xml.dom.minidom. Instead, xml.dom.minidom uses stan-
dard Python exceptions such as TypeError and AttributeError.

• NodeList objects are implemented using Python’s built-in list type. These objects provide the in-
terface defined in the DOM specification, but with earlier versions of Python they do not support
the official API. They are, however, much more “Pythonic” than the interface defined in the W3C
recommendations.

The following interfaces have no implementation in xml.dom.minidom:

• DOMTimeStamp

• DocumentType

• DOMImplementation

• CharacterData

• CDATASection

• Notation

1060 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

• Entity

• EntityReference

• DocumentFragment

Most of these reflect information in the XML document that is not of general utility to most DOM users.

20.8 xml.dom.pulldom — Support for building partial DOM trees

Source code: Lib/xml/dom/pulldom.py

The xml.dom.pulldom module provides a “pull parser” which can also be asked to produce DOM-accessible
fragments of the document where necessary. The basic concept involves pulling “events” from a stream of
incoming XML and processing them. In contrast to SAX which also employs an event-driven processing
model together with callbacks, the user of a pull parser is responsible for explicitly pulling events from the
stream, looping over those events until either processing is finished or an error condition occurs.

Warning: The xml.dom.pulldom module is not secure against maliciously constructed data. If you need
to parse untrusted or unauthenticated data see XML vulnerabilities.

Example:

from xml.dom import pulldom

doc = pulldom.parse('sales_items.xml')
for event, node in doc:

if event == pulldom.START_ELEMENT and node.tagName == 'item':
if int(node.getAttribute('price')) > 50:

doc.expandNode(node)
print(node.toxml())

event is a constant and can be one of:

• START_ELEMENT

• END_ELEMENT

• COMMENT

• START_DOCUMENT

• END_DOCUMENT

• CHARACTERS

• PROCESSING_INSTRUCTION

• IGNORABLE_WHITESPACE

node is an object of type xml.dom.minidom.Document, xml.dom.minidom.Element or xml.dom.minidom.
Text.

Since the document is treated as a “flat” stream of events, the document “tree” is implicitly traversed and
the desired elements are found regardless of their depth in the tree. In other words, one does not need to
consider hierarchical issues such as recursive searching of the document nodes, although if the context of
elements were important, one would either need to maintain some context-related state (i.e. remembering

20.8. xml.dom.pulldom — Support for building partial DOM trees 1061

https://github.com/python/cpython/tree/3.5/Lib/xml/dom/pulldom.py

The Python Library Reference, Release 3.5.7

where one is in the document at any given point) or to make use of the DOMEventStream.expandNode()
method and switch to DOM-related processing.

class xml.dom.pulldom.PullDom(documentFactory=None)
Subclass of xml.sax.handler.ContentHandler.

class xml.dom.pulldom.SAX2DOM(documentFactory=None)
Subclass of xml.sax.handler.ContentHandler.

xml.dom.pulldom.parse(stream_or_string, parser=None, bufsize=None)
Return a DOMEventStream from the given input. stream_or_string may be either a file name, or a
file-like object. parser, if given, must be an XMLReader object. This function will change the document
handler of the parser and activate namespace support; other parser configuration (like setting an entity
resolver) must have been done in advance.

If you have XML in a string, you can use the parseString() function instead:

xml.dom.pulldom.parseString(string, parser=None)
Return a DOMEventStream that represents the (Unicode) string.

xml.dom.pulldom.default_bufsize
Default value for the bufsize parameter to parse().

The value of this variable can be changed before calling parse() and the new value will take effect.

20.8.1 DOMEventStream Objects

class xml.dom.pulldom.DOMEventStream(stream, parser, bufsize)

getEvent()
Return a tuple containing event and the current node as xml.dom.minidom.Document if event
equals START_DOCUMENT, xml.dom.minidom.Element if event equals START_ELEMENT or
END_ELEMENT or xml.dom.minidom.Text if event equals CHARACTERS. The current node
does not contain information about its children, unless expandNode() is called.

expandNode(node)
Expands all children of node into node. Example:

from xml.dom import pulldom

xml = '<html><title>Foo</title> <p>Some text <div>and more</div></p> </html>'
doc = pulldom.parseString(xml)
for event, node in doc:

if event == pulldom.START_ELEMENT and node.tagName == 'p':
Following statement only prints '<p/>'
print(node.toxml())
doc.expandNode(node)
Following statement prints node with all its children '<p>Some text <div>and more</div>

→˓</p>'
print(node.toxml())

reset()

20.9 xml.sax — Support for SAX2 parsers

Source code: Lib/xml/sax/__init__.py

1062 Chapter 20. Structured Markup Processing Tools

https://github.com/python/cpython/tree/3.5/Lib/xml/sax/__init__.py

The Python Library Reference, Release 3.5.7

The xml.sax package provides a number of modules which implement the Simple API for XML (SAX)
interface for Python. The package itself provides the SAX exceptions and the convenience functions which
will be most used by users of the SAX API.

Warning: The xml.sax module is not secure against maliciously constructed data. If you need to parse
untrusted or unauthenticated data see XML vulnerabilities.

The convenience functions are:

xml.sax.make_parser(parser_list=[])
Create and return a SAX XMLReader object. The first parser found will be used. If parser_list
is provided, it must be a sequence of strings which name modules that have a function named cre-
ate_parser(). Modules listed in parser_list will be used before modules in the default list of parsers.

xml.sax.parse(filename_or_stream, handler, error_handler=handler.ErrorHandler())
Create a SAX parser and use it to parse a document. The document, passed in as filename_or_stream,
can be a filename or a file object. The handler parameter needs to be a SAX ContentHandler instance.
If error_handler is given, it must be a SAX ErrorHandler instance; if omitted, SAXParseException
will be raised on all errors. There is no return value; all work must be done by the handler passed in.

xml.sax.parseString(string, handler, error_handler=handler.ErrorHandler())
Similar to parse(), but parses from a buffer string received as a parameter. string must be a str instance
or a bytes-like object.

Changed in version 3.5: Added support of str instances.

A typical SAX application uses three kinds of objects: readers, handlers and input sources. “Reader” in this
context is another term for parser, i.e. some piece of code that reads the bytes or characters from the input
source, and produces a sequence of events. The events then get distributed to the handler objects, i.e. the
reader invokes a method on the handler. A SAX application must therefore obtain a reader object, create
or open the input sources, create the handlers, and connect these objects all together. As the final step of
preparation, the reader is called to parse the input. During parsing, methods on the handler objects are
called based on structural and syntactic events from the input data.

For these objects, only the interfaces are relevant; they are normally not instantiated by the application
itself. Since Python does not have an explicit notion of interface, they are formally introduced as classes,
but applications may use implementations which do not inherit from the provided classes. The InputSource,
Locator, Attributes, AttributesNS, and XMLReader interfaces are defined in the module xml.sax.xmlreader.
The handler interfaces are defined in xml.sax.handler. For convenience, InputSource (which is often in-
stantiated directly) and the handler classes are also available from xml.sax. These interfaces are described
below.

In addition to these classes, xml.sax provides the following exception classes.

exception xml.sax.SAXException(msg, exception=None)
Encapsulate an XML error or warning. This class can contain basic error or warning information from
either the XML parser or the application: it can be subclassed to provide additional functionality or
to add localization. Note that although the handlers defined in the ErrorHandler interface receive
instances of this exception, it is not required to actually raise the exception — it is also useful as a
container for information.

When instantiated, msg should be a human-readable description of the error. The optional exception
parameter, if given, should be None or an exception that was caught by the parsing code and is being
passed along as information.

This is the base class for the other SAX exception classes.

20.9. xml.sax — Support for SAX2 parsers 1063

The Python Library Reference, Release 3.5.7

exception xml.sax.SAXParseException(msg, exception, locator)
Subclass of SAXException raised on parse errors. Instances of this class are passed to the methods of
the SAX ErrorHandler interface to provide information about the parse error. This class supports the
SAX Locator interface as well as the SAXException interface.

exception xml.sax.SAXNotRecognizedException(msg, exception=None)
Subclass of SAXException raised when a SAX XMLReader is confronted with an unrecognized feature
or property. SAX applications and extensions may use this class for similar purposes.

exception xml.sax.SAXNotSupportedException(msg, exception=None)
Subclass of SAXException raised when a SAX XMLReader is asked to enable a feature that is not
supported, or to set a property to a value that the implementation does not support. SAX applications
and extensions may use this class for similar purposes.

See also:

SAX: The Simple API for XML This site is the focal point for the definition of the SAX API. It provides a
Java implementation and online documentation. Links to implementations and historical information
are also available.

Module xml.sax.handler Definitions of the interfaces for application-provided objects.

Module xml.sax.saxutils Convenience functions for use in SAX applications.

Module xml.sax.xmlreader Definitions of the interfaces for parser-provided objects.

20.9.1 SAXException Objects

The SAXException exception class supports the following methods:

SAXException.getMessage()
Return a human-readable message describing the error condition.

SAXException.getException()
Return an encapsulated exception object, or None.

20.10 xml.sax.handler — Base classes for SAX handlers

Source code: Lib/xml/sax/handler.py

The SAX API defines four kinds of handlers: content handlers, DTD handlers, error handlers, and entity
resolvers. Applications normally only need to implement those interfaces whose events they are interested
in; they can implement the interfaces in a single object or in multiple objects. Handler implementations
should inherit from the base classes provided in the module xml.sax.handler, so that all methods get default
implementations.

class xml.sax.handler.ContentHandler
This is the main callback interface in SAX, and the one most important to applications. The order of
events in this interface mirrors the order of the information in the document.

class xml.sax.handler.DTDHandler
Handle DTD events.

This interface specifies only those DTD events required for basic parsing (unparsed entities and at-
tributes).

1064 Chapter 20. Structured Markup Processing Tools

http://www.saxproject.org/
https://github.com/python/cpython/tree/3.5/Lib/xml/sax/handler.py

The Python Library Reference, Release 3.5.7

class xml.sax.handler.EntityResolver
Basic interface for resolving entities. If you create an object implementing this interface, then register
the object with your Parser, the parser will call the method in your object to resolve all external
entities.

class xml.sax.handler.ErrorHandler
Interface used by the parser to present error and warning messages to the application. The methods
of this object control whether errors are immediately converted to exceptions or are handled in some
other way.

In addition to these classes, xml.sax.handler provides symbolic constants for the feature and property names.

xml.sax.handler.feature_namespaces

value: "http://xml.org/sax/features/namespaces"

true: Perform Namespace processing.

false: Optionally do not perform Namespace processing (implies namespace-prefixes; default).

access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_namespace_prefixes

value: "http://xml.org/sax/features/namespace-prefixes"

true: Report the original prefixed names and attributes used for Namespace declarations.

false: Do not report attributes used for Namespace declarations, and optionally do not report original
prefixed names (default).

access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_string_interning

value: "http://xml.org/sax/features/string-interning"

true: All element names, prefixes, attribute names, Namespace URIs, and local names are interned
using the built-in intern function.

false: Names are not necessarily interned, although they may be (default).

access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_validation

value: "http://xml.org/sax/features/validation"

true: Report all validation errors (implies external-general-entities and external-parameter-entities).

false: Do not report validation errors.

access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_external_ges

value: "http://xml.org/sax/features/external-general-entities"

true: Include all external general (text) entities.

false: Do not include external general entities.

access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.feature_external_pes

value: "http://xml.org/sax/features/external-parameter-entities"

20.10. xml.sax.handler — Base classes for SAX handlers 1065

The Python Library Reference, Release 3.5.7

true: Include all external parameter entities, including the external DTD subset.

false: Do not include any external parameter entities, even the external DTD subset.

access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.all_features
List of all features.

xml.sax.handler.property_lexical_handler

value: "http://xml.org/sax/properties/lexical-handler"

data type: xml.sax.sax2lib.LexicalHandler (not supported in Python 2)

description: An optional extension handler for lexical events like comments.

access: read/write

xml.sax.handler.property_declaration_handler

value: "http://xml.org/sax/properties/declaration-handler"

data type: xml.sax.sax2lib.DeclHandler (not supported in Python 2)

description: An optional extension handler for DTD-related events other than notations and
unparsed entities.

access: read/write

xml.sax.handler.property_dom_node

value: "http://xml.org/sax/properties/dom-node"

data type: org.w3c.dom.Node (not supported in Python 2)

description: When parsing, the current DOM node being visited if this is a DOM iterator; when not
parsing, the root DOM node for iteration.

access: (parsing) read-only; (not parsing) read/write

xml.sax.handler.property_xml_string

value: "http://xml.org/sax/properties/xml-string"

data type: String

description: The literal string of characters that was the source for the current event.

access: read-only

xml.sax.handler.all_properties
List of all known property names.

20.10.1 ContentHandler Objects

Users are expected to subclass ContentHandler to support their application. The following methods are
called by the parser on the appropriate events in the input document:

ContentHandler.setDocumentLocator(locator)
Called by the parser to give the application a locator for locating the origin of document events.

SAX parsers are strongly encouraged (though not absolutely required) to supply a locator: if it does
so, it must supply the locator to the application by invoking this method before invoking any of the
other methods in the DocumentHandler interface.

1066 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

The locator allows the application to determine the end position of any document-related event, even
if the parser is not reporting an error. Typically, the application will use this information for reporting
its own errors (such as character content that does not match an application’s business rules). The
information returned by the locator is probably not sufficient for use with a search engine.

Note that the locator will return correct information only during the invocation of the events in this
interface. The application should not attempt to use it at any other time.

ContentHandler.startDocument()
Receive notification of the beginning of a document.

The SAX parser will invoke this method only once, before any other methods in this interface or in
DTDHandler (except for setDocumentLocator()).

ContentHandler.endDocument()
Receive notification of the end of a document.

The SAX parser will invoke this method only once, and it will be the last method invoked during the
parse. The parser shall not invoke this method until it has either abandoned parsing (because of an
unrecoverable error) or reached the end of input.

ContentHandler.startPrefixMapping(prefix, uri)
Begin the scope of a prefix-URI Namespace mapping.

The information from this event is not necessary for normal Namespace processing: the SAX
XML reader will automatically replace prefixes for element and attribute names when the fea-
ture_namespaces feature is enabled (the default).

There are cases, however, when applications need to use prefixes in character data or in attribute
values, where they cannot safely be expanded automatically; the startPrefixMapping() and endPre-
fixMapping() events supply the information to the application to expand prefixes in those contexts
itself, if necessary.

Note that startPrefixMapping() and endPrefixMapping() events are not guaranteed to be properly
nested relative to each-other: all startPrefixMapping() events will occur before the corresponding
startElement() event, and all endPrefixMapping() events will occur after the corresponding endEle-
ment() event, but their order is not guaranteed.

ContentHandler.endPrefixMapping(prefix)
End the scope of a prefix-URI mapping.

See startPrefixMapping() for details. This event will always occur after the corresponding endElement()
event, but the order of endPrefixMapping() events is not otherwise guaranteed.

ContentHandler.startElement(name, attrs)
Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the element type as a string and the attrs
parameter holds an object of the Attributes interface (see The Attributes Interface) containing the
attributes of the element. The object passed as attrs may be re-used by the parser; holding on to a
reference to it is not a reliable way to keep a copy of the attributes. To keep a copy of the attributes,
use the copy() method of the attrs object.

ContentHandler.endElement(name)
Signals the end of an element in non-namespace mode.

The name parameter contains the name of the element type, just as with the startElement() event.

ContentHandler.startElementNS(name, qname, attrs)
Signals the start of an element in namespace mode.

20.10. xml.sax.handler — Base classes for SAX handlers 1067

The Python Library Reference, Release 3.5.7

The name parameter contains the name of the element type as a (uri, localname) tuple, the qname
parameter contains the raw XML 1.0 name used in the source document, and the attrs parameter holds
an instance of the AttributesNS interface (see The AttributesNS Interface) containing the attributes
of the element. If no namespace is associated with the element, the uri component of name will be
None. The object passed as attrs may be re-used by the parser; holding on to a reference to it is not a
reliable way to keep a copy of the attributes. To keep a copy of the attributes, use the copy() method
of the attrs object.

Parsers may set the qname parameter to None, unless the feature_namespace_prefixes feature is
activated.

ContentHandler.endElementNS(name, qname)
Signals the end of an element in namespace mode.

The name parameter contains the name of the element type, just as with the startElementNS() method,
likewise the qname parameter.

ContentHandler.characters(content)
Receive notification of character data.

The Parser will call this method to report each chunk of character data. SAX parsers may return all
contiguous character data in a single chunk, or they may split it into several chunks; however, all of the
characters in any single event must come from the same external entity so that the Locator provides
useful information.

content may be a string or bytes instance; the expat reader module always produces strings.

Note: The earlier SAX 1 interface provided by the Python XML Special Interest Group used a more
Java-like interface for this method. Since most parsers used from Python did not take advantage of
the older interface, the simpler signature was chosen to replace it. To convert old code to the new
interface, use content instead of slicing content with the old offset and length parameters.

ContentHandler.ignorableWhitespace(whitespace)
Receive notification of ignorable whitespace in element content.

Validating Parsers must use this method to report each chunk of ignorable whitespace (see the W3C
XML 1.0 recommendation, section 2.10): non-validating parsers may also use this method if they are
capable of parsing and using content models.

SAX parsers may return all contiguous whitespace in a single chunk, or they may split it into several
chunks; however, all of the characters in any single event must come from the same external entity, so
that the Locator provides useful information.

ContentHandler.processingInstruction(target, data)
Receive notification of a processing instruction.

The Parser will invoke this method once for each processing instruction found: note that processing
instructions may occur before or after the main document element.

A SAX parser should never report an XML declaration (XML 1.0, section 2.8) or a text declaration
(XML 1.0, section 4.3.1) using this method.

ContentHandler.skippedEntity(name)
Receive notification of a skipped entity.

The Parser will invoke this method once for each entity skipped. Non-validating processors may skip
entities if they have not seen the declarations (because, for example, the entity was declared in an
external DTD subset). All processors may skip external entities, depending on the values of the
feature_external_ges and the feature_external_pes properties.

1068 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

20.10.2 DTDHandler Objects

DTDHandler instances provide the following methods:

DTDHandler.notationDecl(name, publicId, systemId)
Handle a notation declaration event.

DTDHandler.unparsedEntityDecl(name, publicId, systemId, ndata)
Handle an unparsed entity declaration event.

20.10.3 EntityResolver Objects

EntityResolver.resolveEntity(publicId, systemId)
Resolve the system identifier of an entity and return either the system identifier to read from as a
string, or an InputSource to read from. The default implementation returns systemId.

20.10.4 ErrorHandler Objects

Objects with this interface are used to receive error and warning information from the XMLReader. If you
create an object that implements this interface, then register the object with your XMLReader, the parser
will call the methods in your object to report all warnings and errors. There are three levels of errors available:
warnings, (possibly) recoverable errors, and unrecoverable errors. All methods take a SAXParseException
as the only parameter. Errors and warnings may be converted to an exception by raising the passed-in
exception object.

ErrorHandler.error(exception)
Called when the parser encounters a recoverable error. If this method does not raise an exception,
parsing may continue, but further document information should not be expected by the application.
Allowing the parser to continue may allow additional errors to be discovered in the input document.

ErrorHandler.fatalError(exception)
Called when the parser encounters an error it cannot recover from; parsing is expected to terminate
when this method returns.

ErrorHandler.warning(exception)
Called when the parser presents minor warning information to the application. Parsing is expected
to continue when this method returns, and document information will continue to be passed to the
application. Raising an exception in this method will cause parsing to end.

20.11 xml.sax.saxutils — SAX Utilities

Source code: Lib/xml/sax/saxutils.py

The module xml.sax.saxutils contains a number of classes and functions that are commonly useful when
creating SAX applications, either in direct use, or as base classes.

xml.sax.saxutils.escape(data, entities={})
Escape '&', '<', and '>' in a string of data.

You can escape other strings of data by passing a dictionary as the optional entities parameter. The
keys and values must all be strings; each key will be replaced with its corresponding value. The
characters '&', '<' and '>' are always escaped, even if entities is provided.

20.11. xml.sax.saxutils — SAX Utilities 1069

https://github.com/python/cpython/tree/3.5/Lib/xml/sax/saxutils.py

The Python Library Reference, Release 3.5.7

xml.sax.saxutils.unescape(data, entities={})
Unescape '&', '<', and '>' in a string of data.

You can unescape other strings of data by passing a dictionary as the optional entities parameter. The
keys and values must all be strings; each key will be replaced with its corresponding value. '&',
'<', and '>' are always unescaped, even if entities is provided.

xml.sax.saxutils.quoteattr(data, entities={})
Similar to escape(), but also prepares data to be used as an attribute value. The return value is
a quoted version of data with any additional required replacements. quoteattr() will select a quote
character based on the content of data, attempting to avoid encoding any quote characters in the
string. If both single- and double-quote characters are already in data, the double-quote characters
will be encoded and data will be wrapped in double-quotes. The resulting string can be used directly
as an attribute value:

>>> print("<element attr=%s>" % quoteattr("ab ' cd \" ef"))
<element attr="ab ' cd " ef">

This function is useful when generating attribute values for HTML or any SGML using the reference
concrete syntax.

class xml.sax.saxutils.XMLGenerator(out=None, encoding=’iso-8859-1’,
short_empty_elements=False)

This class implements the ContentHandler interface by writing SAX events back into an XML doc-
ument. In other words, using an XMLGenerator as the content handler will reproduce the original
document being parsed. out should be a file-like object which will default to sys.stdout. encoding is
the encoding of the output stream which defaults to 'iso-8859-1'. short_empty_elements controls
the formatting of elements that contain no content: if False (the default) they are emitted as a pair of
start/end tags, if set to True they are emitted as a single self-closed tag.

New in version 3.2: The short_empty_elements parameter.

class xml.sax.saxutils.XMLFilterBase(base)
This class is designed to sit between an XMLReader and the client application’s event handlers. By
default, it does nothing but pass requests up to the reader and events on to the handlers unmodified,
but subclasses can override specific methods to modify the event stream or the configuration requests
as they pass through.

xml.sax.saxutils.prepare_input_source(source, base=”)
This function takes an input source and an optional base URL and returns a fully resolved InputSource
object ready for reading. The input source can be given as a string, a file-like object, or an InputSource
object; parsers will use this function to implement the polymorphic source argument to their parse()
method.

20.12 xml.sax.xmlreader — Interface for XML parsers

Source code: Lib/xml/sax/xmlreader.py

SAX parsers implement the XMLReader interface. They are implemented in a Python module, which must
provide a function create_parser(). This function is invoked by xml.sax.make_parser() with no arguments
to create a new parser object.

class xml.sax.xmlreader.XMLReader
Base class which can be inherited by SAX parsers.

1070 Chapter 20. Structured Markup Processing Tools

https://github.com/python/cpython/tree/3.5/Lib/xml/sax/xmlreader.py

The Python Library Reference, Release 3.5.7

class xml.sax.xmlreader.IncrementalParser
In some cases, it is desirable not to parse an input source at once, but to feed chunks of the document
as they get available. Note that the reader will normally not read the entire file, but read it in chunks
as well; still parse() won’t return until the entire document is processed. So these interfaces should be
used if the blocking behaviour of parse() is not desirable.

When the parser is instantiated it is ready to begin accepting data from the feed method immediately.
After parsing has been finished with a call to close the reset method must be called to make the parser
ready to accept new data, either from feed or using the parse method.

Note that these methods must not be called during parsing, that is, after parse has been called and
before it returns.

By default, the class also implements the parse method of the XMLReader interface using the feed,
close and reset methods of the IncrementalParser interface as a convenience to SAX 2.0 driver writers.

class xml.sax.xmlreader.Locator
Interface for associating a SAX event with a document location. A locator object will return valid
results only during calls to DocumentHandler methods; at any other time, the results are unpredictable.
If information is not available, methods may return None.

class xml.sax.xmlreader.InputSource(system_id=None)
Encapsulation of the information needed by the XMLReader to read entities.

This class may include information about the public identifier, system identifier, byte stream (possibly
with character encoding information) and/or the character stream of an entity.

Applications will create objects of this class for use in the XMLReader.parse() method and for returning
from EntityResolver.resolveEntity.

An InputSource belongs to the application, the XMLReader is not allowed to modify InputSource
objects passed to it from the application, although it may make copies and modify those.

class xml.sax.xmlreader.AttributesImpl(attrs)
This is an implementation of the Attributes interface (see section The Attributes Interface). This is
a dictionary-like object which represents the element attributes in a startElement() call. In addition
to the most useful dictionary operations, it supports a number of other methods as described by the
interface. Objects of this class should be instantiated by readers; attrs must be a dictionary-like object
containing a mapping from attribute names to attribute values.

class xml.sax.xmlreader.AttributesNSImpl(attrs, qnames)
Namespace-aware variant of AttributesImpl, which will be passed to startElementNS(). It is derived
from AttributesImpl, but understands attribute names as two-tuples of namespaceURI and localname.
In addition, it provides a number of methods expecting qualified names as they appear in the original
document. This class implements the AttributesNS interface (see section The AttributesNS Interface).

20.12.1 XMLReader Objects

The XMLReader interface supports the following methods:

XMLReader.parse(source)
Process an input source, producing SAX events. The source object can be a system identifier (a string
identifying the input source – typically a file name or a URL), a file-like object, or an InputSource
object. When parse() returns, the input is completely processed, and the parser object can be discarded
or reset.

Changed in version 3.5: Added support of character streams.

XMLReader.getContentHandler()
Return the current ContentHandler.

20.12. xml.sax.xmlreader — Interface for XML parsers 1071

The Python Library Reference, Release 3.5.7

XMLReader.setContentHandler(handler)
Set the current ContentHandler. If no ContentHandler is set, content events will be discarded.

XMLReader.getDTDHandler()
Return the current DTDHandler.

XMLReader.setDTDHandler(handler)
Set the current DTDHandler. If no DTDHandler is set, DTD events will be discarded.

XMLReader.getEntityResolver()
Return the current EntityResolver.

XMLReader.setEntityResolver(handler)
Set the current EntityResolver. If no EntityResolver is set, attempts to resolve an external entity will
result in opening the system identifier for the entity, and fail if it is not available.

XMLReader.getErrorHandler()
Return the current ErrorHandler.

XMLReader.setErrorHandler(handler)
Set the current error handler. If no ErrorHandler is set, errors will be raised as exceptions, and warnings
will be printed.

XMLReader.setLocale(locale)
Allow an application to set the locale for errors and warnings.

SAX parsers are not required to provide localization for errors and warnings; if they cannot support
the requested locale, however, they must raise a SAX exception. Applications may request a locale
change in the middle of a parse.

XMLReader.getFeature(featurename)
Return the current setting for feature featurename. If the feature is not recognized, SAXNotRecog-
nizedException is raised. The well-known featurenames are listed in the module xml.sax.handler.

XMLReader.setFeature(featurename, value)
Set the featurename to value. If the feature is not recognized, SAXNotRecognizedException is raised.
If the feature or its setting is not supported by the parser, SAXNotSupportedException is raised.

XMLReader.getProperty(propertyname)
Return the current setting for property propertyname. If the property is not recognized, a SAXNotRec-
ognizedException is raised. The well-known propertynames are listed in the module xml.sax.handler.

XMLReader.setProperty(propertyname, value)
Set the propertyname to value. If the property is not recognized, SAXNotRecognizedException is
raised. If the property or its setting is not supported by the parser, SAXNotSupportedException is
raised.

20.12.2 IncrementalParser Objects

Instances of IncrementalParser offer the following additional methods:

IncrementalParser.feed(data)
Process a chunk of data.

IncrementalParser.close()
Assume the end of the document. That will check well-formedness conditions that can be checked only
at the end, invoke handlers, and may clean up resources allocated during parsing.

IncrementalParser.reset()
This method is called after close has been called to reset the parser so that it is ready to parse new
documents. The results of calling parse or feed after close without calling reset are undefined.

1072 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

20.12.3 Locator Objects

Instances of Locator provide these methods:

Locator.getColumnNumber()
Return the column number where the current event begins.

Locator.getLineNumber()
Return the line number where the current event begins.

Locator.getPublicId()
Return the public identifier for the current event.

Locator.getSystemId()
Return the system identifier for the current event.

20.12.4 InputSource Objects

InputSource.setPublicId(id)
Sets the public identifier of this InputSource.

InputSource.getPublicId()
Returns the public identifier of this InputSource.

InputSource.setSystemId(id)
Sets the system identifier of this InputSource.

InputSource.getSystemId()
Returns the system identifier of this InputSource.

InputSource.setEncoding(encoding)
Sets the character encoding of this InputSource.

The encoding must be a string acceptable for an XML encoding declaration (see section 4.3.3 of the
XML recommendation).

The encoding attribute of the InputSource is ignored if the InputSource also contains a character
stream.

InputSource.getEncoding()
Get the character encoding of this InputSource.

InputSource.setByteStream(bytefile)
Set the byte stream (a binary file) for this input source.

The SAX parser will ignore this if there is also a character stream specified, but it will use a byte
stream in preference to opening a URI connection itself.

If the application knows the character encoding of the byte stream, it should set it with the setEncoding
method.

InputSource.getByteStream()
Get the byte stream for this input source.

The getEncoding method will return the character encoding for this byte stream, or None if unknown.

InputSource.setCharacterStream(charfile)
Set the character stream (a text file) for this input source.

If there is a character stream specified, the SAX parser will ignore any byte stream and will not attempt
to open a URI connection to the system identifier.

20.12. xml.sax.xmlreader — Interface for XML parsers 1073

The Python Library Reference, Release 3.5.7

InputSource.getCharacterStream()
Get the character stream for this input source.

20.12.5 The Attributes Interface

Attributes objects implement a portion of the mapping protocol, including the methods copy(), get(), __con-
tains__(), items(), keys(), and values(). The following methods are also provided:

Attributes.getLength()
Return the number of attributes.

Attributes.getNames()
Return the names of the attributes.

Attributes.getType(name)
Returns the type of the attribute name, which is normally 'CDATA'.

Attributes.getValue(name)
Return the value of attribute name.

20.12.6 The AttributesNS Interface

This interface is a subtype of the Attributes interface (see section The Attributes Interface). All methods
supported by that interface are also available on AttributesNS objects.

The following methods are also available:

AttributesNS.getValueByQName(name)
Return the value for a qualified name.

AttributesNS.getNameByQName(name)
Return the (namespace, localname) pair for a qualified name.

AttributesNS.getQNameByName(name)
Return the qualified name for a (namespace, localname) pair.

AttributesNS.getQNames()
Return the qualified names of all attributes.

20.13 xml.parsers.expat — Fast XML parsing using Expat

Warning: The pyexpat module is not secure against maliciously constructed data. If you need to parse
untrusted or unauthenticated data see XML vulnerabilities.

The xml.parsers.expat module is a Python interface to the Expat non-validating XML parser. The module
provides a single extension type, xmlparser, that represents the current state of an XML parser. After an
xmlparser object has been created, various attributes of the object can be set to handler functions. When an
XML document is then fed to the parser, the handler functions are called for the character data and markup
in the XML document.

This module uses the pyexpat module to provide access to the Expat parser. Direct use of the pyexpat
module is deprecated.

1074 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

This module provides one exception and one type object:

exception xml.parsers.expat.ExpatError
The exception raised when Expat reports an error. See section ExpatError Exceptions for more infor-
mation on interpreting Expat errors.

exception xml.parsers.expat.error
Alias for ExpatError.

xml.parsers.expat.XMLParserType
The type of the return values from the ParserCreate() function.

The xml.parsers.expat module contains two functions:

xml.parsers.expat.ErrorString(errno)
Returns an explanatory string for a given error number errno.

xml.parsers.expat.ParserCreate(encoding=None, namespace_separator=None)
Creates and returns a new xmlparser object. encoding, if specified, must be a string naming the
encoding used by the XML data. Expat doesn’t support as many encodings as Python does, and
its repertoire of encodings can’t be extended; it supports UTF-8, UTF-16, ISO-8859-1 (Latin1), and
ASCII. If encoding1 is given it will override the implicit or explicit encoding of the document.

Expat can optionally do XML namespace processing for you, enabled by providing a value for names-
pace_separator. The value must be a one-character string; a ValueError will be raised if the string has
an illegal length (None is considered the same as omission). When namespace processing is enabled,
element type names and attribute names that belong to a namespace will be expanded. The element
name passed to the element handlers StartElementHandler and EndElementHandler will be the con-
catenation of the namespace URI, the namespace separator character, and the local part of the name.
If the namespace separator is a zero byte (chr(0)) then the namespace URI and the local part will be
concatenated without any separator.

For example, if namespace_separator is set to a space character (' ') and the following document is
parsed:

<?xml version="1.0"?>
<root xmlns = "http://default-namespace.org/"

xmlns:py = "http://www.python.org/ns/">
<py:elem1 />
<elem2 xmlns="" />

</root>

StartElementHandler will receive the following strings for each element:

http://default-namespace.org/ root
http://www.python.org/ns/ elem1
elem2

Due to limitations in the Expat library used by pyexpat, the xmlparser instance returned can only be
used to parse a single XML document. Call ParserCreate for each document to provide unique parser
instances.

See also:

The Expat XML Parser Home page of the Expat project.

1 The encoding string included in XML output should conform to the appropriate standards. For example, “UTF-8” is valid,
but “UTF8” is not. See https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and https://www.iana.org/
assignments/character-sets/character-sets.xhtml.

20.13. xml.parsers.expat — Fast XML parsing using Expat 1075

http://www.libexpat.org/
https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
https://www.iana.org/assignments/character-sets/character-sets.xhtml
https://www.iana.org/assignments/character-sets/character-sets.xhtml

The Python Library Reference, Release 3.5.7

20.13.1 XMLParser Objects

xmlparser objects have the following methods:

xmlparser.Parse(data[, isfinal])
Parses the contents of the string data, calling the appropriate handler functions to process the parsed
data. isfinal must be true on the final call to this method; it allows the parsing of a single file in
fragments, not the submission of multiple files. data can be the empty string at any time.

xmlparser.ParseFile(file)
Parse XML data reading from the object file. file only needs to provide the read(nbytes) method,
returning the empty string when there’s no more data.

xmlparser.SetBase(base)
Sets the base to be used for resolving relative URIs in system identifiers in declarations. Resolving
relative identifiers is left to the application: this value will be passed through as the base argument to
the ExternalEntityRefHandler(), NotationDeclHandler(), and UnparsedEntityDeclHandler() functions.

xmlparser.GetBase()
Returns a string containing the base set by a previous call to SetBase(), or None if SetBase() hasn’t
been called.

xmlparser.GetInputContext()
Returns the input data that generated the current event as a string. The data is in the encoding of
the entity which contains the text. When called while an event handler is not active, the return value
is None.

xmlparser.ExternalEntityParserCreate(context[, encoding])
Create a “child” parser which can be used to parse an external parsed entity referred to by content parsed
by the parent parser. The context parameter should be the string passed to the ExternalEntityRefHan-
dler() handler function, described below. The child parser is created with the ordered_attributes and
specified_attributes set to the values of this parser.

xmlparser.SetParamEntityParsing(flag)
Control parsing of parameter entities (including the external DTD sub-
set). Possible flag values are XML_PARAM_ENTITY_PARSING_NEVER,
XML_PARAM_ENTITY_PARSING_UNLESS_STANDALONE and
XML_PARAM_ENTITY_PARSING_ALWAYS. Return true if setting the flag was successful.

xmlparser.UseForeignDTD([flag])
Calling this with a true value for flag (the default) will cause Expat to call the ExternalEntityRefHan-
dler with None for all arguments to allow an alternate DTD to be loaded. If the document does
not contain a document type declaration, the ExternalEntityRefHandler will still be called, but the
StartDoctypeDeclHandler and EndDoctypeDeclHandler will not be called.

Passing a false value for flag will cancel a previous call that passed a true value, but otherwise has no
effect.

This method can only be called before the Parse() or ParseFile() methods are called; calling it after
either of those have been called causes ExpatError to be raised with the code attribute set to errors.
codes[errors.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING].

xmlparser objects have the following attributes:

xmlparser.buffer_size
The size of the buffer used when buffer_text is true. A new buffer size can be set by assigning a new
integer value to this attribute. When the size is changed, the buffer will be flushed.

xmlparser.buffer_text
Setting this to true causes the xmlparser object to buffer textual content returned by Expat to avoid

1076 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

multiple calls to the CharacterDataHandler() callback whenever possible. This can improve perfor-
mance substantially since Expat normally breaks character data into chunks at every line ending. This
attribute is false by default, and may be changed at any time.

xmlparser.buffer_used
If buffer_text is enabled, the number of bytes stored in the buffer. These bytes represent UTF-8
encoded text. This attribute has no meaningful interpretation when buffer_text is false.

xmlparser.ordered_attributes
Setting this attribute to a non-zero integer causes the attributes to be reported as a list rather than a
dictionary. The attributes are presented in the order found in the document text. For each attribute,
two list entries are presented: the attribute name and the attribute value. (Older versions of this
module also used this format.) By default, this attribute is false; it may be changed at any time.

xmlparser.specified_attributes
If set to a non-zero integer, the parser will report only those attributes which were specified in the
document instance and not those which were derived from attribute declarations. Applications which
set this need to be especially careful to use what additional information is available from the declarations
as needed to comply with the standards for the behavior of XML processors. By default, this attribute
is false; it may be changed at any time.

The following attributes contain values relating to the most recent error encountered by an xmlparser object,
and will only have correct values once a call to Parse() or ParseFile() has raised an xml.parsers.expat.
ExpatError exception.

xmlparser.ErrorByteIndex
Byte index at which an error occurred.

xmlparser.ErrorCode
Numeric code specifying the problem. This value can be passed to the ErrorString() function, or
compared to one of the constants defined in the errors object.

xmlparser.ErrorColumnNumber
Column number at which an error occurred.

xmlparser.ErrorLineNumber
Line number at which an error occurred.

The following attributes contain values relating to the current parse location in an xmlparser object. During
a callback reporting a parse event they indicate the location of the first of the sequence of characters that
generated the event. When called outside of a callback, the position indicated will be just past the last parse
event (regardless of whether there was an associated callback).

xmlparser.CurrentByteIndex
Current byte index in the parser input.

xmlparser.CurrentColumnNumber
Current column number in the parser input.

xmlparser.CurrentLineNumber
Current line number in the parser input.

Here is the list of handlers that can be set. To set a handler on an xmlparser object o, use o.handlername =
func. handlername must be taken from the following list, and func must be a callable object accepting the
correct number of arguments. The arguments are all strings, unless otherwise stated.

xmlparser.XmlDeclHandler(version, encoding, standalone)
Called when the XML declaration is parsed. The XML declaration is the (optional) declaration of the
applicable version of the XML recommendation, the encoding of the document text, and an optional
“standalone” declaration. version and encoding will be strings, and standalone will be 1 if the document

20.13. xml.parsers.expat — Fast XML parsing using Expat 1077

The Python Library Reference, Release 3.5.7

is declared standalone, 0 if it is declared not to be standalone, or -1 if the standalone clause was omitted.
This is only available with Expat version 1.95.0 or newer.

xmlparser.StartDoctypeDeclHandler(doctypeName, systemId, publicId, has_internal_subset)
Called when Expat begins parsing the document type declaration (<!DOCTYPE ...). The doctypeName
is provided exactly as presented. The systemId and publicId parameters give the system and public
identifiers if specified, or None if omitted. has_internal_subset will be true if the document contains
and internal document declaration subset. This requires Expat version 1.2 or newer.

xmlparser.EndDoctypeDeclHandler()
Called when Expat is done parsing the document type declaration. This requires Expat version 1.2 or
newer.

xmlparser.ElementDeclHandler(name, model)
Called once for each element type declaration. name is the name of the element type, and model is a
representation of the content model.

xmlparser.AttlistDeclHandler(elname, attname, type, default, required)
Called for each declared attribute for an element type. If an attribute list declaration declares three
attributes, this handler is called three times, once for each attribute. elname is the name of the element
to which the declaration applies and attname is the name of the attribute declared. The attribute type
is a string passed as type; the possible values are 'CDATA', 'ID', 'IDREF', . . . default gives the
default value for the attribute used when the attribute is not specified by the document instance, or
None if there is no default value (#IMPLIED values). If the attribute is required to be given in the
document instance, required will be true. This requires Expat version 1.95.0 or newer.

xmlparser.StartElementHandler(name, attributes)
Called for the start of every element. name is a string containing the element name, and attributes
is the element attributes. If ordered_attributes is true, this is a list (see ordered_attributes for a full
description). Otherwise it’s a dictionary mapping names to values.

xmlparser.EndElementHandler(name)
Called for the end of every element.

xmlparser.ProcessingInstructionHandler(target, data)
Called for every processing instruction.

xmlparser.CharacterDataHandler(data)
Called for character data. This will be called for normal character data, CDATA marked content,
and ignorable whitespace. Applications which must distinguish these cases can use the StartCdata-
SectionHandler, EndCdataSectionHandler, and ElementDeclHandler callbacks to collect the required
information.

xmlparser.UnparsedEntityDeclHandler(entityName, base, systemId, publicId, notationName)
Called for unparsed (NDATA) entity declarations. This is only present for version 1.2 of the Expat
library; for more recent versions, use EntityDeclHandler instead. (The underlying function in the
Expat library has been declared obsolete.)

xmlparser.EntityDeclHandler(entityName, is_parameter_entity, value, base, systemId, publicId, no-
tationName)

Called for all entity declarations. For parameter and internal entities, value will be a string giving the
declared contents of the entity; this will be None for external entities. The notationName parameter will
be None for parsed entities, and the name of the notation for unparsed entities. is_parameter_entity
will be true if the entity is a parameter entity or false for general entities (most applications only need
to be concerned with general entities). This is only available starting with version 1.95.0 of the Expat
library.

xmlparser.NotationDeclHandler(notationName, base, systemId, publicId)
Called for notation declarations. notationName, base, and systemId, and publicId are strings if given.

1078 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

If the public identifier is omitted, publicId will be None.

xmlparser.StartNamespaceDeclHandler(prefix, uri)
Called when an element contains a namespace declaration. Namespace declarations are processed
before the StartElementHandler is called for the element on which declarations are placed.

xmlparser.EndNamespaceDeclHandler(prefix)
Called when the closing tag is reached for an element that contained a namespace declaration. This
is called once for each namespace declaration on the element in the reverse of the order for which the
StartNamespaceDeclHandler was called to indicate the start of each namespace declaration’s scope.
Calls to this handler are made after the corresponding EndElementHandler for the end of the element.

xmlparser.CommentHandler(data)
Called for comments. data is the text of the comment, excluding the leading '<!--' and trailing '-->'.

xmlparser.StartCdataSectionHandler()
Called at the start of a CDATA section. This and EndCdataSectionHandler are needed to be able to
identify the syntactical start and end for CDATA sections.

xmlparser.EndCdataSectionHandler()
Called at the end of a CDATA section.

xmlparser.DefaultHandler(data)
Called for any characters in the XML document for which no applicable handler has been specified.
This means characters that are part of a construct which could be reported, but for which no handler
has been supplied.

xmlparser.DefaultHandlerExpand(data)
This is the same as the DefaultHandler(), but doesn’t inhibit expansion of internal entities. The entity
reference will not be passed to the default handler.

xmlparser.NotStandaloneHandler()
Called if the XML document hasn’t been declared as being a standalone document. This happens
when there is an external subset or a reference to a parameter entity, but the XML declaration does
not set standalone to yes in an XML declaration. If this handler returns 0, then the parser will raise
an XML_ERROR_NOT_STANDALONE error. If this handler is not set, no exception is raised by
the parser for this condition.

xmlparser.ExternalEntityRefHandler(context, base, systemId, publicId)
Called for references to external entities. base is the current base, as set by a previous call to SetBase().
The public and system identifiers, systemId and publicId, are strings if given; if the public identifier is
not given, publicId will be None. The context value is opaque and should only be used as described
below.

For external entities to be parsed, this handler must be implemented. It is responsible for creating the
sub-parser using ExternalEntityParserCreate(context), initializing it with the appropriate callbacks,
and parsing the entity. This handler should return an integer; if it returns 0, the parser will raise an
XML_ERROR_EXTERNAL_ENTITY_HANDLING error, otherwise parsing will continue.

If this handler is not provided, external entities are reported by the DefaultHandler callback, if provided.

20.13.2 ExpatError Exceptions

ExpatError exceptions have a number of interesting attributes:

ExpatError.code
Expat’s internal error number for the specific error. The errors.messages dictionary maps these error
numbers to Expat’s error messages. For example:

20.13. xml.parsers.expat — Fast XML parsing using Expat 1079

The Python Library Reference, Release 3.5.7

from xml.parsers.expat import ParserCreate, ExpatError, errors

p = ParserCreate()
try:

p.Parse(some_xml_document)
except ExpatError as err:

print("Error:", errors.messages[err.code])

The errors module also provides error message constants and a dictionary codes mapping these messages
back to the error codes, see below.

ExpatError.lineno
Line number on which the error was detected. The first line is numbered 1.

ExpatError.offset
Character offset into the line where the error occurred. The first column is numbered 0.

20.13.3 Example

The following program defines three handlers that just print out their arguments.

import xml.parsers.expat

3 handler functions
def start_element(name, attrs):

print('Start element:', name, attrs)
def end_element(name):

print('End element:', name)
def char_data(data):

print('Character data:', repr(data))

p = xml.parsers.expat.ParserCreate()

p.StartElementHandler = start_element
p.EndElementHandler = end_element
p.CharacterDataHandler = char_data

p.Parse("""<?xml version="1.0"?>
<parent id="top"><child1 name="paul">Text goes here</child1>
<child2 name="fred">More text</child2>
</parent>""", 1)

The output from this program is:

Start element: parent {'id': 'top'}
Start element: child1 {'name': 'paul'}
Character data: 'Text goes here'
End element: child1
Character data: '\n'
Start element: child2 {'name': 'fred'}
Character data: 'More text'
End element: child2
Character data: '\n'
End element: parent

1080 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

20.13.4 Content Model Descriptions

Content models are described using nested tuples. Each tuple contains four values: the type, the quantifier,
the name, and a tuple of children. Children are simply additional content model descriptions.

The values of the first two fields are constants defined in the xml.parsers.expat.model module. These con-
stants can be collected in two groups: the model type group and the quantifier group.

The constants in the model type group are:

xml.parsers.expat.model.XML_CTYPE_ANY
The element named by the model name was declared to have a content model of ANY.

xml.parsers.expat.model.XML_CTYPE_CHOICE
The named element allows a choice from a number of options; this is used for content models such as
(A | B | C).

xml.parsers.expat.model.XML_CTYPE_EMPTY
Elements which are declared to be EMPTY have this model type.

xml.parsers.expat.model.XML_CTYPE_MIXED

xml.parsers.expat.model.XML_CTYPE_NAME

xml.parsers.expat.model.XML_CTYPE_SEQ
Models which represent a series of models which follow one after the other are indicated with this
model type. This is used for models such as (A, B, C).

The constants in the quantifier group are:

xml.parsers.expat.model.XML_CQUANT_NONE
No modifier is given, so it can appear exactly once, as for A.

xml.parsers.expat.model.XML_CQUANT_OPT
The model is optional: it can appear once or not at all, as for A?.

xml.parsers.expat.model.XML_CQUANT_PLUS
The model must occur one or more times (like A+).

xml.parsers.expat.model.XML_CQUANT_REP
The model must occur zero or more times, as for A*.

20.13.5 Expat error constants

The following constants are provided in the xml.parsers.expat.errors module. These constants are useful in in-
terpreting some of the attributes of the ExpatError exception objects raised when an error has occurred. Since
for backwards compatibility reasons, the constants’ value is the error message and not the numeric error code,
you do this by comparing its code attribute with errors.codes[errors.XML_ERROR_CONSTANT_NAME].

The errors module has the following attributes:

xml.parsers.expat.errors.codes
A dictionary mapping numeric error codes to their string descriptions.

New in version 3.2.

xml.parsers.expat.errors.messages
A dictionary mapping string descriptions to their error codes.

New in version 3.2.

xml.parsers.expat.errors.XML_ERROR_ASYNC_ENTITY

20.13. xml.parsers.expat — Fast XML parsing using Expat 1081

The Python Library Reference, Release 3.5.7

xml.parsers.expat.errors.XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF
An entity reference in an attribute value referred to an external entity instead of an internal entity.

xml.parsers.expat.errors.XML_ERROR_BAD_CHAR_REF
A character reference referred to a character which is illegal in XML (for example, character 0, or
‘�’).

xml.parsers.expat.errors.XML_ERROR_BINARY_ENTITY_REF
An entity reference referred to an entity which was declared with a notation, so cannot be parsed.

xml.parsers.expat.errors.XML_ERROR_DUPLICATE_ATTRIBUTE
An attribute was used more than once in a start tag.

xml.parsers.expat.errors.XML_ERROR_INCORRECT_ENCODING

xml.parsers.expat.errors.XML_ERROR_INVALID_TOKEN
Raised when an input byte could not properly be assigned to a character; for example, a NUL byte
(value 0) in a UTF-8 input stream.

xml.parsers.expat.errors.XML_ERROR_JUNK_AFTER_DOC_ELEMENT
Something other than whitespace occurred after the document element.

xml.parsers.expat.errors.XML_ERROR_MISPLACED_XML_PI
An XML declaration was found somewhere other than the start of the input data.

xml.parsers.expat.errors.XML_ERROR_NO_ELEMENTS
The document contains no elements (XML requires all documents to contain exactly one top-level
element)..

xml.parsers.expat.errors.XML_ERROR_NO_MEMORY
Expat was not able to allocate memory internally.

xml.parsers.expat.errors.XML_ERROR_PARAM_ENTITY_REF
A parameter entity reference was found where it was not allowed.

xml.parsers.expat.errors.XML_ERROR_PARTIAL_CHAR
An incomplete character was found in the input.

xml.parsers.expat.errors.XML_ERROR_RECURSIVE_ENTITY_REF
An entity reference contained another reference to the same entity; possibly via a different name, and
possibly indirectly.

xml.parsers.expat.errors.XML_ERROR_SYNTAX
Some unspecified syntax error was encountered.

xml.parsers.expat.errors.XML_ERROR_TAG_MISMATCH
An end tag did not match the innermost open start tag.

xml.parsers.expat.errors.XML_ERROR_UNCLOSED_TOKEN
Some token (such as a start tag) was not closed before the end of the stream or the next token was
encountered.

xml.parsers.expat.errors.XML_ERROR_UNDEFINED_ENTITY
A reference was made to an entity which was not defined.

xml.parsers.expat.errors.XML_ERROR_UNKNOWN_ENCODING
The document encoding is not supported by Expat.

xml.parsers.expat.errors.XML_ERROR_UNCLOSED_CDATA_SECTION
A CDATA marked section was not closed.

xml.parsers.expat.errors.XML_ERROR_EXTERNAL_ENTITY_HANDLING

1082 Chapter 20. Structured Markup Processing Tools

The Python Library Reference, Release 3.5.7

xml.parsers.expat.errors.XML_ERROR_NOT_STANDALONE
The parser determined that the document was not “standalone” though it declared itself to be in the
XML declaration, and the NotStandaloneHandler was set and returned 0.

xml.parsers.expat.errors.XML_ERROR_UNEXPECTED_STATE

xml.parsers.expat.errors.XML_ERROR_ENTITY_DECLARED_IN_PE

xml.parsers.expat.errors.XML_ERROR_FEATURE_REQUIRES_XML_DTD
An operation was requested that requires DTD support to be compiled in, but Expat was configured
without DTD support. This should never be reported by a standard build of the xml.parsers.expat
module.

xml.parsers.expat.errors.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING
A behavioral change was requested after parsing started that can only be changed before parsing has
started. This is (currently) only raised by UseForeignDTD().

xml.parsers.expat.errors.XML_ERROR_UNBOUND_PREFIX
An undeclared prefix was found when namespace processing was enabled.

xml.parsers.expat.errors.XML_ERROR_UNDECLARING_PREFIX
The document attempted to remove the namespace declaration associated with a prefix.

xml.parsers.expat.errors.XML_ERROR_INCOMPLETE_PE
A parameter entity contained incomplete markup.

xml.parsers.expat.errors.XML_ERROR_XML_DECL
The document contained no document element at all.

xml.parsers.expat.errors.XML_ERROR_TEXT_DECL
There was an error parsing a text declaration in an external entity.

xml.parsers.expat.errors.XML_ERROR_PUBLICID
Characters were found in the public id that are not allowed.

xml.parsers.expat.errors.XML_ERROR_SUSPENDED
The requested operation was made on a suspended parser, but isn’t allowed. This includes attempts
to provide additional input or to stop the parser.

xml.parsers.expat.errors.XML_ERROR_NOT_SUSPENDED
An attempt to resume the parser was made when the parser had not been suspended.

xml.parsers.expat.errors.XML_ERROR_ABORTED
This should not be reported to Python applications.

xml.parsers.expat.errors.XML_ERROR_FINISHED
The requested operation was made on a parser which was finished parsing input, but isn’t allowed.
This includes attempts to provide additional input or to stop the parser.

xml.parsers.expat.errors.XML_ERROR_SUSPEND_PE

20.13. xml.parsers.expat — Fast XML parsing using Expat 1083

The Python Library Reference, Release 3.5.7

1084 Chapter 20. Structured Markup Processing Tools

CHAPTER

TWENTYONE

INTERNET PROTOCOLS AND SUPPORT

The modules described in this chapter implement Internet protocols and support for related technology.
They are all implemented in Python. Most of these modules require the presence of the system-dependent
module socket, which is currently supported on most popular platforms. Here is an overview:

21.1 webbrowser — Convenient Web-browser controller

Source code: Lib/webbrowser.py

The webbrowser module provides a high-level interface to allow displaying Web-based documents to users.
Under most circumstances, simply calling the open() function from this module will do the right thing.

Under Unix, graphical browsers are preferred under X11, but text-mode browsers will be used if graphical
browsers are not available or an X11 display isn’t available. If text-mode browsers are used, the calling
process will block until the user exits the browser.

If the environment variable BROWSER exists, it is interpreted as the os.pathsep-separated list of browsers to
try ahead of the platform defaults. When the value of a list part contains the string %s, then it is interpreted
as a literal browser command line to be used with the argument URL substituted for %s; if the part does
not contain %s, it is simply interpreted as the name of the browser to launch.1

For non-Unix platforms, or when a remote browser is available on Unix, the controlling process will not wait
for the user to finish with the browser, but allow the remote browser to maintain its own windows on the
display. If remote browsers are not available on Unix, the controlling process will launch a new browser and
wait.

The script webbrowser can be used as a command-line interface for the module. It accepts a URL as the
argument. It accepts the following optional parameters: -n opens the URL in a new browser window, if
possible; -t opens the URL in a new browser page (“tab”). The options are, naturally, mutually exclusive.
Usage example:

python -m webbrowser -t "http://www.python.org"

The following exception is defined:

exception webbrowser.Error
Exception raised when a browser control error occurs.

The following functions are defined:

1 Executables named here without a full path will be searched in the directories given in the PATH environment variable.

1085

https://github.com/python/cpython/tree/3.5/Lib/webbrowser.py

The Python Library Reference, Release 3.5.7

webbrowser.open(url, new=0, autoraise=True)
Display url using the default browser. If new is 0, the url is opened in the same browser window if
possible. If new is 1, a new browser window is opened if possible. If new is 2, a new browser page
(“tab”) is opened if possible. If autoraise is True, the window is raised if possible (note that under
many window managers this will occur regardless of the setting of this variable).

Note that on some platforms, trying to open a filename using this function, may work and start the
operating system’s associated program. However, this is neither supported nor portable.

webbrowser.open_new(url)
Open url in a new window of the default browser, if possible, otherwise, open url in the only browser
window.

webbrowser.open_new_tab(url)
Open url in a new page (“tab”) of the default browser, if possible, otherwise equivalent to open_new().

webbrowser.get(using=None)
Return a controller object for the browser type using. If using is None, return a controller for a default
browser appropriate to the caller’s environment.

webbrowser.register(name, constructor, instance=None)
Register the browser type name. Once a browser type is registered, the get() function can return a
controller for that browser type. If instance is not provided, or is None, constructor will be called
without parameters to create an instance when needed. If instance is provided, constructor will never
be called, and may be None.

This entry point is only useful if you plan to either set the BROWSER variable or call get() with a
nonempty argument matching the name of a handler you declare.

A number of browser types are predefined. This table gives the type names that may be passed to the get()
function and the corresponding instantiations for the controller classes, all defined in this module.

Type Name Class Name Notes
'mozilla' Mozilla('mozilla')
'firefox' Mozilla('mozilla')
'netscape' Mozilla('netscape')
'galeon' Galeon('galeon')
'epiphany' Galeon('epiphany')
'skipstone' BackgroundBrowser('skipstone')
'kfmclient' Konqueror() (1)
'konqueror' Konqueror() (1)
'kfm' Konqueror() (1)
'mosaic' BackgroundBrowser('mosaic')
'opera' Opera()
'grail' Grail()
'links' GenericBrowser('links')
'elinks' Elinks('elinks')
'lynx' GenericBrowser('lynx')
'w3m' GenericBrowser('w3m')
'windows-default' WindowsDefault (2)
'macosx' MacOSX('default') (3)
'safari' MacOSX('safari') (3)
'google-chrome' Chrome('google-chrome')
'chrome' Chrome('chrome')
'chromium' Chromium('chromium')
'chromium-browser' Chromium('chromium-browser')

1086 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

Notes:

(1) “Konqueror” is the file manager for the KDE desktop environment for Unix, and only makes sense to
use if KDE is running. Some way of reliably detecting KDE would be nice; the KDEDIR variable is
not sufficient. Note also that the name “kfm” is used even when using the konqueror command with
KDE 2 — the implementation selects the best strategy for running Konqueror.

(2) Only on Windows platforms.

(3) Only on Mac OS X platform.

New in version 3.3: Support for Chrome/Chromium has been added.

Here are some simple examples:

url = 'http://docs.python.org/'

Open URL in a new tab, if a browser window is already open.
webbrowser.open_new_tab(url)

Open URL in new window, raising the window if possible.
webbrowser.open_new(url)

21.1.1 Browser Controller Objects

Browser controllers provide these methods which parallel three of the module-level convenience functions:

controller.open(url, new=0, autoraise=True)
Display url using the browser handled by this controller. If new is 1, a new browser window is opened
if possible. If new is 2, a new browser page (“tab”) is opened if possible.

controller.open_new(url)
Open url in a new window of the browser handled by this controller, if possible, otherwise, open url in
the only browser window. Alias open_new().

controller.open_new_tab(url)
Open url in a new page (“tab”) of the browser handled by this controller, if possible, otherwise equivalent
to open_new().

21.2 cgi — Common Gateway Interface support

Source code: Lib/cgi.py

Support module for Common Gateway Interface (CGI) scripts.

This module defines a number of utilities for use by CGI scripts written in Python.

21.2.1 Introduction

A CGI script is invoked by an HTTP server, usually to process user input submitted through an HTML
<FORM> or <ISINDEX> element.

Most often, CGI scripts live in the server’s special cgi-bin directory. The HTTP server places all sorts of
information about the request (such as the client’s hostname, the requested URL, the query string, and lots

21.2. cgi — Common Gateway Interface support 1087

https://github.com/python/cpython/tree/3.5/Lib/cgi.py

The Python Library Reference, Release 3.5.7

of other goodies) in the script’s shell environment, executes the script, and sends the script’s output back to
the client.

The script’s input is connected to the client too, and sometimes the form data is read this way; at other
times the form data is passed via the “query string” part of the URL. This module is intended to take care
of the different cases and provide a simpler interface to the Python script. It also provides a number of
utilities that help in debugging scripts, and the latest addition is support for file uploads from a form (if
your browser supports it).

The output of a CGI script should consist of two sections, separated by a blank line. The first section
contains a number of headers, telling the client what kind of data is following. Python code to generate a
minimal header section looks like this:

print("Content-Type: text/html") # HTML is following
print() # blank line, end of headers

The second section is usually HTML, which allows the client software to display nicely formatted text with
header, in-line images, etc. Here’s Python code that prints a simple piece of HTML:

print("<TITLE>CGI script output</TITLE>")
print("<H1>This is my first CGI script</H1>")
print("Hello, world!")

21.2.2 Using the cgi module

Begin by writing import cgi.

When you write a new script, consider adding these lines:

import cgitb
cgitb.enable()

This activates a special exception handler that will display detailed reports in the Web browser if any errors
occur. If you’d rather not show the guts of your program to users of your script, you can have the reports
saved to files instead, with code like this:

import cgitb
cgitb.enable(display=0, logdir="/path/to/logdir")

It’s very helpful to use this feature during script development. The reports produced by cgitb provide
information that can save you a lot of time in tracking down bugs. You can always remove the cgitb line
later when you have tested your script and are confident that it works correctly.

To get at submitted form data, use the FieldStorage class. If the form contains non-ASCII characters, use
the encoding keyword parameter set to the value of the encoding defined for the document. It is usually
contained in the META tag in the HEAD section of the HTML document or by the Content-Type header).
This reads the form contents from the standard input or the environment (depending on the value of various
environment variables set according to the CGI standard). Since it may consume standard input, it should
be instantiated only once.

The FieldStorage instance can be indexed like a Python dictionary. It allows membership testing with the
in operator, and also supports the standard dictionary method keys() and the built-in function len(). Form
fields containing empty strings are ignored and do not appear in the dictionary; to keep such values, provide a
true value for the optional keep_blank_values keyword parameter when creating the FieldStorage instance.

For instance, the following code (which assumes that the Content-Type header and blank line have already
been printed) checks that the fields name and addr are both set to a non-empty string:

1088 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

form = cgi.FieldStorage()
if "name" not in form or "addr" not in form:

print("<H1>Error</H1>")
print("Please fill in the name and addr fields.")
return

print("<p>name:", form["name"].value)
print("<p>addr:", form["addr"].value)
...further form processing here...

Here the fields, accessed through form[key], are themselves instances of FieldStorage (or MiniFieldStorage,
depending on the form encoding). The value attribute of the instance yields the string value of the field.
The getvalue() method returns this string value directly; it also accepts an optional second argument as a
default to return if the requested key is not present.

If the submitted form data contains more than one field with the same name, the object retrieved by form[key]
is not a FieldStorage or MiniFieldStorage instance but a list of such instances. Similarly, in this situation,
form.getvalue(key) would return a list of strings. If you expect this possibility (when your HTML form
contains multiple fields with the same name), use the getlist() method, which always returns a list of values
(so that you do not need to special-case the single item case). For example, this code concatenates any
number of username fields, separated by commas:

value = form.getlist("username")
usernames = ",".join(value)

If a field represents an uploaded file, accessing the value via the value attribute or the getvalue() method
reads the entire file in memory as bytes. This may not be what you want. You can test for an uploaded
file by testing either the filename attribute or the file attribute. You can then read the data from the file
attribute before it is automatically closed as part of the garbage collection of the FieldStorage instance (the
read() and readline() methods will return bytes):

fileitem = form["userfile"]
if fileitem.file:

It's an uploaded file; count lines
linecount = 0
while True:

line = fileitem.file.readline()
if not line: break
linecount = linecount + 1

FieldStorage objects also support being used in a with statement, which will automatically close them when
done.

If an error is encountered when obtaining the contents of an uploaded file (for example, when the user
interrupts the form submission by clicking on a Back or Cancel button) the done attribute of the object for
the field will be set to the value -1.

The file upload draft standard entertains the possibility of uploading multiple files from one field (using a
recursive multipart/* encoding). When this occurs, the item will be a dictionary-like FieldStorage item. This
can be determined by testing its type attribute, which should be multipart/form-data (or perhaps another
MIME type matching multipart/*). In this case, it can be iterated over recursively just like the top-level
form object.

When a form is submitted in the “old” format (as the query string or as a single data part of type application/
x-www-form-urlencoded), the items will actually be instances of the class MiniFieldStorage. In this case,
the list, file, and filename attributes are always None.

A form submitted via POST that also has a query string will contain both FieldStorage and MiniFieldStorage
items.

21.2. cgi — Common Gateway Interface support 1089

The Python Library Reference, Release 3.5.7

Changed in version 3.4: The file attribute is automatically closed upon the garbage collection of the creating
FieldStorage instance.

Changed in version 3.5: Added support for the context management protocol to the FieldStorage class.

21.2.3 Higher Level Interface

The previous section explains how to read CGI form data using the FieldStorage class. This section describes
a higher level interface which was added to this class to allow one to do it in a more readable and intuitive
way. The interface doesn’t make the techniques described in previous sections obsolete — they are still useful
to process file uploads efficiently, for example.

The interface consists of two simple methods. Using the methods you can process form data in a generic
way, without the need to worry whether only one or more values were posted under one name.

In the previous section, you learned to write following code anytime you expected a user to post more than
one value under one name:

item = form.getvalue("item")
if isinstance(item, list):

The user is requesting more than one item.
else:

The user is requesting only one item.

This situation is common for example when a form contains a group of multiple checkboxes with the same
name:

<input type="checkbox" name="item" value="1" />
<input type="checkbox" name="item" value="2" />

In most situations, however, there’s only one form control with a particular name in a form and then you
expect and need only one value associated with this name. So you write a script containing for example this
code:

user = form.getvalue("user").upper()

The problem with the code is that you should never expect that a client will provide valid input to your
scripts. For example, if a curious user appends another user=foo pair to the query string, then the script
would crash, because in this situation the getvalue("user") method call returns a list instead of a string.
Calling the upper() method on a list is not valid (since lists do not have a method of this name) and results
in an AttributeError exception.

Therefore, the appropriate way to read form data values was to always use the code which checks whether
the obtained value is a single value or a list of values. That’s annoying and leads to less readable scripts.

A more convenient approach is to use the methods getfirst() and getlist() provided by this higher level
interface.

FieldStorage.getfirst(name, default=None)
This method always returns only one value associated with form field name. The method returns only
the first value in case that more values were posted under such name. Please note that the order in
which the values are received may vary from browser to browser and should not be counted on.1 If no
such form field or value exists then the method returns the value specified by the optional parameter
default. This parameter defaults to None if not specified.

1 Note that some recent versions of the HTML specification do state what order the field values should be supplied in, but
knowing whether a request was received from a conforming browser, or even from a browser at all, is tedious and error-prone.

1090 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

FieldStorage.getlist(name)
This method always returns a list of values associated with form field name. The method returns an
empty list if no such form field or value exists for name. It returns a list consisting of one item if only
one such value exists.

Using these methods you can write nice compact code:

import cgi
form = cgi.FieldStorage()
user = form.getfirst("user", "").upper() # This way it's safe.
for item in form.getlist("item"):

do_something(item)

21.2.4 Functions

These are useful if you want more control, or if you want to employ some of the algorithms implemented in
this module in other circumstances.

cgi.parse(fp=None, environ=os.environ, keep_blank_values=False, strict_parsing=False)
Parse a query in the environment or from a file (the file defaults to sys.stdin). The keep_blank_values
and strict_parsing parameters are passed to urllib.parse.parse_qs() unchanged.

cgi.parse_qs(qs, keep_blank_values=False, strict_parsing=False)
This function is deprecated in this module. Use urllib.parse.parse_qs() instead. It is maintained here
only for backward compatibility.

cgi.parse_qsl(qs, keep_blank_values=False, strict_parsing=False)
This function is deprecated in this module. Use urllib.parse.parse_qsl() instead. It is maintained here
only for backward compatibility.

cgi.parse_multipart(fp, pdict)
Parse input of type multipart/form-data (for file uploads). Arguments are fp for the input file and
pdict for a dictionary containing other parameters in the Content-Type header.

Returns a dictionary just like urllib.parse.parse_qs() keys are the field names, each value is a list of
values for that field. This is easy to use but not much good if you are expecting megabytes to be
uploaded — in that case, use the FieldStorage class instead which is much more flexible.

Note that this does not parse nested multipart parts — use FieldStorage for that.

cgi.parse_header(string)
Parse a MIME header (such as Content-Type) into a main value and a dictionary of parameters.

cgi.test()
Robust test CGI script, usable as main program. Writes minimal HTTP headers and formats all
information provided to the script in HTML form.

cgi.print_environ()
Format the shell environment in HTML.

cgi.print_form(form)
Format a form in HTML.

cgi.print_directory()
Format the current directory in HTML.

cgi.print_environ_usage()
Print a list of useful (used by CGI) environment variables in HTML.

21.2. cgi — Common Gateway Interface support 1091

The Python Library Reference, Release 3.5.7

cgi.escape(s, quote=False)
Convert the characters '&', '<' and '>' in string s to HTML-safe sequences. Use this if you need
to display text that might contain such characters in HTML. If the optional flag quote is true, the
quotation mark character (") is also translated; this helps for inclusion in an HTML attribute value
delimited by double quotes, as in . Note that single quotes are never translated.

Deprecated since version 3.2: This function is unsafe because quote is false by default, and therefore
deprecated. Use html.escape() instead.

21.2.5 Caring about security

There’s one important rule: if you invoke an external program (via the os.system() or os.popen() functions.
or others with similar functionality), make very sure you don’t pass arbitrary strings received from the client
to the shell. This is a well-known security hole whereby clever hackers anywhere on the Web can exploit a
gullible CGI script to invoke arbitrary shell commands. Even parts of the URL or field names cannot be
trusted, since the request doesn’t have to come from your form!

To be on the safe side, if you must pass a string gotten from a form to a shell command, you should make
sure the string contains only alphanumeric characters, dashes, underscores, and periods.

21.2.6 Installing your CGI script on a Unix system

Read the documentation for your HTTP server and check with your local system administrator to find the
directory where CGI scripts should be installed; usually this is in a directory cgi-bin in the server tree.

Make sure that your script is readable and executable by “others”; the Unix file mode should be 0o755 octal
(use chmod 0755 filename). Make sure that the first line of the script contains #! starting in column 1
followed by the pathname of the Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others”.

Make sure that any files your script needs to read or write are readable or writable, respectively, by “others”
— their mode should be 0o644 for readable and 0o666 for writable. This is because, for security reasons,
the HTTP server executes your script as user “nobody”, without any special privileges. It can only read
(write, execute) files that everybody can read (write, execute). The current directory at execution time is
also different (it is usually the server’s cgi-bin directory) and the set of environment variables is also different
from what you get when you log in. In particular, don’t count on the shell’s search path for executables
(PATH) or the Python module search path (PYTHONPATH) to be set to anything interesting.

If you need to load modules from a directory which is not on Python’s default module search path, you can
change the path in your script, before importing other modules. For example:

import sys
sys.path.insert(0, "/usr/home/joe/lib/python")
sys.path.insert(0, "/usr/local/lib/python")

(This way, the directory inserted last will be searched first!)

Instructions for non-Unix systems will vary; check your HTTP server’s documentation (it will usually have
a section on CGI scripts).

1092 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

21.2.7 Testing your CGI script

Unfortunately, a CGI script will generally not run when you try it from the command line, and a script
that works perfectly from the command line may fail mysteriously when run from the server. There’s one
reason why you should still test your script from the command line: if it contains a syntax error, the Python
interpreter won’t execute it at all, and the HTTP server will most likely send a cryptic error to the client.

Assuming your script has no syntax errors, yet it does not work, you have no choice but to read the next
section.

21.2.8 Debugging CGI scripts

First of all, check for trivial installation errors — reading the section above on installing your CGI script
carefully can save you a lot of time. If you wonder whether you have understood the installation procedure
correctly, try installing a copy of this module file (cgi.py) as a CGI script. When invoked as a script, the
file will dump its environment and the contents of the form in HTML form. Give it the right mode etc, and
send it a request. If it’s installed in the standard cgi-bin directory, it should be possible to send it a request
by entering a URL into your browser of the form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If this gives an error of type 404, the server cannot find the script – perhaps you need to install it in a
different directory. If it gives another error, there’s an installation problem that you should fix before trying
to go any further. If you get a nicely formatted listing of the environment and form content (in this example,
the fields should be listed as “addr” with value “At Home” and “name” with value “Joe Blow”), the cgi.py
script has been installed correctly. If you follow the same procedure for your own script, you should now be
able to debug it.

The next step could be to call the cgi module’s test() function from your script: replace its main code with
the single statement

cgi.test()

This should produce the same results as those gotten from installing the cgi.py file itself.

When an ordinary Python script raises an unhandled exception (for whatever reason: of a typo in a module
name, a file that can’t be opened, etc.), the Python interpreter prints a nice traceback and exits. While the
Python interpreter will still do this when your CGI script raises an exception, most likely the traceback will
end up in one of the HTTP server’s log files, or be discarded altogether.

Fortunately, once you have managed to get your script to execute some code, you can easily send tracebacks
to the Web browser using the cgitb module. If you haven’t done so already, just add the lines:

import cgitb
cgitb.enable()

to the top of your script. Then try running it again; when a problem occurs, you should see a detailed report
that will likely make apparent the cause of the crash.

If you suspect that there may be a problem in importing the cgitb module, you can use an even more robust
approach (which only uses built-in modules):

import sys
sys.stderr = sys.stdout
print("Content-Type: text/plain")
print()
...your code here...

21.2. cgi — Common Gateway Interface support 1093

The Python Library Reference, Release 3.5.7

This relies on the Python interpreter to print the traceback. The content type of the output is set to plain
text, which disables all HTML processing. If your script works, the raw HTML will be displayed by your
client. If it raises an exception, most likely after the first two lines have been printed, a traceback will be
displayed. Because no HTML interpretation is going on, the traceback will be readable.

21.2.9 Common problems and solutions

• Most HTTP servers buffer the output from CGI scripts until the script is completed. This means that
it is not possible to display a progress report on the client’s display while the script is running.

• Check the installation instructions above.

• Check the HTTP server’s log files. (tail -f logfile in a separate window may be useful!)

• Always check a script for syntax errors first, by doing something like python script.py.

• If your script does not have any syntax errors, try adding import cgitb; cgitb.enable() to the top of
the script.

• When invoking external programs, make sure they can be found. Usually, this means using absolute
path names — PATH is usually not set to a very useful value in a CGI script.

• When reading or writing external files, make sure they can be read or written by the userid under which
your CGI script will be running: this is typically the userid under which the web server is running, or
some explicitly specified userid for a web server’s suexec feature.

• Don’t try to give a CGI script a set-uid mode. This doesn’t work on most systems, and is a security
liability as well.

21.3 cgitb — Traceback manager for CGI scripts

Source code: Lib/cgitb.py

The cgitb module provides a special exception handler for Python scripts. (Its name is a bit misleading. It
was originally designed to display extensive traceback information in HTML for CGI scripts. It was later
generalized to also display this information in plain text.) After this module is activated, if an uncaught
exception occurs, a detailed, formatted report will be displayed. The report includes a traceback showing
excerpts of the source code for each level, as well as the values of the arguments and local variables to
currently running functions, to help you debug the problem. Optionally, you can save this information to a
file instead of sending it to the browser.

To enable this feature, simply add this to the top of your CGI script:

import cgitb
cgitb.enable()

The options to the enable() function control whether the report is displayed in the browser and whether the
report is logged to a file for later analysis.

cgitb.enable(display=1, logdir=None, context=5, format="html")
This function causes the cgitb module to take over the interpreter’s default handling for exceptions by
setting the value of sys.excepthook.

The optional argument display defaults to 1 and can be set to 0 to suppress sending the traceback to
the browser. If the argument logdir is present, the traceback reports are written to files. The value

1094 Chapter 21. Internet Protocols and Support

https://github.com/python/cpython/tree/3.5/Lib/cgitb.py

The Python Library Reference, Release 3.5.7

of logdir should be a directory where these files will be placed. The optional argument context is the
number of lines of context to display around the current line of source code in the traceback; this
defaults to 5. If the optional argument format is "html", the output is formatted as HTML. Any other
value forces plain text output. The default value is "html".

cgitb.handler(info=None)
This function handles an exception using the default settings (that is, show a report in the browser,
but don’t log to a file). This can be used when you’ve caught an exception and want to report it using
cgitb. The optional info argument should be a 3-tuple containing an exception type, exception value,
and traceback object, exactly like the tuple returned by sys.exc_info(). If the info argument is not
supplied, the current exception is obtained from sys.exc_info().

21.4 wsgiref — WSGI Utilities and Reference Implementation

The Web Server Gateway Interface (WSGI) is a standard interface between web server software and web
applications written in Python. Having a standard interface makes it easy to use an application that supports
WSGI with a number of different web servers.

Only authors of web servers and programming frameworks need to know every detail and corner case of the
WSGI design. You don’t need to understand every detail of WSGI just to install a WSGI application or to
write a web application using an existing framework.

wsgiref is a reference implementation of the WSGI specification that can be used to add WSGI support to
a web server or framework. It provides utilities for manipulating WSGI environment variables and response
headers, base classes for implementing WSGI servers, a demo HTTP server that serves WSGI applications,
and a validation tool that checks WSGI servers and applications for conformance to the WSGI specification
(PEP 3333).

See https://wsgi.readthedocs.org/ for more information about WSGI, and links to tutorials and other re-
sources.

21.4.1 wsgiref.util – WSGI environment utilities

This module provides a variety of utility functions for working with WSGI environments. A WSGI envi-
ronment is a dictionary containing HTTP request variables as described in PEP 3333. All of the functions
taking an environ parameter expect a WSGI-compliant dictionary to be supplied; please see PEP 3333 for
a detailed specification.

wsgiref.util.guess_scheme(environ)
Return a guess for whether wsgi.url_scheme should be “http” or “https”, by checking for a HTTPS
environment variable in the environ dictionary. The return value is a string.

This function is useful when creating a gateway that wraps CGI or a CGI-like protocol such as FastCGI.
Typically, servers providing such protocols will include a HTTPS variable with a value of “1” “yes”, or
“on” when a request is received via SSL. So, this function returns “https” if such a value is found, and
“http” otherwise.

wsgiref.util.request_uri(environ, include_query=True)
Return the full request URI, optionally including the query string, using the algorithm found in the
“URL Reconstruction” section of PEP 3333. If include_query is false, the query string is not included
in the resulting URI.

21.4. wsgiref — WSGI Utilities and Reference Implementation 1095

https://www.python.org/dev/peps/pep-3333
https://wsgi.readthedocs.org/
https://www.python.org/dev/peps/pep-3333
https://www.python.org/dev/peps/pep-3333
https://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.5.7

wsgiref.util.application_uri(environ)
Similar to request_uri(), except that the PATH_INFO and QUERY_STRING variables are ignored.
The result is the base URI of the application object addressed by the request.

wsgiref.util.shift_path_info(environ)
Shift a single name from PATH_INFO to SCRIPT_NAME and return the name. The environ dictio-
nary is modified in-place; use a copy if you need to keep the original PATH_INFO or SCRIPT_NAME
intact.

If there are no remaining path segments in PATH_INFO, None is returned.

Typically, this routine is used to process each portion of a request URI path, for example to treat the
path as a series of dictionary keys. This routine modifies the passed-in environment to make it suitable
for invoking another WSGI application that is located at the target URI. For example, if there is a
WSGI application at /foo, and the request URI path is /foo/bar/baz, and the WSGI application at
/foo calls shift_path_info(), it will receive the string “bar”, and the environment will be updated to be
suitable for passing to a WSGI application at /foo/bar. That is, SCRIPT_NAME will change from
/foo to /foo/bar, and PATH_INFO will change from /bar/baz to /baz.

When PATH_INFO is just a “/”, this routine returns an empty string and appends a trailing slash
to SCRIPT_NAME, even though empty path segments are normally ignored, and SCRIPT_NAME
doesn’t normally end in a slash. This is intentional behavior, to ensure that an application can tell the
difference between URIs ending in /x from ones ending in /x/ when using this routine to do object
traversal.

wsgiref.util.setup_testing_defaults(environ)
Update environ with trivial defaults for testing purposes.

This routine adds various parameters required for WSGI, including HTTP_HOST, SERVER_NAME,
SERVER_PORT, REQUEST_METHOD, SCRIPT_NAME, PATH_INFO, and all of the PEP 3333-
defined wsgi.* variables. It only supplies default values, and does not replace any existing settings for
these variables.

This routine is intended to make it easier for unit tests of WSGI servers and applications to set up
dummy environments. It should NOT be used by actual WSGI servers or applications, since the data
is fake!

Example usage:

from wsgiref.util import setup_testing_defaults
from wsgiref.simple_server import make_server

A relatively simple WSGI application. It's going to print out the
environment dictionary after being updated by setup_testing_defaults
def simple_app(environ, start_response):

setup_testing_defaults(environ)

status = '200 OK'
headers = [('Content-type', 'text/plain; charset=utf-8')]

start_response(status, headers)

ret = [("%s: %s\n" % (key, value)).encode("utf-8")
for key, value in environ.items()]

return ret

httpd = make_server('', 8000, simple_app)
print("Serving on port 8000...")
httpd.serve_forever()

1096 Chapter 21. Internet Protocols and Support

https://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.5.7

In addition to the environment functions above, the wsgiref.util module also provides these miscellaneous
utilities:

wsgiref.util.is_hop_by_hop(header_name)
Return true if ‘header_name’ is an HTTP/1.1 “Hop-by-Hop” header, as defined by RFC 2616.

class wsgiref.util.FileWrapper(filelike, blksize=8192)
A wrapper to convert a file-like object to an iterator. The resulting objects support both
__getitem__() and __iter__() iteration styles, for compatibility with Python 2.1 and Jython. As
the object is iterated over, the optional blksize parameter will be repeatedly passed to the filelike ob-
ject’s read() method to obtain bytestrings to yield. When read() returns an empty bytestring, iteration
is ended and is not resumable.

If filelike has a close() method, the returned object will also have a close() method, and it will invoke
the filelike object’s close() method when called.

Example usage:

from io import StringIO
from wsgiref.util import FileWrapper

We're using a StringIO-buffer for as the file-like object
filelike = StringIO("This is an example file-like object"*10)
wrapper = FileWrapper(filelike, blksize=5)

for chunk in wrapper:
print(chunk)

21.4.2 wsgiref.headers – WSGI response header tools

This module provides a single class, Headers, for convenient manipulation of WSGI response headers using
a mapping-like interface.

class wsgiref.headers.Headers([headers])
Create a mapping-like object wrapping headers, which must be a list of header name/value tuples as
described in PEP 3333. The default value of headers is an empty list.

Headers objects support typical mapping operations including __getitem__(), get(), __setitem__(),
setdefault(), __delitem__() and __contains__(). For each of these methods, the key is the header
name (treated case-insensitively), and the value is the first value associated with that header name.
Setting a header deletes any existing values for that header, then adds a new value at the end of the
wrapped header list. Headers’ existing order is generally maintained, with new headers added to the
end of the wrapped list.

Unlike a dictionary, Headers objects do not raise an error when you try to get or delete a key that isn’t
in the wrapped header list. Getting a nonexistent header just returns None, and deleting a nonexistent
header does nothing.

Headers objects also support keys(), values(), and items() methods. The lists returned by keys() and
items() can include the same key more than once if there is a multi-valued header. The len() of a
Headers object is the same as the length of its items(), which is the same as the length of the wrapped
header list. In fact, the items() method just returns a copy of the wrapped header list.

Calling bytes() on a Headers object returns a formatted bytestring suitable for transmission as HTTP
response headers. Each header is placed on a line with its value, separated by a colon and a space.
Each line is terminated by a carriage return and line feed, and the bytestring is terminated with a
blank line.

21.4. wsgiref — WSGI Utilities and Reference Implementation 1097

https://tools.ietf.org/html/rfc2616.html
https://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.5.7

In addition to their mapping interface and formatting features, Headers objects also have the following
methods for querying and adding multi-valued headers, and for adding headers with MIME parameters:

get_all(name)
Return a list of all the values for the named header.

The returned list will be sorted in the order they appeared in the original header list or were
added to this instance, and may contain duplicates. Any fields deleted and re-inserted are always
appended to the header list. If no fields exist with the given name, returns an empty list.

add_header(name, value, **_params)
Add a (possibly multi-valued) header, with optional MIME parameters specified via keyword
arguments.

name is the header field to add. Keyword arguments can be used to set MIME parameters for
the header field. Each parameter must be a string or None. Underscores in parameter names are
converted to dashes, since dashes are illegal in Python identifiers, but many MIME parameter
names include dashes. If the parameter value is a string, it is added to the header value parameters
in the form name="value". If it is None, only the parameter name is added. (This is used for
MIME parameters without a value.) Example usage:

h.add_header('content-disposition', 'attachment', filename='bud.gif')

The above will add a header that looks like this:

Content-Disposition: attachment; filename="bud.gif"

Changed in version 3.5: headers parameter is optional.

21.4.3 wsgiref.simple_server – a simple WSGI HTTP server

This module implements a simple HTTP server (based on http.server) that serves WSGI applications. Each
server instance serves a single WSGI application on a given host and port. If you want to serve multiple
applications on a single host and port, you should create a WSGI application that parses PATH_INFO
to select which application to invoke for each request. (E.g., using the shift_path_info() function from
wsgiref.util.)

wsgiref.simple_server.make_server(host, port, app, server_class=WSGIServer, han-
dler_class=WSGIRequestHandler)

Create a new WSGI server listening on host and port, accepting connections for app. The return value
is an instance of the supplied server_class, and will process requests using the specified handler_class.
app must be a WSGI application object, as defined by PEP 3333.

Example usage:

from wsgiref.simple_server import make_server, demo_app

httpd = make_server('', 8000, demo_app)
print("Serving HTTP on port 8000...")

Respond to requests until process is killed
httpd.serve_forever()

Alternative: serve one request, then exit
httpd.handle_request()

1098 Chapter 21. Internet Protocols and Support

https://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.5.7

wsgiref.simple_server.demo_app(environ, start_response)
This function is a small but complete WSGI application that returns a text page containing the message
“Hello world!” and a list of the key/value pairs provided in the environ parameter. It’s useful for
verifying that a WSGI server (such as wsgiref.simple_server) is able to run a simple WSGI application
correctly.

class wsgiref.simple_server.WSGIServer(server_address, RequestHandlerClass)
Create a WSGIServer instance. server_address should be a (host,port) tuple, and RequestHandlerClass
should be the subclass of http.server.BaseHTTPRequestHandler that will be used to process requests.

You do not normally need to call this constructor, as the make_server() function can handle all the
details for you.

WSGIServer is a subclass of http.server.HTTPServer, so all of its methods (such as serve_forever()
and handle_request()) are available. WSGIServer also provides these WSGI-specific methods:

set_app(application)
Sets the callable application as the WSGI application that will receive requests.

get_app()
Returns the currently-set application callable.

Normally, however, you do not need to use these additional methods, as set_app() is normally called
by make_server(), and the get_app() exists mainly for the benefit of request handler instances.

class wsgiref.simple_server.WSGIRequestHandler(request, client_address, server)
Create an HTTP handler for the given request (i.e. a socket), client_address (a (host,port) tuple),
and server (WSGIServer instance).

You do not need to create instances of this class directly; they are automatically created as needed by
WSGIServer objects. You can, however, subclass this class and supply it as a handler_class to the
make_server() function. Some possibly relevant methods for overriding in subclasses:

get_environ()
Returns a dictionary containing the WSGI environment for a request. The default implementation
copies the contents of the WSGIServer object’s base_environ dictionary attribute and then adds
various headers derived from the HTTP request. Each call to this method should return a new
dictionary containing all of the relevant CGI environment variables as specified in PEP 3333.

get_stderr()
Return the object that should be used as the wsgi.errors stream. The default implementation just
returns sys.stderr.

handle()
Process the HTTP request. The default implementation creates a handler instance using a wsgiref.
handlers class to implement the actual WSGI application interface.

21.4.4 wsgiref.validate — WSGI conformance checker

When creating new WSGI application objects, frameworks, servers, or middleware, it can be useful to
validate the new code’s conformance using wsgiref.validate. This module provides a function that creates
WSGI application objects that validate communications between a WSGI server or gateway and a WSGI
application object, to check both sides for protocol conformance.

Note that this utility does not guarantee complete PEP 3333 compliance; an absence of errors from this
module does not necessarily mean that errors do not exist. However, if this module does produce an error,
then it is virtually certain that either the server or application is not 100% compliant.

This module is based on the paste.lint module from Ian Bicking’s “Python Paste” library.

21.4. wsgiref — WSGI Utilities and Reference Implementation 1099

https://www.python.org/dev/peps/pep-3333
https://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.5.7

wsgiref.validate.validator(application)
Wrap application and return a new WSGI application object. The returned application will forward
all requests to the original application, and will check that both the application and the server invoking
it are conforming to the WSGI specification and to RFC 2616.

Any detected nonconformance results in an AssertionError being raised; note, however, that how these
errors are handled is server-dependent. For example, wsgiref.simple_server and other servers based
on wsgiref.handlers (that don’t override the error handling methods to do something else) will simply
output a message that an error has occurred, and dump the traceback to sys.stderr or some other error
stream.

This wrapper may also generate output using the warnings module to indicate behaviors that are
questionable but which may not actually be prohibited by PEP 3333. Unless they are suppressed using
Python command-line options or the warnings API, any such warnings will be written to sys.stderr
(not wsgi.errors, unless they happen to be the same object).

Example usage:

from wsgiref.validate import validator
from wsgiref.simple_server import make_server

Our callable object which is intentionally not compliant to the
standard, so the validator is going to break
def simple_app(environ, start_response):

status = '200 OK' # HTTP Status
headers = [('Content-type', 'text/plain')] # HTTP Headers
start_response(status, headers)

This is going to break because we need to return a list, and
the validator is going to inform us
return b"Hello World"

This is the application wrapped in a validator
validator_app = validator(simple_app)

httpd = make_server('', 8000, validator_app)
print("Listening on port 8000....")
httpd.serve_forever()

21.4.5 wsgiref.handlers – server/gateway base classes

This module provides base handler classes for implementing WSGI servers and gateways. These base classes
handle most of the work of communicating with a WSGI application, as long as they are given a CGI-like
environment, along with input, output, and error streams.

class wsgiref.handlers.CGIHandler
CGI-based invocation via sys.stdin, sys.stdout, sys.stderr and os.environ. This is useful when you have
a WSGI application and want to run it as a CGI script. Simply invoke CGIHandler().run(app), where
app is the WSGI application object you wish to invoke.

This class is a subclass of BaseCGIHandler that sets wsgi.run_once to true, wsgi.multithread to false,
and wsgi.multiprocess to true, and always uses sys and os to obtain the necessary CGI streams and
environment.

class wsgiref.handlers.IISCGIHandler
A specialized alternative to CGIHandler, for use when deploying on Microsoft’s IIS web server, without
having set the config allowPathInfo option (IIS>=7) or metabase allowPathInfoForScriptMappings
(IIS<7).

1100 Chapter 21. Internet Protocols and Support

https://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.5.7

By default, IIS gives a PATH_INFO that duplicates the SCRIPT_NAME at the front, causing prob-
lems for WSGI applications that wish to implement routing. This handler strips any such duplicated
path.

IIS can be configured to pass the correct PATH_INFO, but this causes another bug where
PATH_TRANSLATED is wrong. Luckily this variable is rarely used and is not guaranteed by WSGI.
On IIS<7, though, the setting can only be made on a vhost level, affecting all other script mappings,
many of which break when exposed to the PATH_TRANSLATED bug. For this reason IIS<7 is almost
never deployed with the fix. (Even IIS7 rarely uses it because there is still no UI for it.)

There is no way for CGI code to tell whether the option was set, so a separate handler class is provided.
It is used in the same way as CGIHandler, i.e., by calling IISCGIHandler().run(app), where app is the
WSGI application object you wish to invoke.

New in version 3.2.

class wsgiref.handlers.BaseCGIHandler(stdin, stdout, stderr, environ, multithread=True, multipro-
cess=False)

Similar to CGIHandler, but instead of using the sys and os modules, the CGI environment and I/O
streams are specified explicitly. The multithread and multiprocess values are used to set the wsgi.
multithread and wsgi.multiprocess flags for any applications run by the handler instance.

This class is a subclass of SimpleHandler intended for use with software other than HTTP “origin
servers”. If you are writing a gateway protocol implementation (such as CGI, FastCGI, SCGI, etc.)
that uses a Status: header to send an HTTP status, you probably want to subclass this instead of
SimpleHandler.

class wsgiref.handlers.SimpleHandler(stdin, stdout, stderr, environ, multithread=True, multipro-
cess=False)

Similar to BaseCGIHandler, but designed for use with HTTP origin servers. If you are writing an
HTTP server implementation, you will probably want to subclass this instead of BaseCGIHandler.

This class is a subclass of BaseHandler. It overrides the __init__(), get_stdin(), get_stderr(),
add_cgi_vars(), _write(), and _flush() methods to support explicitly setting the environment and
streams via the constructor. The supplied environment and streams are stored in the stdin, stdout,
stderr, and environ attributes.

The write() method of stdout should write each chunk in full, like io.BufferedIOBase.

class wsgiref.handlers.BaseHandler
This is an abstract base class for running WSGI applications. Each instance will handle a single HTTP
request, although in principle you could create a subclass that was reusable for multiple requests.

BaseHandler instances have only one method intended for external use:

run(app)
Run the specified WSGI application, app.

All of the other BaseHandler methods are invoked by this method in the process of running the
application, and thus exist primarily to allow customizing the process.

The following methods MUST be overridden in a subclass:

_write(data)
Buffer the bytes data for transmission to the client. It’s okay if this method actually transmits
the data; BaseHandler just separates write and flush operations for greater efficiency when the
underlying system actually has such a distinction.

_flush()
Force buffered data to be transmitted to the client. It’s okay if this method is a no-op (i.e., if
_write() actually sends the data).

21.4. wsgiref — WSGI Utilities and Reference Implementation 1101

The Python Library Reference, Release 3.5.7

get_stdin()
Return an input stream object suitable for use as the wsgi.input of the request currently being
processed.

get_stderr()
Return an output stream object suitable for use as the wsgi.errors of the request currently being
processed.

add_cgi_vars()
Insert CGI variables for the current request into the environ attribute.

Here are some other methods and attributes you may wish to override. This list is only a summary,
however, and does not include every method that can be overridden. You should consult the docstrings
and source code for additional information before attempting to create a customized BaseHandler
subclass.

Attributes and methods for customizing the WSGI environment:

wsgi_multithread
The value to be used for the wsgi.multithread environment variable. It defaults to true in Base-
Handler, but may have a different default (or be set by the constructor) in the other subclasses.

wsgi_multiprocess
The value to be used for the wsgi.multiprocess environment variable. It defaults to true in Base-
Handler, but may have a different default (or be set by the constructor) in the other subclasses.

wsgi_run_once
The value to be used for the wsgi.run_once environment variable. It defaults to false in Base-
Handler, but CGIHandler sets it to true by default.

os_environ
The default environment variables to be included in every request’s WSGI environment. By
default, this is a copy of os.environ at the time that wsgiref.handlers was imported, but subclasses
can either create their own at the class or instance level. Note that the dictionary should be
considered read-only, since the default value is shared between multiple classes and instances.

server_software
If the origin_server attribute is set, this attribute’s value is used to set the default
SERVER_SOFTWARE WSGI environment variable, and also to set a default Server: header
in HTTP responses. It is ignored for handlers (such as BaseCGIHandler and CGIHandler) that
are not HTTP origin servers.

Changed in version 3.3: The term “Python” is replaced with implementation specific term like
“CPython”, “Jython” etc.

get_scheme()
Return the URL scheme being used for the current request. The default implementation uses
the guess_scheme() function from wsgiref.util to guess whether the scheme should be “http” or
“https”, based on the current request’s environ variables.

setup_environ()
Set the environ attribute to a fully-populated WSGI environment. The default implemen-
tation uses all of the above methods and attributes, plus the get_stdin(), get_stderr(),
and add_cgi_vars() methods and the wsgi_file_wrapper attribute. It also inserts a
SERVER_SOFTWARE key if not present, as long as the origin_server attribute is a true value
and the server_software attribute is set.

Methods and attributes for customizing exception handling:

log_exception(exc_info)
Log the exc_info tuple in the server log. exc_info is a (type, value, traceback) tuple. The

1102 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

default implementation simply writes the traceback to the request’s wsgi.errors stream and flushes
it. Subclasses can override this method to change the format or retarget the output, mail the
traceback to an administrator, or whatever other action may be deemed suitable.

traceback_limit
The maximum number of frames to include in tracebacks output by the default log_exception()
method. If None, all frames are included.

error_output(environ, start_response)
This method is a WSGI application to generate an error page for the user. It is only invoked if
an error occurs before headers are sent to the client.

This method can access the current error information using sys.exc_info(), and should pass that
information to start_response when calling it (as described in the “Error Handling” section of
PEP 3333).

The default implementation just uses the error_status, error_headers, and error_body attributes
to generate an output page. Subclasses can override this to produce more dynamic error output.

Note, however, that it’s not recommended from a security perspective to spit out diagnostics to
any old user; ideally, you should have to do something special to enable diagnostic output, which
is why the default implementation doesn’t include any.

error_status
The HTTP status used for error responses. This should be a status string as defined in PEP 3333;
it defaults to a 500 code and message.

error_headers
The HTTP headers used for error responses. This should be a list of WSGI response headers
((name, value) tuples), as described in PEP 3333. The default list just sets the content type to
text/plain.

error_body
The error response body. This should be an HTTP response body bytestring. It defaults to the
plain text, “A server error occurred. Please contact the administrator.”

Methods and attributes for PEP 3333’s “Optional Platform-Specific File Handling” feature:

wsgi_file_wrapper
A wsgi.file_wrapper factory, or None. The default value of this attribute is the wsgiref.util.
FileWrapper class.

sendfile()
Override to implement platform-specific file transmission. This method is called only if the ap-
plication’s return value is an instance of the class specified by the wsgi_file_wrapper attribute.
It should return a true value if it was able to successfully transmit the file, so that the default
transmission code will not be executed. The default implementation of this method just returns
a false value.

Miscellaneous methods and attributes:

origin_server
This attribute should be set to a true value if the handler’s _write() and _flush() are being used
to communicate directly to the client, rather than via a CGI-like gateway protocol that wants the
HTTP status in a special Status: header.

This attribute’s default value is true in BaseHandler, but false in BaseCGIHandler and CGIHan-
dler.

http_version
If origin_server is true, this string attribute is used to set the HTTP version of the response set

21.4. wsgiref — WSGI Utilities and Reference Implementation 1103

https://www.python.org/dev/peps/pep-3333
https://www.python.org/dev/peps/pep-3333
https://www.python.org/dev/peps/pep-3333
https://www.python.org/dev/peps/pep-3333

The Python Library Reference, Release 3.5.7

to the client. It defaults to "1.0".

wsgiref.handlers.read_environ()
Transcode CGI variables from os.environ to PEP 3333 “bytes in unicode” strings, returning a new
dictionary. This function is used by CGIHandler and IISCGIHandler in place of directly using os.
environ, which is not necessarily WSGI-compliant on all platforms and web servers using Python 3
– specifically, ones where the OS’s actual environment is Unicode (i.e. Windows), or ones where the
environment is bytes, but the system encoding used by Python to decode it is anything other than
ISO-8859-1 (e.g. Unix systems using UTF-8).

If you are implementing a CGI-based handler of your own, you probably want to use this routine
instead of just copying values out of os.environ directly.

New in version 3.2.

21.4.6 Examples

This is a working “Hello World” WSGI application:

from wsgiref.simple_server import make_server

Every WSGI application must have an application object - a callable
object that accepts two arguments. For that purpose, we're going to
use a function (note that you're not limited to a function, you can
use a class for example). The first argument passed to the function
is a dictionary containing CGI-style environment variables and the
second variable is the callable object (see PEP 333).
def hello_world_app(environ, start_response):

status = '200 OK' # HTTP Status
headers = [('Content-type', 'text/plain; charset=utf-8')] # HTTP Headers
start_response(status, headers)

The returned object is going to be printed
return [b"Hello World"]

httpd = make_server('', 8000, hello_world_app)
print("Serving on port 8000...")

Serve until process is killed
httpd.serve_forever()

21.5 urllib — URL handling modules

Source code: Lib/urllib/

urllib is a package that collects several modules for working with URLs:

• urllib.request for opening and reading URLs

• urllib.error containing the exceptions raised by urllib.request

• urllib.parse for parsing URLs

• urllib.robotparser for parsing robots.txt files

1104 Chapter 21. Internet Protocols and Support

https://github.com/python/cpython/tree/3.5/Lib/urllib/

The Python Library Reference, Release 3.5.7

21.6 urllib.request — Extensible library for opening URLs

Source code: Lib/urllib/request.py

The urllib.request module defines functions and classes which help in opening URLs (mostly HTTP) in a
complex world — basic and digest authentication, redirections, cookies and more.

See also:

The Requests package is recommended for a higher-level HTTP client interface.

The urllib.request module defines the following functions:

urllib.request.urlopen(url, data=None[, timeout], *, cafile=None, capath=None, cadefault=False, con-
text=None)

Open the URL url, which can be either a string or a Request object.

data must be a bytes object specifying additional data to be sent to the server, or None if no such
data is needed. data may also be an iterable object and in that case Content-Length value must be
specified in the headers. Currently HTTP requests are the only ones that use data; the HTTP request
will be a POST instead of a GET when the data parameter is provided.

data should be a buffer in the standard application/x-www-form-urlencoded format. The urllib.parse.
urlencode() function takes a mapping or sequence of 2-tuples and returns an ASCII text string in this
format. It should be encoded to bytes before being used as the data parameter.

urllib.request module uses HTTP/1.1 and includes Connection:close header in its HTTP requests.

The optional timeout parameter specifies a timeout in seconds for blocking operations like the con-
nection attempt (if not specified, the global default timeout setting will be used). This actually only
works for HTTP, HTTPS and FTP connections.

If context is specified, it must be a ssl.SSLContext instance describing the various SSL options. See
HTTPSConnection for more details.

The optional cafile and capath parameters specify a set of trusted CA certificates for HTTPS re-
quests. cafile should point to a single file containing a bundle of CA certificates, whereas capath should
point to a directory of hashed certificate files. More information can be found in ssl.SSLContext.
load_verify_locations().

The cadefault parameter is ignored.

This function always returns an object which can work as a context manager and has methods such as

• geturl() — return the URL of the resource retrieved, commonly used to determine if a redirect
was followed

• info() — return the meta-information of the page, such as headers, in the form of an email.
message_from_string() instance (see Quick Reference to HTTP Headers)

• getcode() – return the HTTP status code of the response.

For HTTP and HTTPS URLs, this function returns a http.client.HTTPResponse object slightly mod-
ified. In addition to the three new methods above, the msg attribute contains the same information as
the reason attribute — the reason phrase returned by server — instead of the response headers as it is
specified in the documentation for HTTPResponse.

For FTP, file, and data URLs and requests explicitly handled by legacy URLopener and FancyUR-
Lopener classes, this function returns a urllib.response.addinfourl object.

Raises URLError on protocol errors.

21.6. urllib.request — Extensible library for opening URLs 1105

https://github.com/python/cpython/tree/3.5/Lib/urllib/request.py
http://docs.python-requests.org/
https://www.cs.tut.fi/~jkorpela/http.html

The Python Library Reference, Release 3.5.7

Note that None may be returned if no handler handles the request (though the default installed global
OpenerDirector uses UnknownHandler to ensure this never happens).

In addition, if proxy settings are detected (for example, when a *_proxy environment variable like
http_proxy is set), ProxyHandler is default installed and makes sure the requests are handled through
the proxy.

The legacy urllib.urlopen function from Python 2.6 and earlier has been discontinued; urllib.request.
urlopen() corresponds to the old urllib2.urlopen. Proxy handling, which was done by passing a dictio-
nary parameter to urllib.urlopen, can be obtained by using ProxyHandler objects.

Changed in version 3.2: cafile and capath were added.

Changed in version 3.2: HTTPS virtual hosts are now supported if possible (that is, if ssl.HAS_SNI
is true).

New in version 3.2: data can be an iterable object.

Changed in version 3.3: cadefault was added.

Changed in version 3.4.3: context was added.

urllib.request.install_opener(opener)
Install an OpenerDirector instance as the default global opener. Installing an opener is only necessary if
you want urlopen to use that opener; otherwise, simply call OpenerDirector.open() instead of urlopen().
The code does not check for a real OpenerDirector, and any class with the appropriate interface will
work.

urllib.request.build_opener([handler, ...])
Return an OpenerDirector instance, which chains the handlers in the order given. handlers can be
either instances of BaseHandler, or subclasses of BaseHandler (in which case it must be possible to
call the constructor without any parameters). Instances of the following classes will be in front of
the handlers, unless the handlers contain them, instances of them or subclasses of them: ProxyHan-
dler (if proxy settings are detected), UnknownHandler, HTTPHandler, HTTPDefaultErrorHandler,
HTTPRedirectHandler, FTPHandler, FileHandler, HTTPErrorProcessor.

If the Python installation has SSL support (i.e., if the ssl module can be imported), HTTPSHandler
will also be added.

A BaseHandler subclass may also change its handler_order attribute to modify its position in the
handlers list.

urllib.request.pathname2url(path)
Convert the pathname path from the local syntax for a path to the form used in the path component
of a URL. This does not produce a complete URL. The return value will already be quoted using the
quote() function.

urllib.request.url2pathname(path)
Convert the path component path from a percent-encoded URL to the local syntax for a path. This
does not accept a complete URL. This function uses unquote() to decode path.

urllib.request.getproxies()
This helper function returns a dictionary of scheme to proxy server URL mappings. It scans the
environment for variables named <scheme>_proxy, in a case insensitive approach, for all operating
systems first, and when it cannot find it, looks for proxy information from Mac OSX System Config-
uration for Mac OS X and Windows Systems Registry for Windows. If both lowercase and uppercase
environment variables exist (and disagree), lowercase is preferred.

Note: If the environment variable REQUEST_METHOD is set, which usually indicates your script is
running in a CGI environment, the environment variable HTTP_PROXY (uppercase _PROXY) will

1106 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

be ignored. This is because that variable can be injected by a client using the “Proxy:” HTTP header.
If you need to use an HTTP proxy in a CGI environment, either use ProxyHandler explicitly, or make
sure the variable name is in lowercase (or at least the _proxy suffix).

The following classes are provided:

class urllib.request.Request(url, data=None, headers={}, origin_req_host=None, unverifiable=False,
method=None)

This class is an abstraction of a URL request.

url should be a string containing a valid URL.

data must be a bytes object specifying additional data to send to the server, or None if no such data
is needed. Currently HTTP requests are the only ones that use data; the HTTP request will be a
POST instead of a GET when the data parameter is provided. data should be a buffer in the standard
application/x-www-form-urlencoded format. The urllib.parse.urlencode() function takes a mapping or
sequence of 2-tuples and returns an ASCII string in this format. It should be encoded to bytes before
being used as the data parameter.

headers should be a dictionary, and will be treated as if add_header() was called with each key and
value as arguments. This is often used to “spoof” the User-Agent header value, which is used by a
browser to identify itself – some HTTP servers only allow requests coming from common browsers as
opposed to scripts. For example, Mozilla Firefox may identify itself as "Mozilla/5.0 (X11; U; Linux
i686) Gecko/20071127 Firefox/2.0.0.11", while urllib’s default user agent string is "Python-urllib/2.6"
(on Python 2.6).

An example of using Content-Type header with data argument would be sending a dictionary like
{"Content-Type": "application/x-www-form-urlencoded"}.

The final two arguments are only of interest for correct handling of third-party HTTP cookies:

origin_req_host should be the request-host of the origin transaction, as defined by RFC 2965. It
defaults to http.cookiejar.request_host(self). This is the host name or IP address of the original
request that was initiated by the user. For example, if the request is for an image in an HTML
document, this should be the request-host of the request for the page containing the image.

unverifiable should indicate whether the request is unverifiable, as defined by RFC 2965. It defaults
to False. An unverifiable request is one whose URL the user did not have the option to approve. For
example, if the request is for an image in an HTML document, and the user had no option to approve
the automatic fetching of the image, this should be true.

method should be a string that indicates the HTTP request method that will be used (e.g. 'HEAD').
If provided, its value is stored in the method attribute and is used by get_method(). Subclasses may
indicate a default method by setting the method attribute in the class itself.

Changed in version 3.3: Request.method argument is added to the Request class.

Changed in version 3.4: Default Request.method may be indicated at the class level.

class urllib.request.OpenerDirector
The OpenerDirector class opens URLs via BaseHandlers chained together. It manages the chaining of
handlers, and recovery from errors.

class urllib.request.BaseHandler
This is the base class for all registered handlers — and handles only the simple mechanics of registration.

class urllib.request.HTTPDefaultErrorHandler
A class which defines a default handler for HTTP error responses; all responses are turned into
HTTPError exceptions.

21.6. urllib.request — Extensible library for opening URLs 1107

https://tools.ietf.org/html/rfc2965.html

The Python Library Reference, Release 3.5.7

class urllib.request.HTTPRedirectHandler
A class to handle redirections.

class urllib.request.HTTPCookieProcessor(cookiejar=None)
A class to handle HTTP Cookies.

class urllib.request.ProxyHandler(proxies=None)
Cause requests to go through a proxy. If proxies is given, it must be a dictionary mapping protocol
names to URLs of proxies. The default is to read the list of proxies from the environment variables
<protocol>_proxy. If no proxy environment variables are set, then in a Windows environment proxy
settings are obtained from the registry’s Internet Settings section, and in a Mac OS X environment
proxy information is retrieved from the OS X System Configuration Framework.

To disable autodetected proxy pass an empty dictionary.

The no_proxy environment variable can be used to specify hosts which shouldn’t be reached via proxy;
if set, it should be a comma-separated list of hostname suffixes, optionally with :port appended, for
example cern.ch,ncsa.uiuc.edu,some.host:8080.

Note: HTTP_PROXY will be ignored if a variable REQUEST_METHOD is set; see the
documentation on getproxies().

class urllib.request.HTTPPasswordMgr
Keep a database of (realm, uri) -> (user, password) mappings.

class urllib.request.HTTPPasswordMgrWithDefaultRealm
Keep a database of (realm, uri) -> (user, password) mappings. A realm of None is considered a
catch-all realm, which is searched if no other realm fits.

class urllib.request.HTTPPasswordMgrWithPriorAuth
A variant of HTTPPasswordMgrWithDefaultRealm that also has a database of uri -> is_authenticated
mappings. Can be used by a BasicAuth handler to determine when to send authentication credentials
immediately instead of waiting for a 401 response first.

New in version 3.5.

class urllib.request.AbstractBasicAuthHandler(password_mgr=None)
This is a mixin class that helps with HTTP authentication, both to the remote host and to a proxy.
password_mgr, if given, should be something that is compatible with HTTPPasswordMgr; refer to
section HTTPPasswordMgr Objects for information on the interface that must be supported. If
passwd_mgr also provides is_authenticated and update_authenticated methods (see HTTPPassword-
MgrWithPriorAuth Objects), then the handler will use the is_authenticated result for a given URI
to determine whether or not to send authentication credentials with the request. If is_authenticated
returns True for the URI, credentials are sent. If is_authenticated is False, credentials are not sent,
and then if a 401 response is received the request is re-sent with the authentication credentials. If au-
thentication succeeds, update_authenticated is called to set is_authenticated True for the URI, so that
subsequent requests to the URI or any of its super-URIs will automatically include the authentication
credentials.

New in version 3.5: Added is_authenticated support.

class urllib.request.HTTPBasicAuthHandler(password_mgr=None)
Handle authentication with the remote host. password_mgr, if given, should be something that is
compatible with HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on
the interface that must be supported. HTTPBasicAuthHandler will raise a ValueError when presented
with a wrong Authentication scheme.

1108 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

class urllib.request.ProxyBasicAuthHandler(password_mgr=None)
Handle authentication with the proxy. password_mgr, if given, should be something that is compatible
with HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface
that must be supported.

class urllib.request.AbstractDigestAuthHandler(password_mgr=None)
This is a mixin class that helps with HTTP authentication, both to the remote host and to a proxy.
password_mgr, if given, should be something that is compatible with HTTPPasswordMgr; refer to
section HTTPPasswordMgr Objects for information on the interface that must be supported.

class urllib.request.HTTPDigestAuthHandler(password_mgr=None)
Handle authentication with the remote host. password_mgr, if given, should be something that is com-
patible with HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the
interface that must be supported. When both Digest Authentication Handler and Basic Authentication
Handler are both added, Digest Authentication is always tried first. If the Digest Authentication re-
turns a 40x response again, it is sent to Basic Authentication handler to Handle. This Handler method
will raise a ValueError when presented with an authentication scheme other than Digest or Basic.

Changed in version 3.3: Raise ValueError on unsupported Authentication Scheme.

class urllib.request.ProxyDigestAuthHandler(password_mgr=None)
Handle authentication with the proxy. password_mgr, if given, should be something that is compatible
with HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface
that must be supported.

class urllib.request.HTTPHandler
A class to handle opening of HTTP URLs.

class urllib.request.HTTPSHandler(debuglevel=0, context=None, check_hostname=None)
A class to handle opening of HTTPS URLs. context and check_hostname have the same meaning as
in http.client.HTTPSConnection.

Changed in version 3.2: context and check_hostname were added.

class urllib.request.FileHandler
Open local files.

class urllib.request.DataHandler
Open data URLs.

New in version 3.4.

class urllib.request.FTPHandler
Open FTP URLs.

class urllib.request.CacheFTPHandler
Open FTP URLs, keeping a cache of open FTP connections to minimize delays.

class urllib.request.UnknownHandler
A catch-all class to handle unknown URLs.

class urllib.request.HTTPErrorProcessor
Process HTTP error responses.

21.6.1 Request Objects

The following methods describe Request’s public interface, and so all may be overridden in subclasses. It
also defines several public attributes that can be used by clients to inspect the parsed request.

Request.full_url
The original URL passed to the constructor.

21.6. urllib.request — Extensible library for opening URLs 1109

The Python Library Reference, Release 3.5.7

Changed in version 3.4.

Request.full_url is a property with setter, getter and a deleter. Getting full_url returns the original
request URL with the fragment, if it was present.

Request.type
The URI scheme.

Request.host
The URI authority, typically a host, but may also contain a port separated by a colon.

Request.origin_req_host
The original host for the request, without port.

Request.selector
The URI path. If the Request uses a proxy, then selector will be the full URL that is passed to the
proxy.

Request.data
The entity body for the request, or None if not specified.

Changed in version 3.4: Changing value of Request.data now deletes “Content-Length” header if it was
previously set or calculated.

Request.unverifiable
boolean, indicates whether the request is unverifiable as defined by RFC 2965.

Request.method
The HTTP request method to use. By default its value is None, which means that get_method() will
do its normal computation of the method to be used. Its value can be set (thus overriding the default
computation in get_method()) either by providing a default value by setting it at the class level in a
Request subclass, or by passing a value in to the Request constructor via the method argument.

New in version 3.3.

Changed in version 3.4: A default value can now be set in subclasses; previously it could only be set
via the constructor argument.

Request.get_method()
Return a string indicating the HTTP request method. If Request.method is not None, return its value,
otherwise return 'GET' if Request.data is None, or 'POST' if it’s not. This is only meaningful for
HTTP requests.

Changed in version 3.3: get_method now looks at the value of Request.method.

Request.add_header(key, val)
Add another header to the request. Headers are currently ignored by all handlers except HTTP
handlers, where they are added to the list of headers sent to the server. Note that there cannot be
more than one header with the same name, and later calls will overwrite previous calls in case the key
collides. Currently, this is no loss of HTTP functionality, since all headers which have meaning when
used more than once have a (header-specific) way of gaining the same functionality using only one
header.

Request.add_unredirected_header(key, header)
Add a header that will not be added to a redirected request.

Request.has_header(header)
Return whether the instance has the named header (checks both regular and unredirected).

Request.remove_header(header)
Remove named header from the request instance (both from regular and unredirected headers).

New in version 3.4.

1110 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

Request.get_full_url()
Return the URL given in the constructor.

Changed in version 3.4.

Returns Request.full_url

Request.set_proxy(host, type)
Prepare the request by connecting to a proxy server. The host and type will replace those of the
instance, and the instance’s selector will be the original URL given in the constructor.

Request.get_header(header_name, default=None)
Return the value of the given header. If the header is not present, return the default value.

Request.header_items()
Return a list of tuples (header_name, header_value) of the Request headers.

Changed in version 3.4: The request methods add_data, has_data, get_data, get_type, get_host,
get_selector, get_origin_req_host and is_unverifiable that were deprecated since 3.3 have been removed.

21.6.2 OpenerDirector Objects

OpenerDirector instances have the following methods:

OpenerDirector.add_handler(handler)
handler should be an instance of BaseHandler. The following methods are searched, and added to the
possible chains (note that HTTP errors are a special case).

• protocol_open() — signal that the handler knows how to open protocol URLs.

• http_error_type() — signal that the handler knows how to handle HTTP errors with HTTP error
code type.

• protocol_error() — signal that the handler knows how to handle errors from (non-http) protocol.

• protocol_request() — signal that the handler knows how to pre-process protocol requests.

• protocol_response() — signal that the handler knows how to post-process protocol responses.

OpenerDirector.open(url, data=None[, timeout])
Open the given url (which can be a request object or a string), optionally passing the given data.
Arguments, return values and exceptions raised are the same as those of urlopen() (which simply calls
the open() method on the currently installed global OpenerDirector). The optional timeout parameter
specifies a timeout in seconds for blocking operations like the connection attempt (if not specified,
the global default timeout setting will be used). The timeout feature actually works only for HTTP,
HTTPS and FTP connections).

OpenerDirector.error(proto, *args)
Handle an error of the given protocol. This will call the registered error handlers for the given protocol
with the given arguments (which are protocol specific). The HTTP protocol is a special case which
uses the HTTP response code to determine the specific error handler; refer to the http_error_*()
methods of the handler classes.

Return values and exceptions raised are the same as those of urlopen().

OpenerDirector objects open URLs in three stages:

The order in which these methods are called within each stage is determined by sorting the handler instances.

1. Every handler with a method named like protocol_request() has that method called to pre-process the
request.

21.6. urllib.request — Extensible library for opening URLs 1111

The Python Library Reference, Release 3.5.7

2. Handlers with a method named like protocol_open() are called to handle the request. This stage
ends when a handler either returns a non-None value (ie. a response), or raises an exception (usually
URLError). Exceptions are allowed to propagate.

In fact, the above algorithm is first tried for methods named default_open(). If all such methods
return None, the algorithm is repeated for methods named like protocol_open(). If all such methods
return None, the algorithm is repeated for methods named unknown_open().

Note that the implementation of these methods may involve calls of the parent OpenerDirector in-
stance’s open() and error() methods.

3. Every handler with a method named like protocol_response() has that method called to post-process
the response.

21.6.3 BaseHandler Objects

BaseHandler objects provide a couple of methods that are directly useful, and others that are meant to be
used by derived classes. These are intended for direct use:

BaseHandler.add_parent(director)
Add a director as parent.

BaseHandler.close()
Remove any parents.

The following attribute and methods should only be used by classes derived from BaseHandler.

Note: The convention has been adopted that subclasses defining protocol_request() or protocol_response()
methods are named *Processor; all others are named *Handler.

BaseHandler.parent
A valid OpenerDirector, which can be used to open using a different protocol, or handle errors.

BaseHandler.default_open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to catch all
URLs.

This method, if implemented, will be called by the parent OpenerDirector. It should return a file-
like object as described in the return value of the open() of OpenerDirector, or None. It should raise
URLError, unless a truly exceptional thing happens (for example, MemoryError should not be mapped
to URLError).

This method will be called before any protocol-specific open method.

BaseHandler.protocol_open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to handle URLs
with the given protocol.

This method, if defined, will be called by the parent OpenerDirector. Return values should be the
same as for default_open().

BaseHandler.unknown_open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to catch all
URLs with no specific registered handler to open it.

This method, if implemented, will be called by the parent OpenerDirector. Return values should be
the same as for default_open().

1112 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

BaseHandler.http_error_default(req, fp, code, msg, hdrs)
This method is not defined in BaseHandler, but subclasses should override it if they intend to provide a
catch-all for otherwise unhandled HTTP errors. It will be called automatically by the OpenerDirector
getting the error, and should not normally be called in other circumstances.

req will be a Request object, fp will be a file-like object with the HTTP error body, code will be the
three-digit code of the error, msg will be the user-visible explanation of the code and hdrs will be a
mapping object with the headers of the error.

Return values and exceptions raised should be the same as those of urlopen().

BaseHandler.http_error_nnn(req, fp, code, msg, hdrs)
nnn should be a three-digit HTTP error code. This method is also not defined in BaseHandler, but
will be called, if it exists, on an instance of a subclass, when an HTTP error with code nnn occurs.

Subclasses should override this method to handle specific HTTP errors.

Arguments, return values and exceptions raised should be the same as for http_error_default().

BaseHandler.protocol_request(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to pre-process
requests of the given protocol.

This method, if defined, will be called by the parent OpenerDirector. req will be a Request object.
The return value should be a Request object.

BaseHandler.protocol_response(req, response)
This method is not defined in BaseHandler, but subclasses should define it if they want to post-process
responses of the given protocol.

This method, if defined, will be called by the parent OpenerDirector. req will be a Request object.
response will be an object implementing the same interface as the return value of urlopen(). The return
value should implement the same interface as the return value of urlopen().

21.6.4 HTTPRedirectHandler Objects

Note: Some HTTP redirections require action from this module’s client code. If this is the case, HTTPError
is raised. See RFC 2616 for details of the precise meanings of the various redirection codes.

An HTTPError exception raised as a security consideration if the HTTPRedirectHandler is presented with
a redirected URL which is not an HTTP, HTTPS or FTP URL.

HTTPRedirectHandler.redirect_request(req, fp, code, msg, hdrs, newurl)
Return a Request or None in response to a redirect. This is called by the default implementations of the
http_error_30*() methods when a redirection is received from the server. If a redirection should take
place, return a new Request to allow http_error_30*() to perform the redirect to newurl. Otherwise,
raise HTTPError if no other handler should try to handle this URL, or return None if you can’t but
another handler might.

Note: The default implementation of this method does not strictly follow RFC 2616, which says that
301 and 302 responses to POST requests must not be automatically redirected without confirmation
by the user. In reality, browsers do allow automatic redirection of these responses, changing the POST
to a GET, and the default implementation reproduces this behavior.

21.6. urllib.request — Extensible library for opening URLs 1113

https://tools.ietf.org/html/rfc2616.html
https://tools.ietf.org/html/rfc2616.html

The Python Library Reference, Release 3.5.7

HTTPRedirectHandler.http_error_301(req, fp, code, msg, hdrs)
Redirect to the Location: or URI: URL. This method is called by the parent OpenerDirector when
getting an HTTP ‘moved permanently’ response.

HTTPRedirectHandler.http_error_302(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘found’ response.

HTTPRedirectHandler.http_error_303(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘see other’ response.

HTTPRedirectHandler.http_error_307(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘temporary redirect’ response.

21.6.5 HTTPCookieProcessor Objects

HTTPCookieProcessor instances have one attribute:

HTTPCookieProcessor.cookiejar
The http.cookiejar.CookieJar in which cookies are stored.

21.6.6 ProxyHandler Objects

ProxyHandler.protocol_open(request)
The ProxyHandler will have a method protocol_open() for every protocol which has a proxy in the
proxies dictionary given in the constructor. The method will modify requests to go through the proxy,
by calling request.set_proxy(), and call the next handler in the chain to actually execute the protocol.

21.6.7 HTTPPasswordMgr Objects

These methods are available on HTTPPasswordMgr and HTTPPasswordMgrWithDefaultRealm objects.

HTTPPasswordMgr.add_password(realm, uri, user, passwd)
uri can be either a single URI, or a sequence of URIs. realm, user and passwd must be strings.
This causes (user, passwd) to be used as authentication tokens when authentication for realm and a
super-URI of any of the given URIs is given.

HTTPPasswordMgr.find_user_password(realm, authuri)
Get user/password for given realm and URI, if any. This method will return (None, None) if there is
no matching user/password.

For HTTPPasswordMgrWithDefaultRealm objects, the realm None will be searched if the given realm
has no matching user/password.

21.6.8 HTTPPasswordMgrWithPriorAuth Objects

This password manager extends HTTPPasswordMgrWithDefaultRealm to support tracking URIs for which
authentication credentials should always be sent.

HTTPPasswordMgrWithPriorAuth.add_password(realm, uri, user, passwd, is_authenticated=False)
realm, uri, user, passwd are as for HTTPPasswordMgr.add_password(). is_authenticated sets the
initial value of the is_authenticated flag for the given URI or list of URIs. If is_authenticated is
specified as True, realm is ignored.

HTTPPasswordMgr.find_user_password(realm, authuri)
Same as for HTTPPasswordMgrWithDefaultRealm objects

1114 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

HTTPPasswordMgrWithPriorAuth.update_authenticated(self, uri, is_authenticated=False)
Update the is_authenticated flag for the given uri or list of URIs.

HTTPPasswordMgrWithPriorAuth.is_authenticated(self, authuri)
Returns the current state of the is_authenticated flag for the given URI.

21.6.9 AbstractBasicAuthHandler Objects

AbstractBasicAuthHandler.http_error_auth_reqed(authreq, host, req, headers)
Handle an authentication request by getting a user/password pair, and re-trying the request. authreq
should be the name of the header where the information about the realm is included in the request,
host specifies the URL and path to authenticate for, req should be the (failed) Request object, and
headers should be the error headers.

host is either an authority (e.g. "python.org") or a URL containing an authority component (e.g.
"http://python.org/"). In either case, the authority must not contain a userinfo component (so,
"python.org" and "python.org:80" are fine, "joe:password@python.org" is not).

21.6.10 HTTPBasicAuthHandler Objects

HTTPBasicAuthHandler.http_error_401(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

21.6.11 ProxyBasicAuthHandler Objects

ProxyBasicAuthHandler.http_error_407(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

21.6.12 AbstractDigestAuthHandler Objects

AbstractDigestAuthHandler.http_error_auth_reqed(authreq, host, req, headers)
authreq should be the name of the header where the information about the realm is included in the
request, host should be the host to authenticate to, req should be the (failed) Request object, and
headers should be the error headers.

21.6.13 HTTPDigestAuthHandler Objects

HTTPDigestAuthHandler.http_error_401(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

21.6.14 ProxyDigestAuthHandler Objects

ProxyDigestAuthHandler.http_error_407(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

21.6.15 HTTPHandler Objects

HTTPHandler.http_open(req)
Send an HTTP request, which can be either GET or POST, depending on req.has_data().

21.6. urllib.request — Extensible library for opening URLs 1115

The Python Library Reference, Release 3.5.7

21.6.16 HTTPSHandler Objects

HTTPSHandler.https_open(req)
Send an HTTPS request, which can be either GET or POST, depending on req.has_data().

21.6.17 FileHandler Objects

FileHandler.file_open(req)
Open the file locally, if there is no host name, or the host name is 'localhost'.

Changed in version 3.2: This method is applicable only for local hostnames. When a remote hostname
is given, an URLError is raised.

21.6.18 DataHandler Objects

DataHandler.data_open(req)
Read a data URL. This kind of URL contains the content encoded in the URL itself. The data
URL syntax is specified in RFC 2397. This implementation ignores white spaces in base64 encoded
data URLs so the URL may be wrapped in whatever source file it comes from. But even though
some browsers don’t mind about a missing padding at the end of a base64 encoded data URL, this
implementation will raise an ValueError in that case.

21.6.19 FTPHandler Objects

FTPHandler.ftp_open(req)
Open the FTP file indicated by req. The login is always done with empty username and password.

21.6.20 CacheFTPHandler Objects

CacheFTPHandler objects are FTPHandler objects with the following additional methods:

CacheFTPHandler.setTimeout(t)
Set timeout of connections to t seconds.

CacheFTPHandler.setMaxConns(m)
Set maximum number of cached connections to m.

21.6.21 UnknownHandler Objects

UnknownHandler.unknown_open()
Raise a URLError exception.

21.6.22 HTTPErrorProcessor Objects

HTTPErrorProcessor.http_response()
Process HTTP error responses.

For 200 error codes, the response object is returned immediately.

1116 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc2397.html

The Python Library Reference, Release 3.5.7

For non-200 error codes, this simply passes the job on to the protocol_error_code() handler methods,
via OpenerDirector.error(). Eventually, HTTPDefaultErrorHandler will raise an HTTPError if no
other handler handles the error.

HTTPErrorProcessor.https_response()
Process HTTPS error responses.

The behavior is same as http_response().

21.6.23 Examples

In addition to the examples below, more examples are given in urllib-howto.

This example gets the python.org main page and displays the first 300 bytes of it.

>>> import urllib.request
>>> with urllib.request.urlopen('http://www.python.org/') as f:
... print(f.read(300))
...
b'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">\n\n\n<html
xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">\n\n<head>\n
<meta http-equiv="content-type" content="text/html; charset=utf-8" />\n
<title>Python Programming '

Note that urlopen returns a bytes object. This is because there is no way for urlopen to automatically
determine the encoding of the byte stream it receives from the HTTP server. In general, a program will
decode the returned bytes object to string once it determines or guesses the appropriate encoding.

The following W3C document, https://www.w3.org/International/O-charset, lists the various ways in which
an (X)HTML or an XML document could have specified its encoding information.

As the python.org website uses utf-8 encoding as specified in its meta tag, we will use the same for decoding
the bytes object.

>>> with urllib.request.urlopen('http://www.python.org/') as f:
... print(f.read(100).decode('utf-8'))
...
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtm

It is also possible to achieve the same result without using the context manager approach.

>>> import urllib.request
>>> f = urllib.request.urlopen('http://www.python.org/')
>>> print(f.read(100).decode('utf-8'))
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtm

In the following example, we are sending a data-stream to the stdin of a CGI and reading the data it returns
to us. Note that this example will only work when the Python installation supports SSL.

>>> import urllib.request
>>> req = urllib.request.Request(url='https://localhost/cgi-bin/test.cgi',
... data=b'This data is passed to stdin of the CGI')
>>> with urllib.request.urlopen(req) as f:
... print(f.read().decode('utf-8'))

(continues on next page)

21.6. urllib.request — Extensible library for opening URLs 1117

https://www.w3.org/International/O-charset

The Python Library Reference, Release 3.5.7

(continued from previous page)

...
Got Data: "This data is passed to stdin of the CGI"

The code for the sample CGI used in the above example is:

#!/usr/bin/env python
import sys
data = sys.stdin.read()
print('Content-type: text/plain\n\nGot Data: "%s"' % data)

Here is an example of doing a PUT request using Request:

import urllib.request
DATA = b'some data'
req = urllib.request.Request(url='http://localhost:8080', data=DATA,method='PUT')
with urllib.request.urlopen(req) as f:

pass
print(f.status)
print(f.reason)

Use of Basic HTTP Authentication:

import urllib.request
Create an OpenerDirector with support for Basic HTTP Authentication...
auth_handler = urllib.request.HTTPBasicAuthHandler()
auth_handler.add_password(realm='PDQ Application',

uri='https://mahler:8092/site-updates.py',
user='klem',
passwd='kadidd!ehopper')

opener = urllib.request.build_opener(auth_handler)
...and install it globally so it can be used with urlopen.
urllib.request.install_opener(opener)
urllib.request.urlopen('http://www.example.com/login.html')

build_opener() provides many handlers by default, including a ProxyHandler. By default, ProxyHandler
uses the environment variables named <scheme>_proxy, where <scheme> is the URL scheme involved. For
example, the http_proxy environment variable is read to obtain the HTTP proxy’s URL.

This example replaces the default ProxyHandler with one that uses programmatically-supplied proxy URLs,
and adds proxy authorization support with ProxyBasicAuthHandler.

proxy_handler = urllib.request.ProxyHandler({'http': 'http://www.example.com:3128/'})
proxy_auth_handler = urllib.request.ProxyBasicAuthHandler()
proxy_auth_handler.add_password('realm', 'host', 'username', 'password')

opener = urllib.request.build_opener(proxy_handler, proxy_auth_handler)
This time, rather than install the OpenerDirector, we use it directly:
opener.open('http://www.example.com/login.html')

Adding HTTP headers:

Use the headers argument to the Request constructor, or:

import urllib.request
req = urllib.request.Request('http://www.example.com/')
req.add_header('Referer', 'http://www.python.org/')
Customize the default User-Agent header value:

(continues on next page)

1118 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

(continued from previous page)

req.add_header('User-Agent', 'urllib-example/0.1 (Contact: . . .)')
r = urllib.request.urlopen(req)

OpenerDirector automatically adds a User-Agent header to every Request. To change this:

import urllib.request
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
opener.open('http://www.example.com/')

Also, remember that a few standard headers (Content-Length, Content-Type and Host) are added when the
Request is passed to urlopen() (or OpenerDirector.open()).

Here is an example session that uses the GET method to retrieve a URL containing parameters:

>>> import urllib.request
>>> import urllib.parse
>>> params = urllib.parse.urlencode({'spam': 1, 'eggs': 2, 'bacon': 0})
>>> url = "http://www.musi-cal.com/cgi-bin/query?%s" % params
>>> with urllib.request.urlopen(url) as f:
... print(f.read().decode('utf-8'))
...

The following example uses the POST method instead. Note that params output from urlencode is encoded
to bytes before it is sent to urlopen as data:

>>> import urllib.request
>>> import urllib.parse
>>> data = urllib.parse.urlencode({'spam': 1, 'eggs': 2, 'bacon': 0})
>>> data = data.encode('ascii')
>>> with urllib.request.urlopen("http://requestb.in/xrbl82xr", data) as f:
... print(f.read().decode('utf-8'))
...

The following example uses an explicitly specified HTTP proxy, overriding environment settings:

>>> import urllib.request
>>> proxies = {'http': 'http://proxy.example.com:8080/'}
>>> opener = urllib.request.FancyURLopener(proxies)
>>> with opener.open("http://www.python.org") as f:
... f.read().decode('utf-8')
...

The following example uses no proxies at all, overriding environment settings:

>>> import urllib.request
>>> opener = urllib.request.FancyURLopener({})
>>> with opener.open("http://www.python.org/") as f:
... f.read().decode('utf-8')
...

21.6.24 Legacy interface

The following functions and classes are ported from the Python 2 module urllib (as opposed to urllib2).
They might become deprecated at some point in the future.

21.6. urllib.request — Extensible library for opening URLs 1119

The Python Library Reference, Release 3.5.7

urllib.request.urlretrieve(url, filename=None, reporthook=None, data=None)
Copy a network object denoted by a URL to a local file. If the URL points to a local file, the object
will not be copied unless filename is supplied. Return a tuple (filename, headers) where filename is the
local file name under which the object can be found, and headers is whatever the info() method of the
object returned by urlopen() returned (for a remote object). Exceptions are the same as for urlopen().

The second argument, if present, specifies the file location to copy to (if absent, the location will be a
tempfile with a generated name). The third argument, if present, is a hook function that will be called
once on establishment of the network connection and once after each block read thereafter. The hook
will be passed three arguments; a count of blocks transferred so far, a block size in bytes, and the total
size of the file. The third argument may be -1 on older FTP servers which do not return a file size in
response to a retrieval request.

The following example illustrates the most common usage scenario:

>>> import urllib.request
>>> local_filename, headers = urllib.request.urlretrieve('http://python.org/')
>>> html = open(local_filename)
>>> html.close()

If the url uses the http: scheme identifier, the optional data argument may be given to specify a POST
request (normally the request type is GET). The data argument must be a bytes object in standard
application/x-www-form-urlencoded format; see the urllib.parse.urlencode() function.

urlretrieve() will raise ContentTooShortError when it detects that the amount of data available was
less than the expected amount (which is the size reported by a Content-Length header). This can
occur, for example, when the download is interrupted.

The Content-Length is treated as a lower bound: if there’s more data to read, urlretrieve reads more
data, but if less data is available, it raises the exception.

You can still retrieve the downloaded data in this case, it is stored in the content attribute of the
exception instance.

If no Content-Length header was supplied, urlretrieve can not check the size of the data it has down-
loaded, and just returns it. In this case you just have to assume that the download was successful.

urllib.request.urlcleanup()
Cleans up temporary files that may have been left behind by previous calls to urlretrieve().

class urllib.request.URLopener(proxies=None, **x509)
Deprecated since version 3.3.

Base class for opening and reading URLs. Unless you need to support opening objects using schemes
other than http:, ftp:, or file:, you probably want to use FancyURLopener.

By default, the URLopener class sends a User-Agent header of urllib/VVV, where VVV is the urllib
version number. Applications can define their own User-Agent header by subclassing URLopener or
FancyURLopener and setting the class attribute version to an appropriate string value in the subclass
definition.

The optional proxies parameter should be a dictionary mapping scheme names to proxy URLs, where
an empty dictionary turns proxies off completely. Its default value is None, in which case environmental
proxy settings will be used if present, as discussed in the definition of urlopen(), above.

Additional keyword parameters, collected in x509, may be used for authentication of the client when
using the https: scheme. The keywords key_file and cert_file are supported to provide an SSL key
and certificate; both are needed to support client authentication.

URLopener objects will raise an OSError exception if the server returns an error code.

1120 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

open(fullurl, data=None)
Open fullurl using the appropriate protocol. This method sets up cache and proxy information,
then calls the appropriate open method with its input arguments. If the scheme is not recognized,
open_unknown() is called. The data argument has the same meaning as the data argument of
urlopen().

open_unknown(fullurl, data=None)
Overridable interface to open unknown URL types.

retrieve(url, filename=None, reporthook=None, data=None)
Retrieves the contents of url and places it in filename. The return value is a tuple consisting of
a local filename and either an email.message.Message object containing the response headers (for
remote URLs) or None (for local URLs). The caller must then open and read the contents of
filename. If filename is not given and the URL refers to a local file, the input filename is returned.
If the URL is non-local and filename is not given, the filename is the output of tempfile.mktemp()
with a suffix that matches the suffix of the last path component of the input URL. If reporthook is
given, it must be a function accepting three numeric parameters: A chunk number, the maximum
size chunks are read in and the total size of the download (-1 if unknown). It will be called once
at the start and after each chunk of data is read from the network. reporthook is ignored for local
URLs.

If the url uses the http: scheme identifier, the optional data argument may be given to spec-
ify a POST request (normally the request type is GET). The data argument must in standard
application/x-www-form-urlencoded format; see the urllib.parse.urlencode() function.

version
Variable that specifies the user agent of the opener object. To get urllib to tell servers that it is a
particular user agent, set this in a subclass as a class variable or in the constructor before calling
the base constructor.

class urllib.request.FancyURLopener(...)
Deprecated since version 3.3.

FancyURLopener subclasses URLopener providing default handling for the following HTTP response
codes: 301, 302, 303, 307 and 401. For the 30x response codes listed above, the Location header is used
to fetch the actual URL. For 401 response codes (authentication required), basic HTTP authentication
is performed. For the 30x response codes, recursion is bounded by the value of the maxtries attribute,
which defaults to 10.

For all other response codes, the method http_error_default() is called which you can override in
subclasses to handle the error appropriately.

Note: According to the letter of RFC 2616, 301 and 302 responses to POST requests must not be
automatically redirected without confirmation by the user. In reality, browsers do allow automatic
redirection of these responses, changing the POST to a GET, and urllib reproduces this behaviour.

The parameters to the constructor are the same as those for URLopener.

Note: When performing basic authentication, a FancyURLopener instance calls its
prompt_user_passwd() method. The default implementation asks the users for the required infor-
mation on the controlling terminal. A subclass may override this method to support more appropriate
behavior if needed.

The FancyURLopener class offers one additional method that should be overloaded to provide the
appropriate behavior:

21.6. urllib.request — Extensible library for opening URLs 1121

https://tools.ietf.org/html/rfc2616.html

The Python Library Reference, Release 3.5.7

prompt_user_passwd(host, realm)
Return information needed to authenticate the user at the given host in the specified security
realm. The return value should be a tuple, (user, password), which can be used for basic authen-
tication.

The implementation prompts for this information on the terminal; an application should override
this method to use an appropriate interaction model in the local environment.

21.6.25 urllib.request Restrictions

• Currently, only the following protocols are supported: HTTP (versions 0.9 and 1.0), FTP, local files,
and data URLs.

Changed in version 3.4: Added support for data URLs.

• The caching feature of urlretrieve() has been disabled until someone finds the time to hack proper
processing of Expiration time headers.

• There should be a function to query whether a particular URL is in the cache.

• For backward compatibility, if a URL appears to point to a local file but the file can’t be opened, the
URL is re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

• The urlopen() and urlretrieve() functions can cause arbitrarily long delays while waiting for a network
connection to be set up. This means that it is difficult to build an interactive Web client using these
functions without using threads.

• The data returned by urlopen() or urlretrieve() is the raw data returned by the server. This may be
binary data (such as an image), plain text or (for example) HTML. The HTTP protocol provides type
information in the reply header, which can be inspected by looking at the Content-Type header. If the
returned data is HTML, you can use the module html.parser to parse it.

• The code handling the FTP protocol cannot differentiate between a file and a directory. This can lead
to unexpected behavior when attempting to read a URL that points to a file that is not accessible.
If the URL ends in a /, it is assumed to refer to a directory and will be handled accordingly. But if
an attempt to read a file leads to a 550 error (meaning the URL cannot be found or is not accessible,
often for permission reasons), then the path is treated as a directory in order to handle the case when
a directory is specified by a URL but the trailing / has been left off. This can cause misleading results
when you try to fetch a file whose read permissions make it inaccessible; the FTP code will try to
read it, fail with a 550 error, and then perform a directory listing for the unreadable file. If fine-
grained control is needed, consider using the ftplib module, subclassing FancyURLopener, or changing
_urlopener to meet your needs.

21.7 urllib.response — Response classes used by urllib

The urllib.response module defines functions and classes which define a minimal file like interface, including
read() and readline(). The typical response object is an addinfourl instance, which defines an info() method
and that returns headers and a geturl() method that returns the url. Functions defined by this module are
used internally by the urllib.request module.

1122 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

21.8 urllib.parse — Parse URLs into components

Source code: Lib/urllib/parse.py

This module defines a standard interface to break Uniform Resource Locator (URL) strings up in components
(addressing scheme, network location, path etc.), to combine the components back into a URL string, and
to convert a “relative URL” to an absolute URL given a “base URL.”

The module has been designed to match the Internet RFC on Relative Uniform Resource Locators. It
supports the following URL schemes: file, ftp, gopher, hdl, http, https, imap, mailto, mms, news, nntp,
prospero, rsync, rtsp, rtspu, sftp, shttp, sip, sips, snews, svn, svn+ssh, telnet, wais, ws, wss.

The urllib.parse module defines functions that fall into two broad categories: URL parsing and URL quoting.
These are covered in detail in the following sections.

21.8.1 URL Parsing

The URL parsing functions focus on splitting a URL string into its components, or on combining URL
components into a URL string.

urllib.parse.urlparse(urlstring, scheme=”, allow_fragments=True)
Parse a URL into six components, returning a 6-tuple. This corresponds to the general structure of a
URL: scheme://netloc/path;parameters?query#fragment. Each tuple item is a string, possibly empty.
The components are not broken up in smaller parts (for example, the network location is a single
string), and % escapes are not expanded. The delimiters as shown above are not part of the result,
except for a leading slash in the path component, which is retained if present. For example:

>>> from urllib.parse import urlparse
>>> o = urlparse('http://www.cwi.nl:80/%7Eguido/Python.html')
>>> o # doctest: +NORMALIZE_WHITESPACE
ParseResult(scheme='http', netloc='www.cwi.nl:80', path='/%7Eguido/Python.html',

params='', query='', fragment='')
>>> o.scheme
'http'
>>> o.port
80
>>> o.geturl()
'http://www.cwi.nl:80/%7Eguido/Python.html'

Following the syntax specifications in RFC 1808, urlparse recognizes a netloc only if it is properly
introduced by ‘//’. Otherwise the input is presumed to be a relative URL and thus to start with a
path component.

>>> from urllib.parse import urlparse
>>> urlparse('//www.cwi.nl:80/%7Eguido/Python.html')
ParseResult(scheme='', netloc='www.cwi.nl:80', path='/%7Eguido/Python.html',

params='', query='', fragment='')
>>> urlparse('www.cwi.nl/%7Eguido/Python.html')
ParseResult(scheme='', netloc='', path='www.cwi.nl/%7Eguido/Python.html',

params='', query='', fragment='')
>>> urlparse('help/Python.html')
ParseResult(scheme='', netloc='', path='help/Python.html', params='',

query='', fragment='')

21.8. urllib.parse — Parse URLs into components 1123

https://github.com/python/cpython/tree/3.5/Lib/urllib/parse.py
https://tools.ietf.org/html/rfc1808.html

The Python Library Reference, Release 3.5.7

The scheme argument gives the default addressing scheme, to be used only if the URL does not specify
one. It should be the same type (text or bytes) as urlstring, except that the default value '' is always
allowed, and is automatically converted to b'' if appropriate.

If the allow_fragments argument is false, fragment identifiers are not recognized. Instead, they are
parsed as part of the path, parameters or query component, and fragment is set to the empty string
in the return value.

The return value is actually an instance of a subclass of tuple. This class has the following additional
read-only convenience attributes:

Attribute Index Value Value if not present
scheme 0 URL scheme specifier scheme parameter
netloc 1 Network location part empty string
path 2 Hierarchical path empty string
params 3 Parameters for last path element empty string
query 4 Query component empty string
fragment 5 Fragment identifier empty string
username User name None
password Password None
hostname Host name (lower case) None
port Port number as integer, if present None

See section Structured Parse Results for more information on the result object.

Unmatched square brackets in the netloc attribute will raise a ValueError.

Characters in the netloc attribute that decompose under NFKC normalization (as used by the IDNA
encoding) into any of /, ?, #, @, or : will raise a ValueError. If the URL is decomposed before parsing,
no error will be raised.

Changed in version 3.2: Added IPv6 URL parsing capabilities.

Changed in version 3.3: The fragment is now parsed for all URL schemes (unless allow_fragment is
false), in accordance with RFC 3986. Previously, a whitelist of schemes that support fragments existed.

Changed in version 3.5.7: Characters that affect netloc parsing under NFKC normalization will now
raise ValueError.

urllib.parse.parse_qs(qs, keep_blank_values=False, strict_parsing=False, encoding=’utf-8’, er-
rors=’replace’)

Parse a query string given as a string argument (data of type application/x-www-form-urlencoded).
Data are returned as a dictionary. The dictionary keys are the unique query variable names and the
values are lists of values for each name.

The optional argument keep_blank_values is a flag indicating whether blank values in percent-encoded
queries should be treated as blank strings. A true value indicates that blanks should be retained as
blank strings. The default false value indicates that blank values are to be ignored and treated as if
they were not included.

The optional argument strict_parsing is a flag indicating what to do with parsing errors. If false (the
default), errors are silently ignored. If true, errors raise a ValueError exception.

The optional encoding and errors parameters specify how to decode percent-encoded sequences into
Unicode characters, as accepted by the bytes.decode() method.

Use the urllib.parse.urlencode() function (with the doseq parameter set to True) to convert such dic-
tionaries into query strings.

Changed in version 3.2: Add encoding and errors parameters.

1124 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc3986.html

The Python Library Reference, Release 3.5.7

urllib.parse.parse_qsl(qs, keep_blank_values=False, strict_parsing=False, encoding=’utf-8’, er-
rors=’replace’)

Parse a query string given as a string argument (data of type application/x-www-form-urlencoded).
Data are returned as a list of name, value pairs.

The optional argument keep_blank_values is a flag indicating whether blank values in percent-encoded
queries should be treated as blank strings. A true value indicates that blanks should be retained as
blank strings. The default false value indicates that blank values are to be ignored and treated as if
they were not included.

The optional argument strict_parsing is a flag indicating what to do with parsing errors. If false (the
default), errors are silently ignored. If true, errors raise a ValueError exception.

The optional encoding and errors parameters specify how to decode percent-encoded sequences into
Unicode characters, as accepted by the bytes.decode() method.

Use the urllib.parse.urlencode() function to convert such lists of pairs into query strings.

Changed in version 3.2: Add encoding and errors parameters.

urllib.parse.urlunparse(parts)
Construct a URL from a tuple as returned by urlparse(). The parts argument can be any six-item
iterable. This may result in a slightly different, but equivalent URL, if the URL that was parsed
originally had unnecessary delimiters (for example, a ? with an empty query; the RFC states that
these are equivalent).

urllib.parse.urlsplit(urlstring, scheme=”, allow_fragments=True)
This is similar to urlparse(), but does not split the params from the URL. This should generally be
used instead of urlparse() if the more recent URL syntax allowing parameters to be applied to each
segment of the path portion of the URL (see RFC 2396) is wanted. A separate function is needed
to separate the path segments and parameters. This function returns a 5-tuple: (addressing scheme,
network location, path, query, fragment identifier).

The return value is actually an instance of a subclass of tuple. This class has the following additional
read-only convenience attributes:

Attribute Index Value Value if not present
scheme 0 URL scheme specifier scheme parameter
netloc 1 Network location part empty string
path 2 Hierarchical path empty string
query 3 Query component empty string
fragment 4 Fragment identifier empty string
username User name None
password Password None
hostname Host name (lower case) None
port Port number as integer, if present None

See section Structured Parse Results for more information on the result object.

Unmatched square brackets in the netloc attribute will raise a ValueError.

Characters in the netloc attribute that decompose under NFKC normalization (as used by the IDNA
encoding) into any of /, ?, #, @, or : will raise a ValueError. If the URL is decomposed before parsing,
no error will be raised.

Changed in version 3.5.7: Characters that affect netloc parsing under NFKC normalization will now
raise ValueError.

21.8. urllib.parse — Parse URLs into components 1125

https://tools.ietf.org/html/rfc2396.html

The Python Library Reference, Release 3.5.7

urllib.parse.urlunsplit(parts)
Combine the elements of a tuple as returned by urlsplit() into a complete URL as a string. The parts
argument can be any five-item iterable. This may result in a slightly different, but equivalent URL, if
the URL that was parsed originally had unnecessary delimiters (for example, a ? with an empty query;
the RFC states that these are equivalent).

urllib.parse.urljoin(base, url, allow_fragments=True)
Construct a full (“absolute”) URL by combining a “base URL” (base) with another URL (url). Infor-
mally, this uses components of the base URL, in particular the addressing scheme, the network location
and (part of) the path, to provide missing components in the relative URL. For example:

>>> from urllib.parse import urljoin
>>> urljoin('http://www.cwi.nl/%7Eguido/Python.html', 'FAQ.html')
'http://www.cwi.nl/%7Eguido/FAQ.html'

The allow_fragments argument has the same meaning and default as for urlparse().

Note: If url is an absolute URL (that is, starting with // or scheme://), the url’s host name and/or
scheme will be present in the result. For example:

>>> urljoin('http://www.cwi.nl/%7Eguido/Python.html',
... '//www.python.org/%7Eguido')
'http://www.python.org/%7Eguido'

If you do not want that behavior, preprocess the url with urlsplit() and urlunsplit(), removing possible
scheme and netloc parts.

Changed in version 3.5: Behaviour updated to match the semantics defined in RFC 3986.

urllib.parse.urldefrag(url)
If url contains a fragment identifier, return a modified version of url with no fragment identifier, and the
fragment identifier as a separate string. If there is no fragment identifier in url, return url unmodified
and an empty string.

The return value is actually an instance of a subclass of tuple. This class has the following additional
read-only convenience attributes:

Attribute Index Value Value if not present
url 0 URL with no fragment empty string
fragment 1 Fragment identifier empty string

See section Structured Parse Results for more information on the result object.

Changed in version 3.2: Result is a structured object rather than a simple 2-tuple.

21.8.2 Parsing ASCII Encoded Bytes

The URL parsing functions were originally designed to operate on character strings only. In practice, it is
useful to be able to manipulate properly quoted and encoded URLs as sequences of ASCII bytes. Accordingly,
the URL parsing functions in this module all operate on bytes and bytearray objects in addition to str objects.

If str data is passed in, the result will also contain only str data. If bytes or bytearray data is passed in, the
result will contain only bytes data.

Attempting to mix str data with bytes or bytearray in a single function call will result in a TypeError being
raised, while attempting to pass in non-ASCII byte values will trigger UnicodeDecodeError.

1126 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc3986.html

The Python Library Reference, Release 3.5.7

To support easier conversion of result objects between str and bytes, all return values from URL parsing
functions provide either an encode() method (when the result contains str data) or a decode() method (when
the result contains bytes data). The signatures of these methods match those of the corresponding str and
bytes methods (except that the default encoding is 'ascii' rather than 'utf-8'). Each produces a value
of a corresponding type that contains either bytes data (for encode() methods) or str data (for decode()
methods).

Applications that need to operate on potentially improperly quoted URLs that may contain non-ASCII data
will need to do their own decoding from bytes to characters before invoking the URL parsing methods.

The behaviour described in this section applies only to the URL parsing functions. The URL quoting
functions use their own rules when producing or consuming byte sequences as detailed in the documentation
of the individual URL quoting functions.

Changed in version 3.2: URL parsing functions now accept ASCII encoded byte sequences

21.8.3 Structured Parse Results

The result objects from the urlparse(), urlsplit() and urldefrag() functions are subclasses of the tuple type.
These subclasses add the attributes listed in the documentation for those functions, the encoding and de-
coding support described in the previous section, as well as an additional method:

urllib.parse.SplitResult.geturl()
Return the re-combined version of the original URL as a string. This may differ from the original
URL in that the scheme may be normalized to lower case and empty components may be dropped.
Specifically, empty parameters, queries, and fragment identifiers will be removed.

For urldefrag() results, only empty fragment identifiers will be removed. For urlsplit() and urlparse()
results, all noted changes will be made to the URL returned by this method.

The result of this method remains unchanged if passed back through the original parsing function:

>>> from urllib.parse import urlsplit
>>> url = 'HTTP://www.Python.org/doc/#'
>>> r1 = urlsplit(url)
>>> r1.geturl()
'http://www.Python.org/doc/'
>>> r2 = urlsplit(r1.geturl())
>>> r2.geturl()
'http://www.Python.org/doc/'

The following classes provide the implementations of the structured parse results when operating on str
objects:

class urllib.parse.DefragResult(url, fragment)
Concrete class for urldefrag() results containing str data. The encode() method returns a DefragRe-
sultBytes instance.

New in version 3.2.

class urllib.parse.ParseResult(scheme, netloc, path, params, query, fragment)
Concrete class for urlparse() results containing str data. The encode() method returns a ParseResult-
Bytes instance.

class urllib.parse.SplitResult(scheme, netloc, path, query, fragment)
Concrete class for urlsplit() results containing str data. The encode() method returns a SplitResult-
Bytes instance.

21.8. urllib.parse — Parse URLs into components 1127

The Python Library Reference, Release 3.5.7

The following classes provide the implementations of the parse results when operating on bytes or bytearray
objects:

class urllib.parse.DefragResultBytes(url, fragment)
Concrete class for urldefrag() results containing bytes data. The decode() method returns a DefragRe-
sult instance.

New in version 3.2.

class urllib.parse.ParseResultBytes(scheme, netloc, path, params, query, fragment)
Concrete class for urlparse() results containing bytes data. The decode() method returns a ParseResult
instance.

New in version 3.2.

class urllib.parse.SplitResultBytes(scheme, netloc, path, query, fragment)
Concrete class for urlsplit() results containing bytes data. The decode() method returns a SplitResult
instance.

New in version 3.2.

21.8.4 URL Quoting

The URL quoting functions focus on taking program data and making it safe for use as URL components by
quoting special characters and appropriately encoding non-ASCII text. They also support reversing these
operations to recreate the original data from the contents of a URL component if that task isn’t already
covered by the URL parsing functions above.

urllib.parse.quote(string, safe=’/’, encoding=None, errors=None)
Replace special characters in string using the %xx escape. Letters, digits, and the characters '_.-' are
never quoted. By default, this function is intended for quoting the path section of URL. The optional
safe parameter specifies additional ASCII characters that should not be quoted — its default value is
'/'.

string may be either a str or a bytes.

The optional encoding and errors parameters specify how to deal with non-ASCII characters, as ac-
cepted by the str.encode() method. encoding defaults to 'utf-8'. errors defaults to 'strict', meaning
unsupported characters raise a UnicodeEncodeError. encoding and errors must not be supplied if
string is a bytes, or a TypeError is raised.

Note that quote(string, safe, encoding, errors) is equivalent to quote_from_bytes(string.
encode(encoding, errors), safe).

Example: quote('/El Niño/') yields '/El%20Ni%C3%B1o/'.

urllib.parse.quote_plus(string, safe=”, encoding=None, errors=None)
Like quote(), but also replace spaces by plus signs, as required for quoting HTML form values when
building up a query string to go into a URL. Plus signs in the original string are escaped unless they
are included in safe. It also does not have safe default to '/'.

Example: quote_plus('/El Niño/') yields '%2FEl+Ni%C3%B1o%2F'.

urllib.parse.quote_from_bytes(bytes, safe=’/’)
Like quote(), but accepts a bytes object rather than a str, and does not perform string-to-bytes encod-
ing.

Example: quote_from_bytes(b'a&\xef') yields 'a%26%EF'.

urllib.parse.unquote(string, encoding=’utf-8’, errors=’replace’)
Replace %xx escapes by their single-character equivalent. The optional encoding and errors parameters

1128 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

specify how to decode percent-encoded sequences into Unicode characters, as accepted by the bytes.
decode() method.

string must be a str.

encoding defaults to 'utf-8'. errors defaults to 'replace', meaning invalid sequences are replaced by
a placeholder character.

Example: unquote('/El%20Ni%C3%B1o/') yields '/El Niño/'.

urllib.parse.unquote_plus(string, encoding=’utf-8’, errors=’replace’)
Like unquote(), but also replace plus signs by spaces, as required for unquoting HTML form values.

string must be a str.

Example: unquote_plus('/El+Ni%C3%B1o/') yields '/El Niño/'.

urllib.parse.unquote_to_bytes(string)
Replace %xx escapes by their single-octet equivalent, and return a bytes object.

string may be either a str or a bytes.

If it is a str, unescaped non-ASCII characters in string are encoded into UTF-8 bytes.

Example: unquote_to_bytes('a%26%EF') yields b'a&\xef'.

urllib.parse.urlencode(query, doseq=False, safe=”, encoding=None, errors=None,
quote_via=quote_plus)

Convert a mapping object or a sequence of two-element tuples, which may contain str or bytes objects,
to a percent-encoded ASCII text string. If the resultant string is to be used as a data for POST
operation with the urlopen() function, then it should be encoded to bytes, otherwise it would result in
a TypeError.

The resulting string is a series of key=value pairs separated by '&' characters, where both key and
value are quoted using the quote_via function. By default, quote_plus() is used to quote the values,
which means spaces are quoted as a '+' character and ‘/’ characters are encoded as %2F, which follows
the standard for GET requests (application/x-www-form-urlencoded). An alternate function that can
be passed as quote_via is quote(), which will encode spaces as %20 and not encode ‘/’ characters. For
maximum control of what is quoted, use quote and specify a value for safe.

When a sequence of two-element tuples is used as the query argument, the first element of each tuple
is a key and the second is a value. The value element in itself can be a sequence and in that case, if
the optional parameter doseq is evaluates to True, individual key=value pairs separated by '&' are
generated for each element of the value sequence for the key. The order of parameters in the encoded
string will match the order of parameter tuples in the sequence.

The safe, encoding, and errors parameters are passed down to quote_via (the encoding and errors
parameters are only passed when a query element is a str).

To reverse this encoding process, parse_qs() and parse_qsl() are provided in this module to parse
query strings into Python data structures.

Refer to urllib examples to find out how urlencode method can be used for generating query string for
a URL or data for POST.

Changed in version 3.2: Query parameter supports bytes and string objects.

New in version 3.5: quote_via parameter.

See also:

RFC 3986 - Uniform Resource Identifiers This is the current standard (STD66). Any changes to urllib.parse
module should conform to this. Certain deviations could be observed, which are mostly for backward

21.8. urllib.parse — Parse URLs into components 1129

https://tools.ietf.org/html/rfc3986.html

The Python Library Reference, Release 3.5.7

compatibility purposes and for certain de-facto parsing requirements as commonly observed in major
browsers.

RFC 2732 - Format for Literal IPv6 Addresses in URL’s. This specifies the parsing requirements of IPv6
URLs.

RFC 2396 - Uniform Resource Identifiers (URI): Generic Syntax Document describing the generic syntactic
requirements for both Uniform Resource Names (URNs) and Uniform Resource Locators (URLs).

RFC 2368 - The mailto URL scheme. Parsing requirements for mailto URL schemes.

RFC 1808 - Relative Uniform Resource Locators This Request For Comments includes the rules for joining
an absolute and a relative URL, including a fair number of “Abnormal Examples” which govern the
treatment of border cases.

RFC 1738 - Uniform Resource Locators (URL) This specifies the formal syntax and semantics of absolute
URLs.

21.9 urllib.error — Exception classes raised by urllib.request

Source code: Lib/urllib/error.py

The urllib.error module defines the exception classes for exceptions raised by urllib.request. The base excep-
tion class is URLError.

The following exceptions are raised by urllib.error as appropriate:

exception urllib.error.URLError
The handlers raise this exception (or derived exceptions) when they run into a problem. It is a subclass
of OSError.

reason
The reason for this error. It can be a message string or another exception instance.

Changed in version 3.3: URLError has been made a subclass of OSError instead of IOError.

exception urllib.error.HTTPError
Though being an exception (a subclass of URLError), an HTTPError can also function as a non-
exceptional file-like return value (the same thing that urlopen() returns). This is useful when handling
exotic HTTP errors, such as requests for authentication.

code
An HTTP status code as defined in RFC 2616. This numeric value corresponds to a value found
in the dictionary of codes as found in http.server.BaseHTTPRequestHandler.responses.

reason
This is usually a string explaining the reason for this error.

headers
The HTTP response headers for the HTTP request that caused the HTTPError.

New in version 3.4.

exception urllib.error.ContentTooShortError(msg, content)
This exception is raised when the urlretrieve() function detects that the amount of the downloaded
data is less than the expected amount (given by the Content-Length header). The content attribute
stores the downloaded (and supposedly truncated) data.

1130 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc2732.html
https://tools.ietf.org/html/rfc2396.html
https://tools.ietf.org/html/rfc2368.html
https://tools.ietf.org/html/rfc1808.html
https://tools.ietf.org/html/rfc1738.html
https://github.com/python/cpython/tree/3.5/Lib/urllib/error.py
http://www.faqs.org/rfcs/rfc2616.html

The Python Library Reference, Release 3.5.7

21.10 urllib.robotparser — Parser for robots.txt

Source code: Lib/urllib/robotparser.py

This module provides a single class, RobotFileParser, which answers questions about whether or not a
particular user agent can fetch a URL on the Web site that published the robots.txt file. For more details
on the structure of robots.txt files, see http://www.robotstxt.org/orig.html.

class urllib.robotparser.RobotFileParser(url=”)
This class provides methods to read, parse and answer questions about the robots.txt file at url.

set_url(url)
Sets the URL referring to a robots.txt file.

read()
Reads the robots.txt URL and feeds it to the parser.

parse(lines)
Parses the lines argument.

can_fetch(useragent, url)
Returns True if the useragent is allowed to fetch the url according to the rules contained in the
parsed robots.txt file.

mtime()
Returns the time the robots.txt file was last fetched. This is useful for long-running web spiders
that need to check for new robots.txt files periodically.

modified()
Sets the time the robots.txt file was last fetched to the current time.

The following example demonstrates basic use of the RobotFileParser class.

>>> import urllib.robotparser
>>> rp = urllib.robotparser.RobotFileParser()
>>> rp.set_url("http://www.musi-cal.com/robots.txt")
>>> rp.read()
>>> rp.can_fetch("*", "http://www.musi-cal.com/cgi-bin/search?city=San+Francisco")
False
>>> rp.can_fetch("*", "http://www.musi-cal.com/")
True

21.11 http — HTTP modules

Source code: Lib/http/__init__.py

http is a package that collects several modules for working with the HyperText Transfer Protocol:

• http.client is a low-level HTTP protocol client; for high-level URL opening use urllib.request

• http.server contains basic HTTP server classes based on socketserver

• http.cookies has utilities for implementing state management with cookies

• http.cookiejar provides persistence of cookies

21.10. urllib.robotparser — Parser for robots.txt 1131

https://github.com/python/cpython/tree/3.5/Lib/urllib/robotparser.py
http://www.robotstxt.org/orig.html
https://github.com/python/cpython/tree/3.5/Lib/http/__init__.py

The Python Library Reference, Release 3.5.7

http is also a module that defines a number of HTTP status codes and associated messages through the
http.HTTPStatus enum:

class http.HTTPStatus
New in version 3.5.

A subclass of enum.IntEnum that defines a set of HTTP status codes, reason phrases and long descrip-
tions written in English.

Usage:

>>> from http import HTTPStatus
>>> HTTPStatus.OK
<HTTPStatus.OK: 200>
>>> HTTPStatus.OK == 200
True
>>> http.HTTPStatus.OK.value
200
>>> HTTPStatus.OK.phrase
'OK'
>>> HTTPStatus.OK.description
'Request fulfilled, document follows'
>>> list(HTTPStatus)
[<HTTPStatus.CONTINUE: 100>, <HTTPStatus.SWITCHING_PROTOCOLS: 101>, ...]

21.11.1 HTTP status codes

Supported, IANA-registered status codes available in http.HTTPStatus are:

Code Enum Name Details
100 CONTINUE HTTP/1.1 RFC 7231, Section 6.2.1
101 SWITCHING_PROTOCOLS HTTP/1.1 RFC 7231, Section 6.2.2
102 PROCESSING WebDAV RFC 2518, Section 10.1
200 OK HTTP/1.1 RFC 7231, Section 6.3.1
201 CREATED HTTP/1.1 RFC 7231, Section 6.3.2
202 ACCEPTED HTTP/1.1 RFC 7231, Section 6.3.3
203 NON_AUTHORITATIVE_INFORMATION HTTP/1.1 RFC 7231, Section 6.3.4
204 NO_CONTENT HTTP/1.1 RFC 7231, Section 6.3.5
205 RESET_CONTENT HTTP/1.1 RFC 7231, Section 6.3.6
206 PARTIAL_CONTENT HTTP/1.1 RFC 7233, Section 4.1
207 MULTI_STATUS WebDAV RFC 4918, Section 11.1
208 ALREADY_REPORTED WebDAV Binding Extensions RFC 5842, Section 7.1 (Experimental)
226 IM_USED Delta Encoding in HTTP RFC 3229, Section 10.4.1
300 MULTIPLE_CHOICES HTTP/1.1 RFC 7231, Section 6.4.1
301 MOVED_PERMANENTLY HTTP/1.1 RFC 7231, Section 6.4.2
302 FOUND HTTP/1.1 RFC 7231, Section 6.4.3
303 SEE_OTHER HTTP/1.1 RFC 7231, Section 6.4.4
304 NOT_MODIFIED HTTP/1.1 RFC 7232, Section 4.1
305 USE_PROXY HTTP/1.1 RFC 7231, Section 6.4.5
307 TEMPORARY_REDIRECT HTTP/1.1 RFC 7231, Section 6.4.7
308 PERMANENT_REDIRECT Permanent Redirect RFC 7238, Section 3 (Experimental)
400 BAD_REQUEST HTTP/1.1 RFC 7231, Section 6.5.1
401 UNAUTHORIZED HTTP/1.1 Authentication RFC 7235, Section 3.1

Continued on next page

1132 Chapter 21. Internet Protocols and Support

https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc2518.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7233.html
https://tools.ietf.org/html/rfc4918.html
https://tools.ietf.org/html/rfc5842.html
https://tools.ietf.org/html/rfc3229.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7232.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7238.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7235.html

The Python Library Reference, Release 3.5.7

Table 1 – continued from previous page
Code Enum Name Details
402 PAYMENT_REQUIRED HTTP/1.1 RFC 7231, Section 6.5.2
403 FORBIDDEN HTTP/1.1 RFC 7231, Section 6.5.3
404 NOT_FOUND HTTP/1.1 RFC 7231, Section 6.5.4
405 METHOD_NOT_ALLOWED HTTP/1.1 RFC 7231, Section 6.5.5
406 NOT_ACCEPTABLE HTTP/1.1 RFC 7231, Section 6.5.6
407 PROXY_AUTHENTICATION_REQUIRED HTTP/1.1 Authentication RFC 7235, Section 3.2
408 REQUEST_TIMEOUT HTTP/1.1 RFC 7231, Section 6.5.7
409 CONFLICT HTTP/1.1 RFC 7231, Section 6.5.8
410 GONE HTTP/1.1 RFC 7231, Section 6.5.9
411 LENGTH_REQUIRED HTTP/1.1 RFC 7231, Section 6.5.10
412 PRECONDITION_FAILED HTTP/1.1 RFC 7232, Section 4.2
413 REQUEST_ENTITY_TOO_LARGE HTTP/1.1 RFC 7231, Section 6.5.11
414 REQUEST_URI_TOO_LONG HTTP/1.1 RFC 7231, Section 6.5.12
415 UNSUPPORTED_MEDIA_TYPE HTTP/1.1 RFC 7231, Section 6.5.13
416 REQUEST_RANGE_NOT_SATISFIABLE HTTP/1.1 Range Requests RFC 7233, Section 4.4
417 EXPECTATION_FAILED HTTP/1.1 RFC 7231, Section 6.5.14
422 UNPROCESSABLE_ENTITY WebDAV RFC 4918, Section 11.2
423 LOCKED WebDAV RFC 4918, Section 11.3
424 FAILED_DEPENDENCY WebDAV RFC 4918, Section 11.4
426 UPGRADE_REQUIRED HTTP/1.1 RFC 7231, Section 6.5.15
428 PRECONDITION_REQUIRED Additional HTTP Status Codes RFC 6585
429 TOO_MANY_REQUESTS Additional HTTP Status Codes RFC 6585
431 REQUEST_HEADER_FIELDS_TOO_LARGE Additional HTTP Status Codes RFC 6585
500 INTERNAL_SERVER_ERROR HTTP/1.1 RFC 7231, Section 6.6.1
501 NOT_IMPLEMENTED HTTP/1.1 RFC 7231, Section 6.6.2
502 BAD_GATEWAY HTTP/1.1 RFC 7231, Section 6.6.3
503 SERVICE_UNAVAILABLE HTTP/1.1 RFC 7231, Section 6.6.4
504 GATEWAY_TIMEOUT HTTP/1.1 RFC 7231, Section 6.6.5
505 HTTP_VERSION_NOT_SUPPORTED HTTP/1.1 RFC 7231, Section 6.6.6
506 VARIANT_ALSO_NEGOTIATES Transparent Content Negotiation in HTTP RFC 2295, Section 8.1 (Experimental)
507 INSUFFICIENT_STORAGE WebDAV RFC 4918, Section 11.5
508 LOOP_DETECTED WebDAV Binding Extensions RFC 5842, Section 7.2 (Experimental)
510 NOT_EXTENDED An HTTP Extension Framework RFC 2774, Section 7 (Experimental)
511 NETWORK_AUTHENTICATION_REQUIRED Additional HTTP Status Codes RFC 6585, Section 6

In order to preserve backwards compatibility, enum values are also present in the http.client module in the
form of constants. The enum name is equal to the constant name (i.e. http.HTTPStatus.OK is also available
as http.client.OK).

21.12 http.client — HTTP protocol client

Source code: Lib/http/client.py

This module defines classes which implement the client side of the HTTP and HTTPS protocols. It is
normally not used directly — the module urllib.request uses it to handle URLs that use HTTP and HTTPS.

See also:

The Requests package is recommended for a higher-level HTTP client interface.

21.12. http.client — HTTP protocol client 1133

https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7235.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7232.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7233.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc4918.html
https://tools.ietf.org/html/rfc4918.html
https://tools.ietf.org/html/rfc4918.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc6585.html
https://tools.ietf.org/html/rfc6585.html
https://tools.ietf.org/html/rfc6585.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc2295.html
https://tools.ietf.org/html/rfc4918.html
https://tools.ietf.org/html/rfc5842.html
https://tools.ietf.org/html/rfc2774.html
https://tools.ietf.org/html/rfc6585.html
https://github.com/python/cpython/tree/3.5/Lib/http/client.py
http://docs.python-requests.org/

The Python Library Reference, Release 3.5.7

Note: HTTPS support is only available if Python was compiled with SSL support (through the ssl module).

The module provides the following classes:

class http.client.HTTPConnection(host, port=None[, timeout], source_address=None)
An HTTPConnection instance represents one transaction with an HTTP server. It should be instan-
tiated passing it a host and optional port number. If no port number is passed, the port is extracted
from the host string if it has the form host:port, else the default HTTP port (80) is used. If the
optional timeout parameter is given, blocking operations (like connection attempts) will timeout af-
ter that many seconds (if it is not given, the global default timeout setting is used). The optional
source_address parameter may be a tuple of a (host, port) to use as the source address the HTTP
connection is made from.

For example, the following calls all create instances that connect to the server at the same host and
port:

>>> h1 = http.client.HTTPConnection('www.python.org')
>>> h2 = http.client.HTTPConnection('www.python.org:80')
>>> h3 = http.client.HTTPConnection('www.python.org', 80)
>>> h4 = http.client.HTTPConnection('www.python.org', 80, timeout=10)

Changed in version 3.2: source_address was added.

Changed in version 3.4: The strict parameter was removed. HTTP 0.9-style “Simple Responses” are
not longer supported.

class http.client.HTTPSConnection(host, port=None, key_file=None, cert_file=None[,
timeout], source_address=None, *, context=None,
check_hostname=None)

A subclass of HTTPConnection that uses SSL for communication with secure servers. Default port is
443. If context is specified, it must be a ssl.SSLContext instance describing the various SSL options.

key_file and cert_file are deprecated, please use ssl.SSLContext.load_cert_chain() instead, or let ssl.
create_default_context() select the system’s trusted CA certificates for you. The check_hostname
parameter is also deprecated; the ssl.SSLContext.check_hostname attribute of context should be used
instead.

Please read Security considerations for more information on best practices.

Changed in version 3.2: source_address, context and check_hostname were added.

Changed in version 3.2: This class now supports HTTPS virtual hosts if possible (that is, if ssl.
HAS_SNI is true).

Changed in version 3.4: The strict parameter was removed. HTTP 0.9-style “Simple Responses” are
no longer supported.

Changed in version 3.4.3: This class now performs all the necessary certificate and hostname checks
by default. To revert to the previous, unverified, behavior ssl._create_unverified_context() can be
passed to the context parameter.

class http.client.HTTPResponse(sock, debuglevel=0, method=None, url=None)
Class whose instances are returned upon successful connection. Not instantiated directly by user.

Changed in version 3.4: The strict parameter was removed. HTTP 0.9 style “Simple Responses” are
no longer supported.

The following exceptions are raised as appropriate:

1134 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

exception http.client.HTTPException
The base class of the other exceptions in this module. It is a subclass of Exception.

exception http.client.NotConnected
A subclass of HTTPException.

exception http.client.InvalidURL
A subclass of HTTPException, raised if a port is given and is either non-numeric or empty.

exception http.client.UnknownProtocol
A subclass of HTTPException.

exception http.client.UnknownTransferEncoding
A subclass of HTTPException.

exception http.client.UnimplementedFileMode
A subclass of HTTPException.

exception http.client.IncompleteRead
A subclass of HTTPException.

exception http.client.ImproperConnectionState
A subclass of HTTPException.

exception http.client.CannotSendRequest
A subclass of ImproperConnectionState.

exception http.client.CannotSendHeader
A subclass of ImproperConnectionState.

exception http.client.ResponseNotReady
A subclass of ImproperConnectionState.

exception http.client.BadStatusLine
A subclass of HTTPException. Raised if a server responds with a HTTP status code that we don’t
understand.

exception http.client.LineTooLong
A subclass of HTTPException. Raised if an excessively long line is received in the HTTP protocol
from the server.

exception http.client.RemoteDisconnected
A subclass of ConnectionResetError and BadStatusLine. Raised by HTTPConnection.getresponse()
when the attempt to read the response results in no data read from the connection, indicating that
the remote end has closed the connection.

New in version 3.5: Previously, BadStatusLine('') was raised.

The constants defined in this module are:

http.client.HTTP_PORT
The default port for the HTTP protocol (always 80).

http.client.HTTPS_PORT
The default port for the HTTPS protocol (always 443).

http.client.responses
This dictionary maps the HTTP 1.1 status codes to the W3C names.

Example: http.client.responses[http.client.NOT_FOUND] is 'Not Found'.

See HTTP status codes for a list of HTTP status codes that are available in this module as constants.

21.12. http.client — HTTP protocol client 1135

The Python Library Reference, Release 3.5.7

21.12.1 HTTPConnection Objects

HTTPConnection instances have the following methods:

HTTPConnection.request(method, url, body=None, headers={})
This will send a request to the server using the HTTP request method method and the selector url.

If body is specified, the specified data is sent after the headers are finished. It may be a string, a
bytes-like object, an open file object, or an iterable of bytes-like objects. If body is a string, it is
encoded as ISO-8859-1, the default for HTTP. If it is a bytes-like object the bytes are sent as is. If it is
a file object, the contents of the file is sent; this file object should support at least the read() method.
If the file object has a mode attribute, the data returned by the read() method will be encoded as
ISO-8859-1 unless the mode attribute contains the substring b, otherwise the data returned by read()
is sent as is. If body is an iterable, the elements of the iterable are sent as is until the iterable is
exhausted.

The headers argument should be a mapping of extra HTTP headers to send with the request.

If headers does not contain a Content-Length item, one is added automatically if possible. If body
is None, the Content-Length header is set to 0 for methods that expect a body (PUT, POST, and
PATCH). If body is a string or bytes object, the Content-Length header is set to its length. If body is
a file object and it works to call fstat() on the result of its fileno() method, then the Content-Length
header is set to the st_size reported by the fstat call. Otherwise no Content-Length header is added.

New in version 3.2: body can now be an iterable.

HTTPConnection.getresponse()
Should be called after a request is sent to get the response from the server. Returns an HTTPResponse
instance.

Note: Note that you must have read the whole response before you can send a new request to the
server.

Changed in version 3.5: If a ConnectionError or subclass is raised, the HTTPConnection object will
be ready to reconnect when a new request is sent.

HTTPConnection.set_debuglevel(level)
Set the debugging level. The default debug level is 0, meaning no debugging output is printed. Any
value greater than 0 will cause all currently defined debug output to be printed to stdout. The
debuglevel is passed to any new HTTPResponse objects that are created.

New in version 3.1.

HTTPConnection.set_tunnel(host, port=None, headers=None)
Set the host and the port for HTTP Connect Tunnelling. This allows running the connection through
a proxy server.

The host and port arguments specify the endpoint of the tunneled connection (i.e. the address included
in the CONNECT request, not the address of the proxy server).

The headers argument should be a mapping of extra HTTP headers to send with the CONNECT
request.

For example, to tunnel through a HTTPS proxy server running locally on port 8080, we would pass
the address of the proxy to the HTTPSConnection constructor, and the address of the host that we
eventually want to reach to the set_tunnel() method:

1136 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

>>> import http.client
>>> conn = http.client.HTTPSConnection("localhost", 8080)
>>> conn.set_tunnel("www.python.org")
>>> conn.request("HEAD","/index.html")

New in version 3.2.

HTTPConnection.connect()
Connect to the server specified when the object was created. By default, this is called automatically
when making a request if the client does not already have a connection.

HTTPConnection.close()
Close the connection to the server.

As an alternative to using the request() method described above, you can also send your request step by
step, by using the four functions below.

HTTPConnection.putrequest(method, url, skip_host=False, skip_accept_encoding=False)
This should be the first call after the connection to the server has been made. It sends a line to the
server consisting of the method string, the url string, and the HTTP version (HTTP/1.1). To disable
automatic sending of Host: or Accept-Encoding: headers (for example to accept additional content
encodings), specify skip_host or skip_accept_encoding with non-False values.

HTTPConnection.putheader(header, argument[, ...])
Send an RFC 822-style header to the server. It sends a line to the server consisting of the header, a
colon and a space, and the first argument. If more arguments are given, continuation lines are sent,
each consisting of a tab and an argument.

HTTPConnection.endheaders(message_body=None)
Send a blank line to the server, signalling the end of the headers. The optional message_body argument
can be used to pass a message body associated with the request. The message body will be sent in the
same packet as the message headers if it is string, otherwise it is sent in a separate packet.

HTTPConnection.send(data)
Send data to the server. This should be used directly only after the endheaders() method has been
called and before getresponse() is called.

21.12.2 HTTPResponse Objects

An HTTPResponse instance wraps the HTTP response from the server. It provides access to the request
headers and the entity body. The response is an iterable object and can be used in a with statement.

Changed in version 3.5: The io.BufferedIOBase interface is now implemented and all of its reader operations
are supported.

HTTPResponse.read([amt])
Reads and returns the response body, or up to the next amt bytes.

HTTPResponse.readinto(b)
Reads up to the next len(b) bytes of the response body into the buffer b. Returns the number of bytes
read.

New in version 3.3.

HTTPResponse.getheader(name, default=None)
Return the value of the header name, or default if there is no header matching name. If there is more
than one header with the name name, return all of the values joined by ‘, ‘. If ‘default’ is any iterable
other than a single string, its elements are similarly returned joined by commas.

21.12. http.client — HTTP protocol client 1137

https://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 3.5.7

HTTPResponse.getheaders()
Return a list of (header, value) tuples.

HTTPResponse.fileno()
Return the fileno of the underlying socket.

HTTPResponse.msg
A http.client.HTTPMessage instance containing the response headers. http.client.HTTPMessage is a
subclass of email.message.Message.

HTTPResponse.version
HTTP protocol version used by server. 10 for HTTP/1.0, 11 for HTTP/1.1.

HTTPResponse.status
Status code returned by server.

HTTPResponse.reason
Reason phrase returned by server.

HTTPResponse.debuglevel
A debugging hook. If debuglevel is greater than zero, messages will be printed to stdout as the response
is read and parsed.

HTTPResponse.closed
Is True if the stream is closed.

21.12.3 Examples

Here is an example session that uses the GET method:

>>> import http.client
>>> conn = http.client.HTTPSConnection("www.python.org")
>>> conn.request("GET", "/")
>>> r1 = conn.getresponse()
>>> print(r1.status, r1.reason)
200 OK
>>> data1 = r1.read() # This will return entire content.
>>> # The following example demonstrates reading data in chunks.
>>> conn.request("GET", "/")
>>> r1 = conn.getresponse()
>>> while not r1.closed:
... print(r1.read(200)) # 200 bytes
b'<!doctype html>\n<!--[if"...
...
>>> # Example of an invalid request
>>> conn.request("GET", "/parrot.spam")
>>> r2 = conn.getresponse()
>>> print(r2.status, r2.reason)
404 Not Found
>>> data2 = r2.read()
>>> conn.close()

Here is an example session that uses the HEAD method. Note that the HEAD method never returns any
data.

>>> import http.client
>>> conn = http.client.HTTPSConnection("www.python.org")
>>> conn.request("HEAD", "/")

(continues on next page)

1138 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> res = conn.getresponse()
>>> print(res.status, res.reason)
200 OK
>>> data = res.read()
>>> print(len(data))
0
>>> data == b''
True

Here is an example session that shows how to POST requests:

>>> import http.client, urllib.parse
>>> params = urllib.parse.urlencode({'@number': 12524, '@type': 'issue', '@action': 'show'})
>>> headers = {"Content-type": "application/x-www-form-urlencoded",
... "Accept": "text/plain"}
>>> conn = http.client.HTTPConnection("bugs.python.org")
>>> conn.request("POST", "", params, headers)
>>> response = conn.getresponse()
>>> print(response.status, response.reason)
302 Found
>>> data = response.read()
>>> data
b'Redirecting to http://bugs.python.org/issue12524'
>>> conn.close()

Client side HTTP PUT requests are very similar to POST requests. The difference lies only the server side
where HTTP server will allow resources to be created via PUT request. It should be noted that custom HTTP
methods +are also handled in urllib.request.Request by sending the appropriate +method attribute.Here is
an example session that shows how to do PUT request using http.client:

>>> # This creates an HTTP message
>>> # with the content of BODY as the enclosed representation
>>> # for the resource http://localhost:8080/file
...
>>> import http.client
>>> BODY = "***filecontents***"
>>> conn = http.client.HTTPConnection("localhost", 8080)
>>> conn.request("PUT", "/file", BODY)
>>> response = conn.getresponse()
>>> print(response.status, response.reason)
200, OK

21.12.4 HTTPMessage Objects

An http.client.HTTPMessage instance holds the headers from an HTTP response. It is implemented using
the email.message.Message class.

21.13 ftplib — FTP protocol client

Source code: Lib/ftplib.py

21.13. ftplib — FTP protocol client 1139

https://github.com/python/cpython/tree/3.5/Lib/ftplib.py

The Python Library Reference, Release 3.5.7

This module defines the class FTP and a few related items. The FTP class implements the client side of the
FTP protocol. You can use this to write Python programs that perform a variety of automated FTP jobs,
such as mirroring other FTP servers. It is also used by the module urllib.request to handle URLs that use
FTP. For more information on FTP (File Transfer Protocol), see Internet RFC 959.

Here’s a sample session using the ftplib module:

>>> from ftplib import FTP
>>> ftp = FTP('ftp.debian.org') # connect to host, default port
>>> ftp.login() # user anonymous, passwd anonymous@
'230 Login successful.'
>>> ftp.cwd('debian') # change into "debian" directory
>>> ftp.retrlines('LIST') # list directory contents
-rw-rw-r-- 1 1176 1176 1063 Jun 15 10:18 README
...
drwxr-sr-x 5 1176 1176 4096 Dec 19 2000 pool
drwxr-sr-x 4 1176 1176 4096 Nov 17 2008 project
drwxr-xr-x 3 1176 1176 4096 Oct 10 2012 tools
'226 Directory send OK.'
>>> ftp.retrbinary('RETR README', open('README', 'wb').write)
'226 Transfer complete.'
>>> ftp.quit()

The module defines the following items:

class ftplib.FTP(host=”, user=”, passwd=”, acct=”, timeout=None, source_address=None)
Return a new instance of the FTP class. When host is given, the method call connect(host) is made.
When user is given, additionally the method call login(user, passwd, acct) is made (where passwd and
acct default to the empty string when not given). The optional timeout parameter specifies a timeout
in seconds for blocking operations like the connection attempt (if is not specified, the global default
timeout setting will be used). source_address is a 2-tuple (host, port) for the socket to bind to as its
source address before connecting.

The FTP class supports the with statement, e.g.:

>>> from ftplib import FTP
>>> with FTP("ftp1.at.proftpd.org") as ftp:
... ftp.login()
... ftp.dir()
... # doctest: +SKIP
'230 Anonymous login ok, restrictions apply.'
dr-xr-xr-x 9 ftp ftp 154 May 6 10:43 .
dr-xr-xr-x 9 ftp ftp 154 May 6 10:43 ..
dr-xr-xr-x 5 ftp ftp 4096 May 6 10:43 CentOS
dr-xr-xr-x 3 ftp ftp 18 Jul 10 2008 Fedora
>>>

Changed in version 3.2: Support for the with statement was added.

Changed in version 3.3: source_address parameter was added.

class ftplib.FTP_TLS(host=”, user=”, passwd=”, acct=”, keyfile=None, certfile=None, con-
text=None, timeout=None, source_address=None)

A FTP subclass which adds TLS support to FTP as described in RFC 4217. Connect as usual to port
21 implicitly securing the FTP control connection before authenticating. Securing the data connection
requires the user to explicitly ask for it by calling the prot_p() method. context is a ssl.SSLContext
object which allows bundling SSL configuration options, certificates and private keys into a single
(potentially long-lived) structure. Please read Security considerations for best practices.

1140 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc959.html
https://tools.ietf.org/html/rfc4217.html

The Python Library Reference, Release 3.5.7

keyfile and certfile are a legacy alternative to context – they can point to PEM-formatted private key
and certificate chain files (respectively) for the SSL connection.

New in version 3.2.

Changed in version 3.3: source_address parameter was added.

Changed in version 3.4: The class now supports hostname check with ssl.SSLContext.check_hostname
and Server Name Indication (see ssl.HAS_SNI).

Here’s a sample session using the FTP_TLS class:

>>> ftps = FTP_TLS('ftp.pureftpd.org')
>>> ftps.login()
'230 Anonymous user logged in'
>>> ftps.prot_p()
'200 Data protection level set to "private"'
>>> ftps.nlst()
['6jack', 'OpenBSD', 'antilink', 'blogbench', 'bsdcam', 'clockspeed', 'djbdns-jedi', 'docs',
→˓'eaccelerator-jedi', 'favicon.ico', 'francotone', 'fugu', 'ignore', 'libpuzzle', 'metalog', 'minidentd',
→˓'misc', 'mysql-udf-global-user-variables', 'php-jenkins-hash', 'php-skein-hash', 'php-webdav',
→˓'phpaudit', 'phpbench', 'pincaster', 'ping', 'posto', 'pub', 'public', 'public_keys', 'pure-ftpd',
→˓'qscan', 'qtc', 'sharedance', 'skycache', 'sound', 'tmp', 'ucarp']

exception ftplib.error_reply
Exception raised when an unexpected reply is received from the server.

exception ftplib.error_temp
Exception raised when an error code signifying a temporary error (response codes in the range 400–499)
is received.

exception ftplib.error_perm
Exception raised when an error code signifying a permanent error (response codes in the range 500–599)
is received.

exception ftplib.error_proto
Exception raised when a reply is received from the server that does not fit the response specifications
of the File Transfer Protocol, i.e. begin with a digit in the range 1–5.

ftplib.all_errors
The set of all exceptions (as a tuple) that methods of FTP instances may raise as a result of problems
with the FTP connection (as opposed to programming errors made by the caller). This set includes
the four exceptions listed above as well as OSError.

See also:

Module netrc Parser for the .netrc file format. The file .netrc is typically used by FTP clients to load user
authentication information before prompting the user.

21.13.1 FTP Objects

Several methods are available in two flavors: one for handling text files and another for binary files. These
are named for the command which is used followed by lines for the text version or binary for the binary
version.

FTP instances have the following methods:

FTP.set_debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,
0, produces no debugging output. A value of 1 produces a moderate amount of debugging output,

21.13. ftplib — FTP protocol client 1141

The Python Library Reference, Release 3.5.7

generally a single line per request. A value of 2 or higher produces the maximum amount of debugging
output, logging each line sent and received on the control connection.

FTP.connect(host=”, port=0, timeout=None, source_address=None)
Connect to the given host and port. The default port number is 21, as specified by the FTP protocol
specification. It is rarely needed to specify a different port number. This function should be called
only once for each instance; it should not be called at all if a host was given when the instance was
created. All other methods can only be used after a connection has been made. The optional timeout
parameter specifies a timeout in seconds for the connection attempt. If no timeout is passed, the global
default timeout setting will be used. source_address is a 2-tuple (host, port) for the socket to bind to
as its source address before connecting.

Changed in version 3.3: source_address parameter was added.

FTP.getwelcome()
Return the welcome message sent by the server in reply to the initial connection. (This message
sometimes contains disclaimers or help information that may be relevant to the user.)

FTP.login(user=’anonymous’, passwd=”, acct=”)
Log in as the given user. The passwd and acct parameters are optional and default to the empty
string. If no user is specified, it defaults to 'anonymous'. If user is 'anonymous', the default passwd
is 'anonymous@'. This function should be called only once for each instance, after a connection has
been established; it should not be called at all if a host and user were given when the instance was
created. Most FTP commands are only allowed after the client has logged in. The acct parameter
supplies “accounting information”; few systems implement this.

FTP.abort()
Abort a file transfer that is in progress. Using this does not always work, but it’s worth a try.

FTP.sendcmd(cmd)
Send a simple command string to the server and return the response string.

FTP.voidcmd(cmd)
Send a simple command string to the server and handle the response. Return nothing if a response
code corresponding to success (codes in the range 200–299) is received. Raise error_reply otherwise.

FTP.retrbinary(cmd, callback, blocksize=8192, rest=None)
Retrieve a file in binary transfer mode. cmd should be an appropriate RETR command: 'RETR
filename'. The callback function is called for each block of data received, with a single bytes argument
giving the data block. The optional blocksize argument specifies the maximum chunk size to read on
the low-level socket object created to do the actual transfer (which will also be the largest size of the
data blocks passed to callback). A reasonable default is chosen. rest means the same thing as in the
transfercmd() method.

FTP.retrlines(cmd, callback=None)
Retrieve a file or directory listing in ASCII transfer mode. cmd should be an appropriate RETR
command (see retrbinary()) or a command such as LIST or NLST (usually just the string 'LIST').
LIST retrieves a list of files and information about those files. NLST retrieves a list of file names. The
callback function is called for each line with a string argument containing the line with the trailing
CRLF stripped. The default callback prints the line to sys.stdout.

FTP.set_pasv(val)
Enable “passive” mode if val is true, otherwise disable passive mode. Passive mode is on by default.

FTP.storbinary(cmd, fp, blocksize=8192, callback=None, rest=None)
Store a file in binary transfer mode. cmd should be an appropriate STOR command: "STOR filename".
fp is a file object (opened in binary mode) which is read until EOF using its read() method in blocks
of size blocksize to provide the data to be stored. The blocksize argument defaults to 8192. callback

1142 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

is an optional single parameter callable that is called on each block of data after it is sent. rest means
the same thing as in the transfercmd() method.

Changed in version 3.2: rest parameter added.

FTP.storlines(cmd, fp, callback=None)
Store a file in ASCII transfer mode. cmd should be an appropriate STOR command (see storbinary()).
Lines are read until EOF from the file object fp (opened in binary mode) using its readline() method
to provide the data to be stored. callback is an optional single parameter callable that is called on
each line after it is sent.

FTP.transfercmd(cmd, rest=None)
Initiate a transfer over the data connection. If the transfer is active, send an EPRT or PORT command
and the transfer command specified by cmd, and accept the connection. If the server is passive, send
an EPSV or PASV command, connect to it, and start the transfer command. Either way, return the
socket for the connection.

If optional rest is given, a REST command is sent to the server, passing rest as an argument. rest is
usually a byte offset into the requested file, telling the server to restart sending the file’s bytes at the
requested offset, skipping over the initial bytes. Note however that RFC 959 requires only that rest
be a string containing characters in the printable range from ASCII code 33 to ASCII code 126. The
transfercmd() method, therefore, converts rest to a string, but no check is performed on the string’s
contents. If the server does not recognize the REST command, an error_reply exception will be raised.
If this happens, simply call transfercmd() without a rest argument.

FTP.ntransfercmd(cmd, rest=None)
Like transfercmd(), but returns a tuple of the data connection and the expected size of the data. If
the expected size could not be computed, None will be returned as the expected size. cmd and rest
means the same thing as in transfercmd().

FTP.mlsd(path="", facts=[])
List a directory in a standardized format by using MLSD command (RFC 3659). If path is omitted
the current directory is assumed. facts is a list of strings representing the type of information desired
(e.g. ["type", "size", "perm"]). Return a generator object yielding a tuple of two elements for every
file found in path. First element is the file name, the second one is a dictionary containing facts about
the file name. Content of this dictionary might be limited by the facts argument but server is not
guaranteed to return all requested facts.

New in version 3.3.

FTP.nlst(argument[, ...])
Return a list of file names as returned by the NLST command. The optional argument is a directory
to list (default is the current server directory). Multiple arguments can be used to pass non-standard
options to the NLST command.

Note: If your server supports the command, mlsd() offers a better API.

FTP.dir(argument[, ...])
Produce a directory listing as returned by the LIST command, printing it to standard output. The
optional argument is a directory to list (default is the current server directory). Multiple arguments
can be used to pass non-standard options to the LIST command. If the last argument is a function, it
is used as a callback function as for retrlines(); the default prints to sys.stdout. This method returns
None.

Note: If your server supports the command, mlsd() offers a better API.

21.13. ftplib — FTP protocol client 1143

https://tools.ietf.org/html/rfc3659.html

The Python Library Reference, Release 3.5.7

FTP.rename(fromname, toname)
Rename file fromname on the server to toname.

FTP.delete(filename)
Remove the file named filename from the server. If successful, returns the text of the response, otherwise
raises error_perm on permission errors or error_reply on other errors.

FTP.cwd(pathname)
Set the current directory on the server.

FTP.mkd(pathname)
Create a new directory on the server.

FTP.pwd()
Return the pathname of the current directory on the server.

FTP.rmd(dirname)
Remove the directory named dirname on the server.

FTP.size(filename)
Request the size of the file named filename on the server. On success, the size of the file is returned
as an integer, otherwise None is returned. Note that the SIZE command is not standardized, but is
supported by many common server implementations.

FTP.quit()
Send a QUIT command to the server and close the connection. This is the “polite” way to close a
connection, but it may raise an exception if the server responds with an error to the QUIT command.
This implies a call to the close() method which renders the FTP instance useless for subsequent calls
(see below).

FTP.close()
Close the connection unilaterally. This should not be applied to an already closed connection such as
after a successful call to quit(). After this call the FTP instance should not be used any more (after a
call to close() or quit() you cannot reopen the connection by issuing another login() method).

21.13.2 FTP_TLS Objects

FTP_TLS class inherits from FTP, defining these additional objects:

FTP_TLS.ssl_version
The SSL version to use (defaults to ssl.PROTOCOL_SSLv23).

FTP_TLS.auth()
Set up a secure control connection by using TLS or SSL, depending on what is specified in the
ssl_version attribute.

Changed in version 3.4: The method now supports hostname check with ssl.SSLContext.
check_hostname and Server Name Indication (see ssl.HAS_SNI).

FTP_TLS.ccc()
Revert control channel back to plaintext. This can be useful to take advantage of firewalls that know
how to handle NAT with non-secure FTP without opening fixed ports.

New in version 3.3.

FTP_TLS.prot_p()
Set up secure data connection.

FTP_TLS.prot_c()
Set up clear text data connection.

1144 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

21.14 poplib — POP3 protocol client

Source code: Lib/poplib.py

This module defines a class, POP3, which encapsulates a connection to a POP3 server and implements the
protocol as defined in RFC 1939. The POP3 class supports both the minimal and optional command sets
from RFC 1939. The POP3 class also supports the STLS command introduced in RFC 2595 to enable
encrypted communication on an already established connection.

Additionally, this module provides a class POP3_SSL, which provides support for connecting to POP3
servers that use SSL as an underlying protocol layer.

Note that POP3, though widely supported, is obsolescent. The implementation quality of POP3 servers
varies widely, and too many are quite poor. If your mailserver supports IMAP, you would be better off using
the imaplib.IMAP4 class, as IMAP servers tend to be better implemented.

The poplib module provides two classes:

class poplib.POP3(host, port=POP3_PORT[, timeout])
This class implements the actual POP3 protocol. The connection is created when the instance is
initialized. If port is omitted, the standard POP3 port (110) is used. The optional timeout parameter
specifies a timeout in seconds for the connection attempt (if not specified, the global default timeout
setting will be used).

class poplib.POP3_SSL(host, port=POP3_SSL_PORT, keyfile=None, certfile=None, time-
out=None, context=None)

This is a subclass of POP3 that connects to the server over an SSL encrypted socket. If port is not
specified, 995, the standard POP3-over-SSL port is used. timeout works as in the POP3 construc-
tor. context is an optional ssl.SSLContext object which allows bundling SSL configuration options,
certificates and private keys into a single (potentially long-lived) structure. Please read Security con-
siderations for best practices.

keyfile and certfile are a legacy alternative to context - they can point to PEM-formatted private key
and certificate chain files, respectively, for the SSL connection.

Changed in version 3.2: context parameter added.

Changed in version 3.4: The class now supports hostname check with ssl.SSLContext.check_hostname
and Server Name Indication (see ssl.HAS_SNI).

One exception is defined as an attribute of the poplib module:

exception poplib.error_proto
Exception raised on any errors from this module (errors from socket module are not caught). The
reason for the exception is passed to the constructor as a string.

See also:

Module imaplib The standard Python IMAP module.

Frequently Asked Questions About Fetchmail The FAQ for the fetchmail POP/IMAP client collects infor-
mation on POP3 server variations and RFC noncompliance that may be useful if you need to write an
application based on the POP protocol.

21.14.1 POP3 Objects

All POP3 commands are represented by methods of the same name, in lower-case; most return the response
text sent by the server.

21.14. poplib — POP3 protocol client 1145

https://github.com/python/cpython/tree/3.5/Lib/poplib.py
https://tools.ietf.org/html/rfc1939.html
https://tools.ietf.org/html/rfc1939.html
https://tools.ietf.org/html/rfc2595.html
http://www.catb.org/~esr/fetchmail/fetchmail-FAQ.html

The Python Library Reference, Release 3.5.7

An POP3 instance has the following methods:

POP3.set_debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,
0, produces no debugging output. A value of 1 produces a moderate amount of debugging output,
generally a single line per request. A value of 2 or higher produces the maximum amount of debugging
output, logging each line sent and received on the control connection.

POP3.getwelcome()
Returns the greeting string sent by the POP3 server.

POP3.capa()
Query the server’s capabilities as specified in RFC 2449. Returns a dictionary in the form {'name':
['param'...]}.

New in version 3.4.

POP3.user(username)
Send user command, response should indicate that a password is required.

POP3.pass_(password)
Send password, response includes message count and mailbox size. Note: the mailbox on the server is
locked until quit() is called.

POP3.apop(user, secret)
Use the more secure APOP authentication to log into the POP3 server.

POP3.rpop(user)
Use RPOP authentication (similar to UNIX r-commands) to log into POP3 server.

POP3.stat()
Get mailbox status. The result is a tuple of 2 integers: (message count, mailbox size).

POP3.list([which])
Request message list, result is in the form (response, ['mesg_num octets', ...], octets). If which is set,
it is the message to list.

POP3.retr(which)
Retrieve whole message number which, and set its seen flag. Result is in form (response, ['line', ...],
octets).

POP3.dele(which)
Flag message number which for deletion. On most servers deletions are not actually performed until
QUIT (the major exception is Eudora QPOP, which deliberately violates the RFCs by doing pending
deletes on any disconnect).

POP3.rset()
Remove any deletion marks for the mailbox.

POP3.noop()
Do nothing. Might be used as a keep-alive.

POP3.quit()
Signoff: commit changes, unlock mailbox, drop connection.

POP3.top(which, howmuch)
Retrieves the message header plus howmuch lines of the message after the header of message number
which. Result is in form (response, ['line', ...], octets).

The POP3 TOP command this method uses, unlike the RETR command, doesn’t set the message’s
seen flag; unfortunately, TOP is poorly specified in the RFCs and is frequently broken in off-brand
servers. Test this method by hand against the POP3 servers you will use before trusting it.

1146 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc2449.html

The Python Library Reference, Release 3.5.7

POP3.uidl(which=None)
Return message digest (unique id) list. If which is specified, result contains the unique id for that
message in the form 'response mesgnum uid, otherwise result is list (response, ['mesgnum uid', ...],
octets).

POP3.utf8()
Try to switch to UTF-8 mode. Returns the server response if successful, raises error_proto if not.
Specified in RFC 6856.

New in version 3.5.

POP3.stls(context=None)
Start a TLS session on the active connection as specified in RFC 2595. This is only allowed before
user authentication

context parameter is a ssl.SSLContext object which allows bundling SSL configuration options, certifi-
cates and private keys into a single (potentially long-lived) structure. Please read Security considera-
tions for best practices.

This method supports hostname checking via ssl.SSLContext.check_hostname and Server Name Indi-
cation (see ssl.HAS_SNI).

New in version 3.4.

Instances of POP3_SSL have no additional methods. The interface of this subclass is identical to its parent.

21.14.2 POP3 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all
messages:

import getpass, poplib

M = poplib.POP3('localhost')
M.user(getpass.getuser())
M.pass_(getpass.getpass())
numMessages = len(M.list()[1])
for i in range(numMessages):

for j in M.retr(i+1)[1]:
print(j)

At the end of the module, there is a test section that contains a more extensive example of usage.

21.15 imaplib — IMAP4 protocol client

Source code: Lib/imaplib.py

This module defines three classes, IMAP4, IMAP4_SSL and IMAP4_stream, which encapsulate a connection
to an IMAP4 server and implement a large subset of the IMAP4rev1 client protocol as defined in RFC 2060.
It is backward compatible with IMAP4 (RFC 1730) servers, but note that the STATUS command is not
supported in IMAP4.

Three classes are provided by the imaplib module, IMAP4 is the base class:

21.15. imaplib — IMAP4 protocol client 1147

https://tools.ietf.org/html/rfc6856.html
https://tools.ietf.org/html/rfc2595.html
https://github.com/python/cpython/tree/3.5/Lib/imaplib.py
https://tools.ietf.org/html/rfc2060.html
https://tools.ietf.org/html/rfc1730.html

The Python Library Reference, Release 3.5.7

class imaplib.IMAP4(host=”, port=IMAP4_PORT)
This class implements the actual IMAP4 protocol. The connection is created and protocol version
(IMAP4 or IMAP4rev1) is determined when the instance is initialized. If host is not specified, '' (the
local host) is used. If port is omitted, the standard IMAP4 port (143) is used.

The IMAP4 class supports the with statement. When used like this, the IMAP4 LOGOUT command
is issued automatically when the with statement exits. E.g.:

>>> from imaplib import IMAP4
>>> with IMAP4("domain.org") as M:
... M.noop()
...
('OK', [b'Nothing Accomplished. d25if65hy903weo.87'])

Changed in version 3.5: Support for the with statement was added.

Three exceptions are defined as attributes of the IMAP4 class:

exception IMAP4.error
Exception raised on any errors. The reason for the exception is passed to the constructor as a string.

exception IMAP4.abort
IMAP4 server errors cause this exception to be raised. This is a sub-class of IMAP4.error. Note that
closing the instance and instantiating a new one will usually allow recovery from this exception.

exception IMAP4.readonly
This exception is raised when a writable mailbox has its status changed by the server. This is a sub-
class of IMAP4.error. Some other client now has write permission, and the mailbox will need to be
re-opened to re-obtain write permission.

There’s also a subclass for secure connections:

class imaplib.IMAP4_SSL(host=”, port=IMAP4_SSL_PORT, keyfile=None, certfile=None,
ssl_context=None)

This is a subclass derived from IMAP4 that connects over an SSL encrypted socket (to use this class
you need a socket module that was compiled with SSL support). If host is not specified, '' (the local
host) is used. If port is omitted, the standard IMAP4-over-SSL port (993) is used. ssl_context is a
ssl.SSLContext object which allows bundling SSL configuration options, certificates and private keys
into a single (potentially long-lived) structure. Please read Security considerations for best practices.

keyfile and certfile are a legacy alternative to ssl_context - they can point to PEM-formatted private
key and certificate chain files for the SSL connection. Note that the keyfile/certfile parameters are
mutually exclusive with ssl_context, a ValueError is raised if keyfile/certfile is provided along with
ssl_context.

Changed in version 3.3: ssl_context parameter added.

Changed in version 3.4: The class now supports hostname check with ssl.SSLContext.check_hostname
and Server Name Indication (see ssl.HAS_SNI).

The second subclass allows for connections created by a child process:

class imaplib.IMAP4_stream(command)
This is a subclass derived from IMAP4 that connects to the stdin/stdout file descriptors created by
passing command to subprocess.Popen().

The following utility functions are defined:

imaplib.Internaldate2tuple(datestr)
Parse an IMAP4 INTERNALDATE string and return corresponding local time. The return value is a
time.struct_time tuple or None if the string has wrong format.

1148 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

imaplib.Int2AP(num)
Converts an integer into a string representation using characters from the set [A .. P].

imaplib.ParseFlags(flagstr)
Converts an IMAP4 FLAGS response to a tuple of individual flags.

imaplib.Time2Internaldate(date_time)
Convert date_time to an IMAP4 INTERNALDATE representation. The return value is a string in the
form: "DD-Mmm-YYYY HH:MM:SS +HHMM" (including double-quotes). The date_time argument
can be a number (int or float) representing seconds since epoch (as returned by time.time()), a 9-tuple
representing local time an instance of time.struct_time (as returned by time.localtime()), an aware
instance of datetime.datetime, or a double-quoted string. In the last case, it is assumed to already be
in the correct format.

Note that IMAP4 message numbers change as the mailbox changes; in particular, after an EXPUNGE
command performs deletions the remaining messages are renumbered. So it is highly advisable to use UIDs
instead, with the UID command.

At the end of the module, there is a test section that contains a more extensive example of usage.

See also:

Documents describing the protocol, and sources and binaries for servers implementing it, can all be found
at the University of Washington’s IMAP Information Center (https://www.washington.edu/imap/).

21.15.1 IMAP4 Objects

All IMAP4rev1 commands are represented by methods of the same name, either upper-case or lower-case.

All arguments to commands are converted to strings, except for AUTHENTICATE, and the last argument
to APPEND which is passed as an IMAP4 literal. If necessary (the string contains IMAP4 protocol-sensitive
characters and isn’t enclosed with either parentheses or double quotes) each string is quoted. However, the
password argument to the LOGIN command is always quoted. If you want to avoid having an argument
string quoted (eg: the flags argument to STORE) then enclose the string in parentheses (eg: r'(\Deleted)').

Each command returns a tuple: (type, [data, ...]) where type is usually 'OK' or 'NO', and data is either
the text from the command response, or mandated results from the command. Each data is either a string,
or a tuple. If a tuple, then the first part is the header of the response, and the second part contains the data
(ie: ‘literal’ value).

The message_set options to commands below is a string specifying one or more messages to be acted upon.
It may be a simple message number ('1'), a range of message numbers ('2:4'), or a group of non-contiguous
ranges separated by commas ('1:3,6:9'). A range can contain an asterisk to indicate an infinite upper bound
('3:*').

An IMAP4 instance has the following methods:

IMAP4.append(mailbox, flags, date_time, message)
Append message to named mailbox.

IMAP4.authenticate(mechanism, authobject)
Authenticate command — requires response processing.

mechanism specifies which authentication mechanism is to be used - it should appear in the instance
variable capabilities in the form AUTH=mechanism.

authobject must be a callable object:

data = authobject(response)

21.15. imaplib — IMAP4 protocol client 1149

https://www.washington.edu/imap/

The Python Library Reference, Release 3.5.7

It will be called to process server continuation responses; the response argument it is passed will be
bytes. It should return bytes data that will be base64 encoded and sent to the server. It should return
None if the client abort response * should be sent instead.

Changed in version 3.5: string usernames and passwords are now encoded to utf-8 instead of being
limited to ASCII.

IMAP4.check()
Checkpoint mailbox on server.

IMAP4.close()
Close currently selected mailbox. Deleted messages are removed from writable mailbox. This is the
recommended command before LOGOUT.

IMAP4.copy(message_set, new_mailbox)
Copy message_set messages onto end of new_mailbox.

IMAP4.create(mailbox)
Create new mailbox named mailbox.

IMAP4.delete(mailbox)
Delete old mailbox named mailbox.

IMAP4.deleteacl(mailbox, who)
Delete the ACLs (remove any rights) set for who on mailbox.

IMAP4.enable(capability)
Enable capability (see RFC 5161). Most capabilities do not need to be enabled. Currently only the
UTF8=ACCEPT capability is supported (see RFC 6855).

New in version 3.5: The enable() method itself, and RFC 6855 support.

IMAP4.expunge()
Permanently remove deleted items from selected mailbox. Generates an EXPUNGE response for each
deleted message. Returned data contains a list of EXPUNGE message numbers in order received.

IMAP4.fetch(message_set, message_parts)
Fetch (parts of) messages. message_parts should be a string of message part names enclosed within
parentheses, eg: "(UID BODY[TEXT])". Returned data are tuples of message part envelope and data.

IMAP4.getacl(mailbox)
Get the ACLs for mailbox. The method is non-standard, but is supported by the Cyrus server.

IMAP4.getannotation(mailbox, entry, attribute)
Retrieve the specified ANNOTATIONs for mailbox. The method is non-standard, but is supported by
the Cyrus server.

IMAP4.getquota(root)
Get the quota root’s resource usage and limits. This method is part of the IMAP4 QUOTA extension
defined in rfc2087.

IMAP4.getquotaroot(mailbox)
Get the list of quota roots for the named mailbox. This method is part of the IMAP4 QUOTA
extension defined in rfc2087.

IMAP4.list([directory[, pattern]])
List mailbox names in directory matching pattern. directory defaults to the top-level mail folder, and
pattern defaults to match anything. Returned data contains a list of LIST responses.

IMAP4.login(user, password)
Identify the client using a plaintext password. The password will be quoted.

1150 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc5161.html
https://tools.ietf.org/html/rfc6855.html
https://tools.ietf.org/html/rfc6855.html

The Python Library Reference, Release 3.5.7

IMAP4.login_cram_md5(user, password)
Force use of CRAM-MD5 authentication when identifying the client to protect the password. Will
only work if the server CAPABILITY response includes the phrase AUTH=CRAM-MD5.

IMAP4.logout()
Shutdown connection to server. Returns server BYE response.

IMAP4.lsub(directory=’""’, pattern=’*’)
List subscribed mailbox names in directory matching pattern. directory defaults to the top level
directory and pattern defaults to match any mailbox. Returned data are tuples of message part
envelope and data.

IMAP4.myrights(mailbox)
Show my ACLs for a mailbox (i.e. the rights that I have on mailbox).

IMAP4.namespace()
Returns IMAP namespaces as defined in RFC2342.

IMAP4.noop()
Send NOOP to server.

IMAP4.open(host, port)
Opens socket to port at host. This method is implicitly called by the IMAP4 constructor. The
connection objects established by this method will be used in the IMAP4.read(), IMAP4.readline(),
IMAP4.send(), and IMAP4.shutdown() methods. You may override this method.

IMAP4.partial(message_num, message_part, start, length)
Fetch truncated part of a message. Returned data is a tuple of message part envelope and data.

IMAP4.proxyauth(user)
Assume authentication as user. Allows an authorised administrator to proxy into any user’s mailbox.

IMAP4.read(size)
Reads size bytes from the remote server. You may override this method.

IMAP4.readline()
Reads one line from the remote server. You may override this method.

IMAP4.recent()
Prompt server for an update. Returned data is None if no new messages, else value of RECENT
response.

IMAP4.rename(oldmailbox, newmailbox)
Rename mailbox named oldmailbox to newmailbox.

IMAP4.response(code)
Return data for response code if received, or None. Returns the given code, instead of the usual type.

IMAP4.search(charset, criterion[, ...])
Search mailbox for matching messages. charset may be None, in which case no CHARSET will be
specified in the request to the server. The IMAP protocol requires that at least one criterion be
specified; an exception will be raised when the server returns an error. charset must be None if the
UTF8=ACCEPT capability was enabled using the enable() command.

Example:

M is a connected IMAP4 instance...
typ, msgnums = M.search(None, 'FROM', '"LDJ"')

or:
typ, msgnums = M.search(None, '(FROM "LDJ")')

21.15. imaplib — IMAP4 protocol client 1151

The Python Library Reference, Release 3.5.7

IMAP4.select(mailbox=’INBOX’, readonly=False)
Select a mailbox. Returned data is the count of messages in mailbox (EXISTS response). The default
mailbox is 'INBOX'. If the readonly flag is set, modifications to the mailbox are not allowed.

IMAP4.send(data)
Sends data to the remote server. You may override this method.

IMAP4.setacl(mailbox, who, what)
Set an ACL for mailbox. The method is non-standard, but is supported by the Cyrus server.

IMAP4.setannotation(mailbox, entry, attribute[, ...])
Set ANNOTATIONs for mailbox. The method is non-standard, but is supported by the Cyrus server.

IMAP4.setquota(root, limits)
Set the quota root’s resource limits. This method is part of the IMAP4 QUOTA extension defined in
rfc2087.

IMAP4.shutdown()
Close connection established in open. This method is implicitly called by IMAP4.logout(). You may
override this method.

IMAP4.socket()
Returns socket instance used to connect to server.

IMAP4.sort(sort_criteria, charset, search_criterion[, ...])
The sort command is a variant of search with sorting semantics for the results. Returned data contains
a space separated list of matching message numbers.

Sort has two arguments before the search_criterion argument(s); a parenthesized list of sort_criteria,
and the searching charset. Note that unlike search, the searching charset argument is mandatory.
There is also a uid sort command which corresponds to sort the way that uid search corresponds to
search. The sort command first searches the mailbox for messages that match the given searching
criteria using the charset argument for the interpretation of strings in the searching criteria. It then
returns the numbers of matching messages.

This is an IMAP4rev1 extension command.

IMAP4.starttls(ssl_context=None)
Send a STARTTLS command. The ssl_context argument is optional and should be a ssl.SSLContext
object. This will enable encryption on the IMAP connection. Please read Security considerations for
best practices.

New in version 3.2.

Changed in version 3.4: The method now supports hostname check with ssl.SSLContext.
check_hostname and Server Name Indication (see ssl.HAS_SNI).

IMAP4.status(mailbox, names)
Request named status conditions for mailbox.

IMAP4.store(message_set, command, flag_list)
Alters flag dispositions for messages in mailbox. command is specified by section 6.4.6 of RFC 2060 as
being one of “FLAGS”, “+FLAGS”, or “-FLAGS”, optionally with a suffix of “.SILENT”.

For example, to set the delete flag on all messages:

typ, data = M.search(None, 'ALL')
for num in data[0].split():
M.store(num, '+FLAGS', '\\Deleted')

M.expunge()

1152 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc2060.html

The Python Library Reference, Release 3.5.7

IMAP4.subscribe(mailbox)
Subscribe to new mailbox.

IMAP4.thread(threading_algorithm, charset, search_criterion[, ...])
The thread command is a variant of search with threading semantics for the results. Returned data
contains a space separated list of thread members.

Thread members consist of zero or more messages numbers, delimited by spaces, indicating successive
parent and child.

Thread has two arguments before the search_criterion argument(s); a threading_algorithm, and the
searching charset. Note that unlike search, the searching charset argument is mandatory. There is also
a uid thread command which corresponds to thread the way that uid search corresponds to search.
The thread command first searches the mailbox for messages that match the given searching criteria
using the charset argument for the interpretation of strings in the searching criteria. It then returns
the matching messages threaded according to the specified threading algorithm.

This is an IMAP4rev1 extension command.

IMAP4.uid(command, arg[, ...])
Execute command args with messages identified by UID, rather than message number. Returns re-
sponse appropriate to command. At least one argument must be supplied; if none are provided, the
server will return an error and an exception will be raised.

IMAP4.unsubscribe(mailbox)
Unsubscribe from old mailbox.

IMAP4.xatom(name[, ...])
Allow simple extension commands notified by server in CAPABILITY response.

The following attributes are defined on instances of IMAP4:

IMAP4.PROTOCOL_VERSION
The most recent supported protocol in the CAPABILITY response from the server.

IMAP4.debug
Integer value to control debugging output. The initialize value is taken from the module variable
Debug. Values greater than three trace each command.

IMAP4.utf8_enabled
Boolean value that is normally False, but is set to True if an enable() command is successfully issued
for the UTF8=ACCEPT capability.

New in version 3.5.

21.15.2 IMAP4 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all
messages:

import getpass, imaplib

M = imaplib.IMAP4()
M.login(getpass.getuser(), getpass.getpass())
M.select()
typ, data = M.search(None, 'ALL')
for num in data[0].split():

typ, data = M.fetch(num, '(RFC822)')
print('Message %s\n%s\n' % (num, data[0][1]))

(continues on next page)

21.15. imaplib — IMAP4 protocol client 1153

The Python Library Reference, Release 3.5.7

(continued from previous page)

M.close()
M.logout()

21.16 nntplib — NNTP protocol client

Source code: Lib/nntplib.py

This module defines the class NNTP which implements the client side of the Network News Transfer Protocol.
It can be used to implement a news reader or poster, or automated news processors. It is compatible with
RFC 3977 as well as the older RFC 977 and RFC 2980.

Here are two small examples of how it can be used. To list some statistics about a newsgroup and print the
subjects of the last 10 articles:

>>> s = nntplib.NNTP('news.gmane.org')
>>> resp, count, first, last, name = s.group('gmane.comp.python.committers')
>>> print('Group', name, 'has', count, 'articles, range', first, 'to', last)
Group gmane.comp.python.committers has 1096 articles, range 1 to 1096
>>> resp, overviews = s.over((last - 9, last))
>>> for id, over in overviews:
... print(id, nntplib.decode_header(over['subject']))
...
1087 Re: Commit privileges for Lukasz Langa
1088 Re: 3.2 alpha 2 freeze
1089 Re: 3.2 alpha 2 freeze
1090 Re: Commit privileges for Lukasz Langa
1091 Re: Commit privileges for Lukasz Langa
1092 Updated ssh key
1093 Re: Updated ssh key
1094 Re: Updated ssh key
1095 Hello fellow committers!
1096 Re: Hello fellow committers!
>>> s.quit()
'205 Bye!'

To post an article from a binary file (this assumes that the article has valid headers, and that you have right
to post on the particular newsgroup):

>>> s = nntplib.NNTP('news.gmane.org')
>>> f = open('article.txt', 'rb')
>>> s.post(f)
'240 Article posted successfully.'
>>> s.quit()
'205 Bye!'

The module itself defines the following classes:

class nntplib.NNTP(host, port=119, user=None, password=None, readermode=None, usen-

etrc=False[, timeout])
Return a new NNTP object, representing a connection to the NNTP server running on host host,
listening at port port. An optional timeout can be specified for the socket connection. If the optional
user and password are provided, or if suitable credentials are present in /.netrc and the optional
flag usenetrc is true, the AUTHINFO USER and AUTHINFO PASS commands are used to identify

1154 Chapter 21. Internet Protocols and Support

https://github.com/python/cpython/tree/3.5/Lib/nntplib.py
https://tools.ietf.org/html/rfc3977.html
https://tools.ietf.org/html/rfc977.html
https://tools.ietf.org/html/rfc2980.html

The Python Library Reference, Release 3.5.7

and authenticate the user to the server. If the optional flag readermode is true, then a mode reader
command is sent before authentication is performed. Reader mode is sometimes necessary if you are
connecting to an NNTP server on the local machine and intend to call reader-specific commands, such
as group. If you get unexpected NNTPPermanentErrors, you might need to set readermode. The
NNTP class supports the with statement to unconditionally consume OSError exceptions and to close
the NNTP connection when done, e.g.:

>>> from nntplib import NNTP
>>> with NNTP('news.gmane.org') as n:
... n.group('gmane.comp.python.committers')
... # doctest: +SKIP
('211 1755 1 1755 gmane.comp.python.committers', 1755, 1, 1755, 'gmane.comp.python.committers')
>>>

Changed in version 3.2: usenetrc is now False by default.

Changed in version 3.3: Support for the with statement was added.

class nntplib.NNTP_SSL(host, port=563, user=None, password=None, ssl_context=None, reader-

mode=None, usenetrc=False[, timeout])
Return a new NNTP_SSL object, representing an encrypted connection to the NNTP server running
on host host, listening at port port. NNTP_SSL objects have the same methods as NNTP objects. If
port is omitted, port 563 (NNTPS) is used. ssl_context is also optional, and is a SSLContext object.
Please read Security considerations for best practices. All other parameters behave the same as for
NNTP.

Note that SSL-on-563 is discouraged per RFC 4642, in favor of STARTTLS as described below. How-
ever, some servers only support the former.

New in version 3.2.

Changed in version 3.4: The class now supports hostname check with ssl.SSLContext.check_hostname
and Server Name Indication (see ssl.HAS_SNI).

exception nntplib.NNTPError
Derived from the standard exception Exception, this is the base class for all exceptions raised by the
nntplib module. Instances of this class have the following attribute:

response
The response of the server if available, as a str object.

exception nntplib.NNTPReplyError
Exception raised when an unexpected reply is received from the server.

exception nntplib.NNTPTemporaryError
Exception raised when a response code in the range 400–499 is received.

exception nntplib.NNTPPermanentError
Exception raised when a response code in the range 500–599 is received.

exception nntplib.NNTPProtocolError
Exception raised when a reply is received from the server that does not begin with a digit in the range
1–5.

exception nntplib.NNTPDataError
Exception raised when there is some error in the response data.

21.16.1 NNTP Objects

When connected, NNTP and NNTP_SSL objects support the following methods and attributes.

21.16. nntplib — NNTP protocol client 1155

https://tools.ietf.org/html/rfc4642.html

The Python Library Reference, Release 3.5.7

Attributes

NNTP.nntp_version
An integer representing the version of the NNTP protocol supported by the server. In practice, this
should be 2 for servers advertising RFC 3977 compliance and 1 for others.

New in version 3.2.

NNTP.nntp_implementation
A string describing the software name and version of the NNTP server, or None if not advertised by
the server.

New in version 3.2.

Methods

The response that is returned as the first item in the return tuple of almost all methods is the server’s
response: a string beginning with a three-digit code. If the server’s response indicates an error, the method
raises one of the above exceptions.

Many of the following methods take an optional keyword-only argument file. When the file argument is
supplied, it must be either a file object opened for binary writing, or the name of an on-disk file to be
written to. The method will then write any data returned by the server (except for the response line and
the terminating dot) to the file; any list of lines, tuples or objects that the method normally returns will be
empty.

Changed in version 3.2: Many of the following methods have been reworked and fixed, which makes them
incompatible with their 3.1 counterparts.

NNTP.quit()
Send a QUIT command and close the connection. Once this method has been called, no other methods
of the NNTP object should be called.

NNTP.getwelcome()
Return the welcome message sent by the server in reply to the initial connection. (This message
sometimes contains disclaimers or help information that may be relevant to the user.)

NNTP.getcapabilities()
Return the RFC 3977 capabilities advertised by the server, as a dict instance mapping capability names
to (possibly empty) lists of values. On legacy servers which don’t understand the CAPABILITIES
command, an empty dictionary is returned instead.

>>> s = NNTP('news.gmane.org')
>>> 'POST' in s.getcapabilities()
True

New in version 3.2.

NNTP.login(user=None, password=None, usenetrc=True)
Send AUTHINFO commands with the user name and password. If user and password are None and
usenetrc is true, credentials from ~/.netrc will be used if possible.

Unless intentionally delayed, login is normally performed during the NNTP object initialization and
separately calling this function is unnecessary. To force authentication to be delayed, you must not set
user or password when creating the object, and must set usenetrc to False.

New in version 3.2.

NNTP.starttls(ssl_context=None)
Send a STARTTLS command. This will enable encryption on the NNTP connection. The ssl_context

1156 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc3977.html
https://tools.ietf.org/html/rfc3977.html

The Python Library Reference, Release 3.5.7

argument is optional and should be a ssl.SSLContext object. Please read Security considerations for
best practices.

Note that this may not be done after authentication information has been transmitted, and authentica-
tion occurs by default if possible during a NNTP object initialization. See NNTP.login() for information
on suppressing this behavior.

New in version 3.2.

Changed in version 3.4: The method now supports hostname check with ssl.SSLContext.
check_hostname and Server Name Indication (see ssl.HAS_SNI).

NNTP.newgroups(date, *, file=None)
Send a NEWGROUPS command. The date argument should be a datetime.date or datetime.datetime
object. Return a pair (response, groups) where groups is a list representing the groups that are new
since the given date. If file is supplied, though, then groups will be empty.

>>> from datetime import date, timedelta
>>> resp, groups = s.newgroups(date.today() - timedelta(days=3))
>>> len(groups) # doctest: +SKIP
85
>>> groups[0] # doctest: +SKIP
GroupInfo(group='gmane.network.tor.devel', last='4', first='1', flag='m')

NNTP.newnews(group, date, *, file=None)
Send a NEWNEWS command. Here, group is a group name or '*', and date has the same meaning
as for newgroups(). Return a pair (response, articles) where articles is a list of message ids.

This command is frequently disabled by NNTP server administrators.

NNTP.list(group_pattern=None, *, file=None)
Send a LIST or LIST ACTIVE command. Return a pair (response, list) where list is a list of tuples
representing all the groups available from this NNTP server, optionally matching the pattern string
group_pattern. Each tuple has the form (group, last, first, flag), where group is a group name, last
and first are the last and first article numbers, and flag usually takes one of these values:

• y: Local postings and articles from peers are allowed.

• m: The group is moderated and all postings must be approved.

• n: No local postings are allowed, only articles from peers.

• j: Articles from peers are filed in the junk group instead.

• x: No local postings, and articles from peers are ignored.

• =foo.bar: Articles are filed in the foo.bar group instead.

If flag has another value, then the status of the newsgroup should be considered unknown.

This command can return very large results, especially if group_pattern is not specified. It is best to
cache the results offline unless you really need to refresh them.

Changed in version 3.2: group_pattern was added.

NNTP.descriptions(grouppattern)
Send a LIST NEWSGROUPS command, where grouppattern is a wildmat string as specified in RFC
3977 (it’s essentially the same as DOS or UNIX shell wildcard strings). Return a pair (response,
descriptions), where descriptions is a dictionary mapping group names to textual descriptions.

>>> resp, descs = s.descriptions('gmane.comp.python.*')
>>> len(descs) # doctest: +SKIP

(continues on next page)

21.16. nntplib — NNTP protocol client 1157

https://tools.ietf.org/html/rfc3977.html
https://tools.ietf.org/html/rfc3977.html

The Python Library Reference, Release 3.5.7

(continued from previous page)

295
>>> descs.popitem() # doctest: +SKIP
('gmane.comp.python.bio.general', 'BioPython discussion list (Moderated)')

NNTP.description(group)
Get a description for a single group group. If more than one group matches (if ‘group’ is a real wildmat
string), return the first match. If no group matches, return an empty string.

This elides the response code from the server. If the response code is needed, use descriptions().

NNTP.group(name)
Send a GROUP command, where name is the group name. The group is selected as the current group,
if it exists. Return a tuple (response, count, first, last, name) where count is the (estimated) number
of articles in the group, first is the first article number in the group, last is the last article number in
the group, and name is the group name.

NNTP.over(message_spec, *, file=None)
Send an OVER command, or an XOVER command on legacy servers. message_spec can be either
a string representing a message id, or a (first, last) tuple of numbers indicating a range of articles in
the current group, or a (first, None) tuple indicating a range of articles starting from first to the last
article in the current group, or None to select the current article in the current group.

Return a pair (response, overviews). overviews is a list of (article_number, overview) tuples, one for
each article selected by message_spec. Each overview is a dictionary with the same number of items,
but this number depends on the server. These items are either message headers (the key is then the
lower-cased header name) or metadata items (the key is then the metadata name prepended with ":").
The following items are guaranteed to be present by the NNTP specification:

• the subject, from, date, message-id and references headers

• the :bytes metadata: the number of bytes in the entire raw article (including headers and body)

• the :lines metadata: the number of lines in the article body

The value of each item is either a string, or None if not present.

It is advisable to use the decode_header() function on header values when they may contain non-ASCII
characters:

>>> _, _, first, last, _ = s.group('gmane.comp.python.devel')
>>> resp, overviews = s.over((last, last))
>>> art_num, over = overviews[0]
>>> art_num
117216
>>> list(over.keys())
['xref', 'from', ':lines', ':bytes', 'references', 'date', 'message-id', 'subject']
>>> over['from']
'=?UTF-8?B?Ik1hcnRpbiB2LiBMw7Z3aXMi?= <martin@v.loewis.de>'
>>> nntplib.decode_header(over['from'])
'"Martin v. Löwis" <martin@v.loewis.de>'

New in version 3.2.

NNTP.help(*, file=None)
Send a HELP command. Return a pair (response, list) where list is a list of help strings.

NNTP.stat(message_spec=None)
Send a STAT command, where message_spec is either a message id (enclosed in '<' and '>') or
an article number in the current group. If message_spec is omitted or None, the current article in

1158 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

the current group is considered. Return a triple (response, number, id) where number is the article
number and id is the message id.

>>> _, _, first, last, _ = s.group('gmane.comp.python.devel')
>>> resp, number, message_id = s.stat(first)
>>> number, message_id
(9099, '<20030112190404.GE29873@epoch.metaslash.com>')

NNTP.next()
Send a NEXT command. Return as for stat().

NNTP.last()
Send a LAST command. Return as for stat().

NNTP.article(message_spec=None, *, file=None)
Send an ARTICLE command, where message_spec has the same meaning as for stat(). Return a tuple
(response, info) where info is a namedtuple with three attributes number, message_id and lines (in that
order). number is the article number in the group (or 0 if the information is not available), message_id
the message id as a string, and lines a list of lines (without terminating newlines) comprising the raw
message including headers and body.

>>> resp, info = s.article('<20030112190404.GE29873@epoch.metaslash.com>')
>>> info.number
0
>>> info.message_id
'<20030112190404.GE29873@epoch.metaslash.com>'
>>> len(info.lines)
65
>>> info.lines[0]
b'Path: main.gmane.org!not-for-mail'
>>> info.lines[1]
b'From: Neal Norwitz <neal@metaslash.com>'
>>> info.lines[-3:]
[b'There is a patch for 2.3 as well as 2.2.', b'', b'Neal']

NNTP.head(message_spec=None, *, file=None)
Same as article(), but sends a HEAD command. The lines returned (or written to file) will only contain
the message headers, not the body.

NNTP.body(message_spec=None, *, file=None)
Same as article(), but sends a BODY command. The lines returned (or written to file) will only contain
the message body, not the headers.

NNTP.post(data)
Post an article using the POST command. The data argument is either a file object opened for binary
reading, or any iterable of bytes objects (representing raw lines of the article to be posted). It should
represent a well-formed news article, including the required headers. The post() method automatically
escapes lines beginning with . and appends the termination line.

If the method succeeds, the server’s response is returned. If the server refuses posting, a NNTPReply-
Error is raised.

NNTP.ihave(message_id, data)
Send an IHAVE command. message_id is the id of the message to send to the server (enclosed in '<'
and '>'). The data parameter and the return value are the same as for post().

NNTP.date()
Return a pair (response, date). date is a datetime object containing the current date and time of the
server.

21.16. nntplib — NNTP protocol client 1159

The Python Library Reference, Release 3.5.7

NNTP.slave()
Send a SLAVE command. Return the server’s response.

NNTP.set_debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,
0, produces no debugging output. A value of 1 produces a moderate amount of debugging output,
generally a single line per request or response. A value of 2 or higher produces the maximum amount
of debugging output, logging each line sent and received on the connection (including message text).

The following are optional NNTP extensions defined in RFC 2980. Some of them have been superseded by
newer commands in RFC 3977.

NNTP.xhdr(hdr, str, *, file=None)
Send an XHDR command. The hdr argument is a header keyword, e.g. 'subject'. The str argument
should have the form 'first-last' where first and last are the first and last article numbers to search.
Return a pair (response, list), where list is a list of pairs (id, text), where id is an article number (as
a string) and text is the text of the requested header for that article. If the file parameter is supplied,
then the output of the XHDR command is stored in a file. If file is a string, then the method will open
a file with that name, write to it then close it. If file is a file object, then it will start calling write() on
it to store the lines of the command output. If file is supplied, then the returned list is an empty list.

NNTP.xover(start, end, *, file=None)
Send an XOVER command. start and end are article numbers delimiting the range of articles to
select. The return value is the same of for over(). It is recommended to use over() instead, since it will
automatically use the newer OVER command if available.

NNTP.xpath(id)
Return a pair (resp, path), where path is the directory path to the article with message ID id. Most
of the time, this extension is not enabled by NNTP server administrators.

Deprecated since version 3.3: The XPATH extension is not actively used.

21.16.2 Utility functions

The module also defines the following utility function:

nntplib.decode_header(header_str)
Decode a header value, un-escaping any escaped non-ASCII characters. header_str must be a str
object. The unescaped value is returned. Using this function is recommended to display some headers
in a human readable form:

>>> decode_header("Some subject")
'Some subject'
>>> decode_header("=?ISO-8859-15?Q?D=E9buter_en_Python?=")
'Débuter en Python'
>>> decode_header("Re: =?UTF-8?B?cHJvYmzDqG1lIGRlIG1hdHJpY2U=?=")
'Re: problème de matrice'

21.17 smtplib — SMTP protocol client

Source code: Lib/smtplib.py

The smtplib module defines an SMTP client session object that can be used to send mail to any Internet
machine with an SMTP or ESMTP listener daemon. For details of SMTP and ESMTP operation, consult
RFC 821 (Simple Mail Transfer Protocol) and RFC 1869 (SMTP Service Extensions).

1160 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc2980.html
https://tools.ietf.org/html/rfc3977.html
https://github.com/python/cpython/tree/3.5/Lib/smtplib.py
https://tools.ietf.org/html/rfc821.html
https://tools.ietf.org/html/rfc1869.html

The Python Library Reference, Release 3.5.7

class smtplib.SMTP(host=”, port=0, local_hostname=None[, timeout], source_address=None)
An SMTP instance encapsulates an SMTP connection. It has methods that support a full repertoire
of SMTP and ESMTP operations. If the optional host and port parameters are given, the SMTP
connect() method is called with those parameters during initialization. If specified, local_hostname is
used as the FQDN of the local host in the HELO/EHLO command. Otherwise, the local hostname
is found using socket.getfqdn(). If the connect() call returns anything other than a success code,
an SMTPConnectError is raised. The optional timeout parameter specifies a timeout in seconds for
blocking operations like the connection attempt (if not specified, the global default timeout setting
will be used). If the timeout expires, socket.timeout is raised. The optional source_address parameter
allows binding to some specific source address in a machine with multiple network interfaces, and/or
to some specific source TCP port. It takes a 2-tuple (host, port), for the socket to bind to as its source
address before connecting. If omitted (or if host or port are '' and/or 0 respectively) the OS default
behavior will be used.

For normal use, you should only require the initialization/connect, sendmail(), and quit() methods.
An example is included below.

The SMTP class supports the with statement. When used like this, the SMTP QUIT command is
issued automatically when the with statement exits. E.g.:

>>> from smtplib import SMTP
>>> with SMTP("domain.org") as smtp:
... smtp.noop()
...
(250, b'Ok')
>>>

Changed in version 3.3: Support for the with statement was added.

Changed in version 3.3: source_address argument was added.

New in version 3.5: The SMTPUTF8 extension (RFC 6531) is now supported.

class smtplib.SMTP_SSL(host=”, port=0, local_hostname=None, keyfile=None, certfile=None[,
timeout], context=None, source_address=None)

An SMTP_SSL instance behaves exactly the same as instances of SMTP. SMTP_SSL should be used
for situations where SSL is required from the beginning of the connection and using starttls() is not
appropriate. If host is not specified, the local host is used. If port is zero, the standard SMTP-over-
SSL port (465) is used. The optional arguments local_hostname, timeout and source_address have
the same meaning as they do in the SMTP class. context, also optional, can contain a SSLContext
and allows configuring various aspects of the secure connection. Please read Security considerations
for best practices.

keyfile and certfile are a legacy alternative to context, and can point to a PEM formatted private key
and certificate chain file for the SSL connection.

Changed in version 3.3: context was added.

Changed in version 3.3: source_address argument was added.

Changed in version 3.4: The class now supports hostname check with ssl.SSLContext.check_hostname
and Server Name Indication (see ssl.HAS_SNI).

class smtplib.LMTP(host=”, port=LMTP_PORT, local_hostname=None, source_address=None)
The LMTP protocol, which is very similar to ESMTP, is heavily based on the standard SMTP client.
It’s common to use Unix sockets for LMTP, so our connect() method must support that as well as a
regular host:port server. The optional arguments local_hostname and source_address have the same
meaning as they do in the SMTP class. To specify a Unix socket, you must use an absolute path for
host, starting with a ‘/’.

21.17. smtplib — SMTP protocol client 1161

https://tools.ietf.org/html/rfc6531.html

The Python Library Reference, Release 3.5.7

Authentication is supported, using the regular SMTP mechanism. When using a Unix socket, LMTP
generally don’t support or require any authentication, but your mileage might vary.

A nice selection of exceptions is defined as well:

exception smtplib.SMTPException
Subclass of OSError that is the base exception class for all the other exceptions provided by this
module.

Changed in version 3.4: SMTPException became subclass of OSError

exception smtplib.SMTPServerDisconnected
This exception is raised when the server unexpectedly disconnects, or when an attempt is made to use
the SMTP instance before connecting it to a server.

exception smtplib.SMTPResponseException
Base class for all exceptions that include an SMTP error code. These exceptions are generated in some
instances when the SMTP server returns an error code. The error code is stored in the smtp_code
attribute of the error, and the smtp_error attribute is set to the error message.

exception smtplib.SMTPSenderRefused
Sender address refused. In addition to the attributes set by on all SMTPResponseException exceptions,
this sets ‘sender’ to the string that the SMTP server refused.

exception smtplib.SMTPRecipientsRefused
All recipient addresses refused. The errors for each recipient are accessible through the attribute
recipients, which is a dictionary of exactly the same sort as SMTP.sendmail() returns.

exception smtplib.SMTPDataError
The SMTP server refused to accept the message data.

exception smtplib.SMTPConnectError
Error occurred during establishment of a connection with the server.

exception smtplib.SMTPHeloError
The server refused our HELO message.

exception smtplib.SMTPNotSupportedError
The command or option attempted is not supported by the server.

New in version 3.5.

exception smtplib.SMTPAuthenticationError
SMTP authentication went wrong. Most probably the server didn’t accept the username/password
combination provided.

See also:

RFC 821 - Simple Mail Transfer Protocol Protocol definition for SMTP. This document covers the model,
operating procedure, and protocol details for SMTP.

RFC 1869 - SMTP Service Extensions Definition of the ESMTP extensions for SMTP. This describes a
framework for extending SMTP with new commands, supporting dynamic discovery of the commands
provided by the server, and defines a few additional commands.

21.17.1 SMTP Objects

An SMTP instance has the following methods:

SMTP.set_debuglevel(level)
Set the debug output level. A value of 1 or True for level results in debug messages for connection and

1162 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc821.html
https://tools.ietf.org/html/rfc1869.html

The Python Library Reference, Release 3.5.7

for all messages sent to and received from the server. A value of 2 for level results in these messages
being timestamped.

Changed in version 3.5: Added debuglevel 2.

SMTP.docmd(cmd, args=”)
Send a command cmd to the server. The optional argument args is simply concatenated to the
command, separated by a space.

This returns a 2-tuple composed of a numeric response code and the actual response line (multiline
responses are joined into one long line.)

In normal operation it should not be necessary to call this method explicitly. It is used to implement
other methods and may be useful for testing private extensions.

If the connection to the server is lost while waiting for the reply, SMTPServerDisconnected will be
raised.

SMTP.connect(host=’localhost’, port=0)
Connect to a host on a given port. The defaults are to connect to the local host at the standard SMTP
port (25). If the hostname ends with a colon (':') followed by a number, that suffix will be stripped
off and the number interpreted as the port number to use. This method is automatically invoked by
the constructor if a host is specified during instantiation. Returns a 2-tuple of the response code and
message sent by the server in its connection response.

SMTP.helo(name=”)
Identify yourself to the SMTP server using HELO. The hostname argument defaults to the fully
qualified domain name of the local host. The message returned by the server is stored as the helo_resp
attribute of the object.

In normal operation it should not be necessary to call this method explicitly. It will be implicitly called
by the sendmail() when necessary.

SMTP.ehlo(name=”)
Identify yourself to an ESMTP server using EHLO. The hostname argument defaults to the fully
qualified domain name of the local host. Examine the response for ESMTP option and store them for
use by has_extn(). Also sets several informational attributes: the message returned by the server is
stored as the ehlo_resp attribute, does_esmtp is set to true or false depending on whether the server
supports ESMTP, and esmtp_features will be a dictionary containing the names of the SMTP service
extensions this server supports, and their parameters (if any).

Unless you wish to use has_extn() before sending mail, it should not be necessary to call this method
explicitly. It will be implicitly called by sendmail() when necessary.

SMTP.ehlo_or_helo_if_needed()
This method call ehlo() and or helo() if there has been no previous EHLO or HELO command this
session. It tries ESMTP EHLO first.

SMTPHeloError The server didn’t reply properly to the HELO greeting.

SMTP.has_extn(name)
Return True if name is in the set of SMTP service extensions returned by the server, False otherwise.
Case is ignored.

SMTP.verify(address)
Check the validity of an address on this server using SMTP VRFY. Returns a tuple consisting of code
250 and a full RFC 822 address (including human name) if the user address is valid. Otherwise returns
an SMTP error code of 400 or greater and an error string.

21.17. smtplib — SMTP protocol client 1163

https://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 3.5.7

Note: Many sites disable SMTP VRFY in order to foil spammers.

SMTP.login(user, password, *, initial_response_ok=True)
Log in on an SMTP server that requires authentication. The arguments are the username and the
password to authenticate with. If there has been no previous EHLO or HELO command this session,
this method tries ESMTP EHLO first. This method will return normally if the authentication was
successful, or may raise the following exceptions:

SMTPHeloError The server didn’t reply properly to the HELO greeting.

SMTPAuthenticationError The server didn’t accept the username/password combination.

SMTPNotSupportedError The AUTH command is not supported by the server.

SMTPException No suitable authentication method was found.

Each of the authentication methods supported by smtplib are tried in turn if they are advertised as
supported by the server. See auth() for a list of supported authentication methods. initial_response_ok
is passed through to auth().

Optional keyword argument initial_response_ok specifies whether, for authentication methods that
support it, an “initial response” as specified in RFC 4954 can be sent along with the AUTH command,
rather than requiring a challenge/response.

Changed in version 3.5: SMTPNotSupportedError may be raised, and the initial_response_ok pa-
rameter was added.

SMTP.auth(mechanism, authobject, *, initial_response_ok=True)
Issue an SMTP AUTH command for the specified authentication mechanism, and handle the challenge
response via authobject.

mechanism specifies which authentication mechanism is to be used as argument to the AUTH command;
the valid values are those listed in the auth element of esmtp_features.

authobject must be a callable object taking an optional single argument:

data = authobject(challenge=None)

If optional keyword argument initial_response_ok is true, authobject() will be called first with no
argument. It can return the RFC 4954 “initial response” bytes which will be encoded and sent with the
AUTH command as below. If the authobject() does not support an initial response (e.g. because it
requires a challenge), it should return None when called with challenge=None. If initial_response_ok
is false, then authobject() will not be called first with None.

If the initial response check returns None, or if initial_response_ok is false, authobject() will be called
to process the server’s challenge response; the challenge argument it is passed will be a bytes. It should
return bytes data that will be base64 encoded and sent to the server.

The SMTP class provides authobjects for the CRAM-MD5, PLAIN, and LOGIN mechanisms; they
are named SMTP.auth_cram_md5, SMTP.auth_plain, and SMTP.auth_login respectively. They all
require that the user and password properties of the SMTP instance are set to appropriate values.

User code does not normally need to call auth directly, but can instead call the login() method, which
will try each of the above mechanisms in turn, in the order listed. auth is exposed to facilitate the
implementation of authentication methods not (or not yet) supported directly by smtplib.

New in version 3.5.

SMTP.starttls(keyfile=None, certfile=None, context=None)
Put the SMTP connection in TLS (Transport Layer Security) mode. All SMTP commands that follow
will be encrypted. You should then call ehlo() again.

1164 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc4954.html
https://tools.ietf.org/html/rfc4954.html

The Python Library Reference, Release 3.5.7

If keyfile and certfile are provided, these are passed to the socket module’s ssl() function.

Optional context parameter is a ssl.SSLContext object; This is an alternative to using a keyfile and a
certfile and if specified both keyfile and certfile should be None.

If there has been no previous EHLO or HELO command this session, this method tries ESMTP EHLO
first.

SMTPHeloError The server didn’t reply properly to the HELO greeting.

SMTPNotSupportedError The server does not support the STARTTLS extension.

RuntimeError SSL/TLS support is not available to your Python interpreter.

Changed in version 3.3: context was added.

Changed in version 3.4: The method now supports hostname check with SSLContext.check_hostname
and Server Name Indicator (see HAS_SNI).

Changed in version 3.5: The error raised for lack of STARTTLS support is now the SMTPNotSup-
portedError subclass instead of the base SMTPException.

SMTP.sendmail(from_addr, to_addrs, msg, mail_options=[], rcpt_options=[])
Send mail. The required arguments are an RFC 822 from-address string, a list of RFC 822 to-address
strings (a bare string will be treated as a list with 1 address), and a message string. The caller may pass
a list of ESMTP options (such as 8bitmime) to be used in MAIL FROM commands as mail_options.
ESMTP options (such as DSN commands) that should be used with all RCPT commands can be
passed as rcpt_options. (If you need to use different ESMTP options to different recipients you have
to use the low-level methods such as mail(), rcpt() and data() to send the message.)

Note: The from_addr and to_addrs parameters are used to construct the message envelope used by
the transport agents. sendmail does not modify the message headers in any way.

msg may be a string containing characters in the ASCII range, or a byte string. A string is encoded
to bytes using the ascii codec, and lone \r and \n characters are converted to \r\n characters. A byte
string is not modified.

If there has been no previous EHLO or HELO command this session, this method tries ESMTP EHLO
first. If the server does ESMTP, message size and each of the specified options will be passed to it (if
the option is in the feature set the server advertises). If EHLO fails, HELO will be tried and ESMTP
options suppressed.

This method will return normally if the mail is accepted for at least one recipient. Otherwise it will
raise an exception. That is, if this method does not raise an exception, then someone should get your
mail. If this method does not raise an exception, it returns a dictionary, with one entry for each
recipient that was refused. Each entry contains a tuple of the SMTP error code and the accompanying
error message sent by the server.

If SMTPUTF8 is included in mail_options, and the server supports it, from_addr and to_addrs may
contain non-ASCII characters.

This method may raise the following exceptions:

SMTPRecipientsRefused All recipients were refused. Nobody got the mail. The recipients attribute
of the exception object is a dictionary with information about the refused recipients (like the one
returned when at least one recipient was accepted).

SMTPHeloError The server didn’t reply properly to the HELO greeting.

SMTPSenderRefused The server didn’t accept the from_addr.

21.17. smtplib — SMTP protocol client 1165

https://tools.ietf.org/html/rfc822.html
https://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 3.5.7

SMTPDataError The server replied with an unexpected error code (other than a refusal of a recipient).

SMTPNotSupportedError SMTPUTF8 was given in the mail_options but is not supported by the
server.

Unless otherwise noted, the connection will be open even after an exception is raised.

Changed in version 3.2: msg may be a byte string.

Changed in version 3.5: SMTPUTF8 support added, and SMTPNotSupportedError may be raised if
SMTPUTF8 is specified but the server does not support it.

SMTP.send_message(msg, from_addr=None, to_addrs=None, mail_options=[], rcpt_options=[])
This is a convenience method for calling sendmail() with the message represented by an email.message.
Message object. The arguments have the same meaning as for sendmail(), except that msg is a Message
object.

If from_addr is None or to_addrs is None, send_message fills those arguments with addresses extracted
from the headers of msg as specified in RFC 5322: from_addr is set to the Sender field if it is present,
and otherwise to the From field. to_addrs combines the values (if any) of the To, Cc, and Bcc fields from
msg. If exactly one set of Resent-* headers appear in the message, the regular headers are ignored and
the Resent-* headers are used instead. If the message contains more than one set of Resent-* headers,
a ValueError is raised, since there is no way to unambiguously detect the most recent set of Resent-
headers.

send_message serializes msg using BytesGenerator with \r\n as the linesep, and calls sendmail() to
transmit the resulting message. Regardless of the values of from_addr and to_addrs, send_message
does not transmit any Bcc or Resent-Bcc headers that may appear in msg. If any of the addresses in
from_addr and to_addrs contain non-ASCII characters and the server does not advertise SMTPUTF8
support, an SMTPNotSupported error is raised. Otherwise the Message is serialized with a clone of
its policy with the utf8 attribute set to True, and SMTPUTF8 and BODY=8BITMIME are added to
mail_options.

New in version 3.2.

New in version 3.5: Support for internationalized addresses (SMTPUTF8).

SMTP.quit()
Terminate the SMTP session and close the connection. Return the result of the SMTP QUIT command.

Low-level methods corresponding to the standard SMTP/ESMTP commands HELP, RSET, NOOP, MAIL,
RCPT, and DATA are also supported. Normally these do not need to be called directly, so they are not
documented here. For details, consult the module code.

21.17.2 SMTP Example

This example prompts the user for addresses needed in the message envelope (‘To’ and ‘From’ addresses),
and the message to be delivered. Note that the headers to be included with the message must be included
in the message as entered; this example doesn’t do any processing of the RFC 822 headers. In particular,
the ‘To’ and ‘From’ addresses must be included in the message headers explicitly.

import smtplib

def prompt(prompt):
return input(prompt).strip()

fromaddr = prompt("From: ")
toaddrs = prompt("To: ").split()

(continues on next page)

1166 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc5322.html
https://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 3.5.7

(continued from previous page)

print("Enter message, end with ^D (Unix) or ^Z (Windows):")

Add the From: and To: headers at the start!
msg = ("From: %s\r\nTo: %s\r\n\r\n"

% (fromaddr, ", ".join(toaddrs)))
while True:

try:
line = input()

except EOFError:
break

if not line:
break

msg = msg + line

print("Message length is", len(msg))

server = smtplib.SMTP('localhost')
server.set_debuglevel(1)
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

Note: In general, you will want to use the email package’s features to construct an email message, which
you can then send via send_message(); see email: Examples.

21.18 smtpd — SMTP Server

Source code: Lib/smtpd.py

This module offers several classes to implement SMTP (email) servers.

See also:

The aiosmtpd package is a recommended replacement for this module. It is based on asyncio and provides
a more straightforward API. smtpd should be considered deprecated.

Several server implementations are present; one is a generic do-nothing implementation, which can be over-
ridden, while the other two offer specific mail-sending strategies.

Additionally the SMTPChannel may be extended to implement very specific interaction behaviour with
SMTP clients.

The code supports RFC 5321, plus the RFC 1870 SIZE and RFC 6531 SMTPUTF8 extensions.

21.18.1 SMTPServer Objects

class smtpd.SMTPServer(localaddr, remoteaddr, data_size_limit=33554432, map=None, en-
able_SMTPUTF8=False, decode_data=True)

Create a new SMTPServer object, which binds to local address localaddr. It will treat remoteaddr as
an upstream SMTP relayer. Both localaddr and remoteaddr should be a (host, port) tuple. The object
inherits from asyncore.dispatcher, and so will insert itself into asyncore’s event loop on instantiation.

21.18. smtpd — SMTP Server 1167

https://github.com/python/cpython/tree/3.5/Lib/smtpd.py
http://aiosmtpd.readthedocs.io/
https://tools.ietf.org/html/rfc5321.html
https://tools.ietf.org/html/rfc1870.html
https://tools.ietf.org/html/rfc6531.html

The Python Library Reference, Release 3.5.7

data_size_limit specifies the maximum number of bytes that will be accepted in a DATA command.
A value of None or 0 means no limit.

map is the socket map to use for connections (an initially empty dictionary is a suitable value). If not
specified the asyncore global socket map is used.

enable_SMTPUTF8 determines whether the SMTPUTF8 extension (as defined in RFC 6531) should
be enabled. The default is False. If set to True, decode_data must be False (otherwise an error is
raised). When True, SMTPUTF8 is accepted as a parameter to the MAIL command and when present
is passed to process_message() in the kwargs['mail_options'] list.

decode_data specifies whether the data portion of the SMTP transaction should be decoded using UTF-
8. The default is True for backward compatibility reasons, but will change to False in Python 3.6; spec-
ify the keyword value explicitly to avoid the DeprecationWarning. When decode_data is set to False the
server advertises the 8BITMIME extension (RFC 6152), accepts the BODY=8BITMIME parameter to
the MAIL command, and when present passes it to process_message() in the kwargs['mail_options']
list.

process_message(peer, mailfrom, rcpttos, data, **kwargs)
Raise a NotImplementedError exception. Override this in subclasses to do something useful with
this message. Whatever was passed in the constructor as remoteaddr will be available as the
_remoteaddr attribute. peer is the remote host’s address, mailfrom is the envelope originator,
rcpttos are the envelope recipients and data is a string containing the contents of the e-mail (which
should be in RFC 5321 format).

If the decode_data constructor keyword is set to True, the data argument will be a unicode string.
If it is set to False, it will be a bytes object.

kwargs is a dictionary containing additional information. It is empty unless at least one of
decode_data=False or enable_SMTPUTF8=True was given as an init parameter, in which case
it contains the following keys:

mail_options: a list of all received parameters to the MAIL command (the elements are
uppercase strings; example: ['BODY=8BITMIME', 'SMTPUTF8']).

rcpt_options: same as mail_options but for the RCPT command. Currently no RCPT
TO options are supported, so for now this will always be an empty list.

Implementations of process_message should use the **kwargs signature to accept arbitrary key-
word arguments, since future feature enhancements may add keys to the kwargs dictionary.

Return None to request a normal 250 Ok response; otherwise return the desired response string
in RFC 5321 format.

channel_class
Override this in subclasses to use a custom SMTPChannel for managing SMTP clients.

New in version 3.4: The map constructor argument.

Changed in version 3.5: localaddr and remoteaddr may now contain IPv6 addresses.

New in version 3.5: the decode_data and enable_SMTPUTF8 constructor arguments, and the kwargs
argument to process_message() when one or more of these is specified.

21.18.2 DebuggingServer Objects

class smtpd.DebuggingServer(localaddr, remoteaddr)
Create a new debugging server. Arguments are as per SMTPServer. Messages will be discarded, and
printed on stdout.

1168 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc6531.html
https://tools.ietf.org/html/rfc6152.html
https://tools.ietf.org/html/rfc5321.html
https://tools.ietf.org/html/rfc5321.html

The Python Library Reference, Release 3.5.7

21.18.3 PureProxy Objects

class smtpd.PureProxy(localaddr, remoteaddr)
Create a new pure proxy server. Arguments are as per SMTPServer. Everything will be relayed to
remoteaddr. Note that running this has a good chance to make you into an open relay, so please be
careful.

21.18.4 MailmanProxy Objects

class smtpd.MailmanProxy(localaddr, remoteaddr)
Create a new pure proxy server. Arguments are as per SMTPServer. Everything will be relayed to
remoteaddr, unless local mailman configurations knows about an address, in which case it will be
handled via mailman. Note that running this has a good chance to make you into an open relay, so
please be careful.

21.18.5 SMTPChannel Objects

class smtpd.SMTPChannel(server, conn, addr, data_size_limit=33554432, map=None, en-
able_SMTPUTF8=False, decode_data=True)

Create a new SMTPChannel object which manages the communication between the server and a single
SMTP client.

conn and addr are as per the instance variables described below.

data_size_limit specifies the maximum number of bytes that will be accepted in a DATA command.
A value of None or 0 means no limit.

enable_SMTPUTF8 determines whether the SMTPUTF8 extension (as defined in RFC 6531) should
be enabled. The default is False. A ValueError is raised if both enable_SMTPUTF8 and decode_data
are set to True at the same time.

A dictionary can be specified in map to avoid using a global socket map.

decode_data specifies whether the data portion of the SMTP transaction should be decoded using
UTF-8. The default is True for backward compatibility reasons, but will change to False in Python
3.6. Specify the keyword value explicitly to avoid the DeprecationWarning.

To use a custom SMTPChannel implementation you need to override the SMTPServer.channel_class
of your SMTPServer.

Changed in version 3.5: the decode_data and enable_SMTPUTF8 arguments were added.

The SMTPChannel has the following instance variables:

smtp_server
Holds the SMTPServer that spawned this channel.

conn
Holds the socket object connecting to the client.

addr
Holds the address of the client, the second value returned by socket.accept

received_lines
Holds a list of the line strings (decoded using UTF-8) received from the client. The lines have
their "\r\n" line ending translated to "\n".

21.18. smtpd — SMTP Server 1169

https://tools.ietf.org/html/rfc6531.html

The Python Library Reference, Release 3.5.7

smtp_state
Holds the current state of the channel. This will be either COMMAND initially and then DATA
after the client sends a “DATA” line.

seen_greeting
Holds a string containing the greeting sent by the client in its “HELO”.

mailfrom
Holds a string containing the address identified in the “MAIL FROM:” line from the client.

rcpttos
Holds a list of strings containing the addresses identified in the “RCPT TO:” lines from the client.

received_data
Holds a string containing all of the data sent by the client during the DATA state, up to but not
including the terminating "\r\n.\r\n".

fqdn
Holds the fully-qualified domain name of the server as returned by socket.getfqdn().

peer
Holds the name of the client peer as returned by conn.getpeername() where conn is conn.

The SMTPChannel operates by invoking methods named smtp_<command> upon reception of a
command line from the client. Built into the base SMTPChannel class are methods for handling the
following commands (and responding to them appropriately):

Com-
mand

Action taken

HELO Accepts the greeting from the client and stores it in seen_greeting. Sets server to base
command mode.

EHLO Accepts the greeting from the client and stores it in seen_greeting. Sets server to extended
command mode.

NOOPTakes no action.
QUIT Closes the connection cleanly.
MAIL Accepts the “MAIL FROM:” syntax and stores the supplied address as mailfrom. In extended

command mode, accepts the RFC 1870 SIZE attribute and responds appropriately based on
the value of data_size_limit.

RCPT Accepts the “RCPT TO:” syntax and stores the supplied addresses in the rcpttos list.
RSET Resets the mailfrom, rcpttos, and received_data, but not the greeting.
DATA Sets the internal state to DATA and stores remaining lines from the client in received_data

until the terminator "\r\n.\r\n" is received.
HELP Returns minimal information on command syntax
VRFY Returns code 252 (the server doesn’t know if the address is valid)
EXPN Reports that the command is not implemented.

21.19 telnetlib — Telnet client

Source code: Lib/telnetlib.py

The telnetlib module provides a Telnet class that implements the Telnet protocol. See RFC 854 for details
about the protocol. In addition, it provides symbolic constants for the protocol characters (see below), and
for the telnet options. The symbolic names of the telnet options follow the definitions in arpa/telnet.h, with

1170 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc1870.html
https://github.com/python/cpython/tree/3.5/Lib/telnetlib.py
https://tools.ietf.org/html/rfc854.html

The Python Library Reference, Release 3.5.7

the leading TELOPT_ removed. For symbolic names of options which are traditionally not included in
arpa/telnet.h, see the module source itself.

The symbolic constants for the telnet commands are: IAC, DONT, DO, WONT, WILL, SE (Subnegotiation
End), NOP (No Operation), DM (Data Mark), BRK (Break), IP (Interrupt process), AO (Abort output),
AYT (Are You There), EC (Erase Character), EL (Erase Line), GA (Go Ahead), SB (Subnegotiation Begin).

class telnetlib.Telnet(host=None, port=0[, timeout])
Telnet represents a connection to a Telnet server. The instance is initially not connected by default;
the open() method must be used to establish a connection. Alternatively, the host name and optional
port number can be passed to the constructor too, in which case the connection to the server will
be established before the constructor returns. The optional timeout parameter specifies a timeout in
seconds for blocking operations like the connection attempt (if not specified, the global default timeout
setting will be used).

Do not reopen an already connected instance.

This class has many read_*() methods. Note that some of them raise EOFError when the end of
the connection is read, because they can return an empty string for other reasons. See the individual
descriptions below.

See also:

RFC 854 - Telnet Protocol Specification Definition of the Telnet protocol.

21.19.1 Telnet Objects

Telnet instances have the following methods:

Telnet.read_until(expected, timeout=None)
Read until a given byte string, expected, is encountered or until timeout seconds have passed.

When no match is found, return whatever is available instead, possibly empty bytes. Raise EOFError
if the connection is closed and no cooked data is available.

Telnet.read_all()
Read all data until EOF as bytes; block until connection closed.

Telnet.read_some()
Read at least one byte of cooked data unless EOF is hit. Return b'' if EOF is hit. Block if no data
is immediately available.

Telnet.read_very_eager()
Read everything that can be without blocking in I/O (eager).

Raise EOFError if connection closed and no cooked data available. Return b'' if no cooked data
available otherwise. Do not block unless in the midst of an IAC sequence.

Telnet.read_eager()
Read readily available data.

Raise EOFError if connection closed and no cooked data available. Return b'' if no cooked data
available otherwise. Do not block unless in the midst of an IAC sequence.

Telnet.read_lazy()
Process and return data already in the queues (lazy).

Raise EOFError if connection closed and no data available. Return b'' if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

21.19. telnetlib — Telnet client 1171

https://tools.ietf.org/html/rfc854.html

The Python Library Reference, Release 3.5.7

Telnet.read_very_lazy()
Return any data available in the cooked queue (very lazy).

Raise EOFError if connection closed and no data available. Return b'' if no cooked data available
otherwise. This method never blocks.

Telnet.read_sb_data()
Return the data collected between a SB/SE pair (suboption begin/end). The callback should access
these data when it was invoked with a SE command. This method never blocks.

Telnet.open(host, port=0[, timeout])
Connect to a host. The optional second argument is the port number, which defaults to the standard
Telnet port (23). The optional timeout parameter specifies a timeout in seconds for blocking operations
like the connection attempt (if not specified, the global default timeout setting will be used).

Do not try to reopen an already connected instance.

Telnet.msg(msg, *args)
Print a debug message when the debug level is > 0. If extra arguments are present, they are substituted
in the message using the standard string formatting operator.

Telnet.set_debuglevel(debuglevel)
Set the debug level. The higher the value of debuglevel, the more debug output you get (on sys.stdout).

Telnet.close()
Close the connection.

Telnet.get_socket()
Return the socket object used internally.

Telnet.fileno()
Return the file descriptor of the socket object used internally.

Telnet.write(buffer)
Write a byte string to the socket, doubling any IAC characters. This can block if the connection is
blocked. May raise OSError if the connection is closed.

Changed in version 3.3: This method used to raise socket.error, which is now an alias of OSError.

Telnet.interact()
Interaction function, emulates a very dumb Telnet client.

Telnet.mt_interact()
Multithreaded version of interact().

Telnet.expect(list, timeout=None)
Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either compiled (regex objects) or uncompiled (byte
strings). The optional second argument is a timeout, in seconds; the default is to block indefinitely.

Return a tuple of three items: the index in the list of the first regular expression that matches; the
match object returned; and the bytes read up till and including the match.

If end of file is found and no bytes were read, raise EOFError. Otherwise, when nothing matches,
return (-1, None, data) where data is the bytes received so far (may be empty bytes if a timeout
happened).

If a regular expression ends with a greedy match (such as .*) or if more than one expression can match
the same input, the results are non-deterministic, and may depend on the I/O timing.

Telnet.set_option_negotiation_callback(callback)
Each time a telnet option is read on the input flow, this callback (if set) is called with the following

1172 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

parameters: callback(telnet socket, command (DO/DONT/WILL/WONT), option). No other action
is done afterwards by telnetlib.

21.19.2 Telnet Example

A simple example illustrating typical use:

import getpass
import telnetlib

HOST = "localhost"
user = input("Enter your remote account: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until(b"login: ")
tn.write(user.encode('ascii') + b"\n")
if password:

tn.read_until(b"Password: ")
tn.write(password.encode('ascii') + b"\n")

tn.write(b"ls\n")
tn.write(b"exit\n")

print(tn.read_all().decode('ascii'))

21.20 uuid — UUID objects according to RFC 4122

Source code: Lib/uuid.py

This module provides immutable UUID objects (the UUID class) and the functions uuid1(), uuid3(), uuid4(),
uuid5() for generating version 1, 3, 4, and 5 UUIDs as specified in RFC 4122.

If all you want is a unique ID, you should probably call uuid1() or uuid4(). Note that uuid1() may compromise
privacy since it creates a UUID containing the computer’s network address. uuid4() creates a random UUID.

class uuid.UUID(hex=None, bytes=None, bytes_le=None, fields=None, int=None, version=None)
Create a UUID from either a string of 32 hexadecimal digits, a string of 16 bytes as the bytes ar-
gument, a string of 16 bytes in little-endian order as the bytes_le argument, a tuple of six inte-
gers (32-bit time_low, 16-bit time_mid, 16-bit time_hi_version, 8-bit clock_seq_hi_variant, 8-bit
clock_seq_low, 48-bit node) as the fields argument, or a single 128-bit integer as the int argument.
When a string of hex digits is given, curly braces, hyphens, and a URN prefix are all optional. For
example, these expressions all yield the same UUID:

UUID('{12345678-1234-5678-1234-567812345678}')
UUID('12345678123456781234567812345678')
UUID('urn:uuid:12345678-1234-5678-1234-567812345678')
UUID(bytes=b'\x12\x34\x56\x78'*4)
UUID(bytes_le=b'\x78\x56\x34\x12\x34\x12\x78\x56' +

b'\x12\x34\x56\x78\x12\x34\x56\x78')

(continues on next page)

21.20. uuid — UUID objects according to RFC 4122 1173

https://github.com/python/cpython/tree/3.5/Lib/uuid.py
https://tools.ietf.org/html/rfc4122.html

The Python Library Reference, Release 3.5.7

(continued from previous page)

UUID(fields=(0x12345678, 0x1234, 0x5678, 0x12, 0x34, 0x567812345678))
UUID(int=0x12345678123456781234567812345678)

Exactly one of hex, bytes, bytes_le, fields, or int must be given. The version argument is optional;
if given, the resulting UUID will have its variant and version number set according to RFC 4122,
overriding bits in the given hex, bytes, bytes_le, fields, or int.

Comparison of UUID objects are made by way of comparing their UUID.int attributes. Comparison
with a non-UUID object raises a TypeError.

str(uuid) returns a string in the form 12345678-1234-5678-1234-567812345678 where the 32 hexadecimal
digits represent the UUID.

UUID instances have these read-only attributes:

UUID.bytes
The UUID as a 16-byte string (containing the six integer fields in big-endian byte order).

UUID.bytes_le
The UUID as a 16-byte string (with time_low, time_mid, and time_hi_version in little-endian byte
order).

UUID.fields
A tuple of the six integer fields of the UUID, which are also available as six individual attributes and
two derived attributes:

Field Meaning
time_low the first 32 bits of the UUID
time_mid the next 16 bits of the UUID
time_hi_version the next 16 bits of the UUID
clock_seq_hi_variant the next 8 bits of the UUID
clock_seq_low the next 8 bits of the UUID
node the last 48 bits of the UUID
time the 60-bit timestamp
clock_seq the 14-bit sequence number

UUID.hex
The UUID as a 32-character hexadecimal string.

UUID.int
The UUID as a 128-bit integer.

UUID.urn
The UUID as a URN as specified in RFC 4122.

UUID.variant
The UUID variant, which determines the internal layout of the UUID. This will be one of the constants
RESERVED_NCS, RFC_4122, RESERVED_MICROSOFT, or RESERVED_FUTURE.

UUID.version
The UUID version number (1 through 5, meaningful only when the variant is RFC_4122).

The uuid module defines the following functions:

uuid.getnode()
Get the hardware address as a 48-bit positive integer. The first time this runs, it may launch a separate
program, which could be quite slow. If all attempts to obtain the hardware address fail, we choose a
random 48-bit number with its eighth bit set to 1 as recommended in RFC 4122. “Hardware address”

1174 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

means the MAC address of a network interface, and on a machine with multiple network interfaces the
MAC address of any one of them may be returned.

uuid.uuid1(node=None, clock_seq=None)
Generate a UUID from a host ID, sequence number, and the current time. If node is not given,
getnode() is used to obtain the hardware address. If clock_seq is given, it is used as the sequence
number; otherwise a random 14-bit sequence number is chosen.

uuid.uuid3(namespace, name)
Generate a UUID based on the MD5 hash of a namespace identifier (which is a UUID) and a name
(which is a string).

uuid.uuid4()
Generate a random UUID.

uuid.uuid5(namespace, name)
Generate a UUID based on the SHA-1 hash of a namespace identifier (which is a UUID) and a name
(which is a string).

The uuid module defines the following namespace identifiers for use with uuid3() or uuid5().

uuid.NAMESPACE_DNS
When this namespace is specified, the name string is a fully-qualified domain name.

uuid.NAMESPACE_URL
When this namespace is specified, the name string is a URL.

uuid.NAMESPACE_OID
When this namespace is specified, the name string is an ISO OID.

uuid.NAMESPACE_X500
When this namespace is specified, the name string is an X.500 DN in DER or a text output format.

The uuid module defines the following constants for the possible values of the variant attribute:

uuid.RESERVED_NCS
Reserved for NCS compatibility.

uuid.RFC_4122
Specifies the UUID layout given in RFC 4122.

uuid.RESERVED_MICROSOFT
Reserved for Microsoft compatibility.

uuid.RESERVED_FUTURE
Reserved for future definition.

See also:

RFC 4122 - A Universally Unique IDentifier (UUID) URN Namespace This specification defines a Uniform
Resource Name namespace for UUIDs, the internal format of UUIDs, and methods of generating
UUIDs.

21.20.1 Example

Here are some examples of typical usage of the uuid module:

>>> import uuid

>>> # make a UUID based on the host ID and current time
>>> uuid.uuid1()

(continues on next page)

21.20. uuid — UUID objects according to RFC 4122 1175

https://tools.ietf.org/html/rfc4122.html
https://tools.ietf.org/html/rfc4122.html

The Python Library Reference, Release 3.5.7

(continued from previous page)

UUID('a8098c1a-f86e-11da-bd1a-00112444be1e')

>>> # make a UUID using an MD5 hash of a namespace UUID and a name
>>> uuid.uuid3(uuid.NAMESPACE_DNS, 'python.org')
UUID('6fa459ea-ee8a-3ca4-894e-db77e160355e')

>>> # make a random UUID
>>> uuid.uuid4()
UUID('16fd2706-8baf-433b-82eb-8c7fada847da')

>>> # make a UUID using a SHA-1 hash of a namespace UUID and a name
>>> uuid.uuid5(uuid.NAMESPACE_DNS, 'python.org')
UUID('886313e1-3b8a-5372-9b90-0c9aee199e5d')

>>> # make a UUID from a string of hex digits (braces and hyphens ignored)
>>> x = uuid.UUID('{00010203-0405-0607-0809-0a0b0c0d0e0f}')

>>> # convert a UUID to a string of hex digits in standard form
>>> str(x)
'00010203-0405-0607-0809-0a0b0c0d0e0f'

>>> # get the raw 16 bytes of the UUID
>>> x.bytes
b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f'

>>> # make a UUID from a 16-byte string
>>> uuid.UUID(bytes=x.bytes)
UUID('00010203-0405-0607-0809-0a0b0c0d0e0f')

21.21 socketserver — A framework for network servers

Source code: Lib/socketserver.py

The socketserver module simplifies the task of writing network servers.

There are four basic concrete server classes:

class socketserver.TCPServer(server_address, RequestHandlerClass, bind_and_activate=True)
This uses the Internet TCP protocol, which provides for continuous streams of data between the
client and server. If bind_and_activate is true, the constructor automatically attempts to invoke
server_bind() and server_activate(). The other parameters are passed to the BaseServer base class.

class socketserver.UDPServer(server_address, RequestHandlerClass, bind_and_activate=True)
This uses datagrams, which are discrete packets of information that may arrive out of order or be lost
while in transit. The parameters are the same as for TCPServer.

class socketserver.UnixStreamServer(server_address, RequestHandlerClass,
bind_and_activate=True)

class socketserver.UnixDatagramServer(server_address, RequestHandlerClass,
bind_and_activate=True)

These more infrequently used classes are similar to the TCP and UDP classes, but use Unix domain
sockets; they’re not available on non-Unix platforms. The parameters are the same as for TCPServer.

1176 Chapter 21. Internet Protocols and Support

https://github.com/python/cpython/tree/3.5/Lib/socketserver.py

The Python Library Reference, Release 3.5.7

These four classes process requests synchronously; each request must be completed before the next request
can be started. This isn’t suitable if each request takes a long time to complete, because it requires a lot of
computation, or because it returns a lot of data which the client is slow to process. The solution is to create
a separate process or thread to handle each request; the ForkingMixIn and ThreadingMixIn mix-in classes
can be used to support asynchronous behaviour.

Creating a server requires several steps. First, you must create a request handler class by subclassing the
BaseRequestHandler class and overriding its handle() method; this method will process incoming requests.
Second, you must instantiate one of the server classes, passing it the server’s address and the request handler
class. Then call the handle_request() or serve_forever() method of the server object to process one or many
requests. Finally, call server_close() to close the socket.

When inheriting from ThreadingMixIn for threaded connection behavior, you should explicitly declare how
you want your threads to behave on an abrupt shutdown. The ThreadingMixIn class defines an attribute
daemon_threads, which indicates whether or not the server should wait for thread termination. You should
set the flag explicitly if you would like threads to behave autonomously; the default is False, meaning that
Python will not exit until all threads created by ThreadingMixIn have exited.

Server classes have the same external methods and attributes, no matter what network protocol they use.

21.21.1 Server Creation Notes

There are five classes in an inheritance diagram, four of which represent synchronous servers of four types:

+------------+
| BaseServer |
+------------+

|
v

+-----------+ +------------------+
| TCPServer |------->| UnixStreamServer |
+-----------+ +------------------+

|
v

+-----------+ +--------------------+
| UDPServer |------->| UnixDatagramServer |
+-----------+ +--------------------+

Note that UnixDatagramServer derives from UDPServer, not from UnixStreamServer — the only difference
between an IP and a Unix stream server is the address family, which is simply repeated in both Unix server
classes.

class socketserver.ForkingMixIn
class socketserver.ThreadingMixIn

Forking and threading versions of each type of server can be created using these mix-in classes. For
instance, ThreadingUDPServer is created as follows:

class ThreadingUDPServer(ThreadingMixIn, UDPServer):
pass

The mix-in class comes first, since it overrides a method defined in UDPServer. Setting the various
attributes also changes the behavior of the underlying server mechanism.

class socketserver.ForkingTCPServer
class socketserver.ForkingUDPServer
class socketserver.ThreadingTCPServer

21.21. socketserver — A framework for network servers 1177

The Python Library Reference, Release 3.5.7

class socketserver.ThreadingUDPServer
These classes are pre-defined using the mix-in classes.

To implement a service, you must derive a class from BaseRequestHandler and redefine its handle() method.
You can then run various versions of the service by combining one of the server classes with your request
handler class. The request handler class must be different for datagram or stream services. This can be
hidden by using the handler subclasses StreamRequestHandler or DatagramRequestHandler.

Of course, you still have to use your head! For instance, it makes no sense to use a forking server if the
service contains state in memory that can be modified by different requests, since the modifications in the
child process would never reach the initial state kept in the parent process and passed to each child. In this
case, you can use a threading server, but you will probably have to use locks to protect the integrity of the
shared data.

On the other hand, if you are building an HTTP server where all data is stored externally (for instance,
in the file system), a synchronous class will essentially render the service “deaf” while one request is being
handled – which may be for a very long time if a client is slow to receive all the data it has requested. Here
a threading or forking server is appropriate.

In some cases, it may be appropriate to process part of a request synchronously, but to finish processing in
a forked child depending on the request data. This can be implemented by using a synchronous server and
doing an explicit fork in the request handler class handle() method.

Another approach to handling multiple simultaneous requests in an environment that supports neither
threads nor fork() (or where these are too expensive or inappropriate for the service) is to maintain an
explicit table of partially finished requests and to use selectors to decide which request to work on next (or
whether to handle a new incoming request). This is particularly important for stream services where each
client can potentially be connected for a long time (if threads or subprocesses cannot be used). See asyncore
for another way to manage this.

21.21.2 Server Objects

class socketserver.BaseServer(server_address, RequestHandlerClass)
This is the superclass of all Server objects in the module. It defines the interface, given below, but
does not implement most of the methods, which is done in subclasses. The two parameters are stored
in the respective server_address and RequestHandlerClass attributes.

fileno()
Return an integer file descriptor for the socket on which the server is listening. This function is
most commonly passed to selectors, to allow monitoring multiple servers in the same process.

handle_request()
Process a single request. This function calls the following methods in order: get_request(),
verify_request(), and process_request(). If the user-provided handle() method of the handler class
raises an exception, the server’s handle_error() method will be called. If no request is received
within timeout seconds, handle_timeout() will be called and handle_request() will return.

serve_forever(poll_interval=0.5)
Handle requests until an explicit shutdown() request. Poll for shutdown every poll_interval
seconds. Ignores the timeout attribute. It also calls service_actions(), which may be used by a
subclass or mixin to provide actions specific to a given service. For example, the ForkingMixIn
class uses service_actions() to clean up zombie child processes.

Changed in version 3.3: Added service_actions call to the serve_forever method.

service_actions()
This is called in the serve_forever() loop. This method can be overridden by subclasses or mixin
classes to perform actions specific to a given service, such as cleanup actions.

1178 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

New in version 3.3.

shutdown()
Tell the serve_forever() loop to stop and wait until it does.

server_close()
Clean up the server. May be overridden.

address_family
The family of protocols to which the server’s socket belongs. Common examples are socket.
AF_INET and socket.AF_UNIX.

RequestHandlerClass
The user-provided request handler class; an instance of this class is created for each request.

server_address
The address on which the server is listening. The format of addresses varies depending on the
protocol family; see the documentation for the socket module for details. For Internet protocols,
this is a tuple containing a string giving the address, and an integer port number: ('127.0.0.1',
80), for example.

socket
The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

allow_reuse_address
Whether the server will allow the reuse of an address. This defaults to False, and can be set in
subclasses to change the policy.

request_queue_size
The size of the request queue. If it takes a long time to process a single request, any requests that
arrive while the server is busy are placed into a queue, up to request_queue_size requests. Once
the queue is full, further requests from clients will get a “Connection denied” error. The default
value is usually 5, but this can be overridden by subclasses.

socket_type
The type of socket used by the server; socket.SOCK_STREAM and socket.SOCK_DGRAM are
two common values.

timeout
Timeout duration, measured in seconds, or None if no timeout is desired. If handle_request()
receives no incoming requests within the timeout period, the handle_timeout() method is called.

There are various server methods that can be overridden by subclasses of base server classes like
TCPServer; these methods aren’t useful to external users of the server object.

finish_request()
Actually processes the request by instantiating RequestHandlerClass and calling its handle()
method.

get_request()
Must accept a request from the socket, and return a 2-tuple containing the new socket object to
be used to communicate with the client, and the client’s address.

handle_error(request, client_address)
This function is called if the handle() method of a RequestHandlerClass instance raises an ex-
ception. The default action is to print the traceback to standard output and continue handling
further requests.

handle_timeout()
This function is called when the timeout attribute has been set to a value other than None and

21.21. socketserver — A framework for network servers 1179

The Python Library Reference, Release 3.5.7

the timeout period has passed with no requests being received. The default action for forking
servers is to collect the status of any child processes that have exited, while in threading servers
this method does nothing.

process_request(request, client_address)
Calls finish_request() to create an instance of the RequestHandlerClass. If desired, this function
can create a new process or thread to handle the request; the ForkingMixIn and ThreadingMixIn
classes do this.

server_activate()
Called by the server’s constructor to activate the server. The default behavior for a TCP server
just invokes listen() on the server’s socket. May be overridden.

server_bind()
Called by the server’s constructor to bind the socket to the desired address. May be overridden.

verify_request(request, client_address)
Must return a Boolean value; if the value is True, the request will be processed, and if it’s False,
the request will be denied. This function can be overridden to implement access controls for a
server. The default implementation always returns True.

21.21.3 Request Handler Objects

class socketserver.BaseRequestHandler
This is the superclass of all request handler objects. It defines the interface, given below. A concrete
request handler subclass must define a new handle() method, and can override any of the other methods.
A new instance of the subclass is created for each request.

setup()
Called before the handle() method to perform any initialization actions required. The default
implementation does nothing.

handle()
This function must do all the work required to service a request. The default implementation does
nothing. Several instance attributes are available to it; the request is available as self.request; the
client address as self.client_address; and the server instance as self.server, in case it needs access
to per-server information.

The type of self.request is different for datagram or stream services. For stream services, self.
request is a socket object; for datagram services, self.request is a pair of string and socket.

finish()
Called after the handle() method to perform any clean-up actions required. The default imple-
mentation does nothing. If setup() raises an exception, this function will not be called.

class socketserver.StreamRequestHandler
class socketserver.DatagramRequestHandler

These BaseRequestHandler subclasses override the setup() and finish() methods, and provide self.rfile
and self.wfile attributes. The self.rfile and self.wfile attributes can be read or written, respectively, to
get the request data or return data to the client.

21.21.4 Examples

socketserver.TCPServer Example

This is the server side:

1180 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

import socketserver

class MyTCPHandler(socketserver.BaseRequestHandler):
"""
The request handler class for our server.

It is instantiated once per connection to the server, and must
override the handle() method to implement communication to the
client.
"""

def handle(self):
self.request is the TCP socket connected to the client
self.data = self.request.recv(1024).strip()
print("{} wrote:".format(self.client_address[0]))
print(self.data)
just send back the same data, but upper-cased
self.request.sendall(self.data.upper())

if __name__ == "__main__":
HOST, PORT = "localhost", 9999

Create the server, binding to localhost on port 9999
server = socketserver.TCPServer((HOST, PORT), MyTCPHandler)

Activate the server; this will keep running until you
interrupt the program with Ctrl-C
server.serve_forever()

An alternative request handler class that makes use of streams (file-like objects that simplify communication
by providing the standard file interface):

class MyTCPHandler(socketserver.StreamRequestHandler):

def handle(self):
self.rfile is a file-like object created by the handler;
we can now use e.g. readline() instead of raw recv() calls
self.data = self.rfile.readline().strip()
print("{} wrote:".format(self.client_address[0]))
print(self.data)
Likewise, self.wfile is a file-like object used to write back
to the client
self.wfile.write(self.data.upper())

The difference is that the readline() call in the second handler will call recv() multiple times until it encounters
a newline character, while the single recv() call in the first handler will just return what has been sent from
the client in one sendall() call.

This is the client side:

import socket
import sys

HOST, PORT = "localhost", 9999
data = " ".join(sys.argv[1:])

Create a socket (SOCK_STREAM means a TCP socket)

(continues on next page)

21.21. socketserver — A framework for network servers 1181

The Python Library Reference, Release 3.5.7

(continued from previous page)

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
Connect to server and send data
sock.connect((HOST, PORT))
sock.sendall(bytes(data + "\n", "utf-8"))

Receive data from the server and shut down
received = str(sock.recv(1024), "utf-8")

print("Sent: {}".format(data))
print("Received: {}".format(received))

The output of the example should look something like this:

Server:

$ python TCPServer.py
127.0.0.1 wrote:
b'hello world with TCP'
127.0.0.1 wrote:
b'python is nice'

Client:

$ python TCPClient.py hello world with TCP
Sent: hello world with TCP
Received: HELLO WORLD WITH TCP
$ python TCPClient.py python is nice
Sent: python is nice
Received: PYTHON IS NICE

socketserver.UDPServer Example

This is the server side:

import socketserver

class MyUDPHandler(socketserver.BaseRequestHandler):
"""
This class works similar to the TCP handler class, except that
self.request consists of a pair of data and client socket, and since
there is no connection the client address must be given explicitly
when sending data back via sendto().
"""

def handle(self):
data = self.request[0].strip()
socket = self.request[1]
print("{} wrote:".format(self.client_address[0]))
print(data)
socket.sendto(data.upper(), self.client_address)

if __name__ == "__main__":
HOST, PORT = "localhost", 9999
server = socketserver.UDPServer((HOST, PORT), MyUDPHandler)
server.serve_forever()

1182 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

This is the client side:

import socket
import sys

HOST, PORT = "localhost", 9999
data = " ".join(sys.argv[1:])

SOCK_DGRAM is the socket type to use for UDP sockets
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

As you can see, there is no connect() call; UDP has no connections.
Instead, data is directly sent to the recipient via sendto().
sock.sendto(bytes(data + "\n", "utf-8"), (HOST, PORT))
received = str(sock.recv(1024), "utf-8")

print("Sent: {}".format(data))
print("Received: {}".format(received))

The output of the example should look exactly like for the TCP server example.

Asynchronous Mixins

To build asynchronous handlers, use the ThreadingMixIn and ForkingMixIn classes.

An example for the ThreadingMixIn class:

import socket
import threading
import socketserver

class ThreadedTCPRequestHandler(socketserver.BaseRequestHandler):

def handle(self):
data = str(self.request.recv(1024), 'ascii')
cur_thread = threading.current_thread()
response = bytes("{}: {}".format(cur_thread.name, data), 'ascii')
self.request.sendall(response)

class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer):
pass

def client(ip, port, message):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:

sock.connect((ip, port))
sock.sendall(bytes(message, 'ascii'))
response = str(sock.recv(1024), 'ascii')
print("Received: {}".format(response))

if __name__ == "__main__":
Port 0 means to select an arbitrary unused port
HOST, PORT = "localhost", 0

server = ThreadedTCPServer((HOST, PORT), ThreadedTCPRequestHandler)
ip, port = server.server_address

Start a thread with the server -- that thread will then start one

(continues on next page)

21.21. socketserver — A framework for network servers 1183

The Python Library Reference, Release 3.5.7

(continued from previous page)

more thread for each request
server_thread = threading.Thread(target=server.serve_forever)
Exit the server thread when the main thread terminates
server_thread.daemon = True
server_thread.start()
print("Server loop running in thread:", server_thread.name)

client(ip, port, "Hello World 1")
client(ip, port, "Hello World 2")
client(ip, port, "Hello World 3")

server.shutdown()
server.server_close()

The output of the example should look something like this:

$ python ThreadedTCPServer.py
Server loop running in thread: Thread-1
Received: Thread-2: Hello World 1
Received: Thread-3: Hello World 2
Received: Thread-4: Hello World 3

The ForkingMixIn class is used in the same way, except that the server will spawn a new process for each
request.

21.22 http.server — HTTP servers

Source code: Lib/http/server.py

This module defines classes for implementing HTTP servers (Web servers).

One class, HTTPServer, is a socketserver.TCPServer subclass. It creates and listens at the HTTP socket,
dispatching the requests to a handler. Code to create and run the server looks like this:

def run(server_class=HTTPServer, handler_class=BaseHTTPRequestHandler):
server_address = ('', 8000)
httpd = server_class(server_address, handler_class)
httpd.serve_forever()

class http.server.HTTPServer(server_address, RequestHandlerClass)
This class builds on the TCPServer class by storing the server address as instance variables named
server_name and server_port. The server is accessible by the handler, typically through the handler’s
server instance variable.

The HTTPServer must be given a RequestHandlerClass on instantiation, of which this module provides
three different variants:

class http.server.BaseHTTPRequestHandler(request, client_address, server)
This class is used to handle the HTTP requests that arrive at the server. By itself, it cannot respond
to any actual HTTP requests; it must be subclassed to handle each request method (e.g. GET or
POST). BaseHTTPRequestHandler provides a number of class and instance variables, and methods
for use by subclasses.

1184 Chapter 21. Internet Protocols and Support

https://github.com/python/cpython/tree/3.5/Lib/http/server.py

The Python Library Reference, Release 3.5.7

The handler will parse the request and the headers, then call a method specific to the request type.
The method name is constructed from the request. For example, for the request method SPAM, the
do_SPAM() method will be called with no arguments. All of the relevant information is stored in
instance variables of the handler. Subclasses should not need to override or extend the __init__()
method.

BaseHTTPRequestHandler has the following instance variables:

client_address
Contains a tuple of the form (host, port) referring to the client’s address.

server
Contains the server instance.

close_connection
Boolean that should be set before handle_one_request() returns, indicating if another request
may be expected, or if the connection should be shut down.

requestline
Contains the string representation of the HTTP request line. The terminating CRLF is stripped.
This attribute should be set by handle_one_request(). If no valid request line was processed, it
should be set to the empty string.

command
Contains the command (request type). For example, 'GET'.

path
Contains the request path.

request_version
Contains the version string from the request. For example, 'HTTP/1.0'.

headers
Holds an instance of the class specified by the MessageClass class variable. This instance parses
and manages the headers in the HTTP request. The parse_headers() function from http.client is
used to parse the headers and it requires that the HTTP request provide a valid RFC 2822 style
header.

rfile
Contains an input stream, positioned at the start of the optional input data.

wfile
Contains the output stream for writing a response back to the client. Proper adherence to the
HTTP protocol must be used when writing to this stream in order to achieve successful interop-
eration with HTTP clients.

BaseHTTPRequestHandler has the following attributes:

server_version
Specifies the server software version. You may want to override this. The format is multiple
whitespace-separated strings, where each string is of the form name[/version]. For example,
'BaseHTTP/0.2'.

sys_version
Contains the Python system version, in a form usable by the version_string method and the
server_version class variable. For example, 'Python/1.4'.

error_message_format
Specifies a format string that should be used by send_error() method for building an error response
to the client. The string is filled by default with variables from responses based on the status
code that passed to send_error().

21.22. http.server — HTTP servers 1185

https://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 3.5.7

error_content_type
Specifies the Content-Type HTTP header of error responses sent to the client. The default value
is 'text/html'.

protocol_version
This specifies the HTTP protocol version used in responses. If set to 'HTTP/1.1', the server
will permit HTTP persistent connections; however, your server must then include an accurate
Content-Length header (using send_header()) in all of its responses to clients. For backwards
compatibility, the setting defaults to 'HTTP/1.0'.

MessageClass
Specifies an email.message.Message-like class to parse HTTP headers. Typically, this is not over-
ridden, and it defaults to http.client.HTTPMessage.

responses
This attribute contains a mapping of error code integers to two-element tuples containing a short
and long message. For example, {code: (shortmessage, longmessage)}. The shortmessage is
usually used as the message key in an error response, and longmessage as the explain key. It is
used by send_response_only() and send_error() methods.

A BaseHTTPRequestHandler instance has the following methods:

handle()
Calls handle_one_request() once (or, if persistent connections are enabled, multiple times) to
handle incoming HTTP requests. You should never need to override it; instead, implement
appropriate do_*() methods.

handle_one_request()
This method will parse and dispatch the request to the appropriate do_*() method. You should
never need to override it.

handle_expect_100()
When a HTTP/1.1 compliant server receives an Expect: 100-continue request header it responds
back with a 100 Continue followed by 200 OK headers. This method can be overridden to raise
an error if the server does not want the client to continue. For e.g. server can chose to send 417
Expectation Failed as a response header and return False.

New in version 3.2.

send_error(code, message=None, explain=None)
Sends and logs a complete error reply to the client. The numeric code specifies the HTTP error
code, with message as an optional, short, human readable description of the error. The explain
argument can be used to provide more detailed information about the error; it will be formatted
using the error_message_format attribute and emitted, after a complete set of headers, as the
response body. The responses attribute holds the default values for message and explain that will
be used if no value is provided; for unknown codes the default value for both is the string ???.
The body will be empty if the method is HEAD or the response code is one of the following: 1xx,
204 No Content, 205 Reset Content, 304 Not Modified.

Changed in version 3.4: The error response includes a Content-Length header. Added the explain
argument.

send_response(code, message=None)
Adds a response header to the headers buffer and logs the accepted request. The HTTP response
line is written to the internal buffer, followed by Server and Date headers. The values for these two
headers are picked up from the version_string() and date_time_string() methods, respectively.
If the server does not intend to send any other headers using the send_header() method, then
send_response() should be followed by an end_headers() call.

1186 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

Changed in version 3.3: Headers are stored to an internal buffer and end_headers() needs to be
called explicitly.

send_header(keyword, value)
Adds the HTTP header to an internal buffer which will be written to the output stream when
either end_headers() or flush_headers() is invoked. keyword should specify the header keyword,
with value specifying its value. Note that, after the send_header calls are done, end_headers()
MUST BE called in order to complete the operation.

Changed in version 3.2: Headers are stored in an internal buffer.

send_response_only(code, message=None)
Sends the response header only, used for the purposes when 100 Continue response is sent by the
server to the client. The headers not buffered and sent directly the output stream.If the message
is not specified, the HTTP message corresponding the response code is sent.

New in version 3.2.

end_headers()
Adds a blank line (indicating the end of the HTTP headers in the response) to the headers buffer
and calls flush_headers().

Changed in version 3.2: The buffered headers are written to the output stream.

flush_headers()
Finally send the headers to the output stream and flush the internal headers buffer.

New in version 3.3.

log_request(code=’-’, size=’-’)
Logs an accepted (successful) request. code should specify the numeric HTTP code associated
with the response. If a size of the response is available, then it should be passed as the size
parameter.

log_error(...)
Logs an error when a request cannot be fulfilled. By default, it passes the message to
log_message(), so it takes the same arguments (format and additional values).

log_message(format, ...)
Logs an arbitrary message to sys.stderr. This is typically overridden to create custom error logging
mechanisms. The format argument is a standard printf-style format string, where the additional
arguments to log_message() are applied as inputs to the formatting. The client ip address and
current date and time are prefixed to every message logged.

version_string()
Returns the server software’s version string. This is a combination of the server_version and
sys_version attributes.

date_time_string(timestamp=None)
Returns the date and time given by timestamp (which must be None or in the format returned by
time.time()), formatted for a message header. If timestamp is omitted, it uses the current date
and time.

The result looks like 'Sun, 06 Nov 1994 08:49:37 GMT'.

log_date_time_string()
Returns the current date and time, formatted for logging.

address_string()
Returns the client address.

21.22. http.server — HTTP servers 1187

The Python Library Reference, Release 3.5.7

Changed in version 3.3: Previously, a name lookup was performed. To avoid name resolution
delays, it now always returns the IP address.

class http.server.SimpleHTTPRequestHandler(request, client_address, server)
This class serves files from the current directory and below, directly mapping the directory structure
to HTTP requests.

A lot of the work, such as parsing the request, is done by the base class BaseHTTPRequestHandler.
This class implements the do_GET() and do_HEAD() functions.

The following are defined as class-level attributes of SimpleHTTPRequestHandler:

server_version
This will be "SimpleHTTP/" + __version__, where __version__ is defined at the module
level.

extensions_map
A dictionary mapping suffixes into MIME types. The default is signified by an empty string,
and is considered to be application/octet-stream. The mapping is used case-insensitively, and so
should contain only lower-cased keys.

The SimpleHTTPRequestHandler class defines the following methods:

do_HEAD()
This method serves the 'HEAD' request type: it sends the headers it would send for the equiv-
alent GET request. See the do_GET() method for a more complete explanation of the possible
headers.

do_GET()
The request is mapped to a local file by interpreting the request as a path relative to the current
working directory.

If the request was mapped to a directory, the directory is checked for a file named index.html or
index.htm (in that order). If found, the file’s contents are returned; otherwise a directory listing
is generated by calling the list_directory() method. This method uses os.listdir() to scan the
directory, and returns a 404 error response if the listdir() fails.

If the request was mapped to a file, it is opened and the contents are returned. Any OSError
exception in opening the requested file is mapped to a 404, 'File not found' error. Otherwise,
the content type is guessed by calling the guess_type() method, which in turn uses the exten-
sions_map variable.

A 'Content-type:' header with the guessed content type is output, followed by a 'Content-
Length:' header with the file’s size and a 'Last-Modified:' header with the file’s modification
time.

Then follows a blank line signifying the end of the headers, and then the contents of the file are
output. If the file’s MIME type starts with text/ the file is opened in text mode; otherwise binary
mode is used.

For example usage, see the implementation of the test() function invocation in the http.server
module.

The SimpleHTTPRequestHandler class can be used in the following manner in order to create a very basic
webserver serving files relative to the current directory:

import http.server
import socketserver

PORT = 8000

(continues on next page)

1188 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

(continued from previous page)

Handler = http.server.SimpleHTTPRequestHandler

httpd = socketserver.TCPServer(("", PORT), Handler)

print("serving at port", PORT)
httpd.serve_forever()

http.server can also be invoked directly using the -m switch of the interpreter with a port number argument.
Similar to the previous example, this serves files relative to the current directory:

python -m http.server 8000

By default, server binds itself to all interfaces. The option -b/--bind specifies a specific address to which it
should bind. For example, the following command causes the server to bind to localhost only:

python -m http.server 8000 --bind 127.0.0.1

New in version 3.4: --bind argument was introduced.

class http.server.CGIHTTPRequestHandler(request, client_address, server)
This class is used to serve either files or output of CGI scripts from the current directory and below.
Note that mapping HTTP hierarchic structure to local directory structure is exactly as in Simple-
HTTPRequestHandler.

Note: CGI scripts run by the CGIHTTPRequestHandler class cannot execute redirects (HTTP code
302), because code 200 (script output follows) is sent prior to execution of the CGI script. This
pre-empts the status code.

The class will however, run the CGI script, instead of serving it as a file, if it guesses it to be a CGI
script. Only directory-based CGI are used — the other common server configuration is to treat special
extensions as denoting CGI scripts.

The do_GET() and do_HEAD() functions are modified to run CGI scripts and serve the output,
instead of serving files, if the request leads to somewhere below the cgi_directories path.

The CGIHTTPRequestHandler defines the following data member:

cgi_directories
This defaults to ['/cgi-bin', '/htbin'] and describes directories to treat as containing CGI scripts.

The CGIHTTPRequestHandler defines the following method:

do_POST()
This method serves the 'POST' request type, only allowed for CGI scripts. Error 501, “Can only
POST to CGI scripts”, is output when trying to POST to a non-CGI url.

Note that CGI scripts will be run with UID of user nobody, for security reasons. Problems with the
CGI script will be translated to error 403.

CGIHTTPRequestHandler can be enabled in the command line by passing the --cgi option:

python -m http.server --cgi 8000

21.22. http.server — HTTP servers 1189

The Python Library Reference, Release 3.5.7

21.23 http.cookies — HTTP state management

Source code: Lib/http/cookies.py

The http.cookies module defines classes for abstracting the concept of cookies, an HTTP state manage-
ment mechanism. It supports both simple string-only cookies, and provides an abstraction for having any
serializable data-type as cookie value.

The module formerly strictly applied the parsing rules described in the RFC 2109 and RFC 2068 specifica-
tions. It has since been discovered that MSIE 3.0x doesn’t follow the character rules outlined in those specs
and also many current day browsers and servers have relaxed parsing rules when comes to Cookie handling.
As a result, the parsing rules used are a bit less strict.

The character set, string.ascii_letters, string.digits and !#$%&'*+-.^_`|~: denote the set of valid charac-
ters allowed by this module in Cookie name (as key).

Changed in version 3.3: Allowed ‘:’ as a valid Cookie name character.

Note: On encountering an invalid cookie, CookieError is raised, so if your cookie data comes from a browser
you should always prepare for invalid data and catch CookieError on parsing.

exception http.cookies.CookieError
Exception failing because of RFC 2109 invalidity: incorrect attributes, incorrect Set-Cookie header,
etc.

class http.cookies.BaseCookie([input])
This class is a dictionary-like object whose keys are strings and whose values are Morsel instances.
Note that upon setting a key to a value, the value is first converted to a Morsel containing the key and
the value.

If input is given, it is passed to the load() method.

class http.cookies.SimpleCookie([input])
This class derives from BaseCookie and overrides value_decode() and value_encode() to be the identity
and str() respectively.

See also:

Module http.cookiejar HTTP cookie handling for web clients. The http.cookiejar and http.cookies modules
do not depend on each other.

RFC 2109 - HTTP State Management Mechanism This is the state management specification implemented
by this module.

21.23.1 Cookie Objects

BaseCookie.value_decode(val)
Return a decoded value from a string representation. Return value can be any type. This method does
nothing in BaseCookie — it exists so it can be overridden.

BaseCookie.value_encode(val)
Return an encoded value. val can be any type, but return value must be a string. This method does
nothing in BaseCookie — it exists so it can be overridden.

In general, it should be the case that value_encode() and value_decode() are inverses on the range of
value_decode.

1190 Chapter 21. Internet Protocols and Support

https://github.com/python/cpython/tree/3.5/Lib/http/cookies.py
https://tools.ietf.org/html/rfc2109.html
https://tools.ietf.org/html/rfc2068.html
https://tools.ietf.org/html/rfc2109.html
https://tools.ietf.org/html/rfc2109.html

The Python Library Reference, Release 3.5.7

BaseCookie.output(attrs=None, header=’Set-Cookie:’, sep=’\r\n’)
Return a string representation suitable to be sent as HTTP headers. attrs and header are sent to each
Morsel’s output() method. sep is used to join the headers together, and is by default the combination
'\r\n' (CRLF).

BaseCookie.js_output(attrs=None)
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will
act the same as if the HTTP headers was sent.

The meaning for attrs is the same as in output().

BaseCookie.load(rawdata)
If rawdata is a string, parse it as an HTTP_COOKIE and add the values found there as Morsels. If
it is a dictionary, it is equivalent to:

for k, v in rawdata.items():
cookie[k] = v

21.23.2 Morsel Objects

class http.cookies.Morsel
Abstract a key/value pair, which has some RFC 2109 attributes.

Morsels are dictionary-like objects, whose set of keys is constant — the valid RFC 2109 attributes,
which are

• expires

• path

• comment

• domain

• max-age

• secure

• version

• httponly

The attribute httponly specifies that the cookie is only transferred in HTTP requests, and is not
accessible through JavaScript. This is intended to mitigate some forms of cross-site scripting.

The keys are case-insensitive and their default value is ''.

Changed in version 3.5: __eq__() now takes key and value into account.

Morsel.value
The value of the cookie.

Deprecated since version 3.5: assigning to value; use set() instead.

Morsel.coded_value
The encoded value of the cookie — this is what should be sent.

Deprecated since version 3.5: assigning to coded_value; use set() instead.

Morsel.key
The name of the cookie.

Deprecated since version 3.5: assigning to key; use set() instead.

21.23. http.cookies — HTTP state management 1191

https://tools.ietf.org/html/rfc2109.html
https://tools.ietf.org/html/rfc2109.html

The Python Library Reference, Release 3.5.7

Morsel.set(key, value, coded_value)
Set the key, value and coded_value attributes.

Deprecated since version 3.5: The undocumented LegalChars parameter is ignored and will be removed
in a future version.

Morsel.isReservedKey(K)
Whether K is a member of the set of keys of a Morsel.

Morsel.output(attrs=None, header=’Set-Cookie:’)
Return a string representation of the Morsel, suitable to be sent as an HTTP header. By default, all
the attributes are included, unless attrs is given, in which case it should be a list of attributes to use.
header is by default "Set-Cookie:".

Morsel.js_output(attrs=None)
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will
act the same as if the HTTP header was sent.

The meaning for attrs is the same as in output().

Morsel.OutputString(attrs=None)
Return a string representing the Morsel, without any surrounding HTTP or JavaScript.

The meaning for attrs is the same as in output().

Morsel.update(values)
Update the values in the Morsel dictionary with the values in the dictionary values. Raise an error if
any of the keys in the values dict is not a valid RFC 2109 attribute.

Changed in version 3.5: an error is raised for invalid keys.

Morsel.copy(value)
Return a shallow copy of the Morsel object.

Changed in version 3.5: return a Morsel object instead of a dict.

Morsel.setdefault(key, value=None)
Raise an error if key is not a valid RFC 2109 attribute, otherwise behave the same as dict.setdefault().

21.23.3 Example

The following example demonstrates how to use the http.cookies module.

>>> from http import cookies
>>> C = cookies.SimpleCookie()
>>> C["fig"] = "newton"
>>> C["sugar"] = "wafer"
>>> print(C) # generate HTTP headers
Set-Cookie: fig=newton
Set-Cookie: sugar=wafer
>>> print(C.output()) # same thing
Set-Cookie: fig=newton
Set-Cookie: sugar=wafer
>>> C = cookies.SimpleCookie()
>>> C["rocky"] = "road"
>>> C["rocky"]["path"] = "/cookie"
>>> print(C.output(header="Cookie:"))
Cookie: rocky=road; Path=/cookie
>>> print(C.output(attrs=[], header="Cookie:"))
Cookie: rocky=road

(continues on next page)

1192 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc2109.html
https://tools.ietf.org/html/rfc2109.html

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> C = cookies.SimpleCookie()
>>> C.load("chips=ahoy; vienna=finger") # load from a string (HTTP header)
>>> print(C)
Set-Cookie: chips=ahoy
Set-Cookie: vienna=finger
>>> C = cookies.SimpleCookie()
>>> C.load('keebler="E=everybody; L=\\"Loves\\"; fudge=\\012;";')
>>> print(C)
Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;"
>>> C = cookies.SimpleCookie()
>>> C["oreo"] = "doublestuff"
>>> C["oreo"]["path"] = "/"
>>> print(C)
Set-Cookie: oreo=doublestuff; Path=/
>>> C = cookies.SimpleCookie()
>>> C["twix"] = "none for you"
>>> C["twix"].value
'none for you'
>>> C = cookies.SimpleCookie()
>>> C["number"] = 7 # equivalent to C["number"] = str(7)
>>> C["string"] = "seven"
>>> C["number"].value
'7'
>>> C["string"].value
'seven'
>>> print(C)
Set-Cookie: number=7
Set-Cookie: string=seven

21.24 http.cookiejar — Cookie handling for HTTP clients

Source code: Lib/http/cookiejar.py

The http.cookiejar module defines classes for automatic handling of HTTP cookies. It is useful for accessing
web sites that require small pieces of data – cookies – to be set on the client machine by an HTTP response
from a web server, and then returned to the server in later HTTP requests.

Both the regular Netscape cookie protocol and the protocol defined by RFC 2965 are handled. RFC 2965
handling is switched off by default. RFC 2109 cookies are parsed as Netscape cookies and subsequently
treated either as Netscape or RFC 2965 cookies according to the ‘policy’ in effect. Note that the great
majority of cookies on the Internet are Netscape cookies. http.cookiejar attempts to follow the de-facto
Netscape cookie protocol (which differs substantially from that set out in the original Netscape specification),
including taking note of the max-age and port cookie-attributes introduced with RFC 2965.

Note: The various named parameters found in Set-Cookie and Set-Cookie2 headers (eg. domain and expires)
are conventionally referred to as attributes. To distinguish them from Python attributes, the documentation
for this module uses the term cookie-attribute instead.

The module defines the following exception:

21.24. http.cookiejar — Cookie handling for HTTP clients 1193

https://github.com/python/cpython/tree/3.5/Lib/http/cookiejar.py
https://tools.ietf.org/html/rfc2965.html
https://tools.ietf.org/html/rfc2109.html

The Python Library Reference, Release 3.5.7

exception http.cookiejar.LoadError
Instances of FileCookieJar raise this exception on failure to load cookies from a file. LoadError is a
subclass of OSError.

Changed in version 3.3: LoadError was made a subclass of OSError instead of IOError.

The following classes are provided:

class http.cookiejar.CookieJar(policy=None)
policy is an object implementing the CookiePolicy interface.

The CookieJar class stores HTTP cookies. It extracts cookies from HTTP requests, and returns
them in HTTP responses. CookieJar instances automatically expire contained cookies when necessary.
Subclasses are also responsible for storing and retrieving cookies from a file or database.

class http.cookiejar.FileCookieJar(filename, delayload=None, policy=None)
policy is an object implementing the CookiePolicy interface. For the other arguments, see the docu-
mentation for the corresponding attributes.

A CookieJar which can load cookies from, and perhaps save cookies to, a file on disk. Cookies are
NOT loaded from the named file until either the load() or revert() method is called. Subclasses of this
class are documented in section FileCookieJar subclasses and co-operation with web browsers.

class http.cookiejar.CookiePolicy
This class is responsible for deciding whether each cookie should be accepted from / returned to the
server.

class http.cookiejar.DefaultCookiePolicy(blocked_domains=None, allowed_domains=None,
netscape=True, rfc2965=False, rfc2109_as_netscape=None,
hide_cookie2=False, strict_domain=False,
strict_rfc2965_unverifiable=True,
strict_ns_unverifiable=False, strict_ns_domain=DefaultCookiePolicy.DomainLiberal,
strict_ns_set_initial_dollar=False,
strict_ns_set_path=False)

Constructor arguments should be passed as keyword arguments only. blocked_domains is a sequence
of domain names that we never accept cookies from, nor return cookies to. allowed_domains if not
None, this is a sequence of the only domains for which we accept and return cookies. For all other
arguments, see the documentation for CookiePolicy and DefaultCookiePolicy objects.

DefaultCookiePolicy implements the standard accept / reject rules for Netscape and RFC 2965 cookies.
By default, RFC 2109 cookies (ie. cookies received in a Set-Cookie header with a version cookie-
attribute of 1) are treated according to the RFC 2965 rules. However, if RFC 2965 handling is turned
off or rfc2109_as_netscape is True, RFC 2109 cookies are ‘downgraded’ by the CookieJar instance to
Netscape cookies, by setting the version attribute of the Cookie instance to 0. DefaultCookiePolicy
also provides some parameters to allow some fine-tuning of policy.

class http.cookiejar.Cookie
This class represents Netscape, RFC 2109 and RFC 2965 cookies. It is not expected that users of
http.cookiejar construct their own Cookie instances. Instead, if necessary, call make_cookies() on a
CookieJar instance.

See also:

Module urllib.request URL opening with automatic cookie handling.

Module http.cookies HTTP cookie classes, principally useful for server-side code. The http.cookiejar and
http.cookies modules do not depend on each other.

https://curl.haxx.se/rfc/cookie_spec.html The specification of the original Netscape cookie protocol.
Though this is still the dominant protocol, the ‘Netscape cookie protocol’ implemented by all the

1194 Chapter 21. Internet Protocols and Support

https://curl.haxx.se/rfc/cookie_spec.html

The Python Library Reference, Release 3.5.7

major browsers (and http.cookiejar) only bears a passing resemblance to the one sketched out in
cookie_spec.html.

RFC 2109 - HTTP State Management Mechanism Obsoleted by RFC 2965. Uses Set-Cookie with ver-
sion=1.

RFC 2965 - HTTP State Management Mechanism The Netscape protocol with the bugs fixed. Uses Set-
Cookie2 in place of Set-Cookie. Not widely used.

http://kristol.org/cookie/errata.html Unfinished errata to RFC 2965.

RFC 2964 - Use of HTTP State Management

21.24.1 CookieJar and FileCookieJar Objects

CookieJar objects support the iterator protocol for iterating over contained Cookie objects.

CookieJar has the following methods:

CookieJar.add_cookie_header(request)
Add correct Cookie header to request.

If policy allows (ie. the rfc2965 and hide_cookie2 attributes of the CookieJar’s CookiePolicy instance
are true and false respectively), the Cookie2 header is also added when appropriate.

The request object (usually a urllib.request..Request instance) must support the methods
get_full_url(), get_host(), get_type(), unverifiable(), has_header(), get_header(), header_items(),
add_unredirected_header() and origin_req_host attribute as documented by urllib.request.

Changed in version 3.3: request object needs origin_req_host attribute. Dependency on a deprecated
method get_origin_req_host() has been removed.

CookieJar.extract_cookies(response, request)
Extract cookies from HTTP response and store them in the CookieJar, where allowed by policy.

The CookieJar will look for allowable Set-Cookie and Set-Cookie2 headers in the response argument,
and store cookies as appropriate (subject to the CookiePolicy.set_ok() method’s approval).

The response object (usually the result of a call to urllib.request.urlopen(), or similar) should support
an info() method, which returns an email.message.Message instance.

The request object (usually a urllib.request.Request instance) must support the methods
get_full_url(), get_host(), unverifiable(), and origin_req_host attribute, as documented by urllib.
request. The request is used to set default values for cookie-attributes as well as for checking that the
cookie is allowed to be set.

Changed in version 3.3: request object needs origin_req_host attribute. Dependency on a deprecated
method get_origin_req_host() has been removed.

CookieJar.set_policy(policy)
Set the CookiePolicy instance to be used.

CookieJar.make_cookies(response, request)
Return sequence of Cookie objects extracted from response object.

See the documentation for extract_cookies() for the interfaces required of the response and request
arguments.

CookieJar.set_cookie_if_ok(cookie, request)
Set a Cookie if policy says it’s OK to do so.

CookieJar.set_cookie(cookie)
Set a Cookie, without checking with policy to see whether or not it should be set.

21.24. http.cookiejar — Cookie handling for HTTP clients 1195

https://tools.ietf.org/html/rfc2109.html
https://tools.ietf.org/html/rfc2965.html
http://kristol.org/cookie/errata.html
https://tools.ietf.org/html/rfc2964.html

The Python Library Reference, Release 3.5.7

CookieJar.clear([domain[, path[, name]]])
Clear some cookies.

If invoked without arguments, clear all cookies. If given a single argument, only cookies belonging to
that domain will be removed. If given two arguments, cookies belonging to the specified domain and
URL path are removed. If given three arguments, then the cookie with the specified domain, path and
name is removed.

Raises KeyError if no matching cookie exists.

CookieJar.clear_session_cookies()
Discard all session cookies.

Discards all contained cookies that have a true discard attribute (usually because they had either no
max-age or expires cookie-attribute, or an explicit discard cookie-attribute). For interactive browsers,
the end of a session usually corresponds to closing the browser window.

Note that the save() method won’t save session cookies anyway, unless you ask otherwise by passing a
true ignore_discard argument.

FileCookieJar implements the following additional methods:

FileCookieJar.save(filename=None, ignore_discard=False, ignore_expires=False)
Save cookies to a file.

This base class raises NotImplementedError. Subclasses may leave this method unimplemented.

filename is the name of file in which to save cookies. If filename is not specified, self.filename is used
(whose default is the value passed to the constructor, if any); if self.filename is None, ValueError is
raised.

ignore_discard: save even cookies set to be discarded. ignore_expires: save even cookies that have
expired

The file is overwritten if it already exists, thus wiping all the cookies it contains. Saved cookies can be
restored later using the load() or revert() methods.

FileCookieJar.load(filename=None, ignore_discard=False, ignore_expires=False)
Load cookies from a file.

Old cookies are kept unless overwritten by newly loaded ones.

Arguments are as for save().

The named file must be in the format understood by the class, or LoadError will be raised. Also,
OSError may be raised, for example if the file does not exist.

Changed in version 3.3: IOError used to be raised, it is now an alias of OSError.

FileCookieJar.revert(filename=None, ignore_discard=False, ignore_expires=False)
Clear all cookies and reload cookies from a saved file.

revert() can raise the same exceptions as load(). If there is a failure, the object’s state will not be
altered.

FileCookieJar instances have the following public attributes:

FileCookieJar.filename
Filename of default file in which to keep cookies. This attribute may be assigned to.

FileCookieJar.delayload
If true, load cookies lazily from disk. This attribute should not be assigned to. This is only a hint, since
this only affects performance, not behaviour (unless the cookies on disk are changing). A CookieJar

1196 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

object may ignore it. None of the FileCookieJar classes included in the standard library lazily loads
cookies.

21.24.2 FileCookieJar subclasses and co-operation with web browsers

The following CookieJar subclasses are provided for reading and writing.

class http.cookiejar.MozillaCookieJar(filename, delayload=None, policy=None)
A FileCookieJar that can load from and save cookies to disk in the Mozilla cookies.txt file format
(which is also used by the Lynx and Netscape browsers).

Note: This loses information about RFC 2965 cookies, and also about newer or non-standard cookie-
attributes such as port.

Warning: Back up your cookies before saving if you have cookies whose loss / corruption would
be inconvenient (there are some subtleties which may lead to slight changes in the file over a load
/ save round-trip).

Also note that cookies saved while Mozilla is running will get clobbered by Mozilla.

class http.cookiejar.LWPCookieJar(filename, delayload=None, policy=None)
A FileCookieJar that can load from and save cookies to disk in format compatible with the libwww-perl
library’s Set-Cookie3 file format. This is convenient if you want to store cookies in a human-readable
file.

21.24.3 CookiePolicy Objects

Objects implementing the CookiePolicy interface have the following methods:

CookiePolicy.set_ok(cookie, request)
Return boolean value indicating whether cookie should be accepted from server.

cookie is a Cookie instance. request is an object implementing the interface defined by the documen-
tation for CookieJar.extract_cookies().

CookiePolicy.return_ok(cookie, request)
Return boolean value indicating whether cookie should be returned to server.

cookie is a Cookie instance. request is an object implementing the interface defined by the documen-
tation for CookieJar.add_cookie_header().

CookiePolicy.domain_return_ok(domain, request)
Return false if cookies should not be returned, given cookie domain.

This method is an optimization. It removes the need for checking every cookie with a particular
domain (which might involve reading many files). Returning true from domain_return_ok() and
path_return_ok() leaves all the work to return_ok().

If domain_return_ok() returns true for the cookie domain, path_return_ok() is called for the cookie
path. Otherwise, path_return_ok() and return_ok() are never called for that cookie domain. If
path_return_ok() returns true, return_ok() is called with the Cookie object itself for a full check.
Otherwise, return_ok() is never called for that cookie path.

21.24. http.cookiejar — Cookie handling for HTTP clients 1197

The Python Library Reference, Release 3.5.7

Note that domain_return_ok() is called for every cookie domain, not just for the request domain.
For example, the function might be called with both ".example.com" and "www.example.com" if the
request domain is "www.example.com". The same goes for path_return_ok().

The request argument is as documented for return_ok().

CookiePolicy.path_return_ok(path, request)
Return false if cookies should not be returned, given cookie path.

See the documentation for domain_return_ok().

In addition to implementing the methods above, implementations of the CookiePolicy interface must also
supply the following attributes, indicating which protocols should be used, and how. All of these attributes
may be assigned to.

CookiePolicy.netscape
Implement Netscape protocol.

CookiePolicy.rfc2965
Implement RFC 2965 protocol.

CookiePolicy.hide_cookie2
Don’t add Cookie2 header to requests (the presence of this header indicates to the server that we
understand RFC 2965 cookies).

The most useful way to define a CookiePolicy class is by subclassing from DefaultCookiePolicy and overriding
some or all of the methods above. CookiePolicy itself may be used as a ‘null policy’ to allow setting and
receiving any and all cookies (this is unlikely to be useful).

21.24.4 DefaultCookiePolicy Objects

Implements the standard rules for accepting and returning cookies.

Both RFC 2965 and Netscape cookies are covered. RFC 2965 handling is switched off by default.

The easiest way to provide your own policy is to override this class and call its methods in your overridden
implementations before adding your own additional checks:

import http.cookiejar
class MyCookiePolicy(http.cookiejar.DefaultCookiePolicy):

def set_ok(self, cookie, request):
if not http.cookiejar.DefaultCookiePolicy.set_ok(self, cookie, request):

return False
if i_dont_want_to_store_this_cookie(cookie):

return False
return True

In addition to the features required to implement the CookiePolicy interface, this class allows you to block
and allow domains from setting and receiving cookies. There are also some strictness switches that allow
you to tighten up the rather loose Netscape protocol rules a little bit (at the cost of blocking some benign
cookies).

A domain blacklist and whitelist is provided (both off by default). Only domains not in the blacklist
and present in the whitelist (if the whitelist is active) participate in cookie setting and returning. Use the
blocked_domains constructor argument, and blocked_domains() and set_blocked_domains() methods (and
the corresponding argument and methods for allowed_domains). If you set a whitelist, you can turn it off
again by setting it to None.

Domains in block or allow lists that do not start with a dot must equal the cookie domain to be matched.
For example, "example.com" matches a blacklist entry of "example.com", but "www.example.com" does

1198 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

not. Domains that do start with a dot are matched by more specific domains too. For example, both "www.
example.com" and "www.coyote.example.com" match ".example.com" (but "example.com" itself does not).
IP addresses are an exception, and must match exactly. For example, if blocked_domains contains "192.
168.1.2" and ".168.1.2", 192.168.1.2 is blocked, but 193.168.1.2 is not.

DefaultCookiePolicy implements the following additional methods:

DefaultCookiePolicy.blocked_domains()
Return the sequence of blocked domains (as a tuple).

DefaultCookiePolicy.set_blocked_domains(blocked_domains)
Set the sequence of blocked domains.

DefaultCookiePolicy.is_blocked(domain)
Return whether domain is on the blacklist for setting or receiving cookies.

DefaultCookiePolicy.allowed_domains()
Return None, or the sequence of allowed domains (as a tuple).

DefaultCookiePolicy.set_allowed_domains(allowed_domains)
Set the sequence of allowed domains, or None.

DefaultCookiePolicy.is_not_allowed(domain)
Return whether domain is not on the whitelist for setting or receiving cookies.

DefaultCookiePolicy instances have the following attributes, which are all initialised from the constructor
arguments of the same name, and which may all be assigned to.

DefaultCookiePolicy.rfc2109_as_netscape
If true, request that the CookieJar instance downgrade RFC 2109 cookies (ie. cookies received in a
Set-Cookie header with a version cookie-attribute of 1) to Netscape cookies by setting the version
attribute of the Cookie instance to 0. The default value is None, in which case RFC 2109 cookies
are downgraded if and only if RFC 2965 handling is turned off. Therefore, RFC 2109 cookies are
downgraded by default.

General strictness switches:

DefaultCookiePolicy.strict_domain
Don’t allow sites to set two-component domains with country-code top-level domains like .co.uk, .gov.
uk, .co.nz.etc. This is far from perfect and isn’t guaranteed to work!

RFC 2965 protocol strictness switches:

DefaultCookiePolicy.strict_rfc2965_unverifiable
Follow RFC 2965 rules on unverifiable transactions (usually, an unverifiable transaction is one resulting
from a redirect or a request for an image hosted on another site). If this is false, cookies are never
blocked on the basis of verifiability

Netscape protocol strictness switches:

DefaultCookiePolicy.strict_ns_unverifiable
Apply RFC 2965 rules on unverifiable transactions even to Netscape cookies.

DefaultCookiePolicy.strict_ns_domain
Flags indicating how strict to be with domain-matching rules for Netscape cookies. See below for
acceptable values.

DefaultCookiePolicy.strict_ns_set_initial_dollar
Ignore cookies in Set-Cookie: headers that have names starting with '$'.

DefaultCookiePolicy.strict_ns_set_path
Don’t allow setting cookies whose path doesn’t path-match request URI.

21.24. http.cookiejar — Cookie handling for HTTP clients 1199

The Python Library Reference, Release 3.5.7

strict_ns_domain is a collection of flags. Its value is constructed by or-ing together (for example, Domain-
StrictNoDots|DomainStrictNonDomain means both flags are set).

DefaultCookiePolicy.DomainStrictNoDots
When setting cookies, the ‘host prefix’ must not contain a dot (eg. www.foo.bar.com can’t set a cookie
for .bar.com, because www.foo contains a dot).

DefaultCookiePolicy.DomainStrictNonDomain
Cookies that did not explicitly specify a domain cookie-attribute can only be returned to a domain equal
to the domain that set the cookie (eg. spam.example.com won’t be returned cookies from example.com
that had no domain cookie-attribute).

DefaultCookiePolicy.DomainRFC2965Match
When setting cookies, require a full RFC 2965 domain-match.

The following attributes are provided for convenience, and are the most useful combinations of the above
flags:

DefaultCookiePolicy.DomainLiberal
Equivalent to 0 (ie. all of the above Netscape domain strictness flags switched off).

DefaultCookiePolicy.DomainStrict
Equivalent to DomainStrictNoDots|DomainStrictNonDomain.

21.24.5 Cookie Objects

Cookie instances have Python attributes roughly corresponding to the standard cookie-attributes specified in
the various cookie standards. The correspondence is not one-to-one, because there are complicated rules for
assigning default values, because the max-age and expires cookie-attributes contain equivalent information,
and because RFC 2109 cookies may be ‘downgraded’ by http.cookiejar from version 1 to version 0 (Netscape)
cookies.

Assignment to these attributes should not be necessary other than in rare circumstances in a CookiePolicy
method. The class does not enforce internal consistency, so you should know what you’re doing if you do
that.

Cookie.version
Integer or None. Netscape cookies have version 0. RFC 2965 and RFC 2109 cookies have a ver-
sion cookie-attribute of 1. However, note that http.cookiejar may ‘downgrade’ RFC 2109 cookies to
Netscape cookies, in which case version is 0.

Cookie.name
Cookie name (a string).

Cookie.value
Cookie value (a string), or None.

Cookie.port
String representing a port or a set of ports (eg. ‘80’, or ‘80,8080’), or None.

Cookie.path
Cookie path (a string, eg. '/acme/rocket_launchers').

Cookie.secure
True if cookie should only be returned over a secure connection.

Cookie.expires
Integer expiry date in seconds since epoch, or None. See also the is_expired() method.

Cookie.discard
True if this is a session cookie.

1200 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

Cookie.comment
String comment from the server explaining the function of this cookie, or None.

Cookie.comment_url
URL linking to a comment from the server explaining the function of this cookie, or None.

Cookie.rfc2109
True if this cookie was received as an RFC 2109 cookie (ie. the cookie arrived in a Set-Cookie header,
and the value of the Version cookie-attribute in that header was 1). This attribute is provided because
http.cookiejar may ‘downgrade’ RFC 2109 cookies to Netscape cookies, in which case version is 0.

Cookie.port_specified
True if a port or set of ports was explicitly specified by the server (in the Set-Cookie / Set-Cookie2
header).

Cookie.domain_specified
True if a domain was explicitly specified by the server.

Cookie.domain_initial_dot
True if the domain explicitly specified by the server began with a dot ('.').

Cookies may have additional non-standard cookie-attributes. These may be accessed using the following
methods:

Cookie.has_nonstandard_attr(name)
Return true if cookie has the named cookie-attribute.

Cookie.get_nonstandard_attr(name, default=None)
If cookie has the named cookie-attribute, return its value. Otherwise, return default.

Cookie.set_nonstandard_attr(name, value)
Set the value of the named cookie-attribute.

The Cookie class also defines the following method:

Cookie.is_expired(now=None)
True if cookie has passed the time at which the server requested it should expire. If now is given (in
seconds since the epoch), return whether the cookie has expired at the specified time.

21.24.6 Examples

The first example shows the most common usage of http.cookiejar:

import http.cookiejar, urllib.request
cj = http.cookiejar.CookieJar()
opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))
r = opener.open("http://example.com/")

This example illustrates how to open a URL using your Netscape, Mozilla, or Lynx cookies (assumes
Unix/Netscape convention for location of the cookies file):

import os, http.cookiejar, urllib.request
cj = http.cookiejar.MozillaCookieJar()
cj.load(os.path.join(os.path.expanduser("~"), ".netscape", "cookies.txt"))
opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))
r = opener.open("http://example.com/")

The next example illustrates the use of DefaultCookiePolicy. Turn on RFC 2965 cookies, be more strict
about domains when setting and returning Netscape cookies, and block some domains from setting cookies
or having them returned:

21.24. http.cookiejar — Cookie handling for HTTP clients 1201

The Python Library Reference, Release 3.5.7

import urllib.request
from http.cookiejar import CookieJar, DefaultCookiePolicy
policy = DefaultCookiePolicy(

rfc2965=True, strict_ns_domain=Policy.DomainStrict,
blocked_domains=["ads.net", ".ads.net"])

cj = CookieJar(policy)
opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))
r = opener.open("http://example.com/")

21.25 xmlrpc — XMLRPC server and client modules

XML-RPC is a Remote Procedure Call method that uses XML passed via HTTP as a transport. With it,
a client can call methods with parameters on a remote server (the server is named by a URI) and get back
structured data.

xmlrpc is a package that collects server and client modules implementing XML-RPC. The modules are:

• xmlrpc.client

• xmlrpc.server

21.26 xmlrpc.client — XML-RPC client access

Source code: Lib/xmlrpc/client.py

XML-RPC is a Remote Procedure Call method that uses XML passed via HTTP(S) as a transport. With
it, a client can call methods with parameters on a remote server (the server is named by a URI) and get
back structured data. This module supports writing XML-RPC client code; it handles all the details of
translating between conformable Python objects and XML on the wire.

Warning: The xmlrpc.client module is not secure against maliciously constructed data. If you need to
parse untrusted or unauthenticated data see XML vulnerabilities.

Changed in version 3.5: For HTTPS URIs, xmlrpc.client now performs all the necessary certificate and
hostname checks by default.

class xmlrpc.client.ServerProxy(uri, transport=None, encoding=None, verbose=False, al-
low_none=False, use_datetime=False, use_builtin_types=False, *,
context=None)

Changed in version 3.3: The use_builtin_types flag was added.

A ServerProxy instance is an object that manages communication with a remote XML-RPC server.
The required first argument is a URI (Uniform Resource Indicator), and will normally be the URL
of the server. The optional second argument is a transport factory instance; by default it is an
internal SafeTransport instance for https: URLs and an internal HTTP Transport instance otherwise.
The optional third argument is an encoding, by default UTF-8. The optional fourth argument is a
debugging flag.

The following parameters govern the use of the returned proxy instance. If allow_none is true, the
Python constant None will be translated into XML; the default behaviour is for None to raise a TypeEr-
ror. This is a commonly-used extension to the XML-RPC specification, but isn’t supported by all clients

1202 Chapter 21. Internet Protocols and Support

https://github.com/python/cpython/tree/3.5/Lib/xmlrpc/client.py

The Python Library Reference, Release 3.5.7

and servers; see http://ontosys.com/xml-rpc/extensions.php for a description. The use_builtin_types
flag can be used to cause date/time values to be presented as datetime.datetime objects and binary
data to be presented as bytes objects; this flag is false by default. datetime.datetime, bytes and bytear-
ray objects may be passed to calls. The obsolete use_datetime flag is similar to use_builtin_types
but it applies only to date/time values.

Both the HTTP and HTTPS transports support the URL syntax extension for HTTP Basic Authen-
tication: http://user:pass@host:port/path. The user:pass portion will be base64-encoded as an HTTP
‘Authorization’ header, and sent to the remote server as part of the connection process when invoking
an XML-RPC method. You only need to use this if the remote server requires a Basic Authentication
user and password. If an HTTPS URL is provided, context may be ssl.SSLContext and configures the
SSL settings of the underlying HTTPS connection.

The returned instance is a proxy object with methods that can be used to invoke corresponding RPC
calls on the remote server. If the remote server supports the introspection API, the proxy can also
be used to query the remote server for the methods it supports (service discovery) and fetch other
server-associated metadata.

Types that are conformable (e.g. that can be marshalled through XML), include the following (and
except where noted, they are unmarshalled as the same Python type):

XML-RPC type Python type
boolean bool
int or i4 int in range from -2147483648 to 2147483647.
double float
string str
array list or tuple containing conformable elements. Arrays are returned as lists.
struct dict. Keys must be strings, values may be any conformable type. Objects of

user-defined classes can be passed in; only their __dict__ attribute is
transmitted.

dateTime.iso8601 DateTime or datetime.datetime. Returned type depends on values of
use_builtin_types and use_datetime flags.

base64 Binary, bytes or bytearray. Returned type depends on the value of the
use_builtin_types flag.

nil The None constant. Passing is allowed only if allow_none is true.

This is the full set of data types supported by XML-RPC. Method calls may also raise a special
Fault instance, used to signal XML-RPC server errors, or ProtocolError used to signal an error in the
HTTP/HTTPS transport layer. Both Fault and ProtocolError derive from a base class called Error.
Note that the xmlrpc client module currently does not marshal instances of subclasses of built-in types.

When passing strings, characters special to XML such as <, >, and & will be automatically escaped.
However, it’s the caller’s responsibility to ensure that the string is free of characters that aren’t allowed
in XML, such as the control characters with ASCII values between 0 and 31 (except, of course, tab,
newline and carriage return); failing to do this will result in an XML-RPC request that isn’t well-
formed XML. If you have to pass arbitrary bytes via XML-RPC, use bytes or bytearray classes or the
Binary wrapper class described below.

Server is retained as an alias for ServerProxy for backwards compatibility. New code should use
ServerProxy.

Changed in version 3.5: Added the context argument.

See also:

XML-RPC HOWTO A good description of XML-RPC operation and client software in several languages.
Contains pretty much everything an XML-RPC client developer needs to know.

21.26. xmlrpc.client — XML-RPC client access 1203

https://web.archive.org/web/20130120074804/http://ontosys.com/xml-rpc/extensions.php
http://www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html

The Python Library Reference, Release 3.5.7

XML-RPC Introspection Describes the XML-RPC protocol extension for introspection.

XML-RPC Specification The official specification.

Unofficial XML-RPC Errata Fredrik Lundh’s “unofficial errata, intended to clarify certain details in the
XML-RPC specification, as well as hint at ‘best practices’ to use when designing your own XML-RPC
implementations.”

21.26.1 ServerProxy Objects

A ServerProxy instance has a method corresponding to each remote procedure call accepted by the XML-
RPC server. Calling the method performs an RPC, dispatched by both name and argument signature
(e.g. the same method name can be overloaded with multiple argument signatures). The RPC finishes by
returning a value, which may be either returned data in a conformant type or a Fault or ProtocolError object
indicating an error.

Servers that support the XML introspection API support some common methods grouped under the reserved
system attribute:

ServerProxy.system.listMethods()
This method returns a list of strings, one for each (non-system) method supported by the XML-RPC
server.

ServerProxy.system.methodSignature(name)
This method takes one parameter, the name of a method implemented by the XML-RPC server. It
returns an array of possible signatures for this method. A signature is an array of types. The first of
these types is the return type of the method, the rest are parameters.

Because multiple signatures (ie. overloading) is permitted, this method returns a list of signatures
rather than a singleton.

Signatures themselves are restricted to the top level parameters expected by a method. For instance
if a method expects one array of structs as a parameter, and it returns a string, its signature is simply
“string, array”. If it expects three integers and returns a string, its signature is “string, int, int, int”.

If no signature is defined for the method, a non-array value is returned. In Python this means that the
type of the returned value will be something other than list.

ServerProxy.system.methodHelp(name)
This method takes one parameter, the name of a method implemented by the XML-RPC server. It
returns a documentation string describing the use of that method. If no such string is available, an
empty string is returned. The documentation string may contain HTML markup.

Changed in version 3.5: Instances of ServerProxy support the context manager protocol for closing the
underlying transport.

A working example follows. The server code:

from xmlrpc.server import SimpleXMLRPCServer

def is_even(n):
return n % 2 == 0

server = SimpleXMLRPCServer(("localhost", 8000))
print("Listening on port 8000...")
server.register_function(is_even, "is_even")
server.serve_forever()

The client code for the preceding server:

1204 Chapter 21. Internet Protocols and Support

http://xmlrpc-c.sourceforge.net/introspection.html
http://xmlrpc.scripting.com/spec.html
http://effbot.org/zone/xmlrpc-errata.htm

The Python Library Reference, Release 3.5.7

import xmlrpc.client

with xmlrpc.client.ServerProxy("http://localhost:8000/") as proxy:
print("3 is even: %s" % str(proxy.is_even(3)))
print("100 is even: %s" % str(proxy.is_even(100)))

21.26.2 DateTime Objects

class xmlrpc.client.DateTime
This class may be initialized with seconds since the epoch, a time tuple, an ISO 8601 time/date string,
or a datetime.datetime instance. It has the following methods, supported mainly for internal use by
the marshalling/unmarshalling code:

decode(string)
Accept a string as the instance’s new time value.

encode(out)
Write the XML-RPC encoding of this DateTime item to the out stream object.

It also supports certain of Python’s built-in operators through rich comparison and __repr__()
methods.

A working example follows. The server code:

import datetime
from xmlrpc.server import SimpleXMLRPCServer
import xmlrpc.client

def today():
today = datetime.datetime.today()
return xmlrpc.client.DateTime(today)

server = SimpleXMLRPCServer(("localhost", 8000))
print("Listening on port 8000...")
server.register_function(today, "today")
server.serve_forever()

The client code for the preceding server:

import xmlrpc.client
import datetime

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")

today = proxy.today()
convert the ISO8601 string to a datetime object
converted = datetime.datetime.strptime(today.value, "%Y%m%dT%H:%M:%S")
print("Today: %s" % converted.strftime("%d.%m.%Y, %H:%M"))

21.26.3 Binary Objects

class xmlrpc.client.Binary
This class may be initialized from bytes data (which may include NULs). The primary access to the
content of a Binary object is provided by an attribute:

21.26. xmlrpc.client — XML-RPC client access 1205

The Python Library Reference, Release 3.5.7

data
The binary data encapsulated by the Binary instance. The data is provided as a bytes object.

Binary objects have the following methods, supported mainly for internal use by the mar-
shalling/unmarshalling code:

decode(bytes)
Accept a base64 bytes object and decode it as the instance’s new data.

encode(out)
Write the XML-RPC base 64 encoding of this binary item to the out stream object.

The encoded data will have newlines every 76 characters as per RFC 2045 section 6.8, which was
the de facto standard base64 specification when the XML-RPC spec was written.

It also supports certain of Python’s built-in operators through __eq__() and __ne__() methods.

Example usage of the binary objects. We’re going to transfer an image over XMLRPC:

from xmlrpc.server import SimpleXMLRPCServer
import xmlrpc.client

def python_logo():
with open("python_logo.jpg", "rb") as handle:

return xmlrpc.client.Binary(handle.read())

server = SimpleXMLRPCServer(("localhost", 8000))
print("Listening on port 8000...")
server.register_function(python_logo, 'python_logo')

server.serve_forever()

The client gets the image and saves it to a file:

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")
with open("fetched_python_logo.jpg", "wb") as handle:

handle.write(proxy.python_logo().data)

21.26.4 Fault Objects

class xmlrpc.client.Fault
A Fault object encapsulates the content of an XML-RPC fault tag. Fault objects have the following
attributes:

faultCode
A string indicating the fault type.

faultString
A string containing a diagnostic message associated with the fault.

In the following example we’re going to intentionally cause a Fault by returning a complex type object. The
server code:

from xmlrpc.server import SimpleXMLRPCServer

A marshalling error is going to occur because we're returning a

(continues on next page)

1206 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc2045#section-6.8

The Python Library Reference, Release 3.5.7

(continued from previous page)

complex number
def add(x, y):

return x+y+0j

server = SimpleXMLRPCServer(("localhost", 8000))
print("Listening on port 8000...")
server.register_function(add, 'add')

server.serve_forever()

The client code for the preceding server:

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")
try:

proxy.add(2, 5)
except xmlrpc.client.Fault as err:

print("A fault occurred")
print("Fault code: %d" % err.faultCode)
print("Fault string: %s" % err.faultString)

21.26.5 ProtocolError Objects

class xmlrpc.client.ProtocolError
A ProtocolError object describes a protocol error in the underlying transport layer (such as a 404 ‘not
found’ error if the server named by the URI does not exist). It has the following attributes:

url
The URI or URL that triggered the error.

errcode
The error code.

errmsg
The error message or diagnostic string.

headers
A dict containing the headers of the HTTP/HTTPS request that triggered the error.

In the following example we’re going to intentionally cause a ProtocolError by providing an invalid URI:

import xmlrpc.client

create a ServerProxy with a URI that doesn't respond to XMLRPC requests
proxy = xmlrpc.client.ServerProxy("http://google.com/")

try:
proxy.some_method()

except xmlrpc.client.ProtocolError as err:
print("A protocol error occurred")
print("URL: %s" % err.url)
print("HTTP/HTTPS headers: %s" % err.headers)
print("Error code: %d" % err.errcode)
print("Error message: %s" % err.errmsg)

21.26. xmlrpc.client — XML-RPC client access 1207

The Python Library Reference, Release 3.5.7

21.26.6 MultiCall Objects

The MultiCall object provides a way to encapsulate multiple calls to a remote server into a single request1.

class xmlrpc.client.MultiCall(server)
Create an object used to boxcar method calls. server is the eventual target of the call. Calls can be
made to the result object, but they will immediately return None, and only store the call name and
parameters in the MultiCall object. Calling the object itself causes all stored calls to be transmitted
as a single system.multicall request. The result of this call is a generator; iterating over this generator
yields the individual results.

A usage example of this class follows. The server code:

from xmlrpc.server import SimpleXMLRPCServer

def add(x, y):
return x + y

def subtract(x, y):
return x - y

def multiply(x, y):
return x * y

def divide(x, y):
return x // y

A simple server with simple arithmetic functions
server = SimpleXMLRPCServer(("localhost", 8000))
print("Listening on port 8000...")
server.register_multicall_functions()
server.register_function(add, 'add')
server.register_function(subtract, 'subtract')
server.register_function(multiply, 'multiply')
server.register_function(divide, 'divide')
server.serve_forever()

The client code for the preceding server:

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy("http://localhost:8000/")
multicall = xmlrpc.client.MultiCall(proxy)
multicall.add(7, 3)
multicall.subtract(7, 3)
multicall.multiply(7, 3)
multicall.divide(7, 3)
result = multicall()

print("7+3=%d, 7-3=%d, 7*3=%d, 7//3=%d" % tuple(result))

21.26.7 Convenience Functions

xmlrpc.client.dumps(params, methodname=None, methodresponse=None, encoding=None, al-
low_none=False)

Convert params into an XML-RPC request. or into a response if methodresponse is true. params can

1 This approach has been first presented in a discussion on xmlrpc.com.

1208 Chapter 21. Internet Protocols and Support

https://web.archive.org/web/20060624230303/http://www.xmlrpc.com/discuss/msgReader\protect \T2A\textdollar 1208?mode=topic

The Python Library Reference, Release 3.5.7

be either a tuple of arguments or an instance of the Fault exception class. If methodresponse is true,
only a single value can be returned, meaning that params must be of length 1. encoding, if supplied,
is the encoding to use in the generated XML; the default is UTF-8. Python’s None value cannot be
used in standard XML-RPC; to allow using it via an extension, provide a true value for allow_none.

xmlrpc.client.loads(data, use_datetime=False, use_builtin_types=False)
Convert an XML-RPC request or response into Python objects, a (params, methodname). params is
a tuple of argument; methodname is a string, or None if no method name is present in the packet.
If the XML-RPC packet represents a fault condition, this function will raise a Fault exception. The
use_builtin_types flag can be used to cause date/time values to be presented as datetime.datetime
objects and binary data to be presented as bytes objects; this flag is false by default.

The obsolete use_datetime flag is similar to use_builtin_types but it applies only to date/time values.

Changed in version 3.3: The use_builtin_types flag was added.

21.26.8 Example of Client Usage

simple test program (from the XML-RPC specification)
from xmlrpc.client import ServerProxy, Error

server = ServerProxy("http://localhost:8000") # local server
with ServerProxy("http://betty.userland.com") as proxy:

print(proxy)

try:
print(proxy.examples.getStateName(41))

except Error as v:
print("ERROR", v)

To access an XML-RPC server through a HTTP proxy, you need to define a custom transport. The following
example shows how:

import http.client
import xmlrpc.client

class ProxiedTransport(xmlrpc.client.Transport):

def set_proxy(self, host, port=None, headers=None):
self.proxy = host, port
self.proxy_headers = headers

def make_connection(self, host):
connection = http.client.HTTPConnection(*self.proxy)
connection.set_tunnel(host, headers=self.proxy_headers)
self._connection = host, connection
return connection

transport = ProxiedTransport()
transport.set_proxy('proxy-server', 8080)
server = xmlrpc.client.ServerProxy('http://betty.userland.com', transport=transport)
print(server.examples.getStateName(41))

21.26. xmlrpc.client — XML-RPC client access 1209

The Python Library Reference, Release 3.5.7

21.26.9 Example of Client and Server Usage

See SimpleXMLRPCServer Example.

21.27 xmlrpc.server — Basic XML-RPC servers

Source code: Lib/xmlrpc/server.py

The xmlrpc.server module provides a basic server framework for XML-RPC servers written in Python.
Servers can either be free standing, using SimpleXMLRPCServer, or embedded in a CGI environment, using
CGIXMLRPCRequestHandler.

Warning: The xmlrpc.server module is not secure against maliciously constructed data. If you need to
parse untrusted or unauthenticated data see XML vulnerabilities.

class xmlrpc.server.SimpleXMLRPCServer(addr, requestHandler=SimpleXMLRPCRequestHandler,
logRequests=True, allow_none=False, encoding=None,
bind_and_activate=True, use_builtin_types=False)

Create a new server instance. This class provides methods for registration of functions that can be called
by the XML-RPC protocol. The requestHandler parameter should be a factory for request handler
instances; it defaults to SimpleXMLRPCRequestHandler. The addr and requestHandler parameters are
passed to the socketserver.TCPServer constructor. If logRequests is true (the default), requests will be
logged; setting this parameter to false will turn off logging. The allow_none and encoding parameters
are passed on to xmlrpc.client and control the XML-RPC responses that will be returned from the
server. The bind_and_activate parameter controls whether server_bind() and server_activate() are
called immediately by the constructor; it defaults to true. Setting it to false allows code to manipulate
the allow_reuse_address class variable before the address is bound. The use_builtin_types parameter
is passed to the loads() function and controls which types are processed when date/times values or
binary data are received; it defaults to false.

Changed in version 3.3: The use_builtin_types flag was added.

class xmlrpc.server.CGIXMLRPCRequestHandler(allow_none=False, encoding=None,
use_builtin_types=False)

Create a new instance to handle XML-RPC requests in a CGI environment. The allow_none and
encoding parameters are passed on to xmlrpc.client and control the XML-RPC responses that will
be returned from the server. The use_builtin_types parameter is passed to the loads() function and
controls which types are processed when date/times values or binary data are received; it defaults to
false.

Changed in version 3.3: The use_builtin_types flag was added.

class xmlrpc.server.SimpleXMLRPCRequestHandler
Create a new request handler instance. This request handler supports POST requests and modifies
logging so that the logRequests parameter to the SimpleXMLRPCServer constructor parameter is
honored.

21.27.1 SimpleXMLRPCServer Objects

The SimpleXMLRPCServer class is based on socketserver.TCPServer and provides a means of creating
simple, stand alone XML-RPC servers.

1210 Chapter 21. Internet Protocols and Support

https://github.com/python/cpython/tree/3.5/Lib/xmlrpc/server.py

The Python Library Reference, Release 3.5.7

SimpleXMLRPCServer.register_function(function, name=None)
Register a function that can respond to XML-RPC requests. If name is given, it will be the method
name associated with function, otherwise function.__name__ will be used. name can be either a
normal or Unicode string, and may contain characters not legal in Python identifiers, including the
period character.

SimpleXMLRPCServer.register_instance(instance, allow_dotted_names=False)
Register an object which is used to expose method names which have not been registered using reg-
ister_function(). If instance contains a _dispatch() method, it is called with the requested method
name and the parameters from the request. Its API is def _dispatch(self, method, params) (note that
params does not represent a variable argument list). If it calls an underlying function to perform its
task, that function is called as func(*params), expanding the parameter list. The return value from
_dispatch() is returned to the client as the result. If instance does not have a _dispatch() method, it
is searched for an attribute matching the name of the requested method.

If the optional allow_dotted_names argument is true and the instance does not have a _dispatch()
method, then if the requested method name contains periods, each component of the method name
is searched for individually, with the effect that a simple hierarchical search is performed. The value
found from this search is then called with the parameters from the request, and the return value is
passed back to the client.

Warning: Enabling the allow_dotted_names option allows intruders to access your module’s
global variables and may allow intruders to execute arbitrary code on your machine. Only use this
option on a secure, closed network.

SimpleXMLRPCServer.register_introspection_functions()
Registers the XML-RPC introspection functions system.listMethods, system.methodHelp and system.
methodSignature.

SimpleXMLRPCServer.register_multicall_functions()
Registers the XML-RPC multicall function system.multicall.

SimpleXMLRPCRequestHandler.rpc_paths
An attribute value that must be a tuple listing valid path portions of the URL for receiving XML-RPC
requests. Requests posted to other paths will result in a 404 “no such page” HTTP error. If this tuple
is empty, all paths will be considered valid. The default value is ('/', '/RPC2').

SimpleXMLRPCServer Example

Server code:

from xmlrpc.server import SimpleXMLRPCServer
from xmlrpc.server import SimpleXMLRPCRequestHandler

Restrict to a particular path.
class RequestHandler(SimpleXMLRPCRequestHandler):

rpc_paths = ('/RPC2',)

Create server
server = SimpleXMLRPCServer(("localhost", 8000),

requestHandler=RequestHandler)
server.register_introspection_functions()

Register pow() function; this will use the value of

(continues on next page)

21.27. xmlrpc.server — Basic XML-RPC servers 1211

The Python Library Reference, Release 3.5.7

(continued from previous page)

pow.__name__ as the name, which is just 'pow'.
server.register_function(pow)

Register a function under a different name
def adder_function(x,y):

return x + y
server.register_function(adder_function, 'add')

Register an instance; all the methods of the instance are
published as XML-RPC methods (in this case, just 'mul').
class MyFuncs:

def mul(self, x, y):
return x * y

server.register_instance(MyFuncs())

Run the server's main loop
server.serve_forever()

The following client code will call the methods made available by the preceding server:

import xmlrpc.client

s = xmlrpc.client.ServerProxy('http://localhost:8000')
print(s.pow(2,3)) # Returns 2**3 = 8
print(s.add(2,3)) # Returns 5
print(s.mul(5,2)) # Returns 5*2 = 10

Print list of available methods
print(s.system.listMethods())

The following example included in the Lib/xmlrpc/server.py module shows a server allowing dotted names
and registering a multicall function.

Warning: Enabling the allow_dotted_names option allows intruders to access your module’s global
variables and may allow intruders to execute arbitrary code on your machine. Only use this example only
within a secure, closed network.

import datetime

class ExampleService:
def getData(self):

return '42'

class currentTime:
@staticmethod
def getCurrentTime():

return datetime.datetime.now()

server = SimpleXMLRPCServer(("localhost", 8000))
server.register_function(pow)
server.register_function(lambda x,y: x+y, 'add')
server.register_instance(ExampleService(), allow_dotted_names=True)
server.register_multicall_functions()

(continues on next page)

1212 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

(continued from previous page)

print('Serving XML-RPC on localhost port 8000')
try:

server.serve_forever()
except KeyboardInterrupt:

print("\nKeyboard interrupt received, exiting.")
server.server_close()
sys.exit(0)

This ExampleService demo can be invoked from the command line:

python -m xmlrpc.server

The client that interacts with the above server is included in Lib/xmlrpc/client.py:

server = ServerProxy("http://localhost:8000")

try:
print(server.currentTime.getCurrentTime())

except Error as v:
print("ERROR", v)

multi = MultiCall(server)
multi.getData()
multi.pow(2,9)
multi.add(1,2)
try:

for response in multi():
print(response)

except Error as v:
print("ERROR", v)

This client which interacts with the demo XMLRPC server can be invoked as:

python -m xmlrpc.client

21.27.2 CGIXMLRPCRequestHandler

The CGIXMLRPCRequestHandler class can be used to handle XML-RPC requests sent to Python CGI
scripts.

CGIXMLRPCRequestHandler.register_function(function, name=None)
Register a function that can respond to XML-RPC requests. If name is given, it will be the method
name associated with function, otherwise function.__name__ will be used. name can be either a
normal or Unicode string, and may contain characters not legal in Python identifiers, including the
period character.

CGIXMLRPCRequestHandler.register_instance(instance)
Register an object which is used to expose method names which have not been registered using reg-
ister_function(). If instance contains a _dispatch() method, it is called with the requested method
name and the parameters from the request; the return value is returned to the client as the result. If
instance does not have a _dispatch() method, it is searched for an attribute matching the name of
the requested method; if the requested method name contains periods, each component of the method
name is searched for individually, with the effect that a simple hierarchical search is performed. The
value found from this search is then called with the parameters from the request, and the return value
is passed back to the client.

21.27. xmlrpc.server — Basic XML-RPC servers 1213

The Python Library Reference, Release 3.5.7

CGIXMLRPCRequestHandler.register_introspection_functions()
Register the XML-RPC introspection functions system.listMethods, system.methodHelp and system.
methodSignature.

CGIXMLRPCRequestHandler.register_multicall_functions()
Register the XML-RPC multicall function system.multicall.

CGIXMLRPCRequestHandler.handle_request(request_text=None)
Handle an XML-RPC request. If request_text is given, it should be the POST data provided by the
HTTP server, otherwise the contents of stdin will be used.

Example:

class MyFuncs:
def mul(self, x, y):

return x * y

handler = CGIXMLRPCRequestHandler()
handler.register_function(pow)
handler.register_function(lambda x,y: x+y, 'add')
handler.register_introspection_functions()
handler.register_instance(MyFuncs())
handler.handle_request()

21.27.3 Documenting XMLRPC server

These classes extend the above classes to serve HTML documentation in response to HTTP GET requests.
Servers can either be free standing, using DocXMLRPCServer, or embedded in a CGI environment, using
DocCGIXMLRPCRequestHandler.

class xmlrpc.server.DocXMLRPCServer(addr, requestHandler=DocXMLRPCRequestHandler, lo-
gRequests=True, allow_none=False, encoding=None,
bind_and_activate=True, use_builtin_types=True)

Create a new server instance. All parameters have the same meaning as for SimpleXMLRPCServer;
requestHandler defaults to DocXMLRPCRequestHandler.

Changed in version 3.3: The use_builtin_types flag was added.

class xmlrpc.server.DocCGIXMLRPCRequestHandler
Create a new instance to handle XML-RPC requests in a CGI environment.

class xmlrpc.server.DocXMLRPCRequestHandler
Create a new request handler instance. This request handler supports XML-RPC POST requests, doc-
umentation GET requests, and modifies logging so that the logRequests parameter to the DocXMLR-
PCServer constructor parameter is honored.

21.27.4 DocXMLRPCServer Objects

The DocXMLRPCServer class is derived from SimpleXMLRPCServer and provides a means of creating self-
documenting, stand alone XML-RPC servers. HTTP POST requests are handled as XML-RPC method
calls. HTTP GET requests are handled by generating pydoc-style HTML documentation. This allows a
server to provide its own web-based documentation.

DocXMLRPCServer.set_server_title(server_title)
Set the title used in the generated HTML documentation. This title will be used inside the HTML
“title” element.

1214 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

DocXMLRPCServer.set_server_name(server_name)
Set the name used in the generated HTML documentation. This name will appear at the top of the
generated documentation inside a “h1” element.

DocXMLRPCServer.set_server_documentation(server_documentation)
Set the description used in the generated HTML documentation. This description will appear as a
paragraph, below the server name, in the documentation.

21.27.5 DocCGIXMLRPCRequestHandler

The DocCGIXMLRPCRequestHandler class is derived from CGIXMLRPCRequestHandler and provides a
means of creating self-documenting, XML-RPC CGI scripts. HTTP POST requests are handled as XML-
RPC method calls. HTTP GET requests are handled by generating pydoc-style HTML documentation. This
allows a server to provide its own web-based documentation.

DocCGIXMLRPCRequestHandler.set_server_title(server_title)
Set the title used in the generated HTML documentation. This title will be used inside the HTML
“title” element.

DocCGIXMLRPCRequestHandler.set_server_name(server_name)
Set the name used in the generated HTML documentation. This name will appear at the top of the
generated documentation inside a “h1” element.

DocCGIXMLRPCRequestHandler.set_server_documentation(server_documentation)
Set the description used in the generated HTML documentation. This description will appear as a
paragraph, below the server name, in the documentation.

21.28 ipaddress — IPv4/IPv6 manipulation library

Source code: Lib/ipaddress.py

ipaddress provides the capabilities to create, manipulate and operate on IPv4 and IPv6 addresses and
networks.

The functions and classes in this module make it straightforward to handle various tasks related to IP
addresses, including checking whether or not two hosts are on the same subnet, iterating over all hosts in a
particular subnet, checking whether or not a string represents a valid IP address or network definition, and
so on.

This is the full module API reference—for an overview and introduction, see ipaddress-howto.

New in version 3.3.

21.28.1 Convenience factory functions

The ipaddress module provides factory functions to conveniently create IP addresses, networks and interfaces:

ipaddress.ip_address(address)
Return an IPv4Address or IPv6Address object depending on the IP address passed as argument. Either
IPv4 or IPv6 addresses may be supplied; integers less than 2**32 will be considered to be IPv4 by
default. A ValueError is raised if address does not represent a valid IPv4 or IPv6 address.

21.28. ipaddress — IPv4/IPv6 manipulation library 1215

https://github.com/python/cpython/tree/3.5/Lib/ipaddress.py

The Python Library Reference, Release 3.5.7

>>> ipaddress.ip_address('192.168.0.1')
IPv4Address('192.168.0.1')
>>> ipaddress.ip_address('2001:db8::')
IPv6Address('2001:db8::')

ipaddress.ip_network(address, strict=True)
Return an IPv4Network or IPv6Network object depending on the IP address passed as argument. ad-
dress is a string or integer representing the IP network. Either IPv4 or IPv6 networks may be supplied;
integers less than 2**32 will be considered to be IPv4 by default. strict is passed to IPv4Network or
IPv6Network constructor. A ValueError is raised if address does not represent a valid IPv4 or IPv6
address, or if the network has host bits set.

>>> ipaddress.ip_network('192.168.0.0/28')
IPv4Network('192.168.0.0/28')

ipaddress.ip_interface(address)
Return an IPv4Interface or IPv6Interface object depending on the IP address passed as argument.
address is a string or integer representing the IP address. Either IPv4 or IPv6 addresses may be
supplied; integers less than 2**32 will be considered to be IPv4 by default. A ValueError is raised if
address does not represent a valid IPv4 or IPv6 address.

One downside of these convenience functions is that the need to handle both IPv4 and IPv6 formats means
that error messages provide minimal information on the precise error, as the functions don’t know whether the
IPv4 or IPv6 format was intended. More detailed error reporting can be obtained by calling the appropriate
version specific class constructors directly.

21.28.2 IP Addresses

Address objects

The IPv4Address and IPv6Address objects share a lot of common attributes. Some attributes that are only
meaningful for IPv6 addresses are also implemented by IPv4Address objects, in order to make it easier to
write code that handles both IP versions correctly.

class ipaddress.IPv4Address(address)
Construct an IPv4 address. An AddressValueError is raised if address is not a valid IPv4 address.

The following constitutes a valid IPv4 address:

1. A string in decimal-dot notation, consisting of four decimal integers in the inclusive range 0–255,
separated by dots (e.g. 192.168.0.1). Each integer represents an octet (byte) in the address.
Leading zeroes are tolerated only for values less than 8 (as there is no ambiguity between the
decimal and octal interpretations of such strings).

2. An integer that fits into 32 bits.

3. An integer packed into a bytes object of length 4 (most significant octet first).

>>> ipaddress.IPv4Address('192.168.0.1')
IPv4Address('192.168.0.1')
>>> ipaddress.IPv4Address(3232235521)
IPv4Address('192.168.0.1')
>>> ipaddress.IPv4Address(b'\xC0\xA8\x00\x01')
IPv4Address('192.168.0.1')

version
The appropriate version number: 4 for IPv4, 6 for IPv6.

1216 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

max_prefixlen
The total number of bits in the address representation for this version: 32 for IPv4, 128 for IPv6.

The prefix defines the number of leading bits in an address that are compared to determine
whether or not an address is part of a network.

compressed

exploded
The string representation in dotted decimal notation. Leading zeroes are never included in the
representation.

As IPv4 does not define a shorthand notation for addresses with octets set to zero, these two
attributes are always the same as str(addr) for IPv4 addresses. Exposing these attributes makes
it easier to write display code that can handle both IPv4 and IPv6 addresses.

packed
The binary representation of this address - a bytes object of the appropriate length (most signif-
icant octet first). This is 4 bytes for IPv4 and 16 bytes for IPv6.

reverse_pointer
The name of the reverse DNS PTR record for the IP address, e.g.:

>>> ipaddress.ip_address("127.0.0.1").reverse_pointer
'1.0.0.127.in-addr.arpa'
>>> ipaddress.ip_address("2001:db8::1").reverse_pointer
'1.0.8.b.d.0.1.0.0.2.ip6.arpa'

This is the name that could be used for performing a PTR lookup, not the resolved hostname
itself.

New in version 3.5.

is_multicast
True if the address is reserved for multicast use. See RFC 3171 (for IPv4) or RFC 2373 (for IPv6).

is_private
True if the address is allocated for private networks. See iana-ipv4-special-registry (for IPv4) or
iana-ipv6-special-registry (for IPv6).

is_global
True if the address is allocated for public networks. See iana-ipv4-special-registry (for IPv4) or
iana-ipv6-special-registry (for IPv6).

New in version 3.4.

is_unspecified
True if the address is unspecified. See RFC 5735 (for IPv4) or RFC 2373 (for IPv6).

is_reserved
True if the address is otherwise IETF reserved.

is_loopback
True if this is a loopback address. See RFC 3330 (for IPv4) or RFC 2373 (for IPv6).

is_link_local
True if the address is reserved for link-local usage. See RFC 3927.

class ipaddress.IPv6Address(address)
Construct an IPv6 address. An AddressValueError is raised if address is not a valid IPv6 address.

The following constitutes a valid IPv6 address:

21.28. ipaddress — IPv4/IPv6 manipulation library 1217

https://tools.ietf.org/html/rfc3171.html
https://tools.ietf.org/html/rfc2373.html
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
https://tools.ietf.org/html/rfc5735.html
https://tools.ietf.org/html/rfc2373.html
https://tools.ietf.org/html/rfc3330.html
https://tools.ietf.org/html/rfc2373.html
https://tools.ietf.org/html/rfc3927.html

The Python Library Reference, Release 3.5.7

1. A string consisting of eight groups of four hexadecimal digits, each group representing 16 bits.
The groups are separated by colons. This describes an exploded (longhand) notation. The string
can also be compressed (shorthand notation) by various means. See RFC 4291 for details. For
example, "0000:0000:0000:0000:0000:0abc:0007:0def" can be compressed to "::abc:7:def".

2. An integer that fits into 128 bits.

3. An integer packed into a bytes object of length 16, big-endian.

>>> ipaddress.IPv6Address('2001:db8::1000')
IPv6Address('2001:db8::1000')

compressed

The short form of the address representation, with leading zeroes in groups omitted and the longest
sequence of groups consisting entirely of zeroes collapsed to a single empty group.

This is also the value returned by str(addr) for IPv6 addresses.

exploded

The long form of the address representation, with all leading zeroes and groups consisting entirely of
zeroes included.

For the following attributes, see the corresponding documention of the IPv4Address class:

packed

reverse_pointer

version

max_prefixlen

is_multicast

is_private

is_global

is_unspecified

is_reserved

is_loopback

is_link_local
New in version 3.4: is_global

is_site_local
True if the address is reserved for site-local usage. Note that the site-local address space has been
deprecated by RFC 3879. Use is_private to test if this address is in the space of unique local
addresses as defined by RFC 4193.

ipv4_mapped
For addresses that appear to be IPv4 mapped addresses (starting with ::FFFF/96), this property
will report the embedded IPv4 address. For any other address, this property will be None.

sixtofour
For addresses that appear to be 6to4 addresses (starting with 2002::/16) as defined by RFC 3056,
this property will report the embedded IPv4 address. For any other address, this property will
be None.

teredo
For addresses that appear to be Teredo addresses (starting with 2001::/32) as defined by RFC

1218 Chapter 21. Internet Protocols and Support

https://tools.ietf.org/html/rfc4291.html
https://tools.ietf.org/html/rfc3879.html
https://tools.ietf.org/html/rfc4193.html
https://tools.ietf.org/html/rfc3056.html
https://tools.ietf.org/html/rfc4380.html
https://tools.ietf.org/html/rfc4380.html

The Python Library Reference, Release 3.5.7

4380, this property will report the embedded (server, client) IP address pair. For any other
address, this property will be None.

Conversion to Strings and Integers

To interoperate with networking interfaces such as the socket module, addresses must be converted to strings
or integers. This is handled using the str() and int() builtin functions:

>>> str(ipaddress.IPv4Address('192.168.0.1'))
'192.168.0.1'
>>> int(ipaddress.IPv4Address('192.168.0.1'))
3232235521
>>> str(ipaddress.IPv6Address('::1'))
'::1'
>>> int(ipaddress.IPv6Address('::1'))
1

Operators

Address objects support some operators. Unless stated otherwise, operators can only be applied between
compatible objects (i.e. IPv4 with IPv4, IPv6 with IPv6).

Comparison operators

Address objects can be compared with the usual set of comparison operators. Some examples:

>>> IPv4Address('127.0.0.2') > IPv4Address('127.0.0.1')
True
>>> IPv4Address('127.0.0.2') == IPv4Address('127.0.0.1')
False
>>> IPv4Address('127.0.0.2') != IPv4Address('127.0.0.1')
True

Arithmetic operators

Integers can be added to or subtracted from address objects. Some examples:

>>> IPv4Address('127.0.0.2') + 3
IPv4Address('127.0.0.5')
>>> IPv4Address('127.0.0.2') - 3
IPv4Address('126.255.255.255')
>>> IPv4Address('255.255.255.255') + 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ipaddress.AddressValueError: 4294967296 (>= 2**32) is not permitted as an IPv4 address

21.28.3 IP Network definitions

The IPv4Network and IPv6Network objects provide a mechanism for defining and inspecting IP network
definitions. A network definition consists of a mask and a network address, and as such defines a range of
IP addresses that equal the network address when masked (binary AND) with the mask. For example, a

21.28. ipaddress — IPv4/IPv6 manipulation library 1219

https://tools.ietf.org/html/rfc4380.html
https://tools.ietf.org/html/rfc4380.html

The Python Library Reference, Release 3.5.7

network definition with the mask 255.255.255.0 and the network address 192.168.1.0 consists of IP addresses
in the inclusive range 192.168.1.0 to 192.168.1.255.

Prefix, net mask and host mask

There are several equivalent ways to specify IP network masks. A prefix /<nbits> is a notation that denotes
how many high-order bits are set in the network mask. A net mask is an IP address with some number of
high-order bits set. Thus the prefix /24 is equivalent to the net mask 255.255.255.0 in IPv4, or ffff:ff00:: in
IPv6. In addition, a host mask is the logical inverse of a net mask, and is sometimes used (for example in
Cisco access control lists) to denote a network mask. The host mask equivalent to /24 in IPv4 is 0.0.0.255.

Network objects

All attributes implemented by address objects are implemented by network objects as well. In addition,
network objects implement additional attributes. All of these are common between IPv4Network and
IPv6Network, so to avoid duplication they are only documented for IPv4Network.

class ipaddress.IPv4Network(address, strict=True)
Construct an IPv4 network definition. address can be one of the following:

1. A string consisting of an IP address and an optional mask, separated by a slash (/). The IP
address is the network address, and the mask can be either a single number, which means it’s a
prefix, or a string representation of an IPv4 address. If it’s the latter, the mask is interpreted as
a net mask if it starts with a non-zero field, or as a host mask if it starts with a zero field. If no
mask is provided, it’s considered to be /32.

For example, the following address specifications are equivalent: 192.168.1.0/24, 192.168.1.0/255.
255.255.0 and 192.168.1.0/0.0.0.255.

2. An integer that fits into 32 bits. This is equivalent to a single-address network, with the network
address being address and the mask being /32.

3. An integer packed into a bytes object of length 4, big-endian. The interpretation is similar to an
integer address.

4. A two-tuple of an address description and a netmask, where the address description is either a
string, a 32-bits integer, a 4-bytes packed integer, or an existing IPv4Address object; and the
netmask is either an integer representing the prefix length (e.g. 24) or a string representing the
prefix mask (e.g. 255.255.255.0).

An AddressValueError is raised if address is not a valid IPv4 address. A NetmaskValueError is raised
if the mask is not valid for an IPv4 address.

If strict is True and host bits are set in the supplied address, then ValueError is raised. Otherwise,
the host bits are masked out to determine the appropriate network address.

Unless stated otherwise, all network methods accepting other network/address objects will raise Type-
Error if the argument’s IP version is incompatible to self

Changed in version 3.5: Added the two-tuple form for the address constructor parameter.

version

max_prefixlen
Refer to the corresponding attribute documentation in IPv4Address

is_multicast

is_private

1220 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

is_unspecified

is_reserved

is_loopback

is_link_local
These attributes are true for the network as a whole if they are true for both the network address
and the broadcast address

network_address
The network address for the network. The network address and the prefix length together uniquely
define a network.

broadcast_address
The broadcast address for the network. Packets sent to the broadcast address should be received
by every host on the network.

hostmask
The host mask, as a string.

with_prefixlen

compressed

exploded
A string representation of the network, with the mask in prefix notation.

with_prefixlen and compressed are always the same as str(network). exploded uses the exploded
form the network address.

with_netmask
A string representation of the network, with the mask in net mask notation.

with_hostmask
A string representation of the network, with the mask in host mask notation.

num_addresses
The total number of addresses in the network.

prefixlen
Length of the network prefix, in bits.

hosts()
Returns an iterator over the usable hosts in the network. The usable hosts are all the IP addresses
that belong to the network, except the network address itself and the network broadcast address.

>>> list(ip_network('192.0.2.0/29').hosts()) #doctest: +NORMALIZE_WHITESPACE
[IPv4Address('192.0.2.1'), IPv4Address('192.0.2.2'),
IPv4Address('192.0.2.3'), IPv4Address('192.0.2.4'),
IPv4Address('192.0.2.5'), IPv4Address('192.0.2.6')]

overlaps(other)
True if this network is partly or wholly contained in other or other is wholly contained in this
network.

address_exclude(network)
Computes the network definitions resulting from removing the given network from this one. Re-
turns an iterator of network objects. Raises ValueError if network is not completely contained in
this network.

21.28. ipaddress — IPv4/IPv6 manipulation library 1221

The Python Library Reference, Release 3.5.7

>>> n1 = ip_network('192.0.2.0/28')
>>> n2 = ip_network('192.0.2.1/32')
>>> list(n1.address_exclude(n2)) #doctest: +NORMALIZE_WHITESPACE
[IPv4Network('192.0.2.8/29'), IPv4Network('192.0.2.4/30'),
IPv4Network('192.0.2.2/31'), IPv4Network('192.0.2.0/32')]

subnets(prefixlen_diff=1, new_prefix=None)
The subnets that join to make the current network definition, depending on the argument values.
prefixlen_diff is the amount our prefix length should be increased by. new_prefix is the desired
new prefix of the subnets; it must be larger than our prefix. One and only one of prefixlen_diff
and new_prefix must be set. Returns an iterator of network objects.

>>> list(ip_network('192.0.2.0/24').subnets())
[IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/25')]
>>> list(ip_network('192.0.2.0/24').subnets(prefixlen_diff=2)) #doctest: +NORMALIZE_
→˓WHITESPACE
[IPv4Network('192.0.2.0/26'), IPv4Network('192.0.2.64/26'),
IPv4Network('192.0.2.128/26'), IPv4Network('192.0.2.192/26')]
>>> list(ip_network('192.0.2.0/24').subnets(new_prefix=26)) #doctest: +NORMALIZE_
→˓WHITESPACE
[IPv4Network('192.0.2.0/26'), IPv4Network('192.0.2.64/26'),
IPv4Network('192.0.2.128/26'), IPv4Network('192.0.2.192/26')]
>>> list(ip_network('192.0.2.0/24').subnets(new_prefix=23))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
raise ValueError('new prefix must be longer')

ValueError: new prefix must be longer
>>> list(ip_network('192.0.2.0/24').subnets(new_prefix=25))
[IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/25')]

supernet(prefixlen_diff=1, new_prefix=None)
The supernet containing this network definition, depending on the argument values. prefixlen_diff
is the amount our prefix length should be decreased by. new_prefix is the desired new prefix of the
supernet; it must be smaller than our prefix. One and only one of prefixlen_diff and new_prefix
must be set. Returns a single network object.

>>> ip_network('192.0.2.0/24').supernet()
IPv4Network('192.0.2.0/23')
>>> ip_network('192.0.2.0/24').supernet(prefixlen_diff=2)
IPv4Network('192.0.0.0/22')
>>> ip_network('192.0.2.0/24').supernet(new_prefix=20)
IPv4Network('192.0.0.0/20')

compare_networks(other)
Compare this network to other. In this comparison only the network addresses are considered;
host bits aren’t. Returns either -1, 0 or 1.

>>> ip_network('192.0.2.1/32').compare_networks(ip_network('192.0.2.2/32'))
-1
>>> ip_network('192.0.2.1/32').compare_networks(ip_network('192.0.2.0/32'))
1
>>> ip_network('192.0.2.1/32').compare_networks(ip_network('192.0.2.1/32'))
0

class ipaddress.IPv6Network(address, strict=True)
Construct an IPv6 network definition. address can be one of the following:

1222 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

1. A string consisting of an IP address and an optional mask, separated by a slash (/). The IP
address is the network address, and the mask can be either a single number, which means it’s a
prefix, or a string representation of an IPv6 address. If it’s the latter, the mask is interpreted as
a net mask. If no mask is provided, it’s considered to be /128.

For example, the following address specifications are equivalent: 2001:db00::0/24 and
2001:db00::0/ffff:ff00::.

2. An integer that fits into 128 bits. This is equivalent to a single-address network, with the network
address being address and the mask being /128.

3. An integer packed into a bytes object of length 16, big-endian. The interpretation is similar to
an integer address.

4. A two-tuple of an address description and a netmask, where the address description is either a
string, a 128-bits integer, a 16-bytes packed integer, or an existing IPv6Address object; and the
netmask is an integer representing the prefix length.

An AddressValueError is raised if address is not a valid IPv6 address. A NetmaskValueError is raised
if the mask is not valid for an IPv6 address.

If strict is True and host bits are set in the supplied address, then ValueError is raised. Otherwise,
the host bits are masked out to determine the appropriate network address.

Changed in version 3.5: Added the two-tuple form for the address constructor parameter.

version

max_prefixlen

is_multicast

is_private

is_unspecified

is_reserved

is_loopback

is_link_local

network_address

broadcast_address

hostmask

with_prefixlen

compressed

exploded

with_netmask

with_hostmask

num_addresses

prefixlen

hosts()

overlaps(other)

address_exclude(network)

21.28. ipaddress — IPv4/IPv6 manipulation library 1223

The Python Library Reference, Release 3.5.7

subnets(prefixlen_diff=1, new_prefix=None)

supernet(prefixlen_diff=1, new_prefix=None)

compare_networks(other)
Refer to the corresponding attribute documentation in IPv4Network

is_site_local
These attribute is true for the network as a whole if it is true for both the network address and
the broadcast address

Operators

Network objects support some operators. Unless stated otherwise, operators can only be applied between
compatible objects (i.e. IPv4 with IPv4, IPv6 with IPv6).

Logical operators

Network objects can be compared with the usual set of logical operators, similarly to address objects.

Iteration

Network objects can be iterated to list all the addresses belonging to the network. For iteration, all hosts
are returned, including unusable hosts (for usable hosts, use the hosts() method). An example:

>>> for addr in IPv4Network('192.0.2.0/28'):
... addr
...
IPv4Address('192.0.2.0')
IPv4Address('192.0.2.1')
IPv4Address('192.0.2.2')
IPv4Address('192.0.2.3')
IPv4Address('192.0.2.4')
IPv4Address('192.0.2.5')
IPv4Address('192.0.2.6')
IPv4Address('192.0.2.7')
IPv4Address('192.0.2.8')
IPv4Address('192.0.2.9')
IPv4Address('192.0.2.10')
IPv4Address('192.0.2.11')
IPv4Address('192.0.2.12')
IPv4Address('192.0.2.13')
IPv4Address('192.0.2.14')
IPv4Address('192.0.2.15')

Networks as containers of addresses

Network objects can act as containers of addresses. Some examples:

>>> IPv4Network('192.0.2.0/28')[0]
IPv4Address('192.0.2.0')
>>> IPv4Network('192.0.2.0/28')[15]
IPv4Address('192.0.2.15')

(continues on next page)

1224 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> IPv4Address('192.0.2.6') in IPv4Network('192.0.2.0/28')
True
>>> IPv4Address('192.0.3.6') in IPv4Network('192.0.2.0/28')
False

21.28.4 Interface objects

class ipaddress.IPv4Interface(address)
Construct an IPv4 interface. The meaning of address is as in the constructor of IPv4Network, except
that arbitrary host addresses are always accepted.

IPv4Interface is a subclass of IPv4Address, so it inherits all the attributes from that class. In addition,
the following attributes are available:

ip
The address (IPv4Address) without network information.

>>> interface = IPv4Interface('192.0.2.5/24')
>>> interface.ip
IPv4Address('192.0.2.5')

network
The network (IPv4Network) this interface belongs to.

>>> interface = IPv4Interface('192.0.2.5/24')
>>> interface.network
IPv4Network('192.0.2.0/24')

with_prefixlen
A string representation of the interface with the mask in prefix notation.

>>> interface = IPv4Interface('192.0.2.5/24')
>>> interface.with_prefixlen
'192.0.2.5/24'

with_netmask
A string representation of the interface with the network as a net mask.

>>> interface = IPv4Interface('192.0.2.5/24')
>>> interface.with_netmask
'192.0.2.5/255.255.255.0'

with_hostmask
A string representation of the interface with the network as a host mask.

>>> interface = IPv4Interface('192.0.2.5/24')
>>> interface.with_hostmask
'192.0.2.5/0.0.0.255'

class ipaddress.IPv6Interface(address)
Construct an IPv6 interface. The meaning of address is as in the constructor of IPv6Network, except
that arbitrary host addresses are always accepted.

IPv6Interface is a subclass of IPv6Address, so it inherits all the attributes from that class. In addition,
the following attributes are available:

21.28. ipaddress — IPv4/IPv6 manipulation library 1225

The Python Library Reference, Release 3.5.7

ip

network

with_prefixlen

with_netmask

with_hostmask
Refer to the corresponding attribute documentation in IPv4Interface.

21.28.5 Other Module Level Functions

The module also provides the following module level functions:

ipaddress.v4_int_to_packed(address)
Represent an address as 4 packed bytes in network (big-endian) order. address is an integer represen-
tation of an IPv4 IP address. A ValueError is raised if the integer is negative or too large to be an
IPv4 IP address.

>>> ipaddress.ip_address(3221225985)
IPv4Address('192.0.2.1')
>>> ipaddress.v4_int_to_packed(3221225985)
b'\xc0\x00\x02\x01'

ipaddress.v6_int_to_packed(address)
Represent an address as 16 packed bytes in network (big-endian) order. address is an integer repre-
sentation of an IPv6 IP address. A ValueError is raised if the integer is negative or too large to be an
IPv6 IP address.

ipaddress.summarize_address_range(first, last)
Return an iterator of the summarized network range given the first and last IP addresses. first is the
first IPv4Address or IPv6Address in the range and last is the last IPv4Address or IPv6Address in the
range. A TypeError is raised if first or last are not IP addresses or are not of the same version. A
ValueError is raised if last is not greater than first or if first address version is not 4 or 6.

>>> [ipaddr for ipaddr in ipaddress.summarize_address_range(
... ipaddress.IPv4Address('192.0.2.0'),
... ipaddress.IPv4Address('192.0.2.130'))]
[IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/31'), IPv4Network('192.0.2.130/32')]

ipaddress.collapse_addresses(addresses)
Return an iterator of the collapsed IPv4Network or IPv6Network objects. addresses is an iterator
of IPv4Network or IPv6Network objects. A TypeError is raised if addresses contains mixed version
objects.

>>> [ipaddr for ipaddr in
... ipaddress.collapse_addresses([ipaddress.IPv4Network('192.0.2.0/25'),
... ipaddress.IPv4Network('192.0.2.128/25')])]
[IPv4Network('192.0.2.0/24')]

ipaddress.get_mixed_type_key(obj)
Return a key suitable for sorting between networks and addresses. Address and Network objects are
not sortable by default; they’re fundamentally different, so the expression:

IPv4Address('192.0.2.0') <= IPv4Network('192.0.2.0/24')

1226 Chapter 21. Internet Protocols and Support

The Python Library Reference, Release 3.5.7

doesn’t make sense. There are some times however, where you may wish to have ipaddress sort these
anyway. If you need to do this, you can use this function as the key argument to sorted().

obj is either a network or address object.

21.28.6 Custom Exceptions

To support more specific error reporting from class constructors, the module defines the following exceptions:

exception ipaddress.AddressValueError(ValueError)
Any value error related to the address.

exception ipaddress.NetmaskValueError(ValueError)
Any value error related to the netmask.

21.28. ipaddress — IPv4/IPv6 manipulation library 1227

The Python Library Reference, Release 3.5.7

1228 Chapter 21. Internet Protocols and Support

CHAPTER

TWENTYTWO

MULTIMEDIA SERVICES

The modules described in this chapter implement various algorithms or interfaces that are mainly useful for
multimedia applications. They are available at the discretion of the installation. Here’s an overview:

22.1 audioop — Manipulate raw audio data

The audioop module contains some useful operations on sound fragments. It operates on sound fragments
consisting of signed integer samples 8, 16, 24 or 32 bits wide, stored in bytes-like objects. All scalar items
are integers, unless specified otherwise.

Changed in version 3.4: Support for 24-bit samples was added. All functions now accept any bytes-like
object. String input now results in an immediate error.

This module provides support for a-LAW, u-LAW and Intel/DVI ADPCM encodings.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size (in bytes) is
always a parameter of the operation.

The module defines the following variables and functions:

exception audioop.error
This exception is raised on all errors, such as unknown number of bytes per sample, etc.

audioop.add(fragment1, fragment2, width)
Return a fragment which is the addition of the two samples passed as parameters. width is the sample
width in bytes, either 1, 2, 3 or 4. Both fragments should have the same length. Samples are truncated
in case of overflow.

audioop.adpcm2lin(adpcmfragment, width, state)
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the description of lin2adpcm()
for details on ADPCM coding. Return a tuple (sample, newstate) where the sample has the width
specified in width.

audioop.alaw2lin(fragment, width)
Convert sound fragments in a-LAW encoding to linearly encoded sound fragments. a-LAW encoding
always uses 8 bits samples, so width refers only to the sample width of the output fragment here.

audioop.avg(fragment, width)
Return the average over all samples in the fragment.

audioop.avgpp(fragment, width)
Return the average peak-peak value over all samples in the fragment. No filtering is done, so the
usefulness of this routine is questionable.

1229

The Python Library Reference, Release 3.5.7

audioop.bias(fragment, width, bias)
Return a fragment that is the original fragment with a bias added to each sample. Samples wrap
around in case of overflow.

audioop.byteswap(fragment, width)
“Byteswap” all samples in a fragment and returns the modified fragment. Converts big-endian samples
to little-endian and vice versa.

New in version 3.4.

audioop.cross(fragment, width)
Return the number of zero crossings in the fragment passed as an argument.

audioop.findfactor(fragment, reference)
Return a factor F such that rms(add(fragment, mul(reference, -F))) is minimal, i.e., return the factor
with which you should multiply reference to make it match as well as possible to fragment. The
fragments should both contain 2-byte samples.

The time taken by this routine is proportional to len(fragment).

audioop.findfit(fragment, reference)
Try to match reference as well as possible to a portion of fragment (which should be the longer
fragment). This is (conceptually) done by taking slices out of fragment, using findfactor() to compute
the best match, and minimizing the result. The fragments should both contain 2-byte samples. Return
a tuple (offset, factor) where offset is the (integer) offset into fragment where the optimal match started
and factor is the (floating-point) factor as per findfactor().

audioop.findmax(fragment, length)
Search fragment for a slice of length length samples (not bytes!) with maximum energy, i.e., return
i for which rms(fragment[i*2:(i+length)*2]) is maximal. The fragments should both contain 2-byte
samples.

The routine takes time proportional to len(fragment).

audioop.getsample(fragment, width, index)
Return the value of sample index from the fragment.

audioop.lin2adpcm(fragment, width, state)
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive coding scheme,
whereby each 4 bit number is the difference between one sample and the next, divided by a (varying)
step. The Intel/DVI ADPCM algorithm has been selected for use by the IMA, so it may well become
a standard.

state is a tuple containing the state of the coder. The coder returns a tuple (adpcmfrag, newstate),
and the newstate should be passed to the next call of lin2adpcm(). In the initial call, None can be
passed as the state. adpcmfrag is the ADPCM coded fragment packed 2 4-bit values per byte.

audioop.lin2alaw(fragment, width)
Convert samples in the audio fragment to a-LAW encoding and return this as a bytes object. a-LAW is
an audio encoding format whereby you get a dynamic range of about 13 bits using only 8 bit samples.
It is used by the Sun audio hardware, among others.

audioop.lin2lin(fragment, width, newwidth)
Convert samples between 1-, 2-, 3- and 4-byte formats.

Note: In some audio formats, such as .WAV files, 16, 24 and 32 bit samples are signed, but 8 bit
samples are unsigned. So when converting to 8 bit wide samples for these formats, you need to also
add 128 to the result:

1230 Chapter 22. Multimedia Services

The Python Library Reference, Release 3.5.7

new_frames = audioop.lin2lin(frames, old_width, 1)
new_frames = audioop.bias(new_frames, 1, 128)

The same, in reverse, has to be applied when converting from 8 to 16, 24 or 32 bit width samples.

audioop.lin2ulaw(fragment, width)
Convert samples in the audio fragment to u-LAW encoding and return this as a bytes object. u-LAW is
an audio encoding format whereby you get a dynamic range of about 14 bits using only 8 bit samples.
It is used by the Sun audio hardware, among others.

audioop.max(fragment, width)
Return the maximum of the absolute value of all samples in a fragment.

audioop.maxpp(fragment, width)
Return the maximum peak-peak value in the sound fragment.

audioop.minmax(fragment, width)
Return a tuple consisting of the minimum and maximum values of all samples in the sound fragment.

audioop.mul(fragment, width, factor)
Return a fragment that has all samples in the original fragment multiplied by the floating-point value
factor. Samples are truncated in case of overflow.

audioop.ratecv(fragment, width, nchannels, inrate, outrate, state[, weightA[, weightB]])
Convert the frame rate of the input fragment.

state is a tuple containing the state of the converter. The converter returns a tuple (newfragment,
newstate), and newstate should be passed to the next call of ratecv(). The initial call should pass
None as the state.

The weightA and weightB arguments are parameters for a simple digital filter and default to 1 and 0
respectively.

audioop.reverse(fragment, width)
Reverse the samples in a fragment and returns the modified fragment.

audioop.rms(fragment, width)
Return the root-mean-square of the fragment, i.e. sqrt(sum(S_i^2)/n).

This is a measure of the power in an audio signal.

audioop.tomono(fragment, width, lfactor, rfactor)
Convert a stereo fragment to a mono fragment. The left channel is multiplied by lfactor and the right
channel by rfactor before adding the two channels to give a mono signal.

audioop.tostereo(fragment, width, lfactor, rfactor)
Generate a stereo fragment from a mono fragment. Each pair of samples in the stereo fragment are
computed from the mono sample, whereby left channel samples are multiplied by lfactor and right
channel samples by rfactor.

audioop.ulaw2lin(fragment, width)
Convert sound fragments in u-LAW encoding to linearly encoded sound fragments. u-LAW encoding
always uses 8 bits samples, so width refers only to the sample width of the output fragment here.

Note that operations such as mul() or max() make no distinction between mono and stereo fragments, i.e. all
samples are treated equal. If this is a problem the stereo fragment should be split into two mono fragments
first and recombined later. Here is an example of how to do that:

22.1. audioop — Manipulate raw audio data 1231

The Python Library Reference, Release 3.5.7

def mul_stereo(sample, width, lfactor, rfactor):
lsample = audioop.tomono(sample, width, 1, 0)
rsample = audioop.tomono(sample, width, 0, 1)
lsample = audioop.mul(lsample, width, lfactor)
rsample = audioop.mul(rsample, width, rfactor)
lsample = audioop.tostereo(lsample, width, 1, 0)
rsample = audioop.tostereo(rsample, width, 0, 1)
return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be stateless (i.e. to
be able to tolerate packet loss) you should not only transmit the data but also the state. Note that you
should send the initial state (the one you passed to lin2adpcm()) along to the decoder, not the final state
(as returned by the coder). If you want to use struct.Struct to store the state in binary you can code the
first element (the predicted value) in 16 bits and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against themselves. It could
well be that I misinterpreted the standards in which case they will not be interoperable with the respective
standards.

The find*() routines might look a bit funny at first sight. They are primarily meant to do echo cancellation.
A reasonably fast way to do this is to pick the most energetic piece of the output sample, locate that in the
input sample and subtract the whole output sample from the input sample:

def echocancel(outputdata, inputdata):
pos = audioop.findmax(outputdata, 800) # one tenth second
out_test = outputdata[pos*2:]
in_test = inputdata[pos*2:]
ipos, factor = audioop.findfit(in_test, out_test)
Optional (for better cancellation):
factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
out_test)
prefill = '\0'*(pos+ipos)*2
postfill = '\0'*(len(inputdata)-len(prefill)-len(outputdata))
outputdata = prefill + audioop.mul(outputdata, 2, -factor) + postfill
return audioop.add(inputdata, outputdata, 2)

22.2 aifc — Read and write AIFF and AIFC files

Source code: Lib/aifc.py

This module provides support for reading and writing AIFF and AIFF-C files. AIFF is Audio Interchange
File Format, a format for storing digital audio samples in a file. AIFF-C is a newer version of the format
that includes the ability to compress the audio data.

Note: Some operations may only work under IRIX; these will raise ImportError when attempting to import
the cl module, which is only available on IRIX.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate is
the number of times per second the sound is sampled. The number of channels indicate if the audio is mono,
stereo, or quadro. Each frame consists of one sample per channel. The sample size is the size in bytes of
each sample. Thus a frame consists of nchannels * samplesize bytes, and a second’s worth of audio consists
of nchannels * samplesize * framerate bytes.

1232 Chapter 22. Multimedia Services

https://github.com/python/cpython/tree/3.5/Lib/aifc.py

The Python Library Reference, Release 3.5.7

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo) and has a
frame rate of 44,100 frames/second. This gives a frame size of 4 bytes (2*2), and a second’s worth occupies
2*2*44100 bytes (176,400 bytes).

Module aifc defines the following function:

aifc.open(file, mode=None)
Open an AIFF or AIFF-C file and return an object instance with methods that are described below.
The argument file is either a string naming a file or a file object. mode must be 'r' or 'rb' when the
file must be opened for reading, or 'w' or 'wb' when the file must be opened for writing. If omitted,
file.mode is used if it exists, otherwise 'rb' is used. When used for writing, the file object should be
seekable, unless you know ahead of time how many samples you are going to write in total and use
writeframesraw() and setnframes(). The open() function may be used in a with statement. When the
with block completes, the close() method is called.

Changed in version 3.4: Support for the with statement was added.

Objects returned by open() when a file is opened for reading have the following methods:

aifc.getnchannels()
Return the number of audio channels (1 for mono, 2 for stereo).

aifc.getsampwidth()
Return the size in bytes of individual samples.

aifc.getframerate()
Return the sampling rate (number of audio frames per second).

aifc.getnframes()
Return the number of audio frames in the file.

aifc.getcomptype()
Return a bytes array of length 4 describing the type of compression used in the audio file. For AIFF
files, the returned value is b'NONE'.

aifc.getcompname()
Return a bytes array convertible to a human-readable description of the type of compression used in
the audio file. For AIFF files, the returned value is b'not compressed'.

aifc.getparams()
Returns a namedtuple() (nchannels, sampwidth, framerate, nframes, comptype, compname), equivalent
to output of the get*() methods.

aifc.getmarkers()
Return a list of markers in the audio file. A marker consists of a tuple of three elements. The first is
the mark ID (an integer), the second is the mark position in frames from the beginning of the data (an
integer), the third is the name of the mark (a string).

aifc.getmark(id)
Return the tuple as described in getmarkers() for the mark with the given id.

aifc.readframes(nframes)
Read and return the next nframes frames from the audio file. The returned data is a string containing
for each frame the uncompressed samples of all channels.

aifc.rewind()
Rewind the read pointer. The next readframes() will start from the beginning.

aifc.setpos(pos)
Seek to the specified frame number.

22.2. aifc — Read and write AIFF and AIFC files 1233

The Python Library Reference, Release 3.5.7

aifc.tell()
Return the current frame number.

aifc.close()
Close the AIFF file. After calling this method, the object can no longer be used.

Objects returned by open() when a file is opened for writing have all the above methods, except for read-
frames() and setpos(). In addition the following methods exist. The get*() methods can only be called after
the corresponding set*() methods have been called. Before the first writeframes() or writeframesraw(), all
parameters except for the number of frames must be filled in.

aifc.aiff()
Create an AIFF file. The default is that an AIFF-C file is created, unless the name of the file ends in
'.aiff' in which case the default is an AIFF file.

aifc.aifc()
Create an AIFF-C file. The default is that an AIFF-C file is created, unless the name of the file ends
in '.aiff' in which case the default is an AIFF file.

aifc.setnchannels(nchannels)
Specify the number of channels in the audio file.

aifc.setsampwidth(width)
Specify the size in bytes of audio samples.

aifc.setframerate(rate)
Specify the sampling frequency in frames per second.

aifc.setnframes(nframes)
Specify the number of frames that are to be written to the audio file. If this parameter is not set, or
not set correctly, the file needs to support seeking.

aifc.setcomptype(type, name)
Specify the compression type. If not specified, the audio data will not be compressed. In AIFF files,
compression is not possible. The name parameter should be a human-readable description of the
compression type as a bytes array, the type parameter should be a bytes array of length 4. Currently
the following compression types are supported: b'NONE', b'ULAW', b'ALAW', b'G722'.

aifc.setparams(nchannels, sampwidth, framerate, comptype, compname)
Set all the above parameters at once. The argument is a tuple consisting of the various parameters.
This means that it is possible to use the result of a getparams() call as argument to setparams().

aifc.setmark(id, pos, name)
Add a mark with the given id (larger than 0), and the given name at the given position. This method
can be called at any time before close().

aifc.tell()
Return the current write position in the output file. Useful in combination with setmark().

aifc.writeframes(data)
Write data to the output file. This method can only be called after the audio file parameters have been
set.

Changed in version 3.4: Any bytes-like object is now accepted.

aifc.writeframesraw(data)
Like writeframes(), except that the header of the audio file is not updated.

Changed in version 3.4: Any bytes-like object is now accepted.

1234 Chapter 22. Multimedia Services

The Python Library Reference, Release 3.5.7

aifc.close()
Close the AIFF file. The header of the file is updated to reflect the actual size of the audio data. After
calling this method, the object can no longer be used.

22.3 sunau — Read and write Sun AU files

Source code: Lib/sunau.py

The sunau module provides a convenient interface to the Sun AU sound format. Note that this module is
interface-compatible with the modules aifc and wave.

An audio file consists of a header followed by the data. The fields of the header are:

Field Contents
magic word The four bytes .snd.
header size Size of the header, including info, in bytes.
data size Physical size of the data, in bytes.
encoding Indicates how the audio samples are encoded.
sample rate The sampling rate.
of channels The number of channels in the samples.
info ASCII string giving a description of the audio file (padded with null bytes).

Apart from the info field, all header fields are 4 bytes in size. They are all 32-bit unsigned integers encoded
in big-endian byte order.

The sunau module defines the following functions:

sunau.open(file, mode)
If file is a string, open the file by that name, otherwise treat it as a seekable file-like object. mode can
be any of

'r' Read only mode.

'w' Write only mode.

Note that it does not allow read/write files.

A mode of 'r' returns an AU_read object, while a mode of 'w' or 'wb' returns an AU_write object.

sunau.openfp(file, mode)
A synonym for open(), maintained for backwards compatibility.

The sunau module defines the following exception:

exception sunau.Error
An error raised when something is impossible because of Sun AU specs or implementation deficiency.

The sunau module defines the following data items:

sunau.AUDIO_FILE_MAGIC
An integer every valid Sun AU file begins with, stored in big-endian form. This is the string .snd
interpreted as an integer.

sunau.AUDIO_FILE_ENCODING_MULAW_8
sunau.AUDIO_FILE_ENCODING_LINEAR_8
sunau.AUDIO_FILE_ENCODING_LINEAR_16
sunau.AUDIO_FILE_ENCODING_LINEAR_24

22.3. sunau — Read and write Sun AU files 1235

https://github.com/python/cpython/tree/3.5/Lib/sunau.py

The Python Library Reference, Release 3.5.7

sunau.AUDIO_FILE_ENCODING_LINEAR_32
sunau.AUDIO_FILE_ENCODING_ALAW_8

Values of the encoding field from the AU header which are supported by this module.

sunau.AUDIO_FILE_ENCODING_FLOAT
sunau.AUDIO_FILE_ENCODING_DOUBLE
sunau.AUDIO_FILE_ENCODING_ADPCM_G721
sunau.AUDIO_FILE_ENCODING_ADPCM_G722
sunau.AUDIO_FILE_ENCODING_ADPCM_G723_3
sunau.AUDIO_FILE_ENCODING_ADPCM_G723_5

Additional known values of the encoding field from the AU header, but which are not supported by
this module.

22.3.1 AU_read Objects

AU_read objects, as returned by open() above, have the following methods:

AU_read.close()
Close the stream, and make the instance unusable. (This is called automatically on deletion.)

AU_read.getnchannels()
Returns number of audio channels (1 for mono, 2 for stereo).

AU_read.getsampwidth()
Returns sample width in bytes.

AU_read.getframerate()
Returns sampling frequency.

AU_read.getnframes()
Returns number of audio frames.

AU_read.getcomptype()
Returns compression type. Supported compression types are 'ULAW', 'ALAW' and 'NONE'.

AU_read.getcompname()
Human-readable version of getcomptype(). The supported types have the respective names 'CCITT
G.711 u-law', 'CCITT G.711 A-law' and 'not compressed'.

AU_read.getparams()
Returns a namedtuple() (nchannels, sampwidth, framerate, nframes, comptype, compname), equivalent
to output of the get*() methods.

AU_read.readframes(n)
Reads and returns at most n frames of audio, as a bytes object. The data will be returned in linear
format. If the original data is in u-LAW format, it will be converted.

AU_read.rewind()
Rewind the file pointer to the beginning of the audio stream.

The following two methods define a term “position” which is compatible between them, and is otherwise
implementation dependent.

AU_read.setpos(pos)
Set the file pointer to the specified position. Only values returned from tell() should be used for pos.

AU_read.tell()
Return current file pointer position. Note that the returned value has nothing to do with the actual
position in the file.

The following two functions are defined for compatibility with the aifc, and don’t do anything interesting.

1236 Chapter 22. Multimedia Services

The Python Library Reference, Release 3.5.7

AU_read.getmarkers()
Returns None.

AU_read.getmark(id)
Raise an error.

22.3.2 AU_write Objects

AU_write objects, as returned by open() above, have the following methods:

AU_write.setnchannels(n)
Set the number of channels.

AU_write.setsampwidth(n)
Set the sample width (in bytes.)

Changed in version 3.4: Added support for 24-bit samples.

AU_write.setframerate(n)
Set the frame rate.

AU_write.setnframes(n)
Set the number of frames. This can be later changed, when and if more frames are written.

AU_write.setcomptype(type, name)
Set the compression type and description. Only 'NONE' and 'ULAW' are supported on output.

AU_write.setparams(tuple)
The tuple should be (nchannels, sampwidth, framerate, nframes, comptype, compname), with values
valid for the set*() methods. Set all parameters.

AU_write.tell()
Return current position in the file, with the same disclaimer for the AU_read.tell() and AU_read.
setpos() methods.

AU_write.writeframesraw(data)
Write audio frames, without correcting nframes.

Changed in version 3.4: Any bytes-like object is now accepted.

AU_write.writeframes(data)
Write audio frames and make sure nframes is correct.

Changed in version 3.4: Any bytes-like object is now accepted.

AU_write.close()
Make sure nframes is correct, and close the file.

This method is called upon deletion.

Note that it is invalid to set any parameters after calling writeframes() or writeframesraw().

22.4 wave — Read and write WAV files

Source code: Lib/wave.py

The wave module provides a convenient interface to the WAV sound format. It does not support compres-
sion/decompression, but it does support mono/stereo.

22.4. wave — Read and write WAV files 1237

https://github.com/python/cpython/tree/3.5/Lib/wave.py

The Python Library Reference, Release 3.5.7

The wave module defines the following function and exception:

wave.open(file, mode=None)
If file is a string, open the file by that name, otherwise treat it as a file-like object. mode can be:

'rb' Read only mode.

'wb' Write only mode.

Note that it does not allow read/write WAV files.

A mode of 'rb' returns a Wave_read object, while a mode of 'wb' returns a Wave_write object. If
mode is omitted and a file-like object is passed as file, file.mode is used as the default value for mode.

If you pass in a file-like object, the wave object will not close it when its close() method is called; it is
the caller’s responsibility to close the file object.

The open() function may be used in a with statement. When the with block completes, the Wave_read.
close() or Wave_write.close() method is called.

Changed in version 3.4: Added support for unseekable files.

wave.openfp(file, mode)
A synonym for open(), maintained for backwards compatibility.

exception wave.Error
An error raised when something is impossible because it violates the WAV specification or hits an
implementation deficiency.

22.4.1 Wave_read Objects

Wave_read objects, as returned by open(), have the following methods:

Wave_read.close()
Close the stream if it was opened by wave, and make the instance unusable. This is called automatically
on object collection.

Wave_read.getnchannels()
Returns number of audio channels (1 for mono, 2 for stereo).

Wave_read.getsampwidth()
Returns sample width in bytes.

Wave_read.getframerate()
Returns sampling frequency.

Wave_read.getnframes()
Returns number of audio frames.

Wave_read.getcomptype()
Returns compression type ('NONE' is the only supported type).

Wave_read.getcompname()
Human-readable version of getcomptype(). Usually 'not compressed' parallels 'NONE'.

Wave_read.getparams()
Returns a namedtuple() (nchannels, sampwidth, framerate, nframes, comptype, compname), equivalent
to output of the get*() methods.

Wave_read.readframes(n)
Reads and returns at most n frames of audio, as a bytes object.

1238 Chapter 22. Multimedia Services

The Python Library Reference, Release 3.5.7

Wave_read.rewind()
Rewind the file pointer to the beginning of the audio stream.

The following two methods are defined for compatibility with the aifc module, and don’t do anything inter-
esting.

Wave_read.getmarkers()
Returns None.

Wave_read.getmark(id)
Raise an error.

The following two methods define a term “position” which is compatible between them, and is otherwise
implementation dependent.

Wave_read.setpos(pos)
Set the file pointer to the specified position.

Wave_read.tell()
Return current file pointer position.

22.4.2 Wave_write Objects

For seekable output streams, the wave header will automatically be updated to reflect the number of frames
actually written. For unseekable streams, the nframes value must be accurate when the first frame data
is written. An accurate nframes value can be achieved either by calling setnframes() or setparams() with
the number of frames that will be written before close() is called and then using writeframesraw() to write
the frame data, or by calling writeframes() with all of the frame data to be written. In the latter case
writeframes() will calculate the number of frames in the data and set nframes accordingly before writing the
frame data.

Wave_write objects, as returned by open(), have the following methods:

Changed in version 3.4: Added support for unseekable files.

Wave_write.close()
Make sure nframes is correct, and close the file if it was opened by wave. This method is called upon
object collection. It will raise an exception if the output stream is not seekable and nframes does not
match the number of frames actually written.

Wave_write.setnchannels(n)
Set the number of channels.

Wave_write.setsampwidth(n)
Set the sample width to n bytes.

Wave_write.setframerate(n)
Set the frame rate to n.

Changed in version 3.2: A non-integral input to this method is rounded to the nearest integer.

Wave_write.setnframes(n)
Set the number of frames to n. This will be changed later if the number of frames actually written is
different (this update attempt will raise an error if the output stream is not seekable).

Wave_write.setcomptype(type, name)
Set the compression type and description. At the moment, only compression type NONE is supported,
meaning no compression.

22.4. wave — Read and write WAV files 1239

The Python Library Reference, Release 3.5.7

Wave_write.setparams(tuple)
The tuple should be (nchannels, sampwidth, framerate, nframes, comptype, compname), with values
valid for the set*() methods. Sets all parameters.

Wave_write.tell()
Return current position in the file, with the same disclaimer for the Wave_read.tell() and Wave_read.
setpos() methods.

Wave_write.writeframesraw(data)
Write audio frames, without correcting nframes.

Changed in version 3.4: Any bytes-like object is now accepted.

Wave_write.writeframes(data)
Write audio frames and make sure nframes is correct. It will raise an error if the output stream is not
seekable and the total number of frames that have been written after data has been written does not
match the previously set value for nframes.

Changed in version 3.4: Any bytes-like object is now accepted.

Note that it is invalid to set any parameters after calling writeframes() or writeframesraw(), and any attempt
to do so will raise wave.Error.

22.5 chunk — Read IFF chunked data

Source code: Lib/chunk.py

This module provides an interface for reading files that use EA IFF 85 chunks.1 This format is used in at
least the Audio Interchange File Format (AIFF/AIFF-C) and the Real Media File Format (RMFF). The
WAVE audio file format is closely related and can also be read using this module.

A chunk has the following structure:

Offset Length Contents
0 4 Chunk ID
4 4 Size of chunk in big-endian byte order, not including the header
8 n Data bytes, where n is the size given in the preceding field
8 + n 0 or 1 Pad byte needed if n is odd and chunk alignment is used

The ID is a 4-byte string which identifies the type of chunk.

The size field (a 32-bit value, encoded using big-endian byte order) gives the size of the chunk data, not
including the 8-byte header.

Usually an IFF-type file consists of one or more chunks. The proposed usage of the Chunk class defined here
is to instantiate an instance at the start of each chunk and read from the instance until it reaches the end,
after which a new instance can be instantiated. At the end of the file, creating a new instance will fail with
an EOFError exception.

class chunk.Chunk(file, align=True, bigendian=True, inclheader=False)
Class which represents a chunk. The file argument is expected to be a file-like object. An instance of
this class is specifically allowed. The only method that is needed is read(). If the methods seek() and
tell() are present and don’t raise an exception, they are also used. If these methods are present and
raise an exception, they are expected to not have altered the object. If the optional argument align is

1 “EA IFF 85” Standard for Interchange Format Files, Jerry Morrison, Electronic Arts, January 1985.

1240 Chapter 22. Multimedia Services

https://github.com/python/cpython/tree/3.5/Lib/chunk.py

The Python Library Reference, Release 3.5.7

true, chunks are assumed to be aligned on 2-byte boundaries. If align is false, no alignment is assumed.
The default value is true. If the optional argument bigendian is false, the chunk size is assumed to be
in little-endian order. This is needed for WAVE audio files. The default value is true. If the optional
argument inclheader is true, the size given in the chunk header includes the size of the header. The
default value is false.

A Chunk object supports the following methods:

getname()
Returns the name (ID) of the chunk. This is the first 4 bytes of the chunk.

getsize()
Returns the size of the chunk.

close()
Close and skip to the end of the chunk. This does not close the underlying file.

The remaining methods will raise OSError if called after the close() method has been called. Before
Python 3.3, they used to raise IOError, now an alias of OSError.

isatty()
Returns False.

seek(pos, whence=0)
Set the chunk’s current position. The whence argument is optional and defaults to 0 (absolute
file positioning); other values are 1 (seek relative to the current position) and 2 (seek relative to
the file’s end). There is no return value. If the underlying file does not allow seek, only forward
seeks are allowed.

tell()
Return the current position into the chunk.

read(size=-1)
Read at most size bytes from the chunk (less if the read hits the end of the chunk before obtaining
size bytes). If the size argument is negative or omitted, read all data until the end of the chunk.
An empty bytes object is returned when the end of the chunk is encountered immediately.

skip()
Skip to the end of the chunk. All further calls to read() for the chunk will return b''. If you are
not interested in the contents of the chunk, this method should be called so that the file points
to the start of the next chunk.

22.6 colorsys — Conversions between color systems

Source code: Lib/colorsys.py

The colorsys module defines bidirectional conversions of color values between colors expressed in the RGB
(Red Green Blue) color space used in computer monitors and three other coordinate systems: YIQ, HLS
(Hue Lightness Saturation) and HSV (Hue Saturation Value). Coordinates in all of these color spaces are
floating point values. In the YIQ space, the Y coordinate is between 0 and 1, but the I and Q coordinates
can be positive or negative. In all other spaces, the coordinates are all between 0 and 1.

See also:

More information about color spaces can be found at http://www.poynton.com/ColorFAQ.html and https:
//www.cambridgeincolour.com/tutorials/color-spaces.htm.

The colorsys module defines the following functions:

22.6. colorsys — Conversions between color systems 1241

https://github.com/python/cpython/tree/3.5/Lib/colorsys.py
http://www.poynton.com/ColorFAQ.html
https://www.cambridgeincolour.com/tutorials/color-spaces.htm
https://www.cambridgeincolour.com/tutorials/color-spaces.htm

The Python Library Reference, Release 3.5.7

colorsys.rgb_to_yiq(r, g, b)
Convert the color from RGB coordinates to YIQ coordinates.

colorsys.yiq_to_rgb(y, i, q)
Convert the color from YIQ coordinates to RGB coordinates.

colorsys.rgb_to_hls(r, g, b)
Convert the color from RGB coordinates to HLS coordinates.

colorsys.hls_to_rgb(h, l, s)
Convert the color from HLS coordinates to RGB coordinates.

colorsys.rgb_to_hsv(r, g, b)
Convert the color from RGB coordinates to HSV coordinates.

colorsys.hsv_to_rgb(h, s, v)
Convert the color from HSV coordinates to RGB coordinates.

Example:

>>> import colorsys
>>> colorsys.rgb_to_hsv(0.2, 0.4, 0.4)
(0.5, 0.5, 0.4)
>>> colorsys.hsv_to_rgb(0.5, 0.5, 0.4)
(0.2, 0.4, 0.4)

22.7 imghdr — Determine the type of an image

Source code: Lib/imghdr.py

The imghdr module determines the type of image contained in a file or byte stream.

The imghdr module defines the following function:

imghdr.what(filename, h=None)
Tests the image data contained in the file named by filename, and returns a string describing the image
type. If optional h is provided, the filename is ignored and h is assumed to contain the byte stream to
test.

The following image types are recognized, as listed below with the return value from what():

Value Image format
'rgb' SGI ImgLib Files
'gif' GIF 87a and 89a Files
'pbm' Portable Bitmap Files
'pgm' Portable Graymap Files
'ppm' Portable Pixmap Files
'tiff' TIFF Files
'rast' Sun Raster Files
'xbm' X Bitmap Files
'jpeg' JPEG data in JFIF or Exif formats
'bmp' BMP files
'png' Portable Network Graphics
'webp' WebP files
'exr' OpenEXR Files

1242 Chapter 22. Multimedia Services

https://github.com/python/cpython/tree/3.5/Lib/imghdr.py

The Python Library Reference, Release 3.5.7

New in version 3.5: The exr and webp formats were added.

You can extend the list of file types imghdr can recognize by appending to this variable:

imghdr.tests
A list of functions performing the individual tests. Each function takes two arguments: the byte-stream
and an open file-like object. When what() is called with a byte-stream, the file-like object will be None.

The test function should return a string describing the image type if the test succeeded, or None if it
failed.

Example:

>>> import imghdr
>>> imghdr.what('bass.gif')
'gif'

22.8 sndhdr — Determine type of sound file

Source code: Lib/sndhdr.py

The sndhdr provides utility functions which attempt to determine the type of sound data which is in a
file. When these functions are able to determine what type of sound data is stored in a file, they return a
namedtuple(), containing five attributes: (filetype, framerate, nchannels, nframes, sampwidth). The value
for type indicates the data type and will be one of the strings 'aifc', 'aiff', 'au', 'hcom', 'sndr', 'sndt',
'voc', 'wav', '8svx', 'sb', 'ub', or 'ul'. The sampling_rate will be either the actual value or 0 if
unknown or difficult to decode. Similarly, channels will be either the number of channels or 0 if it cannot be
determined or if the value is difficult to decode. The value for frames will be either the number of frames or
-1. The last item in the tuple, bits_per_sample, will either be the sample size in bits or 'A' for A-LAW
or 'U' for u-LAW.

sndhdr.what(filename)
Determines the type of sound data stored in the file filename using whathdr(). If it succeeds, returns
a namedtuple as described above, otherwise None is returned.

Changed in version 3.5: Result changed from a tuple to a namedtuple.

sndhdr.whathdr(filename)
Determines the type of sound data stored in a file based on the file header. The name of the file is
given by filename. This function returns a namedtuple as described above on success, or None.

Changed in version 3.5: Result changed from a tuple to a namedtuple.

22.9 ossaudiodev — Access to OSS-compatible audio devices

This module allows you to access the OSS (Open Sound System) audio interface. OSS is available for a
wide range of open-source and commercial Unices, and is the standard audio interface for Linux and recent
versions of FreeBSD.

Changed in version 3.3: Operations in this module now raise OSError where IOError was raised.

See also:

22.8. sndhdr — Determine type of sound file 1243

https://github.com/python/cpython/tree/3.5/Lib/sndhdr.py

The Python Library Reference, Release 3.5.7

Open Sound System Programmer’s Guide the official documentation for the OSS C API

The module defines a large number of constants supplied by the OSS device driver; see <sys/soundcard.h>
on either Linux or FreeBSD for a listing.

ossaudiodev defines the following variables and functions:

exception ossaudiodev.OSSAudioError
This exception is raised on certain errors. The argument is a string describing what went wrong.

(If ossaudiodev receives an error from a system call such as open(), write(), or ioctl(), it raises OSError.
Errors detected directly by ossaudiodev result in OSSAudioError.)

(For backwards compatibility, the exception class is also available as ossaudiodev.error.)

ossaudiodev.open(mode)
ossaudiodev.open(device, mode)

Open an audio device and return an OSS audio device object. This object supports many file-like meth-
ods, such as read(), write(), and fileno() (although there are subtle differences between conventional
Unix read/write semantics and those of OSS audio devices). It also supports a number of audio-specific
methods; see below for the complete list of methods.

device is the audio device filename to use. If it is not specified, this module first looks in the environment
variable AUDIODEV for a device to use. If not found, it falls back to /dev/dsp.

mode is one of 'r' for read-only (record) access, 'w' for write-only (playback) access and 'rw' for
both. Since many sound cards only allow one process to have the recorder or player open at a time, it is
a good idea to open the device only for the activity needed. Further, some sound cards are half-duplex:
they can be opened for reading or writing, but not both at once.

Note the unusual calling syntax: the first argument is optional, and the second is required. This is a
historical artifact for compatibility with the older linuxaudiodev module which ossaudiodev supersedes.

ossaudiodev.openmixer([device])
Open a mixer device and return an OSS mixer device object. device is the mixer device filename to
use. If it is not specified, this module first looks in the environment variable MIXERDEV for a device
to use. If not found, it falls back to /dev/mixer.

22.9.1 Audio Device Objects

Before you can write to or read from an audio device, you must call three methods in the correct order:

1. setfmt() to set the output format

2. channels() to set the number of channels

3. speed() to set the sample rate

Alternately, you can use the setparameters() method to set all three audio parameters at once. This is more
convenient, but may not be as flexible in all cases.

The audio device objects returned by open() define the following methods and (read-only) attributes:

oss_audio_device.close()
Explicitly close the audio device. When you are done writing to or reading from an audio device, you
should explicitly close it. A closed device cannot be used again.

oss_audio_device.fileno()
Return the file descriptor associated with the device.

1244 Chapter 22. Multimedia Services

http://www.opensound.com/pguide/oss.pdf

The Python Library Reference, Release 3.5.7

oss_audio_device.read(size)
Read size bytes from the audio input and return them as a Python string. Unlike most Unix device
drivers, OSS audio devices in blocking mode (the default) will block read() until the entire requested
amount of data is available.

oss_audio_device.write(data)
Write a bytes-like object data to the audio device and return the number of bytes written. If the audio
device is in blocking mode (the default), the entire data is always written (again, this is different from
usual Unix device semantics). If the device is in non-blocking mode, some data may not be written
—see writeall().

Changed in version 3.5: Writable bytes-like object is now accepted.

oss_audio_device.writeall(data)
Write a bytes-like object data to the audio device: waits until the audio device is able to accept data,
writes as much data as it will accept, and repeats until data has been completely written. If the
device is in blocking mode (the default), this has the same effect as write(); writeall() is only useful
in non-blocking mode. Has no return value, since the amount of data written is always equal to the
amount of data supplied.

Changed in version 3.5: Writable bytes-like object is now accepted.

Changed in version 3.2: Audio device objects also support the context management protocol, i.e. they can
be used in a with statement.

The following methods each map to exactly one ioctl() system call. The correspondence is obvious: for
example, setfmt() corresponds to the SNDCTL_DSP_SETFMT ioctl, and sync() to SNDCTL_DSP_SYNC
(this can be useful when consulting the OSS documentation). If the underlying ioctl() fails, they all raise
OSError.

oss_audio_device.nonblock()
Put the device into non-blocking mode. Once in non-blocking mode, there is no way to return it to
blocking mode.

oss_audio_device.getfmts()
Return a bitmask of the audio output formats supported by the soundcard. Some of the formats
supported by OSS are:

Format Description
AFMT_MU_LAW a logarithmic encoding (used by Sun .au files and /dev/audio)
AFMT_A_LAW a logarithmic encoding
AFMT_IMA_ADPCM a 4:1 compressed format defined by the Interactive Multimedia Association
AFMT_U8 Unsigned, 8-bit audio
AFMT_S16_LE Signed, 16-bit audio, little-endian byte order (as used by Intel processors)
AFMT_S16_BE Signed, 16-bit audio, big-endian byte order (as used by 68k, PowerPC,

Sparc)
AFMT_S8 Signed, 8 bit audio
AFMT_U16_LE Unsigned, 16-bit little-endian audio
AFMT_U16_BE Unsigned, 16-bit big-endian audio

Consult the OSS documentation for a full list of audio formats, and note that most devices support
only a subset of these formats. Some older devices only support AFMT_U8; the most common format
used today is AFMT_S16_LE.

oss_audio_device.setfmt(format)
Try to set the current audio format to format—see getfmts() for a list. Returns the audio format that
the device was set to, which may not be the requested format. May also be used to return the current
audio format—do this by passing an “audio format” of AFMT_QUERY.

22.9. ossaudiodev — Access to OSS-compatible audio devices 1245

The Python Library Reference, Release 3.5.7

oss_audio_device.channels(nchannels)
Set the number of output channels to nchannels. A value of 1 indicates monophonic sound, 2 stereo-
phonic. Some devices may have more than 2 channels, and some high-end devices may not support
mono. Returns the number of channels the device was set to.

oss_audio_device.speed(samplerate)
Try to set the audio sampling rate to samplerate samples per second. Returns the rate actually set.
Most sound devices don’t support arbitrary sampling rates. Common rates are:

Rate Description
8000 default rate for /dev/audio
11025 speech recording
22050
44100 CD quality audio (at 16 bits/sample and 2 channels)
96000 DVD quality audio (at 24 bits/sample)

oss_audio_device.sync()
Wait until the sound device has played every byte in its buffer. (This happens implicitly when the
device is closed.) The OSS documentation recommends closing and re-opening the device rather than
using sync().

oss_audio_device.reset()
Immediately stop playing or recording and return the device to a state where it can accept commands.
The OSS documentation recommends closing and re-opening the device after calling reset().

oss_audio_device.post()
Tell the driver that there is likely to be a pause in the output, making it possible for the device to
handle the pause more intelligently. You might use this after playing a spot sound effect, before waiting
for user input, or before doing disk I/O.

The following convenience methods combine several ioctls, or one ioctl and some simple calculations.

oss_audio_device.setparameters(format, nchannels, samplerate[, strict=False])
Set the key audio sampling parameters—sample format, number of channels, and sampling rate—in one
method call. format, nchannels, and samplerate should be as specified in the setfmt(), channels(), and
speed() methods. If strict is true, setparameters() checks to see if each parameter was actually set to
the requested value, and raises OSSAudioError if not. Returns a tuple (format, nchannels, samplerate)
indicating the parameter values that were actually set by the device driver (i.e., the same as the return
values of setfmt(), channels(), and speed()).

For example,

(fmt, channels, rate) = dsp.setparameters(fmt, channels, rate)

is equivalent to

fmt = dsp.setfmt(fmt)
channels = dsp.channels(channels)
rate = dsp.rate(rate)

oss_audio_device.bufsize()
Returns the size of the hardware buffer, in samples.

oss_audio_device.obufcount()
Returns the number of samples that are in the hardware buffer yet to be played.

1246 Chapter 22. Multimedia Services

The Python Library Reference, Release 3.5.7

oss_audio_device.obuffree()
Returns the number of samples that could be queued into the hardware buffer to be played without
blocking.

Audio device objects also support several read-only attributes:

oss_audio_device.closed
Boolean indicating whether the device has been closed.

oss_audio_device.name
String containing the name of the device file.

oss_audio_device.mode
The I/O mode for the file, either "r", "rw", or "w".

22.9.2 Mixer Device Objects

The mixer object provides two file-like methods:

oss_mixer_device.close()
This method closes the open mixer device file. Any further attempts to use the mixer after this file is
closed will raise an OSError.

oss_mixer_device.fileno()
Returns the file handle number of the open mixer device file.

Changed in version 3.2: Mixer objects also support the context management protocol.

The remaining methods are specific to audio mixing:

oss_mixer_device.controls()
This method returns a bitmask specifying the available mixer controls (“Control” being a specific
mixable “channel”, such as SOUND_MIXER_PCM or SOUND_MIXER_SYNTH). This bitmask
indicates a subset of all available mixer controls—the SOUND_MIXER_* constants defined at module
level. To determine if, for example, the current mixer object supports a PCM mixer, use the following
Python code:

mixer=ossaudiodev.openmixer()
if mixer.controls() & (1 << ossaudiodev.SOUND_MIXER_PCM):

PCM is supported
... code ...

For most purposes, the SOUND_MIXER_VOLUME (master volume) and SOUND_MIXER_PCM
controls should suffice—but code that uses the mixer should be flexible when it comes to choosing mixer
controls. On the Gravis Ultrasound, for example, SOUND_MIXER_VOLUME does not exist.

oss_mixer_device.stereocontrols()
Returns a bitmask indicating stereo mixer controls. If a bit is set, the corresponding control is stereo;
if it is unset, the control is either monophonic or not supported by the mixer (use in combination with
controls() to determine which).

See the code example for the controls() function for an example of getting data from a bitmask.

oss_mixer_device.reccontrols()
Returns a bitmask specifying the mixer controls that may be used to record. See the code example for
controls() for an example of reading from a bitmask.

oss_mixer_device.get(control)
Returns the volume of a given mixer control. The returned volume is a 2-tuple (left_volume,

22.9. ossaudiodev — Access to OSS-compatible audio devices 1247

The Python Library Reference, Release 3.5.7

right_volume). Volumes are specified as numbers from 0 (silent) to 100 (full volume). If the control is
monophonic, a 2-tuple is still returned, but both volumes are the same.

Raises OSSAudioError if an invalid control is specified, or OSError if an unsupported control is speci-
fied.

oss_mixer_device.set(control, (left, right))
Sets the volume for a given mixer control to (left,right). left and right must be ints and between 0
(silent) and 100 (full volume). On success, the new volume is returned as a 2-tuple. Note that this may
not be exactly the same as the volume specified, because of the limited resolution of some soundcard’s
mixers.

Raises OSSAudioError if an invalid mixer control was specified, or if the specified volumes were out-
of-range.

oss_mixer_device.get_recsrc()
This method returns a bitmask indicating which control(s) are currently being used as a recording
source.

oss_mixer_device.set_recsrc(bitmask)
Call this function to specify a recording source. Returns a bitmask indicating the new recording source
(or sources) if successful; raises OSError if an invalid source was specified. To set the current recording
source to the microphone input:

mixer.setrecsrc (1 << ossaudiodev.SOUND_MIXER_MIC)

1248 Chapter 22. Multimedia Services

CHAPTER

TWENTYTHREE

INTERNATIONALIZATION

The modules described in this chapter help you write software that is independent of language and locale
by providing mechanisms for selecting a language to be used in program messages or by tailoring output to
match local conventions.

The list of modules described in this chapter is:

23.1 gettext — Multilingual internationalization services

Source code: Lib/gettext.py

The gettext module provides internationalization (I18N) and localization (L10N) services for your Python
modules and applications. It supports both the GNU gettext message catalog API and a higher level, class-
based API that may be more appropriate for Python files. The interface described below allows you to write
your module and application messages in one natural language, and provide a catalog of translated messages
for running under different natural languages.

Some hints on localizing your Python modules and applications are also given.

23.1.1 GNU gettext API

The gettext module defines the following API, which is very similar to the GNU gettext API. If you use
this API you will affect the translation of your entire application globally. Often this is what you want if
your application is monolingual, with the choice of language dependent on the locale of your user. If you are
localizing a Python module, or if your application needs to switch languages on the fly, you probably want
to use the class-based API instead.

gettext.bindtextdomain(domain, localedir=None)
Bind the domain to the locale directory localedir. More concretely, gettext will look for binary
.mo files for the given domain using the path (on Unix): localedir/language/LC_MESSAGES/
domain.mo, where languages is searched for in the environment variables LANGUAGE, LC_ALL,
LC_MESSAGES, and LANG respectively.

If localedir is omitted or None, then the current binding for domain is returned.1

1 The default locale directory is system dependent; for example, on RedHat Linux it is /usr/share/locale, but on Solaris
it is /usr/lib/locale. The gettext module does not try to support these system dependent defaults; instead its default is sys.
prefix/share/locale. For this reason, it is always best to call bindtextdomain() with an explicit absolute path at the start of
your application.

1249

https://github.com/python/cpython/tree/3.5/Lib/gettext.py

The Python Library Reference, Release 3.5.7

gettext.bind_textdomain_codeset(domain, codeset=None)
Bind the domain to codeset, changing the encoding of byte strings returned by the lgettext(), ld-
gettext(), lngettext() and ldngettext() functions. If codeset is omitted, then the current binding is
returned.

gettext.textdomain(domain=None)
Change or query the current global domain. If domain is None, then the current global domain is
returned, otherwise the global domain is set to domain, which is returned.

gettext.gettext(message)
Return the localized translation of message, based on the current global domain, language, and locale
directory. This function is usually aliased as _() in the local namespace (see examples below).

gettext.dgettext(domain, message)
Like gettext(), but look the message up in the specified domain.

gettext.ngettext(singular, plural, n)
Like gettext(), but consider plural forms. If a translation is found, apply the plural formula to n, and
return the resulting message (some languages have more than two plural forms). If no translation is
found, return singular if n is 1; return plural otherwise.

The Plural formula is taken from the catalog header. It is a C or Python expression that has a free
variable n; the expression evaluates to the index of the plural in the catalog. See the GNU gettext
documentation for the precise syntax to be used in .po files and the formulas for a variety of languages.

gettext.dngettext(domain, singular, plural, n)
Like ngettext(), but look the message up in the specified domain.

gettext.lgettext(message)

gettext.ldgettext(domain, message)

gettext.lngettext(singular, plural, n)

gettext.ldngettext(domain, singular, plural, n)
Equivalent to the corresponding functions without the l prefix (gettext(), dgettext(), ngettext() and
dngettext()), but the translation is returned as a byte string encoded in the preferred system encoding
if no other encoding was explicitly set with bind_textdomain_codeset().

Warning: These functions should be avoided in Python 3, because they return encoded bytes. It’s
much better to use alternatives which return Unicode strings instead, since most Python applications
will want to manipulate human readable text as strings instead of bytes. Further, it’s possible
that you may get unexpected Unicode-related exceptions if there are encoding problems with the
translated strings. It is possible that the l*() functions will be deprecated in future Python versions
due to their inherent problems and limitations.

Note that GNU gettext also defines a dcgettext() method, but this was deemed not useful and so it is
currently unimplemented.

Here’s an example of typical usage for this API:

import gettext
gettext.bindtextdomain('myapplication', '/path/to/my/language/directory')
gettext.textdomain('myapplication')
_ = gettext.gettext
...
print(_('This is a translatable string.'))

1250 Chapter 23. Internationalization

https://www.gnu.org/software/gettext/manual/gettext.html
https://www.gnu.org/software/gettext/manual/gettext.html

The Python Library Reference, Release 3.5.7

23.1.2 Class-based API

The class-based API of the gettext module gives you more flexibility and greater convenience than the GNU
gettext API. It is the recommended way of localizing your Python applications and modules. gettext defines
a “translations” class which implements the parsing of GNU .mo format files, and has methods for returning
strings. Instances of this “translations” class can also install themselves in the built-in namespace as the
function _().

gettext.find(domain, localedir=None, languages=None, all=False)
This function implements the standard .mo file search algorithm. It takes a domain, identical to what
textdomain() takes. Optional localedir is as in bindtextdomain() Optional languages is a list of strings,
where each string is a language code.

If localedir is not given, then the default system locale directory is used.2 If languages is not given,
then the following environment variables are searched: LANGUAGE, LC_ALL, LC_MESSAGES, and
LANG. The first one returning a non-empty value is used for the languages variable. The environment
variables should contain a colon separated list of languages, which will be split on the colon to produce
the expected list of language code strings.

find() then expands and normalizes the languages, and then iterates through them, searching for an
existing file built of these components:

localedir/language/LC_MESSAGES/domain.mo

The first such file name that exists is returned by find(). If no such file is found, then None is returned.
If all is given, it returns a list of all file names, in the order in which they appear in the languages list
or the environment variables.

gettext.translation(domain, localedir=None, languages=None, class_=None, fallback=False, code-
set=None)

Return a Translations instance based on the domain, localedir, and languages, which are first passed
to find() to get a list of the associated .mo file paths. Instances with identical .mo file names are
cached. The actual class instantiated is either class_ if provided, otherwise GNUTranslations. The
class’s constructor must take a single file object argument. If provided, codeset will change the charset
used to encode translated strings in the lgettext() and lngettext() methods.

If multiple files are found, later files are used as fallbacks for earlier ones. To allow setting the fallback,
copy.copy() is used to clone each translation object from the cache; the actual instance data is still
shared with the cache.

If no .mo file is found, this function raises OSError if fallback is false (which is the default), and returns
a NullTranslations instance if fallback is true.

Changed in version 3.3: IOError used to be raised instead of OSError.

gettext.install(domain, localedir=None, codeset=None, names=None)
This installs the function _() in Python’s builtins namespace, based on domain, localedir, and codeset
which are passed to the function translation().

For the names parameter, please see the description of the translation object’s install() method.

As seen below, you usually mark the strings in your application that are candidates for translation, by
wrapping them in a call to the _() function, like this:

print(_('This string will be translated.'))

For convenience, you want the _() function to be installed in Python’s builtins namespace, so it is
easily accessible in all modules of your application.

2 See the footnote for bindtextdomain() above.

23.1. gettext — Multilingual internationalization services 1251

The Python Library Reference, Release 3.5.7

The NullTranslations class

Translation classes are what actually implement the translation of original source file message strings to
translated message strings. The base class used by all translation classes is NullTranslations; this provides
the basic interface you can use to write your own specialized translation classes. Here are the methods of
NullTranslations:

class gettext.NullTranslations(fp=None)
Takes an optional file object fp, which is ignored by the base class. Initializes “protected” instance
variables _info and _charset which are set by derived classes, as well as _fallback, which is set
through add_fallback(). It then calls self._parse(fp) if fp is not None.

_parse(fp)
No-op’d in the base class, this method takes file object fp, and reads the data from the file,
initializing its message catalog. If you have an unsupported message catalog file format, you
should override this method to parse your format.

add_fallback(fallback)
Add fallback as the fallback object for the current translation object. A translation object should
consult the fallback if it cannot provide a translation for a given message.

gettext(message)
If a fallback has been set, forward gettext() to the fallback. Otherwise, return message. Overridden
in derived classes.

ngettext(singular, plural, n)
If a fallback has been set, forward ngettext() to the fallback. Otherwise, return singular if n is 1;
return plural otherwise. Overridden in derived classes.

lgettext(message)

lngettext(singular, plural, n)
Equivalent to gettext() and ngettext(), but the translation is returned as a byte string encoded
in the preferred system encoding if no encoding was explicitly set with set_output_charset().
Overridden in derived classes.

Warning: These methods should be avoided in Python 3. See the warning for the lgettext()
function.

info()
Return the “protected” _info variable.

charset()
Return the encoding of the message catalog file.

output_charset()
Return the encoding used to return translated messages in lgettext() and lngettext().

set_output_charset(charset)
Change the encoding used to return translated messages.

install(names=None)
This method installs gettext() into the built-in namespace, binding it to _.

If the names parameter is given, it must be a sequence containing the names of functions you
want to install in the builtins namespace in addition to _(). Supported names are 'gettext',
'ngettext', 'lgettext' and 'lngettext'.

1252 Chapter 23. Internationalization

The Python Library Reference, Release 3.5.7

Note that this is only one way, albeit the most convenient way, to make the _() function available
to your application. Because it affects the entire application globally, and specifically the built-in
namespace, localized modules should never install _(). Instead, they should use this code to make
_() available to their module:

import gettext
t = gettext.translation('mymodule', ...)
_ = t.gettext

This puts _() only in the module’s global namespace and so only affects calls within this module.

The GNUTranslations class

The gettext module provides one additional class derived from NullTranslations: GNUTranslations. This
class overrides _parse() to enable reading GNU gettext format .mo files in both big-endian and little-endian
format.

GNUTranslations parses optional meta-data out of the translation catalog. It is convention with GNU
gettext to include meta-data as the translation for the empty string. This meta-data is in RFC 822-style
key: value pairs, and should contain the Project-Id-Version key. If the key Content-Type is found, then the
charset property is used to initialize the “protected” _charset instance variable, defaulting to None if not
found. If the charset encoding is specified, then all message ids and message strings read from the catalog
are converted to Unicode using this encoding, else ASCII encoding is assumed.

Since message ids are read as Unicode strings too, all *gettext() methods will assume message ids as Unicode
strings, not byte strings.

The entire set of key/value pairs are placed into a dictionary and set as the “protected” _info instance
variable.

If the .mo file’s magic number is invalid, the major version number is unexpected, or if other problems occur
while reading the file, instantiating a GNUTranslations class can raise OSError.

class gettext.GNUTranslations
The following methods are overridden from the base class implementation:

gettext(message)
Look up the message id in the catalog and return the corresponding message string, as a Unicode
string. If there is no entry in the catalog for the message id, and a fallback has been set, the look
up is forwarded to the fallback’s gettext() method. Otherwise, the message id is returned.

ngettext(singular, plural, n)
Do a plural-forms lookup of a message id. singular is used as the message id for purposes of lookup
in the catalog, while n is used to determine which plural form to use. The returned message string
is a Unicode string.

If the message id is not found in the catalog, and a fallback is specified, the request is forwarded
to the fallback’s ngettext() method. Otherwise, when n is 1 singular is returned, and plural is
returned in all other cases.

Here is an example:

n = len(os.listdir('.'))
cat = GNUTranslations(somefile)
message = cat.ngettext(

'There is %(num)d file in this directory',
'There are %(num)d files in this directory',
n) % {'num': n}

23.1. gettext — Multilingual internationalization services 1253

https://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 3.5.7

lgettext(message)

lngettext(singular, plural, n)
Equivalent to gettext() and ngettext(), but the translation is returned as a byte string encoded
in the preferred system encoding if no encoding was explicitly set with set_output_charset().

Warning: These methods should be avoided in Python 3. See the warning for the lgettext()
function.

Solaris message catalog support

The Solaris operating system defines its own binary .mo file format, but since no documentation can be
found on this format, it is not supported at this time.

The Catalog constructor

GNOME uses a version of the gettext module by James Henstridge, but this version has a slightly different
API. Its documented usage was:

import gettext
cat = gettext.Catalog(domain, localedir)
_ = cat.gettext
print(_('hello world'))

For compatibility with this older module, the function Catalog() is an alias for the translation() function
described above.

One difference between this module and Henstridge’s: his catalog objects supported access through a mapping
API, but this appears to be unused and so is not currently supported.

23.1.3 Internationalizing your programs and modules

Internationalization (I18N) refers to the operation by which a program is made aware of multiple languages.
Localization (L10N) refers to the adaptation of your program, once internationalized, to the local language
and cultural habits. In order to provide multilingual messages for your Python programs, you need to take
the following steps:

1. prepare your program or module by specially marking translatable strings

2. run a suite of tools over your marked files to generate raw messages catalogs

3. create language specific translations of the message catalogs

4. use the gettext module so that message strings are properly translated

In order to prepare your code for I18N, you need to look at all the strings in your files. Any string that
needs to be translated should be marked by wrapping it in _('...') — that is, a call to the function _().
For example:

filename = 'mylog.txt'
message = _('writing a log message')
fp = open(filename, 'w')
fp.write(message)
fp.close()

1254 Chapter 23. Internationalization

The Python Library Reference, Release 3.5.7

In this example, the string 'writing a log message' is marked as a candidate for translation, while the strings
'mylog.txt' and 'w' are not.

There are a few tools to extract the strings meant for translation. The original GNU gettext only supported
C or C++ source code but its extended version xgettext scans code written in a number of languages,
including Python, to find strings marked as translatable. Babel is a Python internationalization library that
includes a pybabel script to extract and compile message catalogs. François Pinard’s program called xpot
does a similar job and is available as part of his po-utils package.

(Python also includes pure-Python versions of these programs, called pygettext.py and msgfmt.py; some
Python distributions will install them for you. pygettext.py is similar to xgettext, but only understands
Python source code and cannot handle other programming languages such as C or C++. pygettext.py
supports a command-line interface similar to xgettext; for details on its use, run pygettext.py --help. msgfmt.
py is binary compatible with GNU msgfmt. With these two programs, you may not need the GNU gettext
package to internationalize your Python applications.)

xgettext, pygettext, and similar tools generate .po files that are message catalogs. They are structured
human-readable files that contain every marked string in the source code, along with a placeholder for the
translated versions of these strings.

Copies of these .po files are then handed over to the individual human translators who write translations for
every supported natural language. They send back the completed language-specific versions as a <language-
name>.po file that’s compiled into a machine-readable .mo binary catalog file using the msgfmt program.
The .mo files are used by the gettext module for the actual translation processing at run-time.

How you use the gettext module in your code depends on whether you are internationalizing a single module
or your entire application. The next two sections will discuss each case.

Localizing your module

If you are localizing your module, you must take care not to make global changes, e.g. to the built-in
namespace. You should not use the GNU gettext API but instead the class-based API.

Let’s say your module is called “spam” and the module’s various natural language translation .mo files reside
in /usr/share/locale in GNU gettext format. Here’s what you would put at the top of your module:

import gettext
t = gettext.translation('spam', '/usr/share/locale')
_ = t.gettext

Localizing your application

If you are localizing your application, you can install the _() function globally into the built-in namespace,
usually in the main driver file of your application. This will let all your application-specific files just use
_('...') without having to explicitly install it in each file.

In the simple case then, you need only add the following bit of code to the main driver file of your application:

import gettext
gettext.install('myapplication')

If you need to set the locale directory, you can pass it into the install() function:

import gettext
gettext.install('myapplication', '/usr/share/locale')

23.1. gettext — Multilingual internationalization services 1255

http://babel.pocoo.org/
https://github.com/pinard/po-utils

The Python Library Reference, Release 3.5.7

Changing languages on the fly

If your program needs to support many languages at the same time, you may want to create multiple
translation instances and then switch between them explicitly, like so:

import gettext

lang1 = gettext.translation('myapplication', languages=['en'])
lang2 = gettext.translation('myapplication', languages=['fr'])
lang3 = gettext.translation('myapplication', languages=['de'])

start by using language1
lang1.install()

... time goes by, user selects language 2
lang2.install()

... more time goes by, user selects language 3
lang3.install()

Deferred translations

In most coding situations, strings are translated where they are coded. Occasionally however, you need to
mark strings for translation, but defer actual translation until later. A classic example is:

animals = ['mollusk',
'albatross',
'rat',
'penguin',
'python',]

...
for a in animals:

print(a)

Here, you want to mark the strings in the animals list as being translatable, but you don’t actually want to
translate them until they are printed.

Here is one way you can handle this situation:

def _(message): return message

animals = [_('mollusk'),
_('albatross'),
_('rat'),
_('penguin'),
_('python'),]

del _

...
for a in animals:

print(_(a))

This works because the dummy definition of _() simply returns the string unchanged. And this dummy
definition will temporarily override any definition of _() in the built-in namespace (until the del command).
Take care, though if you have a previous definition of _() in the local namespace.

1256 Chapter 23. Internationalization

The Python Library Reference, Release 3.5.7

Note that the second use of _() will not identify “a” as being translatable to the gettext program, because
the parameter is not a string literal.

Another way to handle this is with the following example:

def N_(message): return message

animals = [N_('mollusk'),
N_('albatross'),
N_('rat'),
N_('penguin'),
N_('python'),]

...
for a in animals:

print(_(a))

In this case, you are marking translatable strings with the function N_(), which won’t conflict with any
definition of _(). However, you will need to teach your message extraction program to look for translatable
strings marked with N_(). xgettext, pygettext, pybabel extract, and xpot all support this through the use
of the -k command-line switch. The choice of N_() here is totally arbitrary; it could have just as easily been
MarkThisStringForTranslation().

23.1.4 Acknowledgements

The following people contributed code, feedback, design suggestions, previous implementations, and valuable
experience to the creation of this module:

• Peter Funk

• James Henstridge

• Juan David Ibáñez Palomar

• Marc-André Lemburg

• Martin von Löwis

• François Pinard

• Barry Warsaw

• Gustavo Niemeyer

23.2 locale — Internationalization services

Source code: Lib/locale.py

The locale module opens access to the POSIX locale database and functionality. The POSIX locale mech-
anism allows programmers to deal with certain cultural issues in an application, without requiring the
programmer to know all the specifics of each country where the software is executed.

The locale module is implemented on top of the _locale module, which in turn uses an ANSI C locale
implementation if available.

The locale module defines the following exception and functions:

23.2. locale — Internationalization services 1257

https://github.com/python/cpython/tree/3.5/Lib/locale.py

The Python Library Reference, Release 3.5.7

exception locale.Error
Exception raised when the locale passed to setlocale() is not recognized.

locale.setlocale(category, locale=None)
If locale is given and not None, setlocale() modifies the locale setting for the category. The available
categories are listed in the data description below. locale may be a string, or an iterable of two strings
(language code and encoding). If it’s an iterable, it’s converted to a locale name using the locale
aliasing engine. An empty string specifies the user’s default settings. If the modification of the locale
fails, the exception Error is raised. If successful, the new locale setting is returned.

If locale is omitted or None, the current setting for category is returned.

setlocale() is not thread-safe on most systems. Applications typically start with a call of

import locale
locale.setlocale(locale.LC_ALL, '')

This sets the locale for all categories to the user’s default setting (typically specified in the LANG
environment variable). If the locale is not changed thereafter, using multithreading should not cause
problems.

locale.localeconv()
Returns the database of the local conventions as a dictionary. This dictionary has the following strings
as keys:

1258 Chapter 23. Internationalization

The Python Library Reference, Release 3.5.7

Category Key Meaning
LC_NUMERIC 'decimal_point' Decimal point character.

'grouping' Sequence of numbers specifying
which relative positions the
'thousands_sep' is expected. If
the sequence is terminated with
CHAR_MAX, no further
grouping is performed. If the
sequence terminates with a 0, the
last group size is repeatedly used.

'thousands_sep' Character used between groups.
LC_MONETARY 'int_curr_symbol' International currency symbol.

'currency_symbol' Local currency symbol.
'p_cs_precedes/n_cs_precedes' Whether the currency symbol

precedes the value (for positive
resp. negative values).

'p_sep_by_space/n_sep_by_space' Whether the currency symbol is
separated from the value by a
space (for positive resp. negative
values).

'mon_decimal_point' Decimal point used for monetary
values.

'frac_digits' Number of fractional digits used
in local formatting of monetary
values.

'int_frac_digits' Number of fractional digits used
in international formatting of
monetary values.

'mon_thousands_sep' Group separator used for
monetary values.

'mon_grouping' Equivalent to 'grouping', used
for monetary values.

'positive_sign' Symbol used to annotate a
positive monetary value.

'negative_sign' Symbol used to annotate a
negative monetary value.

'p_sign_posn/n_sign_posn' The position of the sign (for
positive resp. negative values), see
below.

All numeric values can be set to CHAR_MAX to indicate that there is no value specified in this locale.

The possible values for 'p_sign_posn' and 'n_sign_posn' are given below.

Value Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.
CHAR_MAX Nothing is specified in this locale.

23.2. locale — Internationalization services 1259

The Python Library Reference, Release 3.5.7

locale.nl_langinfo(option)
Return some locale-specific information as a string. This function is not available on all systems, and
the set of possible options might also vary across platforms. The possible argument values are numbers,
for which symbolic constants are available in the locale module.

The nl_langinfo() function accepts one of the following keys. Most descriptions are taken from the
corresponding description in the GNU C library.

locale.CODESET
Get a string with the name of the character encoding used in the selected locale.

locale.D_T_FMT
Get a string that can be used as a format string for time.strftime() to represent date and time in
a locale-specific way.

locale.D_FMT
Get a string that can be used as a format string for time.strftime() to represent a date in a
locale-specific way.

locale.T_FMT
Get a string that can be used as a format string for time.strftime() to represent a time in a
locale-specific way.

locale.T_FMT_AMPM
Get a format string for time.strftime() to represent time in the am/pm format.

DAY_1 ... DAY_7
Get the name of the n-th day of the week.

Note: This follows the US convention of DAY_1 being Sunday, not the international convention
(ISO 8601) that Monday is the first day of the week.

ABDAY_1 ... ABDAY_7
Get the abbreviated name of the n-th day of the week.

MON_1 ... MON_12
Get the name of the n-th month.

ABMON_1 ... ABMON_12
Get the abbreviated name of the n-th month.

locale.RADIXCHAR
Get the radix character (decimal dot, decimal comma, etc.).

locale.THOUSEP
Get the separator character for thousands (groups of three digits).

locale.YESEXPR
Get a regular expression that can be used with the regex function to recognize a positive response
to a yes/no question.

Note: The expression is in the syntax suitable for the regex() function from the C library, which
might differ from the syntax used in re.

locale.NOEXPR
Get a regular expression that can be used with the regex(3) function to recognize a negative
response to a yes/no question.

1260 Chapter 23. Internationalization

The Python Library Reference, Release 3.5.7

locale.CRNCYSTR
Get the currency symbol, preceded by “-” if the symbol should appear before the value, “+” if the
symbol should appear after the value, or “.” if the symbol should replace the radix character.

locale.ERA
Get a string that represents the era used in the current locale.

Most locales do not define this value. An example of a locale which does define this value is
the Japanese one. In Japan, the traditional representation of dates includes the name of the era
corresponding to the then-emperor’s reign.

Normally it should not be necessary to use this value directly. Specifying the E modifier in their
format strings causes the time.strftime() function to use this information. The format of the
returned string is not specified, and therefore you should not assume knowledge of it on different
systems.

locale.ERA_D_T_FMT
Get a format string for time.strftime() to represent date and time in a locale-specific era-based
way.

locale.ERA_D_FMT
Get a format string for time.strftime() to represent a date in a locale-specific era-based way.

locale.ERA_T_FMT
Get a format string for time.strftime() to represent a time in a locale-specific era-based way.

locale.ALT_DIGITS
Get a representation of up to 100 values used to represent the values 0 to 99.

locale.getdefaultlocale([envvars])
Tries to determine the default locale settings and returns them as a tuple of the form (language code,
encoding).

According to POSIX, a program which has not called setlocale(LC_ALL, '') runs using the portable
'C' locale. Calling setlocale(LC_ALL, '') lets it use the default locale as defined by the LANG
variable. Since we do not want to interfere with the current locale setting we thus emulate the behavior
in the way described above.

To maintain compatibility with other platforms, not only the LANG variable is tested, but a list of
variables given as envvars parameter. The first found to be defined will be used. envvars defaults
to the search path used in GNU gettext; it must always contain the variable name 'LANG'. The
GNU gettext search path contains 'LC_ALL', 'LC_CTYPE', 'LANG' and 'LANGUAGE', in
that order.

Except for the code 'C', the language code corresponds to RFC 1766. language code and encoding
may be None if their values cannot be determined.

locale.getlocale(category=LC_CTYPE)
Returns the current setting for the given locale category as sequence containing language code, encod-
ing. category may be one of the LC_* values except LC_ALL. It defaults to LC_CTYPE.

Except for the code 'C', the language code corresponds to RFC 1766. language code and encoding
may be None if their values cannot be determined.

locale.getpreferredencoding(do_setlocale=True)
Return the encoding used for text data, according to user preferences. User preferences are expressed
differently on different systems, and might not be available programmatically on some systems, so this
function only returns a guess.

On some systems, it is necessary to invoke setlocale() to obtain the user preferences, so this function is
not thread-safe. If invoking setlocale is not necessary or desired, do_setlocale should be set to False.

23.2. locale — Internationalization services 1261

https://tools.ietf.org/html/rfc1766.html
https://tools.ietf.org/html/rfc1766.html

The Python Library Reference, Release 3.5.7

locale.normalize(localename)
Returns a normalized locale code for the given locale name. The returned locale code is formatted for
use with setlocale(). If normalization fails, the original name is returned unchanged.

If the given encoding is not known, the function defaults to the default encoding for the locale code
just like setlocale().

locale.resetlocale(category=LC_ALL)
Sets the locale for category to the default setting.

The default setting is determined by calling getdefaultlocale(). category defaults to LC_ALL.

locale.strcoll(string1, string2)
Compares two strings according to the current LC_COLLATE setting. As any other compare function,
returns a negative, or a positive value, or 0, depending on whether string1 collates before or after string2
or is equal to it.

locale.strxfrm(string)
Transforms a string to one that can be used in locale-aware comparisons. For example, strxfrm(s1)
< strxfrm(s2) is equivalent to strcoll(s1, s2) < 0. This function can be used when the same string is
compared repeatedly, e.g. when collating a sequence of strings.

locale.format(format, val, grouping=False, monetary=False)
Formats a number val according to the current LC_NUMERIC setting. The format follows the con-
ventions of the % operator. For floating point values, the decimal point is modified if appropriate. If
grouping is true, also takes the grouping into account.

If monetary is true, the conversion uses monetary thousands separator and grouping strings.

Please note that this function will only work for exactly one %char specifier. For whole format strings,
use format_string().

locale.format_string(format, val, grouping=False)
Processes formatting specifiers as in format % val, but takes the current locale settings into account.

locale.currency(val, symbol=True, grouping=False, international=False)
Formats a number val according to the current LC_MONETARY settings.

The returned string includes the currency symbol if symbol is true, which is the default. If grouping
is true (which is not the default), grouping is done with the value. If international is true (which is
not the default), the international currency symbol is used.

Note that this function will not work with the ‘C’ locale, so you have to set a locale via setlocale()
first.

locale.str(float)
Formats a floating point number using the same format as the built-in function str(float), but takes
the decimal point into account.

locale.delocalize(string)
Converts a string into a normalized number string, following the LC_NUMERIC settings.

New in version 3.5.

locale.atof(string)
Converts a string to a floating point number, following the LC_NUMERIC settings.

locale.atoi(string)
Converts a string to an integer, following the LC_NUMERIC conventions.

locale.LC_CTYPE
Locale category for the character type functions. Depending on the settings of this category, the
functions of module string dealing with case change their behaviour.

1262 Chapter 23. Internationalization

The Python Library Reference, Release 3.5.7

locale.LC_COLLATE
Locale category for sorting strings. The functions strcoll() and strxfrm() of the locale module are
affected.

locale.LC_TIME
Locale category for the formatting of time. The function time.strftime() follows these conventions.

locale.LC_MONETARY
Locale category for formatting of monetary values. The available options are available from the locale-
conv() function.

locale.LC_MESSAGES
Locale category for message display. Python currently does not support application specific locale-
aware messages. Messages displayed by the operating system, like those returned by os.strerror()
might be affected by this category.

locale.LC_NUMERIC
Locale category for formatting numbers. The functions format(), atoi(), atof() and str() of the locale
module are affected by that category. All other numeric formatting operations are not affected.

locale.LC_ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale
for all categories is attempted. If that fails for any category, no category is changed at all. When the
locale is retrieved using this flag, a string indicating the setting for all categories is returned. This
string can be later used to restore the settings.

locale.CHAR_MAX
This is a symbolic constant used for different values returned by localeconv().

Example:

>>> import locale
>>> loc = locale.getlocale() # get current locale
use German locale; name might vary with platform
>>> locale.setlocale(locale.LC_ALL, 'de_DE')
>>> locale.strcoll('f\xe4n', 'foo') # compare a string containing an umlaut
>>> locale.setlocale(locale.LC_ALL, '') # use user's preferred locale
>>> locale.setlocale(locale.LC_ALL, 'C') # use default (C) locale
>>> locale.setlocale(locale.LC_ALL, loc) # restore saved locale

23.2.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change.
On top of that, some implementation are broken in such a way that frequent locale changes may cause core
dumps. This makes the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is the C locale, no matter what the user’s preferred locale is.
There is one exception: the LC_CTYPE category is changed at startup to set the current locale encoding
to the user’s preferred locale encoding. The program must explicitly say that it wants the user’s preferred
locale settings for other categories by calling setlocale(LC_ALL, '').

It is generally a bad idea to call setlocale() in some library routine, since as a side effect it affects the entire
program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to
run before the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is
affected by the locale (such as certain formats used with time.strftime()), you will have to find a way to do
it without using the standard library routine. Even better is convincing yourself that using locale settings

23.2. locale — Internationalization services 1263

The Python Library Reference, Release 3.5.7

is okay. Only as a last resort should you document that your module is not compatible with non-C locale
settings.

The only way to perform numeric operations according to the locale is to use the special functions defined
by this module: atof(), atoi(), format(), str().

There is no way to perform case conversions and character classifications according to the locale. For
(Unicode) text strings these are done according to the character value only, while for byte strings, the
conversions and classifications are done according to the ASCII value of the byte, and bytes whose high bit
is set (i.e., non-ASCII bytes) are never converted or considered part of a character class such as letter or
whitespace.

23.2.2 For extension writers and programs that embed Python

Extension modules should never call setlocale(), except to find out what the current locale is. But since
the return value can only be used portably to restore it, that is not very useful (except perhaps to find out
whether or not the locale is C).

When Python code uses the locale module to change the locale, this also affects the embedding application.
If the embedding application doesn’t want this to happen, it should remove the _locale extension module
(which does all the work) from the table of built-in modules in the config.c file, and make sure that the
_locale module is not accessible as a shared library.

23.2.3 Access to message catalogs

The locale module exposes the C library’s gettext interface on systems that provide this interface.
It consists of the functions gettext(), dgettext(), dcgettext(), textdomain(), bindtextdomain(), and
bind_textdomain_codeset(). These are similar to the same functions in the gettext module, but use the
C library’s binary format for message catalogs, and the C library’s search algorithms for locating message
catalogs.

Python applications should normally find no need to invoke these functions, and should use gettext instead.
A known exception to this rule are applications that link with additional C libraries which internally invoke
gettext() or dcgettext(). For these applications, it may be necessary to bind the text domain, so that the
libraries can properly locate their message catalogs.

1264 Chapter 23. Internationalization

CHAPTER

TWENTYFOUR

PROGRAM FRAMEWORKS

The modules described in this chapter are frameworks that will largely dictate the structure of your program.
Currently the modules described here are all oriented toward writing command-line interfaces.

The full list of modules described in this chapter is:

24.1 turtle — Turtle graphics

Source code: Lib/turtle.py

24.1.1 Introduction

Turtle graphics is a popular way for introducing programming to kids. It was part of the original Logo
programming language developed by Wally Feurzig and Seymour Papert in 1966.

Imagine a robotic turtle starting at (0, 0) in the x-y plane. After an import turtle, give it the command
turtle.forward(15), and it moves (on-screen!) 15 pixels in the direction it is facing, drawing a line as it moves.
Give it the command turtle.right(25), and it rotates in-place 25 degrees clockwise.

Turtle star

Turtle can draw intricate shapes using programs that repeat simple moves.

1265

https://github.com/python/cpython/tree/3.5/Lib/turtle.py

The Python Library Reference, Release 3.5.7

from turtle import *
color('red', 'yellow')
begin_fill()
while True:

forward(200)
left(170)
if abs(pos()) < 1:

break
end_fill()
done()

By combining together these and similar commands, intricate shapes and pictures can easily be drawn.

The turtle module is an extended reimplementation of the same-named module from the Python standard
distribution up to version Python 2.5.

It tries to keep the merits of the old turtle module and to be (nearly) 100% compatible with it. This means in
the first place to enable the learning programmer to use all the commands, classes and methods interactively
when using the module from within IDLE run with the -n switch.

The turtle module provides turtle graphics primitives, in both object-oriented and procedure-oriented ways.
Because it uses tkinter for the underlying graphics, it needs a version of Python installed with Tk support.

The object-oriented interface uses essentially two+two classes:

1. The TurtleScreen class defines graphics windows as a playground for the drawing turtles. Its constructor
needs a tkinter.Canvas or a ScrolledCanvas as argument. It should be used when turtle is used as part
of some application.

The function Screen() returns a singleton object of a TurtleScreen subclass. This function should be
used when turtle is used as a standalone tool for doing graphics. As a singleton object, inheriting from
its class is not possible.

All methods of TurtleScreen/Screen also exist as functions, i.e. as part of the procedure-oriented
interface.

2. RawTurtle (alias: RawPen) defines Turtle objects which draw on a TurtleScreen. Its constructor needs
a Canvas, ScrolledCanvas or TurtleScreen as argument, so the RawTurtle objects know where to draw.

1266 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

Derived from RawTurtle is the subclass Turtle (alias: Pen), which draws on “the” Screen instance which
is automatically created, if not already present.

All methods of RawTurtle/Turtle also exist as functions, i.e. part of the procedure-oriented interface.

The procedural interface provides functions which are derived from the methods of the classes Screen and
Turtle. They have the same names as the corresponding methods. A screen object is automatically created
whenever a function derived from a Screen method is called. An (unnamed) turtle object is automatically
created whenever any of the functions derived from a Turtle method is called.

To use multiple turtles on a screen one has to use the object-oriented interface.

Note: In the following documentation the argument list for functions is given. Methods, of course, have the
additional first argument self which is omitted here.

24.1.2 Overview of available Turtle and Screen methods

Turtle methods

Turtle motion

Move and draw

forward() | fd()

backward() | bk() | back()

right() | rt()

left() | lt()

goto() | setpos() | setposition()

setx()

sety()

setheading() | seth()

home()

circle()

dot()

stamp()

clearstamp()

clearstamps()

undo()

speed()

Tell Turtle’s state

position() | pos()

towards()

xcor()

ycor()

heading()

distance()

Setting and measurement

degrees()

radians()

24.1. turtle — Turtle graphics 1267

The Python Library Reference, Release 3.5.7

Pen control

Drawing state

pendown() | pd() | down()

penup() | pu() | up()

pensize() | width()

pen()

isdown()

Color control

color()

pencolor()

fillcolor()

Filling

filling()

begin_fill()

end_fill()

More drawing control

reset()

clear()

write()

Turtle state

Visibility

showturtle() | st()

hideturtle() | ht()

isvisible()

Appearance

shape()

resizemode()

shapesize() | turtlesize()

shearfactor()

settiltangle()

tiltangle()

tilt()

shapetransform()

get_shapepoly()

Using events

onclick()

onrelease()

ondrag()

Special Turtle methods

begin_poly()

end_poly()

get_poly()

1268 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

clone()

getturtle() | getpen()

getscreen()

setundobuffer()

undobufferentries()

Methods of TurtleScreen/Screen

Window control

bgcolor()

bgpic()

clear() | clearscreen()

reset() | resetscreen()

screensize()

setworldcoordinates()

Animation control

delay()

tracer()

update()

Using screen events

listen()

onkey() | onkeyrelease()

onkeypress()

onclick() | onscreenclick()

ontimer()

mainloop() | done()

Settings and special methods

mode()

colormode()

getcanvas()

getshapes()

register_shape() | addshape()

turtles()

window_height()

window_width()

Input methods

textinput()

numinput()

Methods specific to Screen

bye()

exitonclick()

setup()

title()

24.1. turtle — Turtle graphics 1269

The Python Library Reference, Release 3.5.7

24.1.3 Methods of RawTurtle/Turtle and corresponding functions

Most of the examples in this section refer to a Turtle instance called turtle.

Turtle motion

turtle.forward(distance)
turtle.fd(distance)

Parameters distance – a number (integer or float)

Move the turtle forward by the specified distance, in the direction the turtle is headed.

>>> turtle.position()
(0.00,0.00)
>>> turtle.forward(25)
>>> turtle.position()
(25.00,0.00)
>>> turtle.forward(-75)
>>> turtle.position()
(-50.00,0.00)

turtle.back(distance)
turtle.bk(distance)
turtle.backward(distance)

Parameters distance – a number

Move the turtle backward by distance, opposite to the direction the turtle is headed. Do not change
the turtle’s heading.

>>> turtle.position()
(0.00,0.00)
>>> turtle.backward(30)
>>> turtle.position()
(-30.00,0.00)

turtle.right(angle)
turtle.rt(angle)

Parameters angle – a number (integer or float)

Turn turtle right by angle units. (Units are by default degrees, but can be set via the degrees() and
radians() functions.) Angle orientation depends on the turtle mode, see mode().

>>> turtle.heading()
22.0
>>> turtle.right(45)
>>> turtle.heading()
337.0

turtle.left(angle)
turtle.lt(angle)

Parameters angle – a number (integer or float)

Turn turtle left by angle units. (Units are by default degrees, but can be set via the degrees() and
radians() functions.) Angle orientation depends on the turtle mode, see mode().

1270 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

>>> turtle.heading()
22.0
>>> turtle.left(45)
>>> turtle.heading()
67.0

turtle.goto(x, y=None)
turtle.setpos(x, y=None)
turtle.setposition(x, y=None)

Parameters

• x – a number or a pair/vector of numbers

• y – a number or None

If y is None, x must be a pair of coordinates or a Vec2D (e.g. as returned by pos()).

Move turtle to an absolute position. If the pen is down, draw line. Do not change the turtle’s
orientation.

>>> tp = turtle.pos()
>>> tp
(0.00,0.00)
>>> turtle.setpos(60,30)
>>> turtle.pos()
(60.00,30.00)
>>> turtle.setpos((20,80))
>>> turtle.pos()
(20.00,80.00)
>>> turtle.setpos(tp)
>>> turtle.pos()
(0.00,0.00)

turtle.setx(x)

Parameters x – a number (integer or float)

Set the turtle’s first coordinate to x, leave second coordinate unchanged.

>>> turtle.position()
(0.00,240.00)
>>> turtle.setx(10)
>>> turtle.position()
(10.00,240.00)

turtle.sety(y)

Parameters y – a number (integer or float)

Set the turtle’s second coordinate to y, leave first coordinate unchanged.

>>> turtle.position()
(0.00,40.00)
>>> turtle.sety(-10)
>>> turtle.position()
(0.00,-10.00)

turtle.setheading(to_angle)
turtle.seth(to_angle)

24.1. turtle — Turtle graphics 1271

The Python Library Reference, Release 3.5.7

Parameters to_angle – a number (integer or float)

Set the orientation of the turtle to to_angle. Here are some common directions in degrees:

standard mode logo mode
0 - east 0 - north
90 - north 90 - east
180 - west 180 - south
270 - south 270 - west

>>> turtle.setheading(90)
>>> turtle.heading()
90.0

turtle.home()
Move turtle to the origin – coordinates (0,0) – and set its heading to its start-orientation (which
depends on the mode, see mode()).

>>> turtle.heading()
90.0
>>> turtle.position()
(0.00,-10.00)
>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0

turtle.circle(radius, extent=None, steps=None)

Parameters

• radius – a number

• extent – a number (or None)

• steps – an integer (or None)

Draw a circle with given radius. The center is radius units left of the turtle; extent – an angle –
determines which part of the circle is drawn. If extent is not given, draw the entire circle. If extent is
not a full circle, one endpoint of the arc is the current pen position. Draw the arc in counterclockwise
direction if radius is positive, otherwise in clockwise direction. Finally the direction of the turtle is
changed by the amount of extent.

As the circle is approximated by an inscribed regular polygon, steps determines the number of steps
to use. If not given, it will be calculated automatically. May be used to draw regular polygons.

>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(50)
>>> turtle.position()
(-0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(120, 180) # draw a semicircle

(continues on next page)

1272 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> turtle.position()
(0.00,240.00)
>>> turtle.heading()
180.0

turtle.dot(size=None, *color)

Parameters

• size – an integer >= 1 (if given)

• color – a colorstring or a numeric color tuple

Draw a circular dot with diameter size, using color. If size is not given, the maximum of pensize+4
and 2*pensize is used.

>>> turtle.home()
>>> turtle.dot()
>>> turtle.fd(50); turtle.dot(20, "blue"); turtle.fd(50)
>>> turtle.position()
(100.00,-0.00)
>>> turtle.heading()
0.0

turtle.stamp()
Stamp a copy of the turtle shape onto the canvas at the current turtle position. Return a stamp_id
for that stamp, which can be used to delete it by calling clearstamp(stamp_id).

>>> turtle.color("blue")
>>> turtle.stamp()
11
>>> turtle.fd(50)

turtle.clearstamp(stampid)

Parameters stampid – an integer, must be return value of previous stamp() call

Delete stamp with given stampid.

>>> turtle.position()
(150.00,-0.00)
>>> turtle.color("blue")
>>> astamp = turtle.stamp()
>>> turtle.fd(50)
>>> turtle.position()
(200.00,-0.00)
>>> turtle.clearstamp(astamp)
>>> turtle.position()
(200.00,-0.00)

turtle.clearstamps(n=None)

Parameters n – an integer (or None)

Delete all or first/last n of turtle’s stamps. If n is None, delete all stamps, if n > 0 delete first n
stamps, else if n < 0 delete last n stamps.

>>> for i in range(8):
... turtle.stamp(); turtle.fd(30)

(continues on next page)

24.1. turtle — Turtle graphics 1273

The Python Library Reference, Release 3.5.7

(continued from previous page)

13
14
15
16
17
18
19
20
>>> turtle.clearstamps(2)
>>> turtle.clearstamps(-2)
>>> turtle.clearstamps()

turtle.undo()
Undo (repeatedly) the last turtle action(s). Number of available undo actions is determined by the
size of the undobuffer.

>>> for i in range(4):
... turtle.fd(50); turtle.lt(80)
...
>>> for i in range(8):
... turtle.undo()

turtle.speed(speed=None)

Parameters speed – an integer in the range 0..10 or a speedstring (see below)

Set the turtle’s speed to an integer value in the range 0..10. If no argument is given, return current
speed.

If input is a number greater than 10 or smaller than 0.5, speed is set to 0. Speedstrings are mapped
to speedvalues as follows:

• “fastest”: 0

• “fast”: 10

• “normal”: 6

• “slow”: 3

• “slowest”: 1

Speeds from 1 to 10 enforce increasingly faster animation of line drawing and turtle turning.

Attention: speed = 0 means that no animation takes place. forward/back makes turtle jump and
likewise left/right make the turtle turn instantly.

>>> turtle.speed()
3
>>> turtle.speed('normal')
>>> turtle.speed()
6
>>> turtle.speed(9)
>>> turtle.speed()
9

Tell Turtle’s state

turtle.position()

1274 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

turtle.pos()
Return the turtle’s current location (x,y) (as a Vec2D vector).

>>> turtle.pos()
(440.00,-0.00)

turtle.towards(x, y=None)

Parameters

• x – a number or a pair/vector of numbers or a turtle instance

• y – a number if x is a number, else None

Return the angle between the line from turtle position to position specified by (x,y), the vector or
the other turtle. This depends on the turtle’s start orientation which depends on the mode - “stan-
dard”/”world” or “logo”).

>>> turtle.goto(10, 10)
>>> turtle.towards(0,0)
225.0

turtle.xcor()
Return the turtle’s x coordinate.

>>> turtle.home()
>>> turtle.left(50)
>>> turtle.forward(100)
>>> turtle.pos()
(64.28,76.60)
>>> print(round(turtle.xcor(), 5))
64.27876

turtle.ycor()
Return the turtle’s y coordinate.

>>> turtle.home()
>>> turtle.left(60)
>>> turtle.forward(100)
>>> print(turtle.pos())
(50.00,86.60)
>>> print(round(turtle.ycor(), 5))
86.60254

turtle.heading()
Return the turtle’s current heading (value depends on the turtle mode, see mode()).

>>> turtle.home()
>>> turtle.left(67)
>>> turtle.heading()
67.0

turtle.distance(x, y=None)

Parameters

• x – a number or a pair/vector of numbers or a turtle instance

• y – a number if x is a number, else None

24.1. turtle — Turtle graphics 1275

The Python Library Reference, Release 3.5.7

Return the distance from the turtle to (x,y), the given vector, or the given other turtle, in turtle step
units.

>>> turtle.home()
>>> turtle.distance(30,40)
50.0
>>> turtle.distance((30,40))
50.0
>>> joe = Turtle()
>>> joe.forward(77)
>>> turtle.distance(joe)
77.0

Settings for measurement

turtle.degrees(fullcircle=360.0)

Parameters fullcircle – a number

Set angle measurement units, i.e. set number of “degrees” for a full circle. Default value is 360 degrees.

>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0

Change angle measurement unit to grad (also known as gon,
grade, or gradian and equals 1/100-th of the right angle.)
>>> turtle.degrees(400.0)
>>> turtle.heading()
100.0
>>> turtle.degrees(360)
>>> turtle.heading()
90.0

turtle.radians()
Set the angle measurement units to radians. Equivalent to degrees(2*math.pi).

>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0
>>> turtle.radians()
>>> turtle.heading()
1.5707963267948966

Pen control

Drawing state

turtle.pendown()
turtle.pd()
turtle.down()

Pull the pen down – drawing when moving.

turtle.penup()

1276 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

turtle.pu()
turtle.up()

Pull the pen up – no drawing when moving.

turtle.pensize(width=None)
turtle.width(width=None)

Parameters width – a positive number

Set the line thickness to width or return it. If resizemode is set to “auto” and turtleshape is a polygon,
that polygon is drawn with the same line thickness. If no argument is given, the current pensize is
returned.

>>> turtle.pensize()
1
>>> turtle.pensize(10) # from here on lines of width 10 are drawn

turtle.pen(pen=None, **pendict)

Parameters

• pen – a dictionary with some or all of the below listed keys

• pendict – one or more keyword-arguments with the below listed keys as keywords

Return or set the pen’s attributes in a “pen-dictionary” with the following key/value pairs:

• “shown”: True/False

• “pendown”: True/False

• “pencolor”: color-string or color-tuple

• “fillcolor”: color-string or color-tuple

• “pensize”: positive number

• “speed”: number in range 0..10

• “resizemode”: “auto” or “user” or “noresize”

• “stretchfactor”: (positive number, positive number)

• “outline”: positive number

• “tilt”: number

This dictionary can be used as argument for a subsequent call to pen() to restore the former pen-state.
Moreover one or more of these attributes can be provided as keyword-arguments. This can be used to
set several pen attributes in one statement.

>>> turtle.pen(fillcolor="black", pencolor="red", pensize=10)
>>> sorted(turtle.pen().items())
[('fillcolor', 'black'), ('outline', 1), ('pencolor', 'red'),
('pendown', True), ('pensize', 10), ('resizemode', 'noresize'),
('shearfactor', 0.0), ('shown', True), ('speed', 9),
('stretchfactor', (1.0, 1.0)), ('tilt', 0.0)]
>>> penstate=turtle.pen()
>>> turtle.color("yellow", "")
>>> turtle.penup()
>>> sorted(turtle.pen().items())[:3]
[('fillcolor', ''), ('outline', 1), ('pencolor', 'yellow')]
>>> turtle.pen(penstate, fillcolor="green")

(continues on next page)

24.1. turtle — Turtle graphics 1277

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> sorted(turtle.pen().items())[:3]
[('fillcolor', 'green'), ('outline', 1), ('pencolor', 'red')]

turtle.isdown()
Return True if pen is down, False if it’s up.

>>> turtle.penup()
>>> turtle.isdown()
False
>>> turtle.pendown()
>>> turtle.isdown()
True

Color control

turtle.pencolor(*args)
Return or set the pencolor.

Four input formats are allowed:

pencolor() Return the current pencolor as color specification string or as a tuple (see example). May
be used as input to another color/pencolor/fillcolor call.

pencolor(colorstring) Set pencolor to colorstring, which is a Tk color specification string, such as "red",
"yellow", or "#33cc8c".

pencolor((r, g, b)) Set pencolor to the RGB color represented by the tuple of r, g, and b. Each of r, g,
and b must be in the range 0..colormode, where colormode is either 1.0 or 255 (see colormode()).

pencolor(r, g, b)

Set pencolor to the RGB color represented by r, g, and b. Each of r, g, and b must be in
the range 0..colormode.

If turtleshape is a polygon, the outline of that polygon is drawn with the newly set pencolor.

>>> colormode()
1.0
>>> turtle.pencolor()
'red'
>>> turtle.pencolor("brown")
>>> turtle.pencolor()
'brown'
>>> tup = (0.2, 0.8, 0.55)
>>> turtle.pencolor(tup)
>>> turtle.pencolor()
(0.2, 0.8, 0.5490196078431373)
>>> colormode(255)
>>> turtle.pencolor()
(51.0, 204.0, 140.0)
>>> turtle.pencolor('#32c18f')
>>> turtle.pencolor()
(50.0, 193.0, 143.0)

turtle.fillcolor(*args)
Return or set the fillcolor.

Four input formats are allowed:

1278 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

fillcolor() Return the current fillcolor as color specification string, possibly in tuple format (see exam-
ple). May be used as input to another color/pencolor/fillcolor call.

fillcolor(colorstring) Set fillcolor to colorstring, which is a Tk color specification string, such as "red",
"yellow", or "#33cc8c".

fillcolor((r, g, b)) Set fillcolor to the RGB color represented by the tuple of r, g, and b. Each of r, g,
and b must be in the range 0..colormode, where colormode is either 1.0 or 255 (see colormode()).

fillcolor(r, g, b)

Set fillcolor to the RGB color represented by r, g, and b. Each of r, g, and b must be in
the range 0..colormode.

If turtleshape is a polygon, the interior of that polygon is drawn with the newly set fillcolor.

>>> turtle.fillcolor("violet")
>>> turtle.fillcolor()
'violet'
>>> col = turtle.pencolor()
>>> col
(50.0, 193.0, 143.0)
>>> turtle.fillcolor(col)
>>> turtle.fillcolor()
(50.0, 193.0, 143.0)
>>> turtle.fillcolor('#ffffff')
>>> turtle.fillcolor()
(255.0, 255.0, 255.0)

turtle.color(*args)
Return or set pencolor and fillcolor.

Several input formats are allowed. They use 0 to 3 arguments as follows:

color() Return the current pencolor and the current fillcolor as a pair of color specification strings or
tuples as returned by pencolor() and fillcolor().

color(colorstring), color((r,g,b)), color(r,g,b) Inputs as in pencolor(), set both, fillcolor and pencolor,
to the given value.

color(colorstring1, colorstring2), color((r1,g1,b1), (r2,g2,b2))

Equivalent to pencolor(colorstring1) and fillcolor(colorstring2) and analogously if the
other input format is used.

If turtleshape is a polygon, outline and interior of that polygon is drawn with the newly set colors.

>>> turtle.color("red", "green")
>>> turtle.color()
('red', 'green')
>>> color("#285078", "#a0c8f0")
>>> color()
((40.0, 80.0, 120.0), (160.0, 200.0, 240.0))

See also: Screen method colormode().

Filling

turtle.filling()
Return fillstate (True if filling, False else).

24.1. turtle — Turtle graphics 1279

The Python Library Reference, Release 3.5.7

>>> turtle.begin_fill()
>>> if turtle.filling():
... turtle.pensize(5)
... else:
... turtle.pensize(3)

turtle.begin_fill()
To be called just before drawing a shape to be filled.

turtle.end_fill()
Fill the shape drawn after the last call to begin_fill().

>>> turtle.color("black", "red")
>>> turtle.begin_fill()
>>> turtle.circle(80)
>>> turtle.end_fill()

More drawing control

turtle.reset()
Delete the turtle’s drawings from the screen, re-center the turtle and set variables to the default values.

>>> turtle.goto(0,-22)
>>> turtle.left(100)
>>> turtle.position()
(0.00,-22.00)
>>> turtle.heading()
100.0
>>> turtle.reset()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0

turtle.clear()
Delete the turtle’s drawings from the screen. Do not move turtle. State and position of the turtle as
well as drawings of other turtles are not affected.

turtle.write(arg, move=False, align="left", font=("Arial", 8, "normal"))

Parameters

• arg – object to be written to the TurtleScreen

• move – True/False

• align – one of the strings “left”, “center” or right”

• font – a triple (fontname, fontsize, fonttype)

Write text - the string representation of arg - at the current turtle position according to align (“left”,
“center” or right”) and with the given font. If move is true, the pen is moved to the bottom-right corner
of the text. By default, move is False.

>>> turtle.write("Home = ", True, align="center")
>>> turtle.write((0,0), True)

1280 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

Turtle state

Visibility

turtle.hideturtle()
turtle.ht()

Make the turtle invisible. It’s a good idea to do this while you’re in the middle of doing some complex
drawing, because hiding the turtle speeds up the drawing observably.

>>> turtle.hideturtle()

turtle.showturtle()
turtle.st()

Make the turtle visible.

>>> turtle.showturtle()

turtle.isvisible()
Return True if the Turtle is shown, False if it’s hidden.

>>> turtle.hideturtle()
>>> turtle.isvisible()
False
>>> turtle.showturtle()
>>> turtle.isvisible()
True

Appearance

turtle.shape(name=None)

Parameters name – a string which is a valid shapename

Set turtle shape to shape with given name or, if name is not given, return name of current shape.
Shape with name must exist in the TurtleScreen’s shape dictionary. Initially there are the following
polygon shapes: “arrow”, “turtle”, “circle”, “square”, “triangle”, “classic”. To learn about how to deal
with shapes see Screen method register_shape().

>>> turtle.shape()
'classic'
>>> turtle.shape("turtle")
>>> turtle.shape()
'turtle'

turtle.resizemode(rmode=None)

Parameters rmode – one of the strings “auto”, “user”, “noresize”

Set resizemode to one of the values: “auto”, “user”, “noresize”. If rmode is not given, return current
resizemode. Different resizemodes have the following effects:

• “auto”: adapts the appearance of the turtle corresponding to the value of pensize.

• “user”: adapts the appearance of the turtle according to the values of stretchfactor and out-
linewidth (outline), which are set by shapesize().

• “noresize”: no adaption of the turtle’s appearance takes place.

24.1. turtle — Turtle graphics 1281

The Python Library Reference, Release 3.5.7

resizemode(“user”) is called by shapesize() when used with arguments.

>>> turtle.resizemode()
'noresize'
>>> turtle.resizemode("auto")
>>> turtle.resizemode()
'auto'

turtle.shapesize(stretch_wid=None, stretch_len=None, outline=None)
turtle.turtlesize(stretch_wid=None, stretch_len=None, outline=None)

Parameters

• stretch_wid – positive number

• stretch_len – positive number

• outline – positive number

Return or set the pen’s attributes x/y-stretchfactors and/or outline. Set resizemode to “user”. If and
only if resizemode is set to “user”, the turtle will be displayed stretched according to its stretchfactors:
stretch_wid is stretchfactor perpendicular to its orientation, stretch_len is stretchfactor in direction
of its orientation, outline determines the width of the shapes’s outline.

>>> turtle.shapesize()
(1.0, 1.0, 1)
>>> turtle.resizemode("user")
>>> turtle.shapesize(5, 5, 12)
>>> turtle.shapesize()
(5, 5, 12)
>>> turtle.shapesize(outline=8)
>>> turtle.shapesize()
(5, 5, 8)

turtle.shearfactor(shear=None)

Parameters shear – number (optional)

Set or return the current shearfactor. Shear the turtleshape according to the given shearfactor shear,
which is the tangent of the shear angle. Do not change the turtle’s heading (direction of movement).
If shear is not given: return the current shearfactor, i. e. the tangent of the shear angle, by which lines
parallel to the heading of the turtle are sheared.

>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.shearfactor(0.5)
>>> turtle.shearfactor()
0.5

turtle.tilt(angle)

Parameters angle – a number

Rotate the turtleshape by angle from its current tilt-angle, but do not change the turtle’s heading
(direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.tilt(30)

(continues on next page)

1282 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> turtle.fd(50)
>>> turtle.tilt(30)
>>> turtle.fd(50)

turtle.settiltangle(angle)

Parameters angle – a number

Rotate the turtleshape to point in the direction specified by angle, regardless of its current tilt-angle.
Do not change the turtle’s heading (direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.settiltangle(45)
>>> turtle.fd(50)
>>> turtle.settiltangle(-45)
>>> turtle.fd(50)

Deprecated since version 3.1.

turtle.tiltangle(angle=None)

Parameters angle – a number (optional)

Set or return the current tilt-angle. If angle is given, rotate the turtleshape to point in the direction
specified by angle, regardless of its current tilt-angle. Do not change the turtle’s heading (direction of
movement). If angle is not given: return the current tilt-angle, i. e. the angle between the orientation
of the turtleshape and the heading of the turtle (its direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.tilt(45)
>>> turtle.tiltangle()
45.0

turtle.shapetransform(t11=None, t12=None, t21=None, t22=None)

Parameters

• t11 – a number (optional)

• t12 – a number (optional)

• t21 – a number (optional)

• t12 – a number (optional)

Set or return the current transformation matrix of the turtle shape.

If none of the matrix elements are given, return the transformation matrix as a tuple of 4 elements.
Otherwise set the given elements and transform the turtleshape according to the matrix consisting of
first row t11, t12 and second row t21, 22. The determinant t11 * t22 - t12 * t21 must not be zero,
otherwise an error is raised. Modify stretchfactor, shearfactor and tiltangle according to the given
matrix.

>>> turtle = Turtle()
>>> turtle.shape("square")
>>> turtle.shapesize(4,2)

(continues on next page)

24.1. turtle — Turtle graphics 1283

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> turtle.shearfactor(-0.5)
>>> turtle.shapetransform()
(4.0, -1.0, -0.0, 2.0)

turtle.get_shapepoly()
Return the current shape polygon as tuple of coordinate pairs. This can be used to define a new shape
or components of a compound shape.

>>> turtle.shape("square")
>>> turtle.shapetransform(4, -1, 0, 2)
>>> turtle.get_shapepoly()
((50, -20), (30, 20), (-50, 20), (-30, -20))

Using events

turtle.onclick(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the
clicked point on the canvas

• num – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace
a former binding

Bind fun to mouse-click events on this turtle. If fun is None, existing bindings are removed. Example
for the anonymous turtle, i.e. the procedural way:

>>> def turn(x, y):
... left(180)
...
>>> onclick(turn) # Now clicking into the turtle will turn it.
>>> onclick(None) # event-binding will be removed

turtle.onrelease(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the
clicked point on the canvas

• num – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace
a former binding

Bind fun to mouse-button-release events on this turtle. If fun is None, existing bindings are removed.

>>> class MyTurtle(Turtle):
... def glow(self,x,y):
... self.fillcolor("red")
... def unglow(self,x,y):
... self.fillcolor("")
...
>>> turtle = MyTurtle()

(continues on next page)

1284 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> turtle.onclick(turtle.glow) # clicking on turtle turns fillcolor red,
>>> turtle.onrelease(turtle.unglow) # releasing turns it to transparent.

turtle.ondrag(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the
clicked point on the canvas

• num – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace
a former binding

Bind fun to mouse-move events on this turtle. If fun is None, existing bindings are removed.

Remark: Every sequence of mouse-move-events on a turtle is preceded by a mouse-click event on that
turtle.

>>> turtle.ondrag(turtle.goto)

Subsequently, clicking and dragging the Turtle will move it across the screen thereby producing hand-
drawings (if pen is down).

Special Turtle methods

turtle.begin_poly()
Start recording the vertices of a polygon. Current turtle position is first vertex of polygon.

turtle.end_poly()
Stop recording the vertices of a polygon. Current turtle position is last vertex of polygon. This will be
connected with the first vertex.

turtle.get_poly()
Return the last recorded polygon.

>>> turtle.home()
>>> turtle.begin_poly()
>>> turtle.fd(100)
>>> turtle.left(20)
>>> turtle.fd(30)
>>> turtle.left(60)
>>> turtle.fd(50)
>>> turtle.end_poly()
>>> p = turtle.get_poly()
>>> register_shape("myFavouriteShape", p)

turtle.clone()
Create and return a clone of the turtle with same position, heading and turtle properties.

>>> mick = Turtle()
>>> joe = mick.clone()

turtle.getturtle()
turtle.getpen()

Return the Turtle object itself. Only reasonable use: as a function to return the “anonymous turtle”:

24.1. turtle — Turtle graphics 1285

The Python Library Reference, Release 3.5.7

>>> pet = getturtle()
>>> pet.fd(50)
>>> pet
<turtle.Turtle object at 0x...>

turtle.getscreen()
Return the TurtleScreen object the turtle is drawing on. TurtleScreen methods can then be called for
that object.

>>> ts = turtle.getscreen()
>>> ts
<turtle._Screen object at 0x...>
>>> ts.bgcolor("pink")

turtle.setundobuffer(size)

Parameters size – an integer or None

Set or disable undobuffer. If size is an integer an empty undobuffer of given size is installed. size gives
the maximum number of turtle actions that can be undone by the undo() method/function. If size is
None, the undobuffer is disabled.

>>> turtle.setundobuffer(42)

turtle.undobufferentries()
Return number of entries in the undobuffer.

>>> while undobufferentries():
... undo()

Compound shapes

To use compound turtle shapes, which consist of several polygons of different color, you must use the helper
class Shape explicitly as described below:

1. Create an empty Shape object of type “compound”.

2. Add as many components to this object as desired, using the addcomponent() method.

For example:

>>> s = Shape("compound")
>>> poly1 = ((0,0),(10,-5),(0,10),(-10,-5))
>>> s.addcomponent(poly1, "red", "blue")
>>> poly2 = ((0,0),(10,-5),(-10,-5))
>>> s.addcomponent(poly2, "blue", "red")

3. Now add the Shape to the Screen’s shapelist and use it:

>>> register_shape("myshape", s)
>>> shape("myshape")

Note: The Shape class is used internally by the register_shape() method in different ways. The application
programmer has to deal with the Shape class only when using compound shapes like shown above!

1286 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

24.1.4 Methods of TurtleScreen/Screen and corresponding functions

Most of the examples in this section refer to a TurtleScreen instance called screen.

Window control

turtle.bgcolor(*args)

Parameters args – a color string or three numbers in the range 0..colormode or a 3-tuple of
such numbers

Set or return background color of the TurtleScreen.

>>> screen.bgcolor("orange")
>>> screen.bgcolor()
'orange'
>>> screen.bgcolor("#800080")
>>> screen.bgcolor()
(128.0, 0.0, 128.0)

turtle.bgpic(picname=None)

Parameters picname – a string, name of a gif-file or "nopic", or None

Set background image or return name of current backgroundimage. If picname is a filename, set the
corresponding image as background. If picname is "nopic", delete background image, if present. If
picname is None, return the filename of the current backgroundimage.

>>> screen.bgpic()
'nopic'
>>> screen.bgpic("landscape.gif")
>>> screen.bgpic()
"landscape.gif"

turtle.clear()
turtle.clearscreen()

Delete all drawings and all turtles from the TurtleScreen. Reset the now empty TurtleScreen to its
initial state: white background, no background image, no event bindings and tracing on.

Note: This TurtleScreen method is available as a global function only under the name clearscreen.
The global function clear is a different one derived from the Turtle method clear.

turtle.reset()
turtle.resetscreen()

Reset all Turtles on the Screen to their initial state.

Note: This TurtleScreen method is available as a global function only under the name resetscreen.
The global function reset is another one derived from the Turtle method reset.

turtle.screensize(canvwidth=None, canvheight=None, bg=None)

Parameters

• canvwidth – positive integer, new width of canvas in pixels

• canvheight – positive integer, new height of canvas in pixels

24.1. turtle — Turtle graphics 1287

The Python Library Reference, Release 3.5.7

• bg – colorstring or color-tuple, new background color

If no arguments are given, return current (canvaswidth, canvasheight). Else resize the canvas the
turtles are drawing on. Do not alter the drawing window. To observe hidden parts of the canvas, use
the scrollbars. With this method, one can make visible those parts of a drawing which were outside
the canvas before.

>>> screen.screensize()
(400, 300)
>>> screen.screensize(2000,1500)
>>> screen.screensize()
(2000, 1500)

e.g. to search for an erroneously escaped turtle ;-)

turtle.setworldcoordinates(llx, lly, urx, ury)

Parameters

• llx – a number, x-coordinate of lower left corner of canvas

• lly – a number, y-coordinate of lower left corner of canvas

• urx – a number, x-coordinate of upper right corner of canvas

• ury – a number, y-coordinate of upper right corner of canvas

Set up user-defined coordinate system and switch to mode “world” if necessary. This performs a screen.
reset(). If mode “world” is already active, all drawings are redrawn according to the new coordinates.

ATTENTION: in user-defined coordinate systems angles may appear distorted.

>>> screen.reset()
>>> screen.setworldcoordinates(-50,-7.5,50,7.5)
>>> for _ in range(72):
... left(10)
...
>>> for _ in range(8):
... left(45); fd(2) # a regular octagon

Animation control

turtle.delay(delay=None)

Parameters delay – positive integer

Set or return the drawing delay in milliseconds. (This is approximately the time interval between two
consecutive canvas updates.) The longer the drawing delay, the slower the animation.

Optional argument:

>>> screen.delay()
10
>>> screen.delay(5)
>>> screen.delay()
5

turtle.tracer(n=None, delay=None)

Parameters

• n – nonnegative integer

1288 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

• delay – nonnegative integer

Turn turtle animation on/off and set delay for update drawings. If n is given, only each n-th regular
screen update is really performed. (Can be used to accelerate the drawing of complex graphics.) When
called without arguments, returns the currently stored value of n. Second argument sets delay value
(see delay()).

>>> screen.tracer(8, 25)
>>> dist = 2
>>> for i in range(200):
... fd(dist)
... rt(90)
... dist += 2

turtle.update()
Perform a TurtleScreen update. To be used when tracer is turned off.

See also the RawTurtle/Turtle method speed().

Using screen events

turtle.listen(xdummy=None, ydummy=None)
Set focus on TurtleScreen (in order to collect key-events). Dummy arguments are provided in order to
be able to pass listen() to the onclick method.

turtle.onkey(fun, key)
turtle.onkeyrelease(fun, key)

Parameters

• fun – a function with no arguments or None

• key – a string: key (e.g. “a”) or key-symbol (e.g. “space”)

Bind fun to key-release event of key. If fun is None, event bindings are removed. Remark: in order to
be able to register key-events, TurtleScreen must have the focus. (See method listen().)

>>> def f():
... fd(50)
... lt(60)
...
>>> screen.onkey(f, "Up")
>>> screen.listen()

turtle.onkeypress(fun, key=None)

Parameters

• fun – a function with no arguments or None

• key – a string: key (e.g. “a”) or key-symbol (e.g. “space”)

Bind fun to key-press event of key if key is given, or to any key-press-event if no key is given. Remark:
in order to be able to register key-events, TurtleScreen must have focus. (See method listen().)

>>> def f():
... fd(50)
...
>>> screen.onkey(f, "Up")
>>> screen.listen()

24.1. turtle — Turtle graphics 1289

The Python Library Reference, Release 3.5.7

turtle.onclick(fun, btn=1, add=None)
turtle.onscreenclick(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the
clicked point on the canvas

• num – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace
a former binding

Bind fun to mouse-click events on this screen. If fun is None, existing bindings are removed.

Example for a TurtleScreen instance named screen and a Turtle instance named turtle:

>>> screen.onclick(turtle.goto) # Subsequently clicking into the TurtleScreen will
>>> # make the turtle move to the clicked point.
>>> screen.onclick(None) # remove event binding again

Note: This TurtleScreen method is available as a global function only under the name onscreenclick.
The global function onclick is another one derived from the Turtle method onclick.

turtle.ontimer(fun, t=0)

Parameters

• fun – a function with no arguments

• t – a number >= 0

Install a timer that calls fun after t milliseconds.

>>> running = True
>>> def f():
... if running:
... fd(50)
... lt(60)
... screen.ontimer(f, 250)
>>> f() ### makes the turtle march around
>>> running = False

turtle.mainloop()
turtle.done()

Starts event loop - calling Tkinter’s mainloop function. Must be the last statement in a turtle graphics
program. Must not be used if a script is run from within IDLE in -n mode (No subprocess) - for
interactive use of turtle graphics.

>>> screen.mainloop()

Input methods

turtle.textinput(title, prompt)

Parameters

• title – string

1290 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

• prompt – string

Pop up a dialog window for input of a string. Parameter title is the title of the dialog window, prompt
is a text mostly describing what information to input. Return the string input. If the dialog is canceled,
return None.

>>> screen.textinput("NIM", "Name of first player:")

turtle.numinput(title, prompt, default=None, minval=None, maxval=None)

Parameters

• title – string

• prompt – string

• default – number (optional)

• minval – number (optional)

• maxval – number (optional)

Pop up a dialog window for input of a number. title is the title of the dialog window, prompt is a
text mostly describing what numerical information to input. default: default value, minval: minimum
value for input, maxval: maximum value for input The number input must be in the range minval ..
maxval if these are given. If not, a hint is issued and the dialog remains open for correction. Return
the number input. If the dialog is canceled, return None.

>>> screen.numinput("Poker", "Your stakes:", 1000, minval=10, maxval=10000)

Settings and special methods

turtle.mode(mode=None)

Parameters mode – one of the strings “standard”, “logo” or “world”

Set turtle mode (“standard”, “logo” or “world”) and perform reset. If mode is not given, current mode
is returned.

Mode “standard” is compatible with old turtle. Mode “logo” is compatible with most Logo turtle
graphics. Mode “world” uses user-defined “world coordinates”. Attention: in this mode angles appear
distorted if x/y unit-ratio doesn’t equal 1.

Mode Initial turtle heading positive angles
“standard” to the right (east) counterclockwise
“logo” upward (north) clockwise

>>> mode("logo") # resets turtle heading to north
>>> mode()
'logo'

turtle.colormode(cmode=None)

Parameters cmode – one of the values 1.0 or 255

Return the colormode or set it to 1.0 or 255. Subsequently r, g, b values of color triples have to be in
the range 0..cmode.

24.1. turtle — Turtle graphics 1291

The Python Library Reference, Release 3.5.7

>>> screen.colormode(1)
>>> turtle.pencolor(240, 160, 80)
Traceback (most recent call last):

...
TurtleGraphicsError: bad color sequence: (240, 160, 80)
>>> screen.colormode()
1.0
>>> screen.colormode(255)
>>> screen.colormode()
255
>>> turtle.pencolor(240,160,80)

turtle.getcanvas()
Return the Canvas of this TurtleScreen. Useful for insiders who know what to do with a Tkinter
Canvas.

>>> cv = screen.getcanvas()
>>> cv
<turtle.ScrolledCanvas object ...>

turtle.getshapes()
Return a list of names of all currently available turtle shapes.

>>> screen.getshapes()
['arrow', 'blank', 'circle', ..., 'turtle']

turtle.register_shape(name, shape=None)
turtle.addshape(name, shape=None)

There are three different ways to call this function:

(1) name is the name of a gif-file and shape is None: Install the corresponding image shape.

>>> screen.register_shape("turtle.gif")

Note: Image shapes do not rotate when turning the turtle, so they do not display the heading
of the turtle!

(2) name is an arbitrary string and shape is a tuple of pairs of coordinates: Install the corresponding
polygon shape.

>>> screen.register_shape("triangle", ((5,-3), (0,5), (-5,-3)))

(3) name is an arbitrary string and shape is a (compound) Shape object: Install the corresponding
compound shape.

Add a turtle shape to TurtleScreen’s shapelist. Only thusly registered shapes can be used by issuing
the command shape(shapename).

turtle.turtles()
Return the list of turtles on the screen.

>>> for turtle in screen.turtles():
... turtle.color("red")

turtle.window_height()
Return the height of the turtle window.

1292 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

>>> screen.window_height()
480

turtle.window_width()
Return the width of the turtle window.

>>> screen.window_width()
640

Methods specific to Screen, not inherited from TurtleScreen

turtle.bye()
Shut the turtlegraphics window.

turtle.exitonclick()
Bind bye() method to mouse clicks on the Screen.

If the value “using_IDLE” in the configuration dictionary is False (default value), also enter mainloop.
Remark: If IDLE with the -n switch (no subprocess) is used, this value should be set to True in
turtle.cfg. In this case IDLE’s own mainloop is active also for the client script.

turtle.setup(width=_CFG["width"], height=_CFG["height"], startx=_CFG["leftright"],
starty=_CFG["topbottom"])

Set the size and position of the main window. Default values of arguments are stored in the configu-
ration dictionary and can be changed via a turtle.cfg file.

Parameters

• width – if an integer, a size in pixels, if a float, a fraction of the screen; default is
50% of screen

• height – if an integer, the height in pixels, if a float, a fraction of the screen; default
is 75% of screen

• startx – if positive, starting position in pixels from the left edge of the screen, if
negative from the right edge, if None, center window horizontally

• starty – if positive, starting position in pixels from the top edge of the screen, if
negative from the bottom edge, if None, center window vertically

>>> screen.setup (width=200, height=200, startx=0, starty=0)
>>> # sets window to 200x200 pixels, in upper left of screen
>>> screen.setup(width=.75, height=0.5, startx=None, starty=None)
>>> # sets window to 75% of screen by 50% of screen and centers

turtle.title(titlestring)

Parameters titlestring – a string that is shown in the titlebar of the turtle graphics window

Set title of turtle window to titlestring.

>>> screen.title("Welcome to the turtle zoo!")

24.1.5 Public classes

class turtle.RawTurtle(canvas)
class turtle.RawPen(canvas)

24.1. turtle — Turtle graphics 1293

The Python Library Reference, Release 3.5.7

Parameters canvas – a tkinter.Canvas, a ScrolledCanvas or a TurtleScreen

Create a turtle. The turtle has all methods described above as “methods of Turtle/RawTurtle”.

class turtle.Turtle
Subclass of RawTurtle, has the same interface but draws on a default Screen object created automati-
cally when needed for the first time.

class turtle.TurtleScreen(cv)

Parameters cv – a tkinter.Canvas

Provides screen oriented methods like setbg() etc. that are described above.

class turtle.Screen
Subclass of TurtleScreen, with four methods added.

class turtle.ScrolledCanvas(master)

Parameters master – some Tkinter widget to contain the ScrolledCanvas, i.e. a Tkinter-
canvas with scrollbars added

Used by class Screen, which thus automatically provides a ScrolledCanvas as playground for the turtles.

class turtle.Shape(type_, data)

Parameters type_ – one of the strings “polygon”, “image”, “compound”

Data structure modeling shapes. The pair (type_, data) must follow this specification:

type_ data
“polygon” a polygon-tuple, i.e. a tuple of pairs of coordinates
“image” an image (in this form only used internally!)
“compound” None (a compound shape has to be constructed using the addcomponent() method)

addcomponent(poly, fill, outline=None)

Parameters

• poly – a polygon, i.e. a tuple of pairs of numbers

• fill – a color the poly will be filled with

• outline – a color for the poly’s outline (if given)

Example:

>>> poly = ((0,0),(10,-5),(0,10),(-10,-5))
>>> s = Shape("compound")
>>> s.addcomponent(poly, "red", "blue")
>>> # ... add more components and then use register_shape()

See Compound shapes.

class turtle.Vec2D(x, y)
A two-dimensional vector class, used as a helper class for implementing turtle graphics. May be useful
for turtle graphics programs too. Derived from tuple, so a vector is a tuple!

Provides (for a, b vectors, k number):

• a + b vector addition

• a - b vector subtraction

• a * b inner product

1294 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

• k * a and a * k multiplication with scalar

• abs(a) absolute value of a

• a.rotate(angle) rotation

24.1.6 Help and configuration

How to use help

The public methods of the Screen and Turtle classes are documented extensively via docstrings. So these
can be used as online-help via the Python help facilities:

• When using IDLE, tooltips show the signatures and first lines of the docstrings of typed in function-
/method calls.

• Calling help() on methods or functions displays the docstrings:

>>> help(Screen.bgcolor)
Help on method bgcolor in module turtle:

bgcolor(self, *args) unbound turtle.Screen method
Set or return backgroundcolor of the TurtleScreen.

Arguments (if given): a color string or three numbers
in the range 0..colormode or a 3-tuple of such numbers.

>>> screen.bgcolor("orange")
>>> screen.bgcolor()
"orange"
>>> screen.bgcolor(0.5,0,0.5)
>>> screen.bgcolor()
"#800080"

>>> help(Turtle.penup)
Help on method penup in module turtle:

penup(self) unbound turtle.Turtle method
Pull the pen up -- no drawing when moving.

Aliases: penup | pu | up

No argument

>>> turtle.penup()

• The docstrings of the functions which are derived from methods have a modified form:

>>> help(bgcolor)
Help on function bgcolor in module turtle:

bgcolor(*args)
Set or return backgroundcolor of the TurtleScreen.

Arguments (if given): a color string or three numbers
in the range 0..colormode or a 3-tuple of such numbers.

(continues on next page)

24.1. turtle — Turtle graphics 1295

The Python Library Reference, Release 3.5.7

(continued from previous page)

Example::

>>> bgcolor("orange")
>>> bgcolor()
"orange"
>>> bgcolor(0.5,0,0.5)
>>> bgcolor()
"#800080"

>>> help(penup)
Help on function penup in module turtle:

penup()
Pull the pen up -- no drawing when moving.

Aliases: penup | pu | up

No argument

Example:
>>> penup()

These modified docstrings are created automatically together with the function definitions that are derived
from the methods at import time.

Translation of docstrings into different languages

There is a utility to create a dictionary the keys of which are the method names and the values of which are
the docstrings of the public methods of the classes Screen and Turtle.

turtle.write_docstringdict(filename="turtle_docstringdict")

Parameters filename – a string, used as filename

Create and write docstring-dictionary to a Python script with the given filename. This function has
to be called explicitly (it is not used by the turtle graphics classes). The docstring dictionary will be
written to the Python script filename.py. It is intended to serve as a template for translation of the
docstrings into different languages.

If you (or your students) want to use turtle with online help in your native language, you have to translate
the docstrings and save the resulting file as e.g. turtle_docstringdict_german.py.

If you have an appropriate entry in your turtle.cfg file this dictionary will be read in at import time and will
replace the original English docstrings.

At the time of this writing there are docstring dictionaries in German and in Italian. (Requests please to
glingl@aon.at.)

How to configure Screen and Turtles

The built-in default configuration mimics the appearance and behaviour of the old turtle module in order to
retain best possible compatibility with it.

If you want to use a different configuration which better reflects the features of this module or which better
fits to your needs, e.g. for use in a classroom, you can prepare a configuration file turtle.cfg which will be
read at import time and modify the configuration according to its settings.

1296 Chapter 24. Program Frameworks

mailto:glingl@aon.at

The Python Library Reference, Release 3.5.7

The built in configuration would correspond to the following turtle.cfg:

width = 0.5
height = 0.75
leftright = None
topbottom = None
canvwidth = 400
canvheight = 300
mode = standard
colormode = 1.0
delay = 10
undobuffersize = 1000
shape = classic
pencolor = black
fillcolor = black
resizemode = noresize
visible = True
language = english
exampleturtle = turtle
examplescreen = screen
title = Python Turtle Graphics
using_IDLE = False

Short explanation of selected entries:

• The first four lines correspond to the arguments of the Screen.setup() method.

• Line 5 and 6 correspond to the arguments of the method Screen.screensize().

• shape can be any of the built-in shapes, e.g: arrow, turtle, etc. For more info try help(shape).

• If you want to use no fillcolor (i.e. make the turtle transparent), you have to write fillcolor = "" (but
all nonempty strings must not have quotes in the cfg-file).

• If you want to reflect the turtle its state, you have to use resizemode = auto.

• If you set e.g. language = italian the docstringdict turtle_docstringdict_italian.py will be loaded at
import time (if present on the import path, e.g. in the same directory as turtle.

• The entries exampleturtle and examplescreen define the names of these objects as they occur in the
docstrings. The transformation of method-docstrings to function-docstrings will delete these names
from the docstrings.

• using_IDLE: Set this to True if you regularly work with IDLE and its -n switch (“no subprocess”).
This will prevent exitonclick() to enter the mainloop.

There can be a turtle.cfg file in the directory where turtle is stored and an additional one in the current
working directory. The latter will override the settings of the first one.

The Lib/turtledemo directory contains a turtle.cfg file. You can study it as an example and see its effects
when running the demos (preferably not from within the demo-viewer).

24.1.7 turtledemo — Demo scripts

The turtledemo package includes a set of demo scripts. These scripts can be run and viewed using the
supplied demo viewer as follows:

python -m turtledemo

Alternatively, you can run the demo scripts individually. For example,

24.1. turtle — Turtle graphics 1297

The Python Library Reference, Release 3.5.7

python -m turtledemo.bytedesign

The turtledemo package directory contains:

• A demo viewer __main__.py which can be used to view the sourcecode of the scripts and run them
at the same time.

• Multiple scripts demonstrating different features of the turtle module. Examples can be accessed via
the Examples menu. They can also be run standalone.

• A turtle.cfg file which serves as an example of how to write and use such files.

The demo scripts are:

Name Description Features
bytedesign complex classical turtle graphics pattern tracer(), delay, update()
chaos graphs Verhulst dynamics, shows that computer’s

computations can generate results sometimes against
the common sense expectations

world coordinates

clock analog clock showing time of your computer turtles as clock’s hands,
ontimer

colormixer experiment with r, g, b ondrag()
forest 3 breadth-first trees randomization
fractalcurves Hilbert & Koch curves recursion
lindenmayer ethnomathematics (indian kolams) L-System
minimal_hanoi Towers of Hanoi Rectangular Turtles as

Hanoi discs (shape,
shapesize)

nim play the classical nim game with three heaps of sticks
against the computer.

turtles as nimsticks,
event driven (mouse,
keyboard)

paint super minimalistic drawing program onclick()
peace elementary turtle: appearance and

animation
penrose aperiodic tiling with kites and darts stamp()
planet_and_moon simulation of gravitational system compound shapes,

Vec2D
round_dance dancing turtles rotating pairwise in opposite direction compound shapes, clone

shapesize, tilt,
get_shapepoly, update

sorting_animate visual demonstration of different sorting methods simple alignment,
randomization

tree a (graphical) breadth first tree (using generators) clone()
two_canvases simple design turtles on two canvases
wikipedia a pattern from the wikipedia article on turtle graphics clone(), undo()
yinyang another elementary example circle()

Have fun!

24.1.8 Changes since Python 2.6

• The methods Turtle.tracer(), Turtle.window_width() and Turtle.window_height() have been elimi-
nated. Methods with these names and functionality are now available only as methods of Screen.

1298 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

The functions derived from these remain available. (In fact already in Python 2.6 these methods were
merely duplications of the corresponding TurtleScreen/Screen-methods.)

• The method Turtle.fill() has been eliminated. The behaviour of begin_fill() and end_fill() have
changed slightly: now every filling-process must be completed with an end_fill() call.

• A method Turtle.filling() has been added. It returns a boolean value: True if a filling process is under
way, False otherwise. This behaviour corresponds to a fill() call without arguments in Python 2.6.

24.1.9 Changes since Python 3.0

• The methods Turtle.shearfactor(), Turtle.shapetransform() and Turtle.get_shapepoly() have been
added. Thus the full range of regular linear transforms is now available for transforming turtle shapes.
Turtle.tiltangle() has been enhanced in functionality: it now can be used to get or set the tiltangle.
Turtle.settiltangle() has been deprecated.

• The method Screen.onkeypress() has been added as a complement to Screen.onkey() which in fact
binds actions to the keyrelease event. Accordingly the latter has got an alias: Screen.onkeyrelease().

• The method Screen.mainloop() has been added. So when working only with Screen and Turtle objects
one must not additionally import mainloop() anymore.

• Two input methods has been added Screen.textinput() and Screen.numinput(). These popup input
dialogs and return strings and numbers respectively.

• Two example scripts tdemo_nim.py and tdemo_round_dance.py have been added to the Lib/
turtledemo directory.

24.2 cmd — Support for line-oriented command interpreters

Source code: Lib/cmd.py

The Cmd class provides a simple framework for writing line-oriented command interpreters. These are
often useful for test harnesses, administrative tools, and prototypes that will later be wrapped in a more
sophisticated interface.

class cmd.Cmd(completekey=’tab’, stdin=None, stdout=None)
A Cmd instance or subclass instance is a line-oriented interpreter framework. There is no good reason
to instantiate Cmd itself; rather, it’s useful as a superclass of an interpreter class you define yourself
in order to inherit Cmd’s methods and encapsulate action methods.

The optional argument completekey is the readline name of a completion key; it defaults to Tab. If
completekey is not None and readline is available, command completion is done automatically.

The optional arguments stdin and stdout specify the input and output file objects that the Cmd instance
or subclass instance will use for input and output. If not specified, they will default to sys.stdin and
sys.stdout.

If you want a given stdin to be used, make sure to set the instance’s use_rawinput attribute to False,
otherwise stdin will be ignored.

24.2. cmd — Support for line-oriented command interpreters 1299

https://github.com/python/cpython/tree/3.5/Lib/cmd.py

The Python Library Reference, Release 3.5.7

24.2.1 Cmd Objects

A Cmd instance has the following methods:

Cmd.cmdloop(intro=None)
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to
action methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides
the intro class attribute).

If the readline module is loaded, input will automatically inherit bash-like history-list editing (e.g.
Control-P scrolls back to the last command, Control-N forward to the next one, Control-F moves the
cursor to the right non-destructively, Control-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the string 'EOF'.

An interpreter instance will recognize a command name foo if and only if it has a method do_foo().
As a special case, a line beginning with the character '?' is dispatched to the method do_help(). As
another special case, a line beginning with the character '!' is dispatched to the method do_shell()
(if such a method is defined).

This method will return when the postcmd() method returns a true value. The stop argument to
postcmd() is the return value from the command’s corresponding do_*() method.

If completion is enabled, completing commands will be done automatically, and completing of com-
mands args is done by calling complete_foo() with arguments text, line, begidx, and endidx. text is
the string prefix we are attempting to match: all returned matches must begin with it. line is the
current input line with leading whitespace removed, begidx and endidx are the beginning and ending
indexes of the prefix text, which could be used to provide different completion depending upon which
position the argument is in.

All subclasses of Cmd inherit a predefined do_help(). This method, called with an argument 'bar', in-
vokes the corresponding method help_bar(), and if that is not present, prints the docstring of do_bar(),
if available. With no argument, do_help() lists all available help topics (that is, all commands with
corresponding help_*() methods or commands that have docstrings), and also lists any undocumented
commands.

Cmd.onecmd(str)
Interpret the argument as though it had been typed in response to the prompt. This may be overridden,
but should not normally need to be; see the precmd() and postcmd() methods for useful execution
hooks. The return value is a flag indicating whether interpretation of commands by the interpreter
should stop. If there is a do_*() method for the command str, the return value of that method is
returned, otherwise the return value from the default() method is returned.

Cmd.emptyline()
Method called when an empty line is entered in response to the prompt. If this method is not overridden,
it repeats the last nonempty command entered.

Cmd.default(line)
Method called on an input line when the command prefix is not recognized. If this method is not
overridden, it prints an error message and returns.

Cmd.completedefault(text, line, begidx, endidx)
Method called to complete an input line when no command-specific complete_*() method is available.
By default, it returns an empty list.

Cmd.precmd(line)
Hook method executed just before the command line line is interpreted, but after the input prompt
is generated and issued. This method is a stub in Cmd; it exists to be overridden by subclasses. The

1300 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

return value is used as the command which will be executed by the onecmd() method; the precmd()
implementation may re-write the command or simply return line unchanged.

Cmd.postcmd(stop, line)
Hook method executed just after a command dispatch is finished. This method is a stub in Cmd; it
exists to be overridden by subclasses. line is the command line which was executed, and stop is a
flag which indicates whether execution will be terminated after the call to postcmd(); this will be the
return value of the onecmd() method. The return value of this method will be used as the new value
for the internal flag which corresponds to stop; returning false will cause interpretation to continue.

Cmd.preloop()
Hook method executed once when cmdloop() is called. This method is a stub in Cmd; it exists to be
overridden by subclasses.

Cmd.postloop()
Hook method executed once when cmdloop() is about to return. This method is a stub in Cmd; it
exists to be overridden by subclasses.

Instances of Cmd subclasses have some public instance variables:

Cmd.prompt
The prompt issued to solicit input.

Cmd.identchars
The string of characters accepted for the command prefix.

Cmd.lastcmd
The last nonempty command prefix seen.

Cmd.cmdqueue
A list of queued input lines. The cmdqueue list is checked in cmdloop() when new input is needed; if
it is nonempty, its elements will be processed in order, as if entered at the prompt.

Cmd.intro
A string to issue as an intro or banner. May be overridden by giving the cmdloop() method an
argument.

Cmd.doc_header
The header to issue if the help output has a section for documented commands.

Cmd.misc_header
The header to issue if the help output has a section for miscellaneous help topics (that is, there are
help_*() methods without corresponding do_*() methods).

Cmd.undoc_header
The header to issue if the help output has a section for undocumented commands (that is, there are
do_*() methods without corresponding help_*() methods).

Cmd.ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is
drawn. It defaults to '='.

Cmd.use_rawinput
A flag, defaulting to true. If true, cmdloop() uses input() to display a prompt and read the next
command; if false, sys.stdout.write() and sys.stdin.readline() are used. (This means that by importing
readline, on systems that support it, the interpreter will automatically support Emacs-like line editing
and command-history keystrokes.)

24.2. cmd — Support for line-oriented command interpreters 1301

The Python Library Reference, Release 3.5.7

24.2.2 Cmd Example

The cmd module is mainly useful for building custom shells that let a user work with a program interactively.

This section presents a simple example of how to build a shell around a few of the commands in the turtle
module.

Basic turtle commands such as forward() are added to a Cmd subclass with method named do_forward().
The argument is converted to a number and dispatched to the turtle module. The docstring is used in the
help utility provided by the shell.

The example also includes a basic record and playback facility implemented with the precmd() method which
is responsible for converting the input to lowercase and writing the commands to a file. The do_playback()
method reads the file and adds the recorded commands to the cmdqueue for immediate playback:

import cmd, sys
from turtle import *

class TurtleShell(cmd.Cmd):
intro = 'Welcome to the turtle shell. Type help or ? to list commands.\n'
prompt = '(turtle) '
file = None

----- basic turtle commands -----
def do_forward(self, arg):

'Move the turtle forward by the specified distance: FORWARD 10'
forward(*parse(arg))

def do_right(self, arg):
'Turn turtle right by given number of degrees: RIGHT 20'
right(*parse(arg))

def do_left(self, arg):
'Turn turtle left by given number of degrees: LEFT 90'
left(*parse(arg))

def do_goto(self, arg):
'Move turtle to an absolute position with changing orientation. GOTO 100 200'
goto(*parse(arg))

def do_home(self, arg):
'Return turtle to the home position: HOME'
home()

def do_circle(self, arg):
'Draw circle with given radius an options extent and steps: CIRCLE 50'
circle(*parse(arg))

def do_position(self, arg):
'Print the current turtle position: POSITION'
print('Current position is %d %d\n' % position())

def do_heading(self, arg):
'Print the current turtle heading in degrees: HEADING'
print('Current heading is %d\n' % (heading(),))

def do_color(self, arg):
'Set the color: COLOR BLUE'
color(arg.lower())

def do_undo(self, arg):
'Undo (repeatedly) the last turtle action(s): UNDO'

def do_reset(self, arg):
'Clear the screen and return turtle to center: RESET'
reset()

def do_bye(self, arg):
'Stop recording, close the turtle window, and exit: BYE'

(continues on next page)

1302 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

(continued from previous page)

print('Thank you for using Turtle')
self.close()
bye()
return True

----- record and playback -----
def do_record(self, arg):

'Save future commands to filename: RECORD rose.cmd'
self.file = open(arg, 'w')

def do_playback(self, arg):
'Playback commands from a file: PLAYBACK rose.cmd'
self.close()
with open(arg) as f:

self.cmdqueue.extend(f.read().splitlines())
def precmd(self, line):

line = line.lower()
if self.file and 'playback' not in line:

print(line, file=self.file)
return line

def close(self):
if self.file:

self.file.close()
self.file = None

def parse(arg):
'Convert a series of zero or more numbers to an argument tuple'
return tuple(map(int, arg.split()))

if __name__ == '__main__':
TurtleShell().cmdloop()

Here is a sample session with the turtle shell showing the help functions, using blank lines to repeat com-
mands, and the simple record and playback facility:

Welcome to the turtle shell. Type help or ? to list commands.

(turtle) ?

Documented commands (type help <topic>):
==
bye color goto home playback record right
circle forward heading left position reset undo

(turtle) help forward
Move the turtle forward by the specified distance: FORWARD 10
(turtle) record spiral.cmd
(turtle) position
Current position is 0 0

(turtle) heading
Current heading is 0

(turtle) reset
(turtle) circle 20
(turtle) right 30
(turtle) circle 40

(continues on next page)

24.2. cmd — Support for line-oriented command interpreters 1303

The Python Library Reference, Release 3.5.7

(continued from previous page)

(turtle) right 30
(turtle) circle 60
(turtle) right 30
(turtle) circle 80
(turtle) right 30
(turtle) circle 100
(turtle) right 30
(turtle) circle 120
(turtle) right 30
(turtle) circle 120
(turtle) heading
Current heading is 180

(turtle) forward 100
(turtle)
(turtle) right 90
(turtle) forward 100
(turtle)
(turtle) right 90
(turtle) forward 400
(turtle) right 90
(turtle) forward 500
(turtle) right 90
(turtle) forward 400
(turtle) right 90
(turtle) forward 300
(turtle) playback spiral.cmd
Current position is 0 0

Current heading is 0

Current heading is 180

(turtle) bye
Thank you for using Turtle

24.3 shlex — Simple lexical analysis

Source code: Lib/shlex.py

The shlex class makes it easy to write lexical analyzers for simple syntaxes resembling that of the Unix shell.
This will often be useful for writing minilanguages, (for example, in run control files for Python applications)
or for parsing quoted strings.

The shlex module defines the following functions:

shlex.split(s, comments=False, posix=True)
Split the string s using shell-like syntax. If comments is False (the default), the parsing of comments in
the given string will be disabled (setting the commenters attribute of the shlex instance to the empty
string). This function operates in POSIX mode by default, but uses non-POSIX mode if the posix
argument is false.

1304 Chapter 24. Program Frameworks

https://github.com/python/cpython/tree/3.5/Lib/shlex.py

The Python Library Reference, Release 3.5.7

Note: Since the split() function instantiates a shlex instance, passing None for s will read the string
to split from standard input.

shlex.quote(s)
Return a shell-escaped version of the string s. The returned value is a string that can safely be used
as one token in a shell command line, for cases where you cannot use a list.

This idiom would be unsafe:

>>> filename = 'somefile; rm -rf ~'
>>> command = 'ls -l {}'.format(filename)
>>> print(command) # executed by a shell: boom!
ls -l somefile; rm -rf ~

quote() lets you plug the security hole:

>>> command = 'ls -l {}'.format(quote(filename))
>>> print(command)
ls -l 'somefile; rm -rf ~'
>>> remote_command = 'ssh home {}'.format(quote(command))
>>> print(remote_command)
ssh home 'ls -l '"'"'somefile; rm -rf ~'"'"''

The quoting is compatible with UNIX shells and with split():

>>> remote_command = split(remote_command)
>>> remote_command
['ssh', 'home', "ls -l 'somefile; rm -rf ~'"]
>>> command = split(remote_command[-1])
>>> command
['ls', '-l', 'somefile; rm -rf ~']

New in version 3.3.

The shlex module defines the following class:

class shlex.shlex(instream=None, infile=None, posix=False)
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if
present, specifies where to read characters from. It must be a file-/stream-like object with read() and
readline() methods, or a string. If no argument is given, input will be taken from sys.stdin. The
second optional argument is a filename string, which sets the initial value of the infile attribute. If
the instream argument is omitted or equal to sys.stdin, this second argument defaults to “stdin”. The
posix argument defines the operational mode: when posix is not true (default), the shlex instance
will operate in compatibility mode. When operating in POSIX mode, shlex will try to be as close as
possible to the POSIX shell parsing rules.

See also:

Module configparser Parser for configuration files similar to the Windows .ini files.

24.3.1 shlex Objects

A shlex instance has the following methods:

shlex.get_token()
Return a token. If tokens have been stacked using push_token(), pop a token off the stack. Otherwise,

24.3. shlex — Simple lexical analysis 1305

The Python Library Reference, Release 3.5.7

read one from the input stream. If reading encounters an immediate end-of-file, eof is returned (the
empty string ('') in non-POSIX mode, and None in POSIX mode).

shlex.push_token(str)
Push the argument onto the token stack.

shlex.read_token()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not
ordinarily a useful entry point, and is documented here only for the sake of completeness.)

shlex.sourcehook(filename)
When shlex detects a source request (see source below) this method is given the following token as
argument, and expected to return a tuple consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result is an absolute pathname, or
there was no previous source request in effect, or the previous source was a stream (such as sys.stdin),
the result is left alone. Otherwise, if the result is a relative pathname, the directory part of the name
of the file immediately before it on the source inclusion stack is prepended (this behavior is like the
way the C preprocessor handles #include "file.h").

The result of the manipulations is treated as a filename, and returned as the first component of the
tuple, with open() called on it to yield the second component. (Note: this is the reverse of the order
of arguments in instance initialization!)

This hook is exposed so that you can use it to implement directory search paths, addition of file
extensions, and other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance
will call the close() method of the sourced input stream when it returns EOF.

For more explicit control of source stacking, use the push_source() and pop_source() methods.

shlex.push_source(newstream, newfile=None)
Push an input source stream onto the input stack. If the filename argument is specified it will later
be available for use in error messages. This is the same method used internally by the sourcehook()
method.

shlex.pop_source()
Pop the last-pushed input source from the input stack. This is the same method used internally when
the lexer reaches EOF on a stacked input stream.

shlex.error_leader(infile=None, lineno=None)
This method generates an error message leader in the format of a Unix C compiler error label; the
format is '"%s", line %d: ', where the %s is replaced with the name of the current source file and the
%d with the current input line number (the optional arguments can be used to override these).

This convenience is provided to encourage shlex users to generate error messages in the standard,
parseable format understood by Emacs and other Unix tools.

Instances of shlex subclasses have some public instance variables which either control lexical analysis or can
be used for debugging:

shlex.commenters
The string of characters that are recognized as comment beginners. All characters from the comment
beginner to end of line are ignored. Includes just '#' by default.

shlex.wordchars
The string of characters that will accumulate into multi-character tokens. By default, includes all
ASCII alphanumerics and underscore.

shlex.whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default,
includes space, tab, linefeed and carriage-return.

1306 Chapter 24. Program Frameworks

The Python Library Reference, Release 3.5.7

shlex.escape
Characters that will be considered as escape. This will be only used in POSIX mode, and includes just
'\' by default.

shlex.quotes
Characters that will be considered string quotes. The token accumulates until the same quote is
encountered again (thus, different quote types protect each other as in the shell.) By default, includes
ASCII single and double quotes.

shlex.escapedquotes
Characters in quotes that will interpret escape characters defined in escape. This is only used in POSIX
mode, and includes just '"' by default.

shlex.whitespace_split
If True, tokens will only be split in whitespaces. This is useful, for example, for parsing command lines
with shlex, getting tokens in a similar way to shell arguments.

shlex.infile
The name of the current input file, as initially set at class instantiation time or stacked by later source
requests. It may be useful to examine this when constructing error messages.

shlex.instream
The input stream from which this shlex instance is reading characters.

shlex.source
This attribute is None by default. If you assign a string to it, that string will be recognized as a
lexical-level inclusion request similar to the source keyword in various shells. That is, the immediately
following token will be opened as a filename and input will be taken from that stream until EOF, at
which point the close() method of that stream will be called and the input source will again become
the original input stream. Source requests may be stacked any number of levels deep.

shlex.debug
If this attribute is numeric and 1 or more, a shlex instance will print verbose progress output on its
behavior. If you need to use this, you can read the module source code to learn the details.

shlex.lineno
Source line number (count of newlines seen so far plus one).

shlex.token
The token buffer. It may be useful to examine this when catching exceptions.

shlex.eof
Token used to determine end of file. This will be set to the empty string (''), in non-POSIX mode,
and to None in POSIX mode.

24.3.2 Parsing Rules

When operating in non-POSIX mode, shlex will try to obey to the following rules.

• Quote characters are not recognized within words (Do"Not"Separate is parsed as the single word
Do"Not"Separate);

• Escape characters are not recognized;

• Enclosing characters in quotes preserve the literal value of all characters within the quotes;

• Closing quotes separate words ("Do"Separate is parsed as "Do" and Separate);

• If whitespace_split is False, any character not declared to be a word character, whitespace, or a quote
will be returned as a single-character token. If it is True, shlex will only split words in whitespaces;

24.3. shlex — Simple lexical analysis 1307

The Python Library Reference, Release 3.5.7

• EOF is signaled with an empty string ('');

• It’s not possible to parse empty strings, even if quoted.

When operating in POSIX mode, shlex will try to obey to the following parsing rules.

• Quotes are stripped out, and do not separate words ("Do"Not"Separate" is parsed as the single word
DoNotSeparate);

• Non-quoted escape characters (e.g. '\') preserve the literal value of the next character that follows;

• Enclosing characters in quotes which are not part of escapedquotes (e.g. "'") preserve the literal value
of all characters within the quotes;

• Enclosing characters in quotes which are part of escapedquotes (e.g. '"') preserves the literal value of
all characters within the quotes, with the exception of the characters mentioned in escape. The escape
characters retain its special meaning only when followed by the quote in use, or the escape character
itself. Otherwise the escape character will be considered a normal character.

• EOF is signaled with a None value;

• Quoted empty strings ('') are allowed.

1308 Chapter 24. Program Frameworks

CHAPTER

TWENTYFIVE

GRAPHICAL USER INTERFACES WITH TK

Tk/Tcl has long been an integral part of Python. It provides a robust and platform independent windowing
toolkit, that is available to Python programmers using the tkinter package, and its extension, the tkinter.tix
and the tkinter.ttk modules.

The tkinter package is a thin object-oriented layer on top of Tcl/Tk. To use tkinter, you don’t need to
write Tcl code, but you will need to consult the Tk documentation, and occasionally the Tcl documentation.
tkinter is a set of wrappers that implement the Tk widgets as Python classes. In addition, the internal
module _tkinter provides a threadsafe mechanism which allows Python and Tcl to interact.

tkinter’s chief virtues are that it is fast, and that it usually comes bundled with Python. Although its
standard documentation is weak, good material is available, which includes: references, tutorials, a book
and others. tkinter is also famous for having an outdated look and feel, which has been vastly improved in Tk
8.5. Nevertheless, there are many other GUI libraries that you could be interested in. For more information
about alternatives, see the Other Graphical User Interface Packages section.

25.1 tkinter — Python interface to Tcl/Tk

Source code: Lib/tkinter/__init__.py

The tkinter package (“Tk interface”) is the standard Python interface to the Tk GUI toolkit. Both Tk and
tkinter are available on most Unix platforms, as well as on Windows systems. (Tk itself is not part of Python;
it is maintained at ActiveState.) You can check that tkinter is properly installed on your system by running
python -m tkinter from the command line; this should open a window demonstrating a simple Tk interface.

See also:

Python Tkinter Resources The Python Tkinter Topic Guide provides a great deal of information on using
Tk from Python and links to other sources of information on Tk.

TKDocs Extensive tutorial plus friendlier widget pages for some of the widgets.

Tkinter reference: a GUI for Python On-line reference material.

Tkinter docs from effbot Online reference for tkinter supported by effbot.org.

Tcl/Tk manual Official manual for the latest tcl/tk version.

Programming Python Book by Mark Lutz, has excellent coverage of Tkinter.

Modern Tkinter for Busy Python Developers Book by Mark Rozerman about building attractive and mod-
ern graphical user interfaces with Python and Tkinter.

Python and Tkinter Programming The book by John Grayson (ISBN 1-884777-81-3).

1309

https://github.com/python/cpython/tree/3.5/Lib/tkinter/__init__.py
https://wiki.python.org/moin/TkInter
http://www.tkdocs.com/
https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://effbot.org/tkinterbook/
https://www.tcl.tk/man/tcl8.5/
http://learning-python.com/books/about-pp4e.html
http://www.amazon.com/Modern-Tkinter-Python-Developers-ebook/dp/B0071QDNLO/
https://www.manning.com/books/python-and-tkinter-programming

The Python Library Reference, Release 3.5.7

25.1.1 Tkinter Modules

Most of the time, tkinter is all you really need, but a number of additional modules are available as well. The
Tk interface is located in a binary module named _tkinter. This module contains the low-level interface to
Tk, and should never be used directly by application programmers. It is usually a shared library (or DLL),
but might in some cases be statically linked with the Python interpreter.

In addition to the Tk interface module, tkinter includes a number of Python modules, tkinter.constants
being one of the most important. Importing tkinter will automatically import tkinter.constants, so, usually,
to use Tkinter all you need is a simple import statement:

import tkinter

Or, more often:

from tkinter import *

class tkinter.Tk(screenName=None, baseName=None, className=’Tk’, useTk=1)
The Tk class is instantiated without arguments. This creates a toplevel widget of Tk which usually is
the main window of an application. Each instance has its own associated Tcl interpreter.

tkinter.Tcl(screenName=None, baseName=None, className=’Tk’, useTk=0)
The Tcl() function is a factory function which creates an object much like that created by the Tk class,
except that it does not initialize the Tk subsystem. This is most often useful when driving the Tcl
interpreter in an environment where one doesn’t want to create extraneous toplevel windows, or where
one cannot (such as Unix/Linux systems without an X server). An object created by the Tcl() object
can have a Toplevel window created (and the Tk subsystem initialized) by calling its loadtk() method.

Other modules that provide Tk support include:

tkinter.scrolledtext Text widget with a vertical scroll bar built in.

tkinter.colorchooser Dialog to let the user choose a color.

tkinter.commondialog Base class for the dialogs defined in the other modules listed here.

tkinter.filedialog Common dialogs to allow the user to specify a file to open or save.

tkinter.font Utilities to help work with fonts.

tkinter.messagebox Access to standard Tk dialog boxes.

tkinter.simpledialog Basic dialogs and convenience functions.

tkinter.dnd Drag-and-drop support for tkinter. This is experimental and should become deprecated when
it is replaced with the Tk DND.

turtle Turtle graphics in a Tk window.

25.1.2 Tkinter Life Preserver

This section is not designed to be an exhaustive tutorial on either Tk or Tkinter. Rather, it is intended as
a stop gap, providing some introductory orientation on the system.

Credits:

• Tk was written by John Ousterhout while at Berkeley.

• Tkinter was written by Steen Lumholt and Guido van Rossum.

• This Life Preserver was written by Matt Conway at the University of Virginia.

1310 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

• The HTML rendering, and some liberal editing, was produced from a FrameMaker version by Ken
Manheimer.

• Fredrik Lundh elaborated and revised the class interface descriptions, to get them current with Tk 4.2.

• Mike Clarkson converted the documentation to LaTeX, and compiled the User Interface chapter of the
reference manual.

How To Use This Section

This section is designed in two parts: the first half (roughly) covers background material, while the second
half can be taken to the keyboard as a handy reference.

When trying to answer questions of the form “how do I do blah”, it is often best to find out how to do”blah”
in straight Tk, and then convert this back into the corresponding tkinter call. Python programmers can
often guess at the correct Python command by looking at the Tk documentation. This means that in order
to use Tkinter, you will have to know a little bit about Tk. This document can’t fulfill that role, so the best
we can do is point you to the best documentation that exists. Here are some hints:

• The authors strongly suggest getting a copy of the Tk man pages. Specifically, the man pages in the
manN directory are most useful. The man3 man pages describe the C interface to the Tk library and
thus are not especially helpful for script writers.

• Addison-Wesley publishes a book called Tcl and the Tk Toolkit by John Ousterhout (ISBN 0-201-
63337-X) which is a good introduction to Tcl and Tk for the novice. The book is not exhaustive, and
for many details it defers to the man pages.

• tkinter/__init__.py is a last resort for most, but can be a good place to go when nothing else makes
sense.

See also:

Tcl/Tk 8.6 man pages The Tcl/Tk manual on www.tcl.tk.

ActiveState Tcl Home Page The Tk/Tcl development is largely taking place at ActiveState.

Tcl and the Tk Toolkit The book by John Ousterhout, the inventor of Tcl.

Practical Programming in Tcl and Tk Brent Welch’s encyclopedic book.

A Simple Hello World Program

import tkinter as tk

class Application(tk.Frame):
def __init__(self, master=None):

super().__init__(master)
self.pack()
self.create_widgets()

def create_widgets(self):
self.hi_there = tk.Button(self)
self.hi_there["text"] = "Hello World\n(click me)"
self.hi_there["command"] = self.say_hi
self.hi_there.pack(side="top")

self.quit = tk.Button(self, text="QUIT", fg="red",
command=root.destroy)

(continues on next page)

25.1. tkinter — Python interface to Tcl/Tk 1311

https://www.tcl.tk/man/tcl8.6/
http://tcl.activestate.com/
http://www.amazon.com/exec/obidos/ASIN/020163337X
http://www.beedub.com/book/

The Python Library Reference, Release 3.5.7

(continued from previous page)

self.quit.pack(side="bottom")

def say_hi(self):
print("hi there, everyone!")

root = tk.Tk()
app = Application(master=root)
app.mainloop()

25.1.3 A (Very) Quick Look at Tcl/Tk

The class hierarchy looks complicated, but in actual practice, application programmers almost always refer
to the classes at the very bottom of the hierarchy.

Notes:

• These classes are provided for the purposes of organizing certain functions under one namespace. They
aren’t meant to be instantiated independently.

• The Tk class is meant to be instantiated only once in an application. Application programmers need
not instantiate one explicitly, the system creates one whenever any of the other classes are instantiated.

• The Widget class is not meant to be instantiated, it is meant only for subclassing to make “real” widgets
(in C++, this is called an ‘abstract class’).

To make use of this reference material, there will be times when you will need to know how to read short
passages of Tk and how to identify the various parts of a Tk command. (See section Mapping Basic Tk into
Tkinter for the tkinter equivalents of what’s below.)

Tk scripts are Tcl programs. Like all Tcl programs, Tk scripts are just lists of tokens separated by spaces. A
Tk widget is just its class, the options that help configure it, and the actions that make it do useful things.

To make a widget in Tk, the command is always of the form:

classCommand newPathname options

classCommand denotes which kind of widget to make (a button, a label, a menu. . .)

newPathname is the new name for this widget. All names in Tk must be unique. To help enforce this,
widgets in Tk are named with pathnames, just like files in a file system. The top level widget, the root,
is called . (period) and children are delimited by more periods. For example, .myApp.controlPanel.
okButton might be the name of a widget.

options configure the widget’s appearance and in some cases, its behavior. The options come in the form of
a list of flags and values. Flags are preceded by a ‘-‘, like Unix shell command flags, and values are
put in quotes if they are more than one word.

For example:

button .fred -fg red -text "hi there"
^ ^ ______________________/
| | |

class new options
command widget (-opt val -opt val ...)

Once created, the pathname to the widget becomes a new command. This new widget command is the
programmer’s handle for getting the new widget to perform some action. In C, you’d express this as

1312 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

someAction(fred, someOptions), in C++, you would express this as fred.someAction(someOptions), and in
Tk, you say:

.fred someAction someOptions

Note that the object name, .fred, starts with a dot.

As you’d expect, the legal values for someAction will depend on the widget’s class: .fred disable works if fred
is a button (fred gets greyed out), but does not work if fred is a label (disabling of labels is not supported
in Tk).

The legal values of someOptions is action dependent. Some actions, like disable, require no arguments,
others, like a text-entry box’s delete command, would need arguments to specify what range of text to
delete.

25.1.4 Mapping Basic Tk into Tkinter

Class commands in Tk correspond to class constructors in Tkinter.

button .fred =====> fred = Button()

The master of an object is implicit in the new name given to it at creation time. In Tkinter, masters are
specified explicitly.

button .panel.fred =====> fred = Button(panel)

The configuration options in Tk are given in lists of hyphened tags followed by values. In Tkinter, options
are specified as keyword-arguments in the instance constructor, and keyword-args for configure calls or as
instance indices, in dictionary style, for established instances. See section Setting Options on setting options.

button .fred -fg red =====> fred = Button(panel, fg="red")
.fred configure -fg red =====> fred["fg"] = red

OR ==> fred.config(fg="red")

In Tk, to perform an action on a widget, use the widget name as a command, and follow it with an action
name, possibly with arguments (options). In Tkinter, you call methods on the class instance to invoke actions
on the widget. The actions (methods) that a given widget can perform are listed in tkinter/__init__.py.

.fred invoke =====> fred.invoke()

To give a widget to the packer (geometry manager), you call pack with optional arguments. In Tkinter,
the Pack class holds all this functionality, and the various forms of the pack command are implemented as
methods. All widgets in tkinter are subclassed from the Packer, and so inherit all the packing methods. See
the tkinter.tix module documentation for additional information on the Form geometry manager.

pack .fred -side left =====> fred.pack(side="left")

25.1.5 How Tk and Tkinter are Related

From the top down:

Your App Here (Python) A Python application makes a tkinter call.

tkinter (Python Package) This call (say, for example, creating a button widget), is implemented in the
tkinter package, which is written in Python. This Python function will parse the commands and the

25.1. tkinter — Python interface to Tcl/Tk 1313

The Python Library Reference, Release 3.5.7

arguments and convert them into a form that makes them look as if they had come from a Tk script
instead of a Python script.

_tkinter (C) These commands and their arguments will be passed to a C function in the _tkinter - note
the underscore - extension module.

Tk Widgets (C and Tcl) This C function is able to make calls into other C modules, including the C functions
that make up the Tk library. Tk is implemented in C and some Tcl. The Tcl part of the Tk widgets is
used to bind certain default behaviors to widgets, and is executed once at the point where the Python
tkinter package is imported. (The user never sees this stage).

Tk (C) The Tk part of the Tk Widgets implement the final mapping to . . .

Xlib (C) the Xlib library to draw graphics on the screen.

25.1.6 Handy Reference

Setting Options

Options control things like the color and border width of a widget. Options can be set in three ways:

At object creation time, using keyword arguments

fred = Button(self, fg="red", bg="blue")

After object creation, treating the option name like a dictionary index

fred["fg"] = "red"
fred["bg"] = "blue"

Use the config() method to update multiple attrs subsequent to object creation

fred.config(fg="red", bg="blue")

For a complete explanation of a given option and its behavior, see the Tk man pages for the widget in
question.

Note that the man pages list “STANDARD OPTIONS” and “WIDGET SPECIFIC OPTIONS” for each
widget. The former is a list of options that are common to many widgets, the latter are the options that are
idiosyncratic to that particular widget. The Standard Options are documented on the options(3) man page.

No distinction between standard and widget-specific options is made in this document. Some options don’t
apply to some kinds of widgets. Whether a given widget responds to a particular option depends on the
class of the widget; buttons have a command option, labels do not.

The options supported by a given widget are listed in that widget’s man page, or can be queried at runtime
by calling the config() method without arguments, or by calling the keys() method on that widget. The
return value of these calls is a dictionary whose key is the name of the option as a string (for example,
'relief') and whose values are 5-tuples.

Some options, like bg are synonyms for common options with long names (bg is shorthand for “background”).
Passing the config() method the name of a shorthand option will return a 2-tuple, not 5-tuple. The 2-tuple
passed back will contain the name of the synonym and the “real” option (such as ('bg', 'background')).

1314 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

Index Meaning Example
0 option name 'relief'
1 option name for database lookup 'relief'
2 option class for database lookup 'Relief'
3 default value 'raised'
4 current value 'groove'

Example:

>>> print(fred.config())
{'relief': ('relief', 'relief', 'Relief', 'raised', 'groove')}

Of course, the dictionary printed will include all the options available and their values. This is meant only
as an example.

The Packer

The packer is one of Tk’s geometry-management mechanisms. Geometry managers are used to specify the
relative positioning of the positioning of widgets within their container - their mutual master. In contrast
to the more cumbersome placer (which is used less commonly, and we do not cover here), the packer takes
qualitative relationship specification - above, to the left of, filling, etc - and works everything out to determine
the exact placement coordinates for you.

The size of any master widget is determined by the size of the “slave widgets” inside. The packer is used
to control where slave widgets appear inside the master into which they are packed. You can pack widgets
into frames, and frames into other frames, in order to achieve the kind of layout you desire. Additionally,
the arrangement is dynamically adjusted to accommodate incremental changes to the configuration, once it
is packed.

Note that widgets do not appear until they have had their geometry specified with a geometry manager. It’s
a common early mistake to leave out the geometry specification, and then be surprised when the widget is
created but nothing appears. A widget will appear only after it has had, for example, the packer’s pack()
method applied to it.

The pack() method can be called with keyword-option/value pairs that control where the widget is to appear
within its container, and how it is to behave when the main application window is resized. Here are some
examples:

fred.pack() # defaults to side = "top"
fred.pack(side="left")
fred.pack(expand=1)

Packer Options

For more extensive information on the packer and the options that it can take, see the man pages and page
183 of John Ousterhout’s book.

anchor Anchor type. Denotes where the packer is to place each slave in its parcel.

expand Boolean, 0 or 1.

fill Legal values: 'x', 'y', 'both', 'none'.

ipadx and ipady A distance - designating internal padding on each side of the slave widget.

padx and pady A distance - designating external padding on each side of the slave widget.

25.1. tkinter — Python interface to Tcl/Tk 1315

The Python Library Reference, Release 3.5.7

side Legal values are: 'left', 'right', 'top', 'bottom'.

Coupling Widget Variables

The current-value setting of some widgets (like text entry widgets) can be connected directly to application
variables by using special options. These options are variable, textvariable, onvalue, offvalue, and value.
This connection works both ways: if the variable changes for any reason, the widget it’s connected to will
be updated to reflect the new value.

Unfortunately, in the current implementation of tkinter it is not possible to hand over an arbitrary Python
variable to a widget through a variable or textvariable option. The only kinds of variables for which this
works are variables that are subclassed from a class called Variable, defined in tkinter.

There are many useful subclasses of Variable already defined: StringVar, IntVar, DoubleVar, and BooleanVar.
To read the current value of such a variable, call the get() method on it, and to change its value you call
the set() method. If you follow this protocol, the widget will always track the value of the variable, with no
further intervention on your part.

For example:

class App(Frame):
def __init__(self, master=None):

super().__init__(master)
self.pack()

self.entrythingy = Entry()
self.entrythingy.pack()

here is the application variable
self.contents = StringVar()
set it to some value
self.contents.set("this is a variable")
tell the entry widget to watch this variable
self.entrythingy["textvariable"] = self.contents

and here we get a callback when the user hits return.
we will have the program print out the value of the
application variable when the user hits return
self.entrythingy.bind('<Key-Return>',

self.print_contents)

def print_contents(self, event):
print("hi. contents of entry is now ---->",

self.contents.get())

The Window Manager

In Tk, there is a utility command, wm, for interacting with the window manager. Options to the wm
command allow you to control things like titles, placement, icon bitmaps, and the like. In tkinter, these
commands have been implemented as methods on the Wm class. Toplevel widgets are subclassed from the
Wm class, and so can call the Wm methods directly.

To get at the toplevel window that contains a given widget, you can often just refer to the widget’s master.
Of course if the widget has been packed inside of a frame, the master won’t represent a toplevel window.
To get at the toplevel window that contains an arbitrary widget, you can call the _root() method. This

1316 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

method begins with an underscore to denote the fact that this function is part of the implementation, and
not an interface to Tk functionality.

Here are some examples of typical usage:

import tkinter as tk

class App(tk.Frame):
def __init__(self, master=None):

super().__init__(master)
self.pack()

create the application
myapp = App()

#
here are method calls to the window manager class
#
myapp.master.title("My Do-Nothing Application")
myapp.master.maxsize(1000, 400)

start the program
myapp.mainloop()

Tk Option Data Types

anchor Legal values are points of the compass: "n", "ne", "e", "se", "s", "sw", "w", "nw", and also "center".

bitmap There are eight built-in, named bitmaps: 'error', 'gray25', 'gray50', 'hourglass', 'info', 'quest-
head', 'question', 'warning'. To specify an X bitmap filename, give the full path to the file, preceded
with an @, as in "@/usr/contrib/bitmap/gumby.bit".

boolean You can pass integers 0 or 1 or the strings "yes" or "no".

callback This is any Python function that takes no arguments. For example:

def print_it():
print("hi there")

fred["command"] = print_it

color Colors can be given as the names of X colors in the rgb.txt file, or as strings representing RGB values in
4 bit: "#RGB", 8 bit: "#RRGGBB", 12 bit” "#RRRGGGBBB", or 16 bit "#RRRRGGGGBBBB"
ranges, where R,G,B here represent any legal hex digit. See page 160 of Ousterhout’s book for details.

cursor The standard X cursor names from cursorfont.h can be used, without the XC_ prefix. For example
to get a hand cursor (XC_hand2), use the string "hand2". You can also specify a bitmap and mask
file of your own. See page 179 of Ousterhout’s book.

distance Screen distances can be specified in either pixels or absolute distances. Pixels are given as numbers
and absolute distances as strings, with the trailing character denoting units: c for centimetres, i for
inches, m for millimetres, p for printer’s points. For example, 3.5 inches is expressed as "3.5i".

font Tk uses a list font name format, such as {courier 10 bold}. Font sizes with positive numbers are
measured in points; sizes with negative numbers are measured in pixels.

geometry This is a string of the form widthxheight, where width and height are measured in pixels for most
widgets (in characters for widgets displaying text). For example: fred["geometry"] = "200x100".

justify Legal values are the strings: "left", "center", "right", and "fill".

25.1. tkinter — Python interface to Tcl/Tk 1317

The Python Library Reference, Release 3.5.7

region This is a string with four space-delimited elements, each of which is a legal distance (see above). For
example: "2 3 4 5" and "3i 2i 4.5i 2i" and "3c 2c 4c 10.43c" are all legal regions.

relief Determines what the border style of a widget will be. Legal values are: "raised", "sunken", "flat",
"groove", and "ridge".

scrollcommand This is almost always the set() method of some scrollbar widget, but can be any widget
method that takes a single argument.

wrap: Must be one of: "none", "char", or "word".

Bindings and Events

The bind method from the widget command allows you to watch for certain events and to have a callback
function trigger when that event type occurs. The form of the bind method is:

def bind(self, sequence, func, add=''):

where:

sequence is a string that denotes the target kind of event. (See the bind man page and page 201 of John
Ousterhout’s book for details).

func is a Python function, taking one argument, to be invoked when the event occurs. An Event instance
will be passed as the argument. (Functions deployed this way are commonly known as callbacks.)

add is optional, either '' or '+'. Passing an empty string denotes that this binding is to replace any other
bindings that this event is associated with. Passing a '+' means that this function is to be added to
the list of functions bound to this event type.

For example:

def turn_red(self, event):
event.widget["activeforeground"] = "red"

self.button.bind("<Enter>", self.turn_red)

Notice how the widget field of the event is being accessed in the turn_red() callback. This field contains
the widget that caught the X event. The following table lists the other event fields you can access, and how
they are denoted in Tk, which can be useful when referring to the Tk man pages.

Tk Tkinter Event Field Tk Tkinter Event Field
%f focus %A char
%h height %E send_event
%k keycode %K keysym
%s state %N keysym_num
%t time %T type
%w width %W widget
%x x %X x_root
%y y %Y y_root

The index Parameter

A number of widgets require “index” parameters to be passed. These are used to point at a specific place in
a Text widget, or to particular characters in an Entry widget, or to particular menu items in a Menu widget.

1318 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

Entry widget indexes (index, view index, etc.) Entry widgets have options that refer to character positions
in the text being displayed. You can use these tkinter functions to access these special points in text
widgets:

Text widget indexes The index notation for Text widgets is very rich and is best described in the Tk man
pages.

Menu indexes (menu.invoke(), menu.entryconfig(), etc.) Some options and methods for menus manipulate
specific menu entries. Anytime a menu index is needed for an option or a parameter, you may pass in:

• an integer which refers to the numeric position of the entry in the widget, counted from the top,
starting with 0;

• the string "active", which refers to the menu position that is currently under the cursor;

• the string "last" which refers to the last menu item;

• An integer preceded by @, as in @6, where the integer is interpreted as a y pixel coordinate in
the menu’s coordinate system;

• the string "none", which indicates no menu entry at all, most often used with menu.activate() to
deactivate all entries, and finally,

• a text string that is pattern matched against the label of the menu entry, as scanned from the
top of the menu to the bottom. Note that this index type is considered after all the others, which
means that matches for menu items labelled last, active, or none may be interpreted as the above
literals, instead.

Images

Bitmap/Pixelmap images can be created through the subclasses of tkinter.Image:

• BitmapImage can be used for X11 bitmap data.

• PhotoImage can be used for GIF and PPM/PGM color bitmaps.

Either type of image is created through either the file or the data option (other options are available as well).

The image object can then be used wherever an image option is supported by some widget (e.g. labels,
buttons, menus). In these cases, Tk will not keep a reference to the image. When the last Python reference
to the image object is deleted, the image data is deleted as well, and Tk will display an empty box wherever
the image was used.

25.1.7 File Handlers

Tk allows you to register and unregister a callback function which will be called from the Tk mainloop when
I/O is possible on a file descriptor. Only one handler may be registered per file descriptor. Example code:

import tkinter
widget = tkinter.Tk()
mask = tkinter.READABLE | tkinter.WRITABLE
widget.tk.createfilehandler(file, mask, callback)
...
widget.tk.deletefilehandler(file)

This feature is not available on Windows.

Since you don’t know how many bytes are available for reading, you may not want to use the BufferedIOBase
or TextIOBase read() or readline() methods, since these will insist on reading a predefined number of bytes.

25.1. tkinter — Python interface to Tcl/Tk 1319

The Python Library Reference, Release 3.5.7

For sockets, the recv() or recvfrom() methods will work fine; for other files, use raw reads or os.read(file.
fileno(), maxbytecount).

Widget.tk.createfilehandler(file, mask, func)
Registers the file handler callback function func. The file argument may either be an object with a
fileno() method (such as a file or socket object), or an integer file descriptor. The mask argument is
an ORed combination of any of the three constants below. The callback is called as follows:

callback(file, mask)

Widget.tk.deletefilehandler(file)
Unregisters a file handler.

tkinter.READABLE
tkinter.WRITABLE
tkinter.EXCEPTION

Constants used in the mask arguments.

25.2 tkinter.ttk — Tk themed widgets

Source code: Lib/tkinter/ttk.py

The tkinter.ttk module provides access to the Tk themed widget set, introduced in Tk 8.5. If Python has
not been compiled against Tk 8.5, this module can still be accessed if Tile has been installed. The former
method using Tk 8.5 provides additional benefits including anti-aliased font rendering under X11 and window
transparency (requiring a composition window manager on X11).

The basic idea for tkinter.ttk is to separate, to the extent possible, the code implementing a widget’s behavior
from the code implementing its appearance.

See also:

Tk Widget Styling Support A document introducing theming support for Tk

25.2.1 Using Ttk

To start using Ttk, import its module:

from tkinter import ttk

To override the basic Tk widgets, the import should follow the Tk import:

from tkinter import *
from tkinter.ttk import *

That code causes several tkinter.ttk widgets (Button, Checkbutton, Entry, Frame, Label, LabelFrame,
Menubutton, PanedWindow, Radiobutton, Scale and Scrollbar) to automatically replace the Tk widgets.

This has the direct benefit of using the new widgets which gives a better look and feel across platforms;
however, the replacement widgets are not completely compatible. The main difference is that widget options
such as “fg”, “bg” and others related to widget styling are no longer present in Ttk widgets. Instead, use the
ttk.Style class for improved styling effects.

See also:

1320 Chapter 25. Graphical User Interfaces with Tk

https://github.com/python/cpython/tree/3.5/Lib/tkinter/ttk.py
https://www.tcl.tk/cgi-bin/tct/tip/48

The Python Library Reference, Release 3.5.7

Converting existing applications to use Tile widgets A monograph (using Tcl terminology) about differences
typically encountered when moving applications to use the new widgets.

25.2.2 Ttk Widgets

Ttk comes with 17 widgets, eleven of which already existed in tkinter: Button, Checkbutton, Entry, Frame,
Label, LabelFrame, Menubutton, PanedWindow, Radiobutton, Scale and Scrollbar. The other six are new:
Combobox, Notebook, Progressbar, Separator, Sizegrip and Treeview. And all them are subclasses of Widget.

Using the Ttk widgets gives the application an improved look and feel. As discussed above, there are
differences in how the styling is coded.

Tk code:

l1 = tkinter.Label(text="Test", fg="black", bg="white")
l2 = tkinter.Label(text="Test", fg="black", bg="white")

Ttk code:

style = ttk.Style()
style.configure("BW.TLabel", foreground="black", background="white")

l1 = ttk.Label(text="Test", style="BW.TLabel")
l2 = ttk.Label(text="Test", style="BW.TLabel")

For more information about TtkStyling, see the Style class documentation.

25.2.3 Widget

ttk.Widget defines standard options and methods supported by Tk themed widgets and is not supposed to
be directly instantiated.

Standard Options

All the ttk Widgets accepts the following options:

Option Description
class Specifies the window class. The class is used when querying the option

database for the window’s other options, to determine the default bindtags for
the window, and to select the widget’s default layout and style. This option is
read-only, and may only be specified when the window is created.

cursor Specifies the mouse cursor to be used for the widget. If set to the empty string
(the default), the cursor is inherited for the parent widget.

takefocus Determines whether the window accepts the focus during keyboard traversal.
0, 1 or an empty string is returned. If 0 is returned, it means that the window
should be skipped entirely during keyboard traversal. If 1, it means that the
window should receive the input focus as long as it is viewable. And an empty
string means that the traversal scripts make the decision about whether or not
to focus on the window.

style May be used to specify a custom widget style.

25.2. tkinter.ttk — Tk themed widgets 1321

http://tktable.sourceforge.net/tile/doc/converting.txt

The Python Library Reference, Release 3.5.7

Scrollable Widget Options

The following options are supported by widgets that are controlled by a scrollbar.

Option Description
xscrollcommand Used to communicate with horizontal scrollbars.

When the view in the widget’s window change, the widget will generate a
Tcl command based on the scrollcommand.
Usually this option consists of the method Scrollbar.set() of some
scrollbar. This will cause the scrollbar to be updated whenever the view
in the window changes.

yscrollcommand Used to communicate with vertical scrollbars. For some more
information, see above.

Label Options

The following options are supported by labels, buttons and other button-like widgets.

Option Description
text Specifies a text string to be displayed inside the widget.
textvariable Specifies a name whose value will be used in place of the text option

resource.
underline If set, specifies the index (0-based) of a character to underline in the

text string. The underline character is used for mnemonic activation.
image Specifies an image to display. This is a list of 1 or more elements.

The first element is the default image name. The rest of the list
if a sequence of statespec/value pairs as defined by Style.map(),
specifying different images to use when the widget is in a particular
state or a combination of states. All images in the list should have
the same size.

compound Specifies how to display the image relative to the text, in the case
both text and images options are present. Valid values are:

• text: display text only
• image: display image only
• top, bottom, left, right: display image above, below, left of, or
right of the text, respectively.

• none: the default. display the image if present, otherwise the
text.

width If greater than zero, specifies how much space, in character widths,
to allocate for the text label, if less than zero, specifies a minimum
width. If zero or unspecified, the natural width of the text label is
used.

Compatibility Options

Option Description
state May be set to “normal” or “disabled” to control the “disabled” state bit. This is a

write-only option: setting it changes the widget state, but the Widget.state()
method does not affect this option.

1322 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

Widget States

The widget state is a bitmap of independent state flags.

Flag Description
active The mouse cursor is over the widget and pressing a mouse button will cause

some action to occur
disabled Widget is disabled under program control
focus Widget has keyboard focus
pressed Widget is being pressed
selected “On”, “true”, or “current” for things like Checkbuttons and radiobuttons
background Windows and Mac have a notion of an “active” or foreground window. The

background state is set for widgets in a background window, and cleared for
those in the foreground window

readonly Widget should not allow user modification
alternate A widget-specific alternate display format
invalid The widget’s value is invalid

A state specification is a sequence of state names, optionally prefixed with an exclamation point indicating
that the bit is off.

ttk.Widget

Besides the methods described below, the ttk.Widget supports the methods tkinter.Widget.cget() and tkinter.
Widget.configure().

class tkinter.ttk.Widget

identify(x, y)
Returns the name of the element at position x y, or the empty string if the point does not lie
within any element.

x and y are pixel coordinates relative to the widget.

instate(statespec, callback=None, *args, **kw)
Test the widget’s state. If a callback is not specified, returns True if the widget state matches
statespec and False otherwise. If callback is specified then it is called with args if widget state
matches statespec.

state(statespec=None)
Modify or inquire widget state. If statespec is specified, sets the widget state according to it and
return a new statespec indicating which flags were changed. If statespec is not specified, returns
the currently-enabled state flags.

statespec will usually be a list or a tuple.

25.2.4 Combobox

The ttk.Combobox widget combines a text field with a pop-down list of values. This widget is a subclass of
Entry.

Besides the methods inherited from Widget: Widget.cget(), Widget.configure(), Widget.identify(), Widget.
instate() and Widget.state(), and the following inherited from Entry: Entry.bbox(), Entry.delete(), Entry.

25.2. tkinter.ttk — Tk themed widgets 1323

The Python Library Reference, Release 3.5.7

icursor(), Entry.index(), Entry.insert(), Entry.selection(), Entry.xview(), it has some other methods, de-
scribed at ttk.Combobox.

Options

This widget accepts the following specific options:

Option Description
exportselection Boolean value. If set, the widget selection is linked to the Window

Manager selection (which can be returned by invoking Misc.selection_get,
for example).

justify Specifies how the text is aligned within the widget. One of “left”, “center”,
or “right”.

height Specifies the height of the pop-down listbox, in rows.
postcommand A script (possibly registered with Misc.register) that is called immediately

before displaying the values. It may specify which values to display.
state One of “normal”, “readonly”, or “disabled”. In the “readonly” state, the

value may not be edited directly, and the user can only selection of the
values from the dropdown list. In the “normal” state, the text field is
directly editable. In the “disabled” state, no interaction is possible.

textvariable Specifies a name whose value is linked to the widget value. Whenever the
value associated with that name changes, the widget value is updated, and
vice versa. See tkinter.StringVar.

values Specifies the list of values to display in the drop-down listbox.
width Specifies an integer value indicating the desired width of the entry window,

in average-size characters of the widget’s font.

Virtual events

The combobox widgets generates a <<ComboboxSelected>> virtual event when the user selects an element
from the list of values.

ttk.Combobox

class tkinter.ttk.Combobox

current(newindex=None)
If newindex is specified, sets the combobox value to the element position newindex. Otherwise,
returns the index of the current value or -1 if the current value is not in the values list.

get()
Returns the current value of the combobox.

set(value)
Sets the value of the combobox to value.

25.2.5 Notebook

Ttk Notebook widget manages a collection of windows and displays a single one at a time. Each child
window is associated with a tab, which the user may select to change the currently-displayed window.

1324 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

Options

This widget accepts the following specific options:

Option Description
height If present and greater than zero, specifies the desired height of the pane area

(not including internal padding or tabs). Otherwise, the maximum height of all
panes is used.

padding Specifies the amount of extra space to add around the outside of the notebook.
The padding is a list up to four length specifications left top right bottom. If
fewer than four elements are specified, bottom defaults to top, right defaults to
left, and top defaults to left.

width If present and greater than zero, specified the desired width of the pane area (not
including internal padding). Otherwise, the maximum width of all panes is used.

Tab Options

There are also specific options for tabs:

Option Description
state Either “normal”, “disabled” or “hidden”. If “disabled”, then the tab is not

selectable. If “hidden”, then the tab is not shown.
sticky Specifies how the child window is positioned within the pane area. Value is a

string containing zero or more of the characters “n”, “s”, “e” or “w”. Each letter
refers to a side (north, south, east or west) that the child window will stick to,
as per the grid() geometry manager.

padding Specifies the amount of extra space to add between the notebook and this
pane. Syntax is the same as for the option padding used by this widget.

text Specifies a text to be displayed in the tab.
image Specifies an image to display in the tab. See the option image described in

Widget.
compound Specifies how to display the image relative to the text, in the case both options

text and image are present. See Label Options for legal values.
underline Specifies the index (0-based) of a character to underline in the text string. The

underlined character is used for mnemonic activation if
Notebook.enable_traversal() is called.

Tab Identifiers

The tab_id present in several methods of ttk.Notebook may take any of the following forms:

• An integer between zero and the number of tabs

• The name of a child window

• A positional specification of the form “@x,y”, which identifies the tab

• The literal string “current”, which identifies the currently-selected tab

• The literal string “end”, which returns the number of tabs (only valid for Notebook.index())

25.2. tkinter.ttk — Tk themed widgets 1325

The Python Library Reference, Release 3.5.7

Virtual Events

This widget generates a <<NotebookTabChanged>> virtual event after a new tab is selected.

ttk.Notebook

class tkinter.ttk.Notebook

add(child, **kw)
Adds a new tab to the notebook.

If window is currently managed by the notebook but hidden, it is restored to its previous position.

See Tab Options for the list of available options.

forget(tab_id)
Removes the tab specified by tab_id, unmaps and unmanages the associated window.

hide(tab_id)
Hides the tab specified by tab_id.

The tab will not be displayed, but the associated window remains managed by the notebook and
its configuration remembered. Hidden tabs may be restored with the add() command.

identify(x, y)
Returns the name of the tab element at position x, y, or the empty string if none.

index(tab_id)
Returns the numeric index of the tab specified by tab_id, or the total number of tabs if tab_id
is the string “end”.

insert(pos, child, **kw)
Inserts a pane at the specified position.

pos is either the string “end”, an integer index, or the name of a managed child. If child is already
managed by the notebook, moves it to the specified position.

See Tab Options for the list of available options.

select(tab_id=None)
Selects the specified tab_id.

The associated child window will be displayed, and the previously-selected window (if different)
is unmapped. If tab_id is omitted, returns the widget name of the currently selected pane.

tab(tab_id, option=None, **kw)
Query or modify the options of the specific tab_id.

If kw is not given, returns a dictionary of the tab option values. If option is specified, returns the
value of that option. Otherwise, sets the options to the corresponding values.

tabs()
Returns a list of windows managed by the notebook.

enable_traversal()
Enable keyboard traversal for a toplevel window containing this notebook.

This will extend the bindings for the toplevel window containing the notebook as follows:

• Control-Tab: selects the tab following the currently selected one.

• Shift-Control-Tab: selects the tab preceding the currently selected one.

1326 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

• Alt-K: where K is the mnemonic (underlined) character of any tab, will select that tab.

Multiple notebooks in a single toplevel may be enabled for traversal, including nested notebooks.
However, notebook traversal only works properly if all panes have the notebook they are in as
master.

25.2.6 Progressbar

The ttk.Progressbar widget shows the status of a long-running operation. It can operate in two modes:
1) the determinate mode which shows the amount completed relative to the total amount of work to be
done and 2) the indeterminate mode which provides an animated display to let the user know that work is
progressing.

Options

This widget accepts the following specific options:

Option Description
orient One of “horizontal” or “vertical”. Specifies the orientation of the progress bar.
length Specifies the length of the long axis of the progress bar (width if horizontal,

height if vertical).
mode One of “determinate” or “indeterminate”.
maximum A number specifying the maximum value. Defaults to 100.
value The current value of the progress bar. In “determinate” mode, this represents

the amount of work completed. In “indeterminate” mode, it is interpreted as
modulo maximum; that is, the progress bar completes one “cycle” when its
value increases by maximum.

variable A name which is linked to the option value. If specified, the value of the
progress bar is automatically set to the value of this name whenever the latter
is modified.

phase Read-only option. The widget periodically increments the value of this option
whenever its value is greater than 0 and, in determinate mode, less than
maximum. This option may be used by the current theme to provide additional
animation effects.

ttk.Progressbar

class tkinter.ttk.Progressbar

start(interval=None)
Begin autoincrement mode: schedules a recurring timer event that calls Progressbar.step() every
interval milliseconds. If omitted, interval defaults to 50 milliseconds.

step(amount=None)
Increments the progress bar’s value by amount.

amount defaults to 1.0 if omitted.

stop()
Stop autoincrement mode: cancels any recurring timer event initiated by Progressbar.start() for
this progress bar.

25.2. tkinter.ttk — Tk themed widgets 1327

The Python Library Reference, Release 3.5.7

25.2.7 Separator

The ttk.Separator widget displays a horizontal or vertical separator bar.

It has no other methods besides the ones inherited from ttk.Widget.

Options

This widget accepts the following specific option:

Option Description
orient One of “horizontal” or “vertical”. Specifies the orientation of the separator.

25.2.8 Sizegrip

The ttk.Sizegrip widget (also known as a grow box) allows the user to resize the containing toplevel window
by pressing and dragging the grip.

This widget has neither specific options nor specific methods, besides the ones inherited from ttk.Widget.

Platform-specific notes

• On MacOS X, toplevel windows automatically include a built-in size grip by default. Adding a Sizegrip
is harmless, since the built-in grip will just mask the widget.

Bugs

• If the containing toplevel’s position was specified relative to the right or bottom of the screen (e.g.
. . . .), the Sizegrip widget will not resize the window.

• This widget supports only “southeast” resizing.

25.2.9 Treeview

The ttk.Treeview widget displays a hierarchical collection of items. Each item has a textual label, an optional
image, and an optional list of data values. The data values are displayed in successive columns after the tree
label.

The order in which data values are displayed may be controlled by setting the widget option displaycolumns.
The tree widget can also display column headings. Columns may be accessed by number or symbolic names
listed in the widget option columns. See Column Identifiers.

Each item is identified by a unique name. The widget will generate item IDs if they are not supplied by
the caller. There is a distinguished root item, named {}. The root item itself is not displayed; its children
appear at the top level of the hierarchy.

Each item also has a list of tags, which can be used to associate event bindings with individual items and
control the appearance of the item.

The Treeview widget supports horizontal and vertical scrolling, according to the options described in Scrol-
lable Widget Options and the methods Treeview.xview() and Treeview.yview().

1328 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

Options

This widget accepts the following specific options:

Option Description
columns A list of column identifiers, specifying the number of columns and

their names.
displaycolumns A list of column identifiers (either symbolic or integer indices) spec-

ifying which data columns are displayed and the order in which they
appear, or the string “#all”.

height Specifies the number of rows which should be visible. Note: the
requested width is determined from the sum of the column widths.

padding Specifies the internal padding for the widget. The padding is a list
of up to four length specifications.

selectmode Controls how the built-in class bindings manage the selection. One
of “extended”, “browse” or “none”. If set to “extended” (the default),
multiple items may be selected. If “browse”, only a single item will
be selected at a time. If “none”, the selection will not be changed.
Note that the application code and tag bindings can set the selection
however they wish, regardless of the value of this option.

show A list containing zero or more of the following values, specifying
which elements of the tree to display.

• tree: display tree labels in column #0.
• headings: display the heading row.

The default is “tree headings”, i.e., show all elements.
Note: Column #0 always refers to the tree column, even if
show=”tree” is not specified.

Item Options

The following item options may be specified for items in the insert and item widget commands.

Option Description
text The textual label to display for the item.
image A Tk Image, displayed to the left of the label.
values The list of values associated with the item.

Each item should have the same number of values as the widget option columns.
If there are fewer values than columns, the remaining values are assumed empty.
If there are more values than columns, the extra values are ignored.

open True/False value indicating whether the item’s children should be displayed or
hidden.

tags A list of tags associated with this item.

Tag Options

The following options may be specified on tags:

25.2. tkinter.ttk — Tk themed widgets 1329

The Python Library Reference, Release 3.5.7

Option Description
foreground Specifies the text foreground color.
background Specifies the cell or item background color.
font Specifies the font to use when drawing text.
image Specifies the item image, in case the item’s image option is empty.

Column Identifiers

Column identifiers take any of the following forms:

• A symbolic name from the list of columns option.

• An integer n, specifying the nth data column.

• A string of the form #n, where n is an integer, specifying the nth display column.

Notes:

• Item’s option values may be displayed in a different order than the order in which they are stored.

• Column #0 always refers to the tree column, even if show=”tree” is not specified.

A data column number is an index into an item’s option values list; a display column number is the column
number in the tree where the values are displayed. Tree labels are displayed in column #0. If option
displaycolumns is not set, then data column n is displayed in column #n+1. Again, column #0 always
refers to the tree column.

Virtual Events

The Treeview widget generates the following virtual events.

Event Description
<<TreeviewSelect>> Generated whenever the selection changes.
<<TreeviewOpen>> Generated just before settings the focus item to open=True.
<<TreeviewClose>> Generated just after setting the focus item to open=False.

The Treeview.focus() and Treeview.selection() methods can be used to determine the affected item or items.

ttk.Treeview

class tkinter.ttk.Treeview

bbox(item, column=None)
Returns the bounding box (relative to the treeview widget’s window) of the specified item in the
form (x, y, width, height).

If column is specified, returns the bounding box of that cell. If the item is not visible (i.e., if it is
a descendant of a closed item or is scrolled offscreen), returns an empty string.

get_children(item=None)
Returns the list of children belonging to item.

If item is not specified, returns root children.

1330 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

set_children(item, *newchildren)
Replaces item’s child with newchildren.

Children present in item that are not present in newchildren are detached from the tree. No
items in newchildren may be an ancestor of item. Note that not specifying newchildren results in
detaching item’s children.

column(column, option=None, **kw)
Query or modify the options for the specified column.

If kw is not given, returns a dict of the column option values. If option is specified then the value
for that option is returned. Otherwise, sets the options to the corresponding values.

The valid options/values are:

• id Returns the column name. This is a read-only option.

• anchor: One of the standard Tk anchor values. Specifies how the text in this column should
be aligned with respect to the cell.

• minwidth: width The minimum width of the column in pixels. The treeview widget will not
make the column any smaller than specified by this option when the widget is resized or
the user drags a column.

• stretch: True/False Specifies whether the column’s width should be adjusted when the widget
is resized.

• width: width The width of the column in pixels.

To configure the tree column, call this with column = “#0”

delete(*items)
Delete all specified items and all their descendants.

The root item may not be deleted.

detach(*items)
Unlinks all of the specified items from the tree.

The items and all of their descendants are still present, and may be reinserted at another point
in the tree, but will not be displayed.

The root item may not be detached.

exists(item)
Returns True if the specified item is present in the tree.

focus(item=None)
If item is specified, sets the focus item to item. Otherwise, returns the current focus item, or ‘’ if
there is none.

heading(column, option=None, **kw)
Query or modify the heading options for the specified column.

If kw is not given, returns a dict of the heading option values. If option is specified then the value
for that option is returned. Otherwise, sets the options to the corresponding values.

The valid options/values are:

• text: text The text to display in the column heading.

• image: imageName Specifies an image to display to the right of the column heading.

• anchor: anchor Specifies how the heading text should be aligned. One of the standard Tk
anchor values.

25.2. tkinter.ttk — Tk themed widgets 1331

The Python Library Reference, Release 3.5.7

• command: callback A callback to be invoked when the heading label is pressed.

To configure the tree column heading, call this with column = “#0”.

identify(component, x, y)
Returns a description of the specified component under the point given by x and y, or the empty
string if no such component is present at that position.

identify_row(y)
Returns the item ID of the item at position y.

identify_column(x)
Returns the data column identifier of the cell at position x.

The tree column has ID #0.

identify_region(x, y)
Returns one of:

region meaning
heading Tree heading area.
separator Space between two columns headings.
tree The tree area.
cell A data cell.

Availability: Tk 8.6.

identify_element(x, y)
Returns the element at position x, y.

Availability: Tk 8.6.

index(item)
Returns the integer index of item within its parent’s list of children.

insert(parent, index, iid=None, **kw)
Creates a new item and returns the item identifier of the newly created item.

parent is the item ID of the parent item, or the empty string to create a new top-level item. index
is an integer, or the value “end”, specifying where in the list of parent’s children to insert the new
item. If index is less than or equal to zero, the new node is inserted at the beginning; if index is
greater than or equal to the current number of children, it is inserted at the end. If iid is specified,
it is used as the item identifier; iid must not already exist in the tree. Otherwise, a new unique
identifier is generated.

See Item Options for the list of available points.

item(item, option=None, **kw)
Query or modify the options for the specified item.

If no options are given, a dict with options/values for the item is returned. If option is specified
then the value for that option is returned. Otherwise, sets the options to the corresponding values
as given by kw.

move(item, parent, index)
Moves item to position index in parent’s list of children.

It is illegal to move an item under one of its descendants. If index is less than or equal to zero,
item is moved to the beginning; if greater than or equal to the number of children, it is moved to
the end. If item was detached it is reattached.

1332 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

next(item)
Returns the identifier of item’s next sibling, or ‘’ if item is the last child of its parent.

parent(item)
Returns the ID of the parent of item, or ‘’ if item is at the top level of the hierarchy.

prev(item)
Returns the identifier of item’s previous sibling, or ‘’ if item is the first child of its parent.

reattach(item, parent, index)
An alias for Treeview.move().

see(item)
Ensure that item is visible.

Sets all of item’s ancestors open option to True, and scrolls the widget if necessary so that item
is within the visible portion of the tree.

selection(selop=None, items=None)
If selop is not specified, returns selected items. Otherwise, it will act according to the following
selection methods.

selection_set(items)
items becomes the new selection.

selection_add(items)
Add items to the selection.

selection_remove(items)
Remove items from the selection.

selection_toggle(items)
Toggle the selection state of each item in items.

set(item, column=None, value=None)
With one argument, returns a dictionary of column/value pairs for the specified item. With two
arguments, returns the current value of the specified column. With three arguments, sets the
value of given column in given item to the specified value.

tag_bind(tagname, sequence=None, callback=None)
Bind a callback for the given event sequence to the tag tagname. When an event is delivered to
an item, the callbacks for each of the item’s tags option are called.

tag_configure(tagname, option=None, **kw)
Query or modify the options for the specified tagname.

If kw is not given, returns a dict of the option settings for tagname. If option is specified,
returns the value for that option for the specified tagname. Otherwise, sets the options to the
corresponding values for the given tagname.

tag_has(tagname, item=None)
If item is specified, returns 1 or 0 depending on whether the specified item has the given tagname.
Otherwise, returns a list of all items that have the specified tag.

Availability: Tk 8.6

xview(*args)
Query or modify horizontal position of the treeview.

yview(*args)
Query or modify vertical position of the treeview.

25.2. tkinter.ttk — Tk themed widgets 1333

The Python Library Reference, Release 3.5.7

25.2.10 Ttk Styling

Each widget in ttk is assigned a style, which specifies the set of elements making up the widget and how
they are arranged, along with dynamic and default settings for element options. By default the style name
is the same as the widget’s class name, but it may be overridden by the widget’s style option. If you don’t
know the class name of a widget, use the method Misc.winfo_class() (somewidget.winfo_class()).

See also:

Tcl‘2004 conference presentation This document explains how the theme engine works

class tkinter.ttk.Style
This class is used to manipulate the style database.

configure(style, query_opt=None, **kw)
Query or set the default value of the specified option(s) in style.

Each key in kw is an option and each value is a string identifying the value for that option.

For example, to change every default button to be a flat button with some padding and a different
background color:

from tkinter import ttk
import tkinter

root = tkinter.Tk()

ttk.Style().configure("TButton", padding=6, relief="flat",
background="#ccc")

btn = ttk.Button(text="Sample")
btn.pack()

root.mainloop()

map(style, query_opt=None, **kw)
Query or sets dynamic values of the specified option(s) in style.

Each key in kw is an option and each value should be a list or a tuple (usually) containing
statespecs grouped in tuples, lists, or some other preference. A statespec is a compound of one or
more states and then a value.

An example may make it more understandable:

import tkinter
from tkinter import ttk

root = tkinter.Tk()

style = ttk.Style()
style.map("C.TButton",

foreground=[('pressed', 'red'), ('active', 'blue')],
background=[('pressed', '!disabled', 'black'), ('active', 'white')]
)

colored_btn = ttk.Button(text="Test", style="C.TButton").pack()

root.mainloop()

1334 Chapter 25. Graphical User Interfaces with Tk

http://tktable.sourceforge.net/tile/tile-tcl2004.pdf

The Python Library Reference, Release 3.5.7

Note that the order of the (states, value) sequences for an option does matter, if the order is
changed to [('active', 'blue'), ('pressed', 'red')] in the foreground option, for example, the
result would be a blue foreground when the widget were in active or pressed states.

lookup(style, option, state=None, default=None)
Returns the value specified for option in style.

If state is specified, it is expected to be a sequence of one or more states. If the default argument
is set, it is used as a fallback value in case no specification for option is found.

To check what font a Button uses by default:

from tkinter import ttk

print(ttk.Style().lookup("TButton", "font"))

layout(style, layoutspec=None)
Define the widget layout for given style. If layoutspec is omitted, return the layout specification
for given style.

layoutspec, if specified, is expected to be a list or some other sequence type (excluding strings),
where each item should be a tuple and the first item is the layout name and the second item
should have the format described in Layouts.

To understand the format, see the following example (it is not intended to do anything useful):

from tkinter import ttk
import tkinter

root = tkinter.Tk()

style = ttk.Style()
style.layout("TMenubutton", [
("Menubutton.background", None),
("Menubutton.button", {"children":

[("Menubutton.focus", {"children":
[("Menubutton.padding", {"children":

[("Menubutton.label", {"side": "left", "expand": 1})]
})]

})]
}),

])

mbtn = ttk.Menubutton(text='Text')
mbtn.pack()
root.mainloop()

element_create(elementname, etype, *args, **kw)
Create a new element in the current theme, of the given etype which is expected to be either
“image”, “from” or “vsapi”. The latter is only available in Tk 8.6a for Windows XP and Vista and
is not described here.

If “image” is used, args should contain the default image name followed by statespec/value pairs
(this is the imagespec), and kw may have the following options:

• border=padding padding is a list of up to four integers, specifying the left, top, right, and
bottom borders, respectively.

• height=height Specifies a minimum height for the element. If less than zero, the base image’s
height is used as a default.

25.2. tkinter.ttk — Tk themed widgets 1335

The Python Library Reference, Release 3.5.7

• padding=padding Specifies the element’s interior padding. Defaults to border’s value if not
specified.

• sticky=spec Specifies how the image is placed within the final parcel. spec contains zero or
more characters “n”, “s”, “w”, or “e”.

• width=width Specifies a minimum width for the element. If less than zero, the base image’s
width is used as a default.

If “from” is used as the value of etype, element_create() will clone an existing element. args
is expected to contain a themename, from which the element will be cloned, and optionally an
element to clone from. If this element to clone from is not specified, an empty element will be
used. kw is discarded.

element_names()
Returns the list of elements defined in the current theme.

element_options(elementname)
Returns the list of elementname’s options.

theme_create(themename, parent=None, settings=None)
Create a new theme.

It is an error if themename already exists. If parent is specified, the new theme will inherit styles,
elements and layouts from the parent theme. If settings are present they are expected to have
the same syntax used for theme_settings().

theme_settings(themename, settings)
Temporarily sets the current theme to themename, apply specified settings and then restore the
previous theme.

Each key in settings is a style and each value may contain the keys ‘configure’, ‘map’, ‘layout’
and ‘element create’ and they are expected to have the same format as specified by the methods
Style.configure(), Style.map(), Style.layout() and Style.element_create() respectively.

As an example, let’s change the Combobox for the default theme a bit:

from tkinter import ttk
import tkinter

root = tkinter.Tk()

style = ttk.Style()
style.theme_settings("default", {
"TCombobox": {

"configure": {"padding": 5},
"map": {

"background": [("active", "green2"),
("!disabled", "green4")],

"fieldbackground": [("!disabled", "green3")],
"foreground": [("focus", "OliveDrab1"),

("!disabled", "OliveDrab2")]
}

}
})

combo = ttk.Combobox().pack()

root.mainloop()

1336 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

theme_names()
Returns a list of all known themes.

theme_use(themename=None)
If themename is not given, returns the theme in use. Otherwise, sets the current theme to
themename, refreshes all widgets and emits a <<ThemeChanged>> event.

Layouts

A layout can be just None, if it takes no options, or a dict of options specifying how to arrange the element.
The layout mechanism uses a simplified version of the pack geometry manager: given an initial cavity, each
element is allocated a parcel. Valid options/values are:

• side: whichside Specifies which side of the cavity to place the element; one of top, right, bottom or
left. If omitted, the element occupies the entire cavity.

• sticky: nswe Specifies where the element is placed inside its allocated parcel.

• unit: 0 or 1 If set to 1, causes the element and all of its descendants to be treated as a single element
for the purposes of Widget.identify() et al. It’s used for things like scrollbar thumbs with grips.

• children: [sublayout. . .] Specifies a list of elements to place inside the element. Each element is a
tuple (or other sequence type) where the first item is the layout name, and the other is a Layout.

25.3 tkinter.tix — Extension widgets for Tk

Source code: Lib/tkinter/tix.py

The tkinter.tix (Tk Interface Extension) module provides an additional rich set of widgets. Although the
standard Tk library has many useful widgets, they are far from complete. The tkinter.tix library provides
most of the commonly needed widgets that are missing from standard Tk: HList, ComboBox, Control
(a.k.a. SpinBox) and an assortment of scrollable widgets. tkinter.tix also includes many more widgets that
are generally useful in a wide range of applications: NoteBook, FileEntry, PanedWindow, etc; there are
more than 40 of them.

With all these new widgets, you can introduce new interaction techniques into applications, creating more
useful and more intuitive user interfaces. You can design your application by choosing the most appropriate
widgets to match the special needs of your application and users.

See also:

Tix Homepage The home page for Tix. This includes links to additional documentation and downloads.

Tix Man Pages On-line version of the man pages and reference material.

Tix Programming Guide On-line version of the programmer’s reference material.

Tix Development Applications Tix applications for development of Tix and Tkinter programs. Tide appli-
cations work under Tk or Tkinter, and include TixInspect, an inspector to remotely modify and debug
Tix/Tk/Tkinter applications.

25.3. tkinter.tix — Extension widgets for Tk 1337

https://github.com/python/cpython/tree/3.5/Lib/tkinter/tix.py
http://tix.sourceforge.net/
http://tix.sourceforge.net/dist/current/man/
http://tix.sourceforge.net/dist/current/docs/tix-book/tix.book.html
http://tix.sourceforge.net/Tixapps/src/Tide.html

The Python Library Reference, Release 3.5.7

25.3.1 Using Tix

class tkinter.tix.Tk(screenName=None, baseName=None, className=’Tix’)
Toplevel widget of Tix which represents mostly the main window of an application. It has an associated
Tcl interpreter.

Classes in the tkinter.tix module subclasses the classes in the tkinter. The former imports the latter,
so to use tkinter.tix with Tkinter, all you need to do is to import one module. In general, you can just
import tkinter.tix, and replace the toplevel call to tkinter.Tk with tix.Tk:

from tkinter import tix
from tkinter.constants import *
root = tix.Tk()

To use tkinter.tix, you must have the Tix widgets installed, usually alongside your installation of the Tk
widgets. To test your installation, try the following:

from tkinter import tix
root = tix.Tk()
root.tk.eval('package require Tix')

If this fails, you have a Tk installation problem which must be resolved before proceeding. Use the environ-
ment variable TIX_LIBRARY to point to the installed Tix library directory, and make sure you have the
dynamic object library (tix8183.dll or libtix8183.so) in the same directory that contains your Tk dynamic
object library (tk8183.dll or libtk8183.so). The directory with the dynamic object library should also have
a file called pkgIndex.tcl (case sensitive), which contains the line:

package ifneeded Tix 8.1 [list load "[file join $dir tix8183.dll]" Tix]

25.3.2 Tix Widgets

Tix introduces over 40 widget classes to the tkinter repertoire.

Basic Widgets

class tkinter.tix.Balloon
A Balloon that pops up over a widget to provide help. When the user moves the cursor inside a widget
to which a Balloon widget has been bound, a small pop-up window with a descriptive message will be
shown on the screen.

class tkinter.tix.ButtonBox
The ButtonBox widget creates a box of buttons, such as is commonly used for Ok Cancel.

class tkinter.tix.ComboBox
The ComboBox widget is similar to the combo box control in MS Windows. The user can select a
choice by either typing in the entry subwidget or selecting from the listbox subwidget.

class tkinter.tix.Control
The Control widget is also known as the SpinBox widget. The user can adjust the value by pressing
the two arrow buttons or by entering the value directly into the entry. The new value will be checked
against the user-defined upper and lower limits.

class tkinter.tix.LabelEntry
The LabelEntry widget packages an entry widget and a label into one mega widget. It can be used to
simplify the creation of “entry-form” type of interface.

1338 Chapter 25. Graphical User Interfaces with Tk

http://tix.sourceforge.net/dist/current/man/html/TixCmd/TixIntro.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixBalloon.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixButtonBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixComboBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixControl.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelEntry.htm

The Python Library Reference, Release 3.5.7

class tkinter.tix.LabelFrame
The LabelFrame widget packages a frame widget and a label into one mega widget. To create widgets
inside a LabelFrame widget, one creates the new widgets relative to the frame subwidget and manage
them inside the frame subwidget.

class tkinter.tix.Meter
The Meter widget can be used to show the progress of a background job which may take a long time
to execute.

class tkinter.tix.OptionMenu
The OptionMenu creates a menu button of options.

class tkinter.tix.PopupMenu
The PopupMenu widget can be used as a replacement of the tk_popup command. The advantage of
the Tix PopupMenu widget is it requires less application code to manipulate.

class tkinter.tix.Select
The Select widget is a container of button subwidgets. It can be used to provide radio-box or check-box
style of selection options for the user.

class tkinter.tix.StdButtonBox
The StdButtonBox widget is a group of standard buttons for Motif-like dialog boxes.

File Selectors

class tkinter.tix.DirList
The DirList widget displays a list view of a directory, its previous directories and its sub-directories.
The user can choose one of the directories displayed in the list or change to another directory.

class tkinter.tix.DirTree
The DirTree widget displays a tree view of a directory, its previous directories and its sub-directories.
The user can choose one of the directories displayed in the list or change to another directory.

class tkinter.tix.DirSelectDialog
The DirSelectDialog widget presents the directories in the file system in a dialog window. The user
can use this dialog window to navigate through the file system to select the desired directory.

class tkinter.tix.DirSelectBox
The DirSelectBox is similar to the standard Motif(TM) directory-selection box. It is generally used
for the user to choose a directory. DirSelectBox stores the directories mostly recently selected into a
ComboBox widget so that they can be quickly selected again.

class tkinter.tix.ExFileSelectBox
The ExFileSelectBox widget is usually embedded in a tixExFileSelectDialog widget. It provides a
convenient method for the user to select files. The style of the ExFileSelectBox widget is very similar
to the standard file dialog on MS Windows 3.1.

class tkinter.tix.FileSelectBox
The FileSelectBox is similar to the standard Motif(TM) file-selection box. It is generally used for the
user to choose a file. FileSelectBox stores the files mostly recently selected into a ComboBox widget
so that they can be quickly selected again.

class tkinter.tix.FileEntry
The FileEntry widget can be used to input a filename. The user can type in the filename manually.
Alternatively, the user can press the button widget that sits next to the entry, which will bring up a
file selection dialog.

25.3. tkinter.tix — Extension widgets for Tk 1339

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelFrame.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixMeter.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixOptionMenu.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPopupMenu.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixSelect.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixStdButtonBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirTree.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirSelectDialog.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixExFileSelectBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileSelectBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileEntry.htm

The Python Library Reference, Release 3.5.7

Hierarchical ListBox

class tkinter.tix.HList
The HList widget can be used to display any data that have a hierarchical structure, for example, file
system directory trees. The list entries are indented and connected by branch lines according to their
places in the hierarchy.

class tkinter.tix.CheckList
The CheckList widget displays a list of items to be selected by the user. CheckList acts similarly to
the Tk checkbutton or radiobutton widgets, except it is capable of handling many more items than
checkbuttons or radiobuttons.

class tkinter.tix.Tree
The Tree widget can be used to display hierarchical data in a tree form. The user can adjust the view
of the tree by opening or closing parts of the tree.

Tabular ListBox

class tkinter.tix.TList
The TList widget can be used to display data in a tabular format. The list entries of a TList widget
are similar to the entries in the Tk listbox widget. The main differences are (1) the TList widget can
display the list entries in a two dimensional format and (2) you can use graphical images as well as
multiple colors and fonts for the list entries.

Manager Widgets

class tkinter.tix.PanedWindow
The PanedWindow widget allows the user to interactively manipulate the sizes of several panes. The
panes can be arranged either vertically or horizontally. The user changes the sizes of the panes by
dragging the resize handle between two panes.

class tkinter.tix.ListNoteBook
The ListNoteBook widget is very similar to the TixNoteBook widget: it can be used to display many
windows in a limited space using a notebook metaphor. The notebook is divided into a stack of pages
(windows). At one time only one of these pages can be shown. The user can navigate through these
pages by choosing the name of the desired page in the hlist subwidget.

class tkinter.tix.NoteBook
The NoteBook widget can be used to display many windows in a limited space using a notebook
metaphor. The notebook is divided into a stack of pages. At one time only one of these pages can
be shown. The user can navigate through these pages by choosing the visual “tabs” at the top of the
NoteBook widget.

Image Types

The tkinter.tix module adds:

• pixmap capabilities to all tkinter.tix and tkinter widgets to create color images from XPM files.

• Compound image types can be used to create images that consists of multiple horizontal lines; each
line is composed of a series of items (texts, bitmaps, images or spaces) arranged from left to right. For
example, a compound image can be used to display a bitmap and a text string simultaneously in a Tk
Button widget.

1340 Chapter 25. Graphical User Interfaces with Tk

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixHList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixCheckList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTree.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPanedWindow.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixListNoteBook.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixNoteBook.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/pixmap.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/compound.htm

The Python Library Reference, Release 3.5.7

Miscellaneous Widgets

class tkinter.tix.InputOnly
The InputOnly widgets are to accept inputs from the user, which can be done with the bind command
(Unix only).

Form Geometry Manager

In addition, tkinter.tix augments tkinter by providing:

class tkinter.tix.Form
The Form geometry manager based on attachment rules for all Tk widgets.

25.3.3 Tix Commands

class tkinter.tix.tixCommand
The tix commands provide access to miscellaneous elements of Tix’s internal state and the Tix appli-
cation context. Most of the information manipulated by these methods pertains to the application as
a whole, or to a screen or display, rather than to a particular window.

To view the current settings, the common usage is:

from tkinter import tix
root = tix.Tk()
print(root.tix_configure())

tixCommand.tix_configure(cnf=None, **kw)
Query or modify the configuration options of the Tix application context. If no option is specified,
returns a dictionary all of the available options. If option is specified with no value, then the method
returns a list describing the one named option (this list will be identical to the corresponding sublist
of the value returned if no option is specified). If one or more option-value pairs are specified, then
the method modifies the given option(s) to have the given value(s); in this case the method returns an
empty string. Option may be any of the configuration options.

tixCommand.tix_cget(option)
Returns the current value of the configuration option given by option. Option may be any of the
configuration options.

tixCommand.tix_getbitmap(name)
Locates a bitmap file of the name name.xpm or name in one of the bitmap directories (see the
tix_addbitmapdir() method). By using tix_getbitmap(), you can avoid hard coding the pathnames of
the bitmap files in your application. When successful, it returns the complete pathname of the bitmap
file, prefixed with the character @. The returned value can be used to configure the bitmap option of
the Tk and Tix widgets.

tixCommand.tix_addbitmapdir(directory)
Tix maintains a list of directories under which the tix_getimage() and tix_getbitmap() methods
will search for image files. The standard bitmap directory is $TIX_LIBRARY/bitmaps. The
tix_addbitmapdir() method adds directory into this list. By using this method, the image files of
an applications can also be located using the tix_getimage() or tix_getbitmap() method.

tixCommand.tix_filedialog([dlgclass])
Returns the file selection dialog that may be shared among different calls from this application. This
method will create a file selection dialog widget when it is called the first time. This dialog will be
returned by all subsequent calls to tix_filedialog(). An optional dlgclass parameter can be passed

25.3. tkinter.tix — Extension widgets for Tk 1341

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixInputOnly.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixForm.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tix.htm

The Python Library Reference, Release 3.5.7

as a string to specified what type of file selection dialog widget is desired. Possible options are tix,
FileSelectDialog or tixExFileSelectDialog.

tixCommand.tix_getimage(self, name)
Locates an image file of the name name.xpm, name.xbm or name.ppm in one of the bitmap directories
(see the tix_addbitmapdir() method above). If more than one file with the same name (but different
extensions) exist, then the image type is chosen according to the depth of the X display: xbm images are
chosen on monochrome displays and color images are chosen on color displays. By using tix_getimage(),
you can avoid hard coding the pathnames of the image files in your application. When successful, this
method returns the name of the newly created image, which can be used to configure the image option
of the Tk and Tix widgets.

tixCommand.tix_option_get(name)
Gets the options maintained by the Tix scheme mechanism.

tixCommand.tix_resetoptions(newScheme, newFontSet[, newScmPrio])
Resets the scheme and fontset of the Tix application to newScheme and newFontSet, respectively. This
affects only those widgets created after this call. Therefore, it is best to call the resetoptions method
before the creation of any widgets in a Tix application.

The optional parameter newScmPrio can be given to reset the priority level of the Tk options set by
the Tix schemes.

Because of the way Tk handles the X option database, after Tix has been has imported and inited,
it is not possible to reset the color schemes and font sets using the tix_config() method. Instead, the
tix_resetoptions() method must be used.

25.4 tkinter.scrolledtext — Scrolled Text Widget

Source code: Lib/tkinter/scrolledtext.py

The tkinter.scrolledtext module provides a class of the same name which implements a basic text widget
which has a vertical scroll bar configured to do the “right thing.” Using the ScrolledText class is a lot easier
than setting up a text widget and scroll bar directly. The constructor is the same as that of the tkinter.Text
class.

The text widget and scrollbar are packed together in a Frame, and the methods of the Grid and Pack
geometry managers are acquired from the Frame object. This allows the ScrolledText widget to be used
directly to achieve most normal geometry management behavior.

Should more specific control be necessary, the following attributes are available:

ScrolledText.frame
The frame which surrounds the text and scroll bar widgets.

ScrolledText.vbar
The scroll bar widget.

25.5 IDLE

Source code: Lib/idlelib/

IDLE is Python’s Integrated Development and Learning Environment.

1342 Chapter 25. Graphical User Interfaces with Tk

https://github.com/python/cpython/tree/3.5/Lib/tkinter/scrolledtext.py
https://github.com/python/cpython/tree/3.5/Lib/idlelib/

The Python Library Reference, Release 3.5.7

IDLE has the following features:

• coded in 100% pure Python, using the tkinter GUI toolkit

• cross-platform: works mostly the same on Windows, Unix, and Mac OS X

• Python shell window (interactive interpreter) with colorizing of code input, output, and error messages

• multi-window text editor with multiple undo, Python colorizing, smart indent, call tips, auto comple-
tion, and other features

• search within any window, replace within editor windows, and search through multiple files (grep)

• debugger with persistent breakpoints, stepping, and viewing of global and local namespaces

• configuration, browsers, and other dialogs

25.5.1 Menus

IDLE has two main window types, the Shell window and the Editor window. It is possible to have multiple
editor windows simultaneously. Output windows, such as used for Edit / Find in Files, are a subtype of edit
window. They currently have the same top menu as Editor windows but a different default title and context
menu.

IDLE’s menus dynamically change based on which window is currently selected. Each menu documented
below indicates which window type it is associated with.

File menu (Shell and Editor)

New File Create a new file editing window.

Open. . . Open an existing file with an Open dialog.

Recent Files Open a list of recent files. Click one to open it.

Open Module. . . Open an existing module (searches sys.path).

Class Browser Show functions, classes, and methods in the current Editor file in a tree structure. In the
shell, open a module first.

Path Browser Show sys.path directories, modules, functions, classes and methods in a tree structure.

Save Save the current window to the associated file, if there is one. Windows that have been changed since
being opened or last saved have a * before and after the window title. If there is no associated file, do
Save As instead.

Save As. . . Save the current window with a Save As dialog. The file saved becomes the new associated file
for the window.

Save Copy As. . . Save the current window to different file without changing the associated file.

Print Window Print the current window to the default printer.

Close Close the current window (ask to save if unsaved).

Exit Close all windows and quit IDLE (ask to save unsaved windows).

25.5. IDLE 1343

The Python Library Reference, Release 3.5.7

Edit menu (Shell and Editor)

Undo Undo the last change to the current window. A maximum of 1000 changes may be undone.

Redo Redo the last undone change to the current window.

Cut Copy selection into the system-wide clipboard; then delete the selection.

Copy Copy selection into the system-wide clipboard.

Paste Insert contents of the system-wide clipboard into the current window.

The clipboard functions are also available in context menus.

Select All Select the entire contents of the current window.

Find. . . Open a search dialog with many options

Find Again Repeat the last search, if there is one.

Find Selection Search for the currently selected string, if there is one.

Find in Files. . . Open a file search dialog. Put results in a new output window.

Replace. . . Open a search-and-replace dialog.

Go to Line Move cursor to the line number requested and make that line visible.

Show Completions Open a scrollable list allowing selection of keywords and attributes. See Completions in
the Tips sections below.

Expand Word Expand a prefix you have typed to match a full word in the same window; repeat to get a
different expansion.

Show call tip After an unclosed parenthesis for a function, open a small window with function parameter
hints.

Show surrounding parens Highlight the surrounding parenthesis.

Format menu (Editor window only)

Indent Region Shift selected lines right by the indent width (default 4 spaces).

Dedent Region Shift selected lines left by the indent width (default 4 spaces).

Comment Out Region Insert ## in front of selected lines.

Uncomment Region Remove leading # or ## from selected lines.

Tabify Region Turn leading stretches of spaces into tabs. (Note: We recommend using 4 space blocks to
indent Python code.)

Untabify Region Turn all tabs into the correct number of spaces.

Toggle Tabs Open a dialog to switch between indenting with spaces and tabs.

New Indent Width Open a dialog to change indent width. The accepted default by the Python community
is 4 spaces.

Format Paragraph Reformat the current blank-line-delimited paragraph in comment block or multiline string
or selected line in a string. All lines in the paragraph will be formatted to less than N columns, where
N defaults to 72.

Strip trailing whitespace Remove any space characters after the last non-space character of a line.

1344 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

Run menu (Editor window only)

Python Shell Open or wake up the Python Shell window.

Check Module Check the syntax of the module currently open in the Editor window. If the module has not
been saved IDLE will either prompt the user to save or autosave, as selected in the General tab of
the Idle Settings dialog. If there is a syntax error, the approximate location is indicated in the Editor
window.

Run Module Do Check Module (above). If no error, restart the shell to clean the environment, then execute
the module. Output is displayed in the Shell window. Note that output requires use of print or write.
When execution is complete, the Shell retains focus and displays a prompt. At this point, one may
interactively explore the result of execution. This is similar to executing a file with python -i file at a
command line.

Shell menu (Shell window only)

View Last Restart Scroll the shell window to the last Shell restart.

Restart Shell Restart the shell to clean the environment.

Interrupt Execution Stop a running program.

Debug menu (Shell window only)

Go to File/Line Look on the current line. with the cursor, and the line above for a filename and line number.
If found, open the file if not already open, and show the line. Use this to view source lines referenced
in an exception traceback and lines found by Find in Files. Also available in the context menu of the
Shell window and Output windows.

Debugger (toggle) When activated, code entered in the Shell or run from an Editor will run under the
debugger. In the Editor, breakpoints can be set with the context menu. This feature is still incomplete
and somewhat experimental.

Stack Viewer Show the stack traceback of the last exception in a tree widget, with access to locals and
globals.

Auto-open Stack Viewer Toggle automatically opening the stack viewer on an unhandled exception.

Options menu (Shell and Editor)

Configure IDLE Open a configuration dialog and change preferences for the following: fonts, indentation,
keybindings, text color themes, startup windows and size, additional help sources, and extensions (see
below). On OS X, open the configuration dialog by selecting Preferences in the application menu. To
use a new built-in color theme (IDLE Dark) with older IDLEs, save it as a new custom theme.

Non-default user settings are saved in a .idlerc directory in the user’s home directory. Problems caused
by bad user configuration files are solved by editing or deleting one or more of the files in .idlerc.

Code Context (toggle)(Editor Window only) Open a pane at the top of the edit window which shows the
block context of the code which has scrolled above the top of the window.

Window menu (Shell and Editor)

Zoom Height Toggles the window between normal size and maximum height. The initial size defaults to 40
lines by 80 chars unless changed on the General tab of the Configure IDLE dialog.

25.5. IDLE 1345

The Python Library Reference, Release 3.5.7

The rest of this menu lists the names of all open windows; select one to bring it to the foreground (deiconifying
it if necessary).

Help menu (Shell and Editor)

About IDLE Display version, copyright, license, credits, and more.

IDLE Help Display a help file for IDLE detailing the menu options, basic editing and navigation, and other
tips.

Python Docs Access local Python documentation, if installed, or start a web browser and open
docs.python.org showing the latest Python documentation.

Turtle Demo Run the turtledemo module with example python code and turtle drawings.

Additional help sources may be added here with the Configure IDLE dialog under the General tab.

Context Menus

Open a context menu by right-clicking in a window (Control-click on OS X). Context menus have the
standard clipboard functions also on the Edit menu.

Cut Copy selection into the system-wide clipboard; then delete the selection.

Copy Copy selection into the system-wide clipboard.

Paste Insert contents of the system-wide clipboard into the current window.

Editor windows also have breakpoint functions. Lines with a breakpoint set are specially marked. Break-
points only have an effect when running under the debugger. Breakpoints for a file are saved in the user’s
.idlerc directory.

Set Breakpoint Set a breakpoint on the current line.

Clear Breakpoint Clear the breakpoint on that line.

Shell and Output windows have the following.

Go to file/line Same as in Debug menu.

25.5.2 Editing and navigation

In this section, ‘C’ refers to the Control key on Windows and Unix and the Command key on Mac OSX.

• Backspace deletes to the left; Del deletes to the right

• C-Backspace delete word left; C-Del delete word to the right

• Arrow keys and Page Up/Page Down to move around

• C-LeftArrow and C-RightArrow moves by words

• Home/End go to begin/end of line

• C-Home/C-End go to begin/end of file

• Some useful Emacs bindings are inherited from Tcl/Tk:

– C-a beginning of line

– C-e end of line

– C-k kill line (but doesn’t put it in clipboard)

1346 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

– C-l center window around the insertion point

– C-b go backward one character without deleting (usually you can also use the cursor key for this)

– C-f go forward one character without deleting (usually you can also use the cursor key for this)

– C-p go up one line (usually you can also use the cursor key for this)

– C-d delete next character

Standard keybindings (like C-c to copy and C-v to paste) may work. Keybindings are selected in the
Configure IDLE dialog.

Automatic indentation

After a block-opening statement, the next line is indented by 4 spaces (in the Python Shell window by one
tab). After certain keywords (break, return etc.) the next line is dedented. In leading indentation, Backspace
deletes up to 4 spaces if they are there. Tab inserts spaces (in the Python Shell window one tab), number
depends on Indent width. Currently, tabs are restricted to four spaces due to Tcl/Tk limitations.

See also the indent/dedent region commands in the edit menu.

Completions

Completions are supplied for functions, classes, and attributes of classes, both built-in and user-defined.
Completions are also provided for filenames.

The AutoCompleteWindow (ACW) will open after a predefined delay (default is two seconds) after a ‘.’ or
(in a string) an os.sep is typed. If after one of those characters (plus zero or more other characters) a tab is
typed the ACW will open immediately if a possible continuation is found.

If there is only one possible completion for the characters entered, a Tab will supply that completion without
opening the ACW.

‘Show Completions’ will force open a completions window, by default the C-space will open a completions
window. In an empty string, this will contain the files in the current directory. On a blank line, it will contain
the built-in and user-defined functions and classes in the current namespaces, plus any modules imported.
If some characters have been entered, the ACW will attempt to be more specific.

If a string of characters is typed, the ACW selection will jump to the entry most closely matching those
characters. Entering a tab will cause the longest non-ambiguous match to be entered in the Editor window
or Shell. Two tab in a row will supply the current ACW selection, as will return or a double click. Cursor
keys, Page Up/Down, mouse selection, and the scroll wheel all operate on the ACW.

“Hidden” attributes can be accessed by typing the beginning of hidden name after a ‘.’, e.g. ‘_’. This allows
access to modules with __all__ set, or to class-private attributes.

Completions and the ‘Expand Word’ facility can save a lot of typing!

Completions are currently limited to those in the namespaces. Names in an Editor window which are not
via __main__ and sys.modules will not be found. Run the module once with your imports to correct this
situation. Note that IDLE itself places quite a few modules in sys.modules, so much can be found by default,
e.g. the re module.

If you don’t like the ACW popping up unbidden, simply make the delay longer or disable the extension.

25.5. IDLE 1347

The Python Library Reference, Release 3.5.7

Calltips

A calltip is shown when one types (after the name of an acccessible function. A name expression may
include dots and subscripts. A calltip remains until it is clicked, the cursor is moved out of the argument
area, or) is typed. When the cursor is in the argument part of a definition, the menu or shortcut display a
calltip.

A calltip consists of the function signature and the first line of the docstring. For builtins without an
accessible signature, the calltip consists of all lines up the fifth line or the first blank line. These details may
change.

The set of accessible functions depends on what modules have been imported into the user process, including
those imported by Idle itself, and what definitions have been run, all since the last restart.

For example, restart the Shell and enter itertools.count(. A calltip appears because Idle imports itertools
into the user process for its own use. (This could change.) Enter turtle.write(and nothing appears. Idle
does not import turtle. The menu or shortcut do nothing either. Enter import turtle and then turtle.write(
will work.

In an editor, import statements have no effect until one runs the file. One might want to run a file after
writing the import statements at the top, or immediately run an existing file before editing.

Python Shell window

• C-c interrupts executing command

• C-d sends end-of-file; closes window if typed at a >>> prompt

• Alt-/ (Expand word) is also useful to reduce typing

Command history

– Alt-p retrieves previous command matching what you have typed. On OS X use C-p.

– Alt-n retrieves next. On OS X use C-n.

– Return while on any previous command retrieves that command

Text colors

Idle defaults to black on white text, but colors text with special meanings. For the shell, these are shell
output, shell error, user output, and user error. For Python code, at the shell prompt or in an editor, these
are keywords, builtin class and function names, names following class and def, strings, and comments. For
any text window, these are the cursor (when present), found text (when possible), and selected text.

Text coloring is done in the background, so uncolorized text is occasionally visible. To change the color
scheme, use the Configure IDLE dialog Highlighting tab. The marking of debugger breakpoint lines in the
editor and text in popups and dialogs is not user-configurable.

25.5.3 Startup and code execution

Upon startup with the -s option, IDLE will execute the file referenced by the environment variables
IDLESTARTUP or PYTHONSTARTUP. IDLE first checks for IDLESTARTUP; if IDLESTARTUP is
present the file referenced is run. If IDLESTARTUP is not present, IDLE checks for PYTHONSTARTUP.
Files referenced by these environment variables are convenient places to store functions that are used fre-
quently from the IDLE shell, or for executing import statements to import common modules.

1348 Chapter 25. Graphical User Interfaces with Tk

The Python Library Reference, Release 3.5.7

In addition, Tk also loads a startup file if it is present. Note that the Tk file is loaded unconditionally.
This additional file is .Idle.py and is looked for in the user’s home directory. Statements in this file will
be executed in the Tk namespace, so this file is not useful for importing functions to be used from IDLE’s
Python shell.

Command line usage

idle.py [-c command] [-d] [-e] [-h] [-i] [-r file] [-s] [-t title] [-] [arg] ...

-c command run command in the shell window
-d enable debugger and open shell window
-e open editor window
-h print help message with legal combinations and exit
-i open shell window
-r file run file in shell window
-s run $IDLESTARTUP or $PYTHONSTARTUP first, in shell window
-t title set title of shell window
- run stdin in shell (- must be last option before args)

If there are arguments:

• If -, -c, or r is used, all arguments are placed in sys.argv[1:...] and sys.argv[0] is set to '', '-c', or
'-r'. No editor window is opened, even if that is the default set in the Options dialog.

• Otherwise, arguments are files opened for editing and sys.argv reflects the arguments passed to IDLE
itself.

IDLE-console differences

As much as possible, the result of executing Python code with IDLE is the same as executing the same code
in a console window. However, the different interface and operation occasionally affect visible results. For
instance, sys.modules starts with more entries.

IDLE also replaces sys.stdin, sys.stdout, and sys.stderr with objects that get input from and send output to
the Shell window. When this window has the focus, it controls the keyboard and screen. This is normally
transparent, but functions that directly access the keyboard and screen will not work. If sys is reset with
importlib.reload(sys), IDLE’s changes are lost and things like input, raw_input, and print will not work
correctly.

With IDLE’s Shell, one enters, edits, and recalls complete statements. Some consoles only work with a
single physical line at a time. IDLE uses exec to run each statement. As a result, '__builtins__' is always
defined for each statement.

Running without a subprocess

By default, IDLE executes user code in a separate subprocess via a socket, which uses the internal loopback
interface. This connection is not externally visible and no data is sent to or received from the Internet. If
firewall software complains anyway, you can ignore it.

If the attempt to make the socket connection fails, Idle will notify you. Such failures are sometimes transient,
but if persistent, the problem may be either a firewall blocking the connection or misconfiguration of a
particular system. Until the problem is fixed, one can run Idle with the -n command line switch.

If IDLE is started with the -n command line switch it will run in a single process and will not create the
subprocess which runs the RPC Python execution server. This can be useful if Python cannot create the

25.5. IDLE 1349

The Python Library Reference, Release 3.5.7

subprocess or the RPC socket interface on your platform. However, in this mode user code is not isolated
from IDLE itself. Also, the environment is not restarted when Run/Run Module (F5) is selected. If your
code has been modified, you must reload() the affected modules and re-import any specific items (e.g. from
foo import baz) if the changes are to take effect. For these reasons, it is preferable to run IDLE with the
default subprocess if at all possible.

Deprecated since version 3.4.

25.5.4 Help and preferences

Additional help sources

IDLE includes a help menu entry called “Python Docs” that will open the extensive sources of help, including
tutorials, available at docs.python.org. Selected URLs can be added or removed from the help menu at any
time using the Configure IDLE dialog. See the IDLE help option in the help menu of IDLE for more
information.

Setting preferences

The font preferences, highlighting, keys, and general preferences can be changed via Configure IDLE on the
Option menu. Keys can be user defined; IDLE ships with four built-in key sets. In addition, a user can
create a custom key set in the Configure IDLE dialog under the keys tab.

Extensions

IDLE contains an extension facility. Preferences for extensions can be changed with Configure Extensions.
See the beginning of config-extensions.def in the idlelib directory for further information. The default exten-
sions are currently:

• FormatParagraph

• AutoExpand

• ZoomHeight

• ScriptBinding

• CallTips

• ParenMatch

• AutoComplete

• CodeContext

• RstripExtension

25.6 Other Graphical User Interface Packages

Major cross-platform (Windows, Mac OS X, Unix-like) GUI toolkits are available for Python:

See also:

PyGObject PyGObject provides introspection bindings for C libraries using GObject. One of these libraries
is the GTK+ 3 widget set. GTK+ comes with many more widgets than Tkinter provides. An online
Python GTK+ 3 Tutorial is available.

1350 Chapter 25. Graphical User Interfaces with Tk

https://wiki.gnome.org/Projects/PyGObject
https://developer.gnome.org/gobject/stable/
http://www.gtk.org/
https://python-gtk-3-tutorial.readthedocs.org/en/latest/

The Python Library Reference, Release 3.5.7

PyGTK PyGTK provides bindings for an older version of the library, GTK+ 2. It provides an object
oriented interface that is slightly higher level than the C one. There are also bindings to GNOME. An
online tutorial is available.

PyQt PyQt is a sip-wrapped binding to the Qt toolkit. Qt is an extensive C++ GUI application development
framework that is available for Unix, Windows and Mac OS X. sip is a tool for generating bindings for
C++ libraries as Python classes, and is specifically designed for Python.

PySide PySide is a newer binding to the Qt toolkit, provided by Nokia. Compared to PyQt, its licensing
scheme is friendlier to non-open source applications.

wxPython wxPython is a cross-platform GUI toolkit for Python that is built around the popular wxWidgets
(formerly wxWindows) C++ toolkit. It provides a native look and feel for applications on Windows,
Mac OS X, and Unix systems by using each platform’s native widgets where ever possible, (GTK+ on
Unix-like systems). In addition to an extensive set of widgets, wxPython provides classes for online
documentation and context sensitive help, printing, HTML viewing, low-level device context drawing,
drag and drop, system clipboard access, an XML-based resource format and more, including an ever
growing library of user-contributed modules.

PyGTK, PyQt, and wxPython, all have a modern look and feel and more widgets than Tkinter. In addition,
there are many other GUI toolkits for Python, both cross-platform, and platform-specific. See the GUI
Programming page in the Python Wiki for a much more complete list, and also for links to documents where
the different GUI toolkits are compared.

25.6. Other Graphical User Interface Packages 1351

http://www.pygtk.org/
https://www.gnome.org/
http://www.pygtk.org/pygtk2tutorial/index.html
https://riverbankcomputing.com/software/pyqt/intro
https://wiki.qt.io/PySide
http://www.wxpython.org
https://www.wxwidgets.org/
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming

The Python Library Reference, Release 3.5.7

1352 Chapter 25. Graphical User Interfaces with Tk

CHAPTER

TWENTYSIX

DEVELOPMENT TOOLS

The modules described in this chapter help you write software. For example, the pydoc module takes a
module and generates documentation based on the module’s contents. The doctest and unittest modules
contains frameworks for writing unit tests that automatically exercise code and verify that the expected
output is produced. 2to3 can translate Python 2.x source code into valid Python 3.x code.

The list of modules described in this chapter is:

26.1 typing — Support for type hints

New in version 3.5.

Source code: Lib/typing.py

This module supports type hints as specified by PEP 484. The most fundamental support consists of the
types Any, Union, Tuple, Callable, TypeVar, and Generic. For full specification please see PEP 484. For a
simplified introduction to type hints see PEP 483.

The function below takes and returns a string and is annotated as follows:

def greeting(name: str) -> str:
return 'Hello ' + name

In the function greeting, the argument name is expected to be of type str and the return type str. Subtypes
are accepted as arguments.

26.1.1 Type aliases

A type alias is defined by assigning the type to the alias. In this example, Vector and List[float] will be
treated as interchangeable synonyms:

from typing import List
Vector = List[float]

def scale(scalar: float, vector: Vector) -> Vector:
return [scalar * num for num in vector]

typechecks; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])

Type aliases are useful for simplifying complex type signatures. For example:

1353

https://github.com/python/cpython/tree/3.5/Lib/typing.py
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0483

The Python Library Reference, Release 3.5.7

from typing import Dict, Tuple, List

ConnectionOptions = Dict[str, str]
Address = Tuple[str, int]
Server = Tuple[Address, ConnectionOptions]

def broadcast_message(message: str, servers: List[Server]) -> None:
...

The static type checker will treat the previous type signature as
being exactly equivalent to this one.
def broadcast_message(

message: str,
servers: List[Tuple[Tuple[str, int], Dict[str, str]]]) -> None:

...

Note that None as a type hint is a special case and is replaced by type(None).

26.1.2 NewType

Use the NewType() helper function to create distinct types:

from typing import NewType

UserId = NewType('UserId', int)
some_id = UserId(524313)

The static type checker will treat the new type as if it were a subclass of the original type. This is useful in
helping catch logical errors:

def get_user_name(user_id: UserId) -> str:
...

typechecks
user_a = get_user_name(UserId(42351))

does not typecheck; an int is not a UserId
user_b = get_user_name(-1)

You may still perform all int operations on a variable of type UserId, but the result will always be of type
int. This lets you pass in a UserId wherever an int might be expected, but will prevent you from accidentally
creating a UserId in an invalid way:

'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)

Note that these checks are enforced only by the static type checker. At runtime the statement Derived
= NewType('Derived', Base) will make Derived a function that immediately returns whatever parameter
you pass it. That means the expression Derived(some_value) does not create a new class or introduce any
overhead beyond that of a regular function call.

More precisely, the expression some_value is Derived(some_value) is always true at runtime.

This also means that it is not possible to create a subtype of Derived since it is an identity function at
runtime, not an actual type. Similarly, it is not possible to create another NewType() based on a Derived
type:

1354 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

from typing import NewType

UserId = NewType('UserId', int)

Fails at runtime and does not typecheck
class AdminUserId(UserId): pass

Also does not typecheck
ProUserId = NewType('ProUserId', UserId)

See PEP 484 for more details.

Note: Recall that the use of a type alias declares two types to be equivalent to one another. Doing Alias
= Original will make the static type checker treat Alias as being exactly equivalent to Original in all cases.
This is useful when you want to simplify complex type signatures.

In contrast, NewType declares one type to be a subtype of another. Doing Derived = NewType('Derived',
Original) will make the static type checker treat Derived as a subclass of Original, which means a value of
type Original cannot be used in places where a value of type Derived is expected. This is useful when you
want to prevent logic errors with minimal runtime cost.

26.1.3 Callable

Frameworks expecting callback functions of specific signatures might be type hinted using
Callable[[Arg1Type, Arg2Type], ReturnType].

For example:

from typing import Callable

def feeder(get_next_item: Callable[[], str]) -> None:
Body

def async_query(on_success: Callable[[int], None],
on_error: Callable[[int, Exception], None]) -> None:

Body

It is possible to declare the return type of a callable without specifying the call signature by substituting a
literal ellipsis for the list of arguments in the type hint: Callable[..., ReturnType].

26.1.4 Generics

Since type information about objects kept in containers cannot be statically inferred in a generic way, abstract
base classes have been extended to support subscription to denote expected types for container elements.

from typing import Mapping, Sequence

def notify_by_email(employees: Sequence[Employee],
overrides: Mapping[str, str]) -> None: ...

Generics can be parametrized by using a new factory available in typing called TypeVar.

26.1. typing — Support for type hints 1355

https://www.python.org/dev/peps/pep-0484

The Python Library Reference, Release 3.5.7

from typing import Sequence, TypeVar

T = TypeVar('T') # Declare type variable

def first(l: Sequence[T]) -> T: # Generic function
return l[0]

26.1.5 User-defined generic types

A user-defined class can be defined as a generic class.

from typing import TypeVar, Generic
from logging import Logger

T = TypeVar('T')

class LoggedVar(Generic[T]):
def __init__(self, value: T, name: str, logger: Logger) -> None:

self.name = name
self.logger = logger
self.value = value

def set(self, new: T) -> None:
self.log('Set ' + repr(self.value))
self.value = new

def get(self) -> T:
self.log('Get ' + repr(self.value))
return self.value

def log(self, message: str) -> None:
self.logger.info('%s: %s', self.name, message)

Generic[T] as a base class defines that the class LoggedVar takes a single type parameter T . This also makes
T valid as a type within the class body.

The Generic base class uses a metaclass that defines __getitem__() so that LoggedVar[t] is valid as a type:

from typing import Iterable

def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
for var in vars:

var.set(0)

A generic type can have any number of type variables, and type variables may be constrained:

from typing import TypeVar, Generic
...

T = TypeVar('T')
S = TypeVar('S', int, str)

class StrangePair(Generic[T, S]):
...

Each type variable argument to Generic must be distinct. This is thus invalid:

1356 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

from typing import TypeVar, Generic
...

T = TypeVar('T')

class Pair(Generic[T, T]): # INVALID
...

You can use multiple inheritance with Generic:

from typing import TypeVar, Generic, Sized

T = TypeVar('T')

class LinkedList(Sized, Generic[T]):
...

When inheriting from generic classes, some type variables could be fixed:

from typing import TypeVar, Mapping

T = TypeVar('T')

class MyDict(Mapping[str, T]):
...

In this case MyDict has a single parameter, T.

Using a generic class without specifying type parameters assumes Any for each position. In the following
example, MyIterable is not generic but implicitly inherits from Iterable[Any]:

from typing import Iterable

class MyIterable(Iterable): # Same as Iterable[Any]

User defined generic type aliases are also supported. Examples:

from typing import TypeVar, Iterable, Tuple, Union
S = TypeVar('S')
Response = Union[Iterable[S], int]

Return type here is same as Union[Iterable[str], int]
def response(query: str) -> Response[str]:

...

T = TypeVar('T', int, float, complex)
Vec = Iterable[Tuple[T, T]]

def inproduct(v: Vec[T]) -> T: # Same as Iterable[Tuple[T, T]]
return sum(x*y for x, y in v)

The metaclass used by Generic is a subclass of abc.ABCMeta. A generic class can be an ABC by including
abstract methods or properties, and generic classes can also have ABCs as base classes without a metaclass
conflict. Generic metaclasses are not supported. The outcome of parameterizing generics is cached, and
most types in the typing module are hashable and comparable for equality.

26.1. typing — Support for type hints 1357

The Python Library Reference, Release 3.5.7

26.1.6 The Any type

A special kind of type is Any. A static type checker will treat every type as being compatible with Any and
Any as being compatible with every type.

This means that it is possible to perform any operation or method call on a value of type on Any and assign
it to any variable:

from typing import Any

a = None # type: Any
a = [] # OK
a = 2 # OK

s = '' # type: str
s = a # OK

def foo(item: Any) -> int:
Typechecks; 'item' could be any type,
and that type might have a 'bar' method
item.bar()
...

Notice that no typechecking is performed when assigning a value of type Any to a more precise type. For
example, the static type checker did not report an error when assigning a to s even though s was declared
to be of type str and receives an int value at runtime!

Furthermore, all functions without a return type or parameter types will implicitly default to using Any:

def legacy_parser(text):
...
return data

A static type checker will treat the above
as having the same signature as:
def legacy_parser(text: Any) -> Any:

...
return data

This behavior allows Any to be used as an escape hatch when you need to mix dynamically and statically
typed code.

Contrast the behavior of Any with the behavior of object. Similar to Any, every type is a subtype of object.
However, unlike Any, the reverse is not true: object is not a subtype of every other type.

That means when the type of a value is object, a type checker will reject almost all operations on it, and
assigning it to a variable (or using it as a return value) of a more specialized type is a type error. For
example:

def hash_a(item: object) -> int:
Fails; an object does not have a 'magic' method.
item.magic()
...

def hash_b(item: Any) -> int:
Typechecks
item.magic()
...

(continues on next page)

1358 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

Typechecks, since ints and strs are subclasses of object
hash_a(42)
hash_a("foo")

Typechecks, since Any is compatible with all types
hash_b(42)
hash_b("foo")

Use object to indicate that a value could be any type in a typesafe manner. Use Any to indicate that a value
is dynamically typed.

26.1.7 Classes, functions, and decorators

The module defines the following classes, functions and decorators:

class typing.TypeVar
Type variable.

Usage:

T = TypeVar('T') # Can be anything
A = TypeVar('A', str, bytes) # Must be str or bytes

Type variables exist primarily for the benefit of static type checkers. They serve as the parameters
for generic types as well as for generic function definitions. See class Generic for more information on
generic types. Generic functions work as follows:

def repeat(x: T, n: int) -> Sequence[T]:
"""Return a list containing n references to x."""
return [x]*n

def longest(x: A, y: A) -> A:
"""Return the longest of two strings."""
return x if len(x) >= len(y) else y

The latter example’s signature is essentially the overloading of (str, str) -> str and (bytes, bytes) ->
bytes. Also note that if the arguments are instances of some subclass of str, the return type is still
plain str.

At runtime, isinstance(x, T) will raise TypeError. In general, isinstance() and issubclass() should not
be used with types.

Type variables may be marked covariant or contravariant by passing covariant=True or contravari-
ant=True. See PEP 484 for more details. By default type variables are invariant. Alternatively, a
type variable may specify an upper bound using bound=<type>. This means that an actual type
substituted (explicitly or implicitly) for the type variable must be a subclass of the boundary type, see
PEP 484.

class typing.Generic
Abstract base class for generic types.

A generic type is typically declared by inheriting from an instantiation of this class with one or more
type variables. For example, a generic mapping type might be defined as:

26.1. typing — Support for type hints 1359

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484

The Python Library Reference, Release 3.5.7

class Mapping(Generic[KT, VT]):
def __getitem__(self, key: KT) -> VT:

...
Etc.

This class can then be used as follows:

X = TypeVar('X')
Y = TypeVar('Y')

def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
try:

return mapping[key]
except KeyError:

return default

class typing.Type(Generic[CT_co])
A variable annotated with C may accept a value of type C. In contrast, a variable annotated with
Type[C] may accept values that are classes themselves – specifically, it will accept the class object of
C. For example:

a = 3 # Has type 'int'
b = int # Has type 'Type[int]'
c = type(a) # Also has type 'Type[int]'

Note that Type[C] is covariant:

class User: ...
class BasicUser(User): ...
class ProUser(User): ...
class TeamUser(User): ...

Accepts User, BasicUser, ProUser, TeamUser, ...
def make_new_user(user_class: Type[User]) -> User:

...
return user_class()

The fact that Type[C] is covariant implies that all subclasses of C should implement the same con-
structor signature and class method signatures as C. The type checker should flag violations of this, but
should also allow constructor calls in subclasses that match the constructor calls in the indicated base
class. How the type checker is required to handle this particular case may change in future revisions
of PEP 484.

The only legal parameters for Type are classes, unions of classes, and Any. For example:

def new_non_team_user(user_class: Type[Union[BaseUser, ProUser]]): ...

Type[Any] is equivalent to Type which in turn is equivalent to type, which is the root of Python’s
metaclass hierarchy.

class typing.Iterable(Generic[T_co])
A generic version of collections.abc.Iterable.

class typing.Iterator(Iterable[T_co])
A generic version of collections.abc.Iterator.

class typing.Reversible(Iterable[T_co])
A generic version of collections.abc.Reversible.

1360 Chapter 26. Development Tools

https://www.python.org/dev/peps/pep-0484

The Python Library Reference, Release 3.5.7

class typing.SupportsInt
An ABC with one abstract method __int__.

class typing.SupportsFloat
An ABC with one abstract method __float__.

class typing.SupportsAbs
An ABC with one abstract method __abs__ that is covariant in its return type.

class typing.SupportsRound
An ABC with one abstract method __round__ that is covariant in its return type.

class typing.Container(Generic[T_co])
A generic version of collections.abc.Container.

class typing.Hashable
An alias to collections.abc.Hashable

class typing.Sized
An alias to collections.abc.Sized

class typing.AbstractSet(Sized, Iterable[T_co], Container[T_co])
A generic version of collections.abc.Set.

class typing.MutableSet(AbstractSet[T])
A generic version of collections.abc.MutableSet.

class typing.Mapping(Sized, Iterable[KT], Container[KT], Generic[VT_co])
A generic version of collections.abc.Mapping.

class typing.MutableMapping(Mapping[KT, VT])
A generic version of collections.abc.MutableMapping.

class typing.Sequence(Sized, Iterable[T_co], Container[T_co])
A generic version of collections.abc.Sequence.

class typing.MutableSequence(Sequence[T])
A generic version of collections.abc.MutableSequence.

class typing.ByteString(Sequence[int])
A generic version of collections.abc.ByteString.

This type represents the types bytes, bytearray, and memoryview.

As a shorthand for this type, bytes can be used to annotate arguments of any of the types mentioned
above.

class typing.Deque(deque, MutableSequence[T])
A generic version of collections.deque.

New in version 3.5.4.

class typing.List(list, MutableSequence[T])
Generic version of list. Useful for annotating return types. To annotate arguments it is preferred to
use abstract collection types such as Mapping, Sequence, or AbstractSet.

This type may be used as follows:

T = TypeVar('T', int, float)

def vec2(x: T, y: T) -> List[T]:
return [x, y]

(continues on next page)

26.1. typing — Support for type hints 1361

The Python Library Reference, Release 3.5.7

(continued from previous page)

def keep_positives(vector: Sequence[T]) -> List[T]:
return [item for item in vector if item > 0]

class typing.Set(set, MutableSet[T])
A generic version of builtins.set.

class typing.FrozenSet(frozenset, AbstractSet[T_co])
A generic version of builtins.frozenset.

class typing.MappingView(Sized, Iterable[T_co])
A generic version of collections.abc.MappingView.

class typing.KeysView(MappingView[KT_co], AbstractSet[KT_co])
A generic version of collections.abc.KeysView.

class typing.ItemsView(MappingView, Generic[KT_co, VT_co])
A generic version of collections.abc.ItemsView.

class typing.ValuesView(MappingView[VT_co])
A generic version of collections.abc.ValuesView.

class typing.Awaitable(Generic[T_co])
A generic version of collections.abc.Awaitable.

class typing.Coroutine(Awaitable[V_co], Generic[T_co T_contra, V_co])
A generic version of collections.abc.Coroutine. The variance and order of type variables correspond to
those of Generator, for example:

from typing import List, Coroutine
c = None # type: Coroutine[List[str], str, int]
...
x = c.send('hi') # type: List[str]
async def bar() -> None:

x = await c # type: int

class typing.AsyncIterable(Generic[T_co])
A generic version of collections.abc.AsyncIterable.

class typing.AsyncIterator(AsyncIterable[T_co])
A generic version of collections.abc.AsyncIterator.

class typing.Dict(dict, MutableMapping[KT, VT])
A generic version of dict. The usage of this type is as follows:

def get_position_in_index(word_list: Dict[str, int], word: str) -> int:
return word_list[word]

class typing.DefaultDict(collections.defaultdict, MutableMapping[KT, VT])
A generic version of collections.defaultdict

class typing.Generator(Iterator[T_co], Generic[T_co, T_contra, V_co])
A generator can be annotated by the generic type Generator[YieldType, SendType, ReturnType]. For
example:

def echo_round() -> Generator[int, float, str]:
sent = yield 0
while sent >= 0:

sent = yield round(sent)
return 'Done'

1362 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

Note that unlike many other generics in the typing module, the SendType of Generator behaves
contravariantly, not covariantly or invariantly.

If your generator will only yield values, set the SendType and ReturnType to None:

def infinite_stream(start: int) -> Generator[int, None, None]:
while True:

yield start
start += 1

Alternatively, annotate your generator as having a return type of either Iterable[YieldType] or Itera-
tor[YieldType]:

def infinite_stream(start: int) -> Iterator[int]:
while True:

yield start
start += 1

class typing.AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra])
An async generator can be annotated by the generic type AsyncGenerator[YieldType, SendType]. For
example:

async def echo_round() -> AsyncGenerator[int, float]:
sent = yield 0
while sent >= 0.0:

rounded = await round(sent)
sent = yield rounded

Unlike normal generators, async generators cannot return a value, so there is no ReturnType type
parameter. As with Generator, the SendType behaves contravariantly.

If your generator will only yield values, set the SendType to None:

async def infinite_stream(start: int) -> AsyncGenerator[int, None]:
while True:

yield start
start = await increment(start)

Alternatively, annotate your generator as having a return type of either AsyncIterable[YieldType] or
AsyncIterator[YieldType]:

async def infinite_stream(start: int) -> AsyncIterator[int]:
while True:

yield start
start = await increment(start)

New in version 3.5.4.

class typing.Text
Text is an alias for str. It is provided to supply a forward compatible path for Python 2 code: in
Python 2, Text is an alias for unicode.

Use Text to indicate that a value must contain a unicode string in a manner that is compatible with
both Python 2 and Python 3:

def add_unicode_checkmark(text: Text) -> Text:
return text + u' \u2713'

26.1. typing — Support for type hints 1363

The Python Library Reference, Release 3.5.7

class typing.io
Wrapper namespace for I/O stream types.

This defines the generic type IO[AnyStr] and aliases TextIO and BinaryIO for respectively IO[str] and
IO[bytes]. These representing the types of I/O streams such as returned by open().

class typing.re
Wrapper namespace for regular expression matching types.

This defines the type aliases Pattern and Match which correspond to the return types from re.compile()
and re.match(). These types (and the corresponding functions) are generic in AnyStr and can be made
specific by writing Pattern[str], Pattern[bytes], Match[str], or Match[bytes].

typing.NamedTuple(typename, fields)
Typed version of namedtuple.

Usage:

Employee = typing.NamedTuple('Employee', [('name', str), ('id', int)])

This is equivalent to:

Employee = collections.namedtuple('Employee', ['name', 'id'])

The resulting class has one extra attribute: _field_types, giving a dict mapping field names to types.
(The field names are in the _fields attribute, which is part of the namedtuple API.)

typing.NewType(typ)
A helper function to indicate a distinct types to a typechecker, see NewType. At runtime it returns a
function that returns its argument. Usage:

UserId = NewType('UserId', int)
first_user = UserId(1)

typing.cast(typ, val)
Cast a value to a type.

This returns the value unchanged. To the type checker this signals that the return value has the
designated type, but at runtime we intentionally don’t check anything (we want this to be as fast as
possible).

typing.get_type_hints(obj[, globals[, locals]])
Return a dictionary containing type hints for a function, method, module or class object.

This is often the same as obj.__annotations__. In addition, forward references encoded as string
literals are handled by evaluating them in globals and locals namespaces. If necessary, Optional[t] is
added for function and method annotations if a default value equal to None is set. For a class C, return
a dictionary constructed by merging all the __annotations__ along C.__mro__ in reverse order.

@typing.overload
The @overload decorator allows describing functions and methods that support multiple different com-
binations of argument types. A series of @overload-decorated definitions must be followed by exactly
one non-@overload-decorated definition (for the same function/method). The @overload-decorated
definitions are for the benefit of the type checker only, since they will be overwritten by the non-
@overload-decorated definition, while the latter is used at runtime but should be ignored by a type
checker. At runtime, calling a @overload-decorated function directly will raise NotImplementedError.
An example of overload that gives a more precise type than can be expressed using a union or a type
variable:

1364 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

@overload
def process(response: None) -> None:

...
@overload
def process(response: int) -> Tuple[int, str]:

...
@overload
def process(response: bytes) -> str:

...
def process(response):

<actual implementation>

See PEP 484 for details and comparison with other typing semantics.

@typing.no_type_check(arg)
Decorator to indicate that annotations are not type hints.

The argument must be a class or function; if it is a class, it applies recursively to all methods defined
in that class (but not to methods defined in its superclasses or subclasses).

This mutates the function(s) in place.

@typing.no_type_check_decorator(decorator)
Decorator to give another decorator the no_type_check() effect.

This wraps the decorator with something that wraps the decorated function in no_type_check().

typing.Any
Special type indicating an unconstrained type.

• Every type is compatible with Any.

• Any is compatible with every type.

typing.Union
Union type; Union[X, Y] means either X or Y.

To define a union, use e.g. Union[int, str]. Details:

• The arguments must be types and there must be at least one.

• Unions of unions are flattened, e.g.:

Union[Union[int, str], float] == Union[int, str, float]

• Unions of a single argument vanish, e.g.:

Union[int] == int # The constructor actually returns int

• Redundant arguments are skipped, e.g.:

Union[int, str, int] == Union[int, str]

• When comparing unions, the argument order is ignored, e.g.:

Union[int, str] == Union[str, int]

• When a class and its subclass are present, the latter is skipped, e.g.:

Union[int, object] == object

• You cannot subclass or instantiate a union.

26.1. typing — Support for type hints 1365

https://www.python.org/dev/peps/pep-0484

The Python Library Reference, Release 3.5.7

• You cannot write Union[X][Y].

• You can use Optional[X] as a shorthand for Union[X, None].

typing.Optional
Optional type.

Optional[X] is equivalent to Union[X, None].

Note that this is not the same concept as an optional argument, which is one that has a default. An
optional argument with a default needn’t use the Optional qualifier on its type annotation (although
it is inferred if the default is None). A mandatory argument may still have an Optional type if an
explicit value of None is allowed.

typing.Tuple
Tuple type; Tuple[X, Y] is the type of a tuple of two items with the first item of type X and the second
of type Y.

Example: Tuple[T1, T2] is a tuple of two elements corresponding to type variables T1 and T2.
Tuple[int, float, str] is a tuple of an int, a float and a string.

To specify a variable-length tuple of homogeneous type, use literal ellipsis, e.g. Tuple[int, ...]. A plain
Tuple is equivalent to Tuple[Any, ...], and in turn to tuple.

typing.Callable
Callable type; Callable[[int], str] is a function of (int) -> str.

The subscription syntax must always be used with exactly two values: the argument list and the return
type. The argument list must be a list of types or an ellipsis; the return type must be a single type.

There is no syntax to indicate optional or keyword arguments; such function types are rarely used as
callback types. Callable[..., ReturnType] (literal ellipsis) can be used to type hint a callable taking any
number of arguments and returning ReturnType. A plain Callable is equivalent to Callable[..., Any],
and in turn to collections.abc.Callable.

typing.ClassVar
Special type construct to mark class variables.

As introduced in PEP 526, a variable annotation wrapped in ClassVar indicates that a given attribute
is intended to be used as a class variable and should not be set on instances of that class. Usage:

class Starship:
stats = {} # type: ClassVar[Dict[str, int]] # class variable
damage = 10 # type: int # instance variable

ClassVar accepts only types and cannot be further subscribed.

ClassVar is not a class itself, and should not be used with isinstance() or issubclass(). Note that
ClassVar does not change Python runtime behavior; it can be used by 3rd party type checkers, so that
the following code might flagged as an error by those:

enterprise_d = Starship(3000)
enterprise_d.stats = {} # Error, setting class variable on instance
Starship.stats = {} # This is OK

New in version 3.5.3.

typing.AnyStr
AnyStr is a type variable defined as AnyStr = TypeVar('AnyStr', str, bytes).

It is meant to be used for functions that may accept any kind of string without allowing different kinds
of strings to mix. For example:

1366 Chapter 26. Development Tools

https://www.python.org/dev/peps/pep-0526

The Python Library Reference, Release 3.5.7

def concat(a: AnyStr, b: AnyStr) -> AnyStr:
return a + b

concat(u"foo", u"bar") # Ok, output has type 'unicode'
concat(b"foo", b"bar") # Ok, output has type 'bytes'
concat(u"foo", b"bar") # Error, cannot mix unicode and bytes

typing.TYPE_CHECKING
A special constant that is assumed to be True by 3rd party static type checkers. It is False at runtime.
Usage:

if TYPE_CHECKING:
import expensive_mod

def fun(arg: 'expensive_mod.SomeType') -> None:
local_var: expensive_mod.AnotherType = other_fun()

Note that the first type annotation must be enclosed in quotes, making it a “forward reference”, to hide
the expensive_mod reference from the interpreter runtime. Type annotations for local variables are
not evaluated, so the second annotation does not need to be enclosed in quotes.

26.2 pydoc — Documentation generator and online help system

Source code: Lib/pydoc.py

The pydoc module automatically generates documentation from Python modules. The documentation can
be presented as pages of text on the console, served to a Web browser, or saved to HTML files.

For modules, classes, functions and methods, the displayed documentation is derived from the docstring
(i.e. the __doc__ attribute) of the object, and recursively of its documentable members. If there is no
docstring, pydoc tries to obtain a description from the block of comment lines just above the definition of
the class, function or method in the source file, or at the top of the module (see inspect.getcomments()).

The built-in function help() invokes the online help system in the interactive interpreter, which uses pydoc
to generate its documentation as text on the console. The same text documentation can also be viewed from
outside the Python interpreter by running pydoc as a script at the operating system’s command prompt.
For example, running

pydoc sys

at a shell prompt will display documentation on the sys module, in a style similar to the manual pages shown
by the Unix man command. The argument to pydoc can be the name of a function, module, or package, or
a dotted reference to a class, method, or function within a module or module in a package. If the argument
to pydoc looks like a path (that is, it contains the path separator for your operating system, such as a slash
in Unix), and refers to an existing Python source file, then documentation is produced for that file.

Note: In order to find objects and their documentation, pydoc imports the module(s) to be docu-
mented. Therefore, any code on module level will be executed on that occasion. Use an if __name__
== '__main__': guard to only execute code when a file is invoked as a script and not just imported.

When printing output to the console, pydoc attempts to paginate the output for easier reading. If the
PAGER environment variable is set, pydoc will use its value as a pagination program.

26.2. pydoc — Documentation generator and online help system 1367

https://github.com/python/cpython/tree/3.5/Lib/pydoc.py

The Python Library Reference, Release 3.5.7

Specifying a -w flag before the argument will cause HTML documentation to be written out to a file in the
current directory, instead of displaying text on the console.

Specifying a -k flag before the argument will search the synopsis lines of all available modules for the keyword
given as the argument, again in a manner similar to the Unix man command. The synopsis line of a module
is the first line of its documentation string.

You can also use pydoc to start an HTTP server on the local machine that will serve documentation to
visiting Web browsers. pydoc -p 1234 will start a HTTP server on port 1234, allowing you to browse the
documentation at http://localhost:1234/ in your preferred Web browser. Specifying 0 as the port number
will select an arbitrary unused port.

pydoc -b will start the server and additionally open a web browser to a module index page. Each served
page has a navigation bar at the top where you can Get help on an individual item, Search all modules with
a keyword in their synopsis line, and go to the Module index, Topics and Keywords pages.

When pydoc generates documentation, it uses the current environment and path to locate modules. Thus,
invoking pydoc spam documents precisely the version of the module you would get if you started the Python
interpreter and typed import spam.

Module docs for core modules are assumed to reside in https://docs.python.org/X.Y/library/ where X and
Y are the major and minor version numbers of the Python interpreter. This can be overridden by setting
the PYTHONDOCS environment variable to a different URL or to a local directory containing the Library
Reference Manual pages.

Changed in version 3.2: Added the -b option.

Changed in version 3.3: The -g command line option was removed.

Changed in version 3.4: pydoc now uses inspect.signature() rather than inspect.getfullargspec() to extract
signature information from callables.

26.3 doctest — Test interactive Python examples

Source code: Lib/doctest.py

The doctest module searches for pieces of text that look like interactive Python sessions, and then executes
those sessions to verify that they work exactly as shown. There are several common ways to use doctest:

• To check that a module’s docstrings are up-to-date by verifying that all interactive examples still work
as documented.

• To perform regression testing by verifying that interactive examples from a test file or a test object
work as expected.

• To write tutorial documentation for a package, liberally illustrated with input-output examples. De-
pending on whether the examples or the expository text are emphasized, this has the flavor of “literate
testing” or “executable documentation”.

Here’s a complete but small example module:

"""
This is the "example" module.

The example module supplies one function, factorial(). For example,

>>> factorial(5)

(continues on next page)

1368 Chapter 26. Development Tools

https://github.com/python/cpython/tree/3.5/Lib/doctest.py

The Python Library Reference, Release 3.5.7

(continued from previous page)

120
"""

def factorial(n):
"""Return the factorial of n, an exact integer >= 0.

>>> [factorial(n) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> factorial(30)
265252859812191058636308480000000
>>> factorial(-1)
Traceback (most recent call last):

...
ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

...
ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

...
OverflowError: n too large
"""

import math
if not n >= 0:

raise ValueError("n must be >= 0")
if math.floor(n) != n:

raise ValueError("n must be exact integer")
if n+1 == n: # catch a value like 1e300

raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:

result *= factor
factor += 1

return result

if __name__ == "__main__":
import doctest
doctest.testmod()

If you run example.py directly from the command line, doctest works its magic:

$ python example.py
$

There’s no output! That’s normal, and it means all the examples worked. Pass -v to the script, and doctest
prints a detailed log of what it’s trying, and prints a summary at the end:

26.3. doctest — Test interactive Python examples 1369

The Python Library Reference, Release 3.5.7

$ python example.py -v
Trying:

factorial(5)
Expecting:

120
ok
Trying:

[factorial(n) for n in range(6)]
Expecting:

[1, 1, 2, 6, 24, 120]
ok

And so on, eventually ending with:

Trying:
factorial(1e100)

Expecting:
Traceback (most recent call last):

...
OverflowError: n too large

ok
2 items passed all tests:
1 tests in __main__
8 tests in __main__.factorial

9 tests in 2 items.
9 passed and 0 failed.
Test passed.
$

That’s all you need to know to start making productive use of doctest! Jump in. The following sections
provide full details. Note that there are many examples of doctests in the standard Python test suite and
libraries. Especially useful examples can be found in the standard test file Lib/test/test_doctest.py.

26.3.1 Simple Usage: Checking Examples in Docstrings

The simplest way to start using doctest (but not necessarily the way you’ll continue to do it) is to end each
module M with:

if __name__ == "__main__":
import doctest
doctest.testmod()

doctest then examines docstrings in module M.

Running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won’t display anything unless an example fails, in which case the failing example(s) and the cause(s)
of the failure(s) are printed to stdout, and the final line of output is ***Test Failed*** N failures., where N
is the number of examples that failed.

Run it with the -v switch instead:

python M.py -v

1370 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

and a detailed report of all examples tried is printed to standard output, along with assorted summaries at
the end.

You can force verbose mode by passing verbose=True to testmod(), or prohibit it by passing verbose=False.
In either of those cases, sys.argv is not examined by testmod() (so passing -v or not has no effect).

There is also a command line shortcut for running testmod(). You can instruct the Python interpreter to
run the doctest module directly from the standard library and pass the module name(s) on the command
line:

python -m doctest -v example.py

This will import example.py as a standalone module and run testmod() on it. Note that this may not work
correctly if the file is part of a package and imports other submodules from that package.

For more information on testmod(), see section Basic API.

26.3.2 Simple Usage: Checking Examples in a Text File

Another simple application of doctest is testing interactive examples in a text file. This can be done with
the testfile() function:

import doctest
doctest.testfile("example.txt")

That short script executes and verifies any interactive Python examples contained in the file example.txt.
The file content is treated as if it were a single giant docstring; the file doesn’t need to contain a Python
program! For example, perhaps example.txt contains this:

The ``example`` module
======================

Using ``factorial``

This is an example text file in reStructuredText format. First import
``factorial`` from the ``example`` module:

>>> from example import factorial

Now use it:

>>> factorial(6)
120

Running doctest.testfile("example.txt") then finds the error in this documentation:

File "./example.txt", line 14, in example.txt
Failed example:

factorial(6)
Expected:

120
Got:

720

As with testmod(), testfile() won’t display anything unless an example fails. If an example does fail, then
the failing example(s) and the cause(s) of the failure(s) are printed to stdout, using the same format as
testmod().

26.3. doctest — Test interactive Python examples 1371

The Python Library Reference, Release 3.5.7

By default, testfile() looks for files in the calling module’s directory. See section Basic API for a description
of the optional arguments that can be used to tell it to look for files in other locations.

Like testmod(), testfile()’s verbosity can be set with the -v command-line switch or with the optional keyword
argument verbose.

There is also a command line shortcut for running testfile(). You can instruct the Python interpreter to run
the doctest module directly from the standard library and pass the file name(s) on the command line:

python -m doctest -v example.txt

Because the file name does not end with .py, doctest infers that it must be run with testfile(), not testmod().

For more information on testfile(), see section Basic API.

26.3.3 How It Works

This section examines in detail how doctest works: which docstrings it looks at, how it finds interactive
examples, what execution context it uses, how it handles exceptions, and how option flags can be used to
control its behavior. This is the information that you need to know to write doctest examples; for information
about actually running doctest on these examples, see the following sections.

Which Docstrings Are Examined?

The module docstring, and all function, class and method docstrings are searched. Objects imported into
the module are not searched.

In addition, if M.__test__ exists and “is true”, it must be a dict, and each entry maps a (string) name to
a function object, class object, or string. Function and class object docstrings found from M.__test__ are
searched, and strings are treated as if they were docstrings. In output, a key K in M.__test__ appears
with name

<name of M>.__test__.K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested
classes.

CPython implementation detail: Prior to version 3.4, extension modules written in C were not fully searched
by doctest.

How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine, but doctest isn’t trying to do an
exact emulation of any specific Python shell.

>>> # comments are ignored
>>> x = 12
>>> x
12
>>> if x == 13:
... print("yes")
... else:
... print("no")
... print("NO")
... print("NO!!!")

(continues on next page)

1372 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

...
no
NO
NO!!!
>>>

Any expected output must immediately follow the final '>>> ' or '... ' line containing the code, and the
expected output (if any) extends to the next '>>> ' or all-whitespace line.

The fine print:

• Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of
expected output. If expected output does contain a blank line, put <BLANKLINE> in your doctest
example each place a blank line is expected.

• All hard tab characters are expanded to spaces, using 8-column tab stops. Tabs in output generated
by the tested code are not modified. Because any hard tabs in the sample output are expanded,
this means that if the code output includes hard tabs, the only way the doctest can pass is if the
NORMALIZE_WHITESPACE option or directive is in effect. Alternatively, the test can be rewritten
to capture the output and compare it to an expected value as part of the test. This handling of tabs
in the source was arrived at through trial and error, and has proven to be the least error prone way
of handling them. It is possible to use a different algorithm for handling tabs by writing a custom
DocTestParser class.

• Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different
means).

• If you continue a line via backslashing in an interactive session, or for any other reason use a backslash,
you should use a raw docstring, which will preserve your backslashes exactly as you type them:

>>> def f(x):
... r'''Backslashes in a raw docstring: m\n'''
>>> print(f.__doc__)
Backslashes in a raw docstring: m\n

Otherwise, the backslash will be interpreted as part of the string. For example, the \n above would be
interpreted as a newline character. Alternatively, you can double each backslash in the doctest version
(and not use a raw string):

>>> def f(x):
... '''Backslashes in a raw docstring: m\\n'''
>>> print(f.__doc__)
Backslashes in a raw docstring: m\n

• The starting column doesn’t matter:

>>> assert "Easy!"
>>> import math

>>> math.floor(1.9)
1

and as many leading whitespace characters are stripped from the expected output as appeared in the
initial '>>> ' line that started the example.

26.3. doctest — Test interactive Python examples 1373

The Python Library Reference, Release 3.5.7

What’s the Execution Context?

By default, each time doctest finds a docstring to test, it uses a shallow copy of M’s globals, so that running
tests doesn’t change the module’s real globals, and so that one test in M can’t leave behind crumbs that
accidentally allow another test to work. This means examples can freely use any names defined at top-level
in M, and names defined earlier in the docstring being run. Examples cannot see names defined in other
docstrings.

You can force use of your own dict as the execution context by passing globs=your_dict to testmod() or
testfile() instead.

What About Exceptions?

No problem, provided that the traceback is the only output produced by the example: just paste in the
traceback.1 Since tracebacks contain details that are likely to change rapidly (for example, exact file paths
and line numbers), this is one case where doctest works hard to be flexible in what it accepts.

Simple example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: list.remove(x): x not in list

That doctest succeeds if ValueError is raised, with the list.remove(x): x not in list detail as shown.

The expected output for an exception must start with a traceback header, which may be either of the
following two lines, indented the same as the first line of the example:

Traceback (most recent call last):
Traceback (innermost last):

The traceback header is followed by an optional traceback stack, whose contents are ignored by doctest. The
traceback stack is typically omitted, or copied verbatim from an interactive session.

The traceback stack is followed by the most interesting part: the line(s) containing the exception type and
detail. This is usually the last line of a traceback, but can extend across multiple lines if the exception has
a multi-line detail:

>>> raise ValueError('multi\n line\ndetail')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: multi
line

detail

The last three lines (starting with ValueError) are compared against the exception’s type and detail, and
the rest are ignored.

Best practice is to omit the traceback stack, unless it adds significant documentation value to the example.
So the last example is probably better as:

>>> raise ValueError('multi\n line\ndetail')
Traceback (most recent call last):

...

(continues on next page)

1 Examples containing both expected output and an exception are not supported. Trying to guess where one ends and the
other begins is too error-prone, and that also makes for a confusing test.

1374 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

ValueError: multi
line

detail

Note that tracebacks are treated very specially. In particular, in the rewritten example, the use of ... is
independent of doctest’s ELLIPSIS option. The ellipsis in that example could be left out, or could just as
well be three (or three hundred) commas or digits, or an indented transcript of a Monty Python skit.

Some details you should read once, but won’t need to remember:

• Doctest can’t guess whether your expected output came from an exception traceback or from ordinary
printing. So, e.g., an example that expects ValueError: 42 is prime will pass whether ValueError is
actually raised or if the example merely prints that traceback text. In practice, ordinary output rarely
begins with a traceback header line, so this doesn’t create real problems.

• Each line of the traceback stack (if present) must be indented further than the first line of the example,
or start with a non-alphanumeric character. The first line following the traceback header indented the
same and starting with an alphanumeric is taken to be the start of the exception detail. Of course this
does the right thing for genuine tracebacks.

• When the IGNORE_EXCEPTION_DETAIL doctest option is specified, everything following the
leftmost colon and any module information in the exception name is ignored.

• The interactive shell omits the traceback header line for some SyntaxErrors. But doctest uses the
traceback header line to distinguish exceptions from non-exceptions. So in the rare case where you
need to test a SyntaxError that omits the traceback header, you will need to manually add the traceback
header line to your test example.

• For some SyntaxErrors, Python displays the character position of the syntax error, using a ^ marker:

>>> 1 1
File "<stdin>", line 1
1 1
^

SyntaxError: invalid syntax

Since the lines showing the position of the error come before the exception type and detail, they are
not checked by doctest. For example, the following test would pass, even though it puts the ^ marker
in the wrong location:

>>> 1 1
File "<stdin>", line 1
1 1
^

SyntaxError: invalid syntax

Option Flags

A number of option flags control various aspects of doctest’s behavior. Symbolic names for the flags are
supplied as module constants, which can be bitwise ORed together and passed to various functions. The
names can also be used in doctest directives, and may be passed to the doctest command line interface via
the -o option.

New in version 3.4: The -o command line option.

The first group of options define test semantics, controlling aspects of how doctest decides whether actual
output matches an example’s expected output:

26.3. doctest — Test interactive Python examples 1375

The Python Library Reference, Release 3.5.7

doctest.DONT_ACCEPT_TRUE_FOR_1
By default, if an expected output block contains just 1, an actual output block containing
just 1 or just True is considered to be a match, and similarly for 0 versus False. When
DONT_ACCEPT_TRUE_FOR_1 is specified, neither substitution is allowed. The default behavior
caters to that Python changed the return type of many functions from integer to boolean; doctests
expecting “little integer” output still work in these cases. This option will probably go away, but not
for several years.

doctest.DONT_ACCEPT_BLANKLINE
By default, if an expected output block contains a line containing only the string <BLANKLINE>,
then that line will match a blank line in the actual output. Because a genuinely blank line delim-
its the expected output, this is the only way to communicate that a blank line is expected. When
DONT_ACCEPT_BLANKLINE is specified, this substitution is not allowed.

doctest.NORMALIZE_WHITESPACE
When specified, all sequences of whitespace (blanks and newlines) are treated as equal. Any sequence of
whitespace within the expected output will match any sequence of whitespace within the actual output.
By default, whitespace must match exactly. NORMALIZE_WHITESPACE is especially useful when
a line of expected output is very long, and you want to wrap it across multiple lines in your source.

doctest.ELLIPSIS
When specified, an ellipsis marker (...) in the expected output can match any substring in the actual
output. This includes substrings that span line boundaries, and empty substrings, so it’s best to keep
usage of this simple. Complicated uses can lead to the same kinds of “oops, it matched too much!”
surprises that .* is prone to in regular expressions.

doctest.IGNORE_EXCEPTION_DETAIL
When specified, an example that expects an exception passes if an exception of the expected type is
raised, even if the exception detail does not match. For example, an example expecting ValueError:
42 will pass if the actual exception raised is ValueError: 3*14, but will fail, e.g., if TypeError is raised.

It will also ignore the module name used in Python 3 doctest reports. Hence both of these variations
will work with the flag specified, regardless of whether the test is run under Python 2.7 or Python 3.2
(or later versions):

>>> raise CustomError('message')
Traceback (most recent call last):
CustomError: message

>>> raise CustomError('message')
Traceback (most recent call last):
my_module.CustomError: message

Note that ELLIPSIS can also be used to ignore the details of the exception message, but such a test
may still fail based on whether or not the module details are printed as part of the exception name.
Using IGNORE_EXCEPTION_DETAIL and the details from Python 2.3 is also the only clear way
to write a doctest that doesn’t care about the exception detail yet continues to pass under Python 2.3
or earlier (those releases do not support doctest directives and ignore them as irrelevant comments).
For example:

>>> (1, 2)[3] = 'moo'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: object doesn't support item assignment

passes under Python 2.3 and later Python versions with the flag specified, even though the detail
changed in Python 2.4 to say “does not” instead of “doesn’t”.

1376 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

Changed in version 3.2: IGNORE_EXCEPTION_DETAIL now also ignores any information relating
to the module containing the exception under test.

doctest.SKIP
When specified, do not run the example at all. This can be useful in contexts where doctest examples
serve as both documentation and test cases, and an example should be included for documentation
purposes, but should not be checked. E.g., the example’s output might be random; or the example
might depend on resources which would be unavailable to the test driver.

The SKIP flag can also be used for temporarily “commenting out” examples.

doctest.COMPARISON_FLAGS
A bitmask or’ing together all the comparison flags above.

The second group of options controls how test failures are reported:

doctest.REPORT_UDIFF
When specified, failures that involve multi-line expected and actual outputs are displayed using a
unified diff.

doctest.REPORT_CDIFF
When specified, failures that involve multi-line expected and actual outputs will be displayed using a
context diff.

doctest.REPORT_NDIFF
When specified, differences are computed by difflib.Differ, using the same algorithm as the popular
ndiff.py utility. This is the only method that marks differences within lines as well as across lines. For
example, if a line of expected output contains digit 1 where actual output contains letter l, a line is
inserted with a caret marking the mismatching column positions.

doctest.REPORT_ONLY_FIRST_FAILURE
When specified, display the first failing example in each doctest, but suppress output for all remaining
examples. This will prevent doctest from reporting correct examples that break because of earlier
failures; but it might also hide incorrect examples that fail independently of the first failure. When
REPORT_ONLY_FIRST_FAILURE is specified, the remaining examples are still run, and still count
towards the total number of failures reported; only the output is suppressed.

doctest.FAIL_FAST
When specified, exit after the first failing example and don’t attempt to run the remaining examples.
Thus, the number of failures reported will be at most 1. This flag may be useful during debugging,
since examples after the first failure won’t even produce debugging output.

The doctest command line accepts the option -f as a shorthand for -o FAIL_FAST.

New in version 3.4.

doctest.REPORTING_FLAGS
A bitmask or’ing together all the reporting flags above.

There is also a way to register new option flag names, though this isn’t useful unless you intend to extend
doctest internals via subclassing:

doctest.register_optionflag(name)
Create a new option flag with a given name, and return the new flag’s integer value. regis-
ter_optionflag() can be used when subclassing OutputChecker or DocTestRunner to create new options
that are supported by your subclasses. register_optionflag() should always be called using the following
idiom:

MY_FLAG = register_optionflag('MY_FLAG')

26.3. doctest — Test interactive Python examples 1377

The Python Library Reference, Release 3.5.7

Directives

Doctest directives may be used to modify the option flags for an individual example. Doctest directives are
special Python comments following an example’s source code:

directive ::= "#" "doctest:" directive_options
directive_options ::= directive_option ("," directive_option)*
directive_option ::= on_or_off directive_option_name
on_or_off ::= "+" \| "-"
directive_option_name ::= "DONT_ACCEPT_BLANKLINE" \| "NORMALIZE_WHITESPACE" \| ...

Whitespace is not allowed between the + or - and the directive option name. The directive option name can
be any of the option flag names explained above.

An example’s doctest directives modify doctest’s behavior for that single example. Use + to enable the
named behavior, or - to disable it.

For example, this test passes:

>>> print(list(range(20)))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Without the directive it would fail, both because the actual output doesn’t have two blanks before the
single-digit list elements, and because the actual output is on a single line. This test also passes, and also
requires a directive to do so:

>>> print(list(range(20)))
[0, 1, ..., 18, 19]

Multiple directives can be used on a single physical line, separated by commas:

>>> print(list(range(20)))
[0, 1, ..., 18, 19]

If multiple directive comments are used for a single example, then they are combined:

>>> print(list(range(20)))
...
[0, 1, ..., 18, 19]

As the previous example shows, you can add ... lines to your example containing only directives. This can
be useful when an example is too long for a directive to comfortably fit on the same line:

>>> print(list(range(5)) + list(range(10, 20)) + list(range(30, 40)))
...
[0, ..., 4, 10, ..., 19, 30, ..., 39]

Note that since all options are disabled by default, and directives apply only to the example they appear in,
enabling options (via + in a directive) is usually the only meaningful choice. However, option flags can also
be passed to functions that run doctests, establishing different defaults. In such cases, disabling an option
via - in a directive can be useful.

Warnings

doctest is serious about requiring exact matches in expected output. If even a single character doesn’t match,

1378 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

the test fails. This will probably surprise you a few times, as you learn exactly what Python does and doesn’t
guarantee about output. For example, when printing a dict, Python doesn’t guarantee that the key-value
pairs will be printed in any particular order, so a test like

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
True

instead. Another is to do

>>> d = sorted(foo().items())
>>> d
[('Harry', 'broomstick'), ('Hermione', 'hippogryph')]

There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time
7948648
>>> class C: pass
>>> C() # the default repr() for instances embeds an address
<__main__.C instance at 0x00AC18F0>

The ELLIPSIS directive gives a nice approach for the last example:

>>> C()
<__main__.C instance at 0x...>

Floating-point numbers are also subject to small output variations across platforms, because Python defers
to the platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky
0.14285714285714285
>>> print(1./7) # safer
0.142857142857
>>> print(round(1./7, 6)) # much safer
0.142857

Numbers of the form I/2.**J are safe across all platforms, and I often contrive doctest examples to produce
numbers of that form:

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

26.3.4 Basic API

The functions testmod() and testfile() provide a simple interface to doctest that should be sufficient for
most basic uses. For a less formal introduction to these two functions, see sections Simple Usage: Checking
Examples in Docstrings and Simple Usage: Checking Examples in a Text File.

26.3. doctest — Test interactive Python examples 1379

The Python Library Reference, Release 3.5.7

doctest.testfile(filename, module_relative=True, name=None, package=None, globs=None, ver-
bose=None, report=True, optionflags=0, extraglobs=None, raise_on_error=False,
parser=DocTestParser(), encoding=None)

All arguments except filename are optional, and should be specified in keyword form.

Test examples in the file named filename. Return (failure_count, test_count).

Optional argument module_relative specifies how the filename should be interpreted:

• If module_relative is True (the default), then filename specifies an OS-independent module-
relative path. By default, this path is relative to the calling module’s directory; but if the package
argument is specified, then it is relative to that package. To ensure OS-independence, filename
should use / characters to separate path segments, and may not be an absolute path (i.e., it may
not begin with /).

• If module_relative is False, then filename specifies an OS-specific path. The path may be absolute
or relative; relative paths are resolved with respect to the current working directory.

Optional argument name gives the name of the test; by default, or if None, os.path.basename(filename)
is used.

Optional argument package is a Python package or the name of a Python package whose directory
should be used as the base directory for a module-relative filename. If no package is specified, then the
calling module’s directory is used as the base directory for module-relative filenames. It is an error to
specify package if module_relative is False.

Optional argument globs gives a dict to be used as the globals when executing examples. A new shallow
copy of this dict is created for the doctest, so its examples start with a clean slate. By default, or if
None, a new empty dict is used.

Optional argument extraglobs gives a dict merged into the globals used to execute examples. This
works like dict.update(): if globs and extraglobs have a common key, the associated value in extraglobs
appears in the combined dict. By default, or if None, no extra globals are used. This is an advanced
feature that allows parameterization of doctests. For example, a doctest can be written for a base
class, using a generic name for the class, then reused to test any number of subclasses by passing an
extraglobs dict mapping the generic name to the subclass to be tested.

Optional argument verbose prints lots of stuff if true, and prints only failures if false; by default, or if
None, it’s true if and only if '-v' is in sys.argv.

Optional argument report prints a summary at the end when true, else prints nothing at the end.
In verbose mode, the summary is detailed, else the summary is very brief (in fact, empty if all tests
passed).

Optional argument optionflags (default value 0) takes the bitwise OR of option flags. See section
Option Flags.

Optional argument raise_on_error defaults to false. If true, an exception is raised upon the first failure
or unexpected exception in an example. This allows failures to be post-mortem debugged. Default
behavior is to continue running examples.

Optional argument parser specifies a DocTestParser (or subclass) that should be used to extract tests
from the files. It defaults to a normal parser (i.e., DocTestParser()).

Optional argument encoding specifies an encoding that should be used to convert the file to unicode.

doctest.testmod(m=None, name=None, globs=None, verbose=None, report=True, optionflags=0, ex-
traglobs=None, raise_on_error=False, exclude_empty=False)

All arguments are optional, and all except for m should be specified in keyword form.

Test examples in docstrings in functions and classes reachable from module m (or module __main__
if m is not supplied or is None), starting with m.__doc__.

1380 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

Also test examples reachable from dict m.__test__, if it exists and is not None. m.__test__
maps names (strings) to functions, classes and strings; function and class docstrings are searched for
examples; strings are searched directly, as if they were docstrings.

Only docstrings attached to objects belonging to module m are searched.

Return (failure_count, test_count).

Optional argument name gives the name of the module; by default, or if None, m.__name__ is used.

Optional argument exclude_empty defaults to false. If true, objects for which no doctests are found
are excluded from consideration. The default is a backward compatibility hack, so that code still using
doctest.master.summarize() in conjunction with testmod() continues to get output for objects with no
tests. The exclude_empty argument to the newer DocTestFinder constructor defaults to true.

Optional arguments extraglobs, verbose, report, optionflags, raise_on_error, and globs are the same
as for function testfile() above, except that globs defaults to m.__dict__.

doctest.run_docstring_examples(f, globs, verbose=False, name="NoName", compileflags=None, op-
tionflags=0)

Test examples associated with object f; for example, f may be a string, a module, a function, or a class
object.

A shallow copy of dictionary argument globs is used for the execution context.

Optional argument name is used in failure messages, and defaults to "NoName".

If optional argument verbose is true, output is generated even if there are no failures. By default,
output is generated only in case of an example failure.

Optional argument compileflags gives the set of flags that should be used by the Python compiler when
running the examples. By default, or if None, flags are deduced corresponding to the set of future
features found in globs.

Optional argument optionflags works as for function testfile() above.

26.3.5 Unittest API

As your collection of doctest’ed modules grows, you’ll want a way to run all their doctests systematically.
doctest provides two functions that can be used to create unittest test suites from modules and text files
containing doctests. To integrate with unittest test discovery, include a load_tests() function in your test
module:

import unittest
import doctest
import my_module_with_doctests

def load_tests(loader, tests, ignore):
tests.addTests(doctest.DocTestSuite(my_module_with_doctests))
return tests

There are two main functions for creating unittest.TestSuite instances from text files and modules with
doctests:

doctest.DocFileSuite(*paths, module_relative=True, package=None, setUp=None, tearDown=None,
globs=None, optionflags=0, parser=DocTestParser(), encoding=None)

Convert doctest tests from one or more text files to a unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework and runs the interactive exam-
ples in each file. If an example in any file fails, then the synthesized unit test fails, and a failureException

26.3. doctest — Test interactive Python examples 1381

The Python Library Reference, Release 3.5.7

exception is raised showing the name of the file containing the test and a (sometimes approximate)
line number.

Pass one or more paths (as strings) to text files to be examined.

Options may be provided as keyword arguments:

Optional argument module_relative specifies how the filenames in paths should be interpreted:

• If module_relative is True (the default), then each filename in paths specifies an OS-independent
module-relative path. By default, this path is relative to the calling module’s directory; but if the
package argument is specified, then it is relative to that package. To ensure OS-independence,
each filename should use / characters to separate path segments, and may not be an absolute
path (i.e., it may not begin with /).

• If module_relative is False, then each filename in paths specifies an OS-specific path. The path
may be absolute or relative; relative paths are resolved with respect to the current working
directory.

Optional argument package is a Python package or the name of a Python package whose directory
should be used as the base directory for module-relative filenames in paths. If no package is specified,
then the calling module’s directory is used as the base directory for module-relative filenames. It is an
error to specify package if module_relative is False.

Optional argument setUp specifies a set-up function for the test suite. This is called before running
the tests in each file. The setUp function will be passed a DocTest object. The setUp function can
access the test globals as the globs attribute of the test passed.

Optional argument tearDown specifies a tear-down function for the test suite. This is called after
running the tests in each file. The tearDown function will be passed a DocTest object. The setUp
function can access the test globals as the globs attribute of the test passed.

Optional argument globs is a dictionary containing the initial global variables for the tests. A new
copy of this dictionary is created for each test. By default, globs is a new empty dictionary.

Optional argument optionflags specifies the default doctest options for the tests, created by or-ing
together individual option flags. See section Option Flags. See function set_unittest_reportflags()
below for a better way to set reporting options.

Optional argument parser specifies a DocTestParser (or subclass) that should be used to extract tests
from the files. It defaults to a normal parser (i.e., DocTestParser()).

Optional argument encoding specifies an encoding that should be used to convert the file to unicode.

The global __file__ is added to the globals provided to doctests loaded from a text file using Doc-
FileSuite().

doctest.DocTestSuite(module=None, globs=None, extraglobs=None, test_finder=None, setUp=None,
tearDown=None, checker=None)

Convert doctest tests for a module to a unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework and runs each doctest in the
module. If any of the doctests fail, then the synthesized unit test fails, and a failureException exception
is raised showing the name of the file containing the test and a (sometimes approximate) line number.

Optional argument module provides the module to be tested. It can be a module object or a (possibly
dotted) module name. If not specified, the module calling this function is used.

Optional argument globs is a dictionary containing the initial global variables for the tests. A new
copy of this dictionary is created for each test. By default, globs is a new empty dictionary.

Optional argument extraglobs specifies an extra set of global variables, which is merged into globs. By
default, no extra globals are used.

1382 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

Optional argument test_finder is the DocTestFinder object (or a drop-in replacement) that is used to
extract doctests from the module.

Optional arguments setUp, tearDown, and optionflags are the same as for function DocFileSuite()
above.

This function uses the same search technique as testmod().

Changed in version 3.5: DocTestSuite() returns an empty unittest.TestSuite if module contains no
docstrings instead of raising ValueError.

Under the covers, DocTestSuite() creates a unittest.TestSuite out of doctest.DocTestCase instances, and
DocTestCase is a subclass of unittest.TestCase. DocTestCase isn’t documented here (it’s an internal detail),
but studying its code can answer questions about the exact details of unittest integration.

Similarly, DocFileSuite() creates a unittest.TestSuite out of doctest.DocFileCase instances, and DocFileCase
is a subclass of DocTestCase.

So both ways of creating a unittest.TestSuite run instances of DocTestCase. This is important for a subtle
reason: when you run doctest functions yourself, you can control the doctest options in use directly, by passing
option flags to doctest functions. However, if you’re writing a unittest framework, unittest ultimately controls
when and how tests get run. The framework author typically wants to control doctest reporting options
(perhaps, e.g., specified by command line options), but there’s no way to pass options through unittest to
doctest test runners.

For this reason, doctest also supports a notion of doctest reporting flags specific to unittest support, via this
function:

doctest.set_unittest_reportflags(flags)
Set the doctest reporting flags to use.

Argument flags takes the bitwise OR of option flags. See section Option Flags. Only “reporting flags”
can be used.

This is a module-global setting, and affects all future doctests run by module unittest: the runTest()
method of DocTestCase looks at the option flags specified for the test case when the DocTestCase
instance was constructed. If no reporting flags were specified (which is the typical and expected
case), doctest’s unittest reporting flags are bitwise ORed into the option flags, and the option flags
so augmented are passed to the DocTestRunner instance created to run the doctest. If any reporting
flags were specified when the DocTestCase instance was constructed, doctest’s unittest reporting flags
are ignored.

The value of the unittest reporting flags in effect before the function was called is returned by the
function.

26.3.6 Advanced API

The basic API is a simple wrapper that’s intended to make doctest easy to use. It is fairly flexible, and
should meet most users’ needs; however, if you require more fine-grained control over testing, or wish to
extend doctest’s capabilities, then you should use the advanced API.

The advanced API revolves around two container classes, which are used to store the interactive examples
extracted from doctest cases:

• Example: A single Python statement, paired with its expected output.

• DocTest: A collection of Examples, typically extracted from a single docstring or text file.

Additional processing classes are defined to find, parse, and run, and check doctest examples:

26.3. doctest — Test interactive Python examples 1383

The Python Library Reference, Release 3.5.7

• DocTestFinder: Finds all docstrings in a given module, and uses a DocTestParser to create a DocTest
from every docstring that contains interactive examples.

• DocTestParser: Creates a DocTest object from a string (such as an object’s docstring).

• DocTestRunner: Executes the examples in a DocTest, and uses an OutputChecker to verify their
output.

• OutputChecker: Compares the actual output from a doctest example with the expected output, and
decides whether they match.

The relationships among these processing classes are summarized in the following diagram:

list of:
+------+ +---------+
|module| --DocTestFinder-> | DocTest | --DocTestRunner-> results
+------+ | ^ +---------+ | ^ (printed)

| | | Example | | |
v | | ... | v |
DocTestParser | Example | OutputChecker

+---------+

DocTest Objects

class doctest.DocTest(examples, globs, name, filename, lineno, docstring)
A collection of doctest examples that should be run in a single namespace. The constructor arguments
are used to initialize the attributes of the same names.

DocTest defines the following attributes. They are initialized by the constructor, and should not be
modified directly.

examples
A list of Example objects encoding the individual interactive Python examples that should be run
by this test.

globs
The namespace (aka globals) that the examples should be run in. This is a dictionary mapping
names to values. Any changes to the namespace made by the examples (such as binding new
variables) will be reflected in globs after the test is run.

name
A string name identifying the DocTest. Typically, this is the name of the object or file that the
test was extracted from.

filename
The name of the file that this DocTest was extracted from; or None if the filename is unknown,
or if the DocTest was not extracted from a file.

lineno
The line number within filename where this DocTest begins, or None if the line number is un-
available. This line number is zero-based with respect to the beginning of the file.

docstring
The string that the test was extracted from, or None if the string is unavailable, or if the test was
not extracted from a string.

1384 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

Example Objects

class doctest.Example(source, want, exc_msg=None, lineno=0, indent=0, options=None)
A single interactive example, consisting of a Python statement and its expected output. The constructor
arguments are used to initialize the attributes of the same names.

Example defines the following attributes. They are initialized by the constructor, and should not be
modified directly.

source
A string containing the example’s source code. This source code consists of a single Python
statement, and always ends with a newline; the constructor adds a newline when necessary.

want
The expected output from running the example’s source code (either from stdout, or a traceback
in case of exception). want ends with a newline unless no output is expected, in which case it’s
an empty string. The constructor adds a newline when necessary.

exc_msg
The exception message generated by the example, if the example is expected to generate an
exception; or None if it is not expected to generate an exception. This exception message is
compared against the return value of traceback.format_exception_only(). exc_msg ends with a
newline unless it’s None. The constructor adds a newline if needed.

lineno
The line number within the string containing this example where the example begins. This line
number is zero-based with respect to the beginning of the containing string.

indent
The example’s indentation in the containing string, i.e., the number of space characters that
precede the example’s first prompt.

options
A dictionary mapping from option flags to True or False, which is used to override default options
for this example. Any option flags not contained in this dictionary are left at their default value
(as specified by the DocTestRunner’s optionflags). By default, no options are set.

DocTestFinder objects

class doctest.DocTestFinder(verbose=False, parser=DocTestParser(), recurse=True, ex-
clude_empty=True)

A processing class used to extract the DocTests that are relevant to a given object, from its docstring
and the docstrings of its contained objects. DocTests can be extracted from modules, classes, functions,
methods, staticmethods, classmethods, and properties.

The optional argument verbose can be used to display the objects searched by the finder. It defaults
to False (no output).

The optional argument parser specifies the DocTestParser object (or a drop-in replacement) that is
used to extract doctests from docstrings.

If the optional argument recurse is false, then DocTestFinder.find() will only examine the given object,
and not any contained objects.

If the optional argument exclude_empty is false, then DocTestFinder.find() will include tests for objects
with empty docstrings.

DocTestFinder defines the following method:

26.3. doctest — Test interactive Python examples 1385

The Python Library Reference, Release 3.5.7

find(obj[, name][, module][, globs][, extraglobs])
Return a list of the DocTests that are defined by obj’s docstring, or by any of its contained objects’
docstrings.

The optional argument name specifies the object’s name; this name will be used to construct
names for the returned DocTests. If name is not specified, then obj.__name__ is used.

The optional parameter module is the module that contains the given object. If the module is
not specified or is None, then the test finder will attempt to automatically determine the correct
module. The object’s module is used:

• As a default namespace, if globs is not specified.

• To prevent the DocTestFinder from extracting DocTests from objects that are imported from
other modules. (Contained objects with modules other than module are ignored.)

• To find the name of the file containing the object.

• To help find the line number of the object within its file.

If module is False, no attempt to find the module will be made. This is obscure, of use mostly
in testing doctest itself: if module is False, or is None but cannot be found automatically, then
all objects are considered to belong to the (non-existent) module, so all contained objects will
(recursively) be searched for doctests.

The globals for each DocTest is formed by combining globs and extraglobs (bindings in extraglobs
override bindings in globs). A new shallow copy of the globals dictionary is created for each
DocTest. If globs is not specified, then it defaults to the module’s __dict__, if specified, or {}
otherwise. If extraglobs is not specified, then it defaults to {}.

DocTestParser objects

class doctest.DocTestParser
A processing class used to extract interactive examples from a string, and use them to create a DocTest
object.

DocTestParser defines the following methods:

get_doctest(string, globs, name, filename, lineno)
Extract all doctest examples from the given string, and collect them into a DocTest object.

globs, name, filename, and lineno are attributes for the new DocTest object. See the documenta-
tion for DocTest for more information.

get_examples(string, name=’<string>’)
Extract all doctest examples from the given string, and return them as a list of Example objects.
Line numbers are 0-based. The optional argument name is a name identifying this string, and is
only used for error messages.

parse(string, name=’<string>’)
Divide the given string into examples and intervening text, and return them as a list of alternating
Examples and strings. Line numbers for the Examples are 0-based. The optional argument name
is a name identifying this string, and is only used for error messages.

DocTestRunner objects

class doctest.DocTestRunner(checker=None, verbose=None, optionflags=0)
A processing class used to execute and verify the interactive examples in a DocTest.

1386 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

The comparison between expected outputs and actual outputs is done by an OutputChecker. This
comparison may be customized with a number of option flags; see section Option Flags for more
information. If the option flags are insufficient, then the comparison may also be customized by
passing a subclass of OutputChecker to the constructor.

The test runner’s display output can be controlled in two ways. First, an output function can be passed
to TestRunner.run(); this function will be called with strings that should be displayed. It defaults to
sys.stdout.write. If capturing the output is not sufficient, then the display output can be also cus-
tomized by subclassing DocTestRunner, and overriding the methods report_start(), report_success(),
report_unexpected_exception(), and report_failure().

The optional keyword argument checker specifies the OutputChecker object (or drop-in replacement)
that should be used to compare the expected outputs to the actual outputs of doctest examples.

The optional keyword argument verbose controls the DocTestRunner’s verbosity. If verbose is True,
then information is printed about each example, as it is run. If verbose is False, then only failures are
printed. If verbose is unspecified, or None, then verbose output is used iff the command-line switch -v
is used.

The optional keyword argument optionflags can be used to control how the test runner compares
expected output to actual output, and how it displays failures. For more information, see section
Option Flags.

DocTestParser defines the following methods:

report_start(out, test, example)
Report that the test runner is about to process the given example. This method is provided to
allow subclasses of DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. test is the test containing example. out is the
output function that was passed to DocTestRunner.run().

report_success(out, test, example, got)
Report that the given example ran successfully. This method is provided to allow subclasses of
DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. got is the actual output from the example. test is
the test containing example. out is the output function that was passed to DocTestRunner.run().

report_failure(out, test, example, got)
Report that the given example failed. This method is provided to allow subclasses of DocTestRun-
ner to customize their output; it should not be called directly.

example is the example about to be processed. got is the actual output from the example. test is
the test containing example. out is the output function that was passed to DocTestRunner.run().

report_unexpected_exception(out, test, example, exc_info)
Report that the given example raised an unexpected exception. This method is provided to allow
subclasses of DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. exc_info is a tuple containing information about
the unexpected exception (as returned by sys.exc_info()). test is the test containing example.
out is the output function that was passed to DocTestRunner.run().

run(test, compileflags=None, out=None, clear_globs=True)
Run the examples in test (a DocTest object), and display the results using the writer function
out.

The examples are run in the namespace test.globs. If clear_globs is true (the default), then this
namespace will be cleared after the test runs, to help with garbage collection. If you would like
to examine the namespace after the test completes, then use clear_globs=False.

26.3. doctest — Test interactive Python examples 1387

The Python Library Reference, Release 3.5.7

compileflags gives the set of flags that should be used by the Python compiler when running the
examples. If not specified, then it will default to the set of future-import flags that apply to globs.

The output of each example is checked using the DocTestRunner’s output checker, and the results
are formatted by the DocTestRunner.report_*() methods.

summarize(verbose=None)
Print a summary of all the test cases that have been run by this DocTestRunner, and return a
named tuple TestResults(failed, attempted).

The optional verbose argument controls how detailed the summary is. If the verbosity is not
specified, then the DocTestRunner’s verbosity is used.

OutputChecker objects

class doctest.OutputChecker
A class used to check the whether the actual output from a doctest example matches the expected
output. OutputChecker defines two methods: check_output(), which compares a given pair of out-
puts, and returns true if they match; and output_difference(), which returns a string describing the
differences between two outputs.

OutputChecker defines the following methods:

check_output(want, got, optionflags)
Return True iff the actual output from an example (got) matches the expected output (want).
These strings are always considered to match if they are identical; but depending on what option
flags the test runner is using, several non-exact match types are also possible. See section Option
Flags for more information about option flags.

output_difference(example, got, optionflags)
Return a string describing the differences between the expected output for a given example
(example) and the actual output (got). optionflags is the set of option flags used to compare
want and got.

26.3.7 Debugging

Doctest provides several mechanisms for debugging doctest examples:

• Several functions convert doctests to executable Python programs, which can be run under the Python
debugger, pdb.

• The DebugRunner class is a subclass of DocTestRunner that raises an exception for the first failing
example, containing information about that example. This information can be used to perform post-
mortem debugging on the example.

• The unittest cases generated by DocTestSuite() support the debug() method defined by unittest.
TestCase.

• You can add a call to pdb.set_trace() in a doctest example, and you’ll drop into the Python debugger
when that line is executed. Then you can inspect current values of variables, and so on. For example,
suppose a.py contains just this module docstring:

"""
>>> def f(x):
... g(x*2)
>>> def g(x):
... print(x+3)

(continues on next page)

1388 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

... import pdb; pdb.set_trace()
>>> f(3)
9
"""

Then an interactive Python session may look like this:

>>> import a, doctest
>>> doctest.testmod(a)
--Return--
> <doctest a[1]>(3)g()->None
-> import pdb; pdb.set_trace()
(Pdb) list
1 def g(x):
2 print(x+3)
3 -> import pdb; pdb.set_trace()

[EOF]
(Pdb) p x
6
(Pdb) step
--Return--
> <doctest a[0]>(2)f()->None
-> g(x*2)
(Pdb) list
1 def f(x):
2 -> g(x*2)

[EOF]
(Pdb) p x
3
(Pdb) step
--Return--
> <doctest a[2]>(1)?()->None
-> f(3)
(Pdb) cont
(0, 3)
>>>

Functions that convert doctests to Python code, and possibly run the synthesized code under the debugger:

doctest.script_from_examples(s)
Convert text with examples to a script.

Argument s is a string containing doctest examples. The string is converted to a Python script,
where doctest examples in s are converted to regular code, and everything else is converted to Python
comments. The generated script is returned as a string. For example,

import doctest
print(doctest.script_from_examples(r"""

Set x and y to 1 and 2.
>>> x, y = 1, 2

Print their sum:
>>> print(x+y)
3

"""))

displays:

26.3. doctest — Test interactive Python examples 1389

The Python Library Reference, Release 3.5.7

Set x and y to 1 and 2.
x, y = 1, 2
#
Print their sum:
print(x+y)
Expected:
3

This function is used internally by other functions (see below), but can also be useful when you want
to transform an interactive Python session into a Python script.

doctest.testsource(module, name)
Convert the doctest for an object to a script.

Argument module is a module object, or dotted name of a module, containing the object whose doctests
are of interest. Argument name is the name (within the module) of the object with the doctests of
interest. The result is a string, containing the object’s docstring converted to a Python script, as
described for script_from_examples() above. For example, if module a.py contains a top-level function
f(), then

import a, doctest
print(doctest.testsource(a, "a.f"))

prints a script version of function f()’s docstring, with doctests converted to code, and the rest placed
in comments.

doctest.debug(module, name, pm=False)
Debug the doctests for an object.

The module and name arguments are the same as for function testsource() above. The synthesized
Python script for the named object’s docstring is written to a temporary file, and then that file is run
under the control of the Python debugger, pdb.

A shallow copy of module.__dict__ is used for both local and global execution context.

Optional argument pm controls whether post-mortem debugging is used. If pm has a true value, the
script file is run directly, and the debugger gets involved only if the script terminates via raising an
unhandled exception. If it does, then post-mortem debugging is invoked, via pdb.post_mortem(),
passing the traceback object from the unhandled exception. If pm is not specified, or is false, the
script is run under the debugger from the start, via passing an appropriate exec() call to pdb.run().

doctest.debug_src(src, pm=False, globs=None)
Debug the doctests in a string.

This is like function debug() above, except that a string containing doctest examples is specified directly,
via the src argument.

Optional argument pm has the same meaning as in function debug() above.

Optional argument globs gives a dictionary to use as both local and global execution context. If not
specified, or None, an empty dictionary is used. If specified, a shallow copy of the dictionary is used.

The DebugRunner class, and the special exceptions it may raise, are of most interest to testing framework
authors, and will only be sketched here. See the source code, and especially DebugRunner’s docstring (which
is a doctest!) for more details:

class doctest.DebugRunner(checker=None, verbose=None, optionflags=0)
A subclass of DocTestRunner that raises an exception as soon as a failure is encountered. If an
unexpected exception occurs, an UnexpectedException exception is raised, containing the test, the

1390 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

example, and the original exception. If the output doesn’t match, then a DocTestFailure exception is
raised, containing the test, the example, and the actual output.

For information about the constructor parameters and methods, see the documentation for
DocTestRunner in section Advanced API.

There are two exceptions that may be raised by DebugRunner instances:

exception doctest.DocTestFailure(test, example, got)
An exception raised by DocTestRunner to signal that a doctest example’s actual output did not match
its expected output. The constructor arguments are used to initialize the attributes of the same names.

DocTestFailure defines the following attributes:

DocTestFailure.test
The DocTest object that was being run when the example failed.

DocTestFailure.example
The Example that failed.

DocTestFailure.got
The example’s actual output.

exception doctest.UnexpectedException(test, example, exc_info)
An exception raised by DocTestRunner to signal that a doctest example raised an unexpected exception.
The constructor arguments are used to initialize the attributes of the same names.

UnexpectedException defines the following attributes:

UnexpectedException.test
The DocTest object that was being run when the example failed.

UnexpectedException.example
The Example that failed.

UnexpectedException.exc_info
A tuple containing information about the unexpected exception, as returned by sys.exc_info().

26.3.8 Soapbox

As mentioned in the introduction, doctest has grown to have three primary uses:

1. Checking examples in docstrings.

2. Regression testing.

3. Executable documentation / literate testing.

These uses have different requirements, and it is important to distinguish them. In particular, filling your
docstrings with obscure test cases makes for bad documentation.

When writing a docstring, choose docstring examples with care. There’s an art to this that needs to be
learned—it may not be natural at first. Examples should add genuine value to the documentation. A good
example can often be worth many words. If done with care, the examples will be invaluable for your users,
and will pay back the time it takes to collect them many times over as the years go by and things change.
I’m still amazed at how often one of my doctest examples stops working after a “harmless” change.

Doctest also makes an excellent tool for regression testing, especially if you don’t skimp on explanatory
text. By interleaving prose and examples, it becomes much easier to keep track of what’s actually being
tested, and why. When a test fails, good prose can make it much easier to figure out what the problem
is, and how it should be fixed. It’s true that you could write extensive comments in code-based testing,
but few programmers do. Many have found that using doctest approaches instead leads to much clearer

26.3. doctest — Test interactive Python examples 1391

The Python Library Reference, Release 3.5.7

tests. Perhaps this is simply because doctest makes writing prose a little easier than writing code, while
writing comments in code is a little harder. I think it goes deeper than just that: the natural attitude when
writing a doctest-based test is that you want to explain the fine points of your software, and illustrate them
with examples. This in turn naturally leads to test files that start with the simplest features, and logically
progress to complications and edge cases. A coherent narrative is the result, instead of a collection of isolated
functions that test isolated bits of functionality seemingly at random. It’s a different attitude, and produces
different results, blurring the distinction between testing and explaining.

Regression testing is best confined to dedicated objects or files. There are several options for organizing
tests:

• Write text files containing test cases as interactive examples, and test the files using testfile() or
DocFileSuite(). This is recommended, although is easiest to do for new projects, designed from the
start to use doctest.

• Define functions named _regrtest_topic that consist of single docstrings, containing test cases for the
named topics. These functions can be included in the same file as the module, or separated out into a
separate test file.

• Define a __test__ dictionary mapping from regression test topics to docstrings containing test cases.

When you have placed your tests in a module, the module can itself be the test runner. When a test fails,
you can arrange for your test runner to re-run only the failing doctest while you debug the problem. Here
is a minimal example of such a test runner:

if __name__ == '__main__':
import doctest
flags = doctest.REPORT_NDIFF|doctest.FAIL_FAST
if len(sys.argv) > 1:

name = sys.argv[1]
if name in globals():

obj = globals()[name]
else:

obj = __test__[name]
doctest.run_docstring_examples(obj, globals(), name=name,

optionflags=flags)
else:

fail, total = doctest.testmod(optionflags=flags)
print("{} failures out of {} tests".format(fail, total))

26.4 unittest — Unit testing framework

Source code: Lib/unittest/__init__.py

(If you are already familiar with the basic concepts of testing, you might want to skip to the list of assert
methods.)

The unittest unit testing framework was originally inspired by JUnit and has a similar flavor as major unit
testing frameworks in other languages. It supports test automation, sharing of setup and shutdown code for
tests, aggregation of tests into collections, and independence of the tests from the reporting framework.

To achieve this, unittest supports some important concepts in an object-oriented way:

test fixture A test fixture represents the preparation needed to perform one or more tests, and any associate
cleanup actions. This may involve, for example, creating temporary or proxy databases, directories, or
starting a server process.

1392 Chapter 26. Development Tools

https://github.com/python/cpython/tree/3.5/Lib/unittest/__init__.py

The Python Library Reference, Release 3.5.7

test case A test case is the individual unit of testing. It checks for a specific response to a particular set of
inputs. unittest provides a base class, TestCase, which may be used to create new test cases.

test suite A test suite is a collection of test cases, test suites, or both. It is used to aggregate tests that
should be executed together.

test runner A test runner is a component which orchestrates the execution of tests and provides the outcome
to the user. The runner may use a graphical interface, a textual interface, or return a special value to
indicate the results of executing the tests.

See also:

Module doctest Another test-support module with a very different flavor.

Simple Smalltalk Testing: With Patterns Kent Beck’s original paper on testing frameworks using the pat-
tern shared by unittest.

Nose and py.test Third-party unittest frameworks with a lighter-weight syntax for writing tests. For exam-
ple, assert func(10) == 42.

The Python Testing Tools Taxonomy An extensive list of Python testing tools including functional testing
frameworks and mock object libraries.

Testing in Python Mailing List A special-interest-group for discussion of testing, and testing tools, in
Python.

The script Tools/unittestgui/unittestgui.py in the Python source distribution is a GUI tool for test discovery
and execution. This is intended largely for ease of use for those new to unit testing. For production
environments it is recommended that tests be driven by a continuous integration system such as Buildbot,
Jenkins or Hudson.

26.4.1 Basic example

The unittest module provides a rich set of tools for constructing and running tests. This section demonstrates
that a small subset of the tools suffice to meet the needs of most users.

Here is a short script to test three string methods:

import unittest

class TestStringMethods(unittest.TestCase):

def test_upper(self):
self.assertEqual('foo'.upper(), 'FOO')

def test_isupper(self):
self.assertTrue('FOO'.isupper())
self.assertFalse('Foo'.isupper())

def test_split(self):
s = 'hello world'
self.assertEqual(s.split(), ['hello', 'world'])
check that s.split fails when the separator is not a string
with self.assertRaises(TypeError):

s.split(2)

if __name__ == '__main__':
unittest.main()

26.4. unittest — Unit testing framework 1393

https://web.archive.org/web/20150315073817/http://www.xprogramming.com/testfram.htm
https://nose.readthedocs.org/en/latest/
http://pytest.org
https://wiki.python.org/moin/PythonTestingToolsTaxonomy
http://lists.idyll.org/listinfo/testing-in-python
https://buildbot.net/
https://jenkins.io/
http://hudson-ci.org/

The Python Library Reference, Release 3.5.7

A testcase is created by subclassing unittest.TestCase. The three individual tests are defined with methods
whose names start with the letters test. This naming convention informs the test runner about which
methods represent tests.

The crux of each test is a call to assertEqual() to check for an expected result; assertTrue() or assertFalse()
to verify a condition; or assertRaises() to verify that a specific exception gets raised. These methods are
used instead of the assert statement so the test runner can accumulate all test results and produce a report.

The setUp() and tearDown() methods allow you to define instructions that will be executed before and after
each test method. They are covered in more detail in the section Organizing test code.

The final block shows a simple way to run the tests. unittest.main() provides a command-line interface to
the test script. When run from the command line, the above script produces an output that looks like this:

...
--
Ran 3 tests in 0.000s

OK

Passing the -v option to your test script will instruct unittest.main() to enable a higher level of verbosity,
and produce the following output:

test_isupper (__main__.TestStringMethods) ... ok
test_split (__main__.TestStringMethods) ... ok
test_upper (__main__.TestStringMethods) ... ok

--
Ran 3 tests in 0.001s

OK

The above examples show the most commonly used unittest features which are sufficient to meet many
everyday testing needs. The remainder of the documentation explores the full feature set from first principles.

26.4.2 Command-Line Interface

The unittest module can be used from the command line to run tests from modules, classes or even individual
test methods:

python -m unittest test_module1 test_module2
python -m unittest test_module.TestClass
python -m unittest test_module.TestClass.test_method

You can pass in a list with any combination of module names, and fully qualified class or method names.

Test modules can be specified by file path as well:

python -m unittest tests/test_something.py

This allows you to use the shell filename completion to specify the test module. The file specified must still
be importable as a module. The path is converted to a module name by removing the ‘.py’ and converting
path separators into ‘.’. If you want to execute a test file that isn’t importable as a module you should
execute the file directly instead.

You can run tests with more detail (higher verbosity) by passing in the -v flag:

1394 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

python -m unittest -v test_module

When executed without arguments Test Discovery is started:

python -m unittest

For a list of all the command-line options:

python -m unittest -h

Changed in version 3.2: In earlier versions it was only possible to run individual test methods and not
modules or classes.

Command-line options

unittest supports these command-line options:

-b, --buffer
The standard output and standard error streams are buffered during the test run. Output during a
passing test is discarded. Output is echoed normally on test fail or error and is added to the failure
messages.

-c, --catch
Control-C during the test run waits for the current test to end and then reports all the results so far.
A second Control-C raises the normal KeyboardInterrupt exception.

See Signal Handling for the functions that provide this functionality.

-f, --failfast
Stop the test run on the first error or failure.

--locals
Show local variables in tracebacks.

New in version 3.2: The command-line options -b, -c and -f were added.

New in version 3.5: The command-line option --locals.

The command line can also be used for test discovery, for running all of the tests in a project or just a subset.

26.4.3 Test Discovery

New in version 3.2.

Unittest supports simple test discovery. In order to be compatible with test discovery, all of the test files
must be modules or packages (including namespace packages) importable from the top-level directory of the
project (this means that their filenames must be valid identifiers).

Test discovery is implemented in TestLoader.discover(), but can also be used from the command line. The
basic command-line usage is:

cd project_directory
python -m unittest discover

Note: As a shortcut, python -m unittest is the equivalent of python -m unittest discover. If you want to
pass arguments to test discovery the discover sub-command must be used explicitly.

26.4. unittest — Unit testing framework 1395

The Python Library Reference, Release 3.5.7

The discover sub-command has the following options:

-v, --verbose
Verbose output

-s, --start-directory directory
Directory to start discovery (. default)

-p, --pattern pattern
Pattern to match test files (test*.py default)

-t, --top-level-directory directory
Top level directory of project (defaults to start directory)

The -s, -p, and -t options can be passed in as positional arguments in that order. The following two command
lines are equivalent:

python -m unittest discover -s project_directory -p "*_test.py"
python -m unittest discover project_directory "*_test.py"

As well as being a path it is possible to pass a package name, for example myproject.subpackage.test, as the
start directory. The package name you supply will then be imported and its location on the filesystem will
be used as the start directory.

Caution: Test discovery loads tests by importing them. Once test discovery has found all the test
files from the start directory you specify it turns the paths into package names to import. For example
foo/bar/baz.py will be imported as foo.bar.baz.

If you have a package installed globally and attempt test discovery on a different copy of the package
then the import could happen from the wrong place. If this happens test discovery will warn you and
exit.

If you supply the start directory as a package name rather than a path to a directory then discover
assumes that whichever location it imports from is the location you intended, so you will not get the
warning.

Test modules and packages can customize test loading and discovery by through the load_tests protocol.

Changed in version 3.4: Test discovery supports namespace packages.

26.4.4 Organizing test code

The basic building blocks of unit testing are test cases — single scenarios that must be set up and checked
for correctness. In unittest, test cases are represented by unittest.TestCase instances. To make your own
test cases you must write subclasses of TestCase or use FunctionTestCase.

The testing code of a TestCase instance should be entirely self contained, such that it can be run either in
isolation or in arbitrary combination with any number of other test cases.

The simplest TestCase subclass will simply implement a test method (i.e. a method whose name starts with
test) in order to perform specific testing code:

import unittest

class DefaultWidgetSizeTestCase(unittest.TestCase):
def test_default_widget_size(self):

(continues on next page)

1396 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

widget = Widget('The widget')
self.assertEqual(widget.size(), (50, 50))

Note that in order to test something, we use one of the assert*() methods provided by the TestCase base
class. If the test fails, an exception will be raised, and unittest will identify the test case as a failure. Any
other exceptions will be treated as errors.

Tests can be numerous, and their set-up can be repetitive. Luckily, we can factor out set-up code by
implementing a method called setUp(), which the testing framework will automatically call for every single
test we run:

import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget('The widget')

def test_default_widget_size(self):
self.assertEqual(self.widget.size(), (50,50),

'incorrect default size')

def test_widget_resize(self):
self.widget.resize(100,150)
self.assertEqual(self.widget.size(), (100,150),

'wrong size after resize')

Note: The order in which the various tests will be run is determined by sorting the test method names with
respect to the built-in ordering for strings.

If the setUp() method raises an exception while the test is running, the framework will consider the test to
have suffered an error, and the test method will not be executed.

Similarly, we can provide a tearDown() method that tidies up after the test method has been run:

import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget('The widget')

def tearDown(self):
self.widget.dispose()

If setUp() succeeded, tearDown() will be run whether the test method succeeded or not.

Such a working environment for the testing code is called a fixture.

Test case instances are grouped together according to the features they test. unittest provides a mechanism
for this: the test suite, represented by unittest’s TestSuite class. In most cases, calling unittest.main() will
do the right thing and collect all the module’s test cases for you, and then execute them.

However, should you want to customize the building of your test suite, you can do it yourself:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase('test_default_size'))

(continues on next page)

26.4. unittest — Unit testing framework 1397

The Python Library Reference, Release 3.5.7

(continued from previous page)

suite.addTest(WidgetTestCase('test_resize'))
return suite

You can place the definitions of test cases and test suites in the same modules as the code they are to test
(such as widget.py), but there are several advantages to placing the test code in a separate module, such as
test_widget.py:

• The test module can be run standalone from the command line.

• The test code can more easily be separated from shipped code.

• There is less temptation to change test code to fit the code it tests without a good reason.

• Test code should be modified much less frequently than the code it tests.

• Tested code can be refactored more easily.

• Tests for modules written in C must be in separate modules anyway, so why not be consistent?

• If the testing strategy changes, there is no need to change the source code.

26.4.5 Re-using old test code

Some users will find that they have existing test code that they would like to run from unittest, without
converting every old test function to a TestCase subclass.

For this reason, unittest provides a FunctionTestCase class. This subclass of TestCase can be used to wrap
an existing test function. Set-up and tear-down functions can also be provided.

Given the following test function:

def testSomething():
something = makeSomething()
assert something.name is not None
...

one can create an equivalent test case instance as follows, with optional set-up and tear-down methods:

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

Note: Even though FunctionTestCase can be used to quickly convert an existing test base over to a unittest-
based system, this approach is not recommended. Taking the time to set up proper TestCase subclasses will
make future test refactorings infinitely easier.

In some cases, the existing tests may have been written using the doctest module. If so, doctest provides a
DocTestSuite class that can automatically build unittest.TestSuite instances from the existing doctest-based
tests.

26.4.6 Skipping tests and expected failures

New in version 3.1.

1398 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

Unittest supports skipping individual test methods and even whole classes of tests. In addition, it supports
marking a test as an “expected failure,” a test that is broken and will fail, but shouldn’t be counted as a
failure on a TestResult.

Skipping a test is simply a matter of using the skip() decorator or one of its conditional variants.

Basic skipping looks like this:

class MyTestCase(unittest.TestCase):

@unittest.skip("demonstrating skipping")
def test_nothing(self):

self.fail("shouldn't happen")

@unittest.skipIf(mylib.__version__ < (1, 3),
"not supported in this library version")

def test_format(self):
Tests that work for only a certain version of the library.
pass

@unittest.skipUnless(sys.platform.startswith("win"), "requires Windows")
def test_windows_support(self):

windows specific testing code
pass

This is the output of running the example above in verbose mode:

test_format (__main__.MyTestCase) ... skipped 'not supported in this library version'
test_nothing (__main__.MyTestCase) ... skipped 'demonstrating skipping'
test_windows_support (__main__.MyTestCase) ... skipped 'requires Windows'

--
Ran 3 tests in 0.005s

OK (skipped=3)

Classes can be skipped just like methods:

@unittest.skip("showing class skipping")
class MySkippedTestCase(unittest.TestCase):

def test_not_run(self):
pass

TestCase.setUp() can also skip the test. This is useful when a resource that needs to be set up is not
available.

Expected failures use the expectedFailure() decorator.

class ExpectedFailureTestCase(unittest.TestCase):
@unittest.expectedFailure
def test_fail(self):

self.assertEqual(1, 0, "broken")

It’s easy to roll your own skipping decorators by making a decorator that calls skip() on the test when it
wants it to be skipped. This decorator skips the test unless the passed object has a certain attribute:

def skipUnlessHasattr(obj, attr):
if hasattr(obj, attr):

(continues on next page)

26.4. unittest — Unit testing framework 1399

The Python Library Reference, Release 3.5.7

(continued from previous page)

return lambda func: func
return unittest.skip("{!r} doesn't have {!r}".format(obj, attr))

The following decorators implement test skipping and expected failures:

@unittest.skip(reason)
Unconditionally skip the decorated test. reason should describe why the test is being skipped.

@unittest.skipIf(condition, reason)
Skip the decorated test if condition is true.

@unittest.skipUnless(condition, reason)
Skip the decorated test unless condition is true.

@unittest.expectedFailure
Mark the test as an expected failure. If the test fails when run, the test is not counted as a failure.

exception unittest.SkipTest(reason)
This exception is raised to skip a test.

Usually you can use TestCase.skipTest() or one of the skipping decorators instead of raising this directly.

Skipped tests will not have setUp() or tearDown() run around them. Skipped classes will not have se-
tUpClass() or tearDownClass() run. Skipped modules will not have setUpModule() or tearDownModule()
run.

26.4.7 Distinguishing test iterations using subtests

New in version 3.4.

When some of your tests differ only by a some very small differences, for instance some parameters, unittest
allows you to distinguish them inside the body of a test method using the subTest() context manager.

For example, the following test:

class NumbersTest(unittest.TestCase):

def test_even(self):
"""
Test that numbers between 0 and 5 are all even.
"""
for i in range(0, 6):

with self.subTest(i=i):
self.assertEqual(i % 2, 0)

will produce the following output:

==
FAIL: test_even (__main__.NumbersTest) (i=1)
--
Traceback (most recent call last):
File "subtests.py", line 32, in test_even
self.assertEqual(i % 2, 0)

AssertionError: 1 != 0

==
FAIL: test_even (__main__.NumbersTest) (i=3)
--

(continues on next page)

1400 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

Traceback (most recent call last):
File "subtests.py", line 32, in test_even
self.assertEqual(i % 2, 0)

AssertionError: 1 != 0

==
FAIL: test_even (__main__.NumbersTest) (i=5)
--
Traceback (most recent call last):
File "subtests.py", line 32, in test_even
self.assertEqual(i % 2, 0)

AssertionError: 1 != 0

Without using a subtest, execution would stop after the first failure, and the error would be less easy to
diagnose because the value of i wouldn’t be displayed:

==
FAIL: test_even (__main__.NumbersTest)
--
Traceback (most recent call last):
File "subtests.py", line 32, in test_even
self.assertEqual(i % 2, 0)

AssertionError: 1 != 0

26.4.8 Classes and functions

This section describes in depth the API of unittest.

Test cases

class unittest.TestCase(methodName=’runTest’)
Instances of the TestCase class represent the logical test units in the unittest universe. This class is
intended to be used as a base class, with specific tests being implemented by concrete subclasses. This
class implements the interface needed by the test runner to allow it to drive the tests, and methods
that the test code can use to check for and report various kinds of failure.

Each instance of TestCase will run a single base method: the method named methodName. In most
uses of TestCase, you will neither change the methodName nor reimplement the default runTest()
method.

Changed in version 3.2: TestCase can be instantiated successfully without providing a methodName.
This makes it easier to experiment with TestCase from the interactive interpreter.

TestCase instances provide three groups of methods: one group used to run the test, another used by
the test implementation to check conditions and report failures, and some inquiry methods allowing
information about the test itself to be gathered.

Methods in the first group (running the test) are:

setUp()
Method called to prepare the test fixture. This is called immediately before calling the test
method; other than AssertionError or SkipTest, any exception raised by this method will be
considered an error rather than a test failure. The default implementation does nothing.

26.4. unittest — Unit testing framework 1401

The Python Library Reference, Release 3.5.7

tearDown()
Method called immediately after the test method has been called and the result recorded. This is
called even if the test method raised an exception, so the implementation in subclasses may need
to be particularly careful about checking internal state. Any exception, other than AssertionError
or SkipTest, raised by this method will be considered an additional error rather than a test failure
(thus increasing the total number of reported errors). This method will only be called if the
setUp() succeeds, regardless of the outcome of the test method. The default implementation does
nothing.

setUpClass()
A class method called before tests in an individual class run. setUpClass is called with the class
as the only argument and must be decorated as a classmethod():

@classmethod
def setUpClass(cls):

...

See Class and Module Fixtures for more details.

New in version 3.2.

tearDownClass()
A class method called after tests in an individual class have run. tearDownClass is called with
the class as the only argument and must be decorated as a classmethod():

@classmethod
def tearDownClass(cls):

...

See Class and Module Fixtures for more details.

New in version 3.2.

run(result=None)
Run the test, collecting the result into the TestResult object passed as result. If result is omitted
or None, a temporary result object is created (by calling the defaultTestResult() method) and
used. The result object is returned to run()’s caller.

The same effect may be had by simply calling the TestCase instance.

Changed in version 3.3: Previous versions of run did not return the result. Neither did calling an
instance.

skipTest(reason)
Calling this during a test method or setUp() skips the current test. See Skipping tests and
expected failures for more information.

New in version 3.1.

subTest(msg=None, **params)
Return a context manager which executes the enclosed code block as a subtest. msg and params
are optional, arbitrary values which are displayed whenever a subtest fails, allowing you to identify
them clearly.

A test case can contain any number of subtest declarations, and they can be arbitrarily nested.

See Distinguishing test iterations using subtests for more information.

New in version 3.4.

1402 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

debug()
Run the test without collecting the result. This allows exceptions raised by the test to be propa-
gated to the caller, and can be used to support running tests under a debugger.

The TestCase class provides several assert methods to check for and report failures. The following
table lists the most commonly used methods (see the tables below for more assert methods):

Method Checks that New in
assertEqual(a, b) a == b
assertNotEqual(a, b) a != b
assertTrue(x) bool(x) is True
assertFalse(x) bool(x) is False
assertIs(a, b) a is b 3.1
assertIsNot(a, b) a is not b 3.1
assertIsNone(x) x is None 3.1
assertIsNotNone(x) x is not None 3.1
assertIn(a, b) a in b 3.1
assertNotIn(a, b) a not in b 3.1
assertIsInstance(a, b) isinstance(a, b) 3.2
assertNotIsInstance(a, b) not isinstance(a, b) 3.2

All the assert methods accept a msg argument that, if specified, is used as the error message on failure
(see also longMessage). Note that the msg keyword argument can be passed to assertRaises(), asser-
tRaisesRegex(), assertWarns(), assertWarnsRegex() only when they are used as a context manager.

assertEqual(first, second, msg=None)
Test that first and second are equal. If the values do not compare equal, the test will fail.

In addition, if first and second are the exact same type and one of list, tuple, dict, set, frozenset
or str or any type that a subclass registers with addTypeEqualityFunc() the type-specific equality
function will be called in order to generate a more useful default error message (see also the list
of type-specific methods).

Changed in version 3.1: Added the automatic calling of type-specific equality function.

Changed in version 3.2: assertMultiLineEqual() added as the default type equality function for
comparing strings.

assertNotEqual(first, second, msg=None)
Test that first and second are not equal. If the values do compare equal, the test will fail.

assertTrue(expr, msg=None)
assertFalse(expr, msg=None)

Test that expr is true (or false).

Note that this is equivalent to bool(expr) is True and not to expr is True (use assertIs(expr, True)
for the latter). This method should also be avoided when more specific methods are available (e.g.
assertEqual(a, b) instead of assertTrue(a == b)), because they provide a better error message in
case of failure.

assertIs(first, second, msg=None)
assertIsNot(first, second, msg=None)

Test that first and second evaluate (or don’t evaluate) to the same object.

New in version 3.1.

assertIsNone(expr, msg=None)

26.4. unittest — Unit testing framework 1403

The Python Library Reference, Release 3.5.7

assertIsNotNone(expr, msg=None)
Test that expr is (or is not) None.

New in version 3.1.

assertIn(first, second, msg=None)
assertNotIn(first, second, msg=None)

Test that first is (or is not) in second.

New in version 3.1.

assertIsInstance(obj, cls, msg=None)
assertNotIsInstance(obj, cls, msg=None)

Test that obj is (or is not) an instance of cls (which can be a class or a tuple of classes, as
supported by isinstance()). To check for the exact type, use assertIs(type(obj), cls).

New in version 3.2.

It is also possible to check the production of exceptions, warnings, and log messages using the following
methods:

Method Checks that New
in

assertRaises(exc, fun, *args, **kwds) fun(*args, **kwds) raises exc
assertRaisesRegex(exc, r, fun, *args,
**kwds)

fun(*args, **kwds) raises exc and the message
matches regex r

3.1

assertWarns(warn, fun, *args,
**kwds)

fun(*args, **kwds) raises warn 3.2

assertWarnsRegex(warn, r, fun,
*args, **kwds)

fun(*args, **kwds) raises warn and the message
matches regex r

3.2

assertLogs(logger, level) The with block logs on logger with minimum level 3.4

assertRaises(exception, callable, *args, **kwds)
assertRaises(exception, msg=None)

Test that an exception is raised when callable is called with any positional or keyword arguments
that are also passed to assertRaises(). The test passes if exception is raised, is an error if another
exception is raised, or fails if no exception is raised. To catch any of a group of exceptions, a tuple
containing the exception classes may be passed as exception.

If only the exception and possibly the msg arguments are given, return a context manager so that
the code under test can be written inline rather than as a function:

with self.assertRaises(SomeException):
do_something()

When used as a context manager, assertRaises() accepts the additional keyword argument msg.

The context manager will store the caught exception object in its exception attribute. This can
be useful if the intention is to perform additional checks on the exception raised:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

Changed in version 3.1: Added the ability to use assertRaises() as a context manager.

Changed in version 3.2: Added the exception attribute.

1404 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

Changed in version 3.3: Added the msg keyword argument when used as a context manager.

assertRaisesRegex(exception, regex, callable, *args, **kwds)
assertRaisesRegex(exception, regex, msg=None)

Like assertRaises() but also tests that regex matches on the string representation of the raised
exception. regex may be a regular expression object or a string containing a regular expression
suitable for use by re.search(). Examples:

self.assertRaisesRegex(ValueError, "invalid literal for.*XYZ'$",
int, 'XYZ')

or:

with self.assertRaisesRegex(ValueError, 'literal'):
int('XYZ')

New in version 3.1: under the name assertRaisesRegexp.

Changed in version 3.2: Renamed to assertRaisesRegex().

Changed in version 3.3: Added the msg keyword argument when used as a context manager.

assertWarns(warning, callable, *args, **kwds)
assertWarns(warning, msg=None)

Test that a warning is triggered when callable is called with any positional or keyword arguments
that are also passed to assertWarns(). The test passes if warning is triggered and fails if it isn’t.
Any exception is an error. To catch any of a group of warnings, a tuple containing the warning
classes may be passed as warnings.

If only the warning and possibly the msg arguments are given, return a context manager so that
the code under test can be written inline rather than as a function:

with self.assertWarns(SomeWarning):
do_something()

When used as a context manager, assertWarns() accepts the additional keyword argument msg.

The context manager will store the caught warning object in its warning attribute, and the source
line which triggered the warnings in the filename and lineno attributes. This can be useful if the
intention is to perform additional checks on the warning caught:

with self.assertWarns(SomeWarning) as cm:
do_something()

self.assertIn('myfile.py', cm.filename)
self.assertEqual(320, cm.lineno)

This method works regardless of the warning filters in place when it is called.

New in version 3.2.

Changed in version 3.3: Added the msg keyword argument when used as a context manager.

assertWarnsRegex(warning, regex, callable, *args, **kwds)
assertWarnsRegex(warning, regex, msg=None)

Like assertWarns() but also tests that regex matches on the message of the triggered warning.
regex may be a regular expression object or a string containing a regular expression suitable for
use by re.search(). Example:

26.4. unittest — Unit testing framework 1405

The Python Library Reference, Release 3.5.7

self.assertWarnsRegex(DeprecationWarning,
r'legacy_function\(\) is deprecated',
legacy_function, 'XYZ')

or:

with self.assertWarnsRegex(RuntimeWarning, 'unsafe frobnicating'):
frobnicate('/etc/passwd')

New in version 3.2.

Changed in version 3.3: Added the msg keyword argument when used as a context manager.

assertLogs(logger=None, level=None)
A context manager to test that at least one message is logged on the logger or one of its children,
with at least the given level.

If given, logger should be a logging.Logger object or a str giving the name of a logger. The default
is the root logger, which will catch all messages.

If given, level should be either a numeric logging level or its string equivalent (for example either
"ERROR" or logging.ERROR). The default is logging.INFO.

The test passes if at least one message emitted inside the with block matches the logger and level
conditions, otherwise it fails.

The object returned by the context manager is a recording helper which keeps tracks of the
matching log messages. It has two attributes:

records
A list of logging.LogRecord objects of the matching log messages.

output
A list of str objects with the formatted output of matching messages.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

New in version 3.4.

There are also other methods used to perform more specific checks, such as:

1406 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

Method Checks that New
in

assertAlmostEqual(a,
b)

round(a-b, 7) == 0

assertNotAlmostEqual(a,
b)

round(a-b, 7) != 0

assertGreater(a, b) a > b 3.1
assertGreaterEqual(a,
b)

a >= b 3.1

assertLess(a, b) a < b 3.1
assertLessEqual(a, b) a <= b 3.1
assertRegex(s, r) r.search(s) 3.1
assertNotRegex(s, r) not r.search(s) 3.2
assertCountEqual(a, b) a and b have the same elements in the same number, regardless

of their order
3.2

assertAlmostEqual(first, second, places=7, msg=None, delta=None)
assertNotAlmostEqual(first, second, places=7, msg=None, delta=None)

Test that first and second are approximately (or not approximately) equal by computing the
difference, rounding to the given number of decimal places (default 7), and comparing to zero.
Note that these methods round the values to the given number of decimal places (i.e. like the
round() function) and not significant digits.

If delta is supplied instead of places then the difference between first and second must be less or
equal to (or greater than) delta.

Supplying both delta and places raises a TypeError.

Changed in version 3.2: assertAlmostEqual() automatically considers almost equal objects that
compare equal. assertNotAlmostEqual() automatically fails if the objects compare equal. Added
the delta keyword argument.

assertGreater(first, second, msg=None)
assertGreaterEqual(first, second, msg=None)
assertLess(first, second, msg=None)
assertLessEqual(first, second, msg=None)

Test that first is respectively >, >=, < or <= than second depending on the method name. If
not, the test will fail:

>>> self.assertGreaterEqual(3, 4)
AssertionError: "3" unexpectedly not greater than or equal to "4"

New in version 3.1.

assertRegex(text, regex, msg=None)
assertNotRegex(text, regex, msg=None)

Test that a regex search matches (or does not match) text. In case of failure, the error message
will include the pattern and the text (or the pattern and the part of text that unexpectedly
matched). regex may be a regular expression object or a string containing a regular expression
suitable for use by re.search().

New in version 3.1: under the name assertRegexpMatches.

Changed in version 3.2: The method assertRegexpMatches() has been renamed to assertRegex().

New in version 3.2: assertNotRegex().

New in version 3.5: The name assertNotRegexpMatches is a deprecated alias for assertNotRegex().

26.4. unittest — Unit testing framework 1407

The Python Library Reference, Release 3.5.7

assertCountEqual(first, second, msg=None)
Test that sequence first contains the same elements as second, regardless of their order. When
they don’t, an error message listing the differences between the sequences will be generated.

Duplicate elements are not ignored when comparing first and second. It verifies whether each
element has the same count in both sequences. Equivalent to: assertEqual(Counter(list(first)),
Counter(list(second))) but works with sequences of unhashable objects as well.

New in version 3.2.

The assertEqual() method dispatches the equality check for objects of the same type to different type-
specific methods. These methods are already implemented for most of the built-in types, but it’s also
possible to register new methods using addTypeEqualityFunc():

addTypeEqualityFunc(typeobj, function)
Registers a type-specific method called by assertEqual() to check if two objects of exactly the same
typeobj (not subclasses) compare equal. function must take two positional arguments and a third
msg=None keyword argument just as assertEqual() does. It must raise self.failureException(msg)
when inequality between the first two parameters is detected – possibly providing useful informa-
tion and explaining the inequalities in details in the error message.

New in version 3.1.

The list of type-specific methods automatically used by assertEqual() are summarized in the following
table. Note that it’s usually not necessary to invoke these methods directly.

Method Used to compare New in
assertMultiLineEqual(a, b) strings 3.1
assertSequenceEqual(a, b) sequences 3.1
assertListEqual(a, b) lists 3.1
assertTupleEqual(a, b) tuples 3.1
assertSetEqual(a, b) sets or frozensets 3.1
assertDictEqual(a, b) dicts 3.1

assertMultiLineEqual(first, second, msg=None)
Test that the multiline string first is equal to the string second. When not equal a diff of the two
strings highlighting the differences will be included in the error message. This method is used by
default when comparing strings with assertEqual().

New in version 3.1.

assertSequenceEqual(first, second, msg=None, seq_type=None)
Tests that two sequences are equal. If a seq_type is supplied, both first and second must be
instances of seq_type or a failure will be raised. If the sequences are different an error message
is constructed that shows the difference between the two.

This method is not called directly by assertEqual(), but it’s used to implement assertListEqual()
and assertTupleEqual().

New in version 3.1.

assertListEqual(first, second, msg=None)
assertTupleEqual(first, second, msg=None)

Tests that two lists or tuples are equal. If not, an error message is constructed that shows only the
differences between the two. An error is also raised if either of the parameters are of the wrong
type. These methods are used by default when comparing lists or tuples with assertEqual().

New in version 3.1.

1408 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

assertSetEqual(first, second, msg=None)
Tests that two sets are equal. If not, an error message is constructed that lists the differences
between the sets. This method is used by default when comparing sets or frozensets with assertE-
qual().

Fails if either of first or second does not have a set.difference() method.

New in version 3.1.

assertDictEqual(first, second, msg=None)
Test that two dictionaries are equal. If not, an error message is constructed that shows the
differences in the dictionaries. This method will be used by default to compare dictionaries in
calls to assertEqual().

New in version 3.1.

Finally the TestCase provides the following methods and attributes:

fail(msg=None)
Signals a test failure unconditionally, with msg or None for the error message.

failureException
This class attribute gives the exception raised by the test method. If a test framework needs to use
a specialized exception, possibly to carry additional information, it must subclass this exception
in order to “play fair” with the framework. The initial value of this attribute is AssertionError.

longMessage
This class attribute determines what happens when a custom failure message is passed as the
msg argument to an assertXYY call that fails. True is the default value. In this case, the custom
message is appended to the end of the standard failure message. When set to False, the custom
message replaces the standard message.

The class setting can be overridden in individual test methods by assigning an instance attribute,
self.longMessage, to True or False before calling the assert methods.

The class setting gets reset before each test call.

New in version 3.1.

maxDiff
This attribute controls the maximum length of diffs output by assert methods that report diffs
on failure. It defaults to 80*8 characters. Assert methods affected by this attribute are assertSe-
quenceEqual() (including all the sequence comparison methods that delegate to it), assertDictE-
qual() and assertMultiLineEqual().

Setting maxDiff to None means that there is no maximum length of diffs.

New in version 3.2.

Testing frameworks can use the following methods to collect information on the test:

countTestCases()
Return the number of tests represented by this test object. For TestCase instances, this will
always be 1.

defaultTestResult()
Return an instance of the test result class that should be used for this test case class (if no other
result instance is provided to the run() method).

For TestCase instances, this will always be an instance of TestResult; subclasses of TestCase
should override this as necessary.

26.4. unittest — Unit testing framework 1409

The Python Library Reference, Release 3.5.7

id()
Return a string identifying the specific test case. This is usually the full name of the test method,
including the module and class name.

shortDescription()
Returns a description of the test, or None if no description has been provided. The default
implementation of this method returns the first line of the test method’s docstring, if available,
or None.

Changed in version 3.1: In 3.1 this was changed to add the test name to the short description
even in the presence of a docstring. This caused compatibility issues with unittest extensions and
adding the test name was moved to the TextTestResult in Python 3.2.

addCleanup(function, *args, **kwargs)
Add a function to be called after tearDown() to cleanup resources used during the test. Functions
will be called in reverse order to the order they are added (LIFO). They are called with any
arguments and keyword arguments passed into addCleanup() when they are added.

If setUp() fails, meaning that tearDown() is not called, then any cleanup functions added will still
be called.

New in version 3.1.

doCleanups()
This method is called unconditionally after tearDown(), or after setUp() if setUp() raises an
exception.

It is responsible for calling all the cleanup functions added by addCleanup(). If you need cleanup
functions to be called prior to tearDown() then you can call doCleanups() yourself.

doCleanups() pops methods off the stack of cleanup functions one at a time, so it can be called
at any time.

New in version 3.1.

class unittest.FunctionTestCase(testFunc, setUp=None, tearDown=None, description=None)
This class implements the portion of the TestCase interface which allows the test runner to drive the
test, but does not provide the methods which test code can use to check and report errors. This is
used to create test cases using legacy test code, allowing it to be integrated into a unittest-based test
framework.

Deprecated aliases

For historical reasons, some of the TestCase methods had one or more aliases that are now deprecated. The
following table lists the correct names along with their deprecated aliases:

Method Name Deprecated alias Deprecated alias
assertEqual() failUnlessEqual assertEquals
assertNotEqual() failIfEqual assertNotEquals
assertTrue() failUnless assert_
assertFalse() failIf
assertRaises() failUnlessRaises
assertAlmostEqual() failUnlessAlmostEqual assertAlmostEquals
assertNotAlmostEqual() failIfAlmostEqual assertNotAlmostEquals
assertRegex() assertRegexpMatches
assertNotRegex() assertNotRegexpMatches
assertRaisesRegex() assertRaisesRegexp

1410 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

Deprecated since version 3.1: the fail* aliases listed in the second column.

Deprecated since version 3.2: the assert* aliases listed in the third column.

Deprecated since version 3.2: assertRegexpMatches and assertRaisesRegexp have been renamed
to assertRegex() and assertRaisesRegex().

Deprecated since version 3.5: the assertNotRegexpMatches name in favor of assertNotRegex().

Grouping tests

class unittest.TestSuite(tests=())
This class represents an aggregation of individual test cases and test suites. The class presents the
interface needed by the test runner to allow it to be run as any other test case. Running a TestSuite
instance is the same as iterating over the suite, running each test individually.

If tests is given, it must be an iterable of individual test cases or other test suites that will be used to
build the suite initially. Additional methods are provided to add test cases and suites to the collection
later on.

TestSuite objects behave much like TestCase objects, except they do not actually implement a test.
Instead, they are used to aggregate tests into groups of tests that should be run together. Some
additional methods are available to add tests to TestSuite instances:

addTest(test)
Add a TestCase or TestSuite to the suite.

addTests(tests)
Add all the tests from an iterable of TestCase and TestSuite instances to this test suite.

This is equivalent to iterating over tests, calling addTest() for each element.

TestSuite shares the following methods with TestCase:

run(result)
Run the tests associated with this suite, collecting the result into the test result object passed as
result. Note that unlike TestCase.run(), TestSuite.run() requires the result object to be passed
in.

debug()
Run the tests associated with this suite without collecting the result. This allows exceptions
raised by the test to be propagated to the caller and can be used to support running tests under
a debugger.

countTestCases()
Return the number of tests represented by this test object, including all individual tests and
sub-suites.

__iter__()
Tests grouped by a TestSuite are always accessed by iteration. Subclasses can lazily provide tests
by overriding __iter__(). Note that this method may be called several times on a single suite
(for example when counting tests or comparing for equality) so the tests returned by repeated
iterations before TestSuite.run() must be the same for each call iteration. After TestSuite.run(),
callers should not rely on the tests returned by this method unless the caller uses a subclass that
overrides TestSuite._removeTestAtIndex() to preserve test references.

Changed in version 3.2: In earlier versions the TestSuite accessed tests directly rather than through
iteration, so overriding __iter__() wasn’t sufficient for providing tests.

26.4. unittest — Unit testing framework 1411

The Python Library Reference, Release 3.5.7

Changed in version 3.4: In earlier versions the TestSuite held references to each Test-
Case after TestSuite.run(). Subclasses can restore that behavior by overriding TestSuite.
_removeTestAtIndex().

In the typical usage of a TestSuite object, the run() method is invoked by a TestRunner rather than
by the end-user test harness.

Loading and running tests

class unittest.TestLoader
The TestLoader class is used to create test suites from classes and modules. Normally, there is no
need to create an instance of this class; the unittest module provides an instance that can be shared
as unittest.defaultTestLoader. Using a subclass or instance, however, allows customization of some
configurable properties.

TestLoader objects have the following attributes:

errors
A list of the non-fatal errors encountered while loading tests. Not reset by the loader at any point.
Fatal errors are signalled by the relevant a method raising an exception to the caller. Non-fatal
errors are also indicated by a synthetic test that will raise the original error when run.

New in version 3.5.

TestLoader objects have the following methods:

loadTestsFromTestCase(testCaseClass)
Return a suite of all test cases contained in the TestCase-derived testCaseClass.

A test case instance is created for each method named by getTestCaseNames(). By default these
are the method names beginning with test. If getTestCaseNames() returns no methods, but the
runTest() method is implemented, a single test case is created for that method instead.

loadTestsFromModule(module, pattern=None)
Return a suite of all test cases contained in the given module. This method searches module for
classes derived from TestCase and creates an instance of the class for each test method defined
for the class.

Note: While using a hierarchy of TestCase-derived classes can be convenient in sharing fixtures
and helper functions, defining test methods on base classes that are not intended to be instantiated
directly does not play well with this method. Doing so, however, can be useful when the fixtures
are different and defined in subclasses.

If a module provides a load_tests function it will be called to load the tests. This allows modules
to customize test loading. This is the load_tests protocol. The pattern argument is passed as the
third argument to load_tests.

Changed in version 3.2: Support for load_tests added.

Changed in version 3.5: The undocumented and unofficial use_load_tests default argument is
deprecated and ignored, although it is still accepted for backward compatibility. The method
also now accepts a keyword-only argument pattern which is passed to load_tests as the third
argument.

loadTestsFromName(name, module=None)
Return a suite of all test cases given a string specifier.

1412 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

The specifier name is a “dotted name” that may resolve either to a module, a test case class,
a test method within a test case class, a TestSuite instance, or a callable object which returns
a TestCase or TestSuite instance. These checks are applied in the order listed here; that is, a
method on a possible test case class will be picked up as “a test method within a test case class”,
rather than “a callable object”.

For example, if you have a module SampleTests containing a TestCase-derived class Sam-
pleTestCase with three test methods (test_one(), test_two(), and test_three()), the specifier
'SampleTests.SampleTestCase' would cause this method to return a suite which will run all
three test methods. Using the specifier 'SampleTests.SampleTestCase.test_two' would cause it
to return a test suite which will run only the test_two() test method. The specifier can refer to
modules and packages which have not been imported; they will be imported as a side-effect.

The method optionally resolves name relative to the given module.

Changed in version 3.5: If an ImportError or AttributeError occurs while traversing name then
a synthetic test that raises that error when run will be returned. These errors are included in the
errors accumulated by self.errors.

loadTestsFromNames(names, module=None)
Similar to loadTestsFromName(), but takes a sequence of names rather than a single name. The
return value is a test suite which supports all the tests defined for each name.

getTestCaseNames(testCaseClass)
Return a sorted sequence of method names found within testCaseClass; this should be a subclass
of TestCase.

discover(start_dir, pattern=’test*.py’, top_level_dir=None)
Find all the test modules by recursing into subdirectories from the specified start directory, and
return a TestSuite object containing them. Only test files that match pattern will be loaded.
(Using shell style pattern matching.) Only module names that are importable (i.e. are valid
Python identifiers) will be loaded.

All test modules must be importable from the top level of the project. If the start directory is
not the top level directory then the top level directory must be specified separately.

If importing a module fails, for example due to a syntax error, then this will be recorded as a
single error and discovery will continue. If the import failure is due to SkipTest being raised, it
will be recorded as a skip instead of an error.

If a package (a directory containing a file named __init__.py) is found, the package will be
checked for a load_tests function. If this exists then it will be called package.load_tests(loader,
tests, pattern). Test discovery takes care to ensure that a package is only checked for tests once
during an invocation, even if the load_tests function itself calls loader.discover.

If load_tests exists then discovery does not recurse into the package, load_tests is responsible for
loading all tests in the package.

The pattern is deliberately not stored as a loader attribute so that packages can continue discovery
themselves. top_level_dir is stored so load_tests does not need to pass this argument in to
loader.discover().

start_dir can be a dotted module name as well as a directory.

New in version 3.2.

Changed in version 3.4: Modules that raise SkipTest on import are recorded as skips, not errors.
Discovery works for namespace packages. Paths are sorted before being imported so that execution
order is the same even if the underlying file system’s ordering is not dependent on file name.

26.4. unittest — Unit testing framework 1413

The Python Library Reference, Release 3.5.7

Changed in version 3.5: Found packages are now checked for load_tests regardless of whether
their path matches pattern, because it is impossible for a package name to match the default
pattern.

The following attributes of a TestLoader can be configured either by subclassing or assignment on an
instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default
value is 'test'.

This affects getTestCaseNames() and all the loadTestsFrom*() methods.

sortTestMethodsUsing
Function to be used to compare method names when sorting them in getTestCaseNames() and
all the loadTestsFrom*() methods.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object
are needed. The default value is the TestSuite class.

This affects all the loadTestsFrom*() methods.

class unittest.TestResult
This class is used to compile information about which tests have succeeded and which have failed.

A TestResult object stores the results of a set of tests. The TestCase and TestSuite classes ensure that
results are properly recorded; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top of unittest may want access to the TestResult object generated by
running a set of tests for reporting purposes; a TestResult instance is returned by the TestRunner.run()
method for this purpose.

TestResult instances have the following attributes that will be of interest when inspecting the results
of running a set of tests:

errors
A list containing 2-tuples of TestCase instances and strings holding formatted tracebacks. Each
tuple represents a test which raised an unexpected exception.

failures
A list containing 2-tuples of TestCase instances and strings holding formatted tracebacks. Each
tuple represents a test where a failure was explicitly signalled using the TestCase.assert*() meth-
ods.

skipped
A list containing 2-tuples of TestCase instances and strings holding the reason for skipping the
test.

New in version 3.1.

expectedFailures
A list containing 2-tuples of TestCase instances and strings holding formatted tracebacks. Each
tuple represents an expected failure of the test case.

unexpectedSuccesses
A list containing TestCase instances that were marked as expected failures, but succeeded.

shouldStop
Set to True when the execution of tests should stop by stop().

testsRun
The total number of tests run so far.

1414 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

buffer
If set to true, sys.stdout and sys.stderr will be buffered in between startTest() and stopTest()
being called. Collected output will only be echoed onto the real sys.stdout and sys.stderr if the
test fails or errors. Any output is also attached to the failure / error message.

New in version 3.2.

failfast
If set to true stop() will be called on the first failure or error, halting the test run.

New in version 3.2.

tb_locals
If set to true then local variables will be shown in tracebacks.

New in version 3.5.

wasSuccessful()
Return True if all tests run so far have passed, otherwise returns False.

Changed in version 3.4: Returns False if there were any unexpectedSuccesses from tests marked
with the expectedFailure() decorator.

stop()
This method can be called to signal that the set of tests being run should be aborted by setting
the shouldStop attribute to True. TestRunner objects should respect this flag and return without
running any additional tests.

For example, this feature is used by the TextTestRunner class to stop the test framework when
the user signals an interrupt from the keyboard. Interactive tools which provide TestRunner
implementations can use this in a similar manner.

The following methods of the TestResult class are used to maintain the internal data structures, and
may be extended in subclasses to support additional reporting requirements. This is particularly useful
in building tools which support interactive reporting while tests are being run.

startTest(test)
Called when the test case test is about to be run.

stopTest(test)
Called after the test case test has been executed, regardless of the outcome.

startTestRun()
Called once before any tests are executed.

New in version 3.1.

stopTestRun()
Called once after all tests are executed.

New in version 3.1.

addError(test, err)
Called when the test case test raises an unexpected exception. err is a tuple of the form returned
by sys.exc_info(): (type, value, traceback).

The default implementation appends a tuple (test, formatted_err) to the instance’s errors at-
tribute, where formatted_err is a formatted traceback derived from err.

addFailure(test, err)
Called when the test case test signals a failure. err is a tuple of the form returned by sys.exc_info():
(type, value, traceback).

26.4. unittest — Unit testing framework 1415

The Python Library Reference, Release 3.5.7

The default implementation appends a tuple (test, formatted_err) to the instance’s failures at-
tribute, where formatted_err is a formatted traceback derived from err.

addSuccess(test)
Called when the test case test succeeds.

The default implementation does nothing.

addSkip(test, reason)
Called when the test case test is skipped. reason is the reason the test gave for skipping.

The default implementation appends a tuple (test, reason) to the instance’s skipped attribute.

addExpectedFailure(test, err)
Called when the test case test fails, but was marked with the expectedFailure() decorator.

The default implementation appends a tuple (test, formatted_err) to the instance’s expectedFail-
ures attribute, where formatted_err is a formatted traceback derived from err.

addUnexpectedSuccess(test)
Called when the test case test was marked with the expectedFailure() decorator, but succeeded.

The default implementation appends the test to the instance’s unexpectedSuccesses attribute.

addSubTest(test, subtest, outcome)
Called when a subtest finishes. test is the test case corresponding to the test method. subtest is
a custom TestCase instance describing the subtest.

If outcome is None, the subtest succeeded. Otherwise, it failed with an exception where outcome
is a tuple of the form returned by sys.exc_info(): (type, value, traceback).

The default implementation does nothing when the outcome is a success, and records subtest
failures as normal failures.

New in version 3.4.

class unittest.TextTestResult(stream, descriptions, verbosity)
A concrete implementation of TestResult used by the TextTestRunner.

New in version 3.2: This class was previously named _TextTestResult. The old name still exists as an
alias but is deprecated.

unittest.defaultTestLoader
Instance of the TestLoader class intended to be shared. If no customization of the TestLoader is needed,
this instance can be used instead of repeatedly creating new instances.

class unittest.TextTestRunner(stream=None, descriptions=True, verbosity=1, failfast=False,
buffer=False, resultclass=None, warnings=None, *, tb_locals=False)

A basic test runner implementation that outputs results to a stream. If stream is None, the default,
sys.stderr is used as the output stream. This class has a few configurable parameters, but is essentially
very simple. Graphical applications which run test suites should provide alternate implementations.
Such implementations should accept **kwargs as the interface to construct runners changes when
features are added to unittest.

By default this runner shows DeprecationWarning, PendingDeprecationWarning, ResourceWarning
and ImportWarning even if they are ignored by default. Deprecation warnings caused by deprecated
unittest methods are also special-cased and, when the warning filters are 'default' or 'always', they
will appear only once per-module, in order to avoid too many warning messages. This behavior can be
overridden using Python’s -Wd or -Wa options (see Warning control) and leaving warnings to None.

Changed in version 3.2: Added the warnings argument.

1416 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

Changed in version 3.2: The default stream is set to sys.stderr at instantiation time rather than import
time.

Changed in version 3.5: Added the tb_locals parameter.

_makeResult()
This method returns the instance of TestResult used by run(). It is not intended to be called
directly, but can be overridden in subclasses to provide a custom TestResult.

_makeResult() instantiates the class or callable passed in the TextTestRunner constructor as the
resultclass argument. It defaults to TextTestResult if no resultclass is provided. The result class
is instantiated with the following arguments:

stream, descriptions, verbosity

run(test)
This method is the main public interface to the TextTestRunner. This method takes a TestSuite
or TestCase instance. A TestResult is created by calling _makeResult() and the test(s) are run
and the results printed to stdout.

unittest.main(module=’__main__’, defaultTest=None, argv=None, testRunner=None, test-
Loader=unittest.defaultTestLoader, exit=True, verbosity=1, failfast=None, catch-
break=None, buffer=None, warnings=None)

A command-line program that loads a set of tests from module and runs them; this is primarily for
making test modules conveniently executable. The simplest use for this function is to include the
following line at the end of a test script:

if __name__ == '__main__':
unittest.main()

You can run tests with more detailed information by passing in the verbosity argument:

if __name__ == '__main__':
unittest.main(verbosity=2)

The defaultTest argument is either the name of a single test or an iterable of test names to run if no
test names are specified via argv. If not specified or None and no test names are provided via argv, all
tests found in module are run.

The argv argument can be a list of options passed to the program, with the first element being the
program name. If not specified or None, the values of sys.argv are used.

The testRunner argument can either be a test runner class or an already created instance of it. By
default main calls sys.exit() with an exit code indicating success or failure of the tests run.

The testLoader argument has to be a TestLoader instance, and defaults to defaultTestLoader.

main supports being used from the interactive interpreter by passing in the argument exit=False. This
displays the result on standard output without calling sys.exit():

>>> from unittest import main
>>> main(module='test_module', exit=False)

The failfast, catchbreak and buffer parameters have the same effect as the same-name command-line
options.

The warnings argument specifies the warning filter that should be used while running the tests. If it’s
not specified, it will remain None if a -W option is passed to python (see Warning control), otherwise
it will be set to 'default'.

26.4. unittest — Unit testing framework 1417

The Python Library Reference, Release 3.5.7

Calling main actually returns an instance of the TestProgram class. This stores the result of the tests
run as the result attribute.

Changed in version 3.1: The exit parameter was added.

Changed in version 3.2: The verbosity, failfast, catchbreak, buffer and warnings parameters were added.

Changed in version 3.4: The defaultTest parameter was changed to also accept an iterable of test
names.

load_tests Protocol

New in version 3.2.

Modules or packages can customize how tests are loaded from them during normal test runs or test discovery
by implementing a function called load_tests.

If a test module defines load_tests it will be called by TestLoader.loadTestsFromModule() with the following
arguments:

load_tests(loader, standard_tests, pattern)

where pattern is passed straight through from loadTestsFromModule. It defaults to None.

It should return a TestSuite.

loader is the instance of TestLoader doing the loading. standard_tests are the tests that would be loaded
by default from the module. It is common for test modules to only want to add or remove tests from the
standard set of tests. The third argument is used when loading packages as part of test discovery.

A typical load_tests function that loads tests from a specific set of TestCase classes may look like:

test_cases = (TestCase1, TestCase2, TestCase3)

def load_tests(loader, tests, pattern):
suite = TestSuite()
for test_class in test_cases:

tests = loader.loadTestsFromTestCase(test_class)
suite.addTests(tests)

return suite

If discovery is started in a directory containing a package, either from the command line or by calling
TestLoader.discover(), then the package __init__.py will be checked for load_tests. If that function does
not exist, discovery will recurse into the package as though it were just another directory. Otherwise,
discovery of the package’s tests will be left up to load_tests which is called with the following arguments:

load_tests(loader, standard_tests, pattern)

This should return a TestSuite representing all the tests from the package. (standard_tests will only contain
tests collected from __init__.py.)

Because the pattern is passed into load_tests the package is free to continue (and potentially modify) test
discovery. A ‘do nothing’ load_tests function for a test package would look like:

def load_tests(loader, standard_tests, pattern):
top level directory cached on loader instance
this_dir = os.path.dirname(__file__)
package_tests = loader.discover(start_dir=this_dir, pattern=pattern)

(continues on next page)

1418 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

standard_tests.addTests(package_tests)
return standard_tests

Changed in version 3.5: Discovery no longer checks package names for matching pattern due to the impos-
sibility of package names matching the default pattern.

26.4.9 Class and Module Fixtures

Class and module level fixtures are implemented in TestSuite. When the test suite encounters a test from a
new class then tearDownClass() from the previous class (if there is one) is called, followed by setUpClass()
from the new class.

Similarly if a test is from a different module from the previous test then tearDownModule from the previous
module is run, followed by setUpModule from the new module.

After all the tests have run the final tearDownClass and tearDownModule are run.

Note that shared fixtures do not play well with [potential] features like test parallelization and they break
test isolation. They should be used with care.

The default ordering of tests created by the unittest test loaders is to group all tests from the same modules
and classes together. This will lead to setUpClass / setUpModule (etc) being called exactly once per class
and module. If you randomize the order, so that tests from different modules and classes are adjacent to
each other, then these shared fixture functions may be called multiple times in a single test run.

Shared fixtures are not intended to work with suites with non-standard ordering. A BaseTestSuite still exists
for frameworks that don’t want to support shared fixtures.

If there are any exceptions raised during one of the shared fixture functions the test is reported as an error.
Because there is no corresponding test instance an _ErrorHolder object (that has the same interface as a
TestCase) is created to represent the error. If you are just using the standard unittest test runner then this
detail doesn’t matter, but if you are a framework author it may be relevant.

setUpClass and tearDownClass

These must be implemented as class methods:

import unittest

class Test(unittest.TestCase):
@classmethod
def setUpClass(cls):

cls._connection = createExpensiveConnectionObject()

@classmethod
def tearDownClass(cls):

cls._connection.destroy()

If you want the setUpClass and tearDownClass on base classes called then you must call up to them yourself.
The implementations in TestCase are empty.

If an exception is raised during a setUpClass then the tests in the class are not run and the tearDownClass
is not run. Skipped classes will not have setUpClass or tearDownClass run. If the exception is a SkipTest
exception then the class will be reported as having been skipped instead of as an error.

26.4. unittest — Unit testing framework 1419

The Python Library Reference, Release 3.5.7

setUpModule and tearDownModule

These should be implemented as functions:

def setUpModule():
createConnection()

def tearDownModule():
closeConnection()

If an exception is raised in a setUpModule then none of the tests in the module will be run and the tear-
DownModule will not be run. If the exception is a SkipTest exception then the module will be reported as
having been skipped instead of as an error.

26.4.10 Signal Handling

New in version 3.2.

The -c/--catch command-line option to unittest, along with the catchbreak parameter to unittest.main(),
provide more friendly handling of control-C during a test run. With catch break behavior enabled control-C
will allow the currently running test to complete, and the test run will then end and report all the results
so far. A second control-c will raise a KeyboardInterrupt in the usual way.

The control-c handling signal handler attempts to remain compatible with code or tests that install their
own signal.SIGINT handler. If the unittest handler is called but isn’t the installed signal.SIGINT handler,
i.e. it has been replaced by the system under test and delegated to, then it calls the default handler. This
will normally be the expected behavior by code that replaces an installed handler and delegates to it. For
individual tests that need unittest control-c handling disabled the removeHandler() decorator can be used.

There are a few utility functions for framework authors to enable control-c handling functionality within test
frameworks.

unittest.installHandler()
Install the control-c handler. When a signal.SIGINT is received (usually in response to the user pressing
control-c) all registered results have stop() called.

unittest.registerResult(result)
Register a TestResult object for control-c handling. Registering a result stores a weak reference to it,
so it doesn’t prevent the result from being garbage collected.

Registering a TestResult object has no side-effects if control-c handling is not enabled, so test frame-
works can unconditionally register all results they create independently of whether or not handling is
enabled.

unittest.removeResult(result)
Remove a registered result. Once a result has been removed then stop() will no longer be called on
that result object in response to a control-c.

unittest.removeHandler(function=None)
When called without arguments this function removes the control-c handler if it has been installed.
This function can also be used as a test decorator to temporarily remove the handler whilst the test is
being executed:

@unittest.removeHandler
def test_signal_handling(self):

...

1420 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

26.5 unittest.mock — mock object library

New in version 3.3.

Source code: Lib/unittest/mock.py

unittest.mock is a library for testing in Python. It allows you to replace parts of your system under test
with mock objects and make assertions about how they have been used.

unittest.mock provides a core Mock class removing the need to create a host of stubs throughout your test
suite. After performing an action, you can make assertions about which methods / attributes were used and
arguments they were called with. You can also specify return values and set needed attributes in the normal
way.

Additionally, mock provides a patch() decorator that handles patching module and class level attributes
within the scope of a test, along with sentinel for creating unique objects. See the quick guide for some
examples of how to use Mock, MagicMock and patch().

Mock is very easy to use and is designed for use with unittest. Mock is based on the ‘action -> assertion’
pattern instead of ‘record -> replay’ used by many mocking frameworks.

There is a backport of unittest.mock for earlier versions of Python, available as mock on PyPI.

26.5.1 Quick Guide

Mock and MagicMock objects create all attributes and methods as you access them and store details of how
they have been used. You can configure them, to specify return values or limit what attributes are available,
and then make assertions about how they have been used:

>>> from unittest.mock import MagicMock
>>> thing = ProductionClass()
>>> thing.method = MagicMock(return_value=3)
>>> thing.method(3, 4, 5, key='value')
3
>>> thing.method.assert_called_with(3, 4, 5, key='value')

side_effect allows you to perform side effects, including raising an exception when a mock is called:

>>> mock = Mock(side_effect=KeyError('foo'))
>>> mock()
Traceback (most recent call last):
...
KeyError: 'foo'

>>> values = {'a': 1, 'b': 2, 'c': 3}
>>> def side_effect(arg):
... return values[arg]
...
>>> mock.side_effect = side_effect
>>> mock('a'), mock('b'), mock('c')
(1, 2, 3)
>>> mock.side_effect = [5, 4, 3, 2, 1]
>>> mock(), mock(), mock()
(5, 4, 3)

26.5. unittest.mock — mock object library 1421

https://github.com/python/cpython/tree/3.5/Lib/unittest/mock.py
https://pypi.python.org/pypi/mock

The Python Library Reference, Release 3.5.7

Mock has many other ways you can configure it and control its behaviour. For example the spec argument
configures the mock to take its specification from another object. Attempting to access attributes or methods
on the mock that don’t exist on the spec will fail with an AttributeError.

The patch() decorator / context manager makes it easy to mock classes or objects in a module under test.
The object you specify will be replaced with a mock (or other object) during the test and restored when the
test ends:

>>> from unittest.mock import patch
>>> @patch('module.ClassName2')
... @patch('module.ClassName1')
... def test(MockClass1, MockClass2):
... module.ClassName1()
... module.ClassName2()
... assert MockClass1 is module.ClassName1
... assert MockClass2 is module.ClassName2
... assert MockClass1.called
... assert MockClass2.called
...
>>> test()

Note: When you nest patch decorators the mocks are passed in to the decorated function in the same order
they applied (the normal python order that decorators are applied). This means from the bottom up, so in
the example above the mock for module.ClassName1 is passed in first.

With patch() it matters that you patch objects in the namespace where they are looked up. This is normally
straightforward, but for a quick guide read where to patch.

As well as a decorator patch() can be used as a context manager in a with statement:

>>> with patch.object(ProductionClass, 'method', return_value=None) as mock_method:
... thing = ProductionClass()
... thing.method(1, 2, 3)
...
>>> mock_method.assert_called_once_with(1, 2, 3)

There is also patch.dict() for setting values in a dictionary just during a scope and restoring the dictionary
to its original state when the test ends:

>>> foo = {'key': 'value'}
>>> original = foo.copy()
>>> with patch.dict(foo, {'newkey': 'newvalue'}, clear=True):
... assert foo == {'newkey': 'newvalue'}
...
>>> assert foo == original

Mock supports the mocking of Python magic methods. The easiest way of using magic methods is with the
MagicMock class. It allows you to do things like:

>>> mock = MagicMock()
>>> mock.__str__.return_value = 'foobarbaz'
>>> str(mock)
'foobarbaz'
>>> mock.__str__.assert_called_with()

Mock allows you to assign functions (or other Mock instances) to magic methods and they will be called
appropriately. The MagicMock class is just a Mock variant that has all of the magic methods pre-created

1422 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

for you (well, all the useful ones anyway).

The following is an example of using magic methods with the ordinary Mock class:

>>> mock = Mock()
>>> mock.__str__ = Mock(return_value='wheeeeee')
>>> str(mock)
'wheeeeee'

For ensuring that the mock objects in your tests have the same api as the objects they are replacing,
you can use auto-speccing. Auto-speccing can be done through the autospec argument to patch, or the
create_autospec() function. Auto-speccing creates mock objects that have the same attributes and methods
as the objects they are replacing, and any functions and methods (including constructors) have the same
call signature as the real object.

This ensures that your mocks will fail in the same way as your production code if they are used incorrectly:

>>> from unittest.mock import create_autospec
>>> def function(a, b, c):
... pass
...
>>> mock_function = create_autospec(function, return_value='fishy')
>>> mock_function(1, 2, 3)
'fishy'
>>> mock_function.assert_called_once_with(1, 2, 3)
>>> mock_function('wrong arguments')
Traceback (most recent call last):
...
TypeError: <lambda>() takes exactly 3 arguments (1 given)

create_autospec() can also be used on classes, where it copies the signature of the __init__ method, and
on callable objects where it copies the signature of the __call__ method.

26.5.2 The Mock Class

Mock is a flexible mock object intended to replace the use of stubs and test doubles throughout your code.
Mocks are callable and create attributes as new mocks when you access them1. Accessing the same attribute
will always return the same mock. Mocks record how you use them, allowing you to make assertions about
what your code has done to them.

MagicMock is a subclass of Mock with all the magic methods pre-created and ready to use. There are also
non-callable variants, useful when you are mocking out objects that aren’t callable: NonCallableMock and
NonCallableMagicMock

The patch() decorators makes it easy to temporarily replace classes in a particular module with a Mock
object. By default patch() will create a MagicMock for you. You can specify an alternative class of Mock
using the new_callable argument to patch().

class unittest.mock.Mock(spec=None, side_effect=None, return_value=DEFAULT, wraps=None,
name=None, spec_set=None, unsafe=False, **kwargs)

Create a new Mock object. Mock takes several optional arguments that specify the behaviour of the
Mock object:

1 The only exceptions are magic methods and attributes (those that have leading and trailing double underscores). Mock
doesn’t create these but instead raises an AttributeError. This is because the interpreter will often implicitly request these
methods, and gets very confused to get a new Mock object when it expects a magic method. If you need magic method support
see magic methods.

26.5. unittest.mock — mock object library 1423

The Python Library Reference, Release 3.5.7

• spec: This can be either a list of strings or an existing object (a class or instance) that acts as
the specification for the mock object. If you pass in an object then a list of strings is formed by
calling dir on the object (excluding unsupported magic attributes and methods). Accessing any
attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then __class__ returns the class of the spec
object. This allows mocks to pass isinstance() tests.

• spec_set: A stricter variant of spec. If used, attempting to set or get an attribute on the mock
that isn’t on the object passed as spec_set will raise an AttributeError.

• side_effect: A function to be called whenever the Mock is called. See the side_effect attribute.
Useful for raising exceptions or dynamically changing return values. The function is called with
the same arguments as the mock, and unless it returns DEFAULT, the return value of this function
is used as the return value.

Alternatively side_effect can be an exception class or instance. In this case the exception will be
raised when the mock is called.

If side_effect is an iterable then each call to the mock will return the next value from the iterable.

A side_effect can be cleared by setting it to None.

• return_value: The value returned when the mock is called. By default this is a new Mock (created
on first access). See the return_value attribute.

• unsafe: By default if any attribute starts with assert or assret will raise an AttributeError. Passing
unsafe=True will allow access to these attributes.

New in version 3.5.

• wraps: Item for the mock object to wrap. If wraps is not None then calling the Mock will pass the
call through to the wrapped object (returning the real result). Attribute access on the mock will
return a Mock object that wraps the corresponding attribute of the wrapped object (so attempting
to access an attribute that doesn’t exist will raise an AttributeError).

If the mock has an explicit return_value set then calls are not passed to the wrapped object and
the return_value is returned instead.

• name: If the mock has a name then it will be used in the repr of the mock. This can be useful
for debugging. The name is propagated to child mocks.

Mocks can also be called with arbitrary keyword arguments. These will be used to set attributes on
the mock after it is created. See the configure_mock() method for details.

assert_called_with(*args, **kwargs)
This method is a convenient way of asserting that calls are made in a particular way:

>>> mock = Mock()
>>> mock.method(1, 2, 3, test='wow')
<Mock name='mock.method()' id='...'>
>>> mock.method.assert_called_with(1, 2, 3, test='wow')

assert_called_once_with(*args, **kwargs)
Assert that the mock was called exactly once and that that call was with the specified arguments.

>>> mock = Mock(return_value=None)
>>> mock('foo', bar='baz')
>>> mock.assert_called_once_with('foo', bar='baz')
>>> mock('other', bar='values')
>>> mock.assert_called_once_with('other', bar='values')

(continues on next page)

1424 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

Traceback (most recent call last):
...

AssertionError: Expected 'mock' to be called once. Called 2 times.

assert_any_call(*args, **kwargs)
assert the mock has been called with the specified arguments.

The assert passes if the mock has ever been called, unlike assert_called_with() and as-
sert_called_once_with() that only pass if the call is the most recent one, and in the case of
assert_called_once_with() it must also be the only call.

>>> mock = Mock(return_value=None)
>>> mock(1, 2, arg='thing')
>>> mock('some', 'thing', 'else')
>>> mock.assert_any_call(1, 2, arg='thing')

assert_has_calls(calls, any_order=False)
assert the mock has been called with the specified calls. The mock_calls list is checked for the
calls.

If any_order is false (the default) then the calls must be sequential. There can be extra calls
before or after the specified calls.

If any_order is true then the calls can be in any order, but they must all appear in mock_calls.

>>> mock = Mock(return_value=None)
>>> mock(1)
>>> mock(2)
>>> mock(3)
>>> mock(4)
>>> calls = [call(2), call(3)]
>>> mock.assert_has_calls(calls)
>>> calls = [call(4), call(2), call(3)]
>>> mock.assert_has_calls(calls, any_order=True)

assert_not_called()
Assert the mock was never called.

>>> m = Mock()
>>> m.hello.assert_not_called()
>>> obj = m.hello()
>>> m.hello.assert_not_called()
Traceback (most recent call last):
...

AssertionError: Expected 'hello' to not have been called. Called 1 times.

New in version 3.5.

reset_mock()
The reset_mock method resets all the call attributes on a mock object:

>>> mock = Mock(return_value=None)
>>> mock('hello')
>>> mock.called
True
>>> mock.reset_mock()
>>> mock.called
False

26.5. unittest.mock — mock object library 1425

The Python Library Reference, Release 3.5.7

This can be useful where you want to make a series of assertions that reuse the same object. Note
that reset_mock() doesn’t clear the return value, side_effect or any child attributes you have set
using normal assignment. Child mocks and the return value mock (if any) are reset as well.

mock_add_spec(spec, spec_set=False)
Add a spec to a mock. spec can either be an object or a list of strings. Only attributes on the
spec can be fetched as attributes from the mock.

If spec_set is true then only attributes on the spec can be set.

attach_mock(mock, attribute)
Attach a mock as an attribute of this one, replacing its name and parent. Calls to the attached
mock will be recorded in the method_calls and mock_calls attributes of this one.

configure_mock(**kwargs)
Set attributes on the mock through keyword arguments.

Attributes plus return values and side effects can be set on child mocks using standard dot notation
and unpacking a dictionary in the method call:

>>> mock = Mock()
>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> mock.configure_mock(**attrs)
>>> mock.method()
3
>>> mock.other()
Traceback (most recent call last):
...

KeyError

The same thing can be achieved in the constructor call to mocks:

>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> mock = Mock(some_attribute='eggs', **attrs)
>>> mock.some_attribute
'eggs'
>>> mock.method()
3
>>> mock.other()
Traceback (most recent call last):
...

KeyError

configure_mock() exists to make it easier to do configuration after the mock has been created.

__dir__()
Mock objects limit the results of dir(some_mock) to useful results. For mocks with a spec this
includes all the permitted attributes for the mock.

See FILTER_DIR for what this filtering does, and how to switch it off.

_get_child_mock(**kw)
Create the child mocks for attributes and return value. By default child mocks will be the same
type as the parent. Subclasses of Mock may want to override this to customize the way child
mocks are made.

For non-callable mocks the callable variant will be used (rather than any custom subclass).

called
A boolean representing whether or not the mock object has been called:

1426 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

>>> mock = Mock(return_value=None)
>>> mock.called
False
>>> mock()
>>> mock.called
True

call_count
An integer telling you how many times the mock object has been called:

>>> mock = Mock(return_value=None)
>>> mock.call_count
0
>>> mock()
>>> mock()
>>> mock.call_count
2

return_value
Set this to configure the value returned by calling the mock:

>>> mock = Mock()
>>> mock.return_value = 'fish'
>>> mock()
'fish'

The default return value is a mock object and you can configure it in the normal way:

>>> mock = Mock()
>>> mock.return_value.attribute = sentinel.Attribute
>>> mock.return_value()
<Mock name='mock()()' id='...'>
>>> mock.return_value.assert_called_with()

return_value can also be set in the constructor:

>>> mock = Mock(return_value=3)
>>> mock.return_value
3
>>> mock()
3

side_effect
This can either be a function to be called when the mock is called, an iterable or an exception
(class or instance) to be raised.

If you pass in a function it will be called with same arguments as the mock and unless the
function returns the DEFAULT singleton the call to the mock will then return whatever the
function returns. If the function returns DEFAULT then the mock will return its normal value
(from the return_value).

If you pass in an iterable, it is used to retrieve an iterator which must yield a value on every call.
This value can either be an exception instance to be raised, or a value to be returned from the
call to the mock (DEFAULT handling is identical to the function case).

An example of a mock that raises an exception (to test exception handling of an API):

26.5. unittest.mock — mock object library 1427

The Python Library Reference, Release 3.5.7

>>> mock = Mock()
>>> mock.side_effect = Exception('Boom!')
>>> mock()
Traceback (most recent call last):
...

Exception: Boom!

Using side_effect to return a sequence of values:

>>> mock = Mock()
>>> mock.side_effect = [3, 2, 1]
>>> mock(), mock(), mock()
(3, 2, 1)

Using a callable:

>>> mock = Mock(return_value=3)
>>> def side_effect(*args, **kwargs):
... return DEFAULT
...
>>> mock.side_effect = side_effect
>>> mock()
3

side_effect can be set in the constructor. Here’s an example that adds one to the value the mock
is called with and returns it:

>>> side_effect = lambda value: value + 1
>>> mock = Mock(side_effect=side_effect)
>>> mock(3)
4
>>> mock(-8)
-7

Setting side_effect to None clears it:

>>> m = Mock(side_effect=KeyError, return_value=3)
>>> m()
Traceback (most recent call last):
...
KeyError
>>> m.side_effect = None
>>> m()
3

call_args
This is either None (if the mock hasn’t been called), or the arguments that the mock was last
called with. This will be in the form of a tuple: the first member is any ordered arguments the
mock was called with (or an empty tuple) and the second member is any keyword arguments (or
an empty dictionary).

>>> mock = Mock(return_value=None)
>>> print(mock.call_args)
None
>>> mock()
>>> mock.call_args
call()

(continues on next page)

1428 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> mock.call_args == ()
True
>>> mock(3, 4)
>>> mock.call_args
call(3, 4)
>>> mock.call_args == ((3, 4),)
True
>>> mock(3, 4, 5, key='fish', next='w00t!')
>>> mock.call_args
call(3, 4, 5, key='fish', next='w00t!')

call_args, along with members of the lists call_args_list, method_calls and mock_calls are call
objects. These are tuples, so they can be unpacked to get at the individual arguments and make
more complex assertions. See calls as tuples.

call_args_list
This is a list of all the calls made to the mock object in sequence (so the length of the list is the
number of times it has been called). Before any calls have been made it is an empty list. The call
object can be used for conveniently constructing lists of calls to compare with call_args_list.

>>> mock = Mock(return_value=None)
>>> mock()
>>> mock(3, 4)
>>> mock(key='fish', next='w00t!')
>>> mock.call_args_list
[call(), call(3, 4), call(key='fish', next='w00t!')]
>>> expected = [(), ((3, 4),), ({'key': 'fish', 'next': 'w00t!'},)]
>>> mock.call_args_list == expected
True

Members of call_args_list are call objects. These can be unpacked as tuples to get at the
individual arguments. See calls as tuples.

method_calls
As well as tracking calls to themselves, mocks also track calls to methods and attributes, and
their methods and attributes:

>>> mock = Mock()
>>> mock.method()
<Mock name='mock.method()' id='...'>
>>> mock.property.method.attribute()
<Mock name='mock.property.method.attribute()' id='...'>
>>> mock.method_calls
[call.method(), call.property.method.attribute()]

Members of method_calls are call objects. These can be unpacked as tuples to get at the individual
arguments. See calls as tuples.

mock_calls
mock_calls records all calls to the mock object, its methods, magic methods and return value
mocks.

>>> mock = MagicMock()
>>> result = mock(1, 2, 3)
>>> mock.first(a=3)
<MagicMock name='mock.first()' id='...'>

(continues on next page)

26.5. unittest.mock — mock object library 1429

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> mock.second()
<MagicMock name='mock.second()' id='...'>
>>> int(mock)
1
>>> result(1)
<MagicMock name='mock()()' id='...'>
>>> expected = [call(1, 2, 3), call.first(a=3), call.second(),
... call.__int__(), call()(1)]
>>> mock.mock_calls == expected
True

Members of mock_calls are call objects. These can be unpacked as tuples to get at the individual
arguments. See calls as tuples.

__class__
Normally the __class__ attribute of an object will return its type. For a mock object with a
spec, __class__ returns the spec class instead. This allows mock objects to pass isinstance()
tests for the object they are replacing / masquerading as:

>>> mock = Mock(spec=3)
>>> isinstance(mock, int)
True

__class__ is assignable to, this allows a mock to pass an isinstance() check without forcing you
to use a spec:

>>> mock = Mock()
>>> mock.__class__ = dict
>>> isinstance(mock, dict)
True

class unittest.mock.NonCallableMock(spec=None, wraps=None, name=None, spec_set=None,
**kwargs)

A non-callable version of Mock. The constructor parameters have the same meaning of Mock, with
the exception of return_value and side_effect which have no meaning on a non-callable mock.

Mock objects that use a class or an instance as a spec or spec_set are able to pass isinstance() tests:

>>> mock = Mock(spec=SomeClass)
>>> isinstance(mock, SomeClass)
True
>>> mock = Mock(spec_set=SomeClass())
>>> isinstance(mock, SomeClass)
True

The Mock classes have support for mocking magic methods. See magic methods for the full details.

The mock classes and the patch() decorators all take arbitrary keyword arguments for configuration. For
the patch() decorators the keywords are passed to the constructor of the mock being created. The keyword
arguments are for configuring attributes of the mock:

>>> m = MagicMock(attribute=3, other='fish')
>>> m.attribute
3
>>> m.other
'fish'

1430 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

The return value and side effect of child mocks can be set in the same way, using dotted notation. As you
can’t use dotted names directly in a call you have to create a dictionary and unpack it using **:

>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> mock = Mock(some_attribute='eggs', **attrs)
>>> mock.some_attribute
'eggs'
>>> mock.method()
3
>>> mock.other()
Traceback (most recent call last):
...

KeyError

A callable mock which was created with a spec (or a spec_set) will introspect the specification object’s
signature when matching calls to the mock. Therefore, it can match the actual call’s arguments regardless
of whether they were passed positionally or by name:

>>> def f(a, b, c): pass
...
>>> mock = Mock(spec=f)
>>> mock(1, 2, c=3)
<Mock name='mock()' id='140161580456576'>
>>> mock.assert_called_with(1, 2, 3)
>>> mock.assert_called_with(a=1, b=2, c=3)

This applies to assert_called_with(), assert_called_once_with(), assert_has_calls() and as-
sert_any_call(). When Autospeccing, it will also apply to method calls on the mock object.

Changed in version 3.4: Added signature introspection on specced and autospecced mock objects.

class unittest.mock.PropertyMock(*args, **kwargs)
A mock intended to be used as a property, or other descriptor, on a class. PropertyMock provides
__get__() and __set__() methods so you can specify a return value when it is fetched.

Fetching a PropertyMock instance from an object calls the mock, with no args. Setting it calls the
mock with the value being set.

>>> class Foo:
... @property
... def foo(self):
... return 'something'
... @foo.setter
... def foo(self, value):
... pass
...
>>> with patch('__main__.Foo.foo', new_callable=PropertyMock) as mock_foo:
... mock_foo.return_value = 'mockity-mock'
... this_foo = Foo()
... print(this_foo.foo)
... this_foo.foo = 6
...
mockity-mock
>>> mock_foo.mock_calls
[call(), call(6)]

Because of the way mock attributes are stored you can’t directly attach a PropertyMock to a mock object.
Instead you can attach it to the mock type object:

26.5. unittest.mock — mock object library 1431

The Python Library Reference, Release 3.5.7

>>> m = MagicMock()
>>> p = PropertyMock(return_value=3)
>>> type(m).foo = p
>>> m.foo
3
>>> p.assert_called_once_with()

Calling

Mock objects are callable. The call will return the value set as the return_value attribute. The default
return value is a new Mock object; it is created the first time the return value is accessed (either explicitly
or by calling the Mock) - but it is stored and the same one returned each time.

Calls made to the object will be recorded in the attributes like call_args and call_args_list.

If side_effect is set then it will be called after the call has been recorded, so if side_effect raises an exception
the call is still recorded.

The simplest way to make a mock raise an exception when called is to make side_effect an exception class
or instance:

>>> m = MagicMock(side_effect=IndexError)
>>> m(1, 2, 3)
Traceback (most recent call last):
...

IndexError
>>> m.mock_calls
[call(1, 2, 3)]
>>> m.side_effect = KeyError('Bang!')
>>> m('two', 'three', 'four')
Traceback (most recent call last):
...

KeyError: 'Bang!'
>>> m.mock_calls
[call(1, 2, 3), call('two', 'three', 'four')]

If side_effect is a function then whatever that function returns is what calls to the mock return. The
side_effect function is called with the same arguments as the mock. This allows you to vary the return value
of the call dynamically, based on the input:

>>> def side_effect(value):
... return value + 1
...
>>> m = MagicMock(side_effect=side_effect)
>>> m(1)
2
>>> m(2)
3
>>> m.mock_calls
[call(1), call(2)]

If you want the mock to still return the default return value (a new mock), or any set return value, then there
are two ways of doing this. Either return mock.return_value from inside side_effect, or return DEFAULT:

>>> m = MagicMock()
>>> def side_effect(*args, **kwargs):

(continues on next page)

1432 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

... return m.return_value

...
>>> m.side_effect = side_effect
>>> m.return_value = 3
>>> m()
3
>>> def side_effect(*args, **kwargs):
... return DEFAULT
...
>>> m.side_effect = side_effect
>>> m()
3

To remove a side_effect, and return to the default behaviour, set the side_effect to None:

>>> m = MagicMock(return_value=6)
>>> def side_effect(*args, **kwargs):
... return 3
...
>>> m.side_effect = side_effect
>>> m()
3
>>> m.side_effect = None
>>> m()
6

The side_effect can also be any iterable object. Repeated calls to the mock will return values from the
iterable (until the iterable is exhausted and a StopIteration is raised):

>>> m = MagicMock(side_effect=[1, 2, 3])
>>> m()
1
>>> m()
2
>>> m()
3
>>> m()
Traceback (most recent call last):
...

StopIteration

If any members of the iterable are exceptions they will be raised instead of returned:

>>> iterable = (33, ValueError, 66)
>>> m = MagicMock(side_effect=iterable)
>>> m()
33
>>> m()
Traceback (most recent call last):
...
ValueError
>>> m()
66

26.5. unittest.mock — mock object library 1433

The Python Library Reference, Release 3.5.7

Deleting Attributes

Mock objects create attributes on demand. This allows them to pretend to be objects of any type.

You may want a mock object to return False to a hasattr() call, or raise an AttributeError when an attribute
is fetched. You can do this by providing an object as a spec for a mock, but that isn’t always convenient.

You “block” attributes by deleting them. Once deleted, accessing an attribute will raise an AttributeError.

>>> mock = MagicMock()
>>> hasattr(mock, 'm')
True
>>> del mock.m
>>> hasattr(mock, 'm')
False
>>> del mock.f
>>> mock.f
Traceback (most recent call last):

...
AttributeError: f

Mock names and the name attribute

Since “name” is an argument to the Mock constructor, if you want your mock object to have a “name”
attribute you can’t just pass it in at creation time. There are two alternatives. One option is to use
configure_mock():

>>> mock = MagicMock()
>>> mock.configure_mock(name='my_name')
>>> mock.name
'my_name'

A simpler option is to simply set the “name” attribute after mock creation:

>>> mock = MagicMock()
>>> mock.name = "foo"

Attaching Mocks as Attributes

When you attach a mock as an attribute of another mock (or as the return value) it becomes a “child” of
that mock. Calls to the child are recorded in the method_calls and mock_calls attributes of the parent.
This is useful for configuring child mocks and then attaching them to the parent, or for attaching mocks
to a parent that records all calls to the children and allows you to make assertions about the order of calls
between mocks:

>>> parent = MagicMock()
>>> child1 = MagicMock(return_value=None)
>>> child2 = MagicMock(return_value=None)
>>> parent.child1 = child1
>>> parent.child2 = child2
>>> child1(1)
>>> child2(2)
>>> parent.mock_calls
[call.child1(1), call.child2(2)]

1434 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

The exception to this is if the mock has a name. This allows you to prevent the “parenting” if for some
reason you don’t want it to happen.

>>> mock = MagicMock()
>>> not_a_child = MagicMock(name='not-a-child')
>>> mock.attribute = not_a_child
>>> mock.attribute()
<MagicMock name='not-a-child()' id='...'>
>>> mock.mock_calls
[]

Mocks created for you by patch() are automatically given names. To attach mocks that have names to a
parent you use the attach_mock() method:

>>> thing1 = object()
>>> thing2 = object()
>>> parent = MagicMock()
>>> with patch('__main__.thing1', return_value=None) as child1:
... with patch('__main__.thing2', return_value=None) as child2:
... parent.attach_mock(child1, 'child1')
... parent.attach_mock(child2, 'child2')
... child1('one')
... child2('two')
...
>>> parent.mock_calls
[call.child1('one'), call.child2('two')]

26.5.3 The patchers

The patch decorators are used for patching objects only within the scope of the function they decorate. They
automatically handle the unpatching for you, even if exceptions are raised. All of these functions can also
be used in with statements or as class decorators.

patch

Note: patch() is straightforward to use. The key is to do the patching in the right namespace. See the
section where to patch.

unittest.mock.patch(target, new=DEFAULT, spec=None, create=False, spec_set=None, au-
tospec=None, new_callable=None, **kwargs)

patch() acts as a function decorator, class decorator or a context manager. Inside the body of the
function or with statement, the target is patched with a new object. When the function/with statement
exits the patch is undone.

If new is omitted, then the target is replaced with a MagicMock. If patch() is used as a decorator
and new is omitted, the created mock is passed in as an extra argument to the decorated function. If
patch() is used as a context manager the created mock is returned by the context manager.

target should be a string in the form 'package.module.ClassName'. The target is imported and the
specified object replaced with the new object, so the target must be importable from the environment
you are calling patch() from. The target is imported when the decorated function is executed, not at
decoration time.

26.5. unittest.mock — mock object library 1435

The Python Library Reference, Release 3.5.7

The spec and spec_set keyword arguments are passed to the MagicMock if patch is creating one for
you.

In addition you can pass spec=True or spec_set=True, which causes patch to pass in the object being
mocked as the spec/spec_set object.

new_callable allows you to specify a different class, or callable object, that will be called to create the
new object. By default MagicMock is used.

A more powerful form of spec is autospec. If you set autospec=True then the mock will be created
with a spec from the object being replaced. All attributes of the mock will also have the spec of the
corresponding attribute of the object being replaced. Methods and functions being mocked will have
their arguments checked and will raise a TypeError if they are called with the wrong signature. For
mocks replacing a class, their return value (the ‘instance’) will have the same spec as the class. See
the create_autospec() function and Autospeccing.

Instead of autospec=True you can pass autospec=some_object to use an arbitrary object as the spec
instead of the one being replaced.

By default patch() will fail to replace attributes that don’t exist. If you pass in create=True, and the
attribute doesn’t exist, patch will create the attribute for you when the patched function is called, and
delete it again afterwards. This is useful for writing tests against attributes that your production code
creates at runtime. It is off by default because it can be dangerous. With it switched on you can write
passing tests against APIs that don’t actually exist!

Note: Changed in version 3.5: If you are patching builtins in a module then you don’t need to pass
create=True, it will be added by default.

Patch can be used as a TestCase class decorator. It works by decorating each test method in the class.
This reduces the boilerplate code when your test methods share a common patchings set. patch()
finds tests by looking for method names that start with patch.TEST_PREFIX. By default this is
'test', which matches the way unittest finds tests. You can specify an alternative prefix by setting
patch.TEST_PREFIX.

Patch can be used as a context manager, with the with statement. Here the patching applies to the
indented block after the with statement. If you use “as” then the patched object will be bound to the
name after the “as”; very useful if patch() is creating a mock object for you.

patch() takes arbitrary keyword arguments. These will be passed to the Mock (or new_callable) on
construction.

patch.dict(...), patch.multiple(...) and patch.object(...) are available for alternate use-cases.

patch() as function decorator, creating the mock for you and passing it into the decorated function:

>>> @patch('__main__.SomeClass')
... def function(normal_argument, mock_class):
... print(mock_class is SomeClass)
...
>>> function(None)
True

Patching a class replaces the class with a MagicMock instance. If the class is instantiated in the code under
test then it will be the return_value of the mock that will be used.

If the class is instantiated multiple times you could use side_effect to return a new mock each time. Alter-
natively you can set the return_value to be anything you want.

1436 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

To configure return values on methods of instances on the patched class you must do this on the return_value.
For example:

>>> class Class:
... def method(self):
... pass
...
>>> with patch('__main__.Class') as MockClass:
... instance = MockClass.return_value
... instance.method.return_value = 'foo'
... assert Class() is instance
... assert Class().method() == 'foo'
...

If you use spec or spec_set and patch() is replacing a class, then the return value of the created mock will
have the same spec.

>>> Original = Class
>>> patcher = patch('__main__.Class', spec=True)
>>> MockClass = patcher.start()
>>> instance = MockClass()
>>> assert isinstance(instance, Original)
>>> patcher.stop()

The new_callable argument is useful where you want to use an alternative class to the default MagicMock
for the created mock. For example, if you wanted a NonCallableMock to be used:

>>> thing = object()
>>> with patch('__main__.thing', new_callable=NonCallableMock) as mock_thing:
... assert thing is mock_thing
... thing()
...
Traceback (most recent call last):
...

TypeError: 'NonCallableMock' object is not callable

Another use case might be to replace an object with an io.StringIO instance:

>>> from io import StringIO
>>> def foo():
... print('Something')
...
>>> @patch('sys.stdout', new_callable=StringIO)
... def test(mock_stdout):
... foo()
... assert mock_stdout.getvalue() == 'Something\n'
...
>>> test()

When patch() is creating a mock for you, it is common that the first thing you need to do is to configure
the mock. Some of that configuration can be done in the call to patch. Any arbitrary keywords you pass
into the call will be used to set attributes on the created mock:

>>> patcher = patch('__main__.thing', first='one', second='two')
>>> mock_thing = patcher.start()
>>> mock_thing.first
'one'

(continues on next page)

26.5. unittest.mock — mock object library 1437

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> mock_thing.second
'two'

As well as attributes on the created mock attributes, like the return_value and side_effect, of child mocks
can also be configured. These aren’t syntactically valid to pass in directly as keyword arguments, but a
dictionary with these as keys can still be expanded into a patch() call using **:

>>> config = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> patcher = patch('__main__.thing', **config)
>>> mock_thing = patcher.start()
>>> mock_thing.method()
3
>>> mock_thing.other()
Traceback (most recent call last):
...

KeyError

patch.object

patch.object(target, attribute, new=DEFAULT, spec=None, create=False, spec_set=None, au-
tospec=None, new_callable=None, **kwargs)

patch the named member (attribute) on an object (target) with a mock object.

patch.object() can be used as a decorator, class decorator or a context manager. Arguments new, spec,
create, spec_set, autospec and new_callable have the same meaning as for patch(). Like patch(),
patch.object() takes arbitrary keyword arguments for configuring the mock object it creates.

When used as a class decorator patch.object() honours patch.TEST_PREFIX for choosing which
methods to wrap.

You can either call patch.object() with three arguments or two arguments. The three argument form takes
the object to be patched, the attribute name and the object to replace the attribute with.

When calling with the two argument form you omit the replacement object, and a mock is created for you
and passed in as an extra argument to the decorated function:

>>> @patch.object(SomeClass, 'class_method')
... def test(mock_method):
... SomeClass.class_method(3)
... mock_method.assert_called_with(3)
...
>>> test()

spec, create and the other arguments to patch.object() have the same meaning as they do for patch().

patch.dict

patch.dict(in_dict, values=(), clear=False, **kwargs)
Patch a dictionary, or dictionary like object, and restore the dictionary to its original state after the
test.

in_dict can be a dictionary or a mapping like container. If it is a mapping then it must at least support
getting, setting and deleting items plus iterating over keys.

in_dict can also be a string specifying the name of the dictionary, which will then be fetched by
importing it.

1438 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

values can be a dictionary of values to set in the dictionary. values can also be an iterable of (key,
value) pairs.

If clear is true then the dictionary will be cleared before the new values are set.

patch.dict() can also be called with arbitrary keyword arguments to set values in the dictionary.

patch.dict() can be used as a context manager, decorator or class decorator. When used as a class
decorator patch.dict() honours patch.TEST_PREFIX for choosing which methods to wrap.

patch.dict() can be used to add members to a dictionary, or simply let a test change a dictionary, and ensure
the dictionary is restored when the test ends.

>>> foo = {}
>>> with patch.dict(foo, {'newkey': 'newvalue'}):
... assert foo == {'newkey': 'newvalue'}
...
>>> assert foo == {}

>>> import os
>>> with patch.dict('os.environ', {'newkey': 'newvalue'}):
... print(os.environ['newkey'])
...
newvalue
>>> assert 'newkey' not in os.environ

Keywords can be used in the patch.dict() call to set values in the dictionary:

>>> mymodule = MagicMock()
>>> mymodule.function.return_value = 'fish'
>>> with patch.dict('sys.modules', mymodule=mymodule):
... import mymodule
... mymodule.function('some', 'args')
...
'fish'

patch.dict() can be used with dictionary like objects that aren’t actually dictionaries. At the very minimum
they must support item getting, setting, deleting and either iteration or membership test. This corre-
sponds to the magic methods __getitem__(), __setitem__(), __delitem__() and either __iter__() or
__contains__().

>>> class Container:
... def __init__(self):
... self.values = {}
... def __getitem__(self, name):
... return self.values[name]
... def __setitem__(self, name, value):
... self.values[name] = value
... def __delitem__(self, name):
... del self.values[name]
... def __iter__(self):
... return iter(self.values)
...
>>> thing = Container()
>>> thing['one'] = 1
>>> with patch.dict(thing, one=2, two=3):
... assert thing['one'] == 2
... assert thing['two'] == 3

(continues on next page)

26.5. unittest.mock — mock object library 1439

The Python Library Reference, Release 3.5.7

(continued from previous page)

...
>>> assert thing['one'] == 1
>>> assert list(thing) == ['one']

patch.multiple

patch.multiple(target, spec=None, create=False, spec_set=None, autospec=None,
new_callable=None, **kwargs)

Perform multiple patches in a single call. It takes the object to be patched (either as an object or a
string to fetch the object by importing) and keyword arguments for the patches:

with patch.multiple(settings, FIRST_PATCH='one', SECOND_PATCH='two'):
...

Use DEFAULT as the value if you want patch.multiple() to create mocks for you. In this case the
created mocks are passed into a decorated function by keyword, and a dictionary is returned when
patch.multiple() is used as a context manager.

patch.multiple() can be used as a decorator, class decorator or a context manager. The arguments spec,
spec_set, create, autospec and new_callable have the same meaning as for patch(). These arguments
will be applied to all patches done by patch.multiple().

When used as a class decorator patch.multiple() honours patch.TEST_PREFIX for choosing which
methods to wrap.

If you want patch.multiple() to create mocks for you, then you can use DEFAULT as the value. If you use
patch.multiple() as a decorator then the created mocks are passed into the decorated function by keyword.

>>> thing = object()
>>> other = object()

>>> @patch.multiple('__main__', thing=DEFAULT, other=DEFAULT)
... def test_function(thing, other):
... assert isinstance(thing, MagicMock)
... assert isinstance(other, MagicMock)
...
>>> test_function()

patch.multiple() can be nested with other patch decorators, but put arguments passed by keyword after any
of the standard arguments created by patch():

>>> @patch('sys.exit')
... @patch.multiple('__main__', thing=DEFAULT, other=DEFAULT)
... def test_function(mock_exit, other, thing):
... assert 'other' in repr(other)
... assert 'thing' in repr(thing)
... assert 'exit' in repr(mock_exit)
...
>>> test_function()

If patch.multiple() is used as a context manager, the value returned by the context manger is a dictionary
where created mocks are keyed by name:

1440 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

>>> with patch.multiple('__main__', thing=DEFAULT, other=DEFAULT) as values:
... assert 'other' in repr(values['other'])
... assert 'thing' in repr(values['thing'])
... assert values['thing'] is thing
... assert values['other'] is other
...

patch methods: start and stop

All the patchers have start() and stop() methods. These make it simpler to do patching in setUp methods
or where you want to do multiple patches without nesting decorators or with statements.

To use them call patch(), patch.object() or patch.dict() as normal and keep a reference to the returned
patcher object. You can then call start() to put the patch in place and stop() to undo it.

If you are using patch() to create a mock for you then it will be returned by the call to patcher.start.

>>> patcher = patch('package.module.ClassName')
>>> from package import module
>>> original = module.ClassName
>>> new_mock = patcher.start()
>>> assert module.ClassName is not original
>>> assert module.ClassName is new_mock
>>> patcher.stop()
>>> assert module.ClassName is original
>>> assert module.ClassName is not new_mock

A typical use case for this might be for doing multiple patches in the setUp method of a TestCase:

>>> class MyTest(TestCase):
... def setUp(self):
... self.patcher1 = patch('package.module.Class1')
... self.patcher2 = patch('package.module.Class2')
... self.MockClass1 = self.patcher1.start()
... self.MockClass2 = self.patcher2.start()
...
... def tearDown(self):
... self.patcher1.stop()
... self.patcher2.stop()
...
... def test_something(self):
... assert package.module.Class1 is self.MockClass1
... assert package.module.Class2 is self.MockClass2
...
>>> MyTest('test_something').run()

Caution: If you use this technique you must ensure that the patching is “undone” by calling stop. This
can be fiddlier than you might think, because if an exception is raised in the setUp then tearDown is not
called. unittest.TestCase.addCleanup() makes this easier:

>>> class MyTest(TestCase):
... def setUp(self):
... patcher = patch('package.module.Class')
... self.MockClass = patcher.start()
... self.addCleanup(patcher.stop)
...
... def test_something(self):
... assert package.module.Class is self.MockClass
...26.5. unittest.mock — mock object library 1441

The Python Library Reference, Release 3.5.7

As an added bonus you no longer need to keep a reference to the patcher object.

It is also possible to stop all patches which have been started by using patch.stopall().

patch.stopall()
Stop all active patches. Only stops patches started with start.

patch builtins

You can patch any builtins within a module. The following example patches builtin ord():

>>> @patch('__main__.ord')
... def test(mock_ord):
... mock_ord.return_value = 101
... print(ord('c'))
...
>>> test()
101

TEST_PREFIX

All of the patchers can be used as class decorators. When used in this way they wrap every test method on
the class. The patchers recognise methods that start with 'test' as being test methods. This is the same
way that the unittest.TestLoader finds test methods by default.

It is possible that you want to use a different prefix for your tests. You can inform the patchers of the
different prefix by setting patch.TEST_PREFIX:

>>> patch.TEST_PREFIX = 'foo'
>>> value = 3
>>>
>>> @patch('__main__.value', 'not three')
... class Thing:
... def foo_one(self):
... print(value)
... def foo_two(self):
... print(value)
...
>>>
>>> Thing().foo_one()
not three
>>> Thing().foo_two()
not three
>>> value
3

Nesting Patch Decorators

If you want to perform multiple patches then you can simply stack up the decorators.

You can stack up multiple patch decorators using this pattern:

1442 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

>>> @patch.object(SomeClass, 'class_method')
... @patch.object(SomeClass, 'static_method')
... def test(mock1, mock2):
... assert SomeClass.static_method is mock1
... assert SomeClass.class_method is mock2
... SomeClass.static_method('foo')
... SomeClass.class_method('bar')
... return mock1, mock2
...
>>> mock1, mock2 = test()
>>> mock1.assert_called_once_with('foo')
>>> mock2.assert_called_once_with('bar')

Note that the decorators are applied from the bottom upwards. This is the standard way that Python applies
decorators. The order of the created mocks passed into your test function matches this order.

Where to patch

patch() works by (temporarily) changing the object that a name points to with another one. There can be
many names pointing to any individual object, so for patching to work you must ensure that you patch the
name used by the system under test.

The basic principle is that you patch where an object is looked up, which is not necessarily the same place
as where it is defined. A couple of examples will help to clarify this.

Imagine we have a project that we want to test with the following structure:

a.py
-> Defines SomeClass

b.py
-> from a import SomeClass
-> some_function instantiates SomeClass

Now we want to test some_function but we want to mock out SomeClass using patch(). The problem is that
when we import module b, which we will have to do then it imports SomeClass from module a. If we use
patch() to mock out a.SomeClass then it will have no effect on our test; module b already has a reference to
the real SomeClass and it looks like our patching had no effect.

The key is to patch out SomeClass where it is used (or where it is looked up). In this case some_function
will actually look up SomeClass in module b, where we have imported it. The patching should look like:

@patch('b.SomeClass')

However, consider the alternative scenario where instead of from a import SomeClass module b does import
a and some_function uses a.SomeClass. Both of these import forms are common. In this case the class we
want to patch is being looked up in the module and so we have to patch a.SomeClass instead:

@patch('a.SomeClass')

Patching Descriptors and Proxy Objects

Both patch and patch.object correctly patch and restore descriptors: class methods, static methods and
properties. You should patch these on the class rather than an instance. They also work with some objects
that proxy attribute access, like the django settings object.

26.5. unittest.mock — mock object library 1443

http://www.voidspace.org.uk/python/weblog/arch_d7_2010_12_04.shtml#e1198

The Python Library Reference, Release 3.5.7

26.5.4 MagicMock and magic method support

Mocking Magic Methods

Mock supports mocking the Python protocol methods, also known as “magic methods”. This allows mock
objects to replace containers or other objects that implement Python protocols.

Because magic methods are looked up differently from normal methods2, this support has been specially
implemented. This means that only specific magic methods are supported. The supported list includes
almost all of them. If there are any missing that you need please let us know.

You mock magic methods by setting the method you are interested in to a function or a mock instance. If
you are using a function then it must take self as the first argument3.

>>> def __str__(self):
... return 'fooble'
...
>>> mock = Mock()
>>> mock.__str__ = __str__
>>> str(mock)
'fooble'

>>> mock = Mock()
>>> mock.__str__ = Mock()
>>> mock.__str__.return_value = 'fooble'
>>> str(mock)
'fooble'

>>> mock = Mock()
>>> mock.__iter__ = Mock(return_value=iter([]))
>>> list(mock)
[]

One use case for this is for mocking objects used as context managers in a with statement:

>>> mock = Mock()
>>> mock.__enter__ = Mock(return_value='foo')
>>> mock.__exit__ = Mock(return_value=False)
>>> with mock as m:
... assert m == 'foo'
...
>>> mock.__enter__.assert_called_with()
>>> mock.__exit__.assert_called_with(None, None, None)

Calls to magic methods do not appear in method_calls, but they are recorded in mock_calls.

Note: If you use the spec keyword argument to create a mock then attempting to set a magic method that
isn’t in the spec will raise an AttributeError.

The full list of supported magic methods is:

• __hash__, __sizeof__, __repr__ and __str__

• __dir__, __format__ and __subclasses__

2 Magic methods should be looked up on the class rather than the instance. Different versions of Python are inconsistent
about applying this rule. The supported protocol methods should work with all supported versions of Python.

3 The function is basically hooked up to the class, but each Mock instance is kept isolated from the others.

1444 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

• __floor__, __trunc__ and __ceil__

• Comparisons: __lt__, __gt__, __le__, __ge__, __eq__ and __ne__

• Container methods: __getitem__, __setitem__, __delitem__, __contains__, __len__,
__iter__, __reversed__ and __missing__

• Context manager: __enter__ and __exit__

• Unary numeric methods: __neg__, __pos__ and __invert__

• The numeric methods (including right hand and in-place variants): __add__, __sub__, __mul__,
__matmul__, __div__, __truediv__, __floordiv__, __mod__, __divmod__, __lshift__,
__rshift__, __and__, __xor__, __or__, and __pow__

• Numeric conversion methods: __complex__, __int__, __float__ and __index__

• Descriptor methods: __get__, __set__ and __delete__

• Pickling: __reduce__, __reduce_ex__, __getinitargs__, __getnewargs__, __getstate__ and
__setstate__

The following methods exist but are not supported as they are either in use by mock, can’t be set dynamically,
or can cause problems:

• __getattr__, __setattr__, __init__ and __new__

• __prepare__, __instancecheck__, __subclasscheck__, __del__

Magic Mock

There are two MagicMock variants: MagicMock and NonCallableMagicMock.

class unittest.mock.MagicMock(*args, **kw)
MagicMock is a subclass of Mock with default implementations of most of the magic methods. You
can use MagicMock without having to configure the magic methods yourself.

The constructor parameters have the same meaning as for Mock.

If you use the spec or spec_set arguments then only magic methods that exist in the spec will be
created.

class unittest.mock.NonCallableMagicMock(*args, **kw)
A non-callable version of MagicMock.

The constructor parameters have the same meaning as for MagicMock, with the exception of re-
turn_value and side_effect which have no meaning on a non-callable mock.

The magic methods are setup with MagicMock objects, so you can configure them and use them in the usual
way:

>>> mock = MagicMock()
>>> mock[3] = 'fish'
>>> mock.__setitem__.assert_called_with(3, 'fish')
>>> mock.__getitem__.return_value = 'result'
>>> mock[2]
'result'

By default many of the protocol methods are required to return objects of a specific type. These methods
are preconfigured with a default return value, so that they can be used without you having to do anything if
you aren’t interested in the return value. You can still set the return value manually if you want to change
the default.

26.5. unittest.mock — mock object library 1445

The Python Library Reference, Release 3.5.7

Methods and their defaults:

• __lt__: NotImplemented

• __gt__: NotImplemented

• __le__: NotImplemented

• __ge__: NotImplemented

• __int__: 1

• __contains__: False

• __len__: 0

• __iter__: iter([])

• __exit__: False

• __complex__: 1j

• __float__: 1.0

• __bool__: True

• __index__: 1

• __hash__: default hash for the mock

• __str__: default str for the mock

• __sizeof__: default sizeof for the mock

For example:

>>> mock = MagicMock()
>>> int(mock)
1
>>> len(mock)
0
>>> list(mock)
[]
>>> object() in mock
False

The two equality methods, __eq__() and __ne__(), are special. They do the default equality comparison
on identity, using the side_effect attribute, unless you change their return value to return something else:

>>> MagicMock() == 3
False
>>> MagicMock() != 3
True
>>> mock = MagicMock()
>>> mock.__eq__.return_value = True
>>> mock == 3
True

The return value of MagicMock.__iter__() can be any iterable object and isn’t required to be an iterator:

>>> mock = MagicMock()
>>> mock.__iter__.return_value = ['a', 'b', 'c']
>>> list(mock)
['a', 'b', 'c']

(continues on next page)

1446 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> list(mock)
['a', 'b', 'c']

If the return value is an iterator, then iterating over it once will consume it and subsequent iterations will
result in an empty list:

>>> mock.__iter__.return_value = iter(['a', 'b', 'c'])
>>> list(mock)
['a', 'b', 'c']
>>> list(mock)
[]

MagicMock has all of the supported magic methods configured except for some of the obscure and obsolete
ones. You can still set these up if you want.

Magic methods that are supported but not setup by default in MagicMock are:

• __subclasses__

• __dir__

• __format__

• __get__, __set__ and __delete__

• __reversed__ and __missing__

• __reduce__, __reduce_ex__, __getinitargs__, __getnewargs__, __getstate__ and __set-
state__

• __getformat__ and __setformat__

26.5.5 Helpers

sentinel

unittest.mock.sentinel
The sentinel object provides a convenient way of providing unique objects for your tests.

Attributes are created on demand when you access them by name. Accessing the same attribute will
always return the same object. The objects returned have a sensible repr so that test failure messages
are readable.

The sentinel attributes don’t preserve their identity when they are copied or pickled.

Sometimes when testing you need to test that a specific object is passed as an argument to another method,
or returned. It can be common to create named sentinel objects to test this. sentinel provides a convenient
way of creating and testing the identity of objects like this.

In this example we monkey patch method to return sentinel.some_object:

>>> real = ProductionClass()
>>> real.method = Mock(name="method")
>>> real.method.return_value = sentinel.some_object
>>> result = real.method()
>>> assert result is sentinel.some_object
>>> sentinel.some_object
sentinel.some_object

26.5. unittest.mock — mock object library 1447

The Python Library Reference, Release 3.5.7

DEFAULT

unittest.mock.DEFAULT
The DEFAULT object is a pre-created sentinel (actually sentinel.DEFAULT). It can be used by
side_effect functions to indicate that the normal return value should be used.

call

unittest.mock.call(*args, **kwargs)
call() is a helper object for making simpler assertions, for comparing with call_args, call_args_list,
mock_calls and method_calls. call() can also be used with assert_has_calls().

>>> m = MagicMock(return_value=None)
>>> m(1, 2, a='foo', b='bar')
>>> m()
>>> m.call_args_list == [call(1, 2, a='foo', b='bar'), call()]
True

call.call_list()
For a call object that represents multiple calls, call_list() returns a list of all the intermediate calls as
well as the final call.

call_list is particularly useful for making assertions on “chained calls”. A chained call is multiple calls on
a single line of code. This results in multiple entries in mock_calls on a mock. Manually constructing the
sequence of calls can be tedious.

call_list() can construct the sequence of calls from the same chained call:

>>> m = MagicMock()
>>> m(1).method(arg='foo').other('bar')(2.0)
<MagicMock name='mock().method().other()()' id='...'>
>>> kall = call(1).method(arg='foo').other('bar')(2.0)
>>> kall.call_list()
[call(1),
call().method(arg='foo'),
call().method().other('bar'),
call().method().other()(2.0)]
>>> m.mock_calls == kall.call_list()
True

A call object is either a tuple of (positional args, keyword args) or (name, positional args, keyword args)
depending on how it was constructed. When you construct them yourself this isn’t particularly interesting,
but the call objects that are in the Mock.call_args, Mock.call_args_list and Mock.mock_calls attributes
can be introspected to get at the individual arguments they contain.

The call objects in Mock.call_args and Mock.call_args_list are two-tuples of (positional args, keyword
args) whereas the call objects in Mock.mock_calls, along with ones you construct yourself, are three-tuples
of (name, positional args, keyword args).

You can use their “tupleness” to pull out the individual arguments for more complex introspection and
assertions. The positional arguments are a tuple (an empty tuple if there are no positional arguments) and
the keyword arguments are a dictionary:

>>> m = MagicMock(return_value=None)
>>> m(1, 2, 3, arg='one', arg2='two')
>>> kall = m.call_args
>>> args, kwargs = kall

(continues on next page)

1448 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> args
(1, 2, 3)
>>> kwargs
{'arg2': 'two', 'arg': 'one'}
>>> args is kall[0]
True
>>> kwargs is kall[1]
True

>>> m = MagicMock()
>>> m.foo(4, 5, 6, arg='two', arg2='three')
<MagicMock name='mock.foo()' id='...'>
>>> kall = m.mock_calls[0]
>>> name, args, kwargs = kall
>>> name
'foo'
>>> args
(4, 5, 6)
>>> kwargs
{'arg2': 'three', 'arg': 'two'}
>>> name is m.mock_calls[0][0]
True

create_autospec

unittest.mock.create_autospec(spec, spec_set=False, instance=False, **kwargs)
Create a mock object using another object as a spec. Attributes on the mock will use the corresponding
attribute on the spec object as their spec.

Functions or methods being mocked will have their arguments checked to ensure that they are called
with the correct signature.

If spec_set is True then attempting to set attributes that don’t exist on the spec object will raise an
AttributeError.

If a class is used as a spec then the return value of the mock (the instance of the class) will have the
same spec. You can use a class as the spec for an instance object by passing instance=True. The
returned mock will only be callable if instances of the mock are callable.

create_autospec() also takes arbitrary keyword arguments that are passed to the constructor of the
created mock.

See Autospeccing for examples of how to use auto-speccing with create_autospec() and the autospec argu-
ment to patch().

ANY

unittest.mock.ANY

Sometimes you may need to make assertions about some of the arguments in a call to mock, but either not
care about some of the arguments or want to pull them individually out of call_args and make more complex
assertions on them.

To ignore certain arguments you can pass in objects that compare equal to everything. Calls to as-
sert_called_with() and assert_called_once_with() will then succeed no matter what was passed in.

26.5. unittest.mock — mock object library 1449

The Python Library Reference, Release 3.5.7

>>> mock = Mock(return_value=None)
>>> mock('foo', bar=object())
>>> mock.assert_called_once_with('foo', bar=ANY)

ANY can also be used in comparisons with call lists like mock_calls:

>>> m = MagicMock(return_value=None)
>>> m(1)
>>> m(1, 2)
>>> m(object())
>>> m.mock_calls == [call(1), call(1, 2), ANY]
True

FILTER_DIR

unittest.mock.FILTER_DIR

FILTER_DIR is a module level variable that controls the way mock objects respond to dir() (only for
Python 2.6 or more recent). The default is True, which uses the filtering described below, to only show
useful members. If you dislike this filtering, or need to switch it off for diagnostic purposes, then set mock.
FILTER_DIR = False.

With filtering on, dir(some_mock) shows only useful attributes and will include any dynamically created
attributes that wouldn’t normally be shown. If the mock was created with a spec (or autospec of course)
then all the attributes from the original are shown, even if they haven’t been accessed yet:

>>> dir(Mock())
['assert_any_call',
'assert_called_once_with',
'assert_called_with',
'assert_has_calls',
'attach_mock',
...
>>> from urllib import request
>>> dir(Mock(spec=request))
['AbstractBasicAuthHandler',
'AbstractDigestAuthHandler',
'AbstractHTTPHandler',
'BaseHandler',
...

Many of the not-very-useful (private to Mock rather than the thing being mocked) underscore and double
underscore prefixed attributes have been filtered from the result of calling dir() on a Mock. If you dislike
this behaviour you can switch it off by setting the module level switch FILTER_DIR:

>>> from unittest import mock
>>> mock.FILTER_DIR = False
>>> dir(mock.Mock())
['_NonCallableMock__get_return_value',
'_NonCallableMock__get_side_effect',
'_NonCallableMock__return_value_doc',
'_NonCallableMock__set_return_value',
'_NonCallableMock__set_side_effect',
'__call__',
'__class__',
...

1450 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

Alternatively you can just use vars(my_mock) (instance members) and dir(type(my_mock)) (type members)
to bypass the filtering irrespective of mock.FILTER_DIR.

mock_open

unittest.mock.mock_open(mock=None, read_data=None)

A helper function to create a mock to replace the use of open(). It works for open() called
directly or used as a context manager.

The mock argument is the mock object to configure. If None (the default) then a MagicMock
will be created for you, with the API limited to methods or attributes available on standard
file handles.

read_data is a string for the read(), readline(), and readlines() methods of the file handle
to return. Calls to those methods will take data from read_data until it is depleted. The
mock of these methods is pretty simplistic: every time the mock is called, the read_data is
rewound to the start. If you need more control over the data that you are feeding to the
tested code you will need to customize this mock for yourself. When that is insufficient, one
of the in-memory filesystem packages on PyPI can offer a realistic filesystem for testing.

Changed in version 3.4: Added readline() and readlines() support. The mock of read() changed to
consume read_data rather than returning it on each call.

Changed in version 3.5: read_data is now reset on each call to the mock.

Using open() as a context manager is a great way to ensure your file handles are closed properly and is
becoming common:

with open('/some/path', 'w') as f:
f.write('something')

The issue is that even if you mock out the call to open() it is the returned object that is used as a context
manager (and has __enter__() and __exit__() called).

Mocking context managers with a MagicMock is common enough and fiddly enough that a helper function
is useful.

>>> m = mock_open()
>>> with patch('__main__.open', m):
... with open('foo', 'w') as h:
... h.write('some stuff')
...
>>> m.mock_calls
[call('foo', 'w'),
call().__enter__(),
call().write('some stuff'),
call().__exit__(None, None, None)]
>>> m.assert_called_once_with('foo', 'w')
>>> handle = m()
>>> handle.write.assert_called_once_with('some stuff')

And for reading files:

>>> with patch('__main__.open', mock_open(read_data='bibble')) as m:
... with open('foo') as h:
... result = h.read()
...

(continues on next page)

26.5. unittest.mock — mock object library 1451

https://pypi.python.org/pypi

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> m.assert_called_once_with('foo')
>>> assert result == 'bibble'

Autospeccing

Autospeccing is based on the existing spec feature of mock. It limits the api of mocks to the api of an
original object (the spec), but it is recursive (implemented lazily) so that attributes of mocks only have the
same api as the attributes of the spec. In addition mocked functions / methods have the same call signature
as the original so they raise a TypeError if they are called incorrectly.

Before I explain how auto-speccing works, here’s why it is needed.

Mock is a very powerful and flexible object, but it suffers from two flaws when used to mock out objects
from a system under test. One of these flaws is specific to the Mock api and the other is a more general
problem with using mock objects.

First the problem specific to Mock. Mock has two assert methods that are extremely handy: as-
sert_called_with() and assert_called_once_with().

>>> mock = Mock(name='Thing', return_value=None)
>>> mock(1, 2, 3)
>>> mock.assert_called_once_with(1, 2, 3)
>>> mock(1, 2, 3)
>>> mock.assert_called_once_with(1, 2, 3)
Traceback (most recent call last):
...
AssertionError: Expected 'mock' to be called once. Called 2 times.

Because mocks auto-create attributes on demand, and allow you to call them with arbitrary arguments, if
you misspell one of these assert methods then your assertion is gone:

>>> mock = Mock(name='Thing', return_value=None)
>>> mock(1, 2, 3)
>>> mock.assret_called_once_with(4, 5, 6)

Your tests can pass silently and incorrectly because of the typo.

The second issue is more general to mocking. If you refactor some of your code, rename members and so
on, any tests for code that is still using the old api but uses mocks instead of the real objects will still pass.
This means your tests can all pass even though your code is broken.

Note that this is another reason why you need integration tests as well as unit tests. Testing everything in
isolation is all fine and dandy, but if you don’t test how your units are “wired together” there is still lots of
room for bugs that tests might have caught.

mock already provides a feature to help with this, called speccing. If you use a class or instance as the spec
for a mock then you can only access attributes on the mock that exist on the real class:

>>> from urllib import request
>>> mock = Mock(spec=request.Request)
>>> mock.assret_called_with
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'assret_called_with'

The spec only applies to the mock itself, so we still have the same issue with any methods on the mock:

1452 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

>>> mock.has_data()
<mock.Mock object at 0x...>
>>> mock.has_data.assret_called_with()

Auto-speccing solves this problem. You can either pass autospec=True to patch() / patch.object() or use
the create_autospec() function to create a mock with a spec. If you use the autospec=True argument to
patch() then the object that is being replaced will be used as the spec object. Because the speccing is done
“lazily” (the spec is created as attributes on the mock are accessed) you can use it with very complex or
deeply nested objects (like modules that import modules that import modules) without a big performance
hit.

Here’s an example of it in use:

>>> from urllib import request
>>> patcher = patch('__main__.request', autospec=True)
>>> mock_request = patcher.start()
>>> request is mock_request
True
>>> mock_request.Request
<MagicMock name='request.Request' spec='Request' id='...'>

You can see that request.Request has a spec. request.Request takes two arguments in the constructor (one
of which is self). Here’s what happens if we try to call it incorrectly:

>>> req = request.Request()
Traceback (most recent call last):
...
TypeError: <lambda>() takes at least 2 arguments (1 given)

The spec also applies to instantiated classes (i.e. the return value of specced mocks):

>>> req = request.Request('foo')
>>> req
<NonCallableMagicMock name='request.Request()' spec='Request' id='...'>

Request objects are not callable, so the return value of instantiating our mocked out request.Request is a
non-callable mock. With the spec in place any typos in our asserts will raise the correct error:

>>> req.add_header('spam', 'eggs')
<MagicMock name='request.Request().add_header()' id='...'>
>>> req.add_header.assret_called_with
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'assret_called_with'
>>> req.add_header.assert_called_with('spam', 'eggs')

In many cases you will just be able to add autospec=True to your existing patch() calls and then be protected
against bugs due to typos and api changes.

As well as using autospec through patch() there is a create_autospec() for creating autospecced mocks
directly:

>>> from urllib import request
>>> mock_request = create_autospec(request)
>>> mock_request.Request('foo', 'bar')
<NonCallableMagicMock name='mock.Request()' spec='Request' id='...'>

26.5. unittest.mock — mock object library 1453

The Python Library Reference, Release 3.5.7

This isn’t without caveats and limitations however, which is why it is not the default behaviour. In order
to know what attributes are available on the spec object, autospec has to introspect (access attributes) the
spec. As you traverse attributes on the mock a corresponding traversal of the original object is happening
under the hood. If any of your specced objects have properties or descriptors that can trigger code execution
then you may not be able to use autospec. On the other hand it is much better to design your objects so
that introspection is safe4.

A more serious problem is that it is common for instance attributes to be created in the __init__()
method and not to exist on the class at all. autospec can’t know about any dynamically created attributes
and restricts the api to visible attributes.

>>> class Something:
... def __init__(self):
... self.a = 33
...
>>> with patch('__main__.Something', autospec=True):
... thing = Something()
... thing.a
...
Traceback (most recent call last):
...

AttributeError: Mock object has no attribute 'a'

There are a few different ways of resolving this problem. The easiest, but not necessarily the least annoying,
way is to simply set the required attributes on the mock after creation. Just because autospec doesn’t allow
you to fetch attributes that don’t exist on the spec it doesn’t prevent you setting them:

>>> with patch('__main__.Something', autospec=True):
... thing = Something()
... thing.a = 33
...

There is a more aggressive version of both spec and autospec that does prevent you setting non-existent
attributes. This is useful if you want to ensure your code only sets valid attributes too, but obviously it
prevents this particular scenario:

>>> with patch('__main__.Something', autospec=True, spec_set=True):
... thing = Something()
... thing.a = 33
...
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'a'

Probably the best way of solving the problem is to add class attributes as default values for instance members
initialised in __init__(). Note that if you are only setting default attributes in __init__() then providing
them via class attributes (shared between instances of course) is faster too. e.g.

class Something:
a = 33

This brings up another issue. It is relatively common to provide a default value of None for members that
will later be an object of a different type. None would be useless as a spec because it wouldn’t let you access
any attributes or methods on it. As None is never going to be useful as a spec, and probably indicates a

4 This only applies to classes or already instantiated objects. Calling a mocked class to create a mock instance does not
create a real instance. It is only attribute lookups - along with calls to dir() - that are done.

1454 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

member that will normally of some other type, autospec doesn’t use a spec for members that are set to
None. These will just be ordinary mocks (well - MagicMocks):

>>> class Something:
... member = None
...
>>> mock = create_autospec(Something)
>>> mock.member.foo.bar.baz()
<MagicMock name='mock.member.foo.bar.baz()' id='...'>

If modifying your production classes to add defaults isn’t to your liking then there are more options. One of
these is simply to use an instance as the spec rather than the class. The other is to create a subclass of the
production class and add the defaults to the subclass without affecting the production class. Both of these
require you to use an alternative object as the spec. Thankfully patch() supports this - you can simply pass
the alternative object as the autospec argument:

>>> class Something:
... def __init__(self):
... self.a = 33
...
>>> class SomethingForTest(Something):
... a = 33
...
>>> p = patch('__main__.Something', autospec=SomethingForTest)
>>> mock = p.start()
>>> mock.a
<NonCallableMagicMock name='Something.a' spec='int' id='...'>

26.6 unittest.mock — getting started

New in version 3.3.

26.6.1 Using Mock

Mock Patching Methods

Common uses for Mock objects include:

• Patching methods

• Recording method calls on objects

You might want to replace a method on an object to check that it is called with the correct arguments by
another part of the system:

>>> real = SomeClass()
>>> real.method = MagicMock(name='method')
>>> real.method(3, 4, 5, key='value')
<MagicMock name='method()' id='...'>

Once our mock has been used (real.method in this example) it has methods and attributes that allow you
to make assertions about how it has been used.

26.6. unittest.mock — getting started 1455

The Python Library Reference, Release 3.5.7

Note: In most of these examples the Mock and MagicMock classes are interchangeable. As the MagicMock
is the more capable class it makes a sensible one to use by default.

Once the mock has been called its called attribute is set to True. More importantly we can use the as-
sert_called_with() or assert_called_once_with() method to check that it was called with the correct argu-
ments.

This example tests that calling ProductionClass().method results in a call to the something method:

>>> class ProductionClass:
... def method(self):
... self.something(1, 2, 3)
... def something(self, a, b, c):
... pass
...
>>> real = ProductionClass()
>>> real.something = MagicMock()
>>> real.method()
>>> real.something.assert_called_once_with(1, 2, 3)

Mock for Method Calls on an Object

In the last example we patched a method directly on an object to check that it was called correctly. Another
common use case is to pass an object into a method (or some part of the system under test) and then check
that it is used in the correct way.

The simple ProductionClass below has a closer method. If it is called with an object then it calls close on it.

>>> class ProductionClass:
... def closer(self, something):
... something.close()
...

So to test it we need to pass in an object with a close method and check that it was called correctly.

>>> real = ProductionClass()
>>> mock = Mock()
>>> real.closer(mock)
>>> mock.close.assert_called_with()

We don’t have to do any work to provide the ‘close’ method on our mock. Accessing close creates it. So, if
‘close’ hasn’t already been called then accessing it in the test will create it, but assert_called_with() will
raise a failure exception.

Mocking Classes

A common use case is to mock out classes instantiated by your code under test. When you patch a class,
then that class is replaced with a mock. Instances are created by calling the class. This means you access
the “mock instance” by looking at the return value of the mocked class.

In the example below we have a function some_function that instantiates Foo and calls a method on it. The
call to patch() replaces the class Foo with a mock. The Foo instance is the result of calling the mock, so it
is configured by modifying the mock return_value.

1456 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

>>> def some_function():
... instance = module.Foo()
... return instance.method()
...
>>> with patch('module.Foo') as mock:
... instance = mock.return_value
... instance.method.return_value = 'the result'
... result = some_function()
... assert result == 'the result'

Naming your mocks

It can be useful to give your mocks a name. The name is shown in the repr of the mock and can be helpful
when the mock appears in test failure messages. The name is also propagated to attributes or methods of
the mock:

>>> mock = MagicMock(name='foo')
>>> mock
<MagicMock name='foo' id='...'>
>>> mock.method
<MagicMock name='foo.method' id='...'>

Tracking all Calls

Often you want to track more than a single call to a method. The mock_calls attribute records all calls to
child attributes of the mock - and also to their children.

>>> mock = MagicMock()
>>> mock.method()
<MagicMock name='mock.method()' id='...'>
>>> mock.attribute.method(10, x=53)
<MagicMock name='mock.attribute.method()' id='...'>
>>> mock.mock_calls
[call.method(), call.attribute.method(10, x=53)]

If you make an assertion about mock_calls and any unexpected methods have been called, then the assertion
will fail. This is useful because as well as asserting that the calls you expected have been made, you are also
checking that they were made in the right order and with no additional calls:

You use the call object to construct lists for comparing with mock_calls:

>>> expected = [call.method(), call.attribute.method(10, x=53)]
>>> mock.mock_calls == expected
True

Setting Return Values and Attributes

Setting the return values on a mock object is trivially easy:

>>> mock = Mock()
>>> mock.return_value = 3
>>> mock()
3

26.6. unittest.mock — getting started 1457

The Python Library Reference, Release 3.5.7

Of course you can do the same for methods on the mock:

>>> mock = Mock()
>>> mock.method.return_value = 3
>>> mock.method()
3

The return value can also be set in the constructor:

>>> mock = Mock(return_value=3)
>>> mock()
3

If you need an attribute setting on your mock, just do it:

>>> mock = Mock()
>>> mock.x = 3
>>> mock.x
3

Sometimes you want to mock up a more complex situation, like for example mock.connection.cursor().
execute("SELECT 1"). If we wanted this call to return a list, then we have to configure the result of the
nested call.

We can use call to construct the set of calls in a “chained call” like this for easy assertion afterwards:

>>> mock = Mock()
>>> cursor = mock.connection.cursor.return_value
>>> cursor.execute.return_value = ['foo']
>>> mock.connection.cursor().execute("SELECT 1")
['foo']
>>> expected = call.connection.cursor().execute("SELECT 1").call_list()
>>> mock.mock_calls
[call.connection.cursor(), call.connection.cursor().execute('SELECT 1')]
>>> mock.mock_calls == expected
True

It is the call to .call_list() that turns our call object into a list of calls representing the chained calls.

Raising exceptions with mocks

A useful attribute is side_effect. If you set this to an exception class or instance then the exception will be
raised when the mock is called.

>>> mock = Mock(side_effect=Exception('Boom!'))
>>> mock()
Traceback (most recent call last):
...

Exception: Boom!

Side effect functions and iterables

side_effect can also be set to a function or an iterable. The use case for side_effect as an iterable is where
your mock is going to be called several times, and you want each call to return a different value. When you
set side_effect to an iterable every call to the mock returns the next value from the iterable:

1458 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

>>> mock = MagicMock(side_effect=[4, 5, 6])
>>> mock()
4
>>> mock()
5
>>> mock()
6

For more advanced use cases, like dynamically varying the return values depending on what the mock is
called with, side_effect can be a function. The function will be called with the same arguments as the mock.
Whatever the function returns is what the call returns:

>>> vals = {(1, 2): 1, (2, 3): 2}
>>> def side_effect(*args):
... return vals[args]
...
>>> mock = MagicMock(side_effect=side_effect)
>>> mock(1, 2)
1
>>> mock(2, 3)
2

Creating a Mock from an Existing Object

One problem with over use of mocking is that it couples your tests to the implementation of your mocks
rather than your real code. Suppose you have a class that implements some_method. In a test for another
class, you provide a mock of this object that also provides some_method. If later you refactor the first class,
so that it no longer has some_method - then your tests will continue to pass even though your code is now
broken!

Mock allows you to provide an object as a specification for the mock, using the spec keyword argument.
Accessing methods / attributes on the mock that don’t exist on your specification object will immediately
raise an attribute error. If you change the implementation of your specification, then tests that use that
class will start failing immediately without you having to instantiate the class in those tests.

>>> mock = Mock(spec=SomeClass)
>>> mock.old_method()
Traceback (most recent call last):
...

AttributeError: object has no attribute 'old_method'

Using a specification also enables a smarter matching of calls made to the mock, regardless of whether some
parameters were passed as positional or named arguments:

>>> def f(a, b, c): pass
...
>>> mock = Mock(spec=f)
>>> mock(1, 2, 3)
<Mock name='mock()' id='140161580456576'>
>>> mock.assert_called_with(a=1, b=2, c=3)

If you want this smarter matching to also work with method calls on the mock, you can use auto-speccing.

If you want a stronger form of specification that prevents the setting of arbitrary attributes as well as the
getting of them then you can use spec_set instead of spec.

26.6. unittest.mock — getting started 1459

The Python Library Reference, Release 3.5.7

26.6.2 Patch Decorators

Note: With patch() it matters that you patch objects in the namespace where they are looked up. This is
normally straightforward, but for a quick guide read where to patch.

A common need in tests is to patch a class attribute or a module attribute, for example patching a builtin
or patching a class in a module to test that it is instantiated. Modules and classes are effectively global, so
patching on them has to be undone after the test or the patch will persist into other tests and cause hard to
diagnose problems.

mock provides three convenient decorators for this: patch(), patch.object() and patch.dict(). patch takes a
single string, of the form package.module.Class.attribute to specify the attribute you are patching. It also
optionally takes a value that you want the attribute (or class or whatever) to be replaced with. ‘patch.object’
takes an object and the name of the attribute you would like patched, plus optionally the value to patch it
with.

patch.object:

>>> original = SomeClass.attribute
>>> @patch.object(SomeClass, 'attribute', sentinel.attribute)
... def test():
... assert SomeClass.attribute == sentinel.attribute
...
>>> test()
>>> assert SomeClass.attribute == original

>>> @patch('package.module.attribute', sentinel.attribute)
... def test():
... from package.module import attribute
... assert attribute is sentinel.attribute
...
>>> test()

If you are patching a module (including builtins) then use patch() instead of patch.object():

>>> mock = MagicMock(return_value=sentinel.file_handle)
>>> with patch('builtins.open', mock):
... handle = open('filename', 'r')
...
>>> mock.assert_called_with('filename', 'r')
>>> assert handle == sentinel.file_handle, "incorrect file handle returned"

The module name can be ‘dotted’, in the form package.module if needed:

>>> @patch('package.module.ClassName.attribute', sentinel.attribute)
... def test():
... from package.module import ClassName
... assert ClassName.attribute == sentinel.attribute
...
>>> test()

A nice pattern is to actually decorate test methods themselves:

>>> class MyTest(unittest.TestCase):
... @patch.object(SomeClass, 'attribute', sentinel.attribute)

(continues on next page)

1460 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

... def test_something(self):

... self.assertEqual(SomeClass.attribute, sentinel.attribute)

...
>>> original = SomeClass.attribute
>>> MyTest('test_something').test_something()
>>> assert SomeClass.attribute == original

If you want to patch with a Mock, you can use patch() with only one argument (or patch.object() with two
arguments). The mock will be created for you and passed into the test function / method:

>>> class MyTest(unittest.TestCase):
... @patch.object(SomeClass, 'static_method')
... def test_something(self, mock_method):
... SomeClass.static_method()
... mock_method.assert_called_with()
...
>>> MyTest('test_something').test_something()

You can stack up multiple patch decorators using this pattern:

>>> class MyTest(unittest.TestCase):
... @patch('package.module.ClassName1')
... @patch('package.module.ClassName2')
... def test_something(self, MockClass2, MockClass1):
... self.assertIs(package.module.ClassName1, MockClass1)
... self.assertIs(package.module.ClassName2, MockClass2)
...
>>> MyTest('test_something').test_something()

When you nest patch decorators the mocks are passed in to the decorated function in the same order they
applied (the normal python order that decorators are applied). This means from the bottom up, so in the
example above the mock for test_module.ClassName2 is passed in first.

There is also patch.dict() for setting values in a dictionary just during a scope and restoring the dictionary
to its original state when the test ends:

>>> foo = {'key': 'value'}
>>> original = foo.copy()
>>> with patch.dict(foo, {'newkey': 'newvalue'}, clear=True):
... assert foo == {'newkey': 'newvalue'}
...
>>> assert foo == original

patch, patch.object and patch.dict can all be used as context managers.

Where you use patch() to create a mock for you, you can get a reference to the mock using the “as” form of
the with statement:

>>> class ProductionClass:
... def method(self):
... pass
...
>>> with patch.object(ProductionClass, 'method') as mock_method:
... mock_method.return_value = None
... real = ProductionClass()
... real.method(1, 2, 3)

(continues on next page)

26.6. unittest.mock — getting started 1461

The Python Library Reference, Release 3.5.7

(continued from previous page)

...
>>> mock_method.assert_called_with(1, 2, 3)

As an alternative patch, patch.object and patch.dict can be used as class decorators. When used in this way
it is the same as applying the decorator individually to every method whose name starts with “test”.

26.6.3 Further Examples

Here are some more examples for some slightly more advanced scenarios.

Mocking chained calls

Mocking chained calls is actually straightforward with mock once you understand the return_value attribute.
When a mock is called for the first time, or you fetch its return_value before it has been called, a new Mock
is created.

This means that you can see how the object returned from a call to a mocked object has been used by
interrogating the return_value mock:

>>> mock = Mock()
>>> mock().foo(a=2, b=3)
<Mock name='mock().foo()' id='...'>
>>> mock.return_value.foo.assert_called_with(a=2, b=3)

From here it is a simple step to configure and then make assertions about chained calls. Of course another
alternative is writing your code in a more testable way in the first place. . .

So, suppose we have some code that looks a little bit like this:

>>> class Something:
... def __init__(self):
... self.backend = BackendProvider()
... def method(self):
... response = self.backend.get_endpoint('foobar').create_call('spam', 'eggs').start_call()
... # more code

Assuming that BackendProvider is already well tested, how do we test method()? Specifically, we want to
test that the code section # more code uses the response object in the correct way.

As this chain of calls is made from an instance attribute we can monkey patch the backend attribute on a
Something instance. In this particular case we are only interested in the return value from the final call to
start_call so we don’t have much configuration to do. Let’s assume the object it returns is ‘file-like’, so we’ll
ensure that our response object uses the builtin open() as its spec.

To do this we create a mock instance as our mock backend and create a mock response object for it. To set
the response as the return value for that final start_call we could do this:

mock_backend.get_endpoint.return_value.create_call.return_value.start_call.return_value = mock_response

We can do that in a slightly nicer way using the configure_mock() method to directly set the return value
for us:

1462 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

>>> something = Something()
>>> mock_response = Mock(spec=open)
>>> mock_backend = Mock()
>>> config = {'get_endpoint.return_value.create_call.return_value.start_call.return_value': mock_response}
>>> mock_backend.configure_mock(**config)

With these we monkey patch the “mock backend” in place and can make the real call:

>>> something.backend = mock_backend
>>> something.method()

Using mock_calls we can check the chained call with a single assert. A chained call is several calls in one
line of code, so there will be several entries in mock_calls. We can use call.call_list() to create this list of
calls for us:

>>> chained = call.get_endpoint('foobar').create_call('spam', 'eggs').start_call()
>>> call_list = chained.call_list()
>>> assert mock_backend.mock_calls == call_list

Partial mocking

In some tests I wanted to mock out a call to datetime.date.today() to return a known date, but I didn’t want
to prevent the code under test from creating new date objects. Unfortunately datetime.date is written in C,
and so I couldn’t just monkey-patch out the static date.today() method.

I found a simple way of doing this that involved effectively wrapping the date class with a mock, but passing
through calls to the constructor to the real class (and returning real instances).

The patch decorator is used here to mock out the date class in the module under test. The side_effect
attribute on the mock date class is then set to a lambda function that returns a real date. When the mock
date class is called a real date will be constructed and returned by side_effect.

>>> from datetime import date
>>> with patch('mymodule.date') as mock_date:
... mock_date.today.return_value = date(2010, 10, 8)
... mock_date.side_effect = lambda *args, **kw: date(*args, **kw)
...
... assert mymodule.date.today() == date(2010, 10, 8)
... assert mymodule.date(2009, 6, 8) == date(2009, 6, 8)
...

Note that we don’t patch datetime.date globally, we patch date in the module that uses it. See where to
patch.

When date.today() is called a known date is returned, but calls to the date(...) constructor still return
normal dates. Without this you can find yourself having to calculate an expected result using exactly the
same algorithm as the code under test, which is a classic testing anti-pattern.

Calls to the date constructor are recorded in the mock_date attributes (call_count and friends) which may
also be useful for your tests.

An alternative way of dealing with mocking dates, or other builtin classes, is discussed in this blog entry.

26.6. unittest.mock — getting started 1463

https://williambert.online/2011/07/how-to-unit-testing-in-django-with-mocking-and-patching/

The Python Library Reference, Release 3.5.7

Mocking a Generator Method

A Python generator is a function or method that uses the yield statement to return a series of values when
iterated over1.

A generator method / function is called to return the generator object. It is the generator object that is then
iterated over. The protocol method for iteration is __iter__(), so we can mock this using a MagicMock.

Here’s an example class with an “iter” method implemented as a generator:

>>> class Foo:
... def iter(self):
... for i in [1, 2, 3]:
... yield i
...
>>> foo = Foo()
>>> list(foo.iter())
[1, 2, 3]

How would we mock this class, and in particular its “iter” method?

To configure the values returned from the iteration (implicit in the call to list), we need to configure the
object returned by the call to foo.iter().

>>> mock_foo = MagicMock()
>>> mock_foo.iter.return_value = iter([1, 2, 3])
>>> list(mock_foo.iter())
[1, 2, 3]

Applying the same patch to every test method

If you want several patches in place for multiple test methods the obvious way is to apply the patch decorators
to every method. This can feel like unnecessary repetition. For Python 2.6 or more recent you can use patch()
(in all its various forms) as a class decorator. This applies the patches to all test methods on the class. A
test method is identified by methods whose names start with test:

>>> @patch('mymodule.SomeClass')
... class MyTest(TestCase):
...
... def test_one(self, MockSomeClass):
... self.assertIs(mymodule.SomeClass, MockSomeClass)
...
... def test_two(self, MockSomeClass):
... self.assertIs(mymodule.SomeClass, MockSomeClass)
...
... def not_a_test(self):
... return 'something'
...
>>> MyTest('test_one').test_one()
>>> MyTest('test_two').test_two()
>>> MyTest('test_two').not_a_test()
'something'

An alternative way of managing patches is to use the patch methods: start and stop. These allow you to
move the patching into your setUp and tearDown methods.

1 There are also generator expressions and more advanced uses of generators, but we aren’t concerned about them here. A
very good introduction to generators and how powerful they are is: Generator Tricks for Systems Programmers.

1464 Chapter 26. Development Tools

http://www.dabeaz.com/coroutines/index.html
http://www.dabeaz.com/generators/

The Python Library Reference, Release 3.5.7

>>> class MyTest(TestCase):
... def setUp(self):
... self.patcher = patch('mymodule.foo')
... self.mock_foo = self.patcher.start()
...
... def test_foo(self):
... self.assertIs(mymodule.foo, self.mock_foo)
...
... def tearDown(self):
... self.patcher.stop()
...
>>> MyTest('test_foo').run()

If you use this technique you must ensure that the patching is “undone” by calling stop. This can be
fiddlier than you might think, because if an exception is raised in the setUp then tearDown is not called.
unittest.TestCase.addCleanup() makes this easier:

>>> class MyTest(TestCase):
... def setUp(self):
... patcher = patch('mymodule.foo')
... self.addCleanup(patcher.stop)
... self.mock_foo = patcher.start()
...
... def test_foo(self):
... self.assertIs(mymodule.foo, self.mock_foo)
...
>>> MyTest('test_foo').run()

Mocking Unbound Methods

Whilst writing tests today I needed to patch an unbound method (patching the method on the class rather
than on the instance). I needed self to be passed in as the first argument because I want to make asserts
about which objects were calling this particular method. The issue is that you can’t patch with a mock
for this, because if you replace an unbound method with a mock it doesn’t become a bound method when
fetched from the instance, and so it doesn’t get self passed in. The workaround is to patch the unbound
method with a real function instead. The patch() decorator makes it so simple to patch out methods with
a mock that having to create a real function becomes a nuisance.

If you pass autospec=True to patch then it does the patching with a real function object. This function
object has the same signature as the one it is replacing, but delegates to a mock under the hood. You still
get your mock auto-created in exactly the same way as before. What it means though, is that if you use it
to patch out an unbound method on a class the mocked function will be turned into a bound method if it is
fetched from an instance. It will have self passed in as the first argument, which is exactly what I wanted:

>>> class Foo:
... def foo(self):
... pass
...
>>> with patch.object(Foo, 'foo', autospec=True) as mock_foo:
... mock_foo.return_value = 'foo'
... foo = Foo()
... foo.foo()
...
'foo'
>>> mock_foo.assert_called_once_with(foo)

26.6. unittest.mock — getting started 1465

The Python Library Reference, Release 3.5.7

If we don’t use autospec=True then the unbound method is patched out with a Mock instance instead, and
isn’t called with self.

Checking multiple calls with mock

mock has a nice API for making assertions about how your mock objects are used.

>>> mock = Mock()
>>> mock.foo_bar.return_value = None
>>> mock.foo_bar('baz', spam='eggs')
>>> mock.foo_bar.assert_called_with('baz', spam='eggs')

If your mock is only being called once you can use the assert_called_once_with() method that also asserts
that the call_count is one.

>>> mock.foo_bar.assert_called_once_with('baz', spam='eggs')
>>> mock.foo_bar()
>>> mock.foo_bar.assert_called_once_with('baz', spam='eggs')
Traceback (most recent call last):

...
AssertionError: Expected to be called once. Called 2 times.

Both assert_called_with and assert_called_once_with make assertions about the most recent call. If your
mock is going to be called several times, and you want to make assertions about all those calls you can use
call_args_list:

>>> mock = Mock(return_value=None)
>>> mock(1, 2, 3)
>>> mock(4, 5, 6)
>>> mock()
>>> mock.call_args_list
[call(1, 2, 3), call(4, 5, 6), call()]

The call helper makes it easy to make assertions about these calls. You can build up a list of expected calls
and compare it to call_args_list. This looks remarkably similar to the repr of the call_args_list:

>>> expected = [call(1, 2, 3), call(4, 5, 6), call()]
>>> mock.call_args_list == expected
True

Coping with mutable arguments

Another situation is rare, but can bite you, is when your mock is called with mutable arguments. call_args
and call_args_list store references to the arguments. If the arguments are mutated by the code under test
then you can no longer make assertions about what the values were when the mock was called.

Here’s some example code that shows the problem. Imagine the following functions defined in ‘mymodule’:

def frob(val):
pass

def grob(val):
"First frob and then clear val"
frob(val)
val.clear()

1466 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

When we try to test that grob calls frob with the correct argument look what happens:

>>> with patch('mymodule.frob') as mock_frob:
... val = {6}
... mymodule.grob(val)
...
>>> val
set()
>>> mock_frob.assert_called_with({6})
Traceback (most recent call last):

...
AssertionError: Expected: (({6},), {})
Called with: ((set(),), {})

One possibility would be for mock to copy the arguments you pass in. This could then cause problems if
you do assertions that rely on object identity for equality.

Here’s one solution that uses the side_effect functionality. If you provide a side_effect function for a mock
then side_effect will be called with the same args as the mock. This gives us an opportunity to copy the
arguments and store them for later assertions. In this example I’m using another mock to store the arguments
so that I can use the mock methods for doing the assertion. Again a helper function sets this up for me.

>>> from copy import deepcopy
>>> from unittest.mock import Mock, patch, DEFAULT
>>> def copy_call_args(mock):
... new_mock = Mock()
... def side_effect(*args, **kwargs):
... args = deepcopy(args)
... kwargs = deepcopy(kwargs)
... new_mock(*args, **kwargs)
... return DEFAULT
... mock.side_effect = side_effect
... return new_mock
...
>>> with patch('mymodule.frob') as mock_frob:
... new_mock = copy_call_args(mock_frob)
... val = {6}
... mymodule.grob(val)
...
>>> new_mock.assert_called_with({6})
>>> new_mock.call_args
call({6})

copy_call_args is called with the mock that will be called. It returns a new mock that we do the assertion
on. The side_effect function makes a copy of the args and calls our new_mock with the copy.

Note: If your mock is only going to be used once there is an easier way of checking arguments at the point
they are called. You can simply do the checking inside a side_effect function.

>>> def side_effect(arg):
... assert arg == {6}
...
>>> mock = Mock(side_effect=side_effect)
>>> mock({6})
>>> mock(set())
Traceback (most recent call last):

...

(continues on next page)

26.6. unittest.mock — getting started 1467

The Python Library Reference, Release 3.5.7

(continued from previous page)

AssertionError

An alternative approach is to create a subclass of Mock or MagicMock that copies (using copy.deepcopy())
the arguments. Here’s an example implementation:

>>> from copy import deepcopy
>>> class CopyingMock(MagicMock):
... def __call__(self, *args, **kwargs):
... args = deepcopy(args)
... kwargs = deepcopy(kwargs)
... return super(CopyingMock, self).__call__(*args, **kwargs)
...
>>> c = CopyingMock(return_value=None)
>>> arg = set()
>>> c(arg)
>>> arg.add(1)
>>> c.assert_called_with(set())
>>> c.assert_called_with(arg)
Traceback (most recent call last):

...
AssertionError: Expected call: mock({1})
Actual call: mock(set())
>>> c.foo
<CopyingMock name='mock.foo' id='...'>

When you subclass Mock or MagicMock all dynamically created attributes, and the return_value will use
your subclass automatically. That means all children of a CopyingMock will also have the type CopyingMock.

Nesting Patches

Using patch as a context manager is nice, but if you do multiple patches you can end up with nested with
statements indenting further and further to the right:

>>> class MyTest(TestCase):
...
... def test_foo(self):
... with patch('mymodule.Foo') as mock_foo:
... with patch('mymodule.Bar') as mock_bar:
... with patch('mymodule.Spam') as mock_spam:
... assert mymodule.Foo is mock_foo
... assert mymodule.Bar is mock_bar
... assert mymodule.Spam is mock_spam
...
>>> original = mymodule.Foo
>>> MyTest('test_foo').test_foo()
>>> assert mymodule.Foo is original

With unittest cleanup functions and the patch methods: start and stop we can achieve the same effect
without the nested indentation. A simple helper method, create_patch, puts the patch in place and returns
the created mock for us:

>>> class MyTest(TestCase):
...
... def create_patch(self, name):

(continues on next page)

1468 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

(continued from previous page)

... patcher = patch(name)

... thing = patcher.start()

... self.addCleanup(patcher.stop)

... return thing

...

... def test_foo(self):

... mock_foo = self.create_patch('mymodule.Foo')

... mock_bar = self.create_patch('mymodule.Bar')

... mock_spam = self.create_patch('mymodule.Spam')

...

... assert mymodule.Foo is mock_foo

... assert mymodule.Bar is mock_bar

... assert mymodule.Spam is mock_spam

...
>>> original = mymodule.Foo
>>> MyTest('test_foo').run()
>>> assert mymodule.Foo is original

Mocking a dictionary with MagicMock

You may want to mock a dictionary, or other container object, recording all access to it whilst having it still
behave like a dictionary.

We can do this with MagicMock, which will behave like a dictionary, and using side_effect to delegate
dictionary access to a real underlying dictionary that is under our control.

When the __getitem__() and __setitem__() methods of our MagicMock are called (normal dictionary
access) then side_effect is called with the key (and in the case of __setitem__ the value too). We can also
control what is returned.

After the MagicMock has been used we can use attributes like call_args_list to assert about how the
dictionary was used:

>>> my_dict = {'a': 1, 'b': 2, 'c': 3}
>>> def getitem(name):
... return my_dict[name]
...
>>> def setitem(name, val):
... my_dict[name] = val
...
>>> mock = MagicMock()
>>> mock.__getitem__.side_effect = getitem
>>> mock.__setitem__.side_effect = setitem

Note: An alternative to using MagicMock is to use Mock and only provide the magic methods you specifically
want:

>>> mock = Mock()
>>> mock.__getitem__ = Mock(side_effect=getitem)
>>> mock.__setitem__ = Mock(side_effect=setitem)

A third option is to use MagicMock but passing in dict as the spec (or spec_set) argument so that the
MagicMock created only has dictionary magic methods available:

26.6. unittest.mock — getting started 1469

The Python Library Reference, Release 3.5.7

>>> mock = MagicMock(spec_set=dict)
>>> mock.__getitem__.side_effect = getitem
>>> mock.__setitem__.side_effect = setitem

With these side effect functions in place, the mock will behave like a normal dictionary but recording the
access. It even raises a KeyError if you try to access a key that doesn’t exist.

>>> mock['a']
1
>>> mock['c']
3
>>> mock['d']
Traceback (most recent call last):

...
KeyError: 'd'
>>> mock['b'] = 'fish'
>>> mock['d'] = 'eggs'
>>> mock['b']
'fish'
>>> mock['d']
'eggs'

After it has been used you can make assertions about the access using the normal mock methods and
attributes:

>>> mock.__getitem__.call_args_list
[call('a'), call('c'), call('d'), call('b'), call('d')]
>>> mock.__setitem__.call_args_list
[call('b', 'fish'), call('d', 'eggs')]
>>> my_dict
{'a': 1, 'c': 3, 'b': 'fish', 'd': 'eggs'}

Mock subclasses and their attributes

There are various reasons why you might want to subclass Mock. One reason might be to add helper
methods. Here’s a silly example:

>>> class MyMock(MagicMock):
... def has_been_called(self):
... return self.called
...
>>> mymock = MyMock(return_value=None)
>>> mymock
<MyMock id='...'>
>>> mymock.has_been_called()
False
>>> mymock()
>>> mymock.has_been_called()
True

The standard behaviour for Mock instances is that attributes and the return value mocks are of the same
type as the mock they are accessed on. This ensures that Mock attributes are Mocks and MagicMock
attributes are MagicMocks2. So if you’re subclassing to add helper methods then they’ll also be available on

2 An exception to this rule are the non-callable mocks. Attributes use the callable variant because otherwise non-callable
mocks couldn’t have callable methods.

1470 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

the attributes and return value mock of instances of your subclass.

>>> mymock.foo
<MyMock name='mock.foo' id='...'>
>>> mymock.foo.has_been_called()
False
>>> mymock.foo()
<MyMock name='mock.foo()' id='...'>
>>> mymock.foo.has_been_called()
True

Sometimes this is inconvenient. For example, one user is subclassing mock to created a Twisted adaptor.
Having this applied to attributes too actually causes errors.

Mock (in all its flavours) uses a method called _get_child_mock to create these “sub-mocks” for attributes
and return values. You can prevent your subclass being used for attributes by overriding this method. The
signature is that it takes arbitrary keyword arguments (**kwargs) which are then passed onto the mock
constructor:

>>> class Subclass(MagicMock):
... def _get_child_mock(self, **kwargs):
... return MagicMock(**kwargs)
...
>>> mymock = Subclass()
>>> mymock.foo
<MagicMock name='mock.foo' id='...'>
>>> assert isinstance(mymock, Subclass)
>>> assert not isinstance(mymock.foo, Subclass)
>>> assert not isinstance(mymock(), Subclass)

Mocking imports with patch.dict

One situation where mocking can be hard is where you have a local import inside a function. These are
harder to mock because they aren’t using an object from the module namespace that we can patch out.

Generally local imports are to be avoided. They are sometimes done to prevent circular dependencies, for
which there is usually a much better way to solve the problem (refactor the code) or to prevent “up front
costs” by delaying the import. This can also be solved in better ways than an unconditional local import
(store the module as a class or module attribute and only do the import on first use).

That aside there is a way to use mock to affect the results of an import. Importing fetches an object from
the sys.modules dictionary. Note that it fetches an object, which need not be a module. Importing a module
for the first time results in a module object being put in sys.modules, so usually when you import something
you get a module back. This need not be the case however.

This means you can use patch.dict() to temporarily put a mock in place in sys.modules. Any imports whilst
this patch is active will fetch the mock. When the patch is complete (the decorated function exits, the with
statement body is complete or patcher.stop() is called) then whatever was there previously will be restored
safely.

Here’s an example that mocks out the ‘fooble’ module.

>>> mock = Mock()
>>> with patch.dict('sys.modules', {'fooble': mock}):
... import fooble
... fooble.blob()
...

(continues on next page)

26.6. unittest.mock — getting started 1471

https://code.google.com/p/mock/issues/detail?id=105
https://twistedmatrix.com/documents/11.0.0/api/twisted.python.components.html

The Python Library Reference, Release 3.5.7

(continued from previous page)

<Mock name='mock.blob()' id='...'>
>>> assert 'fooble' not in sys.modules
>>> mock.blob.assert_called_once_with()

As you can see the import fooble succeeds, but on exit there is no ‘fooble’ left in sys.modules.

This also works for the from module import name form:

>>> mock = Mock()
>>> with patch.dict('sys.modules', {'fooble': mock}):
... from fooble import blob
... blob.blip()
...
<Mock name='mock.blob.blip()' id='...'>
>>> mock.blob.blip.assert_called_once_with()

With slightly more work you can also mock package imports:

>>> mock = Mock()
>>> modules = {'package': mock, 'package.module': mock.module}
>>> with patch.dict('sys.modules', modules):
... from package.module import fooble
... fooble()
...
<Mock name='mock.module.fooble()' id='...'>
>>> mock.module.fooble.assert_called_once_with()

Tracking order of calls and less verbose call assertions

The Mock class allows you to track the order of method calls on your mock objects through the method_calls
attribute. This doesn’t allow you to track the order of calls between separate mock objects, however we can
use mock_calls to achieve the same effect.

Because mocks track calls to child mocks in mock_calls, and accessing an arbitrary attribute of a mock
creates a child mock, we can create our separate mocks from a parent one. Calls to those child mock will
then all be recorded, in order, in the mock_calls of the parent:

>>> manager = Mock()
>>> mock_foo = manager.foo
>>> mock_bar = manager.bar

>>> mock_foo.something()
<Mock name='mock.foo.something()' id='...'>
>>> mock_bar.other.thing()
<Mock name='mock.bar.other.thing()' id='...'>

>>> manager.mock_calls
[call.foo.something(), call.bar.other.thing()]

We can then assert about the calls, including the order, by comparing with the mock_calls attribute on the
manager mock:

>>> expected_calls = [call.foo.something(), call.bar.other.thing()]
>>> manager.mock_calls == expected_calls
True

1472 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

If patch is creating, and putting in place, your mocks then you can attach them to a manager mock using
the attach_mock() method. After attaching calls will be recorded in mock_calls of the manager.

>>> manager = MagicMock()
>>> with patch('mymodule.Class1') as MockClass1:
... with patch('mymodule.Class2') as MockClass2:
... manager.attach_mock(MockClass1, 'MockClass1')
... manager.attach_mock(MockClass2, 'MockClass2')
... MockClass1().foo()
... MockClass2().bar()
...
<MagicMock name='mock.MockClass1().foo()' id='...'>
<MagicMock name='mock.MockClass2().bar()' id='...'>
>>> manager.mock_calls
[call.MockClass1(),
call.MockClass1().foo(),
call.MockClass2(),
call.MockClass2().bar()]

If many calls have been made, but you’re only interested in a particular sequence of them then an alternative
is to use the assert_has_calls() method. This takes a list of calls (constructed with the call object). If that
sequence of calls are in mock_calls then the assert succeeds.

>>> m = MagicMock()
>>> m().foo().bar().baz()
<MagicMock name='mock().foo().bar().baz()' id='...'>
>>> m.one().two().three()
<MagicMock name='mock.one().two().three()' id='...'>
>>> calls = call.one().two().three().call_list()
>>> m.assert_has_calls(calls)

Even though the chained call m.one().two().three() aren’t the only calls that have been made to the mock,
the assert still succeeds.

Sometimes a mock may have several calls made to it, and you are only interested in asserting about some
of those calls. You may not even care about the order. In this case you can pass any_order=True to
assert_has_calls:

>>> m = MagicMock()
>>> m(1), m.two(2, 3), m.seven(7), m.fifty('50')
(...)
>>> calls = [call.fifty('50'), call(1), call.seven(7)]
>>> m.assert_has_calls(calls, any_order=True)

More complex argument matching

Using the same basic concept as ANY we can implement matchers to do more complex assertions on objects
used as arguments to mocks.

Suppose we expect some object to be passed to a mock that by default compares equal based on object
identity (which is the Python default for user defined classes). To use assert_called_with() we would need
to pass in the exact same object. If we are only interested in some of the attributes of this object then we
can create a matcher that will check these attributes for us.

You can see in this example how a ‘standard’ call to assert_called_with isn’t sufficient:

26.6. unittest.mock — getting started 1473

The Python Library Reference, Release 3.5.7

>>> class Foo:
... def __init__(self, a, b):
... self.a, self.b = a, b
...
>>> mock = Mock(return_value=None)
>>> mock(Foo(1, 2))
>>> mock.assert_called_with(Foo(1, 2))
Traceback (most recent call last):

...
AssertionError: Expected: call(<__main__.Foo object at 0x...>)
Actual call: call(<__main__.Foo object at 0x...>)

A comparison function for our Foo class might look something like this:

>>> def compare(self, other):
... if not type(self) == type(other):
... return False
... if self.a != other.a:
... return False
... if self.b != other.b:
... return False
... return True
...

And a matcher object that can use comparison functions like this for its equality operation would look
something like this:

>>> class Matcher:
... def __init__(self, compare, some_obj):
... self.compare = compare
... self.some_obj = some_obj
... def __eq__(self, other):
... return self.compare(self.some_obj, other)
...

Putting all this together:

>>> match_foo = Matcher(compare, Foo(1, 2))
>>> mock.assert_called_with(match_foo)

The Matcher is instantiated with our compare function and the Foo object we want to compare against. In
assert_called_with the Matcher equality method will be called, which compares the object the mock was
called with against the one we created our matcher with. If they match then assert_called_with passes, and
if they don’t an AssertionError is raised:

>>> match_wrong = Matcher(compare, Foo(3, 4))
>>> mock.assert_called_with(match_wrong)
Traceback (most recent call last):

...
AssertionError: Expected: ((<Matcher object at 0x...>,), {})
Called with: ((<Foo object at 0x...>,), {})

With a bit of tweaking you could have the comparison function raise the AssertionError directly and provide
a more useful failure message.

As of version 1.5, the Python testing library PyHamcrest provides similar functionality, that may be useful
here, in the form of its equality matcher (hamcrest.library.integration.match_equality).

1474 Chapter 26. Development Tools

https://pyhamcrest.readthedocs.org/
https://pyhamcrest.readthedocs.org/en/release-1.8/integration/#module-hamcrest.library.integration.match_equality

The Python Library Reference, Release 3.5.7

26.7 2to3 - Automated Python 2 to 3 code translation

2to3 is a Python program that reads Python 2.x source code and applies a series of fixers to transform it
into valid Python 3.x code. The standard library contains a rich set of fixers that will handle almost all
code. 2to3 supporting library lib2to3 is, however, a flexible and generic library, so it is possible to write your
own fixers for 2to3. lib2to3 could also be adapted to custom applications in which Python code needs to be
edited automatically.

26.7.1 Using 2to3

2to3 will usually be installed with the Python interpreter as a script. It is also located in the Tools/scripts
directory of the Python root.

2to3’s basic arguments are a list of files or directories to transform. The directories are recursively traversed
for Python sources.

Here is a sample Python 2.x source file, example.py:

def greet(name):
print "Hello, {0}!".format(name)

print "What's your name?"
name = raw_input()
greet(name)

It can be converted to Python 3.x code via 2to3 on the command line:

$ 2to3 example.py

A diff against the original source file is printed. 2to3 can also write the needed modifications right back to
the source file. (A backup of the original file is made unless -n is also given.) Writing the changes back is
enabled with the -w flag:

$ 2to3 -w example.py

After transformation, example.py looks like this:

def greet(name):
print("Hello, {0}!".format(name))

print("What's your name?")
name = input()
greet(name)

Comments and exact indentation are preserved throughout the translation process.

By default, 2to3 runs a set of predefined fixers. The -l flag lists all available fixers. An explicit set of fixers
to run can be given with -f. Likewise the -x explicitly disables a fixer. The following example runs only the
imports and has_key fixers:

$ 2to3 -f imports -f has_key example.py

This command runs every fixer except the apply fixer:

$ 2to3 -x apply example.py

Some fixers are explicit, meaning they aren’t run by default and must be listed on the command line to be
run. Here, in addition to the default fixers, the idioms fixer is run:

26.7. 2to3 - Automated Python 2 to 3 code translation 1475

The Python Library Reference, Release 3.5.7

$ 2to3 -f all -f idioms example.py

Notice how passing all enables all default fixers.

Sometimes 2to3 will find a place in your source code that needs to be changed, but 2to3 cannot fix auto-
matically. In this case, 2to3 will print a warning beneath the diff for a file. You should address the warning
in order to have compliant 3.x code.

2to3 can also refactor doctests. To enable this mode, use the -d flag. Note that only doctests will be
refactored. This also doesn’t require the module to be valid Python. For example, doctest like examples in
a reST document could also be refactored with this option.

The -v option enables output of more information on the translation process.

Since some print statements can be parsed as function calls or statements, 2to3 cannot always read files con-
taining the print function. When 2to3 detects the presence of the from __future__ import print_function
compiler directive, it modifies its internal grammar to interpret print() as a function. This change can also
be enabled manually with the -p flag. Use -p to run fixers on code that already has had its print statements
converted.

The -o or --output-dir option allows specification of an alternate directory for processed output files to be
written to. The -n flag is required when using this as backup files do not make sense when not overwriting
the input files.

New in version 3.2.3: The -o option was added.

The -W or --write-unchanged-files flag tells 2to3 to always write output files even if no changes were required
to the file. This is most useful with -o so that an entire Python source tree is copied with translation from
one directory to another. This option implies the -w flag as it would not make sense otherwise.

New in version 3.2.3: The -W flag was added.

The --add-suffix option specifies a string to append to all output filenames. The -n flag is required when
specifying this as backups are not necessary when writing to different filenames. Example:

$ 2to3 -n -W --add-suffix=3 example.py

Will cause a converted file named example.py3 to be written.

New in version 3.2.3: The --add-suffix option was added.

To translate an entire project from one directory tree to another use:

$ 2to3 --output-dir=python3-version/mycode -W -n python2-version/mycode

26.7.2 Fixers

Each step of transforming code is encapsulated in a fixer. The command 2to3 -l lists them. As documented
above, each can be turned on and off individually. They are described here in more detail.

apply
Removes usage of apply(). For example apply(function, *args, **kwargs) is converted to function(*args,
**kwargs).

asserts
Replaces deprecated unittest method names with the correct ones.

1476 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

From To
failUnlessEqual(a, b) assertEqual(a, b)
assertEquals(a, b) assertEqual(a, b)
failIfEqual(a, b) assertNotEqual(a, b)
assertNotEquals(a, b) assertNotEqual(a, b)
failUnless(a) assertTrue(a)
assert_(a) assertTrue(a)
failIf(a) assertFalse(a)
failUnlessRaises(exc, cal) assertRaises(exc, cal)
failUnlessAlmostEqual(a, b) assertAlmostEqual(a, b)
assertAlmostEquals(a, b) assertAlmostEqual(a, b)
failIfAlmostEqual(a, b) assertNotAlmostEqual(a, b)
assertNotAlmostEquals(a, b) assertNotAlmostEqual(a, b)

basestring
Converts basestring to str.

buffer
Converts buffer to memoryview. This fixer is optional because the memoryview API is similar but not
exactly the same as that of buffer.

dict
Fixes dictionary iteration methods. dict.iteritems() is converted to dict.items(), dict.iterkeys() to
dict.keys(), and dict.itervalues() to dict.values(). Similarly, dict.viewitems(), dict.viewkeys() and dict.
viewvalues() are converted respectively to dict.items(), dict.keys() and dict.values(). It also wraps
existing usages of dict.items(), dict.keys(), and dict.values() in a call to list.

except
Converts except X, T to except X as T.

exec
Converts the exec statement to the exec() function.

execfile
Removes usage of execfile(). The argument to execfile() is wrapped in calls to open(), compile(), and
exec().

exitfunc
Changes assignment of sys.exitfunc to use of the atexit module.

filter
Wraps filter() usage in a list call.

funcattrs
Fixes function attributes that have been renamed. For example, my_function.func_closure is converted
to my_function.__closure__.

future
Removes from __future__ import new_feature statements.

getcwdu
Renames os.getcwdu() to os.getcwd().

has_key
Changes dict.has_key(key) to key in dict.

idioms
This optional fixer performs several transformations that make Python code more idiomatic. Type

26.7. 2to3 - Automated Python 2 to 3 code translation 1477

The Python Library Reference, Release 3.5.7

comparisons like type(x) is SomeClass and type(x) == SomeClass are converted to isinstance(x, Some-
Class). while 1 becomes while True. This fixer also tries to make use of sorted() in appropriate places.
For example, this block

L = list(some_iterable)
L.sort()

is changed to

L = sorted(some_iterable)

import
Detects sibling imports and converts them to relative imports.

imports
Handles module renames in the standard library.

imports2
Handles other modules renames in the standard library. It is separate from the imports fixer only
because of technical limitations.

input
Converts input(prompt) to eval(input(prompt)).

intern
Converts intern() to sys.intern().

isinstance
Fixes duplicate types in the second argument of isinstance(). For example, isinstance(x, (int, int)) is
converted to isinstance(x, (int)).

itertools_imports
Removes imports of itertools.ifilter(), itertools.izip(), and itertools.imap(). Imports of itertools.
ifilterfalse() are also changed to itertools.filterfalse().

itertools
Changes usage of itertools.ifilter(), itertools.izip(), and itertools.imap() to their built-in equivalents.
itertools.ifilterfalse() is changed to itertools.filterfalse().

long
Renames long to int.

map
Wraps map() in a list call. It also changes map(None, x) to list(x). Using from future_builtins import
map disables this fixer.

metaclass
Converts the old metaclass syntax (__metaclass__ = Meta in the class body) to the new (class
X(metaclass=Meta)).

methodattrs
Fixes old method attribute names. For example, meth.im_func is converted to meth.__func__.

ne
Converts the old not-equal syntax, <>, to !=.

next
Converts the use of iterator’s next() methods to the next() function. It also renames next() methods
to __next__().

nonzero
Renames __nonzero__() to __bool__().

1478 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

numliterals
Converts octal literals into the new syntax.

operator
Converts calls to various functions in the operator module to other, but equivalent, function calls.
When needed, the appropriate import statements are added, e.g. import collections. The following
mapping are made:

From To
operator.isCallable(obj) hasattr(obj, '__call__')
operator.sequenceIncludes(obj) operator.contains(obj)
operator.isSequenceType(obj) isinstance(obj, collections.Sequence)
operator.isMappingType(obj) isinstance(obj, collections.Mapping)
operator.isNumberType(obj) isinstance(obj, numbers.Number)
operator.repeat(obj, n) operator.mul(obj, n)
operator.irepeat(obj, n) operator.imul(obj, n)

paren
Add extra parenthesis where they are required in list comprehensions. For example, [x for x in 1, 2]
becomes [x for x in (1, 2)].

print
Converts the print statement to the print() function.

raise
Converts raise E, V to raise E(V), and raise E, V, T to raise E(V).with_traceback(T). If E is a tuple,
the translation will be incorrect because substituting tuples for exceptions has been removed in 3.0.

raw_input
Converts raw_input() to input().

reduce
Handles the move of reduce() to functools.reduce().

reload
Converts reload() to imp.reload().

renames
Changes sys.maxint to sys.maxsize.

repr
Replaces backtick repr with the repr() function.

set_literal
Replaces use of the set constructor with set literals. This fixer is optional.

standarderror
Renames StandardError to Exception.

sys_exc
Changes the deprecated sys.exc_value, sys.exc_type, sys.exc_traceback to use sys.exc_info().

throw
Fixes the API change in generator’s throw() method.

tuple_params
Removes implicit tuple parameter unpacking. This fixer inserts temporary variables.

types
Fixes code broken from the removal of some members in the types module.

26.7. 2to3 - Automated Python 2 to 3 code translation 1479

The Python Library Reference, Release 3.5.7

unicode
Renames unicode to str.

urllib
Handles the rename of urllib and urllib2 to the urllib package.

ws_comma
Removes excess whitespace from comma separated items. This fixer is optional.

xrange
Renames xrange() to range() and wraps existing range() calls with list.

xreadlines
Changes for x in file.xreadlines() to for x in file.

zip
Wraps zip() usage in a list call. This is disabled when from future_builtins import zip appears.

26.7.3 lib2to3 - 2to3’s library

Source code: Lib/lib2to3/

Note: The lib2to3 API should be considered unstable and may change drastically in the future.

26.8 test — Regression tests package for Python

Note: The test package is meant for internal use by Python only. It is documented for the benefit of the
core developers of Python. Any use of this package outside of Python’s standard library is discouraged as
code mentioned here can change or be removed without notice between releases of Python.

The test package contains all regression tests for Python as well as the modules test.support and test.regrtest.
test.support is used to enhance your tests while test.regrtest drives the testing suite.

Each module in the test package whose name starts with test_ is a testing suite for a specific module or
feature. All new tests should be written using the unittest or doctest module. Some older tests are written
using a “traditional” testing style that compares output printed to sys.stdout; this style of test is considered
deprecated.

See also:

Module unittest Writing PyUnit regression tests.

Module doctest Tests embedded in documentation strings.

26.8.1 Writing Unit Tests for the test package

It is preferred that tests that use the unittest module follow a few guidelines. One is to name the test module
by starting it with test_ and end it with the name of the module being tested. The test methods in the test
module should start with test_ and end with a description of what the method is testing. This is needed

1480 Chapter 26. Development Tools

https://github.com/python/cpython/tree/3.5/Lib/lib2to3/

The Python Library Reference, Release 3.5.7

so that the methods are recognized by the test driver as test methods. Also, no documentation string for
the method should be included. A comment (such as # Tests function returns only True or False) should
be used to provide documentation for test methods. This is done because documentation strings get printed
out if they exist and thus what test is being run is not stated.

A basic boilerplate is often used:

import unittest
from test import support

class MyTestCase1(unittest.TestCase):

Only use setUp() and tearDown() if necessary

def setUp(self):
... code to execute in preparation for tests ...

def tearDown(self):
... code to execute to clean up after tests ...

def test_feature_one(self):
Test feature one.
... testing code ...

def test_feature_two(self):
Test feature two.
... testing code ...

... more test methods ...

class MyTestCase2(unittest.TestCase):
... same structure as MyTestCase1 ...

... more test classes ...

if __name__ == '__main__':
unittest.main()

This code pattern allows the testing suite to be run by test.regrtest, on its own as a script that supports the
unittest CLI, or via the python -m unittest CLI.

The goal for regression testing is to try to break code. This leads to a few guidelines to be followed:

• The testing suite should exercise all classes, functions, and constants. This includes not just the
external API that is to be presented to the outside world but also “private” code.

• Whitebox testing (examining the code being tested when the tests are being written) is preferred.
Blackbox testing (testing only the published user interface) is not complete enough to make sure all
boundary and edge cases are tested.

• Make sure all possible values are tested including invalid ones. This makes sure that not only all valid
values are acceptable but also that improper values are handled correctly.

• Exhaust as many code paths as possible. Test where branching occurs and thus tailor input to make
sure as many different paths through the code are taken.

• Add an explicit test for any bugs discovered for the tested code. This will make sure that the error
does not crop up again if the code is changed in the future.

• Make sure to clean up after your tests (such as close and remove all temporary files).

26.8. test — Regression tests package for Python 1481

The Python Library Reference, Release 3.5.7

• If a test is dependent on a specific condition of the operating system then verify the condition already
exists before attempting the test.

• Import as few modules as possible and do it as soon as possible. This minimizes external dependencies
of tests and also minimizes possible anomalous behavior from side-effects of importing a module.

• Try to maximize code reuse. On occasion, tests will vary by something as small as what type of input is
used. Minimize code duplication by subclassing a basic test class with a class that specifies the input:

class TestFuncAcceptsSequencesMixin:

func = mySuperWhammyFunction

def test_func(self):
self.func(self.arg)

class AcceptLists(TestFuncAcceptsSequencesMixin, unittest.TestCase):
arg = [1, 2, 3]

class AcceptStrings(TestFuncAcceptsSequencesMixin, unittest.TestCase):
arg = 'abc'

class AcceptTuples(TestFuncAcceptsSequencesMixin, unittest.TestCase):
arg = (1, 2, 3)

When using this pattern, remember that all classes that inherit from unittest.TestCase are run as tests.
The Mixin class in the example above does not have any data and so can’t be run by itself, thus it
does not inherit from unittest.TestCase.

See also:

Test Driven Development A book by Kent Beck on writing tests before code.

26.8.2 Running tests using the command-line interface

The test package can be run as a script to drive Python’s regression test suite, thanks to the -m option: python
-m test. Under the hood, it uses test.regrtest; the call python -m test.regrtest used in previous Python ver-
sions still works. Running the script by itself automatically starts running all regression tests in the test pack-
age. It does this by finding all modules in the package whose name starts with test_, importing them, and ex-
ecuting the function test_main() if present or loading the tests via unittest.TestLoader.loadTestsFromModule
if test_main does not exist. The names of tests to execute may also be passed to the script. Specifying
a single regression test (python -m test test_spam) will minimize output and only print whether the test
passed or failed.

Running test directly allows what resources are available for tests to use to be set. You do this by using the
-u command-line option. Specifying all as the value for the -u option enables all possible resources: python
-m test -uall. If all but one resource is desired (a more common case), a comma-separated list of resources
that are not desired may be listed after all. The command python -m test -uall,-audio,-largefile will run test
with all resources except the audio and largefile resources. For a list of all resources and more command-line
options, run python -m test -h.

Some other ways to execute the regression tests depend on what platform the tests are being executed on.
On Unix, you can run make test at the top-level directory where Python was built. On Windows, executing
rt.bat from your PCBuild directory will run all regression tests.

1482 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

26.9 test.support — Utilities for the Python test suite

The test.support module provides support for Python’s regression test suite.

Note: test.support is not a public module. It is documented here to help Python developers write tests.
The API of this module is subject to change without backwards compatibility concerns between releases.

This module defines the following exceptions:

exception test.support.TestFailed
Exception to be raised when a test fails. This is deprecated in favor of unittest-based tests and
unittest.TestCase’s assertion methods.

exception test.support.ResourceDenied
Subclass of unittest.SkipTest. Raised when a resource (such as a network connection) is not available.
Raised by the requires() function.

The test.support module defines the following constants:

test.support.verbose
True when verbose output is enabled. Should be checked when more detailed information is desired
about a running test. verbose is set by test.regrtest.

test.support.is_jython
True if the running interpreter is Jython.

test.support.TESTFN
Set to a name that is safe to use as the name of a temporary file. Any temporary file that is created
should be closed and unlinked (removed).

The test.support module defines the following functions:

test.support.forget(module_name)
Remove the module named module_name from sys.modules and delete any byte-compiled files of the
module.

test.support.is_resource_enabled(resource)
Return True if resource is enabled and available. The list of available resources is only set when
test.regrtest is executing the tests.

test.support.requires(resource, msg=None)
Raise ResourceDenied if resource is not available. msg is the argument to ResourceDenied if it is
raised. Always returns True if called by a function whose __name__ is '__main__'. Used when
tests are executed by test.regrtest.

test.support.findfile(filename, subdir=None)
Return the path to the file named filename. If no match is found filename is returned. This does not
equal a failure since it could be the path to the file.

Setting subdir indicates a relative path to use to find the file rather than looking directly in
the path directories.

test.support.run_unittest(*classes)
Execute unittest.TestCase subclasses passed to the function. The function scans the classes for methods
starting with the prefix test_ and executes the tests individually.

It is also legal to pass strings as parameters; these should be keys in sys.modules. Each associated
module will be scanned by unittest.TestLoader.loadTestsFromModule(). This is usually seen in the
following test_main() function:

26.9. test.support — Utilities for the Python test suite 1483

The Python Library Reference, Release 3.5.7

def test_main():
support.run_unittest(__name__)

This will run all tests defined in the named module.

test.support.run_doctest(module, verbosity=None)
Run doctest.testmod() on the given module. Return (failure_count, test_count).

If verbosity is None, doctest.testmod() is run with verbosity set to verbose. Otherwise, it is run with
verbosity set to None.

test.support.check_warnings(*filters, quiet=True)
A convenience wrapper for warnings.catch_warnings() that makes it easier to test that a warning was
correctly raised. It is approximately equivalent to calling warnings.catch_warnings(record=True) with
warnings.simplefilter() set to always and with the option to automatically validate the results that are
recorded.

check_warnings accepts 2-tuples of the form ("message regexp", WarningCategory) as positional ar-
guments. If one or more filters are provided, or if the optional keyword argument quiet is False, it
checks to make sure the warnings are as expected: each specified filter must match at least one of the
warnings raised by the enclosed code or the test fails, and if any warnings are raised that do not match
any of the specified filters the test fails. To disable the first of these checks, set quiet to True.

If no arguments are specified, it defaults to:

check_warnings(("", Warning), quiet=True)

In this case all warnings are caught and no errors are raised.

On entry to the context manager, a WarningRecorder instance is returned. The underlying warnings
list from catch_warnings() is available via the recorder object’s warnings attribute. As a convenience,
the attributes of the object representing the most recent warning can also be accessed directly through
the recorder object (see example below). If no warning has been raised, then any of the attributes that
would otherwise be expected on an object representing a warning will return None.

The recorder object also has a reset() method, which clears the warnings list.

The context manager is designed to be used like this:

with check_warnings(("assertion is always true", SyntaxWarning),
("", UserWarning)):

exec('assert(False, "Hey!")')
warnings.warn(UserWarning("Hide me!"))

In this case if either warning was not raised, or some other warning was raised, check_warnings()
would raise an error.

When a test needs to look more deeply into the warnings, rather than just checking whether or not
they occurred, code like this can be used:

with check_warnings(quiet=True) as w:
warnings.warn("foo")
assert str(w.args[0]) == "foo"
warnings.warn("bar")
assert str(w.args[0]) == "bar"
assert str(w.warnings[0].args[0]) == "foo"
assert str(w.warnings[1].args[0]) == "bar"
w.reset()
assert len(w.warnings) == 0

1484 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

Here all warnings will be caught, and the test code tests the captured warnings directly.

Changed in version 3.2: New optional arguments filters and quiet.

test.support.captured_stdin()
test.support.captured_stdout()
test.support.captured_stderr()

A context managers that temporarily replaces the named stream with io.StringIO object.

Example use with output streams:

with captured_stdout() as stdout, captured_stderr() as stderr:
print("hello")
print("error", file=sys.stderr)

assert stdout.getvalue() == "hello\n"
assert stderr.getvalue() == "error\n"

Example use with input stream:

with captured_stdin() as stdin:
stdin.write('hello\n')
stdin.seek(0)
call test code that consumes from sys.stdin
captured = input()

self.assertEqual(captured, "hello")

test.support.temp_dir(path=None, quiet=False)
A context manager that creates a temporary directory at path and yields the directory.

If path is None, the temporary directory is created using tempfile.mkdtemp(). If quiet is False, the
context manager raises an exception on error. Otherwise, if path is specified and cannot be created,
only a warning is issued.

test.support.change_cwd(path, quiet=False)
A context manager that temporarily changes the current working directory to path and yields the
directory.

If quiet is False, the context manager raises an exception on error. Otherwise, it issues only a warning
and keeps the current working directory the same.

test.support.temp_cwd(name=’tempcwd’, quiet=False)
A context manager that temporarily creates a new directory and changes the current working directory
(CWD).

The context manager creates a temporary directory in the current directory with name name before
temporarily changing the current working directory. If name is None, the temporary directory is
created using tempfile.mkdtemp().

If quiet is False and it is not possible to create or change the CWD, an error is raised. Otherwise, only
a warning is raised and the original CWD is used.

test.support.temp_umask(umask)
A context manager that temporarily sets the process umask.

test.support.can_symlink()
Return True if the OS supports symbolic links, False otherwise.

@test.support.skip_unless_symlink
A decorator for running tests that require support for symbolic links.

26.9. test.support — Utilities for the Python test suite 1485

The Python Library Reference, Release 3.5.7

@test.support.anticipate_failure(condition)
A decorator to conditionally mark tests with unittest.expectedFailure(). Any use of this decorator
should have an associated comment identifying the relevant tracker issue.

@test.support.run_with_locale(catstr, *locales)
A decorator for running a function in a different locale, correctly resetting it after it has finished.
catstr is the locale category as a string (for example "LC_ALL"). The locales passed will be tried
sequentially, and the first valid locale will be used.

test.support.make_bad_fd()
Create an invalid file descriptor by opening and closing a temporary file, and returning its descriptor.

test.support.import_module(name, deprecated=False)
This function imports and returns the named module. Unlike a normal import, this function raises
unittest.SkipTest if the module cannot be imported.

Module and package deprecation messages are suppressed during this import if deprecated is True.

New in version 3.1.

test.support.import_fresh_module(name, fresh=(), blocked=(), deprecated=False)
This function imports and returns a fresh copy of the named Python module by removing the named
module from sys.modules before doing the import. Note that unlike reload(), the original module is
not affected by this operation.

fresh is an iterable of additional module names that are also removed from the sys.modules cache before
doing the import.

blocked is an iterable of module names that are replaced with None in the module cache during the
import to ensure that attempts to import them raise ImportError.

The named module and any modules named in the fresh and blocked parameters are saved before
starting the import and then reinserted into sys.modules when the fresh import is complete.

Module and package deprecation messages are suppressed during this import if deprecated is True.

This function will raise ImportError if the named module cannot be imported.

Example use:

Get copies of the warnings module for testing without affecting the
version being used by the rest of the test suite. One copy uses the
C implementation, the other is forced to use the pure Python fallback
implementation
py_warnings = import_fresh_module('warnings', blocked=['_warnings'])
c_warnings = import_fresh_module('warnings', fresh=['_warnings'])

New in version 3.1.

test.support.bind_port(sock, host=HOST)
Bind the socket to a free port and return the port number. Relies on ephemeral ports in order to
ensure we are using an unbound port. This is important as many tests may be running simultaneously,
especially in a buildbot environment. This method raises an exception if the sock.family is AF_INET
and sock.type is SOCK_STREAM, and the socket has SO_REUSEADDR or SO_REUSEPORT set
on it. Tests should never set these socket options for TCP/IP sockets. The only case for setting these
options is testing multicasting via multiple UDP sockets.

Additionally, if the SO_EXCLUSIVEADDRUSE socket option is available (i.e. on Windows), it will
be set on the socket. This will prevent anyone else from binding to our host/port for the duration of
the test.

1486 Chapter 26. Development Tools

The Python Library Reference, Release 3.5.7

test.support.find_unused_port(family=socket.AF_INET, socktype=socket.SOCK_STREAM)
Returns an unused port that should be suitable for binding. This is achieved by creating a temporary
socket with the same family and type as the sock parameter (default is AF_INET, SOCK_STREAM),
and binding it to the specified host address (defaults to 0.0.0.0) with the port set to 0, eliciting an unused
ephemeral port from the OS. The temporary socket is then closed and deleted, and the ephemeral port
is returned.

Either this method or bind_port() should be used for any tests where a server socket needs to be
bound to a particular port for the duration of the test. Which one to use depends on whether the
calling code is creating a python socket, or if an unused port needs to be provided in a constructor or
passed to an external program (i.e. the -accept argument to openssl’s s_server mode). Always prefer
bind_port() over find_unused_port() where possible. Using a hard coded port is discouraged since
it can make multiple instances of the test impossible to run simultaneously, which is a problem for
buildbots.

test.support.load_package_tests(pkg_dir, loader, standard_tests, pattern)
Generic implementation of the unittest load_tests protocol for use in test packages. pkg_dir is the
root directory of the package; loader, standard_tests, and pattern are the arguments expected by
load_tests. In simple cases, the test package’s __init__.py can be the following:

import os
from test.support import load_package_tests

def load_tests(*args):
return load_package_tests(os.path.dirname(__file__), *args)

test.support.detect_api_mismatch(ref_api, other_api, *, ignore=())
Returns the set of attributes, functions or methods of ref_api not found on other_api, except for a
defined list of items to be ignored in this check specified in ignore.

By default this skips private attributes beginning with ‘_’ but includes all magic methods, i.e. those
starting and ending in ‘__’.

New in version 3.5.

The test.support module defines the following classes:

class test.support.TransientResource(exc, **kwargs)
Instances are a context manager that raises ResourceDenied if the specified exception type is raised.
Any keyword arguments are treated as attribute/value pairs to be compared against any exception
raised within the with statement. Only if all pairs match properly against attributes on the exception
is ResourceDenied raised.

class test.support.EnvironmentVarGuard
Class used to temporarily set or unset environment variables. Instances can be used as a context
manager and have a complete dictionary interface for querying/modifying the underlying os.environ.
After exit from the context manager all changes to environment variables done through this instance
will be rolled back.

Changed in version 3.1: Added dictionary interface.

EnvironmentVarGuard.set(envvar, value)
Temporarily set the environment variable envvar to the value of value.

EnvironmentVarGuard.unset(envvar)
Temporarily unset the environment variable envvar.

class test.support.SuppressCrashReport
A context manager used to try to prevent crash dialog popups on tests that are expected to crash a
subprocess.

26.9. test.support — Utilities for the Python test suite 1487

The Python Library Reference, Release 3.5.7

On Windows, it disables Windows Error Reporting dialogs using SetErrorMode.

On UNIX, resource.setrlimit() is used to set resource.RLIMIT_CORE’s soft limit to 0 to prevent
coredump file creation.

On both platforms, the old value is restored by __exit__().

class test.support.WarningsRecorder
Class used to record warnings for unit tests. See documentation of check_warnings() above for more
details.

1488 Chapter 26. Development Tools

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680621.aspx

CHAPTER

TWENTYSEVEN

DEBUGGING AND PROFILING

These libraries help you with Python development: the debugger enables you to step through code, analyze
stack frames and set breakpoints etc., and the profilers run code and give you a detailed breakdown of
execution times, allowing you to identify bottlenecks in your programs.

27.1 bdb — Debugger framework

Source code: Lib/bdb.py

The bdb module handles basic debugger functions, like setting breakpoints or managing execution via the
debugger.

The following exception is defined:

exception bdb.BdbQuit
Exception raised by the Bdb class for quitting the debugger.

The bdb module also defines two classes:

class bdb.Breakpoint(self, file, line, temporary=0, cond=None, funcname=None)
This class implements temporary breakpoints, ignore counts, disabling and (re-)enabling, and condi-
tionals.

Breakpoints are indexed by number through a list called bpbynumber and by (file, line) pairs through
bplist. The former points to a single instance of class Breakpoint. The latter points to a list of such
instances since there may be more than one breakpoint per line.

When creating a breakpoint, its associated filename should be in canonical form. If a funcname is
defined, a breakpoint hit will be counted when the first line of that function is executed. A conditional
breakpoint always counts a hit.

Breakpoint instances have the following methods:

deleteMe()
Delete the breakpoint from the list associated to a file/line. If it is the last breakpoint in that
position, it also deletes the entry for the file/line.

enable()
Mark the breakpoint as enabled.

disable()
Mark the breakpoint as disabled.

bpformat()
Return a string with all the information about the breakpoint, nicely formatted:

1489

https://github.com/python/cpython/tree/3.5/Lib/bdb.py

The Python Library Reference, Release 3.5.7

• The breakpoint number.

• If it is temporary or not.

• Its file,line position.

• The condition that causes a break.

• If it must be ignored the next N times.

• The breakpoint hit count.

New in version 3.2.

bpprint(out=None)
Print the output of bpformat() to the file out, or if it is None, to standard output.

class bdb.Bdb(skip=None)
The Bdb class acts as a generic Python debugger base class.

This class takes care of the details of the trace facility; a derived class should implement user interaction.
The standard debugger class (pdb.Pdb) is an example.

The skip argument, if given, must be an iterable of glob-style module name patterns. The debugger
will not step into frames that originate in a module that matches one of these patterns. Whether a
frame is considered to originate in a certain module is determined by the __name__ in the frame
globals.

New in version 3.1: The skip argument.

The following methods of Bdb normally don’t need to be overridden.

canonic(filename)
Auxiliary method for getting a filename in a canonical form, that is, as a case-normalized (on
case-insensitive filesystems) absolute path, stripped of surrounding angle brackets.

reset()
Set the botframe, stopframe, returnframe and quitting attributes with values ready to start de-
bugging.

trace_dispatch(frame, event, arg)
This function is installed as the trace function of debugged frames. Its return value is the new
trace function (in most cases, that is, itself).

The default implementation decides how to dispatch a frame, depending on the type of event
(passed as a string) that is about to be executed. event can be one of the following:

• "line": A new line of code is going to be executed.

• "call": A function is about to be called, or another code block entered.

• "return": A function or other code block is about to return.

• "exception": An exception has occurred.

• "c_call": A C function is about to be called.

• "c_return": A C function has returned.

• "c_exception": A C function has raised an exception.

For the Python events, specialized functions (see below) are called. For the C events, no action
is taken.

The arg parameter depends on the previous event.

1490 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

See the documentation for sys.settrace() for more information on the trace function. For more
information on code and frame objects, refer to types.

dispatch_line(frame)
If the debugger should stop on the current line, invoke the user_line() method (which should be
overridden in subclasses). Raise a BdbQuit exception if the Bdb.quitting flag is set (which can
be set from user_line()). Return a reference to the trace_dispatch() method for further tracing
in that scope.

dispatch_call(frame, arg)
If the debugger should stop on this function call, invoke the user_call() method (which should be
overridden in subclasses). Raise a BdbQuit exception if the Bdb.quitting flag is set (which can
be set from user_call()). Return a reference to the trace_dispatch() method for further tracing
in that scope.

dispatch_return(frame, arg)
If the debugger should stop on this function return, invoke the user_return() method (which
should be overridden in subclasses). Raise a BdbQuit exception if the Bdb.quitting flag is set
(which can be set from user_return()). Return a reference to the trace_dispatch() method for
further tracing in that scope.

dispatch_exception(frame, arg)
If the debugger should stop at this exception, invokes the user_exception() method (which should
be overridden in subclasses). Raise a BdbQuit exception if the Bdb.quitting flag is set (which can
be set from user_exception()). Return a reference to the trace_dispatch() method for further
tracing in that scope.

Normally derived classes don’t override the following methods, but they may if they want to redefine
the definition of stopping and breakpoints.

stop_here(frame)
This method checks if the frame is somewhere below botframe in the call stack. botframe is the
frame in which debugging started.

break_here(frame)
This method checks if there is a breakpoint in the filename and line belonging to frame or, at
least, in the current function. If the breakpoint is a temporary one, this method deletes it.

break_anywhere(frame)
This method checks if there is a breakpoint in the filename of the current frame.

Derived classes should override these methods to gain control over debugger operation.

user_call(frame, argument_list)
This method is called from dispatch_call() when there is the possibility that a break might be
necessary anywhere inside the called function.

user_line(frame)
This method is called from dispatch_line() when either stop_here() or break_here() yields True.

user_return(frame, return_value)
This method is called from dispatch_return() when stop_here() yields True.

user_exception(frame, exc_info)
This method is called from dispatch_exception() when stop_here() yields True.

do_clear(arg)
Handle how a breakpoint must be removed when it is a temporary one.

This method must be implemented by derived classes.

Derived classes and clients can call the following methods to affect the stepping state.

27.1. bdb — Debugger framework 1491

The Python Library Reference, Release 3.5.7

set_step()
Stop after one line of code.

set_next(frame)
Stop on the next line in or below the given frame.

set_return(frame)
Stop when returning from the given frame.

set_until(frame)
Stop when the line with the line no greater than the current one is reached or when returning
from current frame.

set_trace([frame])
Start debugging from frame. If frame is not specified, debugging starts from caller’s frame.

set_continue()
Stop only at breakpoints or when finished. If there are no breakpoints, set the system trace
function to None.

set_quit()
Set the quitting attribute to True. This raises BdbQuit in the next call to one of the dispatch_*()
methods.

Derived classes and clients can call the following methods to manipulate breakpoints. These methods
return a string containing an error message if something went wrong, or None if all is well.

set_break(filename, lineno, temporary=0, cond, funcname)
Set a new breakpoint. If the lineno line doesn’t exist for the filename passed as argument, return
an error message. The filename should be in canonical form, as described in the canonic() method.

clear_break(filename, lineno)
Delete the breakpoints in filename and lineno. If none were set, an error message is returned.

clear_bpbynumber(arg)
Delete the breakpoint which has the index arg in the Breakpoint.bpbynumber. If arg is not
numeric or out of range, return an error message.

clear_all_file_breaks(filename)
Delete all breakpoints in filename. If none were set, an error message is returned.

clear_all_breaks()
Delete all existing breakpoints.

get_bpbynumber(arg)
Return a breakpoint specified by the given number. If arg is a string, it will be converted to a
number. If arg is a non-numeric string, if the given breakpoint never existed or has been deleted,
a ValueError is raised.

New in version 3.2.

get_break(filename, lineno)
Check if there is a breakpoint for lineno of filename.

get_breaks(filename, lineno)
Return all breakpoints for lineno in filename, or an empty list if none are set.

get_file_breaks(filename)
Return all breakpoints in filename, or an empty list if none are set.

get_all_breaks()
Return all breakpoints that are set.

1492 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

Derived classes and clients can call the following methods to get a data structure representing a stack
trace.

get_stack(f, t)
Get a list of records for a frame and all higher (calling) and lower frames, and the size of the
higher part.

format_stack_entry(frame_lineno, lprefix=’: ’)
Return a string with information about a stack entry, identified by a (frame, lineno) tuple:

• The canonical form of the filename which contains the frame.

• The function name, or "<lambda>".

• The input arguments.

• The return value.

• The line of code (if it exists).

The following two methods can be called by clients to use a debugger to debug a statement, given as
a string.

run(cmd, globals=None, locals=None)
Debug a statement executed via the exec() function. globals defaults to __main__.__dict__,
locals defaults to globals.

runeval(expr, globals=None, locals=None)
Debug an expression executed via the eval() function. globals and locals have the same meaning
as in run().

runctx(cmd, globals, locals)
For backwards compatibility. Calls the run() method.

runcall(func, *args, **kwds)
Debug a single function call, and return its result.

Finally, the module defines the following functions:

bdb.checkfuncname(b, frame)
Check whether we should break here, depending on the way the breakpoint b was set.

If it was set via line number, it checks if b.line is the same as the one in the frame also passed as
argument. If the breakpoint was set via function name, we have to check we are in the right frame
(the right function) and if we are in its first executable line.

bdb.effective(file, line, frame)
Determine if there is an effective (active) breakpoint at this line of code. Return a tuple of the
breakpoint and a boolean that indicates if it is ok to delete a temporary breakpoint. Return (None,
None) if there is no matching breakpoint.

bdb.set_trace()
Start debugging with a Bdb instance from caller’s frame.

27.2 faulthandler — Dump the Python traceback

New in version 3.3.

This module contains functions to dump Python tracebacks explicitly, on a fault, after a timeout, or on a user
signal. Call faulthandler.enable() to install fault handlers for the SIGSEGV, SIGFPE, SIGABRT, SIGBUS,

27.2. faulthandler — Dump the Python traceback 1493

The Python Library Reference, Release 3.5.7

and SIGILL signals. You can also enable them at startup by setting the PYTHONFAULTHANDLER
environment variable or by using the -X faulthandler command line option.

The fault handler is compatible with system fault handlers like Apport or the Windows fault handler. The
module uses an alternative stack for signal handlers if the sigaltstack() function is available. This allows it
to dump the traceback even on a stack overflow.

The fault handler is called on catastrophic cases and therefore can only use signal-safe functions (e.g. it
cannot allocate memory on the heap). Because of this limitation traceback dumping is minimal compared
to normal Python tracebacks:

• Only ASCII is supported. The backslashreplace error handler is used on encoding.

• Each string is limited to 500 characters.

• Only the filename, the function name and the line number are displayed. (no source code)

• It is limited to 100 frames and 100 threads.

• The order is reversed: the most recent call is shown first.

By default, the Python traceback is written to sys.stderr. To see tracebacks, applications must be run in
the terminal. A log file can alternatively be passed to faulthandler.enable().

The module is implemented in C, so tracebacks can be dumped on a crash or when Python is deadlocked.

27.2.1 Dumping the traceback

faulthandler.dump_traceback(file=sys.stderr, all_threads=True)
Dump the tracebacks of all threads into file. If all_threads is False, dump only the current thread.

Changed in version 3.5: Added support for passing file descriptor to this function.

27.2.2 Fault handler state

faulthandler.enable(file=sys.stderr, all_threads=True)
Enable the fault handler: install handlers for the SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL
signals to dump the Python traceback. If all_threads is True, produce tracebacks for every running
thread. Otherwise, dump only the current thread.

The file must be kept open until the fault handler is disabled: see issue with file descriptors.

Changed in version 3.5: Added support for passing file descriptor to this function.

faulthandler.disable()
Disable the fault handler: uninstall the signal handlers installed by enable().

faulthandler.is_enabled()
Check if the fault handler is enabled.

27.2.3 Dumping the tracebacks after a timeout

faulthandler.dump_traceback_later(timeout, repeat=False, file=sys.stderr, exit=False)
Dump the tracebacks of all threads, after a timeout of timeout seconds, or every timeout seconds if
repeat is True. If exit is True, call _exit() with status=1 after dumping the tracebacks. (Note _exit()
exits the process immediately, which means it doesn’t do any cleanup like flushing file buffers.) If the
function is called twice, the new call replaces previous parameters and resets the timeout. The timer
has a sub-second resolution.

1494 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

The file must be kept open until the traceback is dumped or cancel_dump_traceback_later() is called:
see issue with file descriptors.

This function is implemented using a watchdog thread and therefore is not available if Python is
compiled with threads disabled.

Changed in version 3.5: Added support for passing file descriptor to this function.

faulthandler.cancel_dump_traceback_later()
Cancel the last call to dump_traceback_later().

27.2.4 Dumping the traceback on a user signal

faulthandler.register(signum, file=sys.stderr, all_threads=True, chain=False)
Register a user signal: install a handler for the signum signal to dump the traceback of all threads, or
of the current thread if all_threads is False, into file. Call the previous handler if chain is True.

The file must be kept open until the signal is unregistered by unregister(): see issue with file descriptors.

Not available on Windows.

Changed in version 3.5: Added support for passing file descriptor to this function.

faulthandler.unregister(signum)
Unregister a user signal: uninstall the handler of the signum signal installed by register(). Return True
if the signal was registered, False otherwise.

Not available on Windows.

27.2.5 Issue with file descriptors

enable(), dump_traceback_later() and register() keep the file descriptor of their file argument. If the file is
closed and its file descriptor is reused by a new file, or if os.dup2() is used to replace the file descriptor, the
traceback will be written into a different file. Call these functions again each time that the file is replaced.

27.2.6 Example

Example of a segmentation fault on Linux with and without enabling the fault handler:

$ python3 -c "import ctypes; ctypes.string_at(0)"
Segmentation fault

$ python3 -q -X faulthandler
>>> import ctypes
>>> ctypes.string_at(0)
Fatal Python error: Segmentation fault

Current thread 0x00007fb899f39700 (most recent call first):
File "/home/python/cpython/Lib/ctypes/__init__.py", line 486 in string_at
File "<stdin>", line 1 in <module>

Segmentation fault

27.2. faulthandler — Dump the Python traceback 1495

The Python Library Reference, Release 3.5.7

27.3 pdb — The Python Debugger

Source code: Lib/pdb.py

The module pdb defines an interactive source code debugger for Python programs. It supports setting
(conditional) breakpoints and single stepping at the source line level, inspection of stack frames, source
code listing, and evaluation of arbitrary Python code in the context of any stack frame. It also supports
post-mortem debugging and can be called under program control.

The debugger is extensible – it is actually defined as the class Pdb. This is currently undocumented but
easily understood by reading the source. The extension interface uses the modules bdb and cmd.

The debugger’s prompt is (Pdb). Typical usage to run a program under control of the debugger is:

>>> import pdb
>>> import mymodule
>>> pdb.run('mymodule.test()')
> <string>(0)?()
(Pdb) continue
> <string>(1)?()
(Pdb) continue
NameError: 'spam'
> <string>(1)?()
(Pdb)

Changed in version 3.3: Tab-completion via the readline module is available for commands and command
arguments, e.g. the current global and local names are offered as arguments of the p command.

pdb.py can also be invoked as a script to debug other scripts. For example:

python3 -m pdb myscript.py

When invoked as a script, pdb will automatically enter post-mortem debugging if the program being debugged
exits abnormally. After post-mortem debugging (or after normal exit of the program), pdb will restart the
program. Automatic restarting preserves pdb’s state (such as breakpoints) and in most cases is more useful
than quitting the debugger upon program’s exit.

New in version 3.2: pdb.py now accepts a -c option that executes commands as if given in a .pdbrc file, see
Debugger Commands.

The typical usage to break into the debugger from a running program is to insert

import pdb; pdb.set_trace()

at the location you want to break into the debugger. You can then step through the code following this
statement, and continue running without the debugger using the continue command.

The typical usage to inspect a crashed program is:

>>> import pdb
>>> import mymodule
>>> mymodule.test()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./mymodule.py", line 4, in test
test2()

File "./mymodule.py", line 3, in test2

(continues on next page)

1496 Chapter 27. Debugging and Profiling

https://github.com/python/cpython/tree/3.5/Lib/pdb.py

The Python Library Reference, Release 3.5.7

(continued from previous page)

print(spam)
NameError: spam
>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print(spam)
(Pdb)

The module defines the following functions; each enters the debugger in a slightly different way:

pdb.run(statement, globals=None, locals=None)
Execute the statement (given as a string or a code object) under debugger control. The debugger
prompt appears before any code is executed; you can set breakpoints and type continue, or you can
step through the statement using step or next (all these commands are explained below). The optional
globals and locals arguments specify the environment in which the code is executed; by default the
dictionary of the module __main__ is used. (See the explanation of the built-in exec() or eval()
functions.)

pdb.runeval(expression, globals=None, locals=None)
Evaluate the expression (given as a string or a code object) under debugger control. When runeval()
returns, it returns the value of the expression. Otherwise this function is similar to run().

pdb.runcall(function, *args, **kwds)
Call the function (a function or method object, not a string) with the given arguments. When runcall()
returns, it returns whatever the function call returned. The debugger prompt appears as soon as the
function is entered.

pdb.set_trace()
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given point
in a program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

pdb.post_mortem(traceback=None)
Enter post-mortem debugging of the given traceback object. If no traceback is given, it uses the one
of the exception that is currently being handled (an exception must be being handled if the default is
to be used).

pdb.pm()
Enter post-mortem debugging of the traceback found in sys.last_traceback.

The run* functions and set_trace() are aliases for instantiating the Pdb class and calling the method of the
same name. If you want to access further features, you have to do this yourself:

class pdb.Pdb(completekey=’tab’, stdin=None, stdout=None, skip=None, nosigint=False)
Pdb is the debugger class.

The completekey, stdin and stdout arguments are passed to the underlying cmd.Cmd class; see the
description there.

The skip argument, if given, must be an iterable of glob-style module name patterns. The debugger
will not step into frames that originate in a module that matches one of these patterns.1

By default, Pdb sets a handler for the SIGINT signal (which is sent when the user presses Ctrl-C on
the console) when you give a continue command. This allows you to break into the debugger again by
pressing Ctrl-C. If you want Pdb not to touch the SIGINT handler, set nosigint to true.

Example call to enable tracing with skip:

import pdb; pdb.Pdb(skip=['django.*']).set_trace()

1 Whether a frame is considered to originate in a certain module is determined by the __name__ in the frame globals.

27.3. pdb — The Python Debugger 1497

The Python Library Reference, Release 3.5.7

New in version 3.1: The skip argument.

New in version 3.2: The nosigint argument. Previously, a SIGINT handler was never set by Pdb.

run(statement, globals=None, locals=None)
runeval(expression, globals=None, locals=None)
runcall(function, *args, **kwds)
set_trace()

See the documentation for the functions explained above.

27.3.1 Debugger Commands

The commands recognized by the debugger are listed below. Most commands can be abbreviated to one or
two letters as indicated; e.g. h(elp) means that either h or help can be used to enter the help command (but
not he or hel, nor H or Help or HELP). Arguments to commands must be separated by whitespace (spaces or
tabs). Optional arguments are enclosed in square brackets ([]) in the command syntax; the square brackets
must not be typed. Alternatives in the command syntax are separated by a vertical bar (|).

Entering a blank line repeats the last command entered. Exception: if the last command was a list command,
the next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed in
the context of the program being debugged. Python statements can also be prefixed with an exclamation
point (!). This is a powerful way to inspect the program being debugged; it is even possible to change a
variable or call a function. When an exception occurs in such a statement, the exception name is printed
but the debugger’s state is not changed.

The debugger supports aliases. Aliases can have parameters which allows one a certain level of adaptability
to the context under examination.

Multiple commands may be entered on a single line, separated by ;;. (A single ; is not used as it is the
separator for multiple commands in a line that is passed to the Python parser.) No intelligence is applied to
separating the commands; the input is split at the first ;; pair, even if it is in the middle of a quoted string.

If a file .pdbrc exists in the user’s home directory or in the current directory, it is read in and executed as if
it had been typed at the debugger prompt. This is particularly useful for aliases. If both files exist, the one
in the home directory is read first and aliases defined there can be overridden by the local file.

Changed in version 3.2: .pdbrc can now contain commands that continue debugging, such as continue or
next. Previously, these commands had no effect.

h(elp) [command]
Without argument, print the list of available commands. With a command as argument, print help
about that command. help pdb displays the full documentation (the docstring of the pdb module).
Since the command argument must be an identifier, help exec must be entered to get help on the !
command.

w(here)
Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current frame,
which determines the context of most commands.

d(own) [count]
Move the current frame count (default one) levels down in the stack trace (to a newer frame).

u(p) [count]
Move the current frame count (default one) levels up in the stack trace (to an older frame).

b(reak) [([filename:]lineno | function) [, condition]]
With a lineno argument, set a break there in the current file. With a function argument, set a break at
the first executable statement within that function. The line number may be prefixed with a filename

1498 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

and a colon, to specify a breakpoint in another file (probably one that hasn’t been loaded yet). The
file is searched on sys.path. Note that each breakpoint is assigned a number to which all the other
breakpoint commands refer.

If a second argument is present, it is an expression which must evaluate to true before the breakpoint
is honored.

Without argument, list all breaks, including for each breakpoint, the number of times that breakpoint
has been hit, the current ignore count, and the associated condition if any.

tbreak [([filename:]lineno | function) [, condition]]
Temporary breakpoint, which is removed automatically when it is first hit. The arguments are the
same as for break.

cl(ear) [filename:lineno | bpnumber [bpnumber ...]]
With a filename:lineno argument, clear all the breakpoints at this line. With a space separated list
of breakpoint numbers, clear those breakpoints. Without argument, clear all breaks (but first ask
confirmation).

disable [bpnumber [bpnumber ...]]
Disable the breakpoints given as a space separated list of breakpoint numbers. Disabling a breakpoint
means it cannot cause the program to stop execution, but unlike clearing a breakpoint, it remains in
the list of breakpoints and can be (re-)enabled.

enable [bpnumber [bpnumber ...]]
Enable the breakpoints specified.

ignore bpnumber [count]
Set the ignore count for the given breakpoint number. If count is omitted, the ignore count is set to 0.
A breakpoint becomes active when the ignore count is zero. When non-zero, the count is decremented
each time the breakpoint is reached and the breakpoint is not disabled and any associated condition
evaluates to true.

condition bpnumber [condition]
Set a new condition for the breakpoint, an expression which must evaluate to true before the breakpoint
is honored. If condition is absent, any existing condition is removed; i.e., the breakpoint is made
unconditional.

commands [bpnumber]
Specify a list of commands for breakpoint number bpnumber. The commands themselves appear on
the following lines. Type a line containing just end to terminate the commands. An example:

(Pdb) commands 1
(com) p some_variable
(com) end
(Pdb)

To remove all commands from a breakpoint, type commands and follow it immediately with end; that
is, give no commands.

With no bpnumber argument, commands refers to the last breakpoint set.

You can use breakpoint commands to start your program up again. Simply use the continue command,
or step, or any other command that resumes execution.

Specifying any command resuming execution (currently continue, step, next, return, jump, quit and
their abbreviations) terminates the command list (as if that command was immediately followed by
end). This is because any time you resume execution (even with a simple next or step), you may
encounter another breakpoint—which could have its own command list, leading to ambiguities about
which list to execute.

27.3. pdb — The Python Debugger 1499

The Python Library Reference, Release 3.5.7

If you use the ‘silent’ command in the command list, the usual message about stopping at a breakpoint
is not printed. This may be desirable for breakpoints that are to print a specific message and then
continue. If none of the other commands print anything, you see no sign that the breakpoint was
reached.

s(tep)
Execute the current line, stop at the first possible occasion (either in a function that is called or on
the next line in the current function).

n(ext)
Continue execution until the next line in the current function is reached or it returns. (The difference
between next and step is that step stops inside a called function, while next executes called functions
at (nearly) full speed, only stopping at the next line in the current function.)

unt(il) [lineno]
Without argument, continue execution until the line with a number greater than the current one is
reached.

With a line number, continue execution until a line with a number greater or equal to that is reached.
In both cases, also stop when the current frame returns.

Changed in version 3.2: Allow giving an explicit line number.

r(eturn)
Continue execution until the current function returns.

c(ont(inue))
Continue execution, only stop when a breakpoint is encountered.

j(ump) lineno
Set the next line that will be executed. Only available in the bottom-most frame. This lets you jump
back and execute code again, or jump forward to skip code that you don’t want to run.

It should be noted that not all jumps are allowed – for instance it is not possible to jump into the
middle of a for loop or out of a finally clause.

l(ist) [first[, last]]
List source code for the current file. Without arguments, list 11 lines around the current line or continue
the previous listing. With . as argument, list 11 lines around the current line. With one argument, list
11 lines around at that line. With two arguments, list the given range; if the second argument is less
than the first, it is interpreted as a count.

The current line in the current frame is indicated by ->. If an exception is being debugged, the line
where the exception was originally raised or propagated is indicated by >>, if it differs from the current
line.

New in version 3.2: The >> marker.

ll | longlist
List all source code for the current function or frame. Interesting lines are marked as for list.

New in version 3.2.

a(rgs)
Print the argument list of the current function.

p expression
Evaluate the expression in the current context and print its value.

Note: print() can also be used, but is not a debugger command — this executes the Python print()

1500 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

function.

pp expression
Like the p command, except the value of the expression is pretty-printed using the pprint module.

whatis expression
Print the type of the expression.

source expression
Try to get source code for the given object and display it.

New in version 3.2.

display [expression]
Display the value of the expression if it changed, each time execution stops in the current frame.

Without expression, list all display expressions for the current frame.

New in version 3.2.

undisplay [expression]
Do not display the expression any more in the current frame. Without expression, clear all display
expressions for the current frame.

New in version 3.2.

interact
Start an interactive interpreter (using the code module) whose global namespace contains all the (global
and local) names found in the current scope.

New in version 3.2.

alias [name [command]]
Create an alias called name that executes command. The command must not be enclosed in quotes.
Replaceable parameters can be indicated by %1, %2, and so on, while %* is replaced by all the
parameters. If no command is given, the current alias for name is shown. If no arguments are given,
all aliases are listed.

Aliases may be nested and can contain anything that can be legally typed at the pdb prompt. Note
that internal pdb commands can be overridden by aliases. Such a command is then hidden until the
alias is removed. Aliasing is recursively applied to the first word of the command line; all other words
in the line are left alone.

As an example, here are two useful aliases (especially when placed in the .pdbrc file):

Print instance variables (usage "pi classInst")
alias pi for k in %1.__dict__.keys(): print("%1.",k,"=",%1.__dict__[k])
Print instance variables in self
alias ps pi self

unalias name
Delete the specified alias.

! statement
Execute the (one-line) statement in the context of the current stack frame. The exclamation point
can be omitted unless the first word of the statement resembles a debugger command. To set a global
variable, you can prefix the assignment command with a global statement on the same line, e.g.:

(Pdb) global list_options; list_options = ['-l']
(Pdb)

27.3. pdb — The Python Debugger 1501

The Python Library Reference, Release 3.5.7

run [args ...]
restart [args ...]

Restart the debugged Python program. If an argument is supplied, it is split with shlex and the result
is used as the new sys.argv. History, breakpoints, actions and debugger options are preserved. restart
is an alias for run.

q(uit)
Quit from the debugger. The program being executed is aborted.

27.4 The Python Profilers

Source code: Lib/profile.py and Lib/pstats.py

27.4.1 Introduction to the profilers

cProfile and profile provide deterministic profiling of Python programs. A profile is a set of statistics that
describes how often and for how long various parts of the program executed. These statistics can be formatted
into reports via the pstats module.

The Python standard library provides two different implementations of the same profiling interface:

1. cProfile is recommended for most users; it’s a C extension with reasonable overhead that makes it
suitable for profiling long-running programs. Based on lsprof, contributed by Brett Rosen and Ted
Czotter.

2. profile, a pure Python module whose interface is imitated by cProfile, but which adds significant
overhead to profiled programs. If you’re trying to extend the profiler in some way, the task might be
easier with this module. Originally designed and written by Jim Roskind.

Note: The profiler modules are designed to provide an execution profile for a given program, not for
benchmarking purposes (for that, there is timeit for reasonably accurate results). This particularly applies
to benchmarking Python code against C code: the profilers introduce overhead for Python code, but not for
C-level functions, and so the C code would seem faster than any Python one.

27.4.2 Instant User’s Manual

This section is provided for users that “don’t want to read the manual.” It provides a very brief overview,
and allows a user to rapidly perform profiling on an existing application.

To profile a function that takes a single argument, you can do:

import cProfile
import re
cProfile.run('re.compile("foo|bar")')

(Use profile instead of cProfile if the latter is not available on your system.)

The above action would run re.compile() and print profile results like the following:

1502 Chapter 27. Debugging and Profiling

https://github.com/python/cpython/tree/3.5/Lib/profile.py
https://github.com/python/cpython/tree/3.5/Lib/pstats.py

The Python Library Reference, Release 3.5.7

197 function calls (192 primitive calls) in 0.002 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.001 0.001 <string>:1(<module>)
1 0.000 0.000 0.001 0.001 re.py:212(compile)
1 0.000 0.000 0.001 0.001 re.py:268(_compile)
1 0.000 0.000 0.000 0.000 sre_compile.py:172(_compile_charset)
1 0.000 0.000 0.000 0.000 sre_compile.py:201(_optimize_charset)
4 0.000 0.000 0.000 0.000 sre_compile.py:25(_identityfunction)

3/1 0.000 0.000 0.000 0.000 sre_compile.py:33(_compile)

The first line indicates that 197 calls were monitored. Of those calls, 192 were primitive, meaning that the
call was not induced via recursion. The next line: Ordered by: standard name, indicates that the text string
in the far right column was used to sort the output. The column headings include:

ncalls for the number of calls.

tottime for the total time spent in the given function (and excluding time made in calls to sub-functions)

percall is the quotient of tottime divided by ncalls

cumtime is the cumulative time spent in this and all subfunctions (from invocation till exit). This figure is
accurate even for recursive functions.

percall is the quotient of cumtime divided by primitive calls

filename:lineno(function) provides the respective data of each function

When there are two numbers in the first column (for example 3/1), it means that the function recursed. The
second value is the number of primitive calls and the former is the total number of calls. Note that when
the function does not recurse, these two values are the same, and only the single figure is printed.

Instead of printing the output at the end of the profile run, you can save the results to a file by specifying a
filename to the run() function:

import cProfile
import re
cProfile.run('re.compile("foo|bar")', 'restats')

The pstats.Stats class reads profile results from a file and formats them in various ways.

The file cProfile can also be invoked as a script to profile another script. For example:

python -m cProfile [-o output_file] [-s sort_order] myscript.py

-o writes the profile results to a file instead of to stdout

-s specifies one of the sort_stats() sort values to sort the output by. This only applies when -o is not supplied.

The pstats module’s Stats class has a variety of methods for manipulating and printing the data saved into
a profile results file:

import pstats
p = pstats.Stats('restats')
p.strip_dirs().sort_stats(-1).print_stats()

The strip_dirs() method removed the extraneous path from all the module names. The sort_stats() method
sorted all the entries according to the standard module/line/name string that is printed. The print_stats()
method printed out all the statistics. You might try the following sort calls:

27.4. The Python Profilers 1503

The Python Library Reference, Release 3.5.7

p.sort_stats('name')
p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics.
The following are some interesting calls to experiment with:

p.sort_stats('cumulative').print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines.
If you want to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:

p.sort_stats('time').print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort_stats('file').print_stats('__init__')

This will sort all the statistics by file name, and then print out statistics for only the class init methods
(since they are spelled with __init__ in them). As one final example, you could try:

p.sort_stats('time', 'cumulative').print_stats(.5, 'init')

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then prints
out some of the statistics. To be specific, the list is first culled down to 50% (re: .5) of its original size, then
only lines containing init are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (p is still sorted according to the
last criteria) do:

p.print_callers(.5, 'init')

and you would get a list of callers for each of the listed functions.

If you want more functionality, you’re going to have to read the manual, or guess what the following functions
do:

p.print_callees()
p.add('restats')

Invoked as a script, the pstats module is a statistics browser for reading and examining profile dumps. It
has a simple line-oriented interface (implemented using cmd) and interactive help.

27.4.3 profile and cProfile Module Reference

Both the profile and cProfile modules provide the following functions:

profile.run(command, filename=None, sort=-1)
This function takes a single argument that can be passed to the exec() function, and an optional file
name. In all cases this routine executes:

exec(command, __main__.__dict__, __main__.__dict__)

1504 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

and gathers profiling statistics from the execution. If no file name is present, then this function
automatically creates a Stats instance and prints a simple profiling report. If the sort value is specified,
it is passed to this Stats instance to control how the results are sorted.

profile.runctx(command, globals, locals, filename=None, sort=-1)
This function is similar to run(), with added arguments to supply the globals and locals dictionaries
for the command string. This routine executes:

exec(command, globals, locals)

and gathers profiling statistics as in the run() function above.

class profile.Profile(timer=None, timeunit=0.0, subcalls=True, builtins=True)
This class is normally only used if more precise control over profiling is needed than what the cProfile.
run() function provides.

A custom timer can be supplied for measuring how long code takes to run via the timer argument.
This must be a function that returns a single number representing the current time. If the number
is an integer, the timeunit specifies a multiplier that specifies the duration of each unit of time. For
example, if the timer returns times measured in thousands of seconds, the time unit would be .001.

Directly using the Profile class allows formatting profile results without writing the profile data to a
file:

import cProfile, pstats, io
pr = cProfile.Profile()
pr.enable()
... do something ...
pr.disable()
s = io.StringIO()
sortby = 'cumulative'
ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
ps.print_stats()
print(s.getvalue())

enable()
Start collecting profiling data.

disable()
Stop collecting profiling data.

create_stats()
Stop collecting profiling data and record the results internally as the current profile.

print_stats(sort=-1)
Create a Stats object based on the current profile and print the results to stdout.

dump_stats(filename)
Write the results of the current profile to filename.

run(cmd)
Profile the cmd via exec().

runctx(cmd, globals, locals)
Profile the cmd via exec() with the specified global and local environment.

runcall(func, *args, **kwargs)
Profile func(*args, **kwargs)

27.4. The Python Profilers 1505

The Python Library Reference, Release 3.5.7

27.4.4 The Stats Class

Analysis of the profiler data is done using the Stats class.

class pstats.Stats(*filenames or profile, stream=sys.stdout)
This class constructor creates an instance of a “statistics object” from a filename (or list of filenames)
or from a Profile instance. Output will be printed to the stream specified by stream.

The file selected by the above constructor must have been created by the corresponding version of
profile or cProfile. To be specific, there is no file compatibility guaranteed with future versions of this
profiler, and there is no compatibility with files produced by other profilers. If several files are provided,
all the statistics for identical functions will be coalesced, so that an overall view of several processes
can be considered in a single report. If additional files need to be combined with data in an existing
Stats object, the add() method can be used.

Instead of reading the profile data from a file, a cProfile.Profile or profile.Profile object can be used as
the profile data source.

Stats objects have the following methods:

strip_dirs()
This method for the Stats class removes all leading path information from file names. It is very
useful in reducing the size of the printout to fit within (close to) 80 columns. This method modifies
the object, and the stripped information is lost. After performing a strip operation, the object
is considered to have its entries in a “random” order, as it was just after object initialization and
loading. If strip_dirs() causes two function names to be indistinguishable (they are on the same
line of the same filename, and have the same function name), then the statistics for these two
entries are accumulated into a single entry.

add(*filenames)
This method of the Stats class accumulates additional profiling information into the current
profiling object. Its arguments should refer to filenames created by the corresponding version of
profile.run() or cProfile.run(). Statistics for identically named (re: file, line, name) functions are
automatically accumulated into single function statistics.

dump_stats(filename)
Save the data loaded into the Stats object to a file named filename. The file is created if it does
not exist, and is overwritten if it already exists. This is equivalent to the method of the same
name on the profile.Profile and cProfile.Profile classes.

sort_stats(*keys)
This method modifies the Stats object by sorting it according to the supplied criteria. The
argument is typically a string identifying the basis of a sort (example: 'time' or 'name').

When more than one key is provided, then additional keys are used as secondary criteria when
there is equality in all keys selected before them. For example, sort_stats('name', 'file') will
sort all the entries according to their function name, and resolve all ties (identical function names)
by sorting by file name.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The
following are the keys currently defined:

1506 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

Valid Arg Meaning
'calls' call count
'cumulative' cumulative time
'cumtime' cumulative time
'file' file name
'filename' file name
'module' file name
'ncalls' call count
'pcalls' primitive call count
'line' line number
'name' function name
'nfl' name/file/line
'stdname' standard name
'time' internal time
'tottime' internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first),
where as name, file, and line number searches are in ascending order (alphabetical). The subtle
distinction between 'nfl' and 'stdname' is that the standard name is a sort of the name as
printed, which means that the embedded line numbers get compared in an odd way. For example,
lines 3, 20, and 40 would (if the file names were the same) appear in the string order 20, 3 and
40. In contrast, 'nfl' does a numeric compare of the line numbers. In fact, sort_stats('nfl') is
the same as sort_stats('name', 'file', 'line').

For backward-compatibility reasons, the numeric arguments -1, 0, 1, and 2 are permitted. They are
interpreted as 'stdname', 'calls', 'time', and 'cumulative' respectively. If this old style format
(numeric) is used, only one sort key (the numeric key) will be used, and additional arguments will
be silently ignored.

reverse_order()
This method for the Stats class reverses the ordering of the basic list within the object. Note that
by default ascending vs descending order is properly selected based on the sort key of choice.

print_stats(*restrictions)
This method for the Stats class prints out a report as described in the profile.run() definition.

The order of the printing is based on the last sort_stats() operation done on the object (subject
to caveats in add() and strip_dirs()).

The arguments provided (if any) can be used to limit the list down to the significant entries.
Initially, the list is taken to be the complete set of profiled functions. Each restriction is either an
integer (to select a count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select
a percentage of lines), or a string that will interpreted as a regular expression (to pattern match
the standard name that is printed). If several restrictions are provided, then they are applied
sequentially. For example:

print_stats(.1, 'foo:')

would first limit the printing to first 10% of list, and then only print functions that were part of
filename .*foo:. In contrast, the command:

print_stats('foo:', .1)

would limit the list to all functions having file names .*foo:, and then proceed to only print the
first 10% of them.

27.4. The Python Profilers 1507

The Python Library Reference, Release 3.5.7

print_callers(*restrictions)
This method for the Stats class prints a list of all functions that called each function in the profiled
database. The ordering is identical to that provided by print_stats(), and the definition of the
restricting argument is also identical. Each caller is reported on its own line. The format differs
slightly depending on the profiler that produced the stats:

• With profile, a number is shown in parentheses after each caller to show how many times
this specific call was made. For convenience, a second non-parenthesized number repeats the
cumulative time spent in the function at the right.

• With cProfile, each caller is preceded by three numbers: the number of times this specific
call was made, and the total and cumulative times spent in the current function while it was
invoked by this specific caller.

print_callees(*restrictions)
This method for the Stats class prints a list of all function that were called by the indicated
function. Aside from this reversal of direction of calls (re: called vs was called by), the arguments
and ordering are identical to the print_callers() method.

27.4.5 What Is Deterministic Profiling?

Deterministic profiling is meant to reflect the fact that all function call, function return, and exception
events are monitored, and precise timings are made for the intervals between these events (during which
time the user’s code is executing). In contrast, statistical profiling (which is not done by this module)
randomly samples the effective instruction pointer, and deduces where time is being spent. The latter
technique traditionally involves less overhead (as the code does not need to be instrumented), but provides
only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not
required to do deterministic profiling. Python automatically provides a hook (optional callback) for each
event. In addition, the interpreted nature of Python tends to add so much overhead to execution, that
deterministic profiling tends to only add small processing overhead in typical applications. The result is that
deterministic profiling is not that expensive, yet provides extensive run time statistics about the execution
of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible inline-
expansion points (high call counts). Internal time statistics can be used to identify “hot loops” that should be
carefully optimized. Cumulative time statistics should be used to identify high level errors in the selection of
algorithms. Note that the unusual handling of cumulative times in this profiler allows statistics for recursive
implementations of algorithms to be directly compared to iterative implementations.

27.4.6 Limitations

One limitation has to do with accuracy of timing information. There is a fundamental problem with de-
terministic profilers involving accuracy. The most obvious restriction is that the underlying “clock” is only
ticking at a rate (typically) of about .001 seconds. Hence no measurements will be more accurate than the
underlying clock. If enough measurements are taken, then the “error” will tend to average out. Unfortunately,
removing this first error induces a second source of error.

The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call to
get the time actually gets the state of the clock. Similarly, there is a certain lag when exiting the profiler
event handler from the time that the clock’s value was obtained (and then squirreled away), until the user’s
code is once again executing. As a result, functions that are called many times, or call many functions, will
typically accumulate this error. The error that accumulates in this fashion is typically less than the accuracy
of the clock (less than one clock tick), but it can accumulate and become very significant.

1508 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

The problem is more important with profile than with the lower-overhead cProfile. For this reason, profile
provides a means of calibrating itself for a given platform so that this error can be probabilistically (on the
average) removed. After the profiler is calibrated, it will be more accurate (in a least square sense), but it will
sometimes produce negative numbers (when call counts are exceptionally low, and the gods of probability
work against you :-).) Do not be alarmed by negative numbers in the profile. They should only appear if
you have calibrated your profiler, and the results are actually better than without calibration.

27.4.7 Calibration

The profiler of the profile module subtracts a constant from each event handling time to compensate for
the overhead of calling the time function, and socking away the results. By default, the constant is 0. The
following procedure can be used to obtain a better constant for a given platform (see Limitations).

import profile
pr = profile.Profile()
for i in range(5):

print(pr.calibrate(10000))

The method executes the number of Python calls given by the argument, directly and again under the
profiler, measuring the time for both. It then computes the hidden overhead per profiler event, and returns
that as a float. For example, on a 1.8Ghz Intel Core i5 running Mac OS X, and using Python’s time.clock()
as the timer, the magical number is about 4.04e-6.

The object of this exercise is to get a fairly consistent result. If your computer is very fast, or your timer
function has poor resolution, you might have to pass 100000, or even 1000000, to get consistent results.

When you have a consistent answer, there are three ways you can use it:

import profile

1. Apply computed bias to all Profile instances created hereafter.
profile.Profile.bias = your_computed_bias

2. Apply computed bias to a specific Profile instance.
pr = profile.Profile()
pr.bias = your_computed_bias

3. Specify computed bias in instance constructor.
pr = profile.Profile(bias=your_computed_bias)

If you have a choice, you are better off choosing a smaller constant, and then your results will “less often”
show up as negative in profile statistics.

27.4.8 Using a custom timer

If you want to change how current time is determined (for example, to force use of wall-clock time or elapsed
process time), pass the timing function you want to the Profile class constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will then call your_time_func. Depending on whether you are using profile.Profile or
cProfile.Profile, your_time_func’s return value will be interpreted differently:

profile.Profile your_time_func should return a single number, or a list of numbers whose sum is the current
time (like what os.times() returns). If the function returns a single time number, or the list of returned
numbers has length 2, then you will get an especially fast version of the dispatch routine.

27.4. The Python Profilers 1509

The Python Library Reference, Release 3.5.7

Be warned that you should calibrate the profiler class for the timer function that you choose (see
Calibration). For most machines, a timer that returns a lone integer value will provide the best results
in terms of low overhead during profiling. (os.times() is pretty bad, as it returns a tuple of floating
point values). If you want to substitute a better timer in the cleanest fashion, derive a class and
hardwire a replacement dispatch method that best handles your timer call, along with the appropriate
calibration constant.

cProfile.Profile your_time_func should return a single number. If it returns integers, you can also invoke the
class constructor with a second argument specifying the real duration of one unit of time. For example,
if your_integer_time_func returns times measured in thousands of seconds, you would construct the
Profile instance as follows:

pr = cProfile.Profile(your_integer_time_func, 0.001)

As the cProfile.Profile class cannot be calibrated, custom timer functions should be used with care
and should be as fast as possible. For the best results with a custom timer, it might be necessary to
hard-code it in the C source of the internal _lsprof module.

Python 3.3 adds several new functions in time that can be used to make precise measurements of process or
wall-clock time. For example, see time.perf_counter().

27.5 timeit — Measure execution time of small code snippets

Source code: Lib/timeit.py

This module provides a simple way to time small bits of Python code. It has both a Command-Line Interface
as well as a callable one. It avoids a number of common traps for measuring execution times. See also Tim
Peters’ introduction to the “Algorithms” chapter in the Python Cookbook, published by O’Reilly.

27.5.1 Basic Examples

The following example shows how the Command-Line Interface can be used to compare three different
expressions:

$ python3 -m timeit '"-".join(str(n) for n in range(100))'
10000 loops, best of 3: 30.2 usec per loop
$ python3 -m timeit '"-".join([str(n) for n in range(100)])'
10000 loops, best of 3: 27.5 usec per loop
$ python3 -m timeit '"-".join(map(str, range(100)))'
10000 loops, best of 3: 23.2 usec per loop

This can be achieved from the Python Interface with:

>>> import timeit
>>> timeit.timeit('"-".join(str(n) for n in range(100))', number=10000)
0.3018611848820001
>>> timeit.timeit('"-".join([str(n) for n in range(100)])', number=10000)
0.2727368790656328
>>> timeit.timeit('"-".join(map(str, range(100)))', number=10000)
0.23702679807320237

Note however that timeit will automatically determine the number of repetitions only when the command-line
interface is used. In the Examples section you can find more advanced examples.

1510 Chapter 27. Debugging and Profiling

https://github.com/python/cpython/tree/3.5/Lib/timeit.py

The Python Library Reference, Release 3.5.7

27.5.2 Python Interface

The module defines three convenience functions and a public class:

timeit.timeit(stmt=’pass’, setup=’pass’, timer=<default timer>, number=1000000, globals=None)
Create a Timer instance with the given statement, setup code and timer function and run its timeit()
method with number executions. The optional globals argument specifies a namespace in which to
execute the code.

Changed in version 3.5: The optional globals parameter was added.

timeit.repeat(stmt=’pass’, setup=’pass’, timer=<default timer>, repeat=3, number=1000000, glob-
als=None)

Create a Timer instance with the given statement, setup code and timer function and run its repeat()
method with the given repeat count and number executions. The optional globals argument specifies
a namespace in which to execute the code.

Changed in version 3.5: The optional globals parameter was added.

timeit.default_timer()
The default timer, which is always time.perf_counter().

Changed in version 3.3: time.perf_counter() is now the default timer.

class timeit.Timer(stmt=’pass’, setup=’pass’, timer=<timer function>, globals=None)
Class for timing execution speed of small code snippets.

The constructor takes a statement to be timed, an additional statement used for setup, and a timer
function. Both statements default to 'pass'; the timer function is platform-dependent (see the module
doc string). stmt and setup may also contain multiple statements separated by ; or newlines, as long as
they don’t contain multi-line string literals. The statement will by default be executed within timeit’s
namespace; this behavior can be controlled by passing a namespace to globals.

To measure the execution time of the first statement, use the timeit() method. The repeat() method
is a convenience to call timeit() multiple times and return a list of results.

The execution time of setup is excluded from the overall timed execution run.

The stmt and setup parameters can also take objects that are callable without arguments. This will
embed calls to them in a timer function that will then be executed by timeit(). Note that the timing
overhead is a little larger in this case because of the extra function calls.

Changed in version 3.5: The optional globals parameter was added.

timeit(number=1000000)
Time number executions of the main statement. This executes the setup statement once, and
then returns the time it takes to execute the main statement a number of times, measured in
seconds as a float. The argument is the number of times through the loop, defaulting to one
million. The main statement, the setup statement and the timer function to be used are passed
to the constructor.

Note: By default, timeit() temporarily turns off garbage collection during the timing. The advan-
tage of this approach is that it makes independent timings more comparable. This disadvantage
is that GC may be an important component of the performance of the function being measured.
If so, GC can be re-enabled as the first statement in the setup string. For example:

timeit.Timer('for i in range(10): oct(i)', 'gc.enable()').timeit()

27.5. timeit — Measure execution time of small code snippets 1511

The Python Library Reference, Release 3.5.7

repeat(repeat=3, number=1000000)
Call timeit() a few times.

This is a convenience function that calls the timeit() repeatedly, returning a list of results. The
first argument specifies how many times to call timeit(). The second argument specifies the
number argument for timeit().

Note: It’s tempting to calculate mean and standard deviation from the result vector and report
these. However, this is not very useful. In a typical case, the lowest value gives a lower bound
for how fast your machine can run the given code snippet; higher values in the result vector are
typically not caused by variability in Python’s speed, but by other processes interfering with your
timing accuracy. So the min() of the result is probably the only number you should be interested
in. After that, you should look at the entire vector and apply common sense rather than statistics.

print_exc(file=None)
Helper to print a traceback from the timed code.

Typical use:

t = Timer(...) # outside the try/except
try:

t.timeit(...) # or t.repeat(...)
except Exception:

t.print_exc()

The advantage over the standard traceback is that source lines in the compiled template will be
displayed. The optional file argument directs where the traceback is sent; it defaults to sys.stderr.

27.5.3 Command-Line Interface

When called as a program from the command line, the following form is used:

python -m timeit [-n N] [-r N] [-u U] [-s S] [-t] [-c] [-h] [statement ...]

Where the following options are understood:

-n N, --number=N
how many times to execute ‘statement’

-r N, --repeat=N
how many times to repeat the timer (default 3)

-s S, --setup=S
statement to be executed once initially (default pass)

-p, --process
measure process time, not wallclock time, using time.process_time() instead of time.perf_counter(),
which is the default

New in version 3.3.

-t, --time
use time.time() (deprecated)

-u, --unit=U

specify a time unit for timer output; can select usec, msec, or sec

1512 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

New in version 3.5.

-c, --clock
use time.clock() (deprecated)

-v, --verbose
print raw timing results; repeat for more digits precision

-h, --help
print a short usage message and exit

A multi-line statement may be given by specifying each line as a separate statement argument; indented lines
are possible by enclosing an argument in quotes and using leading spaces. Multiple -s options are treated
similarly.

If -n is not given, a suitable number of loops is calculated by trying successive powers of 10 until the total
time is at least 0.2 seconds.

default_timer() measurements can be affected by other programs running on the same machine, so the best
thing to do when accurate timing is necessary is to repeat the timing a few times and use the best time.
The -r option is good for this; the default of 3 repetitions is probably enough in most cases. You can use
time.process_time() to measure CPU time.

Note: There is a certain baseline overhead associated with executing a pass statement. The code here
doesn’t try to hide it, but you should be aware of it. The baseline overhead can be measured by invoking
the program without arguments, and it might differ between Python versions.

27.5.4 Examples

It is possible to provide a setup statement that is executed only once at the beginning:

$ python -m timeit -s 'text = "sample string"; char = "g"' 'char in text'
10000000 loops, best of 3: 0.0877 usec per loop
$ python -m timeit -s 'text = "sample string"; char = "g"' 'text.find(char)'
1000000 loops, best of 3: 0.342 usec per loop

>>> import timeit
>>> timeit.timeit('char in text', setup='text = "sample string"; char = "g"')
0.41440500499993504
>>> timeit.timeit('text.find(char)', setup='text = "sample string"; char = "g"')
1.7246671520006203

The same can be done using the Timer class and its methods:

>>> import timeit
>>> t = timeit.Timer('char in text', setup='text = "sample string"; char = "g"')
>>> t.timeit()
0.3955516149999312
>>> t.repeat()
[0.40193588800002544, 0.3960157959998014, 0.39594301399984033]

The following examples show how to time expressions that contain multiple lines. Here we compare the cost
of using hasattr() vs. try/except to test for missing and present object attributes:

27.5. timeit — Measure execution time of small code snippets 1513

The Python Library Reference, Release 3.5.7

$ python -m timeit 'try:' ' str.__bool__' 'except AttributeError:' ' pass'
100000 loops, best of 3: 15.7 usec per loop
$ python -m timeit 'if hasattr(str, "__bool__"): pass'
100000 loops, best of 3: 4.26 usec per loop

$ python -m timeit 'try:' ' int.__bool__' 'except AttributeError:' ' pass'
1000000 loops, best of 3: 1.43 usec per loop
$ python -m timeit 'if hasattr(int, "__bool__"): pass'
100000 loops, best of 3: 2.23 usec per loop

>>> import timeit
>>> # attribute is missing
>>> s = """\
... try:
... str.__bool__
... except AttributeError:
... pass
... """
>>> timeit.timeit(stmt=s, number=100000)
0.9138244460009446
>>> s = "if hasattr(str, '__bool__'): pass"
>>> timeit.timeit(stmt=s, number=100000)
0.5829014980008651
>>>
>>> # attribute is present
>>> s = """\
... try:
... int.__bool__
... except AttributeError:
... pass
... """
>>> timeit.timeit(stmt=s, number=100000)
0.04215312199994514
>>> s = "if hasattr(int, '__bool__'): pass"
>>> timeit.timeit(stmt=s, number=100000)
0.08588060699912603

To give the timeit module access to functions you define, you can pass a setup parameter which contains an
import statement:

def test():
"""Stupid test function"""
L = [i for i in range(100)]

if __name__ == '__main__':
import timeit
print(timeit.timeit("test()", setup="from __main__ import test"))

Another option is to pass globals() to the globals parameter, which will cause the code to be executed within
your current global namespace. This can be more convenient than individually specifying imports:

def f(x):
return x**2

def g(x):
return x**4

def h(x):
return x**8

(continues on next page)

1514 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

(continued from previous page)

import timeit
print(timeit.timeit('[func(42) for func in (f,g,h)]', globals=globals()))

27.6 trace — Trace or track Python statement execution

Source code: Lib/trace.py

The trace module allows you to trace program execution, generate annotated statement coverage listings,
print caller/callee relationships and list functions executed during a program run. It can be used in another
program or from the command line.

27.6.1 Command-Line Usage

The trace module can be invoked from the command line. It can be as simple as

python -m trace --count -C . somefile.py ...

The above will execute somefile.py and generate annotated listings of all Python modules imported during
the execution into the current directory.

--help
Display usage and exit.

--version
Display the version of the module and exit.

Main options

At least one of the following options must be specified when invoking trace. The --listfuncs option is mutually
exclusive with the --trace and --count options. When --listfuncs is provided, neither --count nor --trace are
accepted, and vice versa.

-c, --count
Produce a set of annotated listing files upon program completion that shows how many times each
statement was executed. See also --coverdir, --file and --no-report below.

-t, --trace
Display lines as they are executed.

-l, --listfuncs
Display the functions executed by running the program.

-r, --report
Produce an annotated list from an earlier program run that used the --count and --file option. This
does not execute any code.

-T, --trackcalls
Display the calling relationships exposed by running the program.

27.6. trace — Trace or track Python statement execution 1515

https://github.com/python/cpython/tree/3.5/Lib/trace.py

The Python Library Reference, Release 3.5.7

Modifiers

-f, --file=<file>
Name of a file to accumulate counts over several tracing runs. Should be used with the --count option.

-C, --coverdir=<dir>
Directory where the report files go. The coverage report for package.module is written to file dir/
package/module.cover.

-m, --missing
When generating annotated listings, mark lines which were not executed with >>>>>>.

-s, --summary
When using --count or --report, write a brief summary to stdout for each file processed.

-R, --no-report
Do not generate annotated listings. This is useful if you intend to make several runs with --count, and
then produce a single set of annotated listings at the end.

-g, --timing
Prefix each line with the time since the program started. Only used while tracing.

Filters

These options may be repeated multiple times.

--ignore-module=<mod>
Ignore each of the given module names and its submodules (if it is a package). The argument can be
a list of names separated by a comma.

--ignore-dir=<dir>
Ignore all modules and packages in the named directory and subdirectories. The argument can be a
list of directories separated by os.pathsep.

27.6.2 Programmatic Interface

class trace.Trace(count=1, trace=1, countfuncs=0, countcallers=0, ignoremods=(), ignoredirs=(), in-
file=None, outfile=None, timing=False)

Create an object to trace execution of a single statement or expression. All parameters are optional.
count enables counting of line numbers. trace enables line execution tracing. countfuncs enables listing
of the functions called during the run. countcallers enables call relationship tracking. ignoremods is
a list of modules or packages to ignore. ignoredirs is a list of directories whose modules or packages
should be ignored. infile is the name of the file from which to read stored count information. outfile is
the name of the file in which to write updated count information. timing enables a timestamp relative
to when tracing was started to be displayed.

run(cmd)
Execute the command and gather statistics from the execution with the current tracing
parameters. cmd must be a string or code object, suitable for passing into exec().

runctx(cmd, globals=None, locals=None)
Execute the command and gather statistics from the execution with the current tracing
parameters, in the defined global and local environments. If not defined, globals and
locals default to empty dictionaries.

runfunc(func, *args, **kwds)
Call func with the given arguments under control of the Trace object with the current
tracing parameters.

1516 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

results()
Return a CoverageResults object that contains the cumulative results of all previous calls
to run, runctx and runfunc for the given Trace instance. Does not reset the accumulated
trace results.

class trace.CoverageResults
A container for coverage results, created by Trace.results(). Should not be created directly by the user.

update(other)
Merge in data from another CoverageResults object.

write_results(show_missing=True, summary=False, coverdir=None)
Write coverage results. Set show_missing to show lines that had no hits. Set summary to
include in the output the coverage summary per module. coverdir specifies the directory
into which the coverage result files will be output. If None, the results for each source
file are placed in its directory.

A simple example demonstrating the use of the programmatic interface:

import sys
import trace

create a Trace object, telling it what to ignore, and whether to
do tracing or line-counting or both.
tracer = trace.Trace(

ignoredirs=[sys.prefix, sys.exec_prefix],
trace=0,
count=1)

run the new command using the given tracer
tracer.run('main()')

make a report, placing output in the current directory
r = tracer.results()
r.write_results(show_missing=True, coverdir=".")

27.7 tracemalloc — Trace memory allocations

New in version 3.4.

Source code: Lib/tracemalloc.py

The tracemalloc module is a debug tool to trace memory blocks allocated by Python. It provides the
following information:

• Traceback where an object was allocated

• Statistics on allocated memory blocks per filename and per line number: total size, number and average
size of allocated memory blocks

• Compute the differences between two snapshots to detect memory leaks

To trace most memory blocks allocated by Python, the module should be started as early as possible by
setting the PYTHONTRACEMALLOC environment variable to 1, or by using -X tracemalloc command
line option. The tracemalloc.start() function can be called at runtime to start tracing Python memory
allocations.

27.7. tracemalloc — Trace memory allocations 1517

https://github.com/python/cpython/tree/3.5/Lib/tracemalloc.py

The Python Library Reference, Release 3.5.7

By default, a trace of an allocated memory block only stores the most recent frame (1 frame). To store 25
frames at startup: set the PYTHONTRACEMALLOC environment variable to 25, or use the -X tracemal-
loc=25 command line option.

27.7.1 Examples

Display the top 10

Display the 10 files allocating the most memory:

import tracemalloc

tracemalloc.start()

... run your application ...

snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics('lineno')

print("[Top 10]")
for stat in top_stats[:10]:

print(stat)

Example of output of the Python test suite:

[Top 10]
<frozen importlib._bootstrap>:716: size=4855 KiB, count=39328, average=126 B
<frozen importlib._bootstrap>:284: size=521 KiB, count=3199, average=167 B
/usr/lib/python3.4/collections/__init__.py:368: size=244 KiB, count=2315, average=108 B
/usr/lib/python3.4/unittest/case.py:381: size=185 KiB, count=779, average=243 B
/usr/lib/python3.4/unittest/case.py:402: size=154 KiB, count=378, average=416 B
/usr/lib/python3.4/abc.py:133: size=88.7 KiB, count=347, average=262 B
<frozen importlib._bootstrap>:1446: size=70.4 KiB, count=911, average=79 B
<frozen importlib._bootstrap>:1454: size=52.0 KiB, count=25, average=2131 B
<string>:5: size=49.7 KiB, count=148, average=344 B
/usr/lib/python3.4/sysconfig.py:411: size=48.0 KiB, count=1, average=48.0 KiB

We can see that Python loaded 4855 KiB data (bytecode and constants) from modules and that the collections
module allocated 244 KiB to build namedtuple types.

See Snapshot.statistics() for more options.

Compute differences

Take two snapshots and display the differences:

import tracemalloc
tracemalloc.start()
... start your application ...

snapshot1 = tracemalloc.take_snapshot()
... call the function leaking memory ...
snapshot2 = tracemalloc.take_snapshot()

top_stats = snapshot2.compare_to(snapshot1, 'lineno')

(continues on next page)

1518 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

(continued from previous page)

print("[Top 10 differences]")
for stat in top_stats[:10]:

print(stat)

Example of output before/after running some tests of the Python test suite:

[Top 10 differences]
<frozen importlib._bootstrap>:716: size=8173 KiB (+4428 KiB), count=71332 (+39369), average=117 B
/usr/lib/python3.4/linecache.py:127: size=940 KiB (+940 KiB), count=8106 (+8106), average=119 B
/usr/lib/python3.4/unittest/case.py:571: size=298 KiB (+298 KiB), count=589 (+589), average=519 B
<frozen importlib._bootstrap>:284: size=1005 KiB (+166 KiB), count=7423 (+1526), average=139 B
/usr/lib/python3.4/mimetypes.py:217: size=112 KiB (+112 KiB), count=1334 (+1334), average=86 B
/usr/lib/python3.4/http/server.py:848: size=96.0 KiB (+96.0 KiB), count=1 (+1), average=96.0 KiB
/usr/lib/python3.4/inspect.py:1465: size=83.5 KiB (+83.5 KiB), count=109 (+109), average=784 B
/usr/lib/python3.4/unittest/mock.py:491: size=77.7 KiB (+77.7 KiB), count=143 (+143), average=557 B
/usr/lib/python3.4/urllib/parse.py:476: size=71.8 KiB (+71.8 KiB), count=969 (+969), average=76 B
/usr/lib/python3.4/contextlib.py:38: size=67.2 KiB (+67.2 KiB), count=126 (+126), average=546 B

We can see that Python has loaded 8173 KiB of module data (bytecode and constants), and that this is
4428 KiB more than had been loaded before the tests, when the previous snapshot was taken. Similarly, the
linecache module has cached 940 KiB of Python source code to format tracebacks, all of it since the previous
snapshot.

If the system has little free memory, snapshots can be written on disk using the Snapshot.dump() method
to analyze the snapshot offline. Then use the Snapshot.load() method reload the snapshot.

Get the traceback of a memory block

Code to display the traceback of the biggest memory block:

import tracemalloc

Store 25 frames
tracemalloc.start(25)

... run your application ...

snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics('traceback')

pick the biggest memory block
stat = top_stats[0]
print("%s memory blocks: %.1f KiB" % (stat.count, stat.size / 1024))
for line in stat.traceback.format():

print(line)

Example of output of the Python test suite (traceback limited to 25 frames):

903 memory blocks: 870.1 KiB
File "<frozen importlib._bootstrap>", line 716
File "<frozen importlib._bootstrap>", line 1036
File "<frozen importlib._bootstrap>", line 934
File "<frozen importlib._bootstrap>", line 1068
File "<frozen importlib._bootstrap>", line 619

(continues on next page)

27.7. tracemalloc — Trace memory allocations 1519

The Python Library Reference, Release 3.5.7

(continued from previous page)

File "<frozen importlib._bootstrap>", line 1581
File "<frozen importlib._bootstrap>", line 1614
File "/usr/lib/python3.4/doctest.py", line 101
import pdb

File "<frozen importlib._bootstrap>", line 284
File "<frozen importlib._bootstrap>", line 938
File "<frozen importlib._bootstrap>", line 1068
File "<frozen importlib._bootstrap>", line 619
File "<frozen importlib._bootstrap>", line 1581
File "<frozen importlib._bootstrap>", line 1614
File "/usr/lib/python3.4/test/support/__init__.py", line 1728
import doctest

File "/usr/lib/python3.4/test/test_pickletools.py", line 21
support.run_doctest(pickletools)

File "/usr/lib/python3.4/test/regrtest.py", line 1276
test_runner()

File "/usr/lib/python3.4/test/regrtest.py", line 976
display_failure=not verbose)

File "/usr/lib/python3.4/test/regrtest.py", line 761
match_tests=ns.match_tests)

File "/usr/lib/python3.4/test/regrtest.py", line 1563
main()

File "/usr/lib/python3.4/test/__main__.py", line 3
regrtest.main_in_temp_cwd()

File "/usr/lib/python3.4/runpy.py", line 73
exec(code, run_globals)

File "/usr/lib/python3.4/runpy.py", line 160
"__main__", fname, loader, pkg_name)

We can see that the most memory was allocated in the importlib module to load data (bytecode and
constants) from modules: 870.1 KiB. The traceback is where the importlib loaded data most recently: on
the import pdb line of the doctest module. The traceback may change if a new module is loaded.

Pretty top

Code to display the 10 lines allocating the most memory with a pretty output, ignoring <frozen importlib.
_bootstrap> and <unknown> files:

import linecache
import os
import tracemalloc

def display_top(snapshot, key_type='lineno', limit=10):
snapshot = snapshot.filter_traces((

tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
tracemalloc.Filter(False, "<unknown>"),

))
top_stats = snapshot.statistics(key_type)

print("Top %s lines" % limit)
for index, stat in enumerate(top_stats[:limit], 1):

frame = stat.traceback[0]
replace "/path/to/module/file.py" with "module/file.py"
filename = os.sep.join(frame.filename.split(os.sep)[-2:])
print("#%s: %s:%s: %.1f KiB"

(continues on next page)

1520 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

(continued from previous page)

% (index, filename, frame.lineno, stat.size / 1024))
line = linecache.getline(frame.filename, frame.lineno).strip()
if line:

print(' %s' % line)

other = top_stats[limit:]
if other:

size = sum(stat.size for stat in other)
print("%s other: %.1f KiB" % (len(other), size / 1024))

total = sum(stat.size for stat in top_stats)
print("Total allocated size: %.1f KiB" % (total / 1024))

tracemalloc.start()

... run your application ...

snapshot = tracemalloc.take_snapshot()
display_top(snapshot)

Example of output of the Python test suite:

Top 10 lines
#1: Lib/base64.py:414: 419.8 KiB

_b85chars2 = [(a + b) for a in _b85chars for b in _b85chars]
#2: Lib/base64.py:306: 419.8 KiB

_a85chars2 = [(a + b) for a in _a85chars for b in _a85chars]
#3: collections/__init__.py:368: 293.6 KiB

exec(class_definition, namespace)
#4: Lib/abc.py:133: 115.2 KiB

cls = super().__new__(mcls, name, bases, namespace)
#5: unittest/case.py:574: 103.1 KiB

testMethod()
#6: Lib/linecache.py:127: 95.4 KiB

lines = fp.readlines()
#7: urllib/parse.py:476: 71.8 KiB

for a in _hexdig for b in _hexdig}
#8: <string>:5: 62.0 KiB
#9: Lib/_weakrefset.py:37: 60.0 KiB

self.data = set()
#10: Lib/base64.py:142: 59.8 KiB

_b32tab2 = [a + b for a in _b32tab for b in _b32tab]
6220 other: 3602.8 KiB
Total allocated size: 5303.1 KiB

See Snapshot.statistics() for more options.

27.7.2 API

Functions

tracemalloc.clear_traces()
Clear traces of memory blocks allocated by Python.

See also stop().

27.7. tracemalloc — Trace memory allocations 1521

The Python Library Reference, Release 3.5.7

tracemalloc.get_object_traceback(obj)
Get the traceback where the Python object obj was allocated. Return a Traceback instance, or None if
the tracemalloc module is not tracing memory allocations or did not trace the allocation of the object.

See also gc.get_referrers() and sys.getsizeof() functions.

tracemalloc.get_traceback_limit()
Get the maximum number of frames stored in the traceback of a trace.

The tracemalloc module must be tracing memory allocations to get the limit, otherwise an exception
is raised.

The limit is set by the start() function.

tracemalloc.get_traced_memory()
Get the current size and peak size of memory blocks traced by the tracemalloc module as a tuple:
(current: int, peak: int).

tracemalloc.get_tracemalloc_memory()
Get the memory usage in bytes of the tracemalloc module used to store traces of memory blocks.
Return an int.

tracemalloc.is_tracing()
True if the tracemalloc module is tracing Python memory allocations, False otherwise.

See also start() and stop() functions.

tracemalloc.start(nframe: int=1)
Start tracing Python memory allocations: install hooks on Python memory allocators. Collected
tracebacks of traces will be limited to nframe frames. By default, a trace of a memory block only
stores the most recent frame: the limit is 1. nframe must be greater or equal to 1.

Storing more than 1 frame is only useful to compute statistics grouped by 'traceback' or to compute
cumulative statistics: see the Snapshot.compare_to() and Snapshot.statistics() methods.

Storing more frames increases the memory and CPU overhead of the tracemalloc module. Use the
get_tracemalloc_memory() function to measure how much memory is used by the tracemalloc module.

The PYTHONTRACEMALLOC environment variable (PYTHONTRACEMALLOC=NFRAME) and
the -X tracemalloc=NFRAME command line option can be used to start tracing at startup.

See also stop(), is_tracing() and get_traceback_limit() functions.

tracemalloc.stop()
Stop tracing Python memory allocations: uninstall hooks on Python memory allocators. Also clears
all previously collected traces of memory blocks allocated by Python.

Call take_snapshot() function to take a snapshot of traces before clearing them.

See also start(), is_tracing() and clear_traces() functions.

tracemalloc.take_snapshot()
Take a snapshot of traces of memory blocks allocated by Python. Return a new Snapshot instance.

The snapshot does not include memory blocks allocated before the tracemalloc module started to trace
memory allocations.

Tracebacks of traces are limited to get_traceback_limit() frames. Use the nframe parameter of the
start() function to store more frames.

The tracemalloc module must be tracing memory allocations to take a snapshot, see the start() function.

See also the get_object_traceback() function.

1522 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

Filter

class tracemalloc.Filter(inclusive: bool, filename_pattern: str, lineno: int=None, all_frames:
bool=False)

Filter on traces of memory blocks.

See the fnmatch.fnmatch() function for the syntax of filename_pattern. The '.pyc' file extension is
replaced with '.py'.

Examples:

• Filter(True, subprocess.__file__) only includes traces of the subprocess module

• Filter(False, tracemalloc.__file__) excludes traces of the tracemalloc module

• Filter(False, "<unknown>") excludes empty tracebacks

Changed in version 3.5: The '.pyo' file extension is no longer replaced with '.py'.

inclusive
If inclusive is True (include), only trace memory blocks allocated in a file with a name matching
filename_pattern at line number lineno.

If inclusive is False (exclude), ignore memory blocks allocated in a file with a name matching
filename_pattern at line number lineno.

lineno
Line number (int) of the filter. If lineno is None, the filter matches any line number.

filename_pattern
Filename pattern of the filter (str).

all_frames
If all_frames is True, all frames of the traceback are checked. If all_frames is False, only the
most recent frame is checked.

This attribute has no effect if the traceback limit is 1. See the get_traceback_limit() function
and Snapshot.traceback_limit attribute.

Frame

class tracemalloc.Frame
Frame of a traceback.

The Traceback class is a sequence of Frame instances.

filename
Filename (str).

lineno
Line number (int).

Snapshot

class tracemalloc.Snapshot
Snapshot of traces of memory blocks allocated by Python.

The take_snapshot() function creates a snapshot instance.

27.7. tracemalloc — Trace memory allocations 1523

The Python Library Reference, Release 3.5.7

compare_to(old_snapshot: Snapshot, key_type: str, cumulative: bool=False)
Compute the differences with an old snapshot. Get statistics as a sorted list of StatisticDiff
instances grouped by key_type.

See the Snapshot.statistics() method for key_type and cumulative parameters.

The result is sorted from the biggest to the smallest by: absolute value of StatisticDiff.
size_diff, StatisticDiff.size, absolute value of StatisticDiff.count_diff, Statistic.count and then
by StatisticDiff.traceback.

dump(filename)
Write the snapshot into a file.

Use load() to reload the snapshot.

filter_traces(filters)
Create a new Snapshot instance with a filtered traces sequence, filters is a list of Filter instances.
If filters is an empty list, return a new Snapshot instance with a copy of the traces.

All inclusive filters are applied at once, a trace is ignored if no inclusive filters match it. A trace
is ignored if at least one exclusive filter matches it.

classmethod load(filename)
Load a snapshot from a file.

See also dump().

statistics(key_type: str, cumulative: bool=False)
Get statistics as a sorted list of Statistic instances grouped by key_type:

key_type description
'filename' filename
'lineno' filename and line number
'traceback' traceback

If cumulative is True, cumulate size and count of memory blocks of all frames of the traceback of
a trace, not only the most recent frame. The cumulative mode can only be used with key_type
equals to 'filename' and 'lineno'.

The result is sorted from the biggest to the smallest by: Statistic.size, Statistic.count and then
by Statistic.traceback.

traceback_limit
Maximum number of frames stored in the traceback of traces: result of the get_traceback_limit()
when the snapshot was taken.

traces
Traces of all memory blocks allocated by Python: sequence of Trace instances.

The sequence has an undefined order. Use the Snapshot.statistics() method to get a sorted list of
statistics.

Statistic

class tracemalloc.Statistic
Statistic on memory allocations.

Snapshot.statistics() returns a list of Statistic instances.

See also the StatisticDiff class.

1524 Chapter 27. Debugging and Profiling

The Python Library Reference, Release 3.5.7

count
Number of memory blocks (int).

size
Total size of memory blocks in bytes (int).

traceback
Traceback where the memory block was allocated, Traceback instance.

StatisticDiff

class tracemalloc.StatisticDiff
Statistic difference on memory allocations between an old and a new Snapshot instance.

Snapshot.compare_to() returns a list of StatisticDiff instances. See also the Statistic class.

count
Number of memory blocks in the new snapshot (int): 0 if the memory blocks have been released
in the new snapshot.

count_diff
Difference of number of memory blocks between the old and the new snapshots (int): 0 if the
memory blocks have been allocated in the new snapshot.

size
Total size of memory blocks in bytes in the new snapshot (int): 0 if the memory blocks have been
released in the new snapshot.

size_diff
Difference of total size of memory blocks in bytes between the old and the new snapshots (int): 0
if the memory blocks have been allocated in the new snapshot.

traceback
Traceback where the memory blocks were allocated, Traceback instance.

Trace

class tracemalloc.Trace
Trace of a memory block.

The Snapshot.traces attribute is a sequence of Trace instances.

size
Size of the memory block in bytes (int).

traceback
Traceback where the memory block was allocated, Traceback instance.

Traceback

class tracemalloc.Traceback
Sequence of Frame instances sorted from the most recent frame to the oldest frame.

A traceback contains at least 1 frame. If the tracemalloc module failed to get a frame, the filename
"<unknown>" at line number 0 is used.

When a snapshot is taken, tracebacks of traces are limited to get_traceback_limit() frames. See the
take_snapshot() function.

27.7. tracemalloc — Trace memory allocations 1525

The Python Library Reference, Release 3.5.7

The Trace.traceback attribute is an instance of Traceback instance.

format(limit=None)
Format the traceback as a list of lines with newlines. Use the linecache module to retrieve lines
from the source code. If limit is set, only format the limit most recent frames.

Similar to the traceback.format_tb() function, except that format() does not include newlines.

Example:

print("Traceback (most recent call first):")
for line in traceback:

print(line)

Output:

Traceback (most recent call first):
File "test.py", line 9
obj = Object()

File "test.py", line 12
tb = tracemalloc.get_object_traceback(f())

1526 Chapter 27. Debugging and Profiling

CHAPTER

TWENTYEIGHT

SOFTWARE PACKAGING AND DISTRIBUTION

These libraries help you with publishing and installing Python software. While these modules are designed
to work in conjunction with the Python Package Index, they can also be used with a local index server, or
without any index server at all.

28.1 distutils — Building and installing Python modules

The distutils package provides support for building and installing additional modules into a Python instal-
lation. The new modules may be either 100%-pure Python, or may be extension modules written in C, or
may be collections of Python packages which include modules coded in both Python and C.

Most Python users will not want to use this module directly, but instead use the cross-version tools maintained
by the Python Packaging Authority. In particular, setuptools is an enhanced alternative to distutils that
provides:

• support for declaring project dependencies

• additional mechanisms for configuring which files to include in source releases (including plugins for
integration with version control systems)

• the ability to declare project “entry points”, which can be used as the basis for application plugin
systems

• the ability to automatically generate Windows command line executables at installation time rather
than needing to prebuild them

• consistent behaviour across all supported Python versions

The recommended pip installer runs all setup.py scripts with setuptools, even if the script itself only imports
distutils. Refer to the Python Packaging User Guide for more information.

For the benefits of packaging tool authors and users seeking a deeper understanding of the details of the
current packaging and distribution system, the legacy distutils based user documentation and API reference
remain available:

• install-index

• distutils-index

28.2 ensurepip — Bootstrapping the pip installer

New in version 3.4.

1527

https://pypi.python.org/pypi
https://setuptools.readthedocs.io/en/latest/
https://pip.pypa.io/
https://packaging.python.org

The Python Library Reference, Release 3.5.7

The ensurepip package provides support for bootstrapping the pip installer into an existing Python installa-
tion or virtual environment. This bootstrapping approach reflects the fact that pip is an independent project
with its own release cycle, and the latest available stable version is bundled with maintenance and feature
releases of the CPython reference interpreter.

In most cases, end users of Python shouldn’t need to invoke this module directly (as pip should be boot-
strapped by default), but it may be needed if installing pip was skipped when installing Python (or when
creating a virtual environment) or after explicitly uninstalling pip.

Note: This module does not access the internet. All of the components needed to bootstrap pip are included
as internal parts of the package.

See also:

installing-index The end user guide for installing Python packages

PEP 453: Explicit bootstrapping of pip in Python installations The original rationale and specification for
this module.

28.2.1 Command line interface

The command line interface is invoked using the interpreter’s -m switch.

The simplest possible invocation is:

python -m ensurepip

This invocation will install pip if it is not already installed, but otherwise does nothing. To ensure the
installed version of pip is at least as recent as the one bundled with ensurepip, pass the --upgrade option:

python -m ensurepip --upgrade

By default, pip is installed into the current virtual environment (if one is active) or into the system site
packages (if there is no active virtual environment). The installation location can be controlled through two
additional command line options:

• --root <dir>: Installs pip relative to the given root directory rather than the root of the currently
active virtual environment (if any) or the default root for the current Python installation.

• --user: Installs pip into the user site packages directory rather than globally for the current Python
installation (this option is not permitted inside an active virtual environment).

By default, the scripts pipX and pipX.Y will be installed (where X.Y stands for the version of Python used
to invoke ensurepip). The scripts installed can be controlled through two additional command line options:

• --altinstall: if an alternate installation is requested, the pipX script will not be installed.

• --default-pip: if a “default pip” installation is requested, the pip script will be installed in addition to
the two regular scripts.

Providing both of the script selection options will trigger an exception.

1528 Chapter 28. Software Packaging and Distribution

https://www.python.org/dev/peps/pep-0453

The Python Library Reference, Release 3.5.7

28.2.2 Module API

ensurepip exposes two functions for programmatic use:

ensurepip.version()
Returns a string specifying the bundled version of pip that will be installed when bootstrapping an
environment.

ensurepip.bootstrap(root=None, upgrade=False, user=False, altinstall=False, default_pip=False, ver-
bosity=0)

Bootstraps pip into the current or designated environment.

root specifies an alternative root directory to install relative to. If root is None, then installation uses
the default install location for the current environment.

upgrade indicates whether or not to upgrade an existing installation of an earlier version of pip to the
bundled version.

user indicates whether to use the user scheme rather than installing globally.

By default, the scripts pipX and pipX.Y will be installed (where X.Y stands for the current version of
Python).

If altinstall is set, then pipX will not be installed.

If default_pip is set, then pip will be installed in addition to the two regular scripts.

Setting both altinstall and default_pip will trigger ValueError.

verbosity controls the level of output to sys.stdout from the bootstrapping operation.

Note: The bootstrapping process has side effects on both sys.path and os.environ. Invoking the
command line interface in a subprocess instead allows these side effects to be avoided.

Note: The bootstrapping process may install additional modules required by pip, but other software
should not assume those dependencies will always be present by default (as the dependencies may be
removed in a future version of pip).

28.3 venv — Creation of virtual environments

New in version 3.3.

Source code: Lib/venv/

The venv module provides support for creating lightweight “virtual environments” with their own site direc-
tories, optionally isolated from system site directories. Each virtual environment has its own Python binary
(allowing creation of environments with various Python versions) and can have its own independent set of
installed Python packages in its site directories.

See PEP 405 for more information about Python virtual environments.

Note: The pyvenv script has been deprecated as of Python 3.6 in favor of using python3 -m venv to help
prevent any potential confusion as to which Python interpreter a virtual environment will be based on.

28.3. venv — Creation of virtual environments 1529

https://github.com/python/cpython/tree/3.5/Lib/venv/
https://www.python.org/dev/peps/pep-0405

The Python Library Reference, Release 3.5.7

28.3.1 Creating virtual environments

Creation of virtual environments is done by executing the pyvenv script:

pyvenv /path/to/new/virtual/environment

Running this command creates the target directory (creating any parent directories that don’t exist already)
and places a pyvenv.cfg file in it with a home key pointing to the Python installation the command was run
from. It also creates a bin (or Scripts on Windows) subdirectory containing a copy of the python binary
(or binaries, in the case of Windows). It also creates an (initially empty) lib/pythonX.Y/site-packages
subdirectory (on Windows, this is Lib\site-packages).

See also:

Python Packaging User Guide: Creating and using virtual environments

On Windows, you may have to invoke the pyvenv script as follows, if you don’t have the relevant PATH and
PATHEXT settings:

c:\Temp>c:\Python35\python c:\Python35\Tools\Scripts\pyvenv.py myenv

or equivalently:

c:\Temp>c:\Python35\python -m venv myenv

The command, if run with -h, will show the available options:

usage: venv [-h] [--system-site-packages] [--symlinks | --copies] [--clear]
[--upgrade] [--without-pip]
ENV_DIR [ENV_DIR ...]

Creates virtual Python environments in one or more target directories.

positional arguments:
ENV_DIR A directory to create the environment in.

optional arguments:
-h, --help show this help message and exit
--system-site-packages Give the virtual environment access to the system

site-packages dir.
--symlinks Try to use symlinks rather than copies, when symlinks

are not the default for the platform.
--copies Try to use copies rather than symlinks, even when

symlinks are the default for the platform.
--clear Delete the contents of the environment directory if it

already exists, before environment creation.
--upgrade Upgrade the environment directory to use this version

of Python, assuming Python has been upgraded in-place.
--without-pip Skips installing or upgrading pip in the virtual

environment (pip is bootstrapped by default)

Depending on how the venv functionality has been invoked, the usage message may vary slightly, e.g. refer-
encing pyvenv rather than venv.

Changed in version 3.4: Installs pip by default, added the --without-pip and --copies options

Changed in version 3.4: In earlier versions, if the target directory already existed, an error was raised, unless
the --clear or --upgrade option was provided. Now, if an existing directory is specified, its contents are
removed and the directory is processed as if it had been newly created.

1530 Chapter 28. Software Packaging and Distribution

https://packaging.python.org/en/latest/installing/#creating-virtual-environments

The Python Library Reference, Release 3.5.7

The created pyvenv.cfg file also includes the include-system-site-packages key, set to true if venv is run with
the --system-site-packages option, false otherwise.

Unless the --without-pip option is given, ensurepip will be invoked to bootstrap pip into the virtual environ-
ment.

Multiple paths can be given to pyvenv, in which case an identical virtualenv will be created, according to
the given options, at each provided path.

Once a venv has been created, it can be “activated” using a script in the venv’s binary directory. The
invocation of the script is platform-specific:

Platform Shell Command to activate virtual environment
Posix bash/zsh $ source <venv>/bin/activate

fish $. <venv>/bin/activate.fish
csh/tcsh $ source <venv>/bin/activate.csh

Windows cmd.exe C:\> <venv>\Scripts\activate.bat
PowerShell PS C:\> <venv>\Scripts\Activate.ps1

You don’t specifically need to activate an environment; activation just prepends the venv’s binary directory
to your path, so that “python” invokes the venv’s Python interpreter and you can run installed scripts without
having to use their full path. However, all scripts installed in a venv should be runnable without activating
it, and run with the venv’s Python automatically.

You can deactivate a venv by typing “deactivate” in your shell. The exact mechanism is platform-specific: for
example, the Bash activation script defines a “deactivate” function, whereas on Windows there are separate
scripts called deactivate.bat and Deactivate.ps1 which are installed when the venv is created.

New in version 3.4: fish and csh activation scripts.

Note: A virtual environment (also called a venv) is a Python environment such that the Python interpreter,
libraries and scripts installed into it are isolated from those installed in other virtual environments, and (by
default) any libraries installed in a “system” Python, i.e. one which is installed as part of your operating
system.

A venv is a directory tree which contains Python executable files and other files which indicate that it is a
venv.

Common installation tools such as Setuptools and pip work as expected with venvs - i.e. when a venv is
active, they install Python packages into the venv without needing to be told to do so explicitly.

When a venv is active (i.e. the venv’s Python interpreter is running), the attributes sys.prefix and sys.
exec_prefix point to the base directory of the venv, whereas sys.base_prefix and sys.base_exec_prefix
point to the non-venv Python installation which was used to create the venv. If a venv is not active, then
sys.prefix is the same as sys.base_prefix and sys.exec_prefix is the same as sys.base_exec_prefix (they all
point to a non-venv Python installation).

When a venv is active, any options that change the installation path will be ignored from all distutils
configuration files to prevent projects being inadvertently installed outside of the virtual environment.

When working in a command shell, users can make a venv active by running an activate script in the
venv’s executables directory (the precise filename is shell-dependent), which prepends the venv’s directory
for executables to the PATH environment variable for the running shell. There should be no need in other
circumstances to activate a venv – scripts installed into venvs have a shebang line which points to the venv’s
Python interpreter. This means that the script will run with that interpreter regardless of the value of PATH.
On Windows, shebang line processing is supported if you have the Python Launcher for Windows installed
(this was added to Python in 3.3 - see PEP 397 for more details). Thus, double-clicking an installed script

28.3. venv — Creation of virtual environments 1531

https://www.python.org/dev/peps/pep-0397

The Python Library Reference, Release 3.5.7

in a Windows Explorer window should run the script with the correct interpreter without there needing to
be any reference to its venv in PATH.

28.3.2 API

The high-level method described above makes use of a simple API which provides mechanisms for third-party
virtual environment creators to customize environment creation according to their needs, the EnvBuilder
class.

class venv.EnvBuilder(system_site_packages=False, clear=False, symlinks=False, upgrade=False,
with_pip=False)

The EnvBuilder class accepts the following keyword arguments on instantiation:

• system_site_packages – a Boolean value indicating that the system Python site-packages should
be available to the environment (defaults to False).

• clear – a Boolean value which, if true, will delete the contents of any existing target directory,
before creating the environment.

• symlinks – a Boolean value indicating whether to attempt to symlink the Python binary (and any
necessary DLLs or other binaries, e.g. pythonw.exe), rather than copying. Defaults to True on
Linux and Unix systems, but False on Windows.

• upgrade – a Boolean value which, if true, will upgrade an existing environment with the running
Python - for use when that Python has been upgraded in-place (defaults to False).

• with_pip – a Boolean value which, if true, ensures pip is installed in the virtual environment.
This uses ensurepip with the --default-pip option.

Changed in version 3.4: Added the with_pip parameter

Creators of third-party virtual environment tools will be free to use the provided EnvBuilder class as
a base class.

The returned env-builder is an object which has a method, create:

create(env_dir)
This method takes as required argument the path (absolute or relative to the current directory)
of the target directory which is to contain the virtual environment. The create method will either
create the environment in the specified directory, or raise an appropriate exception.

The create method of the EnvBuilder class illustrates the hooks available for subclass customiza-
tion:

def create(self, env_dir):
"""
Create a virtualized Python environment in a directory.
env_dir is the target directory to create an environment in.
"""
env_dir = os.path.abspath(env_dir)
context = self.ensure_directories(env_dir)
self.create_configuration(context)
self.setup_python(context)
self.setup_scripts(context)
self.post_setup(context)

Each of the methods ensure_directories(), create_configuration(), setup_python(),
setup_scripts() and post_setup() can be overridden.

1532 Chapter 28. Software Packaging and Distribution

The Python Library Reference, Release 3.5.7

ensure_directories(env_dir)
Creates the environment directory and all necessary directories, and returns a context object.
This is just a holder for attributes (such as paths), for use by the other methods. The directories
are allowed to exist already, as long as either clear or upgrade were specified to allow operating
on an existing environment directory.

create_configuration(context)
Creates the pyvenv.cfg configuration file in the environment.

setup_python(context)
Creates a copy of the Python executable (and, under Windows, DLLs) in the environment. On a
POSIX system, if a specific executable python3.x was used, symlinks to python and python3 will
be created pointing to that executable, unless files with those names already exist.

setup_scripts(context)
Installs activation scripts appropriate to the platform into the virtual environment.

post_setup(context)
A placeholder method which can be overridden in third party implementations to pre-install
packages in the virtual environment or perform other post-creation steps.

In addition, EnvBuilder provides this utility method that can be called from setup_scripts() or
post_setup() in subclasses to assist in installing custom scripts into the virtual environment.

install_scripts(context, path)
path is the path to a directory that should contain subdirectories “common”, “posix”, “nt”, each
containing scripts destined for the bin directory in the environment. The contents of “common”
and the directory corresponding to os.name are copied after some text replacement of placeholders:

• __VENV_DIR__ is replaced with the absolute path of the environment directory.

• __VENV_NAME__ is replaced with the environment name (final path segment of envi-
ronment directory).

• __VENV_PROMPT__ is replaced with the prompt (the environment name surrounded by
parentheses and with a following space)

• __VENV_BIN_NAME__ is replaced with the name of the bin directory (either bin or
Scripts).

• __VENV_PYTHON__ is replaced with the absolute path of the environment’s executable.

The directories are allowed to exist (for when an existing environment is being upgraded).

There is also a module-level convenience function:

venv.create(env_dir, system_site_packages=False, clear=False, symlinks=False, with_pip=False)
Create an EnvBuilder with the given keyword arguments, and call its create() method with the env_dir
argument.

Changed in version 3.4: Added the with_pip parameter

28.3.3 An example of extending EnvBuilder

The following script shows how to extend EnvBuilder by implementing a subclass which installs setuptools
and pip into a created venv:

import os
import os.path
from subprocess import Popen, PIPE

(continues on next page)

28.3. venv — Creation of virtual environments 1533

The Python Library Reference, Release 3.5.7

(continued from previous page)

import sys
from threading import Thread
from urllib.parse import urlparse
from urllib.request import urlretrieve
import venv

class ExtendedEnvBuilder(venv.EnvBuilder):
"""
This builder installs setuptools and pip so that you can pip or
easy_install other packages into the created environment.

:param nodist: If True, setuptools and pip are not installed into the
created environment.

:param nopip: If True, pip is not installed into the created
environment.

:param progress: If setuptools or pip are installed, the progress of the
installation can be monitored by passing a progress
callable. If specified, it is called with two
arguments: a string indicating some progress, and a
context indicating where the string is coming from.
The context argument can have one of three values:
'main', indicating that it is called from virtualize()
itself, and 'stdout' and 'stderr', which are obtained
by reading lines from the output streams of a subprocess
which is used to install the app.

If a callable is not specified, default progress
information is output to sys.stderr.

"""

def __init__(self, *args, **kwargs):
self.nodist = kwargs.pop('nodist', False)
self.nopip = kwargs.pop('nopip', False)
self.progress = kwargs.pop('progress', None)
self.verbose = kwargs.pop('verbose', False)
super().__init__(*args, **kwargs)

def post_setup(self, context):
"""
Set up any packages which need to be pre-installed into the
environment being created.

:param context: The information for the environment creation request
being processed.

"""
os.environ['VIRTUAL_ENV'] = context.env_dir
if not self.nodist:

self.install_setuptools(context)
Can't install pip without setuptools
if not self.nopip and not self.nodist:

self.install_pip(context)

def reader(self, stream, context):
"""
Read lines from a subprocess' output stream and either pass to a progress
callable (if specified) or write progress information to sys.stderr.

(continues on next page)

1534 Chapter 28. Software Packaging and Distribution

The Python Library Reference, Release 3.5.7

(continued from previous page)

"""
progress = self.progress
while True:

s = stream.readline()
if not s:

break
if progress is not None:

progress(s, context)
else:

if not self.verbose:
sys.stderr.write('.')

else:
sys.stderr.write(s.decode('utf-8'))

sys.stderr.flush()
stream.close()

def install_script(self, context, name, url):
_, _, path, _, _, _ = urlparse(url)
fn = os.path.split(path)[-1]
binpath = context.bin_path
distpath = os.path.join(binpath, fn)
Download script into the env's binaries folder
urlretrieve(url, distpath)
progress = self.progress
if self.verbose:

term = '\n'
else:

term = ''
if progress is not None:

progress('Installing %s ...%s' % (name, term), 'main')
else:

sys.stderr.write('Installing %s ...%s' % (name, term))
sys.stderr.flush()

Install in the env
args = [context.env_exe, fn]
p = Popen(args, stdout=PIPE, stderr=PIPE, cwd=binpath)
t1 = Thread(target=self.reader, args=(p.stdout, 'stdout'))
t1.start()
t2 = Thread(target=self.reader, args=(p.stderr, 'stderr'))
t2.start()
p.wait()
t1.join()
t2.join()
if progress is not None:

progress('done.', 'main')
else:

sys.stderr.write('done.\n')
Clean up - no longer needed
os.unlink(distpath)

def install_setuptools(self, context):
"""
Install setuptools in the environment.

:param context: The information for the environment creation request
being processed.

(continues on next page)

28.3. venv — Creation of virtual environments 1535

The Python Library Reference, Release 3.5.7

(continued from previous page)

"""
url = 'https://bitbucket.org/pypa/setuptools/downloads/ez_setup.py'
self.install_script(context, 'setuptools', url)
clear up the setuptools archive which gets downloaded
pred = lambda o: o.startswith('setuptools-') and o.endswith('.tar.gz')
files = filter(pred, os.listdir(context.bin_path))
for f in files:

f = os.path.join(context.bin_path, f)
os.unlink(f)

def install_pip(self, context):
"""
Install pip in the environment.

:param context: The information for the environment creation request
being processed.

"""
url = 'https://raw.github.com/pypa/pip/master/contrib/get-pip.py'
self.install_script(context, 'pip', url)

def main(args=None):
compatible = True
if sys.version_info < (3, 3):

compatible = False
elif not hasattr(sys, 'base_prefix'):

compatible = False
if not compatible:

raise ValueError('This script is only for use with '
'Python 3.3 or later')

else:
import argparse

parser = argparse.ArgumentParser(prog=__name__,
description='Creates virtual Python '

'environments in one or '
'more target '
'directories.')

parser.add_argument('dirs', metavar='ENV_DIR', nargs='+',
help='A directory to create the environment in.')

parser.add_argument('--no-setuptools', default=False,
action='store_true', dest='nodist',
help="Don't install setuptools or pip in the "

"virtual environment.")
parser.add_argument('--no-pip', default=False,

action='store_true', dest='nopip',
help="Don't install pip in the virtual "

"environment.")
parser.add_argument('--system-site-packages', default=False,

action='store_true', dest='system_site',
help='Give the virtual environment access to the '

'system site-packages dir.')
if os.name == 'nt':

use_symlinks = False
else:

use_symlinks = True
parser.add_argument('--symlinks', default=use_symlinks,

(continues on next page)

1536 Chapter 28. Software Packaging and Distribution

The Python Library Reference, Release 3.5.7

(continued from previous page)

action='store_true', dest='symlinks',
help='Try to use symlinks rather than copies, '

'when symlinks are not the default for '
'the platform.')

parser.add_argument('--clear', default=False, action='store_true',
dest='clear', help='Delete the contents of the '

'environment directory if it '
'already exists, before '
'environment creation.')

parser.add_argument('--upgrade', default=False, action='store_true',
dest='upgrade', help='Upgrade the environment '

'directory to use this version '
'of Python, assuming Python '
'has been upgraded in-place.')

parser.add_argument('--verbose', default=False, action='store_true',
dest='verbose', help='Display the output '

'from the scripts which '
'install setuptools and pip.')

options = parser.parse_args(args)
if options.upgrade and options.clear:

raise ValueError('you cannot supply --upgrade and --clear together.')
builder = ExtendedEnvBuilder(system_site_packages=options.system_site,

clear=options.clear,
symlinks=options.symlinks,
upgrade=options.upgrade,
nodist=options.nodist,
nopip=options.nopip,
verbose=options.verbose)

for d in options.dirs:
builder.create(d)

if __name__ == '__main__':
rc = 1
try:

main()
rc = 0

except Exception as e:
print('Error: %s' % e, file=sys.stderr)

sys.exit(rc)

This script is also available for download online.

28.4 zipapp — Manage executable python zip archives

New in version 3.5.

Source code: Lib/zipapp.py

This module provides tools to manage the creation of zip files containing Python code, which can be executed
directly by the Python interpreter. The module provides both a Command-Line Interface and a Python API.

28.4. zipapp — Manage executable python zip archives 1537

https://gist.github.com/4673395
https://github.com/python/cpython/tree/3.5/Lib/zipapp.py

The Python Library Reference, Release 3.5.7

28.4.1 Basic Example

The following example shows how the Command-Line Interface can be used to create an executable archive
from a directory containing Python code. When run, the archive will execute the main function from the
module myapp in the archive.

$ python -m zipapp myapp -m "myapp:main"
$ python myapp.pyz
<output from myapp>

28.4.2 Command-Line Interface

When called as a program from the command line, the following form is used:

$ python -m zipapp source [options]

If source is a directory, this will create an archive from the contents of source. If source is a file, it should be
an archive, and it will be copied to the target archive (or the contents of its shebang line will be displayed
if the –info option is specified).

The following options are understood:

-o <output>, --output=<output>
Write the output to a file named output. If this option is not specified, the output filename will be the
same as the input source, with the extension .pyz added. If an explicit filename is given, it is used as
is (so a .pyz extension should be included if required).

An output filename must be specified if the source is an archive (and in that case, output must not be
the same as source).

-p <interpreter>, --python=<interpreter>
Add a #! line to the archive specifying interpreter as the command to run. Also, on POSIX, make the
archive executable. The default is to write no #! line, and not make the file executable.

-m <mainfn>, --main=<mainfn>
Write a __main__.py file to the archive that executes mainfn. The mainfn argument should have
the form “pkg.mod:fn”, where “pkg.mod” is a package/module in the archive, and “fn” is a callable in
the given module. The __main__.py file will execute that callable.

--main cannot be specified when copying an archive.

--info
Display the interpreter embedded in the archive, for diagnostic purposes. In this case, any other options
are ignored and SOURCE must be an archive, not a directory.

-h, --help
Print a short usage message and exit.

28.4.3 Python API

The module defines two convenience functions:

zipapp.create_archive(source, target=None, interpreter=None, main=None)
Create an application archive from source. The source can be any of the following:

• The name of a directory, or a pathlib.Path object referring to a directory, in which case a new
application archive will be created from the content of that directory.

1538 Chapter 28. Software Packaging and Distribution

The Python Library Reference, Release 3.5.7

• The name of an existing application archive file, or a pathlib.Path object referring to such a file, in
which case the file is copied to the target (modifying it to reflect the value given for the interpreter
argument). The file name should include the .pyz extension, if required.

• A file object open for reading in bytes mode. The content of the file should be an application
archive, and the file object is assumed to be positioned at the start of the archive.

The target argument determines where the resulting archive will be written:

• If it is the name of a file, or a pathlb.Path object, the archive will be written to that file.

• If it is an open file object, the archive will be written to that file object, which must be open for
writing in bytes mode.

• If the target is omitted (or None), the source must be a directory and the target will be a file
with the same name as the source, with a .pyz extension added.

The interpreter argument specifies the name of the Python interpreter with which the archive will
be executed. It is written as a “shebang” line at the start of the archive. On POSIX, this will be
interpreted by the OS, and on Windows it will be handled by the Python launcher. Omitting the
interpreter results in no shebang line being written. If an interpreter is specified, and the target is a
filename, the executable bit of the target file will be set.

The main argument specifies the name of a callable which will be used as the main program for the
archive. It can only be specified if the source is a directory, and the source does not already contain
a __main__.py file. The main argument should take the form “pkg.module:callable” and the archive
will be run by importing “pkg.module” and executing the given callable with no arguments. It is an
error to omit main if the source is a directory and does not contain a __main__.py file, as otherwise
the resulting archive would not be executable.

If a file object is specified for source or target, it is the caller’s responsibility to close it after calling
create_archive.

When copying an existing archive, file objects supplied only need read and readline, or write methods.
When creating an archive from a directory, if the target is a file object it will be passed to the zipfile.
ZipFile class, and must supply the methods needed by that class.

zipapp.get_interpreter(archive)
Return the interpreter specified in the #! line at the start of the archive. If there is no #! line, return
None. The archive argument can be a filename or a file-like object open for reading in bytes mode. It
is assumed to be at the start of the archive.

28.4.4 Examples

Pack up a directory into an archive, and run it.

$ python -m zipapp myapp
$ python myapp.pyz
<output from myapp>

The same can be done using the create_archive() functon:

>>> import zipapp
>>> zipapp.create_archive('myapp.pyz', 'myapp')

To make the application directly executable on POSIX, specify an interpreter to use.

28.4. zipapp — Manage executable python zip archives 1539

The Python Library Reference, Release 3.5.7

$ python -m zipapp myapp -p "/usr/bin/env python"
$./myapp.pyz
<output from myapp>

To replace the shebang line on an existing archive, create a modified archive using the create_archive()
function:

>>> import zipapp
>>> zipapp.create_archive('old_archive.pyz', 'new_archive.pyz', '/usr/bin/python3')

To update the file in place, do the replacement in memory using a BytesIO object, and then overwrite the
source afterwards. Note that there is a risk when overwriting a file in place that an error will result in the
loss of the original file. This code does not protect against such errors, but production code should do so.
Also, this method will only work if the archive fits in memory:

>>> import zipapp
>>> import io
>>> temp = io.BytesIO()
>>> zipapp.create_archive('myapp.pyz', temp, '/usr/bin/python2')
>>> with open('myapp.pyz', 'wb') as f:
>>> f.write(temp.getvalue())

Note that if you specify an interpreter and then distribute your application archive, you need to ensure that
the interpreter used is portable. The Python launcher for Windows supports most common forms of POSIX
#! line, but there are other issues to consider:

• If you use “/usr/bin/env python” (or other forms of the “python” command, such as “/usr/bin/python”),
you need to consider that your users may have either Python 2 or Python 3 as their default, and write
your code to work under both versions.

• If you use an explicit version, for example “/usr/bin/env python3” your application will not work for
users who do not have that version. (This may be what you want if you have not made your code
Python 2 compatible).

• There is no way to say “python X.Y or later”, so be careful of using an exact version like “/usr/bin/env
python3.4” as you will need to change your shebang line for users of Python 3.5, for example.

28.4.5 The Python Zip Application Archive Format

Python has been able to execute zip files which contain a __main__.py file since version 2.6. In order to be
executed by Python, an application archive simply has to be a standard zip file containing a __main__.py
file which will be run as the entry point for the application. As usual for any Python script, the parent of
the script (in this case the zip file) will be placed on sys.path and thus further modules can be imported
from the zip file.

The zip file format allows arbitrary data to be prepended to a zip file. The zip application format uses this
ability to prepend a standard POSIX “shebang” line to the file (#!/path/to/interpreter).

Formally, the Python zip application format is therefore:

1. An optional shebang line, containing the characters b'#!' followed by an interpreter name, and then
a newline (b'\n') character. The interpreter name can be anything acceptable to the OS “shebang”
processing, or the Python launcher on Windows. The interpreter should be encoded in UTF-8 on
Windows, and in sys.getfilesystemencoding() on POSIX.

2. Standard zipfile data, as generated by the zipfile module. The zipfile content must include a file called
__main__.py (which must be in the “root” of the zipfile - i.e., it cannot be in a subdirectory). The

1540 Chapter 28. Software Packaging and Distribution

The Python Library Reference, Release 3.5.7

zipfile data can be compressed or uncompressed.

If an application archive has a shebang line, it may have the executable bit set on POSIX systems, to allow
it to be executed directly.

There is no requirement that the tools in this module are used to create application archives - the module
is a convenience, but archives in the above format created by any means are acceptable to Python.

28.4. zipapp — Manage executable python zip archives 1541

The Python Library Reference, Release 3.5.7

1542 Chapter 28. Software Packaging and Distribution

CHAPTER

TWENTYNINE

PYTHON RUNTIME SERVICES

The modules described in this chapter provide a wide range of services related to the Python interpreter and
its interaction with its environment. Here’s an overview:

29.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that
interact strongly with the interpreter. It is always available.

sys.abiflags
On POSIX systems where Python was built with the standard configure script, this contains the ABI
flags as specified by PEP 3149.

New in version 3.2.

sys.argv
The list of command line arguments passed to a Python script. argv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed using the -c
command line option to the interpreter, argv[0] is set to the string '-c'. If no script name was passed
to the Python interpreter, argv[0] is the empty string.

To loop over the standard input, or the list of files given on the command line, see the fileinput module.

sys.base_exec_prefix
Set during Python startup, before site.py is run, to the same value as exec_prefix. If not running in
a virtual environment, the values will stay the same; if site.py finds that a virtual environment is in
use, the values of prefix and exec_prefix will be changed to point to the virtual environment, whereas
base_prefix and base_exec_prefix will remain pointing to the base Python installation (the one which
the virtual environment was created from).

New in version 3.3.

sys.base_prefix
Set during Python startup, before site.py is run, to the same value as prefix. If not running in a
virtual environment, the values will stay the same; if site.py finds that a virtual environment is in
use, the values of prefix and exec_prefix will be changed to point to the virtual environment, whereas
base_prefix and base_exec_prefix will remain pointing to the base Python installation (the one which
the virtual environment was created from).

New in version 3.3.

1543

https://www.python.org/dev/peps/pep-3149

The Python Library Reference, Release 3.5.7

sys.byteorder
An indicator of the native byte order. This will have the value 'big' on big-endian (most-significant
byte first) platforms, and 'little' on little-endian (least-significant byte first) platforms.

sys.builtin_module_names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This
information is not available in any other way — modules.keys() only lists the imported modules.)

sys.call_tracing(func, args)
Call func(*args), while tracing is enabled. The tracing state is saved, and restored afterwards. This is
intended to be called from a debugger from a checkpoint, to recursively debug some other code.

sys.copyright
A string containing the copyright pertaining to the Python interpreter.

sys._clear_type_cache()
Clear the internal type cache. The type cache is used to speed up attribute and method lookups. Use
the function only to drop unnecessary references during reference leak debugging.

This function should be used for internal and specialized purposes only.

sys._current_frames()
Return a dictionary mapping each thread’s identifier to the topmost stack frame currently active in
that thread at the time the function is called. Note that functions in the traceback module can build
the call stack given such a frame.

This is most useful for debugging deadlock: this function does not require the deadlocked threads’
cooperation, and such threads’ call stacks are frozen for as long as they remain deadlocked. The frame
returned for a non-deadlocked thread may bear no relationship to that thread’s current activity by the
time calling code examines the frame.

This function should be used for internal and specialized purposes only.

sys._debugmallocstats()
Print low-level information to stderr about the state of CPython’s memory allocator.

If Python is configured –with-pydebug, it also performs some expensive internal consistency checks.

New in version 3.3.

CPython implementation detail: This function is specific to CPython. The exact output format is not
defined here, and may change.

sys.dllhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

sys.displayhook(value)
If value is not None, this function prints repr(value) to sys.stdout, and saves value in builtins._.
If repr(value) is not encodable to sys.stdout.encoding with sys.stdout.errors error handler (which is
probably 'strict'), encode it to sys.stdout.encoding with 'backslashreplace' error handler.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook.

Pseudo-code:

def displayhook(value):
if value is None:

return
Set '_' to None to avoid recursion
builtins._ = None

(continues on next page)

1544 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

text = repr(value)
try:

sys.stdout.write(text)
except UnicodeEncodeError:

bytes = text.encode(sys.stdout.encoding, 'backslashreplace')
if hasattr(sys.stdout, 'buffer'):

sys.stdout.buffer.write(bytes)
else:

text = bytes.decode(sys.stdout.encoding, 'strict')
sys.stdout.write(text)

sys.stdout.write("\n")
builtins._ = value

Changed in version 3.2: Use 'backslashreplace' error handler on UnicodeEncodeError.

sys.dont_write_bytecode
If this is true, Python won’t try to write .pyc files on the import of source modules. This value is initially
set to True or False depending on the -B command line option and the PYTHONDONTWRITEBYTE-
CODE environment variable, but you can set it yourself to control bytecode file generation.

sys.excepthook(type, value, traceback)
This function prints out a given traceback and exception to sys.stderr.

When an exception is raised and uncaught, the interpreter calls sys.excepthook with three arguments,
the exception class, exception instance, and a traceback object. In an interactive session this happens
just before control is returned to the prompt; in a Python program this happens just before the program
exits. The handling of such top-level exceptions can be customized by assigning another three-argument
function to sys.excepthook.

sys.__displayhook__
sys.__excepthook__

These objects contain the original values of displayhook and excepthook at the start of the program.
They are saved so that displayhook and excepthook can be restored in case they happen to get replaced
with broken objects.

sys.exc_info()
This function returns a tuple of three values that give information about the exception that is currently
being handled. The information returned is specific both to the current thread and to the current stack
frame. If the current stack frame is not handling an exception, the information is taken from the calling
stack frame, or its caller, and so on until a stack frame is found that is handling an exception. Here,
“handling an exception” is defined as “executing an except clause.” For any stack frame, only information
about the exception being currently handled is accessible.

If no exception is being handled anywhere on the stack, a tuple containing three None values is returned.
Otherwise, the values returned are (type, value, traceback). Their meaning is: type gets the type of the
exception being handled (a subclass of BaseException); value gets the exception instance (an instance
of the exception type); traceback gets a traceback object (see the Reference Manual) which encapsulates
the call stack at the point where the exception originally occurred.

sys.exec_prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed;
by default, this is also '/usr/local'. This can be set at build time with the --exec-prefix argument to the
configure script. Specifically, all configuration files (e.g. the pyconfig.h header file) are installed in the
directory exec_prefix/lib/pythonX.Y/config, and shared library modules are installed in exec_prefix/
lib/pythonX.Y/lib-dynload, where X.Y is the version number of Python, for example 3.2.

Note: If a virtual environment is in effect, this value will be changed in site.py to point to the virtual

29.1. sys — System-specific parameters and functions 1545

The Python Library Reference, Release 3.5.7

environment. The value for the Python installation will still be available, via base_exec_prefix.

sys.executable
A string giving the absolute path of the executable binary for the Python interpreter, on systems where
this makes sense. If Python is unable to retrieve the real path to its executable, sys.executable will be
an empty string or None.

sys.exit([arg])
Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions
specified by finally clauses of try statements are honored, and it is possible to intercept the exit
attempt at an outer level.

The optional argument arg can be an integer giving the exit status (defaulting to zero), or another
type of object. If it is an integer, zero is considered “successful termination” and any nonzero value is
considered “abnormal termination” by shells and the like. Most systems require it to be in the range
0–127, and produce undefined results otherwise. Some systems have a convention for assigning specific
meanings to specific exit codes, but these are generally underdeveloped; Unix programs generally use
2 for command line syntax errors and 1 for all other kind of errors. If another type of object is passed,
None is equivalent to passing zero, and any other object is printed to stderr and results in an exit code
of 1. In particular, sys.exit("some error message") is a quick way to exit a program when an error
occurs.

Since exit() ultimately “only” raises an exception, it will only exit the process when called from the
main thread, and the exception is not intercepted.

sys.flags
The struct sequence flags exposes the status of command line flags. The attributes are read only.

attribute flag
debug -d
inspect -i
interactive -i
optimize -O or -OO
dont_write_bytecode -B
no_user_site -s
no_site -S
ignore_environment -E
verbose -v
bytes_warning -b
quiet -q
hash_randomization -R

Changed in version 3.2: Added quiet attribute for the new -q flag.

New in version 3.2.3: The hash_randomization attribute.

Changed in version 3.3: Removed obsolete division_warning attribute.

sys.float_info
A struct sequence holding information about the float type. It contains low level information about the
precision and internal representation. The values correspond to the various floating-point constants
defined in the standard header file float.h for the ‘C’ programming language; see section 5.2.4.2.2 of
the 1999 ISO/IEC C standard [C99], ‘Characteristics of floating types’, for details.

1546 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

attribute float.h macro explanation
epsilon DBL_EPSILON difference between 1 and the least value greater than 1

that is representable as a float
dig DBL_DIG maximum number of decimal digits that can be

faithfully represented in a float; see below
mant_dig DBL_MANT_DIG float precision: the number of base-radix digits in the

significand of a float
max DBL_MAX maximum representable finite float
max_exp DBL_MAX_EXP maximum integer e such that radix**(e-1) is a

representable finite float
max_10_exp DBL_MAX_10_EXP maximum integer e such that 10**e is in the range of

representable finite floats
min DBL_MIN minimum positive normalized float
min_exp DBL_MIN_EXP minimum integer e such that radix**(e-1) is a

normalized float
min_10_exp DBL_MIN_10_EXP minimum integer e such that 10**e is a normalized float
radix FLT_RADIX radix of exponent representation
rounds FLT_ROUNDS integer constant representing the rounding mode used

for arithmetic operations. This reflects the value of the
system FLT_ROUNDS macro at interpreter startup
time. See section 5.2.4.2.2 of the C99 standard for an
explanation of the possible values and their meanings.

The attribute sys.float_info.dig needs further explanation. If s is any string representing a decimal
number with at most sys.float_info.dig significant digits, then converting s to a float and back again
will recover a string representing the same decimal value:

>>> import sys
>>> sys.float_info.dig
15
>>> s = '3.14159265358979' # decimal string with 15 significant digits
>>> format(float(s), '.15g') # convert to float and back -> same value
'3.14159265358979'

But for strings with more than sys.float_info.dig significant digits, this isn’t always true:

>>> s = '9876543211234567' # 16 significant digits is too many!
>>> format(float(s), '.16g') # conversion changes value
'9876543211234568'

sys.float_repr_style
A string indicating how the repr() function behaves for floats. If the string has value 'short' then
for a finite float x, repr(x) aims to produce a short string with the property that float(repr(x)) == x.
This is the usual behaviour in Python 3.1 and later. Otherwise, float_repr_style has value 'legacy'
and repr(x) behaves in the same way as it did in versions of Python prior to 3.1.

New in version 3.1.

sys.getallocatedblocks()
Return the number of memory blocks currently allocated by the interpreter, regardless of their size.
This function is mainly useful for tracking and debugging memory leaks. Because of the interpreter’s
internal caches, the result can vary from call to call; you may have to call _clear_type_cache() and
gc.collect() to get more predictable results.

If a Python build or implementation cannot reasonably compute this information, getallocatedblocks()

29.1. sys — System-specific parameters and functions 1547

The Python Library Reference, Release 3.5.7

is allowed to return 0 instead.

New in version 3.4.

sys.getcheckinterval()
Return the interpreter’s “check interval”; see setcheckinterval().

Deprecated since version 3.2: Use getswitchinterval() instead.

sys.getdefaultencoding()
Return the name of the current default string encoding used by the Unicode implementation.

sys.getdlopenflags()
Return the current value of the flags that are used for dlopen() calls. Symbolic names for the flag values
can be found in the os module (RTLD_xxx constants, e.g. os.RTLD_LAZY). Availability: Unix.

sys.getfilesystemencoding()
Return the name of the encoding used to convert Unicode filenames into system file names. The result
value depends on the operating system:

• On Mac OS X, the encoding is 'utf-8'.

• On Unix, the encoding is the user’s preference according to the result of nl_langinfo(CODESET).

• On Windows NT+, file names are Unicode natively, so no conversion is performed. getfilesyste-
mencoding() still returns 'mbcs', as this is the encoding that applications should use when they
explicitly want to convert Unicode strings to byte strings that are equivalent when used as file
names.

• On Windows 9x, the encoding is 'mbcs'.

Changed in version 3.2: getfilesystemencoding() result cannot be None anymore.

sys.getrefcount(object)
Return the reference count of the object. The count returned is generally one higher than you might
expect, because it includes the (temporary) reference as an argument to getrefcount().

sys.getrecursionlimit()
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack.
This limit prevents infinite recursion from causing an overflow of the C stack and crashing Python. It
can be set by setrecursionlimit().

sys.getsizeof(object[, default])
Return the size of an object in bytes. The object can be any type of object. All built-in objects
will return correct results, but this does not have to hold true for third-party extensions as it is
implementation specific.

Only the memory consumption directly attributed to the object is accounted for, not the memory
consumption of objects it refers to.

If given, default will be returned if the object does not provide means to retrieve the size. Otherwise
a TypeError will be raised.

getsizeof() calls the object’s __sizeof__ method and adds an additional garbage collector overhead if
the object is managed by the garbage collector.

See recursive sizeof recipe for an example of using getsizeof() recursively to find the size of containers
and all their contents.

sys.getswitchinterval()
Return the interpreter’s “thread switch interval”; see setswitchinterval().

New in version 3.2.

1548 Chapter 29. Python Runtime Services

https://code.activestate.com/recipes/577504

The Python Library Reference, Release 3.5.7

sys._getframe([depth])
Return a frame object from the call stack. If optional integer depth is given, return the frame object
that many calls below the top of the stack. If that is deeper than the call stack, ValueError is raised.
The default for depth is zero, returning the frame at the top of the call stack.

CPython implementation detail: This function should be used for internal and specialized purposes
only. It is not guaranteed to exist in all implementations of Python.

sys.getprofile()
Get the profiler function as set by setprofile().

sys.gettrace()
Get the trace function as set by settrace().

CPython implementation detail: The gettrace() function is intended only for implementing debuggers,
profilers, coverage tools and the like. Its behavior is part of the implementation platform, rather than
part of the language definition, and thus may not be available in all Python implementations.

sys.getwindowsversion()
Return a named tuple describing the Windows version currently running. The named elements are
major, minor, build, platform, service_pack, service_pack_minor, service_pack_major, suite_mask,
and product_type. service_pack contains a string while all other values are integers. The components
can also be accessed by name, so sys.getwindowsversion()[0] is equivalent to sys.getwindowsversion().
major. For compatibility with prior versions, only the first 5 elements are retrievable by indexing.

platform may be one of the following values:

Constant Platform
0 (VER_PLATFORM_WIN32s) Win32s on Windows 3.1
1 (VER_PLATFORM_WIN32_WINDOWS) Windows 95/98/ME
2 (VER_PLATFORM_WIN32_NT) Windows NT/2000/XP/x64
3 (VER_PLATFORM_WIN32_CE) Windows CE

product_type may be one of the following values:

Constant Meaning
1 (VER_NT_WORKSTATION) The system is a workstation.
2 (VER_NT_DOMAIN_CONTROLLER) The system is a domain controller.
3 (VER_NT_SERVER) The system is a server, but not a domain controller.

This function wraps the Win32 GetVersionEx() function; see the Microsoft documentation on OSVER-
SIONINFOEX() for more information about these fields.

Availability: Windows.

Changed in version 3.2: Changed to a named tuple and added service_pack_minor, ser-
vice_pack_major, suite_mask, and product_type.

sys.get_coroutine_wrapper()
Returns None, or a wrapper set by set_coroutine_wrapper().

New in version 3.5: See PEP 492 for more details.

Note: This function has been added on a provisional basis (see PEP 411 for details.) Use it only for
debugging purposes.

29.1. sys — System-specific parameters and functions 1549

https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0411

The Python Library Reference, Release 3.5.7

sys.hash_info
A struct sequence giving parameters of the numeric hash implementation. For more details about
hashing of numeric types, see Hashing of numeric types.

attribute explanation
width width in bits used for hash values
modulus prime modulus P used for numeric hash scheme
inf hash value returned for a positive infinity
nan hash value returned for a nan
imag multiplier used for the imaginary part of a complex number
algorithm name of the algorithm for hashing of str, bytes, and memoryview
hash_bits internal output size of the hash algorithm
seed_bits size of the seed key of the hash algorithm

New in version 3.2.

Changed in version 3.4: Added algorithm, hash_bits and seed_bits

sys.hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version,
including proper support for non-production releases. For example, to test that the Python interpreter
is at least version 1.5.2, use:

if sys.hexversion >= 0x010502F0:
use some advanced feature
...

else:
use an alternative implementation or warn the user
...

This is called hexversion since it only really looks meaningful when viewed as the result of passing it
to the built-in hex() function. The struct sequence sys.version_info may be used for a more human-
friendly encoding of the same information.

More details of hexversion can be found at apiabiversion.

sys.implementation
An object containing information about the implementation of the currently running Python inter-
preter. The following attributes are required to exist in all Python implementations.

name is the implementation’s identifier, e.g. 'cpython'. The actual string is defined by the Python
implementation, but it is guaranteed to be lower case.

version is a named tuple, in the same format as sys.version_info. It represents the version of the Python
implementation. This has a distinct meaning from the specific version of the Python language to which
the currently running interpreter conforms, which sys.version_info represents. For example, for PyPy
1.8 sys.implementation.version might be sys.version_info(1, 8, 0, 'final', 0), whereas sys.version_info
would be sys.version_info(2, 7, 2, 'final', 0). For CPython they are the same value, since it is the
reference implementation.

hexversion is the implementation version in hexadecimal format, like sys.hexversion.

cache_tag is the tag used by the import machinery in the filenames of cached modules. By convention,
it would be a composite of the implementation’s name and version, like 'cpython-33'. However, a
Python implementation may use some other value if appropriate. If cache_tag is set to None, it
indicates that module caching should be disabled.

sys.implementation may contain additional attributes specific to the Python implementation. These
non-standard attributes must start with an underscore, and are not described here. Regardless of its

1550 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

contents, sys.implementation will not change during a run of the interpreter, nor between implemen-
tation versions. (It may change between Python language versions, however.) See PEP 421 for more
information.

New in version 3.3.

sys.int_info
A struct sequence that holds information about Python’s internal representation of integers. The
attributes are read only.

Attribute Explanation
bits_per_digit number of bits held in each digit. Python integers are stored internally in base

2**int_info.bits_per_digit
sizeof_digit size in bytes of the C type used to represent a digit

New in version 3.1.

sys.__interactivehook__
When this attribute exists, its value is automatically called (with no arguments) when the interpreter
is launched in interactive mode. This is done after the PYTHONSTARTUP file is read, so that you
can set this hook there. The site module sets this.

New in version 3.4.

sys.intern(string)
Enter string in the table of “interned” strings and return the interned string – which is string itself or
a copy. Interning strings is useful to gain a little performance on dictionary lookup – if the keys in a
dictionary are interned, and the lookup key is interned, the key comparisons (after hashing) can be
done by a pointer compare instead of a string compare. Normally, the names used in Python programs
are automatically interned, and the dictionaries used to hold module, class or instance attributes have
interned keys.

Interned strings are not immortal; you must keep a reference to the return value of intern() around to
benefit from it.

sys.is_finalizing()
Return True if the Python interpreter is shutting down, False otherwise.

New in version 3.5.

sys.last_type
sys.last_value
sys.last_traceback

These three variables are not always defined; they are set when an exception is not handled and the
interpreter prints an error message and a stack traceback. Their intended use is to allow an interactive
user to import a debugger module and engage in post-mortem debugging without having to re-execute
the command that caused the error. (Typical use is import pdb; pdb.pm() to enter the post-mortem
debugger; see pdb module for more information.)

The meaning of the variables is the same as that of the return values from exc_info() above.

sys.maxsize
An integer giving the maximum value a variable of type Py_ssize_t can take. It’s usually 2**31 - 1
on a 32-bit platform and 2**63 - 1 on a 64-bit platform.

sys.maxunicode
An integer giving the value of the largest Unicode code point, i.e. 1114111 (0x10FFFF in hexadecimal).

29.1. sys — System-specific parameters and functions 1551

https://www.python.org/dev/peps/pep-0421

The Python Library Reference, Release 3.5.7

Changed in version 3.3: Before PEP 393, sys.maxunicode used to be either 0xFFFF or 0x10FFFF,
depending on the configuration option that specified whether Unicode characters were stored as UCS-2
or UCS-4.

sys.meta_path
A list of meta path finder objects that have their find_spec() methods called to see if one of the objects
can find the module to be imported. The find_spec() method is called with at least the absolute name
of the module being imported. If the module to be imported is contained in a package, then the parent
package’s __path__ attribute is passed in as a second argument. The method returns a module spec,
or None if the module cannot be found.

See also:

importlib.abc.MetaPathFinder The abstract base class defining the interface of finder objects on
meta_path.

importlib.machinery.ModuleSpec The concrete class which find_spec() should return instances of.

Changed in version 3.4: Module specs were introduced in Python 3.4, by PEP 451. Earlier versions
of Python looked for a method called find_module(). This is still called as a fallback if a meta_path
entry doesn’t have a find_spec() method.

sys.modules
This is a dictionary that maps module names to modules which have already been loaded. This can
be manipulated to force reloading of modules and other tricks. However, replacing the dictionary will
not necessarily work as expected and deleting essential items from the dictionary may cause Python
to fail.

sys.path
A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this list, path[0], is the directory containing the
script that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the
interpreter is invoked interactively or if the script is read from standard input), path[0] is the empty
string, which directs Python to search modules in the current directory first. Notice that the script
directory is inserted before the entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes. Only strings and bytes should be added to
sys.path; all other data types are ignored during import.

See also:

Module site This describes how to use .pth files to extend sys.path.

sys.path_hooks
A list of callables that take a path argument to try to create a finder for the path. If a finder can be
created, it is to be returned by the callable, else raise ImportError.

Originally specified in PEP 302.

sys.path_importer_cache
A dictionary acting as a cache for finder objects. The keys are paths that have been passed to sys.
path_hooks and the values are the finders that are found. If a path is a valid file system path but no
finder is found on sys.path_hooks then None is stored.

Originally specified in PEP 302.

Changed in version 3.3: None is stored instead of imp.NullImporter when no finder is found.

1552 Chapter 29. Python Runtime Services

https://www.python.org/dev/peps/pep-0393
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.7

sys.platform
This string contains a platform identifier that can be used to append platform-specific components to
sys.path, for instance.

For Unix systems, except on Linux, this is the lowercased OS name as returned by uname -s with
the first part of the version as returned by uname -r appended, e.g. 'sunos5' or 'freebsd8', at the
time when Python was built. Unless you want to test for a specific system version, it is therefore
recommended to use the following idiom:

if sys.platform.startswith('freebsd'):
FreeBSD-specific code here...

elif sys.platform.startswith('linux'):
Linux-specific code here...

For other systems, the values are:

System platform value
Linux 'linux'
Windows 'win32'
Windows/Cygwin 'cygwin'
Mac OS X 'darwin'

Changed in version 3.3: On Linux, sys.platform doesn’t contain the major version anymore. It is always
'linux', instead of 'linux2' or 'linux3'. Since older Python versions include the version number, it
is recommended to always use the startswith idiom presented above.

See also:

os.name has a coarser granularity. os.uname() gives system-dependent version information.

The platform module provides detailed checks for the system’s identity.

sys.prefix
A string giving the site-specific directory prefix where the platform independent Python files are in-
stalled; by default, this is the string '/usr/local'. This can be set at build time with the --prefix
argument to the configure script. The main collection of Python library modules is installed in the
directory prefix/lib/pythonX.Y while the platform independent header files (all except pyconfig.h) are
stored in prefix/include/pythonX.Y, where X.Y is the version number of Python, for example 3.2.

Note: If a virtual environment is in effect, this value will be changed in site.py to point to the virtual
environment. The value for the Python installation will still be available, via base_prefix.

sys.ps1
sys.ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the
interpreter is in interactive mode. Their initial values in this case are '>>> ' and '... '. If a non-
string object is assigned to either variable, its str() is re-evaluated each time the interpreter prepares
to read a new interactive command; this can be used to implement a dynamic prompt.

sys.setcheckinterval(interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for
periodic things such as thread switches and signal handlers. The default is 100, meaning the check is
performed every 100 Python virtual instructions. Setting it to a larger value may increase performance
for programs using threads. Setting it to a value <= 0 checks every virtual instruction, maximizing
responsiveness as well as overhead.

29.1. sys — System-specific parameters and functions 1553

The Python Library Reference, Release 3.5.7

Deprecated since version 3.2: This function doesn’t have an effect anymore, as the internal logic for
thread switching and asynchronous tasks has been rewritten. Use setswitchinterval() instead.

sys.setdlopenflags(n)
Set the flags used by the interpreter for dlopen() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a module, if
called as sys.setdlopenflags(0). To share symbols across extension modules, call as sys.setdlopenflags(os.
RTLD_GLOBAL). Symbolic names for the flag values can be found in the os module (RTLD_xxx
constants, e.g. os.RTLD_LAZY).

Availability: Unix.

sys.setprofile(profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in
Python. See chapter The Python Profilers for more information on the Python profiler. The system’s
profile function is called similarly to the system’s trace function (see settrace()), but it isn’t called
for each executed line of code (only on call and return, but the return event is reported even when
an exception has been set). The function is thread-specific, but there is no way for the profiler to
know about context switches between threads, so it does not make sense to use this in the presence of
multiple threads. Also, its return value is not used, so it can simply return None.

sys.setrecursionlimit(limit)
Set the maximum depth of the Python interpreter stack to limit. This limit prevents infinite recursion
from causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when they
have a program that requires deep recursion and a platform that supports a higher limit. This should
be done with care, because a too-high limit can lead to a crash.

If the new limit is too low at the current recursion depth, a RecursionError exception is raised.

Changed in version 3.5.1: A RecursionError exception is now raised if the new limit is too low at the
current recursion depth.

sys.setswitchinterval(interval)
Set the interpreter’s thread switch interval (in seconds). This floating-point value determines the ideal
duration of the “timeslices” allocated to concurrently running Python threads. Please note that the
actual value can be higher, especially if long-running internal functions or methods are used. Also,
which thread becomes scheduled at the end of the interval is the operating system’s decision. The
interpreter doesn’t have its own scheduler.

New in version 3.2.

sys.settrace(tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in
Python. The function is thread-specific; for a debugger to support multiple threads, it must be regis-
tered using settrace() for each thread being debugged.

Trace functions should have three arguments: frame, event, and arg. frame is the current stack frame.
event is a string: 'call', 'line', 'return', 'exception', 'c_call', 'c_return', or 'c_exception'. arg
depends on the event type.

The trace function is invoked (with event set to 'call') whenever a new local scope is entered; it should
return a reference to a local trace function to be used that scope, or None if the scope shouldn’t be
traced.

The local trace function should return a reference to itself (or to another function for further tracing
in that scope), or None to turn off tracing in that scope.

The events have the following meaning:

1554 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

'call' A function is called (or some other code block entered). The global trace function is called; arg
is None; the return value specifies the local trace function.

'line' The interpreter is about to execute a new line of code or re-execute the condition of a loop. The
local trace function is called; arg is None; the return value specifies the new local trace function.
See Objects/lnotab_notes.txt for a detailed explanation of how this works.

'return' A function (or other code block) is about to return. The local trace function is called; arg is
the value that will be returned, or None if the event is caused by an exception being raised. The
trace function’s return value is ignored.

'exception' An exception has occurred. The local trace function is called; arg is a tuple (exception,
value, traceback); the return value specifies the new local trace function.

'c_call' A C function is about to be called. This may be an extension function or a built-in. arg is
the C function object.

'c_return' A C function has returned. arg is the C function object.

'c_exception' A C function has raised an exception. arg is the C function object.

Note that as an exception is propagated down the chain of callers, an 'exception' event is generated
at each level.

For more information on code and frame objects, refer to types.

CPython implementation detail: The settrace() function is intended only for implementing debuggers,
profilers, coverage tools and the like. Its behavior is part of the implementation platform, rather than
part of the language definition, and thus may not be available in all Python implementations.

sys.settscdump(on_flag)
Activate dumping of VM measurements using the Pentium timestamp counter, if on_flag is true.
Deactivate these dumps if on_flag is off. The function is available only if Python was compiled with
--with-tsc. To understand the output of this dump, read Python/ceval.c in the Python sources.

CPython implementation detail: This function is intimately bound to CPython implementation details
and thus not likely to be implemented elsewhere.

sys.set_coroutine_wrapper(wrapper)
Allows intercepting creation of coroutine objects (only ones that are created by an async def function;
generators decorated with types.coroutine() or asyncio.coroutine() will not be intercepted).

The wrapper argument must be either:

• a callable that accepts one argument (a coroutine object);

• None, to reset the wrapper.

If called twice, the new wrapper replaces the previous one. The function is thread-specific.

The wrapper callable cannot define new coroutines directly or indirectly:

def wrapper(coro):
async def wrap(coro):

return await coro
return wrap(coro)

sys.set_coroutine_wrapper(wrapper)

async def foo():
pass

The following line will fail with a RuntimeError, because

(continues on next page)

29.1. sys — System-specific parameters and functions 1555

The Python Library Reference, Release 3.5.7

(continued from previous page)

``wrapper`` creates a ``wrap(coro)`` coroutine:
foo()

See also get_coroutine_wrapper().

New in version 3.5: See PEP 492 for more details.

Note: This function has been added on a provisional basis (see PEP 411 for details.) Use it only for
debugging purposes.

sys.stdin
sys.stdout
sys.stderr

File objects used by the interpreter for standard input, output and errors:

• stdin is used for all interactive input (including calls to input());

• stdout is used for the output of print() and expression statements and for the prompts of input();

• The interpreter’s own prompts and its error messages go to stderr.

These streams are regular text files like those returned by the open() function. Their parameters are
chosen as follows:

• The character encoding is platform-dependent. Under Windows, if the stream is interactive (that
is, if its isatty() method returns True), the console codepage is used, otherwise the ANSI code
page. Under other platforms, the locale encoding is used (see locale.getpreferredencoding()).

Under all platforms though, you can override this value by setting the PYTHONIOENCODING
environment variable before starting Python.

• When interactive, standard streams are line-buffered. Otherwise, they are block-buffered like
regular text files. You can override this value with the -u command-line option.

Note: To write or read binary data from/to the standard streams, use the underlying binary buffer
object. For example, to write bytes to stdout, use sys.stdout.buffer.write(b'abc').

However, if you are writing a library (and do not control in which context its code will be executed),
be aware that the standard streams may be replaced with file-like objects like io.StringIO which do
not support the buffer attribute.

sys.__stdin__
sys.__stdout__
sys.__stderr__

These objects contain the original values of stdin, stderr and stdout at the start of the program. They
are used during finalization, and could be useful to print to the actual standard stream no matter if
the sys.std* object has been redirected.

It can also be used to restore the actual files to known working file objects in case they have been
overwritten with a broken object. However, the preferred way to do this is to explicitly save the
previous stream before replacing it, and restore the saved object.

Note: Under some conditions stdin, stdout and stderr as well as the original values __stdin__,
__stdout__ and __stderr__ can be None. It is usually the case for Windows GUI apps that aren’t

1556 Chapter 29. Python Runtime Services

https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0411

The Python Library Reference, Release 3.5.7

connected to a console and Python apps started with pythonw.

sys.thread_info
A struct sequence holding information about the thread implementation.

Attribute Explanation
name Name of the thread implementation:

• 'nt': Windows threads
• 'pthread': POSIX threads
• 'solaris': Solaris threads

lock Name of the lock implementation:
• 'semaphore': a lock uses a semaphore
• 'mutex+cond': a lock uses a mutex and a condition variable
• None if this information is unknown

version Name and version of the thread library. It is a string, or None if this
information is unknown.

New in version 3.3.

sys.tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback
information printed when an unhandled exception occurs. The default is 1000. When set to 0 or less,
all traceback information is suppressed and only the exception type and value are printed.

sys.version
A string containing the version number of the Python interpreter plus additional information on the
build number and compiler used. This string is displayed when the interactive interpreter is started.
Do not extract version information out of it, rather, use version_info and the functions provided by
the platform module.

sys.api_version
The C API version for this interpreter. Programmers may find this useful when debugging version
conflicts between Python and extension modules.

sys.version_info
A tuple containing the five components of the version number: major, minor, micro, releaselevel, and
serial. All values except releaselevel are integers; the release level is 'alpha', 'beta', 'candidate', or
'final'. The version_info value corresponding to the Python version 2.0 is (2, 0, 0, 'final', 0). The
components can also be accessed by name, so sys.version_info[0] is equivalent to sys.version_info.major
and so on.

Changed in version 3.1: Added named component attributes.

sys.warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to the
warnings module for more information on the warnings framework.

sys.winver
The version number used to form registry keys on Windows platforms. This is stored as string resource
1000 in the Python DLL. The value is normally the first three characters of version. It is provided in
the sys module for informational purposes; modifying this value has no effect on the registry keys used
by Python. Availability: Windows.

sys._xoptions
A dictionary of the various implementation-specific flags passed through the -X command-line option.

29.1. sys — System-specific parameters and functions 1557

The Python Library Reference, Release 3.5.7

Option names are either mapped to their values, if given explicitly, or to True. Example:

$./python -Xa=b -Xc
Python 3.2a3+ (py3k, Oct 16 2010, 20:14:50)
[GCC 4.4.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys._xoptions
{'a': 'b', 'c': True}

CPython implementation detail: This is a CPython-specific way of accessing options passed through
-X. Other implementations may export them through other means, or not at all.

New in version 3.2.

Citations

29.2 sysconfig — Provide access to Python’s configuration information

New in version 3.2.

Source code: Lib/sysconfig.py

The sysconfig module provides access to Python’s configuration information like the list of installation paths
and the configuration variables relevant for the current platform.

29.2.1 Configuration variables

A Python distribution contains a Makefile and a pyconfig.h header file that are necessary to build both the
Python binary itself and third-party C extensions compiled using distutils.

sysconfig puts all variables found in these files in a dictionary that can be accessed using get_config_vars()
or get_config_var().

Notice that on Windows, it’s a much smaller set.

sysconfig.get_config_vars(*args)
With no arguments, return a dictionary of all configuration variables relevant for the current platform.

With arguments, return a list of values that result from looking up each argument in the configuration
variable dictionary.

For each argument, if the value is not found, return None.

sysconfig.get_config_var(name)
Return the value of a single variable name. Equivalent to get_config_vars().get(name).

If name is not found, return None.

Example of usage:

>>> import sysconfig
>>> sysconfig.get_config_var('Py_ENABLE_SHARED')
0
>>> sysconfig.get_config_var('LIBDIR')
'/usr/local/lib'

(continues on next page)

1558 Chapter 29. Python Runtime Services

https://github.com/python/cpython/tree/3.5/Lib/sysconfig.py

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> sysconfig.get_config_vars('AR', 'CXX')
['ar', 'g++']

29.2.2 Installation paths

Python uses an installation scheme that differs depending on the platform and on the installation options.
These schemes are stored in sysconfig under unique identifiers based on the value returned by os.name.

Every new component that is installed using distutils or a Distutils-based system will follow the same scheme
to copy its file in the right places.

Python currently supports seven schemes:

• posix_prefix: scheme for Posix platforms like Linux or Mac OS X. This is the default scheme used
when Python or a component is installed.

• posix_home: scheme for Posix platforms used when a home option is used upon installation. This
scheme is used when a component is installed through Distutils with a specific home prefix.

• posix_user: scheme for Posix platforms used when a component is installed through Distutils and the
user option is used. This scheme defines paths located under the user home directory.

• nt: scheme for NT platforms like Windows.

• nt_user: scheme for NT platforms, when the user option is used.

Each scheme is itself composed of a series of paths and each path has a unique identifier. Python currently
uses eight paths:

• stdlib: directory containing the standard Python library files that are not platform-specific.

• platstdlib: directory containing the standard Python library files that are platform-specific.

• platlib: directory for site-specific, platform-specific files.

• purelib: directory for site-specific, non-platform-specific files.

• include: directory for non-platform-specific header files.

• platinclude: directory for platform-specific header files.

• scripts: directory for script files.

• data: directory for data files.

sysconfig provides some functions to determine these paths.

sysconfig.get_scheme_names()
Return a tuple containing all schemes currently supported in sysconfig.

sysconfig.get_path_names()
Return a tuple containing all path names currently supported in sysconfig.

sysconfig.get_path(name[, scheme[, vars[, expand]]])
Return an installation path corresponding to the path name, from the install scheme named scheme.

name has to be a value from the list returned by get_path_names().

sysconfig stores installation paths corresponding to each path name, for each platform, with variables
to be expanded. For instance the stdlib path for the nt scheme is: {base}/Lib.

get_path() will use the variables returned by get_config_vars() to expand the path. All variables
have default values for each platform so one may call this function and get the default value.

29.2. sysconfig — Provide access to Python’s configuration information 1559

The Python Library Reference, Release 3.5.7

If scheme is provided, it must be a value from the list returned by get_scheme_names(). Otherwise,
the default scheme for the current platform is used.

If vars is provided, it must be a dictionary of variables that will update the dictionary return by
get_config_vars().

If expand is set to False, the path will not be expanded using the variables.

If name is not found, return None.

sysconfig.get_paths([scheme[, vars[, expand]]])
Return a dictionary containing all installation paths corresponding to an installation scheme. See
get_path() for more information.

If scheme is not provided, will use the default scheme for the current platform.

If vars is provided, it must be a dictionary of variables that will update the dictionary used to expand
the paths.

If expand is set to false, the paths will not be expanded.

If scheme is not an existing scheme, get_paths() will raise a KeyError.

29.2.3 Other functions

sysconfig.get_python_version()
Return the MAJOR.MINOR Python version number as a string. Similar to sys.version[:3].

sysconfig.get_platform()
Return a string that identifies the current platform.

This is used mainly to distinguish platform-specific build directories and platform-specific built distri-
butions. Typically includes the OS name and version and the architecture (as supplied by os.uname()),
although the exact information included depends on the OS; e.g. for IRIX the architecture isn’t partic-
ularly important (IRIX only runs on SGI hardware), but for Linux the kernel version isn’t particularly
important.

Examples of returned values:

• linux-i586

• linux-alpha (?)

• solaris-2.6-sun4u

• irix-5.3

• irix64-6.2

Windows will return one of:

• win-amd64 (64bit Windows on AMD64 (aka x86_64, Intel64, EM64T, etc)

• win-ia64 (64bit Windows on Itanium)

• win32 (all others - specifically, sys.platform is returned)

Mac OS X can return:

• macosx-10.6-ppc

• macosx-10.4-ppc64

• macosx-10.3-i386

1560 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

• macosx-10.4-fat

For other non-POSIX platforms, currently just returns sys.platform.

sysconfig.is_python_build()
Return True if the running Python interpreter was built from source and is being run from its built
location, and not from a location resulting from e.g. running make install or installing via a binary
installer.

sysconfig.parse_config_h(fp[, vars])
Parse a config.h-style file.

fp is a file-like object pointing to the config.h-like file.

A dictionary containing name/value pairs is returned. If an optional dictionary is passed in as the
second argument, it is used instead of a new dictionary, and updated with the values read in the file.

sysconfig.get_config_h_filename()
Return the path of pyconfig.h.

sysconfig.get_makefile_filename()
Return the path of Makefile.

29.2.4 Using sysconfig as a script

You can use sysconfig as a script with Python’s -m option:

$ python -m sysconfig
Platform: "macosx-10.4-i386"
Python version: "3.2"
Current installation scheme: "posix_prefix"

Paths:
data = "/usr/local"
include = "/Users/tarek/Dev/svn.python.org/py3k/Include"
platinclude = "."
platlib = "/usr/local/lib/python3.2/site-packages"
platstdlib = "/usr/local/lib/python3.2"
purelib = "/usr/local/lib/python3.2/site-packages"
scripts = "/usr/local/bin"
stdlib = "/usr/local/lib/python3.2"

Variables:
AC_APPLE_UNIVERSAL_BUILD = "0"
AIX_GENUINE_CPLUSPLUS = "0"
AR = "ar"
ARFLAGS = "rc"
...

This call will print in the standard output the information returned by get_platform(),
get_python_version(), get_path() and get_config_vars().

29.3 builtins — Built-in objects

29.3. builtins — Built-in objects 1561

The Python Library Reference, Release 3.5.7

This module provides direct access to all ‘built-in’ identifiers of Python; for example, builtins.open is the full
name for the built-in function open(). See Built-in Functions and Built-in Constants for documentation.

This module is not normally accessed explicitly by most applications, but can be useful in modules that
provide objects with the same name as a built-in value, but in which the built-in of that name is also needed.
For example, in a module that wants to implement an open() function that wraps the built-in open(), this
module can be used directly:

import builtins

def open(path):
f = builtins.open(path, 'r')
return UpperCaser(f)

class UpperCaser:
'''Wrapper around a file that converts output to upper-case.'''

def __init__(self, f):
self._f = f

def read(self, count=-1):
return self._f.read(count).upper()

...

As an implementation detail, most modules have the name __builtins__ made available as part of their
globals. The value of __builtins__ is normally either this module or the value of this module’s __dict__
attribute. Since this is an implementation detail, it may not be used by alternate implementations of Python.

29.4 __main__ — Top-level script environment

'__main__' is the name of the scope in which top-level code executes. A module’s __name__ is set
equal to '__main__' when read from standard input, a script, or from an interactive prompt.

A module can discover whether or not it is running in the main scope by checking its own __name__,
which allows a common idiom for conditionally executing code in a module when it is run as a script or with
python -m but not when it is imported:

if __name__ == "__main__":
execute only if run as a script
main()

For a package, the same effect can be achieved by including a __main__.py module, the contents of which
will be executed when the module is run with -m.

29.5 warnings — Warning control

Source code: Lib/warnings.py

1562 Chapter 29. Python Runtime Services

https://github.com/python/cpython/tree/3.5/Lib/warnings.py

The Python Library Reference, Release 3.5.7

Warning messages are typically issued in situations where it is useful to alert the user of some condition
in a program, where that condition (normally) doesn’t warrant raising an exception and terminating the
program. For example, one might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by calling the warn() function defined in this module. (C programmers
use PyErr_WarnEx(); see exceptionhandling for details).

Warning messages are normally written to sys.stderr, but their disposition can be changed flexibly, from
ignoring all warnings to turning them into exceptions. The disposition of warnings can vary based on the
warning category (see below), the text of the warning message, and the source location where it is issued.
Repetitions of a particular warning for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether
a message should be issued or not; next, if a message is to be issued, it is formatted and printed using a
user-settable hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence
of matching rules and actions. Rules can be added to the filter by calling filterwarnings() and reset to its
default state by calling resetwarnings().

The printing of warning messages is done by calling showwarning(), which may be overridden; the default
implementation of this function formats the message by calling formatwarning(), which is also available for
use by custom implementations.

See also:

logging.captureWarnings() allows you to handle all warnings with the standard logging infrastructure.

29.5.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to
be able to filter out groups of warnings. The following warnings category classes are currently defined:

Class Description
Warning This is the base class of all warning category classes. It is a

subclass of Exception.
UserWarning The default category for warn().
DeprecationWarning Base category for warnings about deprecated features (ignored

by default).
SyntaxWarning Base category for warnings about dubious syntactic features.
RuntimeWarning Base category for warnings about dubious runtime features.
FutureWarning Base category for warnings about constructs that will change se-

mantically in the future.
PendingDeprecationWarning Base category for warnings about features that will be deprecated

in the future (ignored by default).
ImportWarning Base category for warnings triggered during the process of im-

porting a module (ignored by default).
UnicodeWarning Base category for warnings related to Unicode.
BytesWarning Base category for warnings related to bytes and bytearray.
ResourceWarning Base category for warnings related to resource usage.

While these are technically built-in exceptions, they are documented here, because conceptually they belong
to the warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories.
A warning category must always be a subclass of the Warning class.

29.5. warnings — Warning control 1563

The Python Library Reference, Release 3.5.7

29.5.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an
exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is
matched against each filter specification in the list in turn until a match is found; the match determines
the disposition of the match. Each entry is a tuple of the form (action, message, category, module, lineno),
where:

• action is one of the following strings:

Value Disposition
"error" turn matching warnings into exceptions
"ignore" never print matching warnings
"always" always print matching warnings
"de-
fault"

print the first occurrence of matching warnings for each location where the warning is
issued

"mod-
ule"

print the first occurrence of matching warnings for each module where the warning is
issued

"once" print only the first occurrence of matching warnings, regardless of location

• message is a string containing a regular expression that the start of the warning message must match.
The expression is compiled to always be case-insensitive.

• category is a class (a subclass of Warning) of which the warning category must be a subclass in order
to match.

• module is a string containing a regular expression that the module name must match. The expression
is compiled to be case-sensitive.

• lineno is an integer that the line number where the warning occurred must match, or 0 to match all
line numbers.

Since the Warning class is derived from the built-in Exception class, to turn a warning into an error we
simply raise category(message).

The warnings filter is initialized by -W options passed to the Python interpreter command line. The inter-
preter saves the arguments for all -W options without interpretation in sys.warnoptions; the warnings module
parses these when it is first imported (invalid options are ignored, after printing a message to sys.stderr).

Default Warning Filters

By default, Python installs several warning filters, which can be overridden by the command-line options
passed to -W and calls to filterwarnings().

• DeprecationWarning and PendingDeprecationWarning, and ImportWarning are ignored.

• BytesWarning is ignored unless the -b option is given once or twice; in this case this warning is either
printed (-b) or turned into an exception (-bb).

• ResourceWarning is ignored unless Python was built in debug mode.

Changed in version 3.2: DeprecationWarning is now ignored by default in addition to PendingDeprecation-
Warning.

1564 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

29.5.3 Temporarily Suppressing Warnings

If you are using code that you know will raise a warning, such as a deprecated function, but do not want to
see the warning, then it is possible to suppress the warning using the catch_warnings context manager:

import warnings

def fxn():
warnings.warn("deprecated", DeprecationWarning)

with warnings.catch_warnings():
warnings.simplefilter("ignore")
fxn()

While within the context manager all warnings will simply be ignored. This allows you to use known-
deprecated code without having to see the warning while not suppressing the warning for other code that
might not be aware of its use of deprecated code. Note: this can only be guaranteed in a single-threaded
application. If two or more threads use the catch_warnings context manager at the same time, the behavior
is undefined.

29.5.4 Testing Warnings

To test warnings raised by code, use the catch_warnings context manager. With it you can temporarily
mutate the warnings filter to facilitate your testing. For instance, do the following to capture all raised
warnings to check:

import warnings

def fxn():
warnings.warn("deprecated", DeprecationWarning)

with warnings.catch_warnings(record=True) as w:
Cause all warnings to always be triggered.
warnings.simplefilter("always")
Trigger a warning.
fxn()
Verify some things
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated" in str(w[-1].message)

One can also cause all warnings to be exceptions by using error instead of always. One thing to be aware of
is that if a warning has already been raised because of a once/default rule, then no matter what filters are
set the warning will not be seen again unless the warnings registry related to the warning has been cleared.

Once the context manager exits, the warnings filter is restored to its state when the context was entered.
This prevents tests from changing the warnings filter in unexpected ways between tests and leading to inde-
terminate test results. The showwarning() function in the module is also restored to its original value. Note:
this can only be guaranteed in a single-threaded application. If two or more threads use the catch_warnings
context manager at the same time, the behavior is undefined.

When testing multiple operations that raise the same kind of warning, it is important to test them in a
manner that confirms each operation is raising a new warning (e.g. set warnings to be raised as exceptions
and check the operations raise exceptions, check that the length of the warning list continues to increase
after each operation, or else delete the previous entries from the warnings list before each new operation).

29.5. warnings — Warning control 1565

The Python Library Reference, Release 3.5.7

29.5.5 Updating Code For New Versions of Python

Warnings that are only of interest to the developer are ignored by default. As such you should make sure
to test your code with typically ignored warnings made visible. You can do this from the command-line
by passing -Wd to the interpreter (this is shorthand for -W default). This enables default handling for
all warnings, including those that are ignored by default. To change what action is taken for encountered
warnings you simply change what argument is passed to -W, e.g. -W error. See the -W flag for more details
on what is possible.

To programmatically do the same as -Wd, use:

warnings.simplefilter('default')

Make sure to execute this code as soon as possible. This prevents the registering of what warnings have been
raised from unexpectedly influencing how future warnings are treated.

Having certain warnings ignored by default is done to prevent a user from seeing warnings that are only of
interest to the developer. As you do not necessarily have control over what interpreter a user uses to run
their code, it is possible that a new version of Python will be released between your release cycles. The new
interpreter release could trigger new warnings in your code that were not there in an older interpreter, e.g.
DeprecationWarning for a module that you are using. While you as a developer want to be notified that your
code is using a deprecated module, to a user this information is essentially noise and provides no benefit to
them.

The unittest module has been also updated to use the 'default' filter while running tests.

29.5.6 Available Functions

warnings.warn(message, category=None, stacklevel=1)
Issue a warning, or maybe ignore it or raise an exception. The category argument, if given, must
be a warning category class (see above); it defaults to UserWarning. Alternatively message can be a
Warning instance, in which case category will be ignored and message.__class__ will be used. In this
case the message text will be str(message). This function raises an exception if the particular warning
issued is changed into an error by the warnings filter see above. The stacklevel argument can be used
by wrapper functions written in Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer to deprecation()’s caller, rather than to the source of deprecation() itself
(since the latter would defeat the purpose of the warning message).

warnings.warn_explicit(message, category, filename, lineno, module=None, registry=None, mod-
ule_globals=None)

This is a low-level interface to the functionality of warn(), passing in explicitly the message, category,
filename and line number, and optionally the module name and the registry (which should be the
__warningregistry__ dictionary of the module). The module name defaults to the filename with
.py stripped; if no registry is passed, the warning is never suppressed. message must be a string and
category a subclass of Warning or message may be a Warning instance, in which case category will be
ignored.

module_globals, if supplied, should be the global namespace in use by the code for which the warning
is issued. (This argument is used to support displaying source for modules found in zipfiles or other
non-filesystem import sources).

warnings.showwarning(message, category, filename, lineno, file=None, line=None)
Write a warning to a file. The default implementation calls formatwarning(message, category, filename,

1566 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

lineno, line) and writes the resulting string to file, which defaults to sys.stderr. You may replace this
function with any callable by assigning to warnings.showwarning. line is a line of source code to be
included in the warning message; if line is not supplied, showwarning() will try to read the line specified
by filename and lineno.

warnings.formatwarning(message, category, filename, lineno, line=None)
Format a warning the standard way. This returns a string which may contain embedded newlines and
ends in a newline. line is a line of source code to be included in the warning message; if line is not
supplied, formatwarning() will try to read the line specified by filename and lineno.

warnings.filterwarnings(action, message=”, category=Warning, module=”, lineno=0, append=False)
Insert an entry into the list of warnings filter specifications. The entry is inserted at the front by
default; if append is true, it is inserted at the end. This checks the types of the arguments, compiles
the message and module regular expressions, and inserts them as a tuple in the list of warnings filters.
Entries closer to the front of the list override entries later in the list, if both match a particular warning.
Omitted arguments default to a value that matches everything.

warnings.simplefilter(action, category=Warning, lineno=0, append=False)
Insert a simple entry into the list of warnings filter specifications. The meaning of the function pa-
rameters is as for filterwarnings(), but regular expressions are not needed as the filter inserted always
matches any message in any module as long as the category and line number match.

warnings.resetwarnings()
Reset the warnings filter. This discards the effect of all previous calls to filterwarnings(), including
that of the -W command line options and calls to simplefilter().

29.5.7 Available Context Managers

class warnings.catch_warnings(*, record=False, module=None)
A context manager that copies and, upon exit, restores the warnings filter and the showwarning()
function. If the record argument is False (the default) the context manager returns None on entry.
If record is True, a list is returned that is progressively populated with objects as seen by a custom
showwarning() function (which also suppresses output to sys.stdout). Each object in the list has
attributes with the same names as the arguments to showwarning().

The module argument takes a module that will be used instead of the module returned when you import
warnings whose filter will be protected. This argument exists primarily for testing the warnings module
itself.

Note: The catch_warnings manager works by replacing and then later restoring the module’s
showwarning() function and internal list of filter specifications. This means the context manager
is modifying global state and therefore is not thread-safe.

29.6 contextlib — Utilities for with-statement contexts

Source code: Lib/contextlib.py

This module provides utilities for common tasks involving the with statement. For more information see
also Context Manager Types and context-managers.

29.6. contextlib — Utilities for with-statement contexts 1567

https://github.com/python/cpython/tree/3.5/Lib/contextlib.py

The Python Library Reference, Release 3.5.7

29.6.1 Utilities

Functions and classes provided:

@contextlib.contextmanager
This function is a decorator that can be used to define a factory function for with statement context
managers, without needing to create a class or separate __enter__() and __exit__() methods.

A simple example (this is not recommended as a real way of generating HTML!):

from contextlib import contextmanager

@contextmanager
def tag(name):

print("<%s>" % name)
yield
print("</%s>" % name)

>>> with tag("h1"):
... print("foo")
...
<h1>
foo
</h1>

The function being decorated must return a generator-iterator when called. This iterator must yield
exactly one value, which will be bound to the targets in the with statement’s as clause, if any.

At the point where the generator yields, the block nested in the with statement is executed. The genera-
tor is then resumed after the block is exited. If an unhandled exception occurs in the block, it is reraised
inside the generator at the point where the yield occurred. Thus, you can use a try. . . except. . . finally
statement to trap the error (if any), or ensure that some cleanup takes place. If an exception is trapped
merely in order to log it or to perform some action (rather than to suppress it entirely), the generator
must reraise that exception. Otherwise the generator context manager will indicate to the with state-
ment that the exception has been handled, and execution will resume with the statement immediately
following the with statement.

contextmanager() uses ContextDecorator so the context managers it creates can be used as decorators
as well as in with statements. When used as a decorator, a new generator instance is implicitly created
on each function call (this allows the otherwise “one-shot” context managers created by contextman-
ager() to meet the requirement that context managers support multiple invocations in order to be used
as decorators).

Changed in version 3.2: Use of ContextDecorator.

contextlib.closing(thing)
Return a context manager that closes thing upon completion of the block. This is basically equivalent
to:

from contextlib import contextmanager

@contextmanager
def closing(thing):

try:
yield thing

finally:
thing.close()

And lets you write code like this:

1568 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

from contextlib import closing
from urllib.request import urlopen

with closing(urlopen('http://www.python.org')) as page:
for line in page:

print(line)

without needing to explicitly close page. Even if an error occurs, page.close() will be called when the
with block is exited.

contextlib.suppress(*exceptions)
Return a context manager that suppresses any of the specified exceptions if they occur in the body of
a with statement and then resumes execution with the first statement following the end of the with
statement.

As with any other mechanism that completely suppresses exceptions, this context manager should be
used only to cover very specific errors where silently continuing with program execution is known to
be the right thing to do.

For example:

from contextlib import suppress

with suppress(FileNotFoundError):
os.remove('somefile.tmp')

with suppress(FileNotFoundError):
os.remove('someotherfile.tmp')

This code is equivalent to:

try:
os.remove('somefile.tmp')

except FileNotFoundError:
pass

try:
os.remove('someotherfile.tmp')

except FileNotFoundError:
pass

This context manager is reentrant.

New in version 3.4.

contextlib.redirect_stdout(new_target)
Context manager for temporarily redirecting sys.stdout to another file or file-like object.

This tool adds flexibility to existing functions or classes whose output is hardwired to stdout.

For example, the output of help() normally is sent to sys.stdout. You can capture that output in a
string by redirecting the output to an io.StringIO object:

f = io.StringIO()
with redirect_stdout(f):

help(pow)
s = f.getvalue()

To send the output of help() to a file on disk, redirect the output to a regular file:

29.6. contextlib — Utilities for with-statement contexts 1569

The Python Library Reference, Release 3.5.7

with open('help.txt', 'w') as f:
with redirect_stdout(f):

help(pow)

To send the output of help() to sys.stderr:

with redirect_stdout(sys.stderr):
help(pow)

Note that the global side effect on sys.stdout means that this context manager is not suitable for use
in library code and most threaded applications. It also has no effect on the output of subprocesses.
However, it is still a useful approach for many utility scripts.

This context manager is reentrant.

New in version 3.4.

contextlib.redirect_stderr(new_target)
Similar to redirect_stdout() but redirecting sys.stderr to another file or file-like object.

This context manager is reentrant.

New in version 3.5.

class contextlib.ContextDecorator
A base class that enables a context manager to also be used as a decorator.

Context managers inheriting from ContextDecorator have to implement __enter__ and __exit__
as normal. __exit__ retains its optional exception handling even when used as a decorator.

ContextDecorator is used by contextmanager(), so you get this functionality automatically.

Example of ContextDecorator:

from contextlib import ContextDecorator

class mycontext(ContextDecorator):
def __enter__(self):

print('Starting')
return self

def __exit__(self, *exc):
print('Finishing')
return False

>>> @mycontext()
... def function():
... print('The bit in the middle')
...
>>> function()
Starting
The bit in the middle
Finishing

>>> with mycontext():
... print('The bit in the middle')
...
Starting
The bit in the middle
Finishing

1570 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

This change is just syntactic sugar for any construct of the following form:

def f():
with cm():

Do stuff

ContextDecorator lets you instead write:

@cm()
def f():

Do stuff

It makes it clear that the cm applies to the whole function, rather than just a piece of it (and saving
an indentation level is nice, too).

Existing context managers that already have a base class can be extended by using ContextDecorator
as a mixin class:

from contextlib import ContextDecorator

class mycontext(ContextBaseClass, ContextDecorator):
def __enter__(self):

return self

def __exit__(self, *exc):
return False

Note: As the decorated function must be able to be called multiple times, the underlying context
manager must support use in multiple with statements. If this is not the case, then the original
construct with the explicit with statement inside the function should be used.

New in version 3.2.

class contextlib.ExitStack
A context manager that is designed to make it easy to programmatically combine other context man-
agers and cleanup functions, especially those that are optional or otherwise driven by input data.

For example, a set of files may easily be handled in a single with statement as follows:

with ExitStack() as stack:
files = [stack.enter_context(open(fname)) for fname in filenames]
All opened files will automatically be closed at the end of
the with statement, even if attempts to open files later
in the list raise an exception

Each instance maintains a stack of registered callbacks that are called in reverse order when the instance
is closed (either explicitly or implicitly at the end of a with statement). Note that callbacks are not
invoked implicitly when the context stack instance is garbage collected.

This stack model is used so that context managers that acquire their resources in their __init__
method (such as file objects) can be handled correctly.

Since registered callbacks are invoked in the reverse order of registration, this ends up behaving as if
multiple nested with statements had been used with the registered set of callbacks. This even extends
to exception handling - if an inner callback suppresses or replaces an exception, then outer callbacks
will be passed arguments based on that updated state.

29.6. contextlib — Utilities for with-statement contexts 1571

The Python Library Reference, Release 3.5.7

This is a relatively low level API that takes care of the details of correctly unwinding the stack of exit
callbacks. It provides a suitable foundation for higher level context managers that manipulate the exit
stack in application specific ways.

New in version 3.3.

enter_context(cm)
Enters a new context manager and adds its __exit__() method to the callback stack. The return
value is the result of the context manager’s own __enter__() method.

These context managers may suppress exceptions just as they normally would if used directly as
part of a with statement.

push(exit)
Adds a context manager’s __exit__() method to the callback stack.

As __enter__ is not invoked, this method can be used to cover part of an __enter__() imple-
mentation with a context manager’s own __exit__() method.

If passed an object that is not a context manager, this method assumes it is a callback with the
same signature as a context manager’s __exit__() method and adds it directly to the callback
stack.

By returning true values, these callbacks can suppress exceptions the same way context manager
__exit__() methods can.

The passed in object is returned from the function, allowing this method to be used as a function
decorator.

callback(callback, *args, **kwds)
Accepts an arbitrary callback function and arguments and adds it to the callback stack.

Unlike the other methods, callbacks added this way cannot suppress exceptions (as they are never
passed the exception details).

The passed in callback is returned from the function, allowing this method to be used as a function
decorator.

pop_all()
Transfers the callback stack to a fresh ExitStack instance and returns it. No callbacks are invoked
by this operation - instead, they will now be invoked when the new stack is closed (either explicitly
or implicitly at the end of a with statement).

For example, a group of files can be opened as an “all or nothing” operation as follows:

with ExitStack() as stack:
files = [stack.enter_context(open(fname)) for fname in filenames]
Hold onto the close method, but don't call it yet.
close_files = stack.pop_all().close
If opening any file fails, all previously opened files will be
closed automatically. If all files are opened successfully,
they will remain open even after the with statement ends.
close_files() can then be invoked explicitly to close them all.

close()
Immediately unwinds the callback stack, invoking callbacks in the reverse order of registration.
For any context managers and exit callbacks registered, the arguments passed in will indicate that
no exception occurred.

1572 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

29.6.2 Examples and Recipes

This section describes some examples and recipes for making effective use of the tools provided by contextlib.

Supporting a variable number of context managers

The primary use case for ExitStack is the one given in the class documentation: supporting a variable
number of context managers and other cleanup operations in a single with statement. The variability may
come from the number of context managers needed being driven by user input (such as opening a user
specified collection of files), or from some of the context managers being optional:

with ExitStack() as stack:
for resource in resources:

stack.enter_context(resource)
if need_special_resource():

special = acquire_special_resource()
stack.callback(release_special_resource, special)

Perform operations that use the acquired resources

As shown, ExitStack also makes it quite easy to use with statements to manage arbitrary resources that
don’t natively support the context management protocol.

Simplifying support for single optional context managers

In the specific case of a single optional context manager, ExitStack instances can be used as a “do nothing”
context manager, allowing a context manager to easily be omitted without affecting the overall structure of
the source code:

def debug_trace(details):
if __debug__:

return TraceContext(details)
Don't do anything special with the context in release mode
return ExitStack()

with debug_trace():
Suite is traced in debug mode, but runs normally otherwise

Catching exceptions from __enter__ methods

It is occasionally desirable to catch exceptions from an __enter__ method implementation, without inad-
vertently catching exceptions from the with statement body or the context manager’s __exit__ method.
By using ExitStack the steps in the context management protocol can be separated slightly in order to allow
this:

stack = ExitStack()
try:

x = stack.enter_context(cm)
except Exception:

handle __enter__ exception
else:

with stack:
Handle normal case

29.6. contextlib — Utilities for with-statement contexts 1573

The Python Library Reference, Release 3.5.7

Actually needing to do this is likely to indicate that the underlying API should be providing a direct resource
management interface for use with try/except/finally statements, but not all APIs are well designed in that
regard. When a context manager is the only resource management API provided, then ExitStack can make
it easier to handle various situations that can’t be handled directly in a with statement.

Cleaning up in an __enter__ implementation

As noted in the documentation of ExitStack.push(), this method can be useful in cleaning up an already
allocated resource if later steps in the __enter__() implementation fail.

Here’s an example of doing this for a context manager that accepts resource acquisition and release functions,
along with an optional validation function, and maps them to the context management protocol:

from contextlib import contextmanager, ExitStack

class ResourceManager:

def __init__(self, acquire_resource, release_resource, check_resource_ok=None):
self.acquire_resource = acquire_resource
self.release_resource = release_resource
if check_resource_ok is None:

def check_resource_ok(resource):
return True

self.check_resource_ok = check_resource_ok

@contextmanager
def _cleanup_on_error(self):

with ExitStack() as stack:
stack.push(self)
yield
The validation check passed and didn't raise an exception
Accordingly, we want to keep the resource, and pass it
back to our caller
stack.pop_all()

def __enter__(self):
resource = self.acquire_resource()
with self._cleanup_on_error():

if not self.check_resource_ok(resource):
msg = "Failed validation for {!r}"
raise RuntimeError(msg.format(resource))

return resource

def __exit__(self, *exc_details):
We don't need to duplicate any of our resource release logic
self.release_resource()

Replacing any use of try-finally and flag variables

A pattern you will sometimes see is a try-finally statement with a flag variable to indicate whether or not
the body of the finally clause should be executed. In its simplest form (that can’t already be handled just
by using an except clause instead), it looks something like this:

cleanup_needed = True
try:

(continues on next page)

1574 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

result = perform_operation()
if result:

cleanup_needed = False
finally:

if cleanup_needed:
cleanup_resources()

As with any try statement based code, this can cause problems for development and review, because the
setup code and the cleanup code can end up being separated by arbitrarily long sections of code.

ExitStack makes it possible to instead register a callback for execution at the end of a with statement, and
then later decide to skip executing that callback:

from contextlib import ExitStack

with ExitStack() as stack:
stack.callback(cleanup_resources)
result = perform_operation()
if result:

stack.pop_all()

This allows the intended cleanup up behaviour to be made explicit up front, rather than requiring a separate
flag variable.

If a particular application uses this pattern a lot, it can be simplified even further by means of a small helper
class:

from contextlib import ExitStack

class Callback(ExitStack):
def __init__(self, callback, *args, **kwds):

super(Callback, self).__init__()
self.callback(callback, *args, **kwds)

def cancel(self):
self.pop_all()

with Callback(cleanup_resources) as cb:
result = perform_operation()
if result:

cb.cancel()

If the resource cleanup isn’t already neatly bundled into a standalone function, then it is still possible to use
the decorator form of ExitStack.callback() to declare the resource cleanup in advance:

from contextlib import ExitStack

with ExitStack() as stack:
@stack.callback
def cleanup_resources():

...
result = perform_operation()
if result:

stack.pop_all()

Due to the way the decorator protocol works, a callback function declared this way cannot take any param-
eters. Instead, any resources to be released must be accessed as closure variables.

29.6. contextlib — Utilities for with-statement contexts 1575

The Python Library Reference, Release 3.5.7

Using a context manager as a function decorator

ContextDecorator makes it possible to use a context manager in both an ordinary with statement and also
as a function decorator.

For example, it is sometimes useful to wrap functions or groups of statements with a logger that can track
the time of entry and time of exit. Rather than writing both a function decorator and a context manager
for the task, inheriting from ContextDecorator provides both capabilities in a single definition:

from contextlib import ContextDecorator
import logging

logging.basicConfig(level=logging.INFO)

class track_entry_and_exit(ContextDecorator):
def __init__(self, name):

self.name = name

def __enter__(self):
logging.info('Entering: {}'.format(self.name))

def __exit__(self, exc_type, exc, exc_tb):
logging.info('Exiting: {}'.format(self.name))

Instances of this class can be used as both a context manager:

with track_entry_and_exit('widget loader'):
print('Some time consuming activity goes here')
load_widget()

And also as a function decorator:

@track_entry_and_exit('widget loader')
def activity():

print('Some time consuming activity goes here')
load_widget()

Note that there is one additional limitation when using context managers as function decorators: there’s no
way to access the return value of __enter__(). If that value is needed, then it is still necessary to use an
explicit with statement.

See also:

PEP 343 - The “with” statement The specification, background, and examples for the Python with state-
ment.

29.6.3 Single use, reusable and reentrant context managers

Most context managers are written in a way that means they can only be used effectively in a with statement
once. These single use context managers must be created afresh each time they’re used - attempting to use
them a second time will trigger an exception or otherwise not work correctly.

This common limitation means that it is generally advisable to create context managers directly in the
header of the with statement where they are used (as shown in all of the usage examples above).

Files are an example of effectively single use context managers, since the first with statement will close the
file, preventing any further IO operations using that file object.

1576 Chapter 29. Python Runtime Services

https://www.python.org/dev/peps/pep-0343

The Python Library Reference, Release 3.5.7

Context managers created using contextmanager() are also single use context managers, and will complain
about the underlying generator failing to yield if an attempt is made to use them a second time:

>>> from contextlib import contextmanager
>>> @contextmanager
... def singleuse():
... print("Before")
... yield
... print("After")
...
>>> cm = singleuse()
>>> with cm:
... pass
...
Before
After
>>> with cm:
... pass
...
Traceback (most recent call last):

...
RuntimeError: generator didn't yield

Reentrant context managers

More sophisticated context managers may be “reentrant”. These context managers can not only be used
in multiple with statements, but may also be used inside a with statement that is already using the same
context manager.

threading.RLock is an example of a reentrant context manager, as are suppress() and redirect_stdout().
Here’s a very simple example of reentrant use:

>>> from contextlib import redirect_stdout
>>> from io import StringIO
>>> stream = StringIO()
>>> write_to_stream = redirect_stdout(stream)
>>> with write_to_stream:
... print("This is written to the stream rather than stdout")
... with write_to_stream:
... print("This is also written to the stream")
...
>>> print("This is written directly to stdout")
This is written directly to stdout
>>> print(stream.getvalue())
This is written to the stream rather than stdout
This is also written to the stream

Real world examples of reentrancy are more likely to involve multiple functions calling each other and hence
be far more complicated than this example.

Note also that being reentrant is not the same thing as being thread safe. redirect_stdout(), for example, is
definitely not thread safe, as it makes a global modification to the system state by binding sys.stdout to a
different stream.

29.6. contextlib — Utilities for with-statement contexts 1577

The Python Library Reference, Release 3.5.7

Reusable context managers

Distinct from both single use and reentrant context managers are “reusable” context managers (or, to be
completely explicit, “reusable, but not reentrant” context managers, since reentrant context managers are
also reusable). These context managers support being used multiple times, but will fail (or otherwise not
work correctly) if the specific context manager instance has already been used in a containing with statement.

threading.Lock is an example of a reusable, but not reentrant, context manager (for a reentrant lock, it is
necessary to use threading.RLock instead).

Another example of a reusable, but not reentrant, context manager is ExitStack, as it invokes all currently
registered callbacks when leaving any with statement, regardless of where those callbacks were added:

>>> from contextlib import ExitStack
>>> stack = ExitStack()
>>> with stack:
... stack.callback(print, "Callback: from first context")
... print("Leaving first context")
...
Leaving first context
Callback: from first context
>>> with stack:
... stack.callback(print, "Callback: from second context")
... print("Leaving second context")
...
Leaving second context
Callback: from second context
>>> with stack:
... stack.callback(print, "Callback: from outer context")
... with stack:
... stack.callback(print, "Callback: from inner context")
... print("Leaving inner context")
... print("Leaving outer context")
...
Leaving inner context
Callback: from inner context
Callback: from outer context
Leaving outer context

As the output from the example shows, reusing a single stack object across multiple with statements works
correctly, but attempting to nest them will cause the stack to be cleared at the end of the innermost with
statement, which is unlikely to be desirable behaviour.

Using separate ExitStack instances instead of reusing a single instance avoids that problem:

>>> from contextlib import ExitStack
>>> with ExitStack() as outer_stack:
... outer_stack.callback(print, "Callback: from outer context")
... with ExitStack() as inner_stack:
... inner_stack.callback(print, "Callback: from inner context")
... print("Leaving inner context")
... print("Leaving outer context")
...
Leaving inner context
Callback: from inner context
Leaving outer context
Callback: from outer context

1578 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

29.7 abc — Abstract Base Classes

Source code: Lib/abc.py

This module provides the infrastructure for defining abstract base classes (ABCs) in Python, as outlined in
PEP 3119; see the PEP for why this was added to Python. (See also PEP 3141 and the numbers module
regarding a type hierarchy for numbers based on ABCs.)

The collections module has some concrete classes that derive from ABCs; these can, of course, be further
derived. In addition the collections.abc submodule has some ABCs that can be used to test whether a class
or instance provides a particular interface, for example, is it hashable or a mapping.

This module provides the following classes:

class abc.ABCMeta
Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC. An ABC can be subclassed directly, and then acts as a mix-in
class. You can also register unrelated concrete classes (even built-in classes) and unrelated ABCs as
“virtual subclasses” – these and their descendants will be considered subclasses of the registering ABC
by the built-in issubclass() function, but the registering ABC won’t show up in their MRO (Method
Resolution Order) nor will method implementations defined by the registering ABC be callable (not
even via super()).1

Classes created with a metaclass of ABCMeta have the following method:

register(subclass)
Register subclass as a “virtual subclass” of this ABC. For example:

from abc import ABCMeta

class MyABC(metaclass=ABCMeta):
pass

MyABC.register(tuple)

assert issubclass(tuple, MyABC)
assert isinstance((), MyABC)

Changed in version 3.3: Returns the registered subclass, to allow usage as a class decorator.

Changed in version 3.4: To detect calls to register(), you can use the get_cache_token() function.

You can also override this method in an abstract base class:

__subclasshook__(subclass)
(Must be defined as a class method.)

Check whether subclass is considered a subclass of this ABC. This means that you can customize
the behavior of issubclass further without the need to call register() on every class you want
to consider a subclass of the ABC. (This class method is called from the __subclasscheck__()
method of the ABC.)

This method should return True, False or NotImplemented. If it returns True, the subclass is
considered a subclass of this ABC. If it returns False, the subclass is not considered a subclass of
this ABC, even if it would normally be one. If it returns NotImplemented, the subclass check is
continued with the usual mechanism.

1 C++ programmers should note that Python’s virtual base class concept is not the same as C++’s.

29.7. abc — Abstract Base Classes 1579

https://github.com/python/cpython/tree/3.5/Lib/abc.py
https://www.python.org/dev/peps/pep-3119
https://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 3.5.7

For a demonstration of these concepts, look at this example ABC definition:

class Foo:
def __getitem__(self, index):

...
def __len__(self):

...
def get_iterator(self):

return iter(self)

class MyIterable(metaclass=ABCMeta):

@abstractmethod
def __iter__(self):

while False:
yield None

def get_iterator(self):
return self.__iter__()

@classmethod
def __subclasshook__(cls, C):

if cls is MyIterable:
if any("__iter__" in B.__dict__ for B in C.__mro__):

return True
return NotImplemented

MyIterable.register(Foo)

The ABC MyIterable defines the standard iterable method, __iter__(), as an abstract method. The
implementation given here can still be called from subclasses. The get_iterator() method is also part
of the MyIterable abstract base class, but it does not have to be overridden in non-abstract derived
classes.

The __subclasshook__() class method defined here says that any class that has an __iter__()
method in its __dict__ (or in that of one of its base classes, accessed via the __mro__ list) is
considered a MyIterable too.

Finally, the last line makes Foo a virtual subclass of MyIterable, even though it does not define
an __iter__() method (it uses the old-style iterable protocol, defined in terms of __len__() and
__getitem__()). Note that this will not make get_iterator available as a method of Foo, so it is
provided separately.

class abc.ABC
A helper class that has ABCMeta as its metaclass. With this class, an abstract base class can be
created by simply deriving from ABC, avoiding sometimes confusing metaclass usage.

Note that the type of ABC is still ABCMeta, therefore inheriting from ABC requires the usual pre-
cautions regarding metaclass usage, as multiple inheritance may lead to metaclass conflicts.

New in version 3.4.

The abc module also provides the following decorators:

@abc.abstractmethod
A decorator indicating abstract methods.

Using this decorator requires that the class’s metaclass is ABCMeta or is derived from it. A class that
has a metaclass derived from ABCMeta cannot be instantiated unless all of its abstract methods and

1580 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

properties are overridden. The abstract methods can be called using any of the normal ‘super’ call
mechanisms. abstractmethod() may be used to declare abstract methods for properties and descriptors.

Dynamically adding abstract methods to a class, or attempting to modify the abstraction status of a
method or class once it is created, are not supported. The abstractmethod() only affects subclasses
derived using regular inheritance; “virtual subclasses” registered with the ABC’s register() method are
not affected.

When abstractmethod() is applied in combination with other method descriptors, it should be applied
as the innermost decorator, as shown in the following usage examples:

class C(metaclass=ABCMeta):
@abstractmethod
def my_abstract_method(self, ...):

...
@classmethod
@abstractmethod
def my_abstract_classmethod(cls, ...):

...
@staticmethod
@abstractmethod
def my_abstract_staticmethod(...):

...

@property
@abstractmethod
def my_abstract_property(self):

...
@my_abstract_property.setter
@abstractmethod
def my_abstract_property(self, val):

...

@abstractmethod
def _get_x(self):

...
@abstractmethod
def _set_x(self, val):

...
x = property(_get_x, _set_x)

In order to correctly interoperate with the abstract base class machinery, the descriptor must identify
itself as abstract using __isabstractmethod__. In general, this attribute should be True if any of the
methods used to compose the descriptor are abstract. For example, Python’s built-in property does
the equivalent of:

class Descriptor:
...
@property
def __isabstractmethod__(self):

return any(getattr(f, '__isabstractmethod__', False) for
f in (self._fget, self._fset, self._fdel))

Note: Unlike Java abstract methods, these abstract methods may have an implementation. This
implementation can be called via the super() mechanism from the class that overrides it. This could
be useful as an end-point for a super-call in a framework that uses cooperative multiple-inheritance.

29.7. abc — Abstract Base Classes 1581

The Python Library Reference, Release 3.5.7

@abc.abstractclassmethod
A subclass of the built-in classmethod(), indicating an abstract classmethod. Otherwise it is similar
to abstractmethod().

This special case is deprecated, as the classmethod() decorator is now correctly identified as abstract
when applied to an abstract method:

class C(metaclass=ABCMeta):
@classmethod
@abstractmethod
def my_abstract_classmethod(cls, ...):

...

New in version 3.2.

Deprecated since version 3.3: It is now possible to use classmethod with abstractmethod(), making
this decorator redundant.

@abc.abstractstaticmethod
A subclass of the built-in staticmethod(), indicating an abstract staticmethod. Otherwise it is similar
to abstractmethod().

This special case is deprecated, as the staticmethod() decorator is now correctly identified as abstract
when applied to an abstract method:

class C(metaclass=ABCMeta):
@staticmethod
@abstractmethod
def my_abstract_staticmethod(...):

...

New in version 3.2.

Deprecated since version 3.3: It is now possible to use staticmethod with abstractmethod(), making
this decorator redundant.

@abc.abstractproperty(fget=None, fset=None, fdel=None, doc=None)
A subclass of the built-in property(), indicating an abstract property.

Using this function requires that the class’s metaclass is ABCMeta or is derived from it. A class that
has a metaclass derived from ABCMeta cannot be instantiated unless all of its abstract methods and
properties are overridden. The abstract properties can be called using any of the normal ‘super’ call
mechanisms.

This special case is deprecated, as the property() decorator is now correctly identified as abstract when
applied to an abstract method:

class C(metaclass=ABCMeta):
@property
@abstractmethod
def my_abstract_property(self):

...

The above example defines a read-only property; you can also define a read-write abstract property by
appropriately marking one or more of the underlying methods as abstract:

class C(metaclass=ABCMeta):
@property
def x(self):

(continues on next page)

1582 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

...

@x.setter
@abstractmethod
def x(self, val):

...

If only some components are abstract, only those components need to be updated to create a concrete
property in a subclass:

class D(C):
@C.x.setter
def x(self, val):

...

Deprecated since version 3.3: It is now possible to use property, property.getter(), property.setter()
and property.deleter() with abstractmethod(), making this decorator redundant.

The abc module also provides the following functions:

abc.get_cache_token()
Returns the current abstract base class cache token.

The token is an opaque object (that supports equality testing) identifying the current version of the
abstract base class cache for virtual subclasses. The token changes with every call to ABCMeta.
register() on any ABC.

New in version 3.4.

29.8 atexit — Exit handlers

The atexit module defines functions to register and unregister cleanup functions. Functions thus registered
are automatically executed upon normal interpreter termination. atexit runs these functions in the reverse
order in which they were registered; if you register A, B, and C, at interpreter termination time they will be
run in the order C, B, A.

Note: The functions registered via this module are not called when the program is killed by a signal not
handled by Python, when a Python fatal internal error is detected, or when os._exit() is called.

atexit.register(func, *args, **kargs)
Register func as a function to be executed at termination. Any optional arguments that are to be
passed to func must be passed as arguments to register(). It is possible to register the same function
and arguments more than once.

At normal program termination (for instance, if sys.exit() is called or the main module’s execution
completes), all functions registered are called in last in, first out order. The assumption is that lower
level modules will normally be imported before higher level modules and thus must be cleaned up later.

If an exception is raised during execution of the exit handlers, a traceback is printed (unless SystemExit
is raised) and the exception information is saved. After all exit handlers have had a chance to run the
last exception to be raised is re-raised.

This function returns func, which makes it possible to use it as a decorator.

29.8. atexit — Exit handlers 1583

The Python Library Reference, Release 3.5.7

atexit.unregister(func)
Remove func from the list of functions to be run at interpreter shutdown. After calling unregister(),
func is guaranteed not to be called when the interpreter shuts down, even if it was registered more
than once. unregister() silently does nothing if func was not previously registered.

See also:

Module readline Useful example of atexit to read and write readline history files.

29.8.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is
imported and save the counter’s updated value automatically when the program terminates without relying
on the application making an explicit call into this module at termination.

try:
with open("counterfile") as infile:

_count = int(infile.read())
except FileNotFoundError:

_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
with open("counterfile", "w") as outfile:

outfile.write("%d" % _count)

import atexit
atexit.register(savecounter)

Positional and keyword arguments may also be passed to register() to be passed along to the registered
function when it is called:

def goodbye(name, adjective):
print('Goodbye, %s, it was %s to meet you.' % (name, adjective))

import atexit
atexit.register(goodbye, 'Donny', 'nice')

or:
atexit.register(goodbye, adjective='nice', name='Donny')

Usage as a decorator:

import atexit

@atexit.register
def goodbye():

print("You are now leaving the Python sector.")

This only works with functions that can be called without arguments.

1584 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

29.9 traceback — Print or retrieve a stack traceback

Source code: Lib/traceback.py

This module provides a standard interface to extract, format and print stack traces of Python programs. It
exactly mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you
want to print stack traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the sys.last_traceback variable
and returned as the third item from sys.exc_info().

The module defines the following functions:

traceback.print_tb(tb, limit=None, file=None)
Print up to limit stack trace entries from traceback object tb (starting from the caller’s frame) if limit
is positive. Otherwise, print the last abs(limit) entries. If limit is omitted or None, all entries are
printed. If file is omitted or None, the output goes to sys.stderr; otherwise it should be an open file or
file-like object to receive the output.

Changed in version 3.5: Added negative limit support.

traceback.print_exception(etype, value, tb, limit=None, file=None, chain=True)
Print exception information and stack trace entries from traceback object tb to file. This differs from
print_tb() in the following ways:

• if tb is not None, it prints a header Traceback (most recent call last):

• it prints the exception etype and value after the stack trace

• if type(value) is SyntaxError and value has the appropriate format, it prints the line where the
syntax error occurred with a caret indicating the approximate position of the error.

The optional limit argument has the same meaning as for print_tb(). If chain is true (the default),
then chained exceptions (the __cause__ or __context__ attributes of the exception) will be printed
as well, like the interpreter itself does when printing an unhandled exception.

Changed in version 3.5: The etype argument is ignored and inferred from the type of value.

traceback.print_exc(limit=None, file=None, chain=True)
This is a shorthand for print_exception(*sys.exc_info(), limit, file, chain).

traceback.print_last(limit=None, file=None, chain=True)
This is a shorthand for print_exception(sys.last_type, sys.last_value, sys.last_traceback, limit, file,
chain). In general it will work only after an exception has reached an interactive prompt (see sys.
last_type).

traceback.print_stack(f=None, limit=None, file=None)
Print up to limit stack trace entries (starting from the invocation point) if limit is positive. Otherwise,
print the last abs(limit) entries. If limit is omitted or None, all entries are printed. The optional f
argument can be used to specify an alternate stack frame to start. The optional file argument has the
same meaning as for print_tb().

Changed in version 3.5: Added negative limit support.

traceback.extract_tb(tb, limit=None)
Return a list of “pre-processed” stack trace entries extracted from the traceback object tb. It is useful
for alternate formatting of stack traces. The optional limit argument has the same meaning as for
print_tb(). A “pre-processed” stack trace entry is a 4-tuple (filename, line number, function name,
text) representing the information that is usually printed for a stack trace. The text is a string with
leading and trailing whitespace stripped; if the source is not available it is None.

29.9. traceback — Print or retrieve a stack traceback 1585

https://github.com/python/cpython/tree/3.5/Lib/traceback.py

The Python Library Reference, Release 3.5.7

traceback.extract_stack(f=None, limit=None)
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract_tb(). The optional f and limit arguments have the same meaning as for print_stack().

traceback.format_list(extracted_list)
Given a list of tuples as returned by extract_tb() or extract_stack(), return a list of strings ready for
printing. Each string in the resulting list corresponds to the item with the same index in the argument
list. Each string ends in a newline; the strings may contain internal newlines as well, for those items
whose source text line is not None.

traceback.format_exception_only(etype, value)
Format the exception part of a traceback. The arguments are the exception type and value such
as given by sys.last_type and sys.last_value. The return value is a list of strings, each ending in a
newline. Normally, the list contains a single string; however, for SyntaxError exceptions, it contains
several lines that (when printed) display detailed information about where the syntax error occurred.
The message indicating which exception occurred is the always last string in the list.

traceback.format_exception(etype, value, tb, limit=None, chain=True)
Format a stack trace and the exception information. The arguments have the same meaning as the
corresponding arguments to print_exception(). The return value is a list of strings, each ending in a
newline and some containing internal newlines. When these lines are concatenated and printed, exactly
the same text is printed as does print_exception().

Changed in version 3.5: The etype argument is ignored and inferred from the type of value.

traceback.format_exc(limit=None, chain=True)
This is like print_exc(limit) but returns a string instead of printing to a file.

traceback.format_tb(tb, limit=None)
A shorthand for format_list(extract_tb(tb, limit)).

traceback.format_stack(f=None, limit=None)
A shorthand for format_list(extract_stack(f, limit)).

traceback.clear_frames(tb)
Clears the local variables of all the stack frames in a traceback tb by calling the clear() method of each
frame object.

New in version 3.4.

traceback.walk_stack(f)
Walk a stack following f.f_back from the given frame, yielding the frame and line number for each
frame. If f is None, the current stack is used. This helper is used with StackSummary.extract().

New in version 3.5.

traceback.walk_tb(tb)
Walk a traceback following tb_next yielding the frame and line number for each frame. This helper is
used with StackSummary.extract().

New in version 3.5.

The module also defines the following classes:

29.9.1 TracebackException Objects

New in version 3.5.

TracebackException objects are created from actual exceptions to capture data for later printing in a
lightweight fashion.

1586 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

class traceback.TracebackException(exc_type, exc_value, exc_traceback, *, limit=None,
lookup_lines=True, capture_locals=False)

Capture an exception for later rendering. limit, lookup_lines and capture_locals are as for the Stack-
Summary class.

Note that when locals are captured, they are also shown in the traceback.

__cause__
A TracebackException of the original __cause__.

__context__
A TracebackException of the original __context__.

__suppress_context__
The __suppress_context__ value from the original exception.

stack
A StackSummary representing the traceback.

exc_type
The class of the original traceback.

filename
For syntax errors - the file name where the error occurred.

lineno
For syntax errors - the line number where the error occurred.

text
For syntax errors - the text where the error occurred.

offset
For syntax errors - the offset into the text where the error occurred.

msg
For syntax errors - the compiler error message.

classmethod from_exception(exc, *, limit=None, lookup_lines=True, capture_locals=False)
Capture an exception for later rendering. limit, lookup_lines and capture_locals are as for the
StackSummary class.

Note that when locals are captured, they are also shown in the traceback.

format(*, chain=True)
Format the exception.

If chain is not True, __cause__ and __context__ will not be formatted.

The return value is a generator of strings, each ending in a newline and some containing internal
newlines. print_exception() is a wrapper around this method which just prints the lines to a file.

The message indicating which exception occurred is always the last string in the output.

format_exception_only()
Format the exception part of the traceback.

The return value is a generator of strings, each ending in a newline.

Normally, the generator emits a single string; however, for SyntaxError exceptions, it emits several
lines that (when printed) display detailed information about where the syntax error occurred.

The message indicating which exception occurred is always the last string in the output.

29.9. traceback — Print or retrieve a stack traceback 1587

The Python Library Reference, Release 3.5.7

29.9.2 StackSummary Objects

New in version 3.5.

StackSummary objects represent a call stack ready for formatting.

class traceback.StackSummary

classmethod extract(frame_gen, *, limit=None, lookup_lines=True, capture_locals=False)
Construct a StackSummary object from a frame generator (such as is returned by walk_stack()
or walk_tb()).

If limit is supplied, only this many frames are taken from frame_gen. If lookup_lines is False,
the returned FrameSummary objects will not have read their lines in yet, making the cost of
creating the StackSummary cheaper (which may be valuable if it may not actually get format-
ted). If capture_locals is True the local variables in each FrameSummary are captured as object
representations.

classmethod from_list(a_list)
Construct a StackSummary object from a supplied old-style list of tuples. Each tuple should be
a 4-tuple with filename, lineno, name, line as the elements.

29.9.3 FrameSummary Objects

New in version 3.5.

FrameSummary objects represent a single frame in a traceback.

class traceback.FrameSummary(filename, lineno, name, lookup_line=True, locals=None, line=None)
Represent a single frame in the traceback or stack that is being formatted or printed. It may optionally
have a stringified version of the frames locals included in it. If lookup_line is False, the source code
is not looked up until the FrameSummary has the line attribute accessed (which also happens when
casting it to a tuple). line may be directly provided, and will prevent line lookups happening at all.
locals is an optional local variable dictionary, and if supplied the variable representations are stored in
the summary for later display.

29.9.4 Traceback Examples

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard
Python interactive interpreter loop. For a more complete implementation of the interpreter loop, refer to
the code module.

import sys, traceback

def run_user_code(envdir):
source = input(">>> ")
try:

exec(source, envdir)
except Exception:

print("Exception in user code:")
print("-"*60)
traceback.print_exc(file=sys.stdout)
print("-"*60)

envdir = {}

(continues on next page)

1588 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

while True:
run_user_code(envdir)

The following example demonstrates the different ways to print and format the exception and traceback:

import sys, traceback

def lumberjack():
bright_side_of_death()

def bright_side_of_death():
return tuple()[0]

try:
lumberjack()

except IndexError:
exc_type, exc_value, exc_traceback = sys.exc_info()
print("*** print_tb:")
traceback.print_tb(exc_traceback, limit=1, file=sys.stdout)
print("*** print_exception:")
exc_type below is ignored on 3.5 and later
traceback.print_exception(exc_type, exc_value, exc_traceback,

limit=2, file=sys.stdout)
print("*** print_exc:")
traceback.print_exc(limit=2, file=sys.stdout)
print("*** format_exc, first and last line:")
formatted_lines = traceback.format_exc().splitlines()
print(formatted_lines[0])
print(formatted_lines[-1])
print("*** format_exception:")
exc_type below is ignored on 3.5 and later
print(repr(traceback.format_exception(exc_type, exc_value,

exc_traceback)))
print("*** extract_tb:")
print(repr(traceback.extract_tb(exc_traceback)))
print("*** format_tb:")
print(repr(traceback.format_tb(exc_traceback)))
print("*** tb_lineno:", exc_traceback.tb_lineno)

The output for the example would look similar to this:

*** print_tb:
File "<doctest...>", line 10, in <module>
lumberjack()

*** print_exception:
Traceback (most recent call last):
File "<doctest...>", line 10, in <module>
lumberjack()

File "<doctest...>", line 4, in lumberjack
bright_side_of_death()

IndexError: tuple index out of range
*** print_exc:
Traceback (most recent call last):
File "<doctest...>", line 10, in <module>
lumberjack()

File "<doctest...>", line 4, in lumberjack

(continues on next page)

29.9. traceback — Print or retrieve a stack traceback 1589

The Python Library Reference, Release 3.5.7

(continued from previous page)

bright_side_of_death()
IndexError: tuple index out of range
*** format_exc, first and last line:
Traceback (most recent call last):
IndexError: tuple index out of range
*** format_exception:
['Traceback (most recent call last):\n',
' File "<doctest...>", line 10, in <module>\n lumberjack()\n',
' File "<doctest...>", line 4, in lumberjack\n bright_side_of_death()\n',
' File "<doctest...>", line 7, in bright_side_of_death\n return tuple()[0]\n',
'IndexError: tuple index out of range\n']
*** extract_tb:
[<FrameSummary file <doctest...>, line 10 in <module>>,
<FrameSummary file <doctest...>, line 4 in lumberjack>,
<FrameSummary file <doctest...>, line 7 in bright_side_of_death>]
*** format_tb:
[' File "<doctest...>", line 10, in <module>\n lumberjack()\n',
' File "<doctest...>", line 4, in lumberjack\n bright_side_of_death()\n',
' File "<doctest...>", line 7, in bright_side_of_death\n return tuple()[0]\n']
*** tb_lineno: 10

The following example shows the different ways to print and format the stack:

>>> import traceback
>>> def another_function():
... lumberstack()
...
>>> def lumberstack():
... traceback.print_stack()
... print(repr(traceback.extract_stack()))
... print(repr(traceback.format_stack()))
...
>>> another_function()
File "<doctest>", line 10, in <module>
another_function()

File "<doctest>", line 3, in another_function
lumberstack()

File "<doctest>", line 6, in lumberstack
traceback.print_stack()

[('<doctest>', 10, '<module>', 'another_function()'),
('<doctest>', 3, 'another_function', 'lumberstack()'),
('<doctest>', 7, 'lumberstack', 'print(repr(traceback.extract_stack()))')]
[' File "<doctest>", line 10, in <module>\n another_function()\n',
' File "<doctest>", line 3, in another_function\n lumberstack()\n',
' File "<doctest>", line 8, in lumberstack\n print(repr(traceback.format_stack()))\n']

This last example demonstrates the final few formatting functions:

>>> import traceback
>>> traceback.format_list([('spam.py', 3, '<module>', 'spam.eggs()'),
... ('eggs.py', 42, 'eggs', 'return "bacon"')])
[' File "spam.py", line 3, in <module>\n spam.eggs()\n',
' File "eggs.py", line 42, in eggs\n return "bacon"\n']
>>> an_error = IndexError('tuple index out of range')
>>> traceback.format_exception_only(type(an_error), an_error)
['IndexError: tuple index out of range\n']

1590 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

29.10 __future__ — Future statement definitions

Source code: Lib/__future__.py

__future__ is a real module, and serves three purposes:

• To avoid confusing existing tools that analyze import statements and expect to find the modules they’re
importing.

• To ensure that future statements run under releases prior to 2.1 at least yield runtime exceptions (the
import of __future__ will fail, because there was no module of that name prior to 2.1).

• To document when incompatible changes were introduced, and when they will be — or were — made
mandatory. This is a form of executable documentation, and can be inspected programmatically via
importing __future__ and examining its contents.

Each statement in __future__.py is of the form:

FeatureName = _Feature(OptionalRelease, MandatoryRelease,
CompilerFlag)

where, normally, OptionalRelease is less than MandatoryRelease, and both are 5-tuples of the same form as
sys.version_info:

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int
PY_MICRO_VERSION, # the 0; an int
PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int
)

OptionalRelease records the first release in which the feature was accepted.

In the case of a MandatoryRelease that has not yet occurred, MandatoryRelease predicts the release in which
the feature will become part of the language.

Else MandatoryRelease records when the feature became part of the language; in releases at or after that,
modules no longer need a future statement to use the feature in question, but may continue to use such
imports.

MandatoryRelease may also be None, meaning that a planned feature got dropped.

Instances of class _Feature have two corresponding methods, getOptionalRelease() and getMandatoryRe-
lease().

CompilerFlag is the (bitfield) flag that should be passed in the fourth argument to the built-in function
compile() to enable the feature in dynamically compiled code. This flag is stored in the compiler_flag
attribute on _Feature instances.

No feature description will ever be deleted from __future__. Since its introduction in Python 2.1 the
following features have found their way into the language using this mechanism:

29.10. __future__ — Future statement definitions 1591

https://github.com/python/cpython/tree/3.5/Lib/__future__.py

The Python Library Reference, Release 3.5.7

feature optional in mandatory in effect
nested_scopes 2.1.0b1 2.2

PEP 227: Statically Nested Scopes
generators 2.2.0a1 2.3

PEP 255: Simple Generators
division 2.2.0a2 3.0

PEP 238: Changing the Division Operator
absolute_import 2.5.0a1 3.0

PEP 328: Imports: Multi-Line and Absolute/Relative
with_statement 2.5.0a1 2.6

PEP 343: The “with” Statement
print_function 2.6.0a2 3.0

PEP 3105: Make print a function
unicode_literals 2.6.0a2 3.0

PEP 3112: Bytes literals in Python 3000
generator_stop 3.5.0b1 3.7

PEP 479: StopIteration handling inside generators

See also:

future How the compiler treats future imports.

29.11 gc — Garbage Collector interface

This module provides an interface to the optional garbage collector. It provides the ability to disable the
collector, tune the collection frequency, and set debugging options. It also provides access to unreachable
objects that the collector found but cannot free. Since the collector supplements the reference counting
already used in Python, you can disable the collector if you are sure your program does not create reference
cycles. Automatic collection can be disabled by calling gc.disable(). To debug a leaking program call gc.
set_debug(gc.DEBUG_LEAK). Notice that this includes gc.DEBUG_SAVEALL, causing garbage-collected
objects to be saved in gc.garbage for inspection.

The gc module provides the following functions:

gc.enable()
Enable automatic garbage collection.

gc.disable()
Disable automatic garbage collection.

gc.isenabled()
Returns true if automatic collection is enabled.

gc.collect(generation=2)
With no arguments, run a full collection. The optional argument generation may be an integer spec-
ifying which generation to collect (from 0 to 2). A ValueError is raised if the generation number is
invalid. The number of unreachable objects found is returned.

The free lists maintained for a number of built-in types are cleared whenever a full collection or
collection of the highest generation (2) is run. Not all items in some free lists may be freed due to the
particular implementation, in particular float.

gc.set_debug(flags)
Set the garbage collection debugging flags. Debugging information will be written to sys.stderr. See
below for a list of debugging flags which can be combined using bit operations to control debugging.

1592 Chapter 29. Python Runtime Services

https://www.python.org/dev/peps/pep-0227
https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0328
https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-3105
https://www.python.org/dev/peps/pep-3112
https://www.python.org/dev/peps/pep-0479

The Python Library Reference, Release 3.5.7

gc.get_debug()
Return the debugging flags currently set.

gc.get_objects()
Returns a list of all objects tracked by the collector, excluding the list returned.

gc.get_stats()
Return a list of three per-generation dictionaries containing collection statistics since interpreter start.
The number of keys may change in the future, but currently each dictionary will contain the following
items:

• collections is the number of times this generation was collected;

• collected is the total number of objects collected inside this generation;

• uncollectable is the total number of objects which were found to be uncollectable (and were
therefore moved to the garbage list) inside this generation.

New in version 3.4.

gc.set_threshold(threshold0[, threshold1[, threshold2]])
Set the garbage collection thresholds (the collection frequency). Setting threshold0 to zero disables
collection.

The GC classifies objects into three generations depending on how many collection sweeps they have
survived. New objects are placed in the youngest generation (generation 0). If an object survives
a collection it is moved into the next older generation. Since generation 2 is the oldest generation,
objects in that generation remain there after a collection. In order to decide when to run, the collector
keeps track of the number object allocations and deallocations since the last collection. When the
number of allocations minus the number of deallocations exceeds threshold0, collection starts. Initially
only generation 0 is examined. If generation 0 has been examined more than threshold1 times since
generation 1 has been examined, then generation 1 is examined as well. Similarly, threshold2 controls
the number of collections of generation 1 before collecting generation 2.

gc.get_count()
Return the current collection counts as a tuple of (count0, count1, count2).

gc.get_threshold()
Return the current collection thresholds as a tuple of (threshold0, threshold1, threshold2).

gc.get_referrers(*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those
containers which support garbage collection; extension types which do refer to other objects but do
not support garbage collection will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been
collected by the garbage collector can be listed among the resulting referrers. To get only currently
live objects, call collect() before calling get_referrers().

Care must be taken when using objects returned by get_referrers() because some of them could still
be under construction and hence in a temporarily invalid state. Avoid using get_referrers() for any
purpose other than debugging.

gc.get_referents(*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those
objects visited by the arguments’ C-level tp_traverse methods (if any), and may not be all objects
actually directly reachable. tp_traverse methods are supported only by objects that support garbage
collection, and are only required to visit objects that may be involved in a cycle. So, for example, if
an integer is directly reachable from an argument, that integer object may or may not appear in the
result list.

29.11. gc — Garbage Collector interface 1593

The Python Library Reference, Release 3.5.7

gc.is_tracked(obj)
Returns True if the object is currently tracked by the garbage collector, False otherwise. As a general
rule, instances of atomic types aren’t tracked and instances of non-atomic types (containers, user-
defined objects. . .) are. However, some type-specific optimizations can be present in order to suppress
the garbage collector footprint of simple instances (e.g. dicts containing only atomic keys and values):

>>> gc.is_tracked(0)
False
>>> gc.is_tracked("a")
False
>>> gc.is_tracked([])
True
>>> gc.is_tracked({})
False
>>> gc.is_tracked({"a": 1})
False
>>> gc.is_tracked({"a": []})
True

New in version 3.1.

The following variables are provided for read-only access (you can mutate the values but should not rebind
them):

gc.garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable
objects). Starting with Python 3.4, this list should be empty most of the time, except when using
instances of C extension types with a non-NULL tp_del slot.

If DEBUG_SAVEALL is set, then all unreachable objects will be added to this list rather than freed.

Changed in version 3.2: If this list is non-empty at interpreter shutdown, a ResourceWarning is emitted,
which is silent by default. If DEBUG_UNCOLLECTABLE is set, in addition all uncollectable objects
are printed.

Changed in version 3.4: Following PEP 442, objects with a __del__() method don’t end up in
gc.garbage anymore.

gc.callbacks
A list of callbacks that will be invoked by the garbage collector before and after collection. The
callbacks will be called with two arguments, phase and info.

phase can be one of two values:

“start”: The garbage collection is about to start.

“stop”: The garbage collection has finished.

info is a dict providing more information for the callback. The following keys are currently defined:

“generation”: The oldest generation being collected.

“collected”: When phase is “stop”, the number of objects successfully collected.

“uncollectable”: When phase is “stop”, the number of objects that could not be collected and
were put in garbage.

Applications can add their own callbacks to this list. The primary use cases are:

Gathering statistics about garbage collection, such as how often various generations are
collected, and how long the collection takes.

1594 Chapter 29. Python Runtime Services

https://www.python.org/dev/peps/pep-0442

The Python Library Reference, Release 3.5.7

Allowing applications to identify and clear their own uncollectable types when they appear
in garbage.

New in version 3.3.

The following constants are provided for use with set_debug():

gc.DEBUG_STATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

gc.DEBUG_COLLECTABLE
Print information on collectable objects found.

gc.DEBUG_UNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed
by the collector). These objects will be added to the garbage list.

Changed in version 3.2: Also print the contents of the garbage list at interpreter shutdown, if it isn’t
empty.

gc.DEBUG_SAVEALL
When set, all unreachable objects found will be appended to garbage rather than being freed. This
can be useful for debugging a leaking program.

gc.DEBUG_LEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUG_COLLECTABLE | DEBUG_UNCOLLECTABLE | DEBUG_SAVEALL).

29.12 inspect — Inspect live objects

Source code: Lib/inspect.py

The inspect module provides several useful functions to help get information about live objects such as
modules, classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help
you examine the contents of a class, retrieve the source code of a method, extract and format the argument
list for a function, or get all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting
classes and functions, and examining the interpreter stack.

29.12.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The functions whose
names begin with “is” are mainly provided as convenient choices for the second argument to getmembers().
They also help you determine when you can expect to find the following special attributes:

Type Attribute Description
module __doc__ documentation string

__file__ filename (missing for built-in modules)
class __doc__ documentation string

__name__ name with which this class was defined
__qualname__ qualified name
__module__ name of module in which this class was defined

Continued on next page

29.12. inspect — Inspect live objects 1595

https://github.com/python/cpython/tree/3.5/Lib/inspect.py

The Python Library Reference, Release 3.5.7

Table 1 – continued from previous page
Type Attribute Description
method __doc__ documentation string

__name__ name with which this method was defined
__qualname__ qualified name
__func__ function object containing implementation of method
__self__ instance to which this method is bound, or None

function __doc__ documentation string
__name__ name with which this function was defined
__qualname__ qualified name
__code__ code object containing compiled function bytecode
__defaults__ tuple of any default values for positional or keyword parameters
__kwdefaults__ mapping of any default values for keyword-only parameters
__globals__ global namespace in which this function was defined
__annotations__ mapping of parameters names to annotations; "return" key is reserved for return annotations.

traceback tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)

frame f_back next outer frame object (this frame’s caller)
f_builtins builtins namespace seen by this frame
f_code code object being executed in this frame
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, or None

code co_argcount number of arguments (not including keyword only arguments, * or ** args)
co_code string of raw compiled bytecode
co_cellvars tuple of names of cell variables (referenced by containing scopes)
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap of CO_* flags, read more here
co_lnotab encoded mapping of line numbers to bytecode indices
co_freevars tuple of names of free variables (referenced via a function’s closure)
co_kwonlyargcount number of keyword only arguments (not including ** arg)
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables

generator __name__ name
__qualname__ qualified name
gi_frame frame
gi_running is the generator running?
gi_code code
gi_yieldfrom object being iterated by yield from, or None

coroutine __name__ name
__qualname__ qualified name

Continued on next page

1596 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

Table 1 – continued from previous page
Type Attribute Description

cr_await object being awaited on, or None
cr_frame frame
cr_running is the coroutine running?
cr_code code

builtin __doc__ documentation string
__name__ original name of this function or method
__qualname__ qualified name
__self__ instance to which a method is bound, or None

Changed in version 3.5: Add __qualname__ and gi_yieldfrom attributes to generators.

The __name__ attribute of generators is now set from the function name, instead of the code name, and
it can now be modified.

inspect.getmembers(object[, predicate])
Return all the members of an object in a list of (name, value) pairs sorted by name. If the optional
predicate argument is supplied, only members for which the predicate returns a true value are included.

Note: getmembers() will only return class attributes defined in the metaclass when the argument is
a class and those attributes have been listed in the metaclass’ custom __dir__().

inspect.getmoduleinfo(path)
Returns a named tuple ModuleInfo(name, suffix, mode, module_type) of values that describe how
Python will interpret the file identified by path if it is a module, or None if it would not be identified as
a module. In that tuple, name is the name of the module without the name of any enclosing package,
suffix is the trailing part of the file name (which may not be a dot-delimited extension), mode is the
open() mode that would be used ('r' or 'rb'), and module_type is an integer giving the type of the
module. module_type will have a value which can be compared to the constants defined in the imp
module; see the documentation for that module for more information on module types.

Deprecated since version 3.3: You may check the file path’s suffix against the supported suffixes listed
in importlib.machinery to infer the same information.

inspect.getmodulename(path)
Return the name of the module named by the file path, without including the names of enclosing
packages. The file extension is checked against all of the entries in importlib.machinery.all_suffixes().
If it matches, the final path component is returned with the extension removed. Otherwise, None is
returned.

Note that this function only returns a meaningful name for actual Python modules - paths that po-
tentially refer to Python packages will still return None.

Changed in version 3.3: This function is now based directly on importlib rather than the deprecated
getmoduleinfo().

inspect.ismodule(object)
Return true if the object is a module.

inspect.isclass(object)
Return true if the object is a class, whether built-in or created in Python code.

inspect.ismethod(object)
Return true if the object is a bound method written in Python.

inspect.isfunction(object)
Return true if the object is a Python function, which includes functions created by a lambda expression.

29.12. inspect — Inspect live objects 1597

The Python Library Reference, Release 3.5.7

inspect.isgeneratorfunction(object)
Return true if the object is a Python generator function.

inspect.isgenerator(object)
Return true if the object is a generator.

inspect.iscoroutinefunction(object)
Return true if the object is a coroutine function (a function defined with an async def syntax).

New in version 3.5.

inspect.iscoroutine(object)
Return true if the object is a coroutine created by an async def function.

New in version 3.5.

inspect.isawaitable(object)
Return true if the object can be used in await expression.

Can also be used to distinguish generator-based coroutines from regular generators:

def gen():
yield

@types.coroutine
def gen_coro():

yield

assert not isawaitable(gen())
assert isawaitable(gen_coro())

New in version 3.5.

inspect.istraceback(object)
Return true if the object is a traceback.

inspect.isframe(object)
Return true if the object is a frame.

inspect.iscode(object)
Return true if the object is a code.

inspect.isbuiltin(object)
Return true if the object is a built-in function or a bound built-in method.

inspect.isroutine(object)
Return true if the object is a user-defined or built-in function or method.

inspect.isabstract(object)
Return true if the object is an abstract base class.

inspect.ismethoddescriptor(object)
Return true if the object is a method descriptor, but not if ismethod(), isclass(), isfunction() or is-
builtin() are true.

This, for example, is true of int.__add__. An object passing this test has a __get__() method but
not a __set__() method, but beyond that the set of attributes varies. A __name__ attribute is
usually sensible, and __doc__ often is.

Methods implemented via descriptors that also pass one of the other tests return false from the is-
methoddescriptor() test, simply because the other tests promise more – you can, e.g., count on having
the __func__ attribute (etc) when an object passes ismethod().

1598 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

inspect.isdatadescriptor(object)
Return true if the object is a data descriptor.

Data descriptors have both a __get__ and a __set__ method. Examples are properties (defined
in Python), getsets, and members. The latter two are defined in C and there are more specific tests
available for those types, which is robust across Python implementations. Typically, data descriptors
will also have __name__ and __doc__ attributes (properties, getsets, and members have both of
these attributes), but this is not guaranteed.

inspect.isgetsetdescriptor(object)
Return true if the object is a getset descriptor.

CPython implementation detail: getsets are attributes defined in extension modules via PyGetSetDef
structures. For Python implementations without such types, this method will always return False.

inspect.ismemberdescriptor(object)
Return true if the object is a member descriptor.

CPython implementation detail: Member descriptors are attributes defined in extension modules via
PyMemberDef structures. For Python implementations without such types, this method will always
return False.

29.12.2 Retrieving source code

inspect.getdoc(object)
Get the documentation string for an object, cleaned up with cleandoc(). If the documentation string
for an object is not provided and the object is a class, a method, a property or a descriptor, retrieve
the documentation string from the inheritance hierarchy.

Changed in version 3.5: Documentation strings are now inherited if not overridden.

inspect.getcomments(object)
Return in a single string any lines of comments immediately preceding the object’s source code (for a
class, function, or method), or at the top of the Python source file (if the object is a module). If the
object’s source code is unavailable, return None. This could happen if the object has been defined in
C or the interactive shell.

inspect.getfile(object)
Return the name of the (text or binary) file in which an object was defined. This will fail with a
TypeError if the object is a built-in module, class, or function.

inspect.getmodule(object)
Try to guess which module an object was defined in.

inspect.getsourcefile(object)
Return the name of the Python source file in which an object was defined. This will fail with a
TypeError if the object is a built-in module, class, or function.

inspect.getsourcelines(object)
Return a list of source lines and starting line number for an object. The argument may be a module,
class, method, function, traceback, frame, or code object. The source code is returned as a list of the
lines corresponding to the object and the line number indicates where in the original source file the
first line of code was found. An OSError is raised if the source code cannot be retrieved.

Changed in version 3.3: OSError is raised instead of IOError, now an alias of the former.

inspect.getsource(object)
Return the text of the source code for an object. The argument may be a module, class, method,
function, traceback, frame, or code object. The source code is returned as a single string. An OSError
is raised if the source code cannot be retrieved.

29.12. inspect — Inspect live objects 1599

The Python Library Reference, Release 3.5.7

Changed in version 3.3: OSError is raised instead of IOError, now an alias of the former.

inspect.cleandoc(doc)
Clean up indentation from docstrings that are indented to line up with blocks of code.

All leading whitespace is removed from the first line. Any leading whitespace that can be uniformly re-
moved from the second line onwards is removed. Empty lines at the beginning and end are subsequently
removed. Also, all tabs are expanded to spaces.

29.12.3 Introspecting callables with the Signature object

New in version 3.3.

The Signature object represents the call signature of a callable object and its return annotation. To retrieve
a Signature object, use the signature() function.

inspect.signature(callable, *, follow_wrapped=True)
Return a Signature object for the given callable:

>>> from inspect import signature
>>> def foo(a, *, b:int, **kwargs):
... pass

>>> sig = signature(foo)

>>> str(sig)
'(a, *, b:int, **kwargs)'

>>> str(sig.parameters['b'])
'b:int'

>>> sig.parameters['b'].annotation
<class 'int'>

Accepts a wide range of python callables, from plain functions and classes to functools.partial() objects.

Raises ValueError if no signature can be provided, and TypeError if that type of object is not supported.

New in version 3.5: follow_wrapped parameter. Pass False to get a signature of callable specifically
(callable.__wrapped__ will not be used to unwrap decorated callables.)

Note: Some callables may not be introspectable in certain implementations of Python. For example,
in CPython, some built-in functions defined in C provide no metadata about their arguments.

class inspect.Signature(parameters=None, *, return_annotation=Signature.empty)
A Signature object represents the call signature of a function and its return annotation. For each
parameter accepted by the function it stores a Parameter object in its parameters collection.

The optional parameters argument is a sequence of Parameter objects, which is validated to check
that there are no parameters with duplicate names, and that the parameters are in the right order, i.e.
positional-only first, then positional-or-keyword, and that parameters with defaults follow parameters
without defaults.

The optional return_annotation argument, can be an arbitrary Python object, is the “return” annota-
tion of the callable.

Signature objects are immutable. Use Signature.replace() to make a modified copy.

1600 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

Changed in version 3.5: Signature objects are picklable and hashable.

empty
A special class-level marker to specify absence of a return annotation.

parameters
An ordered mapping of parameters’ names to the corresponding Parameter objects.

return_annotation
The “return” annotation for the callable. If the callable has no “return” annotation, this attribute
is set to Signature.empty.

bind(*args, **kwargs)
Create a mapping from positional and keyword arguments to parameters. Returns BoundArgu-
ments if *args and **kwargs match the signature, or raises a TypeError.

bind_partial(*args, **kwargs)
Works the same way as Signature.bind(), but allows the omission of some required arguments
(mimics functools.partial() behavior.) Returns BoundArguments, or raises a TypeError if the
passed arguments do not match the signature.

replace(*[, parameters][, return_annotation])
Create a new Signature instance based on the instance replace was invoked on. It is possible to
pass different parameters and/or return_annotation to override the corresponding properties of
the base signature. To remove return_annotation from the copied Signature, pass in Signature.
empty.

>>> def test(a, b):
... pass
>>> sig = signature(test)
>>> new_sig = sig.replace(return_annotation="new return anno")
>>> str(new_sig)
"(a, b) -> 'new return anno'"

classmethod from_callable(obj, *, follow_wrapped=True)
Return a Signature (or its subclass) object for a given callable obj. Pass follow_wrapped=False
to get a signature of obj without unwrapping its __wrapped__ chain.

This method simplifies subclassing of Signature:

class MySignature(Signature):
pass

sig = MySignature.from_callable(min)
assert isinstance(sig, MySignature)

New in version 3.5.

class inspect.Parameter(name, kind, *, default=Parameter.empty, annotation=Parameter.empty)
Parameter objects are immutable. Instead of modifying a Parameter object, you can use Parameter.
replace() to create a modified copy.

Changed in version 3.5: Parameter objects are picklable and hashable.

empty
A special class-level marker to specify absence of default values and annotations.

name
The name of the parameter as a string. The name must be a valid Python identifier.

29.12. inspect — Inspect live objects 1601

The Python Library Reference, Release 3.5.7

default
The default value for the parameter. If the parameter has no default value, this attribute is set
to Parameter.empty.

annotation
The annotation for the parameter. If the parameter has no annotation, this attribute is set to
Parameter.empty.

kind
Describes how argument values are bound to the parameter. Possible values (accessible via Pa-
rameter, like Parameter.KEYWORD_ONLY):

Name Meaning
POSITIONAL_ONLY Value must be supplied as a positional argument.

Python has no explicit syntax for defining
positional-only parameters, but many built-in and
extension module functions (especially those that accept
only one or two parameters) accept them.

POSITIONAL_OR_KEYWORD Value may be supplied as either a keyword or positional
argument (this is the standard binding behaviour for
functions implemented in Python.)

VAR_POSITIONAL A tuple of positional arguments that aren’t bound to
any other parameter. This corresponds to a *args
parameter in a Python function definition.

KEYWORD_ONLY Value must be supplied as a keyword argument.
Keyword only parameters are those which appear after a
* or *args entry in a Python function definition.

VAR_KEYWORD A dict of keyword arguments that aren’t bound to any
other parameter. This corresponds to a **kwargs
parameter in a Python function definition.

Example: print all keyword-only arguments without default values:

>>> def foo(a, b, *, c, d=10):
... pass

>>> sig = signature(foo)
>>> for param in sig.parameters.values():
... if (param.kind == param.KEYWORD_ONLY and
... param.default is param.empty):
... print('Parameter:', param)
Parameter: c

replace(*[, name][, kind][, default][, annotation])

Create a new Parameter instance based on the instance replaced was invoked on. To
override a Parameter attribute, pass the corresponding argument. To remove a default
value or/and an annotation from a Parameter, pass Parameter.empty.

>>> from inspect import Parameter
>>> param = Parameter('foo', Parameter.KEYWORD_ONLY, default=42)
>>> str(param)
'foo=42'

>>> str(param.replace()) # Will create a shallow copy of 'param'
'foo=42'

(continues on next page)

1602 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

>>> str(param.replace(default=Parameter.empty, annotation='spam'))
"foo:'spam'"

Changed in version 3.4: In Python 3.3 Parameter objects were allowed to have name set to None
if their kind was set to POSITIONAL_ONLY. This is no longer permitted.

class inspect.BoundArguments
Result of a Signature.bind() or Signature.bind_partial() call. Holds the mapping of arguments to the
function’s parameters.

arguments
An ordered, mutable mapping (collections.OrderedDict) of parameters’ names to arguments’ val-
ues. Contains only explicitly bound arguments. Changes in arguments will reflect in args and
kwargs.

Should be used in conjunction with Signature.parameters for any argument processing purposes.

Note: Arguments for which Signature.bind() or Signature.bind_partial() relied on a default value
are skipped. However, if needed, use BoundArguments.apply_defaults() to add them.

args
A tuple of positional arguments values. Dynamically computed from the arguments attribute.

kwargs
A dict of keyword arguments values. Dynamically computed from the arguments attribute.

signature
A reference to the parent Signature object.

apply_defaults()
Set default values for missing arguments.

For variable-positional arguments (*args) the default is an empty tuple.

For variable-keyword arguments (**kwargs) the default is an empty dict.

>>> def foo(a, b='ham', *args): pass
>>> ba = inspect.signature(foo).bind('spam')
>>> ba.apply_defaults()
>>> ba.arguments
OrderedDict([('a', 'spam'), ('b', 'ham'), ('args', ())])

New in version 3.5.

The args and kwargs properties can be used to invoke functions:

def test(a, *, b):
...

sig = signature(test)
ba = sig.bind(10, b=20)
test(*ba.args, **ba.kwargs)

See also:

PEP 362 - Function Signature Object. The detailed specification, implementation details and examples.

29.12. inspect — Inspect live objects 1603

https://www.python.org/dev/peps/pep-0362

The Python Library Reference, Release 3.5.7

29.12.4 Classes and functions

inspect.getclasstree(classes, unique=False)
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it
contains classes derived from the class whose entry immediately precedes the list. Each entry is a
2-tuple containing a class and a tuple of its base classes. If the unique argument is true, exactly one
entry appears in the returned structure for each class in the given list. Otherwise, classes using multiple
inheritance and their descendants will appear multiple times.

inspect.getargspec(func)
Get the names and default values of a Python function’s arguments. A named tuple ArgSpec(args,
varargs, keywords, defaults) is returned. args is a list of the argument names. varargs and keywords
are the names of the * and ** arguments or None. defaults is a tuple of default argument values or
None if there are no default arguments; if this tuple has n elements, they correspond to the last n
elements listed in args.

Deprecated since version 3.0: Use signature() and Signature Object, which provide a better introspect-
ing API for callables.

inspect.getfullargspec(func)
Get the names and default values of a Python function’s arguments. A named tuple is returned:

FullArgSpec(args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations)

args is a list of the argument names. varargs and varkw are the names of the * and ** arguments
or None. defaults is an n-tuple of the default values of the last n arguments, or None if there are no
default arguments. kwonlyargs is a list of keyword-only argument names. kwonlydefaults is a dictionary
mapping names from kwonlyargs to defaults. annotations is a dictionary mapping argument names to
annotations.

The first four items in the tuple correspond to getargspec().

Changed in version 3.4: This function is now based on signature(), but still ignores __wrapped__
attributes and includes the already bound first parameter in the signature output for bound methods.

Deprecated since version 3.5: Use signature() and Signature Object, which provide a better introspect-
ing API for callables.

inspect.getargvalues(frame)
Get information about arguments passed into a particular frame. A named tuple ArgInfo(args, varargs,
keywords, locals) is returned. args is a list of the argument names. varargs and keywords are the names
of the * and ** arguments or None. locals is the locals dictionary of the given frame.

Note: This function was inadvertently marked as deprecated in Python 3.5.

inspect.formatargspec(args[, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations[, for-
matarg, formatvarargs, formatvarkw, formatvalue, formatreturns, formatanno-

tations]])
Format a pretty argument spec from the values returned by getargspec() or getfullargspec().

The first seven arguments are (args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations).

The other six arguments are functions that are called to turn argument names, * argument name, **
argument name, default values, return annotation and individual annotations into strings, respectively.

For example:

1604 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

>>> from inspect import formatargspec, getfullargspec
>>> def f(a: int, b: float):
... pass
...
>>> formatargspec(*getfullargspec(f))
'(a: int, b: float)'

Deprecated since version 3.5: Use signature() and Signature Object, which provide a better introspect-
ing API for callables.

inspect.formatargvalues(args[, varargs, varkw, locals, formatarg, formatvarargs, formatvarkw, format-

value])
Format a pretty argument spec from the four values returned by getargvalues(). The format* arguments
are the corresponding optional formatting functions that are called to turn names and values into
strings.

Note: This function was inadvertently marked as deprecated in Python 3.5.

inspect.getmro(cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears
more than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a
very peculiar user-defined metatype is in use, cls will be the first element of the tuple.

inspect.getcallargs(func, *args, **kwds)
Bind the args and kwds to the argument names of the Python function or method func, as if it was
called with them. For bound methods, bind also the first argument (typically named self) to the
associated instance. A dict is returned, mapping the argument names (including the names of the *
and ** arguments, if any) to their values from args and kwds. In case of invoking func incorrectly,
i.e. whenever func(*args, **kwds) would raise an exception because of incompatible signature, an
exception of the same type and the same or similar message is raised. For example:

>>> from inspect import getcallargs
>>> def f(a, b=1, *pos, **named):
... pass
>>> getcallargs(f, 1, 2, 3) == {'a': 1, 'named': {}, 'b': 2, 'pos': (3,)}
True
>>> getcallargs(f, a=2, x=4) == {'a': 2, 'named': {'x': 4}, 'b': 1, 'pos': ()}
True
>>> getcallargs(f)
Traceback (most recent call last):
...
TypeError: f() missing 1 required positional argument: 'a'

New in version 3.2.

Deprecated since version 3.5: Use Signature.bind() and Signature.bind_partial() instead.

inspect.getclosurevars(func)
Get the mapping of external name references in a Python function or method func to their current
values. A named tuple ClosureVars(nonlocals, globals, builtins, unbound) is returned. nonlocals maps
referenced names to lexical closure variables, globals to the function’s module globals and builtins to
the builtins visible from the function body. unbound is the set of names referenced in the function that
could not be resolved at all given the current module globals and builtins.

TypeError is raised if func is not a Python function or method.

New in version 3.3.

29.12. inspect — Inspect live objects 1605

The Python Library Reference, Release 3.5.7

inspect.unwrap(func, *, stop=None)
Get the object wrapped by func. It follows the chain of __wrapped__ attributes returning the last
object in the chain.

stop is an optional callback accepting an object in the wrapper chain as its sole argument that allows
the unwrapping to be terminated early if the callback returns a true value. If the callback never returns
a true value, the last object in the chain is returned as usual. For example, signature() uses this to
stop unwrapping if any object in the chain has a __signature__ attribute defined.

ValueError is raised if a cycle is encountered.

New in version 3.4.

29.12.5 The interpreter stack

When the following functions return “frame records,” each record is a named tuple FrameInfo(frame, filename,
lineno, function, code_context, index). The tuple contains the frame object, the filename, the line number
of the current line, the function name, a list of lines of context from the source code, and the index of the
current line within that list.

Changed in version 3.5: Return a named tuple instead of a tuple.

Note: Keeping references to frame objects, as found in the first element of the frame records these functions
return, can cause your program to create reference cycles. Once a reference cycle has been created, the
lifespan of all objects which can be accessed from the objects which form the cycle can become much longer
even if Python’s optional cycle detector is enabled. If such cycles must be created, it is important to ensure
they are explicitly broken to avoid the delayed destruction of objects and increased memory consumption
which occurs.

Though the cycle detector will catch these, destruction of the frames (and local variables) can be made
deterministic by removing the cycle in a finally clause. This is also important if the cycle detector was
disabled when Python was compiled or using gc.disable(). For example:

def handle_stackframe_without_leak():
frame = inspect.currentframe()
try:

do something with the frame
finally:

del frame

If you want to keep the frame around (for example to print a traceback later), you can also break reference
cycles by using the frame.clear() method.

The optional context argument supported by most of these functions specifies the number of lines of context
to return, which are centered around the current line.

inspect.getframeinfo(frame, context=1)
Get information about a frame or traceback object. A named tuple Traceback(filename, lineno,
function, code_context, index) is returned.

inspect.getouterframes(frame, context=1)
Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead
to the creation of frame. The first entry in the returned list represents frame; the last entry represents
the outermost call on frame’s stack.

Changed in version 3.5: A list of named tuples FrameInfo(frame, filename, lineno, function,
code_context, index) is returned.

1606 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

inspect.getinnerframes(traceback, context=1)
Get a list of frame records for a traceback’s frame and all inner frames. These frames represent
calls made as a consequence of frame. The first entry in the list represents traceback; the last entry
represents where the exception was raised.

Changed in version 3.5: A list of named tuples FrameInfo(frame, filename, lineno, function,
code_context, index) is returned.

inspect.currentframe()
Return the frame object for the caller’s stack frame.

CPython implementation detail: This function relies on Python stack frame support in the interpreter,
which isn’t guaranteed to exist in all implementations of Python. If running in an implementation
without Python stack frame support this function returns None.

inspect.stack(context=1)
Return a list of frame records for the caller’s stack. The first entry in the returned list represents the
caller; the last entry represents the outermost call on the stack.

Changed in version 3.5: A list of named tuples FrameInfo(frame, filename, lineno, function,
code_context, index) is returned.

inspect.trace(context=1)
Return a list of frame records for the stack between the current frame and the frame in which an
exception currently being handled was raised in. The first entry in the list represents the caller; the
last entry represents where the exception was raised.

Changed in version 3.5: A list of named tuples FrameInfo(frame, filename, lineno, function,
code_context, index) is returned.

29.12.6 Fetching attributes statically

Both getattr() and hasattr() can trigger code execution when fetching or checking for the existence of
attributes. Descriptors, like properties, will be invoked and __getattr__() and __getattribute__() may
be called.

For cases where you want passive introspection, like documentation tools, this can be inconvenient.
getattr_static() has the same signature as getattr() but avoids executing code when it fetches attributes.

inspect.getattr_static(obj, attr, default=None)
Retrieve attributes without triggering dynamic lookup via the descriptor protocol, __getattr__() or
__getattribute__().

Note: this function may not be able to retrieve all attributes that getattr can fetch (like dynamically
created attributes) and may find attributes that getattr can’t (like descriptors that raise AttributeEr-
ror). It can also return descriptors objects instead of instance members.

If the instance __dict__ is shadowed by another member (for example a property) then this function
will be unable to find instance members.

New in version 3.2.

getattr_static() does not resolve descriptors, for example slot descriptors or getset descriptors on objects
implemented in C. The descriptor object is returned instead of the underlying attribute.

You can handle these with code like the following. Note that for arbitrary getset descriptors invoking these
may trigger code execution:

29.12. inspect — Inspect live objects 1607

The Python Library Reference, Release 3.5.7

example code for resolving the builtin descriptor types
class _foo:

__slots__ = ['foo']

slot_descriptor = type(_foo.foo)
getset_descriptor = type(type(open(__file__)).name)
wrapper_descriptor = type(str.__dict__['__add__'])
descriptor_types = (slot_descriptor, getset_descriptor, wrapper_descriptor)

result = getattr_static(some_object, 'foo')
if type(result) in descriptor_types:

try:
result = result.__get__()

except AttributeError:
descriptors can raise AttributeError to
indicate there is no underlying value
in which case the descriptor itself will
have to do
pass

29.12.7 Current State of Generators and Coroutines

When implementing coroutine schedulers and for other advanced uses of generators, it is useful to deter-
mine whether a generator is currently executing, is waiting to start or resume or execution, or has already
terminated. getgeneratorstate() allows the current state of a generator to be determined easily.

inspect.getgeneratorstate(generator)
Get current state of a generator-iterator.

Possible states are:

• GEN_CREATED: Waiting to start execution.

• GEN_RUNNING: Currently being executed by the interpreter.

• GEN_SUSPENDED: Currently suspended at a yield expression.

• GEN_CLOSED: Execution has completed.

New in version 3.2.

inspect.getcoroutinestate(coroutine)
Get current state of a coroutine object. The function is intended to be used with coroutine objects
created by async def functions, but will accept any coroutine-like object that has cr_running and
cr_frame attributes.

Possible states are:

• CORO_CREATED: Waiting to start execution.

• CORO_RUNNING: Currently being executed by the interpreter.

• CORO_SUSPENDED: Currently suspended at an await expression.

• CORO_CLOSED: Execution has completed.

New in version 3.5.

The current internal state of the generator can also be queried. This is mostly useful for testing purposes,
to ensure that internal state is being updated as expected:

1608 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

inspect.getgeneratorlocals(generator)
Get the mapping of live local variables in generator to their current values. A dictionary is returned
that maps from variable names to values. This is the equivalent of calling locals() in the body of the
generator, and all the same caveats apply.

If generator is a generator with no currently associated frame, then an empty dictionary is returned.
TypeError is raised if generator is not a Python generator object.

CPython implementation detail: This function relies on the generator exposing a Python stack frame
for introspection, which isn’t guaranteed to be the case in all implementations of Python. In such
cases, this function will always return an empty dictionary.

New in version 3.3.

inspect.getcoroutinelocals(coroutine)
This function is analogous to getgeneratorlocals(), but works for coroutine objects created by async
def functions.

New in version 3.5.

29.12.8 Code Objects Bit Flags

Python code objects have a co_flags attribute, which is a bitmap of the following flags:

inspect.CO_OPTIMIZED
The code object is optimized, using fast locals.

inspect.CO_NEWLOCALS
If set, a new dict will be created for the frame’s f_locals when the code object is executed.

inspect.CO_VARARGS
The code object has a variable positional parameter (*args-like).

inspect.CO_VARKEYWORDS
The code object has a variable keyword parameter (**kwargs-like).

inspect.CO_NESTED
The flag is set when the code object is a nested function.

inspect.CO_GENERATOR
The flag is set when the code object is a generator function, i.e. a generator object is returned when
the code object is executed.

inspect.CO_NOFREE
The flag is set if there are no free or cell variables.

inspect.CO_COROUTINE
The flag is set when the code object is a coroutine function, i.e. a coroutine object is returned when
the code object is executed. See PEP 492 for more details.

New in version 3.5.

inspect.CO_ITERABLE_COROUTINE
Used to turn generators into generator-based coroutines. Generator objects with this flag can be used
in await expression, and can yield from coroutine objects. See PEP 492 for more details.

New in version 3.5.

Note: The flags are specific to CPython, and may not be defined in other Python implementations.
Furthermore, the flags are an implementation detail, and can be removed or deprecated in future Python

29.12. inspect — Inspect live objects 1609

https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492

The Python Library Reference, Release 3.5.7

releases. It’s recommended to use public APIs from the inspect module for any introspection needs.

29.12.9 Command Line Interface

The inspect module also provides a basic introspection capability from the command line.

By default, accepts the name of a module and prints the source of that module. A class or function within
the module can be printed instead by appended a colon and the qualified name of the target object.

--details
Print information about the specified object rather than the source code

29.13 site — Site-specific configuration hook

Source code: Lib/site.py

This module is automatically imported during initialization. The automatic import can be suppressed using
the interpreter’s -S option.

Importing this module will append site-specific paths to the module search path and add a few builtins,
unless -S was used. In that case, this module can be safely imported with no automatic modifications to the
module search path or additions to the builtins. To explicitly trigger the usual site-specific additions, call
the site.main() function.

Changed in version 3.3: Importing the module used to trigger paths manipulation even when using -S.

It starts by constructing up to four directories from a head and a tail part. For the head part, it uses
sys.prefix and sys.exec_prefix; empty heads are skipped. For the tail part, it uses the empty string and then
lib/site-packages (on Windows) or lib/pythonX.Y/site-packages (on Unix and Macintosh). For each of the
distinct head-tail combinations, it sees if it refers to an existing directory, and if so, adds it to sys.path and
also inspects the newly added path for configuration files.

Changed in version 3.5: Support for the “site-python” directory has been removed.

If a file named “pyvenv.cfg” exists one directory above sys.executable, sys.prefix and sys.exec_prefix are set to
that directory and it is also checked for site-packages (sys.base_prefix and sys.base_exec_prefix will always
be the “real” prefixes of the Python installation). If “pyvenv.cfg” (a bootstrap configuration file) contains
the key “include-system-site-packages” set to anything other than “false” (case-insensitive), the system-level
prefixes will still also be searched for site-packages; otherwise they won’t.

A path configuration file is a file whose name has the form name.pth and exists in one of the four directories
mentioned above; its contents are additional items (one per line) to be added to sys.path. Non-existing items
are never added to sys.path. No item is added to sys.path more than once. Blank lines and lines beginning
with # are skipped. Lines starting with import (followed by space or tab) are executed.

For example, suppose sys.prefix and sys.exec_prefix are set to /usr/local. The Python X.Y library is
then installed in /usr/local/lib/pythonX.Y. Suppose this has a subdirectory /usr/local/lib/pythonX.Y/site-
packages with three subsubdirectories, foo, bar and spam, and two path configuration files, foo.pth and
bar.pth. Assume foo.pth contains the following:

foo package configuration

foo

(continues on next page)

1610 Chapter 29. Python Runtime Services

https://github.com/python/cpython/tree/3.5/Lib/site.py

The Python Library Reference, Release 3.5.7

(continued from previous page)

bar
bletch

and bar.pth contains:

bar package configuration

bar

Then the following version-specific directories are added to sys.path, in this order:

/usr/local/lib/pythonX.Y/site-packages/bar
/usr/local/lib/pythonX.Y/site-packages/foo

Note that bletch is omitted because it doesn’t exist; the bar directory precedes the foo directory because
bar.pth comes alphabetically before foo.pth; and spam is omitted because it is not mentioned in either path
configuration file.

After these path manipulations, an attempt is made to import a module named sitecustomize, which can
perform arbitrary site-specific customizations. It is typically created by a system administrator in the site-
packages directory. If this import fails with an ImportError exception, it is silently ignored. If Python is
started without output streams available, as with pythonw.exe on Windows (which is used by default to
start IDLE), attempted output from sitecustomize is ignored. Any exception other than ImportError causes
a silent and perhaps mysterious failure of the process.

After this, an attempt is made to import a module named usercustomize, which can perform arbitrary user-
specific customizations, if ENABLE_USER_SITE is true. This file is intended to be created in the user
site-packages directory (see below), which is part of sys.path unless disabled by -s. An ImportError will be
silently ignored.

Note that for some non-Unix systems, sys.prefix and sys.exec_prefix are empty, and the path manipulations
are skipped; however the import of sitecustomize and usercustomize is still attempted.

29.13.1 Readline configuration

On systems that support readline, this module will also import and configure the rlcompleter module, if
Python is started in interactive mode and without the -S option. The default behavior is enable tab-
completion and to use ~/.python_history as the history save file. To disable it, delete (or override) the sys.
__interactivehook__ attribute in your sitecustomize or usercustomize module or your PYTHONSTARTUP
file.

Changed in version 3.4: Activation of rlcompleter and history was made automatic.

29.13.2 Module contents

site.PREFIXES
A list of prefixes for site-packages directories.

site.ENABLE_USER_SITE
Flag showing the status of the user site-packages directory. True means that it is enabled and was added
to sys.path. False means that it was disabled by user request (with -s or PYTHONNOUSERSITE).
None means it was disabled for security reasons (mismatch between user or group id and effective id)
or by an administrator.

29.13. site — Site-specific configuration hook 1611

The Python Library Reference, Release 3.5.7

site.USER_SITE
Path to the user site-packages for the running Python. Can be None if getusersitepackages() hasn’t
been called yet. Default value is ~/.local/lib/pythonX.Y/site-packages for UNIX and non-framework
Mac OS X builds, ~/Library/Python/X.Y/lib/python/site-packages for Mac framework builds, and
%APPDATA%\Python\PythonXY\site-packages on Windows. This directory is a site directory, which
means that .pth files in it will be processed.

site.USER_BASE
Path to the base directory for the user site-packages. Can be None if getuserbase() hasn’t been called
yet. Default value is ~/.local for UNIX and Mac OS X non-framework builds, ~/Library/Python/X.Y
for Mac framework builds, and %APPDATA%\Python for Windows. This value is used by Distutils to
compute the installation directories for scripts, data files, Python modules, etc. for the user installation
scheme. See also PYTHONUSERBASE.

site.main()
Adds all the standard site-specific directories to the module search path. This function is called
automatically when this module is imported, unless the Python interpreter was started with the -S
flag.

Changed in version 3.3: This function used to be called unconditionally.

site.addsitedir(sitedir, known_paths=None)
Add a directory to sys.path and process its .pth files. Typically used in sitecustomize or usercustomize
(see above).

site.getsitepackages()
Return a list containing all global site-packages directories.

New in version 3.2.

site.getuserbase()
Return the path of the user base directory, USER_BASE. If it is not initialized yet, this function will
also set it, respecting PYTHONUSERBASE.

New in version 3.2.

site.getusersitepackages()
Return the path of the user-specific site-packages directory, USER_SITE. If it is not initialized yet,
this function will also set it, respecting PYTHONNOUSERSITE and USER_BASE.

New in version 3.2.

The site module also provides a way to get the user directories from the command line:

$ python3 -m site --user-site
/home/user/.local/lib/python3.3/site-packages

If it is called without arguments, it will print the contents of sys.path on the standard output, followed by
the value of USER_BASE and whether the directory exists, then the same thing for USER_SITE, and
finally the value of ENABLE_USER_SITE.

--user-base
Print the path to the user base directory.

--user-site
Print the path to the user site-packages directory.

If both options are given, user base and user site will be printed (always in this order), separated by os.
pathsep.

1612 Chapter 29. Python Runtime Services

The Python Library Reference, Release 3.5.7

If any option is given, the script will exit with one of these values: O if the user site-packages directory is
enabled, 1 if it was disabled by the user, 2 if it is disabled for security reasons or by an administrator, and
a value greater than 2 if there is an error.

See also:

PEP 370 – Per user site-packages directory

29.14 fpectl — Floating point exception control

Note: The fpectl module is not built by default, and its usage is discouraged and may be dangerous except
in the hands of experts. See also the section Limitations and other considerations on limitations for more
details.

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard.
On any real computer, some floating point operations produce results that cannot be expressed as a normal
floating point value. For example, try

>>> import math
>>> math.exp(1000)
inf
>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) “Inf” is a special, non-
numeric value in IEEE-754 that stands for “infinity”, and “nan” means “not a number.” Note that, other than
the non-numeric results, nothing special happened when you asked Python to carry out those calculations.
That is in fact the default behaviour prescribed in the IEEE-754 standard, and if it works for you, stop
reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the
faulty operation was attempted. The fpectl module is for use in that situation. It provides control over
floating point units from several hardware manufacturers, allowing the user to turn on the generation of
SIGFPE whenever any of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs.
In tandem with a pair of wrapper macros that are inserted into the C code comprising your python system,
SIGFPE is trapped and converted into the Python FloatingPointError exception.

The fpectl module defines the following functions and may raise the given exception:

fpectl.turnon_sigfpe()
Turn on the generation of SIGFPE, and set up an appropriate signal handler.

fpectl.turnoff_sigfpe()
Reset default handling of floating point exceptions.

exception fpectl.FloatingPointError
After turnon_sigfpe() has been executed, a floating point operation that raises one of the IEEE-754
exceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python
exception.

29.14.1 Example

The following example demonstrates how to start up and test operation of the fpectl module.

29.14. fpectl — Floating point exception control 1613

https://www.python.org/dev/peps/pep-0370

The Python Library Reference, Release 3.5.7

>>> import fpectl
>>> import fpetest
>>> fpectl.turnon_sigfpe()
>>> fpetest.test()
overflow PASS
FloatingPointError: Overflow

div by 0 PASS
FloatingPointError: Division by zero
[more output from test elided]

>>> import math
>>> math.exp(1000)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

FloatingPointError: in math_1

29.14.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a
per-architecture basis. You may have to modify fpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECT and PyFPE_END_PROTECT be inserted into your code in an appropri-
ate fashion. Python itself has been modified to support the fpectl module, but many other codes of interest
to numerical analysts have not.

The fpectl module is not thread-safe.

See also:

Some files in the source distribution may be interesting in learning more about how this module operates.
The include file Include/pyfpe.h discusses the implementation of this module at some length. Modules/
fpetestmodule.c gives several examples of use. Many additional examples can be found in Objects/floatobject.
c.

1614 Chapter 29. Python Runtime Services

CHAPTER

THIRTY

CUSTOM PYTHON INTERPRETERS

The modules described in this chapter allow writing interfaces similar to Python’s interactive interpreter. If
you want a Python interpreter that supports some special feature in addition to the Python language, you
should look at the code module. (The codeop module is lower-level, used to support compiling a possibly-
incomplete chunk of Python code.)

The full list of modules described in this chapter is:

30.1 code — Interpreter base classes

Source code: Lib/code.py

The code module provides facilities to implement read-eval-print loops in Python. Two classes and conve-
nience functions are included which can be used to build applications which provide an interactive interpreter
prompt.

class code.InteractiveInterpreter(locals=None)
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with input
buffering or prompting or input file naming (the filename is always passed in explicitly). The optional
locals argument specifies the dictionary in which code will be executed; it defaults to a newly created
dictionary with key '__name__' set to '__console__' and key '__doc__' set to None.

class code.InteractiveConsole(locals=None, filename="<console>")
Closely emulate the behavior of the interactive Python interpreter. This class builds on InteractiveIn-
terpreter and adds prompting using the familiar sys.ps1 and sys.ps2, and input buffering.

code.interact(banner=None, readfunc=None, local=None)
Convenience function to run a read-eval-print loop. This creates a new instance of InteractiveConsole
and sets readfunc to be used as the InteractiveConsole.raw_input() method, if provided. If local is
provided, it is passed to the InteractiveConsole constructor for use as the default namespace for the
interpreter loop. The interact() method of the instance is then run with banner passed as the banner
to use, if provided. The console object is discarded after use.

code.compile_command(source, filename="<input>", symbol="single")
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a.
the read-eval-print loop). The tricky part is to determine when the user has entered an incomplete
command that can be completed by entering more text (as opposed to a complete command or a syntax
error). This function almost always makes the same decision as the real interpreter main loop.

source is the source string; filename is the optional filename from which source was read, defaulting to
'<input>'; and symbol is the optional grammar start symbol, which should be either 'single' (the
default) or 'eval'.

1615

https://github.com/python/cpython/tree/3.5/Lib/code.py

The Python Library Reference, Release 3.5.7

Returns a code object (the same as compile(source, filename, symbol)) if the command is complete and
valid; None if the command is incomplete; raises SyntaxError if the command is complete and contains
a syntax error, or raises OverflowError or ValueError if the command contains an invalid literal.

30.1.1 Interactive Interpreter Objects

InteractiveInterpreter.runsource(source, filename="<input>", symbol="single")
Compile and run some source in the interpreter. Arguments are the same as for compile_command();
the default for filename is '<input>', and for symbol is 'single'. One several things can happen:

• The input is incorrect; compile_command() raised an exception (SyntaxError or OverflowError).
A syntax traceback will be printed by calling the showsyntaxerror() method. runsource() returns
False.

• The input is incomplete, and more input is required; compile_command() returned None. run-
source() returns True.

• The input is complete; compile_command() returned a code object. The code is executed by call-
ing the runcode() (which also handles run-time exceptions, except for SystemExit). runsource()
returns False.

The return value can be used to decide whether to use sys.ps1 or sys.ps2 to prompt the next line.

InteractiveInterpreter.runcode(code)
Execute a code object. When an exception occurs, showtraceback() is called to display a traceback.
All exceptions are caught except SystemExit, which is allowed to propagate.

A note about KeyboardInterrupt: this exception may occur elsewhere in this code, and may not always
be caught. The caller should be prepared to deal with it.

InteractiveInterpreter.showsyntaxerror(filename=None)
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one
for syntax errors. If filename is given, it is stuffed into the exception instead of the default filename
provided by Python’s parser, because it always uses '<string>' when reading from a string. The
output is written by the write() method.

InteractiveInterpreter.showtraceback()
Display the exception that just occurred. We remove the first stack item because it is within the
interpreter object implementation. The output is written by the write() method.

Changed in version 3.5: The full chained traceback is displayed instead of just the primary traceback.

InteractiveInterpreter.write(data)
Write a string to the standard error stream (sys.stderr). Derived classes should override this to provide
the appropriate output handling as needed.

30.1.2 Interactive Console Objects

The InteractiveConsole class is a subclass of InteractiveInterpreter, and so offers all the methods of the
interpreter objects as well as the following additions.

InteractiveConsole.interact(banner=None)
Closely emulate the interactive Python console. The optional banner argument specify the banner
to print before the first interaction; by default it prints a banner similar to the one printed by the
standard Python interpreter, followed by the class name of the console object in parentheses (so as not
to confuse this with the real interpreter – since it’s so close!).

Changed in version 3.4: To suppress printing any banner, pass an empty string.

1616 Chapter 30. Custom Python Interpreters

The Python Library Reference, Release 3.5.7

InteractiveConsole.push(line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may
have internal newlines. The line is appended to a buffer and the interpreter’s runsource() method is
called with the concatenated contents of the buffer as source. If this indicates that the command was
executed or invalid, the buffer is reset; otherwise, the command is incomplete, and the buffer is left as
it was after the line was appended. The return value is True if more input is required, False if the line
was dealt with in some way (this is the same as runsource()).

InteractiveConsole.resetbuffer()
Remove any unhandled source text from the input buffer.

InteractiveConsole.raw_input(prompt="")
Write a prompt and read a line. The returned line does not include the trailing newline. When the
user enters the EOF key sequence, EOFError is raised. The base implementation reads from sys.stdin;
a subclass may replace this with a different implementation.

30.2 codeop — Compile Python code

Source code: Lib/codeop.py

The codeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is
done in the code module. As a result, you probably don’t want to use the module directly; if you want to
include such a loop in your program you probably want to use the code module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to print
‘>>>’ or ‘...’ next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with
these in effect.

The codeop module provides a way of doing each of these things, and a way of doing them both.

To do just the former:

codeop.compile_command(source, filename="<input>", symbol="single")
Tries to compile source, which should be a string of Python code and return a code object if source
is valid Python code. In that case, the filename attribute of the code object will be filename, which
defaults to '<input>'. Returns None if source is not valid Python code, but is a prefix of valid Python
code.

If there is a problem with source, an exception will be raised. SyntaxError is raised if there is invalid
Python syntax, and OverflowError or ValueError if there is an invalid literal.

The symbol argument determines whether source is compiled as a statement ('single', the default) or
as an expression ('eval'). Any other value will cause ValueError to be raised.

Note: It is possible (but not likely) that the parser stops parsing with a successful outcome before
reaching the end of the source; in this case, trailing symbols may be ignored instead of causing an
error. For example, a backslash followed by two newlines may be followed by arbitrary garbage. This
will be fixed once the API for the parser is better.

30.2. codeop — Compile Python code 1617

https://github.com/python/cpython/tree/3.5/Lib/codeop.py

The Python Library Reference, Release 3.5.7

class codeop.Compile
Instances of this class have __call__() methods identical in signature to the built-in function com-
pile(), but with the difference that if the instance compiles program text containing a __future__
statement, the instance ‘remembers’ and compiles all subsequent program texts with the statement in
force.

class codeop.CommandCompiler
Instances of this class have __call__() methods identical in signature to compile_command(); the
difference is that if the instance compiles program text containing a __future__ statement, the
instance ‘remembers’ and compiles all subsequent program texts with the statement in force.

1618 Chapter 30. Custom Python Interpreters

CHAPTER

THIRTYONE

IMPORTING MODULES

The modules described in this chapter provide new ways to import other Python modules and hooks for
customizing the import process.

The full list of modules described in this chapter is:

31.1 zipimport — Import modules from Zip archives

This module adds the ability to import Python modules (*.py, *.pyc) and packages from ZIP-format archives.
It is usually not needed to use the zipimport module explicitly; it is automatically used by the built-in import
mechanism for sys.path items that are paths to ZIP archives.

Typically, sys.path is a list of directory names as strings. This module also allows an item of sys.path to be
a string naming a ZIP file archive. The ZIP archive can contain a subdirectory structure to support package
imports, and a path within the archive can be specified to only import from a subdirectory. For example,
the path example.zip/lib/ would only import from the lib/ subdirectory within the archive.

Any files may be present in the ZIP archive, but only files .py and .pyc are available for import. ZIP import
of dynamic modules (.pyd, .so) is disallowed. Note that if an archive only contains .py files, Python will not
attempt to modify the archive by adding the corresponding .pyc file, meaning that if a ZIP archive doesn’t
contain .pyc files, importing may be rather slow.

ZIP archives with an archive comment are currently not supported.

See also:

PKZIP Application Note Documentation on the ZIP file format by Phil Katz, the creator of the format and
algorithms used.

PEP 273 - Import Modules from Zip Archives Written by James C. Ahlstrom, who also provided an imple-
mentation. Python 2.3 follows the specification in PEP 273, but uses an implementation written by
Just van Rossum that uses the import hooks described in PEP 302.

PEP 302 - New Import Hooks The PEP to add the import hooks that help this module work.

This module defines an exception:

exception zipimport.ZipImportError
Exception raised by zipimporter objects. It’s a subclass of ImportError, so it can be caught as Im-
portError, too.

1619

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://www.python.org/dev/peps/pep-0273
https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.7

31.1.1 zipimporter Objects

zipimporter is the class for importing ZIP files.

class zipimport.zipimporter(archivepath)
Create a new zipimporter instance. archivepath must be a path to a ZIP file, or to a specific path
within a ZIP file. For example, an archivepath of foo/bar.zip/lib will look for modules in the lib
directory inside the ZIP file foo/bar.zip (provided that it exists).

ZipImportError is raised if archivepath doesn’t point to a valid ZIP archive.

find_module(fullname[, path])
Search for a module specified by fullname. fullname must be the fully qualified (dotted) module
name. It returns the zipimporter instance itself if the module was found, or None if it wasn’t.
The optional path argument is ignored—it’s there for compatibility with the importer protocol.

get_code(fullname)
Return the code object for the specified module. Raise ZipImportError if the module couldn’t be
found.

get_data(pathname)
Return the data associated with pathname. Raise OSError if the file wasn’t found.

Changed in version 3.3: IOError used to be raised instead of OSError.

get_filename(fullname)
Return the value __file__ would be set to if the specified module was imported. Raise ZipIm-
portError if the module couldn’t be found.

New in version 3.1.

get_source(fullname)
Return the source code for the specified module. Raise ZipImportError if the module couldn’t be
found, return None if the archive does contain the module, but has no source for it.

is_package(fullname)
Return True if the module specified by fullname is a package. Raise ZipImportError if the module
couldn’t be found.

load_module(fullname)
Load the module specified by fullname. fullname must be the fully qualified (dotted) module
name. It returns the imported module, or raises ZipImportError if it wasn’t found.

archive
The file name of the importer’s associated ZIP file, without a possible subpath.

prefix
The subpath within the ZIP file where modules are searched. This is the empty string for zipim-
porter objects which point to the root of the ZIP file.

The archive and prefix attributes, when combined with a slash, equal the original archivepath argument
given to the zipimporter constructor.

31.1.2 Examples

Here is an example that imports a module from a ZIP archive - note that the zipimport module is not
explicitly used.

1620 Chapter 31. Importing Modules

The Python Library Reference, Release 3.5.7

$ unzip -l example.zip
Archive: example.zip
Length Date Time Name
-------- ---- ---- ----

8467 11-26-02 22:30 jwzthreading.py
-------- -------

8467 1 file
$./python
Python 2.3 (#1, Aug 1 2003, 19:54:32)
>>> import sys
>>> sys.path.insert(0, 'example.zip') # Add .zip file to front of path
>>> import jwzthreading
>>> jwzthreading.__file__
'example.zip/jwzthreading.py'

31.2 pkgutil — Package extension utility

Source code: Lib/pkgutil.py

This module provides utilities for the import system, in particular package support.

pkgutil.extend_path(path, name)
Extend the search path for the modules which comprise a package. Intended use is to place the following
code in a package’s __init__.py:

from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

This will add to the package’s __path__ all subdirectories of directories on sys.path named after the
package. This is useful if one wants to distribute different parts of a single logical package as multiple
directories.

It also looks for *.pkg files beginning where * matches the name argument. This feature is similar to
*.pth files (see the site module for more information), except that it doesn’t special-case lines starting
with import. A *.pkg file is trusted at face value: apart from checking for duplicates, all entries found
in a *.pkg file are added to the path, regardless of whether they exist on the filesystem. (This is a
feature.)

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input
path is not modified; an extended copy is returned. Items are only appended to the copy at the end.

It is assumed that sys.path is a sequence. Items of sys.path that are not strings referring to existing
directories are ignored. Unicode items on sys.path that cause errors when used as filenames may cause
this function to raise an exception (in line with os.path.isdir() behavior).

class pkgutil.ImpImporter(dirname=None)
PEP 302 Finder that wraps Python’s “classic” import algorithm.

If dirname is a string, a PEP 302 finder is created that searches that directory. If dirname is None,
a PEP 302 finder is created that searches the current sys.path, plus any modules that are frozen or
built-in.

Note that ImpImporter does not currently support being used by placement on sys.meta_path.

Deprecated since version 3.3: This emulation is no longer needed, as the standard import mechanism
is now fully PEP 302 compliant and available in importlib.

31.2. pkgutil — Package extension utility 1621

https://github.com/python/cpython/tree/3.5/Lib/pkgutil.py
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.7

class pkgutil.ImpLoader(fullname, file, filename, etc)
Loader that wraps Python’s “classic” import algorithm.

Deprecated since version 3.3: This emulation is no longer needed, as the standard import mechanism
is now fully PEP 302 compliant and available in importlib.

pkgutil.find_loader(fullname)
Retrieve a module loader for the given fullname.

This is a backwards compatibility wrapper around importlib.util.find_spec() that converts most failures
to ImportError and only returns the loader rather than the full ModuleSpec.

Changed in version 3.3: Updated to be based directly on importlib rather than relying on the package
internal PEP 302 import emulation.

Changed in version 3.4: Updated to be based on PEP 451

pkgutil.get_importer(path_item)
Retrieve a finder for the given path_item.

The returned finder is cached in sys.path_importer_cache if it was newly created by a path hook.

The cache (or part of it) can be cleared manually if a rescan of sys.path_hooks is necessary.

Changed in version 3.3: Updated to be based directly on importlib rather than relying on the package
internal PEP 302 import emulation.

pkgutil.get_loader(module_or_name)
Get a loader object for module_or_name.

If the module or package is accessible via the normal import mechanism, a wrapper around the relevant
part of that machinery is returned. Returns None if the module cannot be found or imported. If the
named module is not already imported, its containing package (if any) is imported, in order to establish
the package __path__.

Changed in version 3.3: Updated to be based directly on importlib rather than relying on the package
internal PEP 302 import emulation.

Changed in version 3.4: Updated to be based on PEP 451

pkgutil.iter_importers(fullname=”)
Yield finder objects for the given module name.

If fullname contains a ‘.’, the finders will be for the package containing fullname, otherwise they will
be all registered top level finders (i.e. those on both sys.meta_path and sys.path_hooks).

If the named module is in a package, that package is imported as a side effect of invoking this function.

If no module name is specified, all top level finders are produced.

Changed in version 3.3: Updated to be based directly on importlib rather than relying on the package
internal PEP 302 import emulation.

pkgutil.iter_modules(path=None, prefix=”)
Yields (module_finder, name, ispkg) for all submodules on path, or, if path is None, all top-level
modules on sys.path.

path should be either None or a list of paths to look for modules in.

prefix is a string to output on the front of every module name on output.

Note: Only works for a finder which defines an iter_modules() method. This interface is non-standard,

1622 Chapter 31. Importing Modules

https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0451

The Python Library Reference, Release 3.5.7

so the module also provides implementations for importlib.machinery.FileFinder and zipimport.
zipimporter.

Changed in version 3.3: Updated to be based directly on importlib rather than relying on the package
internal PEP 302 import emulation.

pkgutil.walk_packages(path=None, prefix=”, onerror=None)
Yields (module_finder, name, ispkg) for all modules recursively on path, or, if path is None, all
accessible modules.

path should be either None or a list of paths to look for modules in.

prefix is a string to output on the front of every module name on output.

Note that this function must import all packages (not all modules!) on the given path, in order to
access the __path__ attribute to find submodules.

onerror is a function which gets called with one argument (the name of the package which was being
imported) if any exception occurs while trying to import a package. If no onerror function is supplied,
ImportErrors are caught and ignored, while all other exceptions are propagated, terminating the search.

Examples:

list all modules python can access
walk_packages()

list all submodules of ctypes
walk_packages(ctypes.__path__, ctypes.__name__ + '.')

Note: Only works for a finder which defines an iter_modules() method. This interface is non-standard,
so the module also provides implementations for importlib.machinery.FileFinder and zipimport.
zipimporter.

Changed in version 3.3: Updated to be based directly on importlib rather than relying on the package
internal PEP 302 import emulation.

pkgutil.get_data(package, resource)
Get a resource from a package.

This is a wrapper for the loader get_data API. The package argument should be the name of a
package, in standard module format (foo.bar). The resource argument should be in the form of a
relative filename, using / as the path separator. The parent directory name .. is not allowed, and nor
is a rooted name (starting with a /).

The function returns a binary string that is the contents of the specified resource.

For packages located in the filesystem, which have already been imported, this is the rough equivalent
of:

d = os.path.dirname(sys.modules[package].__file__)
data = open(os.path.join(d, resource), 'rb').read()

If the package cannot be located or loaded, or it uses a loader which does not support get_data, then
None is returned. In particular, the loader for namespace packages does not support get_data.

31.2. pkgutil — Package extension utility 1623

The Python Library Reference, Release 3.5.7

31.3 modulefinder — Find modules used by a script

Source code: Lib/modulefinder.py

This module provides a ModuleFinder class that can be used to determine the set of modules imported by a
script. modulefinder.py can also be run as a script, giving the filename of a Python script as its argument,
after which a report of the imported modules will be printed.

modulefinder.AddPackagePath(pkg_name, path)
Record that the package named pkg_name can be found in the specified path.

modulefinder.ReplacePackage(oldname, newname)
Allows specifying that the module named oldname is in fact the package named newname.

class modulefinder.ModuleFinder(path=None, debug=0, excludes=[], replace_paths=[])
This class provides run_script() and report() methods to determine the set of modules imported by a
script. path can be a list of directories to search for modules; if not specified, sys.path is used. debug
sets the debugging level; higher values make the class print debugging messages about what it’s doing.
excludes is a list of module names to exclude from the analysis. replace_paths is a list of (oldpath,
newpath) tuples that will be replaced in module paths.

report()
Print a report to standard output that lists the modules imported by the script and their paths,
as well as modules that are missing or seem to be missing.

run_script(pathname)
Analyze the contents of the pathname file, which must contain Python code.

modules
A dictionary mapping module names to modules. See Example usage of ModuleFinder.

31.3.1 Example usage of ModuleFinder

The script that is going to get analyzed later on (bacon.py):

import re, itertools

try:
import baconhameggs

except ImportError:
pass

try:
import guido.python.ham

except ImportError:
pass

The script that will output the report of bacon.py:

from modulefinder import ModuleFinder

finder = ModuleFinder()
finder.run_script('bacon.py')

print('Loaded modules:')

(continues on next page)

1624 Chapter 31. Importing Modules

https://github.com/python/cpython/tree/3.5/Lib/modulefinder.py

The Python Library Reference, Release 3.5.7

(continued from previous page)

for name, mod in finder.modules.items():
print('%s: ' % name, end='')
print(','.join(list(mod.globalnames.keys())[:3]))

print('-'*50)
print('Modules not imported:')
print('\n'.join(finder.badmodules.keys()))

Sample output (may vary depending on the architecture):

Loaded modules:
_types:
copyreg: _inverted_registry,_slotnames,__all__
sre_compile: isstring,_sre,_optimize_unicode
_sre:
sre_constants: REPEAT_ONE,makedict,AT_END_LINE
sys:
re: __module__,finditer,_expand
itertools:
__main__: re,itertools,baconhameggs
sre_parse: _PATTERNENDERS,SRE_FLAG_UNICODE
array:
types: __module__,IntType,TypeType

Modules not imported:
guido.python.ham
baconhameggs

31.4 runpy — Locating and executing Python modules

Source code: Lib/runpy.py

The runpy module is used to locate and run Python modules without importing them first. Its main use
is to implement the -m command line switch that allows scripts to be located using the Python module
namespace rather than the filesystem.

Note that this is not a sandbox module - all code is executed in the current process, and any side effects
(such as cached imports of other modules) will remain in place after the functions have returned.

Furthermore, any functions and classes defined by the executed code are not guaranteed to work correctly
after a runpy function has returned. If that limitation is not acceptable for a given use case, importlib is
likely to be a more suitable choice than this module.

The runpy module provides two functions:

runpy.run_module(mod_name, init_globals=None, run_name=None, alter_sys=False)
Execute the code of the specified module and return the resulting module globals dictionary. The
module’s code is first located using the standard import mechanism (refer to PEP 302 for details) and
then executed in a fresh module namespace.

The mod_name argument should be an absolute module name. If the module name refers to a package
rather than a normal module, then that package is imported and the __main__ submodule within
that package is then executed and the resulting module globals dictionary returned.

31.4. runpy — Locating and executing Python modules 1625

https://github.com/python/cpython/tree/3.5/Lib/runpy.py
https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.7

The optional dictionary argument init_globals may be used to pre-populate the module’s globals
dictionary before the code is executed. The supplied dictionary will not be modified. If any of the
special global variables below are defined in the supplied dictionary, those definitions are overridden
by run_module().

The special global variables __name__, __spec__, __file__, __cached__, __loader__ and
__package__ are set in the globals dictionary before the module code is executed (Note that this
is a minimal set of variables - other variables may be set implicitly as an interpreter implementation
detail).

__name__ is set to run_name if this optional argument is not None, to mod_name + '.__main__'
if the named module is a package and to the mod_name argument otherwise.

__spec__ will be set appropriately for the actually imported module (that is, __spec__.name will
always be mod_name or mod_name + '.__main__, never run_name).

__file__, __cached__, __loader__ and __package__ are set as normal based on the module
spec.

If the argument alter_sys is supplied and evaluates to True, then sys.argv[0] is updated with the value
of __file__ and sys.modules[__name__] is updated with a temporary module object for the module
being executed. Both sys.argv[0] and sys.modules[__name__] are restored to their original values
before the function returns.

Note that this manipulation of sys is not thread-safe. Other threads may see the partially initialised
module, as well as the altered list of arguments. It is recommended that the sys module be left alone
when invoking this function from threaded code.

See also:

The -m option offering equivalent functionality from the command line.

Changed in version 3.1: Added ability to execute packages by looking for a __main__ submodule.

Changed in version 3.2: Added __cached__ global variable (see PEP 3147).

Changed in version 3.4: Updated to take advantage of the module spec feature added by PEP 451.
This allows __cached__ to be set correctly for modules run this way, as well as ensuring the real
module name is always accessible as __spec__.name.

runpy.run_path(file_path, init_globals=None, run_name=None)
Execute the code at the named filesystem location and return the resulting module globals dictionary.
As with a script name supplied to the CPython command line, the supplied path may refer to a Python
source file, a compiled bytecode file or a valid sys.path entry containing a __main__ module (e.g. a
zipfile containing a top-level __main__.py file).

For a simple script, the specified code is simply executed in a fresh module namespace. For a valid
sys.path entry (typically a zipfile or directory), the entry is first added to the beginning of sys.path.
The function then looks for and executes a __main__ module using the updated path. Note that
there is no special protection against invoking an existing __main__ entry located elsewhere on
sys.path if there is no such module at the specified location.

The optional dictionary argument init_globals may be used to pre-populate the module’s globals
dictionary before the code is executed. The supplied dictionary will not be modified. If any of the
special global variables below are defined in the supplied dictionary, those definitions are overridden
by run_path().

The special global variables __name__, __spec__, __file__, __cached__, __loader__ and
__package__ are set in the globals dictionary before the module code is executed (Note that this
is a minimal set of variables - other variables may be set implicitly as an interpreter implementation
detail).

1626 Chapter 31. Importing Modules

https://www.python.org/dev/peps/pep-3147
https://www.python.org/dev/peps/pep-0451

The Python Library Reference, Release 3.5.7

__name__ is set to run_name if this optional argument is not None and to '<run_path>' otherwise.

If the supplied path directly references a script file (whether as source or as precompiled byte code),
then __file__ will be set to the supplied path, and __spec__, __cached__, __loader__ and
__package__ will all be set to None.

If the supplied path is a reference to a valid sys.path entry, then __spec__ will be set appropriately for
the imported __main__ module (that is, __spec__.name will always be __main__). __file__,
__cached__, __loader__ and __package__ will be set as normal based on the module spec.

A number of alterations are also made to the sys module. Firstly, sys.path may be altered as described
above. sys.argv[0] is updated with the value of file_path and sys.modules[__name__] is updated
with a temporary module object for the module being executed. All modifications to items in sys are
reverted before the function returns.

Note that, unlike run_module(), the alterations made to sys are not optional in this function as these
adjustments are essential to allowing the execution of sys.path entries. As the thread-safety limitations
still apply, use of this function in threaded code should be either serialised with the import lock or
delegated to a separate process.

See also:

using-on-interface-options for equivalent functionality on the command line (python path/to/script).

New in version 3.2.

Changed in version 3.4: Updated to take advantage of the module spec feature added by PEP 451.
This allows __cached__ to be set correctly in the case where __main__ is imported from a valid
sys.path entry rather than being executed directly.

See also:

PEP 338 – Executing modules as scripts PEP written and implemented by Nick Coghlan.

PEP 366 – Main module explicit relative imports PEP written and implemented by Nick Coghlan.

PEP 451 – A ModuleSpec Type for the Import System PEP written and implemented by Eric Snow

using-on-general - CPython command line details

The importlib.import_module() function

31.5 importlib — The implementation of import

New in version 3.1.

Source code: Lib/importlib/__init__.py

31.5.1 Introduction

The purpose of the importlib package is two-fold. One is to provide the implementation of the import
statement (and thus, by extension, the __import__() function) in Python source code. This provides an
implementation of import which is portable to any Python interpreter. This also provides an implementation
which is easier to comprehend than one implemented in a programming language other than Python.

Two, the components to implement import are exposed in this package, making it easier for users to create
their own custom objects (known generically as an importer) to participate in the import process.

See also:

31.5. importlib — The implementation of import 1627

https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0338
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0451
https://github.com/python/cpython/tree/3.5/Lib/importlib/__init__.py

The Python Library Reference, Release 3.5.7

import The language reference for the import statement.

Packages specification Original specification of packages. Some semantics have changed since the writing of
this document (e.g. redirecting based on None in sys.modules).

The __import__() function The import statement is syntactic sugar for this function.

PEP 235 Import on Case-Insensitive Platforms

PEP 263 Defining Python Source Code Encodings

PEP 302 New Import Hooks

PEP 328 Imports: Multi-Line and Absolute/Relative

PEP 366 Main module explicit relative imports

PEP 420 Implicit namespace packages

PEP 451 A ModuleSpec Type for the Import System

PEP 488 Elimination of PYO files

PEP 489 Multi-phase extension module initialization

PEP 3120 Using UTF-8 as the Default Source Encoding

PEP 3147 PYC Repository Directories

31.5.2 Functions

importlib.__import__(name, globals=None, locals=None, fromlist=(), level=0)
An implementation of the built-in __import__() function.

Note: Programmatic importing of modules should use import_module() instead of this function.

importlib.import_module(name, package=None)
Import a module. The name argument specifies what module to import in absolute or relative terms
(e.g. either pkg.mod or ..mod). If the name is specified in relative terms, then the package argument
must be set to the name of the package which is to act as the anchor for resolving the package name
(e.g. import_module('..mod', 'pkg.subpkg') will import pkg.mod).

The import_module() function acts as a simplifying wrapper around importlib.__import__(). This
means all semantics of the function are derived from importlib.__import__(). The most important
difference between these two functions is that import_module() returns the specified package or module
(e.g. pkg.mod), while __import__() returns the top-level package or module (e.g. pkg).

If you are dynamically importing a module that was created since the interpreter began execution (e.g.,
created a Python source file), you may need to call invalidate_caches() in order for the new module
to be noticed by the import system.

Changed in version 3.3: Parent packages are automatically imported.

importlib.find_loader(name, path=None)
Find the loader for a module, optionally within the specified path. If the module is in sys.modules,
then sys.modules[name].__loader__ is returned (unless the loader would be None or is not set, in
which case ValueError is raised). Otherwise a search using sys.meta_path is done. None is returned
if no loader is found.

1628 Chapter 31. Importing Modules

http://legacy.python.org/doc/essays/packages.html
https://www.python.org/dev/peps/pep-0235
https://www.python.org/dev/peps/pep-0263
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0328
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0489
https://www.python.org/dev/peps/pep-3120
https://www.python.org/dev/peps/pep-3147

The Python Library Reference, Release 3.5.7

A dotted name does not have its parents implicitly imported as that requires loading them and that
may not be desired. To properly import a submodule you will need to import all parent packages of
the submodule and use the correct argument to path.

New in version 3.3.

Changed in version 3.4: If __loader__ is not set, raise ValueError, just like when the attribute is set
to None.

Deprecated since version 3.4: Use importlib.util.find_spec() instead.

importlib.invalidate_caches()
Invalidate the internal caches of finders stored at sys.meta_path. If a finder implements invali-
date_caches() then it will be called to perform the invalidation. This function should be called if
any modules are created/installed while your program is running to guarantee all finders will notice
the new module’s existence.

New in version 3.3.

importlib.reload(module)
Reload a previously imported module. The argument must be a module object, so it must have been
successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value
is the module object (which can be different if re-importing causes a different object to be placed in
sys.modules).

When reload() is executed:

• Python module’s code is recompiled and the module-level code re-executed, defining a new set
of objects which are bound to names in the module’s dictionary by reusing the loader which
originally loaded the module. The init function of extension modules is not called a second time.

• As with all other objects in Python the old objects are only reclaimed after their reference counts
drop to zero.

• The names in the module namespace are updated to point to any new or changed objects.

• Other references to the old objects (such as names external to the module) are not rebound to
refer to the new objects and must be updated in each namespace where they occur if that is
desired.

There are a number of other caveats:

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Re-
definitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a global table or cache of
objects — with a try statement it can test for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

It is generally not very useful to reload built-in or dynamically loaded modules. Reloading sys,
__main__, builtins and other key modules is not recommended. In many cases extension modules
are not designed to be initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from . . . import . . . , calling reload() for the
other module does not redefine the objects imported from it — one way around this is to re-execute
the from statement, another is to use import and qualified names (module.name) instead.

31.5. importlib — The implementation of import 1629

The Python Library Reference, Release 3.5.7

If a module instantiates instances of a class, reloading the module that defines the class does not affect
the method definitions of the instances — they continue to use the old class definition. The same is
true for derived classes.

New in version 3.4.

31.5.3 importlib.abc – Abstract base classes related to import

Source code: Lib/importlib/abc.py

The importlib.abc module contains all of the core abstract base classes used by import. Some subclasses of
the core abstract base classes are also provided to help in implementing the core ABCs.

ABC hierarchy:

object
+-- Finder (deprecated)
| +-- MetaPathFinder
| +-- PathEntryFinder
+-- Loader

+-- ResourceLoader --------+
+-- InspectLoader |

+-- ExecutionLoader --+
+-- FileLoader
+-- SourceLoader

class importlib.abc.Finder
An abstract base class representing a finder.

Deprecated since version 3.3: Use MetaPathFinder or PathEntryFinder instead.

abstractmethod find_module(fullname, path=None)
An abstact method for finding a loader for the specified module. Originally specified in PEP 302,
this method was meant for use in sys.meta_path and in the path-based import subsystem.

Changed in version 3.4: Returns None when called instead of raising NotImplementedError.

class importlib.abc.MetaPathFinder
An abstract base class representing a meta path finder. For compatibility, this is a subclass of Finder.

New in version 3.3.

find_spec(fullname, path, target=None)
An abstract method for finding a spec for the specified module. If this is a top-level import, path
will be None. Otherwise, this is a search for a subpackage or module and path will be the value of
__path__ from the parent package. If a spec cannot be found, None is returned. When passed
in, target is a module object that the finder may use to make a more educated about what spec
to return.

New in version 3.4.

find_module(fullname, path)
A legacy method for finding a loader for the specified module. If this is a top-level import, path
will be None. Otherwise, this is a search for a subpackage or module and path will be the value
of __path__ from the parent package. If a loader cannot be found, None is returned.

If find_spec() is defined, backwards-compatible functionality is provided.

1630 Chapter 31. Importing Modules

https://github.com/python/cpython/tree/3.5/Lib/importlib/abc.py
https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.7

Changed in version 3.4: Returns None when called instead of raising NotImplementedError. Can
use find_spec() to provide functionality.

Deprecated since version 3.4: Use find_spec() instead.

invalidate_caches()
An optional method which, when called, should invalidate any internal cache used by the
finder. Used by importlib.invalidate_caches() when invalidating the caches of all finders on sys.
meta_path.

Changed in version 3.4: Returns None when called instead of NotImplemented.

class importlib.abc.PathEntryFinder
An abstract base class representing a path entry finder. Though it bears some similarities to MetaP-
athFinder, PathEntryFinder is meant for use only within the path-based import subsystem provided
by PathFinder. This ABC is a subclass of Finder for compatibility reasons only.

New in version 3.3.

find_spec(fullname, target=None)
An abstract method for finding a spec for the specified module. The finder will search for the
module only within the path entry to which it is assigned. If a spec cannot be found, None is
returned. When passed in, target is a module object that the finder may use to make a more
educated about what spec to return.

New in version 3.4.

find_loader(fullname)
A legacy method for finding a loader for the specified module. Returns a 2-tuple of (loader,
portion) where portion is a sequence of file system locations contributing to part of a namespace
package. The loader may be None while specifying portion to signify the contribution of the file
system locations to a namespace package. An empty list can be used for portion to signify the
loader is not part of a namespace package. If loader is None and portion is the empty list then
no loader or location for a namespace package were found (i.e. failure to find anything for the
module).

If find_spec() is defined then backwards-compatible functionality is provided.

Changed in version 3.4: Returns (None, []) instead of raising NotImplementedError. Uses
find_spec() when available to provide functionality.

Deprecated since version 3.4: Use find_spec() instead.

find_module(fullname)
A concrete implementation of Finder.find_module() which is equivalent to self.
find_loader(fullname)[0].

Deprecated since version 3.4: Use find_spec() instead.

invalidate_caches()
An optional method which, when called, should invalidate any internal cache used by the finder.
Used by PathFinder.invalidate_caches() when invalidating the caches of all cached finders.

class importlib.abc.Loader
An abstract base class for a loader. See PEP 302 for the exact definition for a loader.

create_module(spec)
A method that returns the module object to use when importing a module. This method may
return None, indicating that default module creation semantics should take place.

New in version 3.4.

31.5. importlib — The implementation of import 1631

https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.7

Changed in version 3.5: Starting in Python 3.6, this method will not be optional when
exec_module() is defined.

exec_module(module)
An abstract method that executes the module in its own namespace when a module is imported
or reloaded. The module should already be initialized when exec_module() is called.

New in version 3.4.

load_module(fullname)
A legacy method for loading a module. If the module cannot be loaded, ImportError is raised,
otherwise the loaded module is returned.

If the requested module already exists in sys.modules, that module should be used and reloaded.
Otherwise the loader should create a new module and insert it into sys.modules before any loading
begins, to prevent recursion from the import. If the loader inserted a module and the load fails,
it must be removed by the loader from sys.modules; modules already in sys.modules before the
loader began execution should be left alone (see importlib.util.module_for_loader()).

The loader should set several attributes on the module. (Note that some of these attributes can
change when a module is reloaded):

• __name__ The name of the module.

• __file__ The path to where the module data is stored (not set for built-in modules).

• __cached__ The path to where a compiled version of the module is/should be stored (not
set when the attribute would be inappropriate).

• __path__ A list of strings specifying the search path within a package. This attribute is
not set on modules.

• __package__ The parent package for the module/package. If the module is top-level then
it has a value of the empty string. The importlib.util.module_for_loader() decorator can
handle the details for __package__.

• __loader__ The loader used to load the module. The importlib.util.module_for_loader()
decorator can handle the details for __package__.

When exec_module() is available then backwards-compatible functionality is provided.

Changed in version 3.4: Raise ImportError when called instead of NotImplementedError. Func-
tionality provided when exec_module() is available.

Deprecated since version 3.4: The recommended API for loading a module is exec_module() (and
create_module()). Loaders should implement it instead of load_module(). The import machinery
takes care of all the other responsibilities of load_module() when exec_module() is implemented.

module_repr(module)
A legacy method which when implemented calculates and returns the given module’s repr, as a
string. The module type’s default repr() will use the result of this method as appropriate.

New in version 3.3.

Changed in version 3.4: Made optional instead of an abstractmethod.

Deprecated since version 3.4: The import machinery now takes care of this automatically.

class importlib.abc.ResourceLoader
An abstract base class for a loader which implements the optional PEP 302 protocol for loading
arbitrary resources from the storage back-end.

abstractmethod get_data(path)
An abstract method to return the bytes for the data located at path. Loaders that have a file-like

1632 Chapter 31. Importing Modules

https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.7

storage back-end that allows storing arbitrary data can implement this abstract method to give
direct access to the data stored. OSError is to be raised if the path cannot be found. The path
is expected to be constructed using a module’s __file__ attribute or an item from a package’s
__path__.

Changed in version 3.4: Raises OSError instead of NotImplementedError.

class importlib.abc.InspectLoader
An abstract base class for a loader which implements the optional PEP 302 protocol for loaders that
inspect modules.

get_code(fullname)
Return the code object for a module, or None if the module does not have a code object (as would
be the case, for example, for a built-in module). Raise an ImportError if loader cannot find the
requested module.

Note: While the method has a default implementation, it is suggested that it be overridden if
possible for performance.

Changed in version 3.4: No longer abstract and a concrete implementation is provided.

abstractmethod get_source(fullname)
An abstract method to return the source of a module. It is returned as a text string using
universal newlines, translating all recognized line separators into '\n' characters. Returns None
if no source is available (e.g. a built-in module). Raises ImportError if the loader cannot find the
module specified.

Changed in version 3.4: Raises ImportError instead of NotImplementedError.

is_package(fullname)
An abstract method to return a true value if the module is a package, a false value otherwise.
ImportError is raised if the loader cannot find the module.

Changed in version 3.4: Raises ImportError instead of NotImplementedError.

static source_to_code(data, path=’<string>’)
Create a code object from Python source.

The data argument can be whatever the compile() function supports (i.e. string or bytes). The
path argument should be the “path” to where the source code originated from, which can be an
abstract concept (e.g. location in a zip file).

With the subsequent code object one can execute it in a module by running exec(code, module.
__dict__).

New in version 3.4.

Changed in version 3.5: Made the method static.

exec_module(module)
Implementation of Loader.exec_module().

New in version 3.4.

load_module(fullname)
Implementation of Loader.load_module().

Deprecated since version 3.4: use exec_module() instead.

31.5. importlib — The implementation of import 1633

https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.7

class importlib.abc.ExecutionLoader
An abstract base class which inherits from InspectLoader that, when implemented, helps a module to
be executed as a script. The ABC represents an optional PEP 302 protocol.

abstractmethod get_filename(fullname)
An abstract method that is to return the value of __file__ for the specified module. If no path
is available, ImportError is raised.

If source code is available, then the method should return the path to the source file, regardless
of whether a bytecode was used to load the module.

Changed in version 3.4: Raises ImportError instead of NotImplementedError.

class importlib.abc.FileLoader(fullname, path)
An abstract base class which inherits from ResourceLoader and ExecutionLoader, providing concrete
implementations of ResourceLoader.get_data() and ExecutionLoader.get_filename().

The fullname argument is a fully resolved name of the module the loader is to handle. The path
argument is the path to the file for the module.

New in version 3.3.

name
The name of the module the loader can handle.

path
Path to the file of the module.

load_module(fullname)
Calls super’s load_module().

Deprecated since version 3.4: Use Loader.exec_module() instead.

abstractmethod get_filename(fullname)
Returns path.

abstractmethod get_data(path)
Reads path as a binary file and returns the bytes from it.

class importlib.abc.SourceLoader
An abstract base class for implementing source (and optionally bytecode) file loading. The class inherits
from both ResourceLoader and ExecutionLoader, requiring the implementation of:

• ResourceLoader.get_data()

• ExecutionLoader.get_filename() Should only return the path to the source file; sourceless loading
is not supported.

The abstract methods defined by this class are to add optional bytecode file support. Not implementing
these optional methods (or causing them to raise NotImplementedError) causes the loader to only work
with source code. Implementing the methods allows the loader to work with source and bytecode files; it
does not allow for sourceless loading where only bytecode is provided. Bytecode files are an optimization
to speed up loading by removing the parsing step of Python’s compiler, and so no bytecode-specific
API is exposed.

path_stats(path)
Optional abstract method which returns a dict containing metadata about the specified path.
Supported dictionary keys are:

• 'mtime' (mandatory): an integer or floating-point number representing the modification
time of the source code;

• 'size' (optional): the size in bytes of the source code.

1634 Chapter 31. Importing Modules

https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.7

Any other keys in the dictionary are ignored, to allow for future extensions. If the path cannot
be handled, OSError is raised.

New in version 3.3.

Changed in version 3.4: Raise OSError instead of NotImplementedError.

path_mtime(path)
Optional abstract method which returns the modification time for the specified path.

Deprecated since version 3.3: This method is deprecated in favour of path_stats(). You don’t
have to implement it, but it is still available for compatibility purposes. Raise OSError if the
path cannot be handled.

Changed in version 3.4: Raise OSError instead of NotImplementedError.

set_data(path, data)
Optional abstract method which writes the specified bytes to a file path. Any intermediate
directories which do not exist are to be created automatically.

When writing to the path fails because the path is read-only (errno.EACCES/PermissionError),
do not propagate the exception.

Changed in version 3.4: No longer raises NotImplementedError when called.

get_code(fullname)
Concrete implementation of InspectLoader.get_code().

exec_module(module)

Concrete implementation of Loader.exec_module().

New in version 3.4.

load_module(fullname)
Concrete implementation of Loader.load_module().

Deprecated since version 3.4: Use exec_module() instead.

get_source(fullname)
Concrete implementation of InspectLoader.get_source().

is_package(fullname)
Concrete implementation of InspectLoader.is_package(). A module is determined to be a package
if its file path (as provided by ExecutionLoader.get_filename()) is a file named __init__ when
the file extension is removed and the module name itself does not end in __init__.

31.5.4 importlib.machinery – Importers and path hooks

Source code: Lib/importlib/machinery.py

This module contains the various objects that help import find and load modules.

importlib.machinery.SOURCE_SUFFIXES
A list of strings representing the recognized file suffixes for source modules.

New in version 3.3.

importlib.machinery.DEBUG_BYTECODE_SUFFIXES
A list of strings representing the file suffixes for non-optimized bytecode modules.

New in version 3.3.

31.5. importlib — The implementation of import 1635

https://github.com/python/cpython/tree/3.5/Lib/importlib/machinery.py

The Python Library Reference, Release 3.5.7

Deprecated since version 3.5: Use BYTECODE_SUFFIXES instead.

importlib.machinery.OPTIMIZED_BYTECODE_SUFFIXES
A list of strings representing the file suffixes for optimized bytecode modules.

New in version 3.3.

Deprecated since version 3.5: Use BYTECODE_SUFFIXES instead.

importlib.machinery.BYTECODE_SUFFIXES
A list of strings representing the recognized file suffixes for bytecode modules (including the leading
dot).

New in version 3.3.

Changed in version 3.5: The value is no longer dependent on __debug__.

importlib.machinery.EXTENSION_SUFFIXES
A list of strings representing the recognized file suffixes for extension modules.

New in version 3.3.

importlib.machinery.all_suffixes()
Returns a combined list of strings representing all file suffixes for modules recognized by the stan-
dard import machinery. This is a helper for code which simply needs to know if a filesystem path
potentially refers to a module without needing any details on the kind of module (for example, inspect.
getmodulename()).

New in version 3.3.

class importlib.machinery.BuiltinImporter
An importer for built-in modules. All known built-in modules are listed in sys.builtin_module_names.
This class implements the importlib.abc.MetaPathFinder and importlib.abc.InspectLoader ABCs.

Only class methods are defined by this class to alleviate the need for instantiation.

Changed in version 3.5: As part of PEP 489, the builtin importer now implements Loader.
create_module() and Loader.exec_module()

class importlib.machinery.FrozenImporter
An importer for frozen modules. This class implements the importlib.abc.MetaPathFinder and
importlib.abc.InspectLoader ABCs.

Only class methods are defined by this class to alleviate the need for instantiation.

class importlib.machinery.WindowsRegistryFinder
Finder for modules declared in the Windows registry. This class implements the importlib.abc.Finder
ABC.

Only class methods are defined by this class to alleviate the need for instantiation.

New in version 3.3.

class importlib.machinery.PathFinder
A Finder for sys.path and package __path__ attributes. This class implements the importlib.abc.
MetaPathFinder ABC.

Only class methods are defined by this class to alleviate the need for instantiation.

classmethod find_spec(fullname, path=None, target=None)
Class method that attempts to find a spec for the module specified by fullname on sys.path or, if
defined, on path. For each path entry that is searched, sys.path_importer_cache is checked. If
a non-false object is found then it is used as the path entry finder to look for the module being
searched for. If no entry is found in sys.path_importer_cache, then sys.path_hooks is searched

1636 Chapter 31. Importing Modules

https://www.python.org/dev/peps/pep-0489

The Python Library Reference, Release 3.5.7

for a finder for the path entry and, if found, is stored in sys.path_importer_cache along with
being queried about the module. If no finder is ever found then None is both stored in the cache
and returned.

New in version 3.4.

Changed in version 3.5: If the current working directory – represented by an empty string – is no
longer valid then None is returned but no value is cached in sys.path_importer_cache.

classmethod find_module(fullname, path=None)
A legacy wrapper around find_spec().

Deprecated since version 3.4: Use find_spec() instead.

classmethod invalidate_caches()
Calls importlib.abc.PathEntryFinder.invalidate_caches() on all finders stored in sys.
path_importer_cache.

Changed in version 3.4: Calls objects in sys.path_hooks with the current working directory for ''
(i.e. the empty string).

class importlib.machinery.FileFinder(path, *loader_details)
A concrete implementation of importlib.abc.PathEntryFinder which caches results from the file system.

The path argument is the directory for which the finder is in charge of searching.

The loader_details argument is a variable number of 2-item tuples each containing a loader and a
sequence of file suffixes the loader recognizes. The loaders are expected to be callables which accept
two arguments of the module’s name and the path to the file found.

The finder will cache the directory contents as necessary, making stat calls for each module search to
verify the cache is not outdated. Because cache staleness relies upon the granularity of the operating
system’s state information of the file system, there is a potential race condition of searching for a
module, creating a new file, and then searching for the module the new file represents. If the operations
happen fast enough to fit within the granularity of stat calls, then the module search will fail. To
prevent this from happening, when you create a module dynamically, make sure to call importlib.
invalidate_caches().

New in version 3.3.

path
The path the finder will search in.

find_spec(fullname, target=None)
Attempt to find the spec to handle fullname within path.

New in version 3.4.

find_loader(fullname)
Attempt to find the loader to handle fullname within path.

invalidate_caches()
Clear out the internal cache.

classmethod path_hook(*loader_details)
A class method which returns a closure for use on sys.path_hooks. An instance of FileFinder is
returned by the closure using the path argument given to the closure directly and loader_details
indirectly.

If the argument to the closure is not an existing directory, ImportError is raised.

31.5. importlib — The implementation of import 1637

The Python Library Reference, Release 3.5.7

class importlib.machinery.SourceFileLoader(fullname, path)
A concrete implementation of importlib.abc.SourceLoader by subclassing importlib.abc.FileLoader and
providing some concrete implementations of other methods.

New in version 3.3.

name
The name of the module that this loader will handle.

path
The path to the source file.

is_package(fullname)
Return true if path appears to be for a package.

path_stats(path)
Concrete implementation of importlib.abc.SourceLoader.path_stats().

set_data(path, data)
Concrete implementation of importlib.abc.SourceLoader.set_data().

load_module(name=None)
Concrete implementation of importlib.abc.Loader.load_module() where specifying the name of
the module to load is optional.

class importlib.machinery.SourcelessFileLoader(fullname, path)
A concrete implementation of importlib.abc.FileLoader which can import bytecode files (i.e. no source
code files exist).

Please note that direct use of bytecode files (and thus not source code files) inhibits your modules from
being usable by all Python implementations or new versions of Python which change the bytecode
format.

New in version 3.3.

name
The name of the module the loader will handle.

path
The path to the bytecode file.

is_package(fullname)
Determines if the module is a package based on path.

get_code(fullname)
Returns the code object for name created from path.

get_source(fullname)
Returns None as bytecode files have no source when this loader is used.

load_module(name=None)

Concrete implementation of importlib.abc.Loader.load_module() where specifying the name of the
module to load is optional.

class importlib.machinery.ExtensionFileLoader(fullname, path)
A concrete implementation of importlib.abc.ExecutionLoader for extension modules.

The fullname argument specifies the name of the module the loader is to support. The path argument
is the path to the extension module’s file.

New in version 3.3.

1638 Chapter 31. Importing Modules

The Python Library Reference, Release 3.5.7

name
Name of the module the loader supports.

path
Path to the extension module.

create_module(spec)
Creates the module object from the given specification in accordance with PEP 489.

New in version 3.5.

exec_module(module)
Initializes the given module object in accordance with PEP 489.

New in version 3.5.

is_package(fullname)
Returns True if the file path points to a package’s __init__ module based on EXTEN-
SION_SUFFIXES.

get_code(fullname)
Returns None as extension modules lack a code object.

get_source(fullname)
Returns None as extension modules do not have source code.

get_filename(fullname)
Returns path.

New in version 3.4.

class importlib.machinery.ModuleSpec(name, loader, *, origin=None, loader_state=None,
is_package=None)

A specification for a module’s import-system-related state.

New in version 3.4.

name

(__name__)

A string for the fully-qualified name of the module.

loader

(__loader__)

The loader to use for loading. For namespace packages this should be set to None.

origin

(__file__)

Name of the place from which the module is loaded, e.g. “builtin” for built-in modules and the filename
for modules loaded from source. Normally “origin” should be set, but it may be None (the default)
which indicates it is unspecified.

submodule_search_locations

(__path__)

List of strings for where to find submodules, if a package (None otherwise).

loader_state

Container of extra module-specific data for use during loading (or None).

31.5. importlib — The implementation of import 1639

https://www.python.org/dev/peps/pep-0489
https://www.python.org/dev/peps/pep-0489

The Python Library Reference, Release 3.5.7

cached

(__cached__)

String for where the compiled module should be stored (or None).

parent

(__package__)

(Read-only) Fully-qualified name of the package to which the module belongs as a submodule (or
None).

has_location

Boolean indicating whether or not the module’s “origin” attribute refers to a loadable location.

31.5.5 importlib.util – Utility code for importers

Source code: Lib/importlib/util.py

This module contains the various objects that help in the construction of an importer.

importlib.util.MAGIC_NUMBER
The bytes which represent the bytecode version number. If you need help with loading/writing bytecode
then consider importlib.abc.SourceLoader.

New in version 3.4.

importlib.util.cache_from_source(path, debug_override=None, *, optimization=None)
Return the PEP 3147/PEP 488 path to the byte-compiled file associated with the source path. For
example, if path is /foo/bar/baz.py the return value would be /foo/bar/__pycache__/baz.cpython-
32.pyc for Python 3.2. The cpython-32 string comes from the current magic tag (see get_tag(); if
sys.implementation.cache_tag is not defined then NotImplementedError will be raised).

The optimization parameter is used to specify the optimization level of the bytecode file. An empty
string represents no optimization, so /foo/bar/baz.py with an optimization of '' will result in a byte-
code path of /foo/bar/__pycache__/baz.cpython-32.pyc. None causes the interpter’s optimization
level to be used. Any other value’s string representation being used, so /foo/bar/baz.py with an op-
timization of 2 will lead to the bytecode path of /foo/bar/__pycache__/baz.cpython-32.opt-2.pyc.
The string representation of optimization can only be alphanumeric, else ValueError is raised.

The debug_override parameter is deprecated and can be used to override the system’s value for __de-
bug__. A True value is the equivalent of setting optimization to the empty string. A False value
is the same as setting optimization to 1. If both debug_override an optimization are not None then
TypeError is raised.

New in version 3.4.

Changed in version 3.5: The optimization parameter was added and the debug_override parameter
was deprecated.

importlib.util.source_from_cache(path)
Given the path to a PEP 3147 file name, return the associated source code file path. For example,
if path is /foo/bar/__pycache__/baz.cpython-32.pyc the returned path would be /foo/bar/baz.py.
path need not exist, however if it does not conform to PEP 3147 or PEP 488 format, a ValueError is
raised. If sys.implementation.cache_tag is not defined, NotImplementedError is raised.

New in version 3.4.

1640 Chapter 31. Importing Modules

https://github.com/python/cpython/tree/3.5/Lib/importlib/util.py
https://www.python.org/dev/peps/pep-3147
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-3147
https://www.python.org/dev/peps/pep-3147
https://www.python.org/dev/peps/pep-0488

The Python Library Reference, Release 3.5.7

importlib.util.decode_source(source_bytes)
Decode the given bytes representing source code and return it as a string with universal newlines (as
required by importlib.abc.InspectLoader.get_source()).

New in version 3.4.

importlib.util.resolve_name(name, package)
Resolve a relative module name to an absolute one.

If name has no leading dots, then name is simply returned. This allows for usage such as importlib.
util.resolve_name('sys', __package__) without doing a check to see if the package argument is
needed.

ValueError is raised if name is a relative module name but package is a false value (e.g. None or
the empty string). ValueError is also raised a relative name would escape its containing package (e.g.
requesting ..bacon from within the spam package).

New in version 3.3.

importlib.util.find_spec(name, package=None)
Find the spec for a module, optionally relative to the specified package name. If the module is in
sys.modules, then sys.modules[name].__spec__ is returned (unless the spec would be None or is not
set, in which case ValueError is raised). Otherwise a search using sys.meta_path is done. None is
returned if no spec is found.

If name is for a submodule (contains a dot), the parent module is automatically imported.

name and package work the same as for import_module().

New in version 3.4.

importlib.util.module_from_spec(spec)
Create a new module based on spec and spec.loader.create_module().

If spec.loader.create_module() does not return None, then any pre-existing attributes will not be reset.
Also, no AttributeError will be raised if triggered while accessing spec or setting an attribute on the
module.

This function is preferred over using types.ModuleType to create a new module as spec is used to set
as many import-controlled attributes on the module as possible.

New in version 3.5.

@importlib.util.module_for_loader
A decorator for importlib.abc.Loader.load_module() to handle selecting the proper module object to
load with. The decorated method is expected to have a call signature taking two positional arguments
(e.g. load_module(self, module)) for which the second argument will be the module object to be used
by the loader. Note that the decorator will not work on static methods because of the assumption of
two arguments.

The decorated method will take in the name of the module to be loaded as expected for a loader.
If the module is not found in sys.modules then a new one is constructed. Regardless of where the
module came from, __loader__ set to self and __package__ is set based on what importlib.abc.
InspectLoader.is_package() returns (if available). These attributes are set unconditionally to support
reloading.

If an exception is raised by the decorated method and a module was added to sys.modules, then the
module will be removed to prevent a partially initialized module from being in left in sys.modules. If
the module was already in sys.modules then it is left alone.

Changed in version 3.3: __loader__ and __package__ are automatically set (when possible).

31.5. importlib — The implementation of import 1641

The Python Library Reference, Release 3.5.7

Changed in version 3.4: Set __name__, __loader__ __package__ unconditionally to support
reloading.

Deprecated since version 3.4: The import machinery now directly performs all the functionality pro-
vided by this function.

@importlib.util.set_loader
A decorator for importlib.abc.Loader.load_module() to set the __loader__ attribute on the returned
module. If the attribute is already set the decorator does nothing. It is assumed that the first positional
argument to the wrapped method (i.e. self) is what __loader__ should be set to.

Changed in version 3.4: Set __loader__ if set to None, as if the attribute does not exist.

Deprecated since version 3.4: The import machinery takes care of this automatically.

@importlib.util.set_package
A decorator for importlib.abc.Loader.load_module() to set the __package__ attribute on the re-
turned module. If __package__ is set and has a value other than None it will not be changed.

Deprecated since version 3.4: The import machinery takes care of this automatically.

importlib.util.spec_from_loader(name, loader, *, origin=None, is_package=None)
A factory function for creating a ModuleSpec instance based on a loader. The parameters have the same
meaning as they do for ModuleSpec. The function uses available loader APIs, such as InspectLoader.
is_package(), to fill in any missing information on the spec.

New in version 3.4.

importlib.util.spec_from_file_location(name, location, *, loader=None, submod-
ule_search_locations=None)

A factory function for creating a ModuleSpec instance based on the path to a file. Missing information
will be filled in on the spec by making use of loader APIs and by the implication that the module will
be file-based.

New in version 3.4.

class importlib.util.LazyLoader(loader)
A class which postpones the execution of the loader of a module until the module has an attribute
accessed.

This class only works with loaders that define exec_module() as control over what module type is
used for the module is required. For those same reasons, the loader’s create_module() method will
be ignored (i.e., the loader’s method should only return None; this excludes BuiltinImporter and
ExtensionFileLoader). Finally, modules which substitute the object placed into sys.modules will not
work as there is no way to properly replace the module references throughout the interpreter safely;
ValueError is raised if such a substitution is detected.

Note: For projects where startup time is critical, this class allows for potentially minimizing the cost
of loading a module if it is never used. For projects where startup time is not essential then use of this
class is heavily discouraged due to error messages created during loading being postponed and thus
occurring out of context.

New in version 3.5.

classmethod factory(loader)
A static method which returns a callable that creates a lazy loader. This is meant to be used in
situations where the loader is passed by class instead of by instance.

1642 Chapter 31. Importing Modules

The Python Library Reference, Release 3.5.7

suffixes = importlib.machinery.SOURCE_SUFFIXES
loader = importlib.machinery.SourceFileLoader
lazy_loader = importlib.util.LazyLoader.factory(loader)
finder = importlib.machinery.FileFinder(path, (lazy_loader, suffixes))

31.5. importlib — The implementation of import 1643

The Python Library Reference, Release 3.5.7

1644 Chapter 31. Importing Modules

CHAPTER

THIRTYTWO

PYTHON LANGUAGE SERVICES

Python provides a number of modules to assist in working with the Python language. These modules support
tokenizing, parsing, syntax analysis, bytecode disassembly, and various other facilities.

These modules include:

32.1 parser — Access Python parse trees

The parser module provides an interface to Python’s internal parser and byte-code compiler. The primary
purpose for this interface is to allow Python code to edit the parse tree of a Python expression and create
executable code from this. This is better than trying to parse and modify an arbitrary Python code fragment
as a string because parsing is performed in a manner identical to the code forming the application. It is also
faster.

Note: From Python 2.5 onward, it’s much more convenient to cut in at the Abstract Syntax Tree (AST)
generation and compilation stage, using the ast module.

There are a few things to note about this module which are important to making use of the data structures
created. This is not a tutorial on editing the parse trees for Python code, but some examples of using the
parser module are presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required.
For full information on the language syntax, refer to reference-index. The parser itself is created from a
grammar specification defined in the file Grammar/Grammar in the standard Python distribution. The
parse trees stored in the ST objects created by this module are the actual output from the internal parser
when created by the expr() or suite() functions, described below. The ST objects created by sequence2st()
faithfully simulate those structures. Be aware that the values of the sequences which are considered “correct”
will vary from one version of Python to another as the formal grammar for the language is revised. However,
transporting code from one Python version to another as source text will always allow correct parse trees
to be created in the target version, with the only restriction being that migrating to an older version of the
interpreter will not support more recent language constructs. The parse trees are not typically compatible
from one version to another, whereas source code has always been forward-compatible.

Each element of the sequences returned by st2list() or st2tuple() has a simple form. Sequences representing
non-terminal elements in the grammar always have a length greater than one. The first element is an integer
which identifies a production in the grammar. These integers are given symbolic names in the C header file
Include/graminit.h and the Python module symbol. Each additional element of the sequence represents a
component of the production as recognized in the input string: these are always sequences which have the
same form as the parent. An important aspect of this structure which should be noted is that keywords

1645

The Python Library Reference, Release 3.5.7

used to identify the parent node type, such as the keyword if in an if_stmt, are included in the node tree
without any special treatment. For example, the if keyword is represented by the tuple (1, 'if'), where 1
is the numeric value associated with all NAME tokens, including variable and function names defined by
the user. In an alternate form returned when line number information is requested, the same token might
be represented as (1, 'if', 12), where the 12 represents the line number at which the terminal symbol was
found.

Terminal elements are represented in much the same way, but without any child elements and the addition
of the source text which was identified. The example of the if keyword above is representative. The various
types of terminal symbols are defined in the C header file Include/token.h and the Python module token.

The ST objects are not required to support the functionality of this module, but are provided for three
purposes: to allow an application to amortize the cost of processing complex parse trees, to provide a parse
tree representation which conserves memory space when compared to the Python list or tuple representation,
and to ease the creation of additional modules in C which manipulate parse trees. A simple “wrapper” class
may be created in Python to hide the use of ST objects.

The parser module defines functions for a few distinct purposes. The most important purposes are to create
ST objects and to convert ST objects to other representations such as parse trees and compiled code objects,
but there are also functions which serve to query the type of parse tree represented by an ST object.

See also:

Module symbol Useful constants representing internal nodes of the parse tree.

Module token Useful constants representing leaf nodes of the parse tree and functions for testing node values.

32.1.1 Creating ST Objects

ST objects may be created from source code or from a parse tree. When creating an ST object from source,
different functions are used to create the 'eval' and 'exec' forms.

parser.expr(source)
The expr() function parses the parameter source as if it were an input to compile(source, 'file.py',
'eval'). If the parse succeeds, an ST object is created to hold the internal parse tree representation,
otherwise an appropriate exception is raised.

parser.suite(source)
The suite() function parses the parameter source as if it were an input to compile(source, 'file.py',
'exec'). If the parse succeeds, an ST object is created to hold the internal parse tree representation,
otherwise an appropriate exception is raised.

parser.sequence2st(sequence)
This function accepts a parse tree represented as a sequence and builds an internal representation if
possible. If it can validate that the tree conforms to the Python grammar and all nodes are valid
node types in the host version of Python, an ST object is created from the internal representation and
returned to the called. If there is a problem creating the internal representation, or if the tree cannot
be validated, a ParserError exception is raised. An ST object created this way should not be assumed
to compile correctly; normal exceptions raised by compilation may still be initiated when the ST object
is passed to compilest(). This may indicate problems not related to syntax (such as a MemoryError
exception), but may also be due to constructs such as the result of parsing del f(0), which escapes the
Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form (1,
'name') or as three-element lists of the form (1, 'name', 56). If the third element is present, it is
assumed to be a valid line number. The line number may be specified for any subset of the terminal
symbols in the input tree.

1646 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

parser.tuple2st(sequence)
This is the same function as sequence2st(). This entry point is maintained for backward compatibility.

32.1.2 Converting ST Objects

ST objects, regardless of the input used to create them, may be converted to parse trees represented as
list- or tuple- trees, or may be compiled into executable code objects. Parse trees may be extracted with or
without line numbering information.

parser.st2list(st, line_info=False, col_info=False)
This function accepts an ST object from the caller in st and returns a Python list representing the
equivalent parse tree. The resulting list representation can be used for inspection or the creation of a
new parse tree in list form. This function does not fail so long as memory is available to build the list
representation. If the parse tree will only be used for inspection, st2tuple() should be used instead to
reduce memory consumption and fragmentation. When the list representation is required, this function
is significantly faster than retrieving a tuple representation and converting that to nested lists.

If line_info is true, line number information will be included for all terminal tokens as a third element
of the list representing the token. Note that the line number provided specifies the line on which the
token ends. This information is omitted if the flag is false or omitted.

parser.st2tuple(st, line_info=False, col_info=False)
This function accepts an ST object from the caller in st and returns a Python tuple representing
the equivalent parse tree. Other than returning a tuple instead of a list, this function is identical to
st2list().

If line_info is true, line number information will be included for all terminal tokens as a third element
of the list representing the token. This information is omitted if the flag is false or omitted.

parser.compilest(st, filename=’<syntax-tree>’)
The Python byte compiler can be invoked on an ST object to produce code objects which can be used
as part of a call to the built-in exec() or eval() functions. This function provides the interface to the
compiler, passing the internal parse tree from st to the parser, using the source file name specified by
the filename parameter. The default value supplied for filename indicates that the source was an ST
object.

Compiling an ST object may result in exceptions related to compilation; an example would be a
SyntaxError caused by the parse tree for del f(0): this statement is considered legal within the formal
grammar for Python but is not a legal language construct. The SyntaxError raised for this condition
is actually generated by the Python byte-compiler normally, which is why it can be raised at this
point by the parser module. Most causes of compilation failure can be diagnosed programmatically by
inspection of the parse tree.

32.1.3 Queries on ST Objects

Two functions are provided which allow an application to determine if an ST was created as an expression
or a suite. Neither of these functions can be used to determine if an ST was created from source code via
expr() or suite() or from a parse tree via sequence2st().

parser.isexpr(st)
When st represents an 'eval' form, this function returns true, otherwise it returns false. This is useful,
since code objects normally cannot be queried for this information using existing built-in functions.
Note that the code objects created by compilest() cannot be queried like this either, and are identical
to those created by the built-in compile() function.

32.1. parser — Access Python parse trees 1647

The Python Library Reference, Release 3.5.7

parser.issuite(st)
This function mirrors isexpr() in that it reports whether an ST object represents an 'exec' form,
commonly known as a “suite.” It is not safe to assume that this function is equivalent to not isexpr(st),
as additional syntactic fragments may be supported in the future.

32.1.4 Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other portions
of the Python runtime environment. See each function for information about the exceptions it can raise.

exception parser.ParserError
Exception raised when a failure occurs within the parser module. This is generally produced for
validation failures rather than the built-in SyntaxError raised during normal parsing. The exception
argument is either a string describing the reason of the failure or a tuple containing a sequence causing
the failure from a parse tree passed to sequence2st() and an explanatory string. Calls to sequence2st()
need to be able to handle either type of exception, while calls to other functions in the module will
only need to be aware of the simple string values.

Note that the functions compilest(), expr(), and suite() may raise exceptions which are normally raised by
the parsing and compilation process. These include the built in exceptions MemoryError, OverflowError,
SyntaxError, and SystemError. In these cases, these exceptions carry all the meaning normally associated
with them. Refer to the descriptions of each function for detailed information.

32.1.5 ST Objects

Ordered and equality comparisons are supported between ST objects. Pickling of ST objects (using the
pickle module) is also supported.

parser.STType
The type of the objects returned by expr(), suite() and sequence2st().

ST objects have the following methods:

ST.compile(filename=’<syntax-tree>’)
Same as compilest(st, filename).

ST.isexpr()
Same as isexpr(st).

ST.issuite()
Same as issuite(st).

ST.tolist(line_info=False, col_info=False)
Same as st2list(st, line_info, col_info).

ST.totuple(line_info=False, col_info=False)
Same as st2tuple(st, line_info, col_info).

32.1.6 Example: Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest opera-
tion is to do nothing. For this purpose, using the parser module to produce an intermediate data structure
is equivalent to the code

1648 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

>>> code = compile('a + 5', 'file.py', 'eval')
>>> a = 5
>>> eval(code)
10

The equivalent operation using the parser module is somewhat longer, and allows the intermediate internal
parse tree to be retained as an ST object:

>>> import parser
>>> st = parser.expr('a + 5')
>>> code = st.compile('file.py')
>>> a = 5
>>> eval(code)
10

An application which needs both ST and code objects can package this code into readily available functions:

import parser

def load_suite(source_string):
st = parser.suite(source_string)
return st, st.compile()

def load_expression(source_string):
st = parser.expr(source_string)
return st, st.compile()

32.2 ast — Abstract Syntax Trees

Source code: Lib/ast.py

The ast module helps Python applications to process trees of the Python abstract syntax grammar. The
abstract syntax itself might change with each Python release; this module helps to find out programmatically
what the current grammar looks like.

An abstract syntax tree can be generated by passing ast.PyCF_ONLY_AST as a flag to the compile()
built-in function, or using the parse() helper provided in this module. The result will be a tree of objects
whose classes all inherit from ast.AST. An abstract syntax tree can be compiled into a Python code object
using the built-in compile() function.

32.2.1 Node classes

class ast.AST
This is the base of all AST node classes. The actual node classes are derived from the Parser/Python.
asdl file, which is reproduced below. They are defined in the _ast C module and re-exported in
ast.

There is one class defined for each left-hand side symbol in the abstract grammar (for example, ast.
stmt or ast.expr). In addition, there is one class defined for each constructor on the right-hand side;
these classes inherit from the classes for the left-hand side trees. For example, ast.BinOp inherits from
ast.expr. For production rules with alternatives (aka “sums”), the left-hand side class is abstract: only
instances of specific constructor nodes are ever created.

32.2. ast — Abstract Syntax Trees 1649

https://github.com/python/cpython/tree/3.5/Lib/ast.py

The Python Library Reference, Release 3.5.7

_fields
Each concrete class has an attribute _fields which gives the names of all child nodes.

Each instance of a concrete class has one attribute for each child node, of the type as defined in
the grammar. For example, ast.BinOp instances have an attribute left of type ast.expr.

If these attributes are marked as optional in the grammar (using a question mark), the value
might be None. If the attributes can have zero-or-more values (marked with an asterisk), the
values are represented as Python lists. All possible attributes must be present and have valid
values when compiling an AST with compile().

lineno
col_offset

Instances of ast.expr and ast.stmt subclasses have lineno and col_offset attributes. The lineno is
the line number of source text (1-indexed so the first line is line 1) and the col_offset is the UTF-8
byte offset of the first token that generated the node. The UTF-8 offset is recorded because the
parser uses UTF-8 internally.

The constructor of a class ast.T parses its arguments as follows:

• If there are positional arguments, there must be as many as there are items in T._fields; they will
be assigned as attributes of these names.

• If there are keyword arguments, they will set the attributes of the same names to the given values.

For example, to create and populate an ast.UnaryOp node, you could use

node = ast.UnaryOp()
node.op = ast.USub()
node.operand = ast.Num()
node.operand.n = 5
node.operand.lineno = 0
node.operand.col_offset = 0
node.lineno = 0
node.col_offset = 0

or the more compact

node = ast.UnaryOp(ast.USub(), ast.Num(5, lineno=0, col_offset=0),
lineno=0, col_offset=0)

32.2.2 Abstract Grammar

The abstract grammar is currently defined as follows:

-- ASDL's six builtin types are identifier, int, string, bytes, object, singleton

module Python
{

mod = Module(stmt* body)
| Interactive(stmt* body)
| Expression(expr body)

-- not really an actual node but useful in Jython's typesystem.
| Suite(stmt* body)

stmt = FunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns)

(continues on next page)

1650 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

| AsyncFunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns)

| ClassDef(identifier name,
expr* bases,
keyword* keywords,
stmt* body,
expr* decorator_list)

| Return(expr? value)

| Delete(expr* targets)
| Assign(expr* targets, expr value)
| AugAssign(expr target, operator op, expr value)

-- use 'orelse' because else is a keyword in target languages
| For(expr target, expr iter, stmt* body, stmt* orelse)
| AsyncFor(expr target, expr iter, stmt* body, stmt* orelse)
| While(expr test, stmt* body, stmt* orelse)
| If(expr test, stmt* body, stmt* orelse)
| With(withitem* items, stmt* body)
| AsyncWith(withitem* items, stmt* body)

| Raise(expr? exc, expr? cause)
| Try(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)
| Assert(expr test, expr? msg)

| Import(alias* names)
| ImportFrom(identifier? module, alias* names, int? level)

| Global(identifier* names)
| Nonlocal(identifier* names)
| Expr(expr value)
| Pass | Break | Continue

-- XXX Jython will be different
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset)

-- BoolOp() can use left & right?
expr = BoolOp(boolop op, expr* values)

| BinOp(expr left, operator op, expr right)
| UnaryOp(unaryop op, expr operand)
| Lambda(arguments args, expr body)
| IfExp(expr test, expr body, expr orelse)
| Dict(expr* keys, expr* values)
| Set(expr* elts)
| ListComp(expr elt, comprehension* generators)
| SetComp(expr elt, comprehension* generators)
| DictComp(expr key, expr value, comprehension* generators)
| GeneratorExp(expr elt, comprehension* generators)
-- the grammar constrains where yield expressions can occur
| Await(expr value)
| Yield(expr? value)
| YieldFrom(expr value)
-- need sequences for compare to distinguish between
-- x < 4 < 3 and (x < 4) < 3

(continues on next page)

32.2. ast — Abstract Syntax Trees 1651

The Python Library Reference, Release 3.5.7

(continued from previous page)

| Compare(expr left, cmpop* ops, expr* comparators)
| Call(expr func, expr* args, keyword* keywords)
| Num(object n) -- a number as a PyObject.
| Str(string s) -- need to specify raw, unicode, etc?
| Bytes(bytes s)
| NameConstant(singleton value)
| Ellipsis

-- the following expression can appear in assignment context
| Attribute(expr value, identifier attr, expr_context ctx)
| Subscript(expr value, slice slice, expr_context ctx)
| Starred(expr value, expr_context ctx)
| Name(identifier id, expr_context ctx)
| List(expr* elts, expr_context ctx)
| Tuple(expr* elts, expr_context ctx)

-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset)

expr_context = Load | Store | Del | AugLoad | AugStore | Param

slice = Slice(expr? lower, expr? upper, expr? step)
| ExtSlice(slice* dims)
| Index(expr value)

boolop = And | Or

operator = Add | Sub | Mult | MatMult | Div | Mod | Pow | LShift
| RShift | BitOr | BitXor | BitAnd | FloorDiv

unaryop = Invert | Not | UAdd | USub

cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn

comprehension = (expr target, expr iter, expr* ifs)

excepthandler = ExceptHandler(expr? type, identifier? name, stmt* body)
attributes (int lineno, int col_offset)

arguments = (arg* args, arg? vararg, arg* kwonlyargs, expr* kw_defaults,
arg? kwarg, expr* defaults)

arg = (identifier arg, expr? annotation)
attributes (int lineno, int col_offset)

-- keyword arguments supplied to call (NULL identifier for **kwargs)
keyword = (identifier? arg, expr value)

-- import name with optional 'as' alias.
alias = (identifier name, identifier? asname)

withitem = (expr context_expr, expr? optional_vars)
}

1652 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

32.2.3 ast Helpers

Apart from the node classes, the ast module defines these utility functions and classes for traversing abstract
syntax trees:

ast.parse(source, filename=’<unknown>’, mode=’exec’)
Parse the source into an AST node. Equivalent to compile(source, filename, mode, ast.
PyCF_ONLY_AST).

ast.literal_eval(node_or_string)
Safely evaluate an expression node or a string containing a Python literal or container display. The
string or node provided may only consist of the following Python literal structures: strings, bytes,
numbers, tuples, lists, dicts, sets, booleans, and None.

This can be used for safely evaluating strings containing Python values from untrusted sources without
the need to parse the values oneself. It is not capable of evaluating arbitrarily complex expressions,
for example involving operators or indexing.

Changed in version 3.2: Now allows bytes and set literals.

ast.get_docstring(node, clean=True)
Return the docstring of the given node (which must be a FunctionDef, ClassDef or Module node), or
None if it has no docstring. If clean is true, clean up the docstring’s indentation with inspect.cleandoc().

ast.fix_missing_locations(node)
When you compile a node tree with compile(), the compiler expects lineno and col_offset attributes
for every node that supports them. This is rather tedious to fill in for generated nodes, so this helper
adds these attributes recursively where not already set, by setting them to the values of the parent
node. It works recursively starting at node.

ast.increment_lineno(node, n=1)
Increment the line number of each node in the tree starting at node by n. This is useful to “move code”
to a different location in a file.

ast.copy_location(new_node, old_node)
Copy source location (lineno and col_offset) from old_node to new_node if possible, and return
new_node.

ast.iter_fields(node)
Yield a tuple of (fieldname, value) for each field in node._fields that is present on node.

ast.iter_child_nodes(node)
Yield all direct child nodes of node, that is, all fields that are nodes and all items of fields that are lists
of nodes.

ast.walk(node)
Recursively yield all descendant nodes in the tree starting at node (including node itself), in no specified
order. This is useful if you only want to modify nodes in place and don’t care about the context.

class ast.NodeVisitor
A node visitor base class that walks the abstract syntax tree and calls a visitor function for every node
found. This function may return a value which is forwarded by the visit() method.

This class is meant to be subclassed, with the subclass adding visitor methods.

visit(node)
Visit a node. The default implementation calls the method called self.visit_classname where
classname is the name of the node class, or generic_visit() if that method doesn’t exist.

generic_visit(node)
This visitor calls visit() on all children of the node.

32.2. ast — Abstract Syntax Trees 1653

The Python Library Reference, Release 3.5.7

Note that child nodes of nodes that have a custom visitor method won’t be visited unless the
visitor calls generic_visit() or visits them itself.

Don’t use the NodeVisitor if you want to apply changes to nodes during traversal. For this a special
visitor exists (NodeTransformer) that allows modifications.

class ast.NodeTransformer
A NodeVisitor subclass that walks the abstract syntax tree and allows modification of nodes.

The NodeTransformer will walk the AST and use the return value of the visitor methods to replace or
remove the old node. If the return value of the visitor method is None, the node will be removed from
its location, otherwise it is replaced with the return value. The return value may be the original node
in which case no replacement takes place.

Here is an example transformer that rewrites all occurrences of name lookups (foo) to data['foo']:

class RewriteName(NodeTransformer):

def visit_Name(self, node):
return copy_location(Subscript(

value=Name(id='data', ctx=Load()),
slice=Index(value=Str(s=node.id)),
ctx=node.ctx

), node)

Keep in mind that if the node you’re operating on has child nodes you must either transform the child
nodes yourself or call the generic_visit() method for the node first.

For nodes that were part of a collection of statements (that applies to all statement nodes), the visitor
may also return a list of nodes rather than just a single node.

Usually you use the transformer like this:

node = YourTransformer().visit(node)

ast.dump(node, annotate_fields=True, include_attributes=False)
Return a formatted dump of the tree in node. This is mainly useful for debugging purposes. The
returned string will show the names and the values for fields. This makes the code impossible to
evaluate, so if evaluation is wanted annotate_fields must be set to False. Attributes such as line
numbers and column offsets are not dumped by default. If this is wanted, include_attributes can be
set to True.

See also:

Green Tree Snakes, an external documentation resource, has good details on working with Python ASTs.

32.3 symtable — Access to the compiler’s symbol tables

Source code: Lib/symtable.py

Symbol tables are generated by the compiler from AST just before bytecode is generated. The symbol table
is responsible for calculating the scope of every identifier in the code. symtable provides an interface to
examine these tables.

1654 Chapter 32. Python Language Services

https://greentreesnakes.readthedocs.org/
https://github.com/python/cpython/tree/3.5/Lib/symtable.py

The Python Library Reference, Release 3.5.7

32.3.1 Generating Symbol Tables

symtable.symtable(code, filename, compile_type)
Return the toplevel SymbolTable for the Python source code. filename is the name of the file containing
the code. compile_type is like the mode argument to compile().

32.3.2 Examining Symbol Tables

class symtable.SymbolTable
A namespace table for a block. The constructor is not public.

get_type()
Return the type of the symbol table. Possible values are 'class', 'module', and 'function'.

get_id()
Return the table’s identifier.

get_name()
Return the table’s name. This is the name of the class if the table is for a class, the name of
the function if the table is for a function, or 'top' if the table is global (get_type() returns
'module').

get_lineno()
Return the number of the first line in the block this table represents.

is_optimized()
Return True if the locals in this table can be optimized.

is_nested()
Return True if the block is a nested class or function.

has_children()
Return True if the block has nested namespaces within it. These can be obtained with
get_children().

has_exec()
Return True if the block uses exec.

get_identifiers()
Return a list of names of symbols in this table.

lookup(name)
Lookup name in the table and return a Symbol instance.

get_symbols()
Return a list of Symbol instances for names in the table.

get_children()
Return a list of the nested symbol tables.

class symtable.Function
A namespace for a function or method. This class inherits SymbolTable.

get_parameters()
Return a tuple containing names of parameters to this function.

get_locals()
Return a tuple containing names of locals in this function.

get_globals()
Return a tuple containing names of globals in this function.

32.3. symtable — Access to the compiler’s symbol tables 1655

The Python Library Reference, Release 3.5.7

get_frees()
Return a tuple containing names of free variables in this function.

class symtable.Class
A namespace of a class. This class inherits SymbolTable.

get_methods()
Return a tuple containing the names of methods declared in the class.

class symtable.Symbol
An entry in a SymbolTable corresponding to an identifier in the source. The constructor is not public.

get_name()
Return the symbol’s name.

is_referenced()
Return True if the symbol is used in its block.

is_imported()
Return True if the symbol is created from an import statement.

is_parameter()
Return True if the symbol is a parameter.

is_global()
Return True if the symbol is global.

is_declared_global()
Return True if the symbol is declared global with a global statement.

is_local()
Return True if the symbol is local to its block.

is_free()
Return True if the symbol is referenced in its block, but not assigned to.

is_assigned()
Return True if the symbol is assigned to in its block.

is_namespace()
Return True if name binding introduces new namespace.

If the name is used as the target of a function or class statement, this will be true.

For example:

>>> table = symtable.symtable("def some_func(): pass", "string", "exec")
>>> table.lookup("some_func").is_namespace()
True

Note that a single name can be bound to multiple objects. If the result is True, the name may
also be bound to other objects, like an int or list, that does not introduce a new namespace.

get_namespaces()
Return a list of namespaces bound to this name.

get_namespace()
Return the namespace bound to this name. If more than one namespace is bound, ValueError is
raised.

1656 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

32.4 symbol — Constants used with Python parse trees

Source code: Lib/symbol.py

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike
most Python constants, these use lower-case names. Refer to the file Grammar/Grammar in the Python
distribution for the definitions of the names in the context of the language grammar. The specific numeric
values which the names map to may change between Python versions.

This module also provides one additional data object:

symbol.sym_name
Dictionary mapping the numeric values of the constants defined in this module back to name strings,
allowing more human-readable representation of parse trees to be generated.

32.5 token — Constants used with Python parse trees

Source code: Lib/token.py

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal
tokens). Refer to the file Grammar/Grammar in the Python distribution for the definitions of the names
in the context of the language grammar. The specific numeric values which the names map to may change
between Python versions.

The module also provides a mapping from numeric codes to names and some functions. The functions mirror
definitions in the Python C header files.

token.tok_name
Dictionary mapping the numeric values of the constants defined in this module back to name strings,
allowing more human-readable representation of parse trees to be generated.

token.ISTERMINAL(x)
Return true for terminal token values.

token.ISNONTERMINAL(x)
Return true for non-terminal token values.

token.ISEOF(x)
Return true if x is the marker indicating the end of input.

The token constants are:

token.ENDMARKER
token.NAME
token.NUMBER
token.STRING
token.NEWLINE
token.INDENT
token.DEDENT
token.LPAR
token.RPAR
token.LSQB
token.RSQB
token.COLON

32.4. symbol — Constants used with Python parse trees 1657

https://github.com/python/cpython/tree/3.5/Lib/symbol.py
https://github.com/python/cpython/tree/3.5/Lib/token.py

The Python Library Reference, Release 3.5.7

token.COMMA
token.SEMI
token.PLUS
token.MINUS
token.STAR
token.SLASH
token.VBAR
token.AMPER
token.LESS
token.GREATER
token.EQUAL
token.DOT
token.PERCENT
token.LBRACE
token.RBRACE
token.EQEQUAL
token.NOTEQUAL
token.LESSEQUAL
token.GREATEREQUAL
token.TILDE
token.CIRCUMFLEX
token.LEFTSHIFT
token.RIGHTSHIFT
token.DOUBLESTAR
token.PLUSEQUAL
token.MINEQUAL
token.STAREQUAL
token.SLASHEQUAL
token.PERCENTEQUAL
token.AMPEREQUAL
token.VBAREQUAL
token.CIRCUMFLEXEQUAL
token.LEFTSHIFTEQUAL
token.RIGHTSHIFTEQUAL
token.DOUBLESTAREQUAL
token.DOUBLESLASH
token.DOUBLESLASHEQUAL
token.AT
token.ATEQUAL
token.RARROW
token.ELLIPSIS
token.OP
token.AWAIT
token.ASYNC
token.ERRORTOKEN
token.N_TOKENS
token.NT_OFFSET

Changed in version 3.5: Added AWAIT and ASYNC tokens. Starting with Python 3.7, “async” and
“await” will be tokenized as NAME tokens, and AWAIT and ASYNC will be removed.

1658 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

32.6 keyword — Testing for Python keywords

Source code: Lib/keyword.py

This module allows a Python program to determine if a string is a keyword.

keyword.iskeyword(s)
Return true if s is a Python keyword.

keyword.kwlist
Sequence containing all the keywords defined for the interpreter. If any keywords are defined to only
be active when particular __future__ statements are in effect, these will be included as well.

32.7 tokenize — Tokenizer for Python source

Source code: Lib/tokenize.py

The tokenize module provides a lexical scanner for Python source code, implemented in Python. The scanner
in this module returns comments as tokens as well, making it useful for implementing “pretty-printers,”
including colorizers for on-screen displays.

To simplify token stream handling, all operators and delimiters tokens are returned using the generic token.
OP token type. The exact type can be determined by checking the exact_type property on the named tuple
returned from tokenize.tokenize().

32.7.1 Tokenizing Input

The primary entry point is a generator:

tokenize.tokenize(readline)
The tokenize() generator requires one argument, readline, which must be a callable object which
provides the same interface as the io.IOBase.readline() method of file objects. Each call to the function
should return one line of input as bytes.

The generator produces 5-tuples with these members: the token type; the token string; a 2-tuple (srow,
scol) of ints specifying the row and column where the token begins in the source; a 2-tuple (erow, ecol)
of ints specifying the row and column where the token ends in the source; and the line on which
the token was found. The line passed (the last tuple item) is the logical line; continuation lines are
included. The 5 tuple is returned as a named tuple with the field names: type string start end line.

The returned named tuple has an additional property named exact_type that contains the exact
operator type for token.OP tokens. For all other token types exact_type equals the named tuple type
field.

Changed in version 3.1: Added support for named tuples.

Changed in version 3.3: Added support for exact_type.

tokenize() determines the source encoding of the file by looking for a UTF-8 BOM or encoding cookie,
according to PEP 263.

All constants from the token module are also exported from tokenize, as are three additional token type
values:

32.6. keyword — Testing for Python keywords 1659

https://github.com/python/cpython/tree/3.5/Lib/keyword.py
https://github.com/python/cpython/tree/3.5/Lib/tokenize.py
https://www.python.org/dev/peps/pep-0263

The Python Library Reference, Release 3.5.7

tokenize.COMMENT
Token value used to indicate a comment.

tokenize.NL
Token value used to indicate a non-terminating newline. The NEWLINE token indicates the end of
a logical line of Python code; NL tokens are generated when a logical line of code is continued over
multiple physical lines.

tokenize.ENCODING
Token value that indicates the encoding used to decode the source bytes into text. The first token
returned by tokenize() will always be an ENCODING token.

Another function is provided to reverse the tokenization process. This is useful for creating tools that
tokenize a script, modify the token stream, and write back the modified script.

tokenize.untokenize(iterable)
Converts tokens back into Python source code. The iterable must return sequences with at least two
elements, the token type and the token string. Any additional sequence elements are ignored.

The reconstructed script is returned as a single string. The result is guaranteed to tokenize back to
match the input so that the conversion is lossless and round-trips are assured. The guarantee applies
only to the token type and token string as the spacing between tokens (column positions) may change.

It returns bytes, encoded using the ENCODING token, which is the first token sequence output by
tokenize().

tokenize() needs to detect the encoding of source files it tokenizes. The function it uses to do this is available:

tokenize.detect_encoding(readline)
The detect_encoding() function is used to detect the encoding that should be used to decode a Python
source file. It requires one argument, readline, in the same way as the tokenize() generator.

It will call readline a maximum of twice, and return the encoding used (as a string) and a list of any
lines (not decoded from bytes) it has read in.

It detects the encoding from the presence of a UTF-8 BOM or an encoding cookie as specified in PEP
263. If both a BOM and a cookie are present, but disagree, a SyntaxError will be raised. Note that if
the BOM is found, 'utf-8-sig' will be returned as an encoding.

If no encoding is specified, then the default of 'utf-8' will be returned.

Use open() to open Python source files: it uses detect_encoding() to detect the file encoding.

tokenize.open(filename)
Open a file in read only mode using the encoding detected by detect_encoding().

New in version 3.2.

exception tokenize.TokenError
Raised when either a docstring or expression that may be split over several lines is not completed
anywhere in the file, for example:

"""Beginning of
docstring

or:

[1,
2,
3

1660 Chapter 32. Python Language Services

https://www.python.org/dev/peps/pep-0263
https://www.python.org/dev/peps/pep-0263

The Python Library Reference, Release 3.5.7

Note that unclosed single-quoted strings do not cause an error to be raised. They are tokenized as ERROR-
TOKEN, followed by the tokenization of their contents.

32.7.2 Command-Line Usage

New in version 3.3.

The tokenize module can be executed as a script from the command line. It is as simple as:

python -m tokenize [-e] [filename.py]

The following options are accepted:

-h, --help
show this help message and exit

-e, --exact
display token names using the exact type

If filename.py is specified its contents are tokenized to stdout. Otherwise, tokenization is performed on stdin.

32.7.3 Examples

Example of a script rewriter that transforms float literals into Decimal objects:

from tokenize import tokenize, untokenize, NUMBER, STRING, NAME, OP
from io import BytesIO

def decistmt(s):
"""Substitute Decimals for floats in a string of statements.

>>> from decimal import Decimal
>>> s = 'print(+21.3e-5*-.1234/81.7)'
>>> decistmt(s)
"print (+Decimal ('21.3e-5')*-Decimal ('.1234')/Decimal ('81.7'))"

The format of the exponent is inherited from the platform C library.
Known cases are "e-007" (Windows) and "e-07" (not Windows). Since
we're only showing 12 digits, and the 13th isn't close to 5, the
rest of the output should be platform-independent.

>>> exec(s) #doctest: +ELLIPSIS
-3.21716034272e-0...7

Output from calculations with Decimal should be identical across all
platforms.

>>> exec(decistmt(s))
-3.217160342717258261933904529E-7
"""
result = []
g = tokenize(BytesIO(s.encode('utf-8')).readline) # tokenize the string
for toknum, tokval, _, _, _ in g:

if toknum == NUMBER and '.' in tokval: # replace NUMBER tokens
result.extend([

(NAME, 'Decimal'),

(continues on next page)

32.7. tokenize — Tokenizer for Python source 1661

The Python Library Reference, Release 3.5.7

(continued from previous page)

(OP, '('),
(STRING, repr(tokval)),
(OP, ')')

])
else:

result.append((toknum, tokval))
return untokenize(result).decode('utf-8')

Example of tokenizing from the command line. The script:

def say_hello():
print("Hello, World!")

say_hello()

will be tokenized to the following output where the first column is the range of the line/column coordinates
where the token is found, the second column is the name of the token, and the final column is the value of
the token (if any)

$ python -m tokenize hello.py
0,0-0,0: ENCODING 'utf-8'
1,0-1,3: NAME 'def'
1,4-1,13: NAME 'say_hello'
1,13-1,14: OP '('
1,14-1,15: OP ')'
1,15-1,16: OP ':'
1,16-1,17: NEWLINE '\n'
2,0-2,4: INDENT ' '
2,4-2,9: NAME 'print'
2,9-2,10: OP '('
2,10-2,25: STRING '"Hello, World!"'
2,25-2,26: OP ')'
2,26-2,27: NEWLINE '\n'
3,0-3,1: NL '\n'
4,0-4,0: DEDENT ''
4,0-4,9: NAME 'say_hello'
4,9-4,10: OP '('
4,10-4,11: OP ')'
4,11-4,12: NEWLINE '\n'
5,0-5,0: ENDMARKER ''

The exact token type names can be displayed using the -e option:

$ python -m tokenize -e hello.py
0,0-0,0: ENCODING 'utf-8'
1,0-1,3: NAME 'def'
1,4-1,13: NAME 'say_hello'
1,13-1,14: LPAR '('
1,14-1,15: RPAR ')'
1,15-1,16: COLON ':'
1,16-1,17: NEWLINE '\n'
2,0-2,4: INDENT ' '
2,4-2,9: NAME 'print'
2,9-2,10: LPAR '('
2,10-2,25: STRING '"Hello, World!"'
2,25-2,26: RPAR ')'

(continues on next page)

1662 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

(continued from previous page)

2,26-2,27: NEWLINE '\n'
3,0-3,1: NL '\n'
4,0-4,0: DEDENT ''
4,0-4,9: NAME 'say_hello'
4,9-4,10: LPAR '('
4,10-4,11: RPAR ')'
4,11-4,12: NEWLINE '\n'
5,0-5,0: ENDMARKER ''

32.8 tabnanny — Detection of ambiguous indentation

Source code: Lib/tabnanny.py

For the time being this module is intended to be called as a script. However it is possible to import it into
an IDE and use the function check() described below.

Note: The API provided by this module is likely to change in future releases; such changes may not be
backward compatible.

tabnanny.check(file_or_dir)
If file_or_dir is a directory and not a symbolic link, then recursively descend the directory tree named
by file_or_dir, checking all .py files along the way. If file_or_dir is an ordinary Python source file,
it is checked for whitespace related problems. The diagnostic messages are written to standard output
using the print() function.

tabnanny.verbose
Flag indicating whether to print verbose messages. This is incremented by the -v option if called as a
script.

tabnanny.filename_only
Flag indicating whether to print only the filenames of files containing whitespace related problems.
This is set to true by the -q option if called as a script.

exception tabnanny.NannyNag
Raised by process_tokens() if detecting an ambiguous indent. Captured and handled in check().

tabnanny.process_tokens(tokens)
This function is used by check() to process tokens generated by the tokenize module.

See also:

Module tokenize Lexical scanner for Python source code.

32.9 pyclbr — Python class browser support

Source code: Lib/pyclbr.py

The pyclbr module can be used to determine some limited information about the classes, methods and
top-level functions defined in a module. The information provided is sufficient to implement a traditional

32.8. tabnanny — Detection of ambiguous indentation 1663

https://github.com/python/cpython/tree/3.5/Lib/tabnanny.py
https://github.com/python/cpython/tree/3.5/Lib/pyclbr.py

The Python Library Reference, Release 3.5.7

three-pane class browser. The information is extracted from the source code rather than by importing the
module, so this module is safe to use with untrusted code. This restriction makes it impossible to use this
module with modules not implemented in Python, including all standard and optional extension modules.

pyclbr.readmodule(module, path=None)
Read a module and return a dictionary mapping class names to class descriptor objects. The parameter
module should be the name of a module as a string; it may be the name of a module within a package.
The path parameter should be a sequence, and is used to augment the value of sys.path, which is used
to locate module source code.

pyclbr.readmodule_ex(module, path=None)
Like readmodule(), but the returned dictionary, in addition to mapping class names to class descriptor
objects, also maps top-level function names to function descriptor objects. Moreover, if the module
being read is a package, the key '__path__' in the returned dictionary has as its value a list which
contains the package search path.

32.9.1 Class Objects

The Class objects used as values in the dictionary returned by readmodule() and readmodule_ex() provide
the following data attributes:

Class.module
The name of the module defining the class described by the class descriptor.

Class.name
The name of the class.

Class.super
A list of Class objects which describe the immediate base classes of the class being described. Classes
which are named as superclasses but which are not discoverable by readmodule() are listed as a string
with the class name instead of as Class objects.

Class.methods
A dictionary mapping method names to line numbers.

Class.file
Name of the file containing the class statement defining the class.

Class.lineno
The line number of the class statement within the file named by file.

32.9.2 Function Objects

The Function objects used as values in the dictionary returned by readmodule_ex() provide the following
attributes:

Function.module
The name of the module defining the function described by the function descriptor.

Function.name
The name of the function.

Function.file
Name of the file containing the def statement defining the function.

Function.lineno
The line number of the def statement within the file named by file.

1664 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

32.10 py_compile — Compile Python source files

Source code: Lib/py_compile.py

The py_compile module provides a function to generate a byte-code file from a source file, and another
function used when the module source file is invoked as a script.

Though not often needed, this function can be useful when installing modules for shared use, especially if
some of the users may not have permission to write the byte-code cache files in the directory containing the
source code.

exception py_compile.PyCompileError
Exception raised when an error occurs while attempting to compile the file.

py_compile.compile(file, cfile=None, dfile=None, doraise=False, optimize=-1)
Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded from
the file named file. The byte-code is written to cfile, which defaults to the PEP 3147/PEP 488 path,
ending in .pyc. For example, if file is /foo/bar/baz.py cfile will default to /foo/bar/__pycache__/
baz.cpython-32.pyc for Python 3.2. If dfile is specified, it is used as the name of the source file in
error messages when instead of file. If doraise is true, a PyCompileError is raised when an error is
encountered while compiling file. If doraise is false (the default), an error string is written to sys.stderr,
but no exception is raised. This function returns the path to byte-compiled file, i.e. whatever cfile
value was used.

If the path that cfile becomes (either explicitly specified or computed) is a symlink or non-regular file,
FileExistsError will be raised. This is to act as a warning that import will turn those paths into regular
files if it is allowed to write byte-compiled files to those paths. This is a side-effect of import using file
renaming to place the final byte-compiled file into place to prevent concurrent file writing issues.

optimize controls the optimization level and is passed to the built-in compile() function. The default
of -1 selects the optimization level of the current interpreter.

Changed in version 3.2: Changed default value of cfile to be PEP 3147-compliant. Previous default
was file + 'c' ('o' if optimization was enabled). Also added the optimize parameter.

Changed in version 3.4: Changed code to use importlib for the byte-code cache file writing. This
means file creation/writing semantics now match what importlib does, e.g. permissions, write-and-
move semantics, etc. Also added the caveat that FileExistsError is raised if cfile is a symlink or
non-regular file.

py_compile.main(args=None)
Compile several source files. The files named in args (or on the command line, if args is None) are
compiled and the resulting byte-code is cached in the normal manner. This function does not search
a directory structure to locate source files; it only compiles files named explicitly. If '-' is the only
parameter in args, the list of files is taken from standard input.

Changed in version 3.2: Added support for '-'.

When this module is run as a script, the main() is used to compile all the files named on the command line.
The exit status is nonzero if one of the files could not be compiled.

See also:

Module compileall Utilities to compile all Python source files in a directory tree.

32.10. py_compile — Compile Python source files 1665

https://github.com/python/cpython/tree/3.5/Lib/py_compile.py
https://www.python.org/dev/peps/pep-3147
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-3147

The Python Library Reference, Release 3.5.7

32.11 compileall — Byte-compile Python libraries

Source code: Lib/compileall.py

This module provides some utility functions to support installing Python libraries. These functions compile
Python source files in a directory tree. This module can be used to create the cached byte-code files at
library installation time, which makes them available for use even by users who don’t have write permission
to the library directories.

32.11.1 Command-line use

This module can work as a script (using python -m compileall) to compile Python sources.

directory ...
file ...

Positional arguments are files to compile or directories that contain source files, traversed recursively.
If no argument is given, behave as if the command line was -l <directories from sys.path>.

-l
Do not recurse into subdirectories, only compile source code files directly contained in the named or
implied directories.

-f
Force rebuild even if timestamps are up-to-date.

-q
Do not print the list of files compiled. If passed once, error messages will still be printed. If passed
twice (-qq), all output is suppressed.

-d destdir
Directory prepended to the path to each file being compiled. This will appear in compilation time
tracebacks, and is also compiled in to the byte-code file, where it will be used in tracebacks and other
messages in cases where the source file does not exist at the time the byte-code file is executed.

-x regex
regex is used to search the full path to each file considered for compilation, and if the regex produces
a match, the file is skipped.

-i list
Read the file list and add each line that it contains to the list of files and directories to compile. If list
is -, read lines from stdin.

-b
Write the byte-code files to their legacy locations and names, which may overwrite byte-code files
created by another version of Python. The default is to write files to their PEP 3147 locations and
names, which allows byte-code files from multiple versions of Python to coexist.

-r
Control the maximum recursion level for subdirectories. If this is given, then -l option will not be taken
into account. python -m compileall <directory> -r 0 is equivalent to python -m compileall <directory>
-l.

-j N
Use N workers to compile the files within the given directory. If 0 is used, then the result of os.
cpu_count() will be used.

1666 Chapter 32. Python Language Services

https://github.com/python/cpython/tree/3.5/Lib/compileall.py
https://www.python.org/dev/peps/pep-3147

The Python Library Reference, Release 3.5.7

Changed in version 3.2: Added the -i, -b and -h options.

Changed in version 3.5: Added the -j, -r, and -qq options. -q option was changed to a multilevel value. -b
will always produce a byte-code file ending in .pyc, never .pyo.

There is no command-line option to control the optimization level used by the compile() function, because
the Python interpreter itself already provides the option: python -O -m compileall.

32.11.2 Public functions

compileall.compile_dir(dir, maxlevels=10, ddir=None, force=False, rx=None, quiet=0, legacy=False,
optimize=-1, workers=1)

Recursively descend the directory tree named by dir, compiling all .py files along the way.

The maxlevels parameter is used to limit the depth of the recursion; it defaults to 10.

If ddir is given, it is prepended to the path to each file being compiled for use in compilation time
tracebacks, and is also compiled in to the byte-code file, where it will be used in tracebacks and other
messages in cases where the source file does not exist at the time the byte-code file is executed.

If force is true, modules are re-compiled even if the timestamps are up to date.

If rx is given, its search method is called on the complete path to each file considered for compilation,
and if it returns a true value, the file is skipped.

If quiet is False or 0 (the default), the filenames and other information are printed to standard out.
Set to 1, only errors are printed. Set to 2, all output is suppressed.

If legacy is true, byte-code files are written to their legacy locations and names, which may overwrite
byte-code files created by another version of Python. The default is to write files to their PEP 3147
locations and names, which allows byte-code files from multiple versions of Python to coexist.

optimize specifies the optimization level for the compiler. It is passed to the built-in compile() function.

The argument workers specifies how many workers are used to compile files in parallel. The default is
to not use multiple workers. If the platform can’t use multiple workers and workers argument is given,
then sequential compilation will be used as a fallback. If workers is lower than 0, a ValueError will be
raised.

Changed in version 3.2: Added the legacy and optimize parameter.

Changed in version 3.5: Added the workers parameter.

Changed in version 3.5: quiet parameter was changed to a multilevel value.

Changed in version 3.5: The legacy parameter only writes out .pyc files, not .pyo files no matter what
the value of optimize is.

compileall.compile_file(fullname, ddir=None, force=False, rx=None, quiet=0, legacy=False,
optimize=-1)

Compile the file with path fullname.

If ddir is given, it is prepended to the path to the file being compiled for use in compilation time
tracebacks, and is also compiled in to the byte-code file, where it will be used in tracebacks and other
messages in cases where the source file does not exist at the time the byte-code file is executed.

If rx is given, its search method is passed the full path name to the file being compiled, and if it returns
a true value, the file is not compiled and True is returned.

If quiet is False or 0 (the default), the filenames and other information are printed to standard out.
Set to 1, only errors are printed. Set to 2, all output is suppressed.

32.11. compileall — Byte-compile Python libraries 1667

https://www.python.org/dev/peps/pep-3147

The Python Library Reference, Release 3.5.7

If legacy is true, byte-code files are written to their legacy locations and names, which may overwrite
byte-code files created by another version of Python. The default is to write files to their PEP 3147
locations and names, which allows byte-code files from multiple versions of Python to coexist.

optimize specifies the optimization level for the compiler. It is passed to the built-in compile() function.

New in version 3.2.

Changed in version 3.5: quiet parameter was changed to a multilevel value.

Changed in version 3.5: The legacy parameter only writes out .pyc files, not .pyo files no matter what
the value of optimize is.

compileall.compile_path(skip_curdir=True, maxlevels=0, force=False, quiet=0, legacy=False,
optimize=-1)

Byte-compile all the .py files found along sys.path. If skip_curdir is true (the default), the current
directory is not included in the search. All other parameters are passed to the compile_dir() function.
Note that unlike the other compile functions, maxlevels defaults to 0.

Changed in version 3.2: Added the legacy and optimize parameter.

Changed in version 3.5: quiet parameter was changed to a multilevel value.

Changed in version 3.5: The legacy parameter only writes out .pyc files, not .pyo files no matter what
the value of optimize is.

To force a recompile of all the .py files in the Lib/ subdirectory and all its subdirectories:

import compileall

compileall.compile_dir('Lib/', force=True)

Perform same compilation, excluding files in .svn directories.
import re
compileall.compile_dir('Lib/', rx=re.compile(r'[/\\][.]svn'), force=True)

See also:

Module py_compile Byte-compile a single source file.

32.12 dis — Disassembler for Python bytecode

Source code: Lib/dis.py

The dis module supports the analysis of CPython bytecode by disassembling it. The CPython bytecode
which this module takes as an input is defined in the file Include/opcode.h and used by the compiler and
the interpreter.

CPython implementation detail: Bytecode is an implementation detail of the CPython interpreter. No
guarantees are made that bytecode will not be added, removed, or changed between versions of Python. Use
of this module should not be considered to work across Python VMs or Python releases.

Example: Given the function myfunc():

def myfunc(alist):
return len(alist)

the following command can be used to display the disassembly of myfunc():

1668 Chapter 32. Python Language Services

https://www.python.org/dev/peps/pep-3147
https://github.com/python/cpython/tree/3.5/Lib/dis.py

The Python Library Reference, Release 3.5.7

>>> dis.dis(myfunc)
2 0 LOAD_GLOBAL 0 (len)

3 LOAD_FAST 0 (alist)
6 CALL_FUNCTION 1
9 RETURN_VALUE

(The “2” is a line number).

32.12.1 Bytecode analysis

New in version 3.4.

The bytecode analysis API allows pieces of Python code to be wrapped in a Bytecode object that provides
easy access to details of the compiled code.

class dis.Bytecode(x, *, first_line=None, current_offset=None)
Analyse the bytecode corresponding to a function, generator, method, string of source code, or a code
object (as returned by compile()).

This is a convenience wrapper around many of the functions listed below, most notably
get_instructions(), as iterating over a Bytecode instance yields the bytecode operations as Instruc-
tion instances.

If first_line is not None, it indicates the line number that should be reported for the first source line
in the disassembled code. Otherwise, the source line information (if any) is taken directly from the
disassembled code object.

If current_offset is not None, it refers to an instruction offset in the disassembled code. Setting this
means dis() will display a “current instruction” marker against the specified opcode.

classmethod from_traceback(tb)
Construct a Bytecode instance from the given traceback, setting current_offset to the instruction
responsible for the exception.

codeobj
The compiled code object.

first_line
The first source line of the code object (if available)

dis()
Return a formatted view of the bytecode operations (the same as printed by dis.dis(), but returned
as a multi-line string).

info()
Return a formatted multi-line string with detailed information about the code object, like
code_info().

Example:

>>> bytecode = dis.Bytecode(myfunc)
>>> for instr in bytecode:
... print(instr.opname)
...
LOAD_GLOBAL
LOAD_FAST
CALL_FUNCTION
RETURN_VALUE

32.12. dis — Disassembler for Python bytecode 1669

The Python Library Reference, Release 3.5.7

32.12.2 Analysis functions

The dis module also defines the following analysis functions that convert the input directly to the desired
output. They can be useful if only a single operation is being performed, so the intermediate analysis object
isn’t useful:

dis.code_info(x)
Return a formatted multi-line string with detailed code object information for the supplied function,
generator, method, source code string or code object.

Note that the exact contents of code info strings are highly implementation dependent and they may
change arbitrarily across Python VMs or Python releases.

New in version 3.2.

dis.show_code(x, *, file=None)
Print detailed code object information for the supplied function, method, source code string or code
object to file (or sys.stdout if file is not specified).

This is a convenient shorthand for print(code_info(x), file=file), intended for interactive exploration
at the interpreter prompt.

New in version 3.2.

Changed in version 3.4: Added file parameter.

dis.dis(x=None, *, file=None)
Disassemble the x object. x can denote either a module, a class, a method, a function, a generator, a
code object, a string of source code or a byte sequence of raw bytecode. For a module, it disassembles
all functions. For a class, it disassembles all methods (including class and static methods). For a
code object or sequence of raw bytecode, it prints one line per bytecode instruction. Strings are first
compiled to code objects with the compile() built-in function before being disassembled. If no object
is provided, this function disassembles the last traceback.

The disassembly is written as text to the supplied file argument if provided and to sys.stdout otherwise.

Changed in version 3.4: Added file parameter.

dis.distb(tb=None, *, file=None)
Disassemble the top-of-stack function of a traceback, using the last traceback if none was passed. The
instruction causing the exception is indicated.

The disassembly is written as text to the supplied file argument if provided and to sys.stdout otherwise.

Changed in version 3.4: Added file parameter.

dis.disassemble(code, lasti=-1, *, file=None)
dis.disco(code, lasti=-1, *, file=None)

Disassemble a code object, indicating the last instruction if lasti was provided. The output is divided
in the following columns:

1. the line number, for the first instruction of each line

2. the current instruction, indicated as -->,

3. a labelled instruction, indicated with >>,

4. the address of the instruction,

5. the operation code name,

6. operation parameters, and

7. interpretation of the parameters in parentheses.

1670 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

The parameter interpretation recognizes local and global variable names, constant values, branch tar-
gets, and compare operators.

The disassembly is written as text to the supplied file argument if provided and to sys.stdout otherwise.

Changed in version 3.4: Added file parameter.

dis.get_instructions(x, *, first_line=None)
Return an iterator over the instructions in the supplied function, method, source code string or code
object.

The iterator generates a series of Instruction named tuples giving the details of each operation in the
supplied code.

If first_line is not None, it indicates the line number that should be reported for the first source line
in the disassembled code. Otherwise, the source line information (if any) is taken directly from the
disassembled code object.

New in version 3.4.

dis.findlinestarts(code)
This generator function uses the co_firstlineno and co_lnotab attributes of the code object code to
find the offsets which are starts of lines in the source code. They are generated as (offset, lineno) pairs.

dis.findlabels(code)
Detect all offsets in the code object code which are jump targets, and return a list of these offsets.

dis.stack_effect(opcode[, oparg])
Compute the stack effect of opcode with argument oparg.

New in version 3.4.

32.12.3 Python Bytecode Instructions

The get_instructions() function and Bytecode class provide details of bytecode instructions as Instruction
instances:

class dis.Instruction
Details for a bytecode operation

opcode
numeric code for operation, corresponding to the opcode values listed below and the bytecode
values in the Opcode collections.

opname
human readable name for operation

arg
numeric argument to operation (if any), otherwise None

argval
resolved arg value (if known), otherwise same as arg

argrepr
human readable description of operation argument

offset
start index of operation within bytecode sequence

starts_line
line started by this opcode (if any), otherwise None

32.12. dis — Disassembler for Python bytecode 1671

The Python Library Reference, Release 3.5.7

is_jump_target
True if other code jumps to here, otherwise False

New in version 3.4.

The Python compiler currently generates the following bytecode instructions.

General instructions

NOP
Do nothing code. Used as a placeholder by the bytecode optimizer.

POP_TOP
Removes the top-of-stack (TOS) item.

ROT_TWO
Swaps the two top-most stack items.

ROT_THREE
Lifts second and third stack item one position up, moves top down to position three.

DUP_TOP
Duplicates the reference on top of the stack.

DUP_TOP_TWO
Duplicates the two references on top of the stack, leaving them in the same order.

Unary operations

Unary operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARY_POSITIVE
Implements TOS = +TOS.

UNARY_NEGATIVE
Implements TOS = -TOS.

UNARY_NOT
Implements TOS = not TOS.

UNARY_INVERT
Implements TOS = ~TOS.

GET_ITER
Implements TOS = iter(TOS).

GET_YIELD_FROM_ITER
If TOS is a generator iterator or coroutine object it is left as is. Otherwise, implements TOS =
iter(TOS).

New in version 3.5.

Binary operations

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from the
stack. They perform the operation, and put the result back on the stack.

BINARY_POWER
Implements TOS = TOS1 ** TOS.

BINARY_MULTIPLY
Implements TOS = TOS1 * TOS.

BINARY_MATRIX_MULTIPLY
Implements TOS = TOS1 @ TOS.

1672 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

New in version 3.5.

BINARY_FLOOR_DIVIDE
Implements TOS = TOS1 // TOS.

BINARY_TRUE_DIVIDE
Implements TOS = TOS1 / TOS.

BINARY_MODULO
Implements TOS = TOS1 % TOS.

BINARY_ADD
Implements TOS = TOS1 + TOS.

BINARY_SUBTRACT
Implements TOS = TOS1 - TOS.

BINARY_SUBSCR
Implements TOS = TOS1[TOS].

BINARY_LSHIFT
Implements TOS = TOS1 << TOS.

BINARY_RSHIFT
Implements TOS = TOS1 >> TOS.

BINARY_AND
Implements TOS = TOS1 & TOS.

BINARY_XOR
Implements TOS = TOS1 ^ TOS.

BINARY_OR
Implements TOS = TOS1 | TOS.

In-place operations

In-place operations are like binary operations, in that they remove TOS and TOS1, and push the result back
on the stack, but the operation is done in-place when TOS1 supports it, and the resulting TOS may be (but
does not have to be) the original TOS1.

INPLACE_POWER
Implements in-place TOS = TOS1 ** TOS.

INPLACE_MULTIPLY
Implements in-place TOS = TOS1 * TOS.

INPLACE_MATRIX_MULTIPLY
Implements in-place TOS = TOS1 @ TOS.

New in version 3.5.

INPLACE_FLOOR_DIVIDE
Implements in-place TOS = TOS1 // TOS.

INPLACE_TRUE_DIVIDE
Implements in-place TOS = TOS1 / TOS.

INPLACE_MODULO
Implements in-place TOS = TOS1 % TOS.

INPLACE_ADD
Implements in-place TOS = TOS1 + TOS.

32.12. dis — Disassembler for Python bytecode 1673

The Python Library Reference, Release 3.5.7

INPLACE_SUBTRACT
Implements in-place TOS = TOS1 - TOS.

INPLACE_LSHIFT
Implements in-place TOS = TOS1 << TOS.

INPLACE_RSHIFT
Implements in-place TOS = TOS1 >> TOS.

INPLACE_AND
Implements in-place TOS = TOS1 & TOS.

INPLACE_XOR
Implements in-place TOS = TOS1 ^ TOS.

INPLACE_OR
Implements in-place TOS = TOS1 | TOS.

STORE_SUBSCR
Implements TOS1[TOS] = TOS2.

DELETE_SUBSCR
Implements del TOS1[TOS].

Coroutine opcodes

GET_AWAITABLE
Implements TOS = get_awaitable(TOS), where get_awaitable(o) returns o if o is a coroutine object
or a generator object with the CO_ITERABLE_COROUTINE flag, or resolves o.__await__.

GET_AITER
Implements TOS = get_awaitable(TOS.__aiter__()). See GET_AWAITABLE for details about
get_awaitable

GET_ANEXT
Implements PUSH(get_awaitable(TOS.__anext__())). See GET_AWAITABLE for details about
get_awaitable

BEFORE_ASYNC_WITH
Resolves __aenter__ and __aexit__ from the object on top of the stack. Pushes __aexit__ and
result of __aenter__() to the stack.

SETUP_ASYNC_WITH
Creates a new frame object.

Miscellaneous opcodes

PRINT_EXPR
Implements the expression statement for the interactive mode. TOS is removed from the stack and
printed. In non-interactive mode, an expression statement is terminated with POP_TOP.

BREAK_LOOP
Terminates a loop due to a break statement.

CONTINUE_LOOP(target)
Continues a loop due to a continue statement. target is the address to jump to (which should be a
FOR_ITER instruction).

SET_ADD(i)
Calls set.add(TOS1[-i], TOS). Used to implement set comprehensions.

LIST_APPEND(i)
Calls list.append(TOS[-i], TOS). Used to implement list comprehensions.

1674 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

MAP_ADD(i)
Calls dict.setitem(TOS1[-i], TOS, TOS1). Used to implement dict comprehensions.

For all of the SET_ADD, LIST_APPEND and MAP_ADD instructions, while the added value or key/value
pair is popped off, the container object remains on the stack so that it is available for further iterations of
the loop.

RETURN_VALUE
Returns with TOS to the caller of the function.

YIELD_VALUE
Pops TOS and yields it from a generator.

YIELD_FROM
Pops TOS and delegates to it as a subiterator from a generator.

New in version 3.3.

IMPORT_STAR
Loads all symbols not starting with '_' directly from the module TOS to the local namespace. The
module is popped after loading all names. This opcode implements from module import *.

POP_BLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops,
try statements, and such.

POP_EXCEPT
Removes one block from the block stack. The popped block must be an exception handler block, as
implicitly created when entering an except handler. In addition to popping extraneous values from the
frame stack, the last three popped values are used to restore the exception state.

END_FINALLY
Terminates a finally clause. The interpreter recalls whether the exception has to be re-raised, or
whether the function returns, and continues with the outer-next block.

LOAD_BUILD_CLASS
Pushes builtins.__build_class__() onto the stack. It is later called by CALL_FUNCTION to con-
struct a class.

SETUP_WITH(delta)
This opcode performs several operations before a with block starts. First, it loads __exit__() from the
context manager and pushes it onto the stack for later use by WITH_CLEANUP. Then, __enter__()
is called, and a finally block pointing to delta is pushed. Finally, the result of calling the enter method is
pushed onto the stack. The next opcode will either ignore it (POP_TOP), or store it in (a) variable(s)
(STORE_FAST, STORE_NAME, or UNPACK_SEQUENCE).

WITH_CLEANUP_START
Cleans up the stack when a with statement block exits. TOS is the context manager’s __exit__()
bound method. Below TOS are 1–3 values indicating how/why the finally clause was entered:

• SECOND = None

• (SECOND, THIRD) = (WHY_{RETURN,CONTINUE}), retval

• SECOND = WHY_*; no retval below it

• (SECOND, THIRD, FOURTH) = exc_info()

In the last case, TOS(SECOND, THIRD, FOURTH) is called, otherwise TOS(None, None, None).
Pushes SECOND and result of the call to the stack.

WITH_CLEANUP_FINISH
Pops exception type and result of ‘exit’ function call from the stack.

32.12. dis — Disassembler for Python bytecode 1675

The Python Library Reference, Release 3.5.7

If the stack represents an exception, and the function call returns a ‘true’ value, this information is
“zapped” and replaced with a single WHY_SILENCED to prevent END_FINALLY from re-raising
the exception. (But non-local gotos will still be resumed.)

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte
last.

STORE_NAME(namei)
Implements name = TOS. namei is the index of name in the attribute co_names of the code object.
The compiler tries to use STORE_FAST or STORE_GLOBAL if possible.

DELETE_NAME(namei)
Implements del name, where namei is the index into co_names attribute of the code object.

UNPACK_SEQUENCE(count)
Unpacks TOS into count individual values, which are put onto the stack right-to-left.

UNPACK_EX(counts)
Implements assignment with a starred target: Unpacks an iterable in TOS into individual values, where
the total number of values can be smaller than the number of items in the iterable: one of the new
values will be a list of all leftover items.

The low byte of counts is the number of values before the list value, the high byte of counts the number
of values after it. The resulting values are put onto the stack right-to-left.

STORE_ATTR(namei)
Implements TOS.name = TOS1, where namei is the index of name in co_names.

DELETE_ATTR(namei)
Implements del TOS.name, using namei as index into co_names.

STORE_GLOBAL(namei)
Works as STORE_NAME, but stores the name as a global.

DELETE_GLOBAL(namei)
Works as DELETE_NAME, but deletes a global name.

LOAD_CONST(consti)
Pushes co_consts[consti] onto the stack.

LOAD_NAME(namei)
Pushes the value associated with co_names[namei] onto the stack.

BUILD_TUPLE(count)
Creates a tuple consuming count items from the stack, and pushes the resulting tuple onto the stack.

BUILD_LIST(count)
Works as BUILD_TUPLE, but creates a list.

BUILD_SET(count)
Works as BUILD_TUPLE, but creates a set.

BUILD_MAP(count)
Pushes a new dictionary object onto the stack. Pops 2 * count items so that the dictionary holds count
entries: {..., TOS3: TOS2, TOS1: TOS}.

Changed in version 3.5: The dictionary is created from stack items instead of creating an empty
dictionary pre-sized to hold count items.

BUILD_TUPLE_UNPACK(count)
Pops count iterables from the stack, joins them in a single tuple, and pushes the result. Implements
iterable unpacking in tuple displays (*x, *y, *z).

1676 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

New in version 3.5.

BUILD_LIST_UNPACK(count)
This is similar to BUILD_TUPLE_UNPACK, but pushes a list instead of tuple. Implements iterable
unpacking in list displays [*x, *y, *z].

New in version 3.5.

BUILD_SET_UNPACK(count)
This is similar to BUILD_TUPLE_UNPACK, but pushes a set instead of tuple. Implements iterable
unpacking in set displays {*x, *y, *z}.

New in version 3.5.

BUILD_MAP_UNPACK(count)
Pops count mappings from the stack, merges them into a single dictionary, and pushes the result.
Implements dictionary unpacking in dictionary displays {**x, **y, **z}.

New in version 3.5.

BUILD_MAP_UNPACK_WITH_CALL(oparg)
This is similar to BUILD_MAP_UNPACK, but is used for f(**x, **y, **z) call syntax. The lowest
byte of oparg is the count of mappings, the relative position of the corresponding callable f is encoded
in the second byte of oparg.

New in version 3.5.

LOAD_ATTR(namei)
Replaces TOS with getattr(TOS, co_names[namei]).

COMPARE_OP(opname)
Performs a Boolean operation. The operation name can be found in cmp_op[opname].

IMPORT_NAME(namei)
Imports the module co_names[namei]. TOS and TOS1 are popped and provide the fromlist and level
arguments of __import__(). The module object is pushed onto the stack. The current namespace
is not affected: for a proper import statement, a subsequent STORE_FAST instruction modifies the
namespace.

IMPORT_FROM(namei)
Loads the attribute co_names[namei] from the module found in TOS. The resulting object is pushed
onto the stack, to be subsequently stored by a STORE_FAST instruction.

JUMP_FORWARD(delta)
Increments bytecode counter by delta.

POP_JUMP_IF_TRUE(target)
If TOS is true, sets the bytecode counter to target. TOS is popped.

POP_JUMP_IF_FALSE(target)
If TOS is false, sets the bytecode counter to target. TOS is popped.

JUMP_IF_TRUE_OR_POP(target)
If TOS is true, sets the bytecode counter to target and leaves TOS on the stack. Otherwise (TOS is
false), TOS is popped.

JUMP_IF_FALSE_OR_POP(target)
If TOS is false, sets the bytecode counter to target and leaves TOS on the stack. Otherwise (TOS is
true), TOS is popped.

JUMP_ABSOLUTE(target)
Set bytecode counter to target.

32.12. dis — Disassembler for Python bytecode 1677

The Python Library Reference, Release 3.5.7

FOR_ITER(delta)
TOS is an iterator. Call its __next__() method. If this yields a new value, push it on the stack
(leaving the iterator below it). If the iterator indicates it is exhausted TOS is popped, and the byte
code counter is incremented by delta.

LOAD_GLOBAL(namei)
Loads the global named co_names[namei] onto the stack.

SETUP_LOOP(delta)
Pushes a block for a loop onto the block stack. The block spans from the current instruction with a
size of delta bytes.

SETUP_EXCEPT(delta)
Pushes a try block from a try-except clause onto the block stack. delta points to the first except block.

SETUP_FINALLY(delta)
Pushes a try block from a try-except clause onto the block stack. delta points to the finally block.

LOAD_FAST(var_num)
Pushes a reference to the local co_varnames[var_num] onto the stack.

STORE_FAST(var_num)
Stores TOS into the local co_varnames[var_num].

DELETE_FAST(var_num)
Deletes local co_varnames[var_num].

LOAD_CLOSURE(i)
Pushes a reference to the cell contained in slot i of the cell and free variable storage. The name of
the variable is co_cellvars[i] if i is less than the length of co_cellvars. Otherwise it is co_freevars[i -
len(co_cellvars)].

LOAD_DEREF(i)
Loads the cell contained in slot i of the cell and free variable storage. Pushes a reference to the object
the cell contains on the stack.

LOAD_CLASSDEREF(i)
Much like LOAD_DEREF but first checks the locals dictionary before consulting the cell. This is used
for loading free variables in class bodies.

STORE_DEREF(i)
Stores TOS into the cell contained in slot i of the cell and free variable storage.

DELETE_DEREF(i)
Empties the cell contained in slot i of the cell and free variable storage. Used by the del statement.

RAISE_VARARGS(argc)
Raises an exception. argc indicates the number of arguments to the raise statement, ranging from 0 to
3. The handler will find the traceback as TOS2, the parameter as TOS1, and the exception as TOS.

CALL_FUNCTION(argc)
Calls a callable object. The low byte of argc indicates the number of positional arguments, the high
byte the number of keyword arguments. The stack contains keyword arguments on top (if any),
then the positional arguments below that (if any), then the callable object to call below that. Each
keyword argument is represented with two values on the stack: the argument’s name, and its value,
with the argument’s value above the name on the stack. The positional arguments are pushed in the
order that they are passed in to the callable object, with the right-most positional argument on top.
CALL_FUNCTION pops all arguments and the callable object off the stack, calls the callable object
with those arguments, and pushes the return value returned by the callable object.

1678 Chapter 32. Python Language Services

The Python Library Reference, Release 3.5.7

MAKE_FUNCTION(argc)
Pushes a new function object on the stack. From bottom to top, the consumed stack must consist of

• argc & 0xFF default argument objects in positional order, for positional parameters

• (argc >> 8) & 0xFF pairs of name and default argument, with the name just below the object
on the stack, for keyword-only parameters

• (argc >> 16) & 0x7FFF parameter annotation objects

• a tuple listing the parameter names for the annotations (only if there are any annotation objects)

• the code associated with the function (at TOS1)

• the qualified name of the function (at TOS)

MAKE_CLOSURE(argc)
Creates a new function object, sets its __closure__ slot, and pushes it on the stack. TOS is the
qualified name of the function, TOS1 is the code associated with the function, and TOS2 is the tuple
containing cells for the closure’s free variables. argc is interpreted as in MAKE_FUNCTION; the
annotations and defaults are also in the same order below TOS2.

BUILD_SLICE(argc)
Pushes a slice object on the stack. argc must be 2 or 3. If it is 2, slice(TOS1, TOS) is pushed; if it is
3, slice(TOS2, TOS1, TOS) is pushed. See the slice() built-in function for more information.

EXTENDED_ARG(ext)
Prefixes any opcode which has an argument too big to fit into the default two bytes. ext holds two
additional bytes which, taken together with the subsequent opcode’s argument, comprise a four-byte
argument, ext being the two most-significant bytes.

CALL_FUNCTION_VAR(argc)
Calls a callable object, similarly to CALL_FUNCTION. argc represents the number of keyword and
positional arguments, identically to CALL_FUNCTION. The top of the stack contains keyword argu-
ments (if any), stored identically to CALL_FUNCTION. Below that is an iterable object containing
additional positional arguments. Below that are positional arguments (if any) and a callable object,
identically to CALL_FUNCTION. Before the callable object is called, the iterable object is “unpacked”
and its contents are appended to the positional arguments passed in. The iterable object is ignored
when computing the value of argc.

Changed in version 3.5: In versions 3.0 to 3.4, the iterable object was above the keyword arguments;
in 3.5 the iterable object was moved below the keyword arguments.

CALL_FUNCTION_KW(argc)
Calls a callable object, similarly to CALL_FUNCTION. argc represents the number of keyword and
positional arguments, identically to CALL_FUNCTION. The top of the stack contains a mapping
object containing additional keyword arguments. Below this are keyword arguments (if any), positional
arguments (if any), and a callable object, identically to CALL_FUNCTION. Before the callable is
called, the mapping object at the top of the stack is “unpacked” and its contents are appended to the
keyword arguments passed in. The mapping object at the top of the stack is ignored when computing
the value of argc.

CALL_FUNCTION_VAR_KW(argc)
Calls a callable object, similarly to CALL_FUNCTION_VAR and CALL_FUNCTION_KW. argc
represents the number of keyword and positional arguments, identically to CALL_FUNCTION. The
top of the stack contains a mapping object, as per CALL_FUNCTION_KW. Below that are keyword
arguments (if any), stored identically to CALL_FUNCTION. Below that is an iterable object con-
taining additional positional arguments. Below that are positional arguments (if any) and a callable
object, identically to CALL_FUNCTION. Before the callable is called, the mapping object and it-
erable object are each “unpacked” and their contents passed in as keyword and positional arguments

32.12. dis — Disassembler for Python bytecode 1679

The Python Library Reference, Release 3.5.7

respectively, identically to CALL_FUNCTION_VAR and CALL_FUNCTION_KW. The mapping
object and iterable object are both ignored when computing the value of argc.

Changed in version 3.5: In versions 3.0 to 3.4, the iterable object was above the keyword arguments;
in 3.5 the iterable object was moved below the keyword arguments.

HAVE_ARGUMENT
This is not really an opcode. It identifies the dividing line between opcodes which don’t take arguments
< HAVE_ARGUMENT and those which do >= HAVE_ARGUMENT.

32.12.4 Opcode collections

These collections are provided for automatic introspection of bytecode instructions:

dis.opname
Sequence of operation names, indexable using the bytecode.

dis.opmap
Dictionary mapping operation names to bytecodes.

dis.cmp_op
Sequence of all compare operation names.

dis.hasconst
Sequence of bytecodes that access a constant.

dis.hasfree
Sequence of bytecodes that access a free variable (note that ‘free’ in this context refers to names in the
current scope that are referenced by inner scopes or names in outer scopes that are referenced from
this scope. It does not include references to global or builtin scopes).

dis.hasname
Sequence of bytecodes that access an attribute by name.

dis.hasjrel
Sequence of bytecodes that have a relative jump target.

dis.hasjabs
Sequence of bytecodes that have an absolute jump target.

dis.haslocal
Sequence of bytecodes that access a local variable.

dis.hascompare
Sequence of bytecodes of Boolean operations.

32.13 pickletools — Tools for pickle developers

Source code: Lib/pickletools.py

This module contains various constants relating to the intimate details of the pickle module, some lengthy
comments about the implementation, and a few useful functions for analyzing pickled data. The contents
of this module are useful for Python core developers who are working on the pickle; ordinary users of the
pickle module probably won’t find the pickletools module relevant.

1680 Chapter 32. Python Language Services

https://github.com/python/cpython/tree/3.5/Lib/pickletools.py

The Python Library Reference, Release 3.5.7

32.13.1 Command line usage

New in version 3.2.

When invoked from the command line, python -m pickletools will disassemble the contents of one or more
pickle files. Note that if you want to see the Python object stored in the pickle rather than the details
of pickle format, you may want to use -m pickle instead. However, when the pickle file that you want to
examine comes from an untrusted source, -m pickletools is a safer option because it does not execute pickle
bytecode.

For example, with a tuple (1, 2) pickled in file x.pickle:

$ python -m pickle x.pickle
(1, 2)

$ python -m pickletools x.pickle
0: \x80 PROTO 3
2: K BININT1 1
4: K BININT1 2
6: \x86 TUPLE2
7: q BINPUT 0
9: . STOP

highest protocol among opcodes = 2

Command line options

-a, --annotate
Annotate each line with a short opcode description.

-o, --output=<file>
Name of a file where the output should be written.

-l, --indentlevel=<num>
The number of blanks by which to indent a new MARK level.

-m, --memo
When multiple objects are disassembled, preserve memo between disassemblies.

-p, --preamble=<preamble>
When more than one pickle file are specified, print given preamble before each disassembly.

32.13.2 Programmatic Interface

pickletools.dis(pickle, out=None, memo=None, indentlevel=4, annotate=0)
Outputs a symbolic disassembly of the pickle to the file-like object out, defaulting to sys.stdout. pickle
can be a string or a file-like object. memo can be a Python dictionary that will be used as the pickle’s
memo; it can be used to perform disassemblies across multiple pickles created by the same pickler.
Successive levels, indicated by MARK opcodes in the stream, are indented by indentlevel spaces. If a
nonzero value is given to annotate, each opcode in the output is annotated with a short description.
The value of annotate is used as a hint for the column where annotation should start.

New in version 3.2: The annotate argument.

pickletools.genops(pickle)
Provides an iterator over all of the opcodes in a pickle, returning a sequence of (opcode, arg, pos)
triples. opcode is an instance of an OpcodeInfo class; arg is the decoded value, as a Python object, of

32.13. pickletools — Tools for pickle developers 1681

The Python Library Reference, Release 3.5.7

the opcode’s argument; pos is the position at which this opcode is located. pickle can be a string or a
file-like object.

pickletools.optimize(picklestring)
Returns a new equivalent pickle string after eliminating unused PUT opcodes. The optimized pickle
is shorter, takes less transmission time, requires less storage space, and unpickles more efficiently.

1682 Chapter 32. Python Language Services

CHAPTER

THIRTYTHREE

MISCELLANEOUS SERVICES

The modules described in this chapter provide miscellaneous services that are available in all Python versions.
Here’s an overview:

33.1 formatter — Generic output formatting

Deprecated since version 3.4: Due to lack of usage, the formatter module has been deprecated.

This module supports two interface definitions, each with multiple implementations: The formatter interface,
and the writer interface which is required by the formatter interface.

Formatter objects transform an abstract flow of formatting events into specific output events on writer
objects. Formatters manage several stack structures to allow various properties of a writer object to be
changed and restored; writers need not be able to handle relative changes nor any sort of “change back”
operation. Specific writer properties which may be controlled via formatter objects are horizontal alignment,
font, and left margin indentations. A mechanism is provided which supports providing arbitrary, non-
exclusive style settings to a writer as well. Additional interfaces facilitate formatting events which are not
reversible, such as paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are supported as well
as physical devices. The provided implementations all work with abstract devices. The interface makes
available mechanisms for setting the properties which formatter objects manage and inserting data into the
output.

33.1.1 The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instantiated. The interfaces
described below are the required interfaces which all formatters must support once initialized.

One data element is defined at the module level:

formatter.AS_IS
Value which can be used in the font specification passed to the push_font() method described below,
or as the new value to any other push_property() method. Pushing the AS_IS value allows the
corresponding pop_property() method to be called without having to track whether the property was
changed.

The following attributes are defined for formatter instance objects:

formatter.writer
The writer instance with which the formatter interacts.

1683

The Python Library Reference, Release 3.5.7

formatter.end_paragraph(blanklines)
Close any open paragraphs and insert at least blanklines before the next paragraph.

formatter.add_line_break()
Add a hard line break if one does not already exist. This does not break the logical paragraph.

formatter.add_hor_rule(*args, **kw)
Insert a horizontal rule in the output. A hard break is inserted if there is data in the current paragraph,
but the logical paragraph is not broken. The arguments and keywords are passed on to the writer’s
send_line_break() method.

formatter.add_flowing_data(data)
Provide data which should be formatted with collapsed whitespace. Whitespace from preceding and
successive calls to add_flowing_data() is considered as well when the whitespace collapse is performed.
The data which is passed to this method is expected to be word-wrapped by the output device. Note
that any word-wrapping still must be performed by the writer object due to the need to rely on device
and font information.

formatter.add_literal_data(data)
Provide data which should be passed to the writer unchanged. Whitespace, including newline and tab
characters, are considered legal in the value of data.

formatter.add_label_data(format, counter)
Insert a label which should be placed to the left of the current left margin. This should be used for
constructing bulleted or numbered lists. If the format value is a string, it is interpreted as a format
specification for counter, which should be an integer. The result of this formatting becomes the value
of the label; if format is not a string it is used as the label value directly. The label value is passed as
the only argument to the writer’s send_label_data() method. Interpretation of non-string label values
is dependent on the associated writer.

Format specifications are strings which, in combination with a counter value, are used to compute
label values. Each character in the format string is copied to the label value, with some characters
recognized to indicate a transform on the counter value. Specifically, the character '1' represents
the counter value formatter as an Arabic number, the characters 'A' and 'a' represent alphabetic
representations of the counter value in upper and lower case, respectively, and 'I' and 'i' represent
the counter value in Roman numerals, in upper and lower case. Note that the alphabetic and roman
transforms require that the counter value be greater than zero.

formatter.flush_softspace()
Send any pending whitespace buffered from a previous call to add_flowing_data() to the associated
writer object. This should be called before any direct manipulation of the writer object.

formatter.push_alignment(align)
Push a new alignment setting onto the alignment stack. This may be AS_IS if no change is desired.
If the alignment value is changed from the previous setting, the writer’s new_alignment() method is
called with the align value.

formatter.pop_alignment()
Restore the previous alignment.

formatter.push_font((size, italic, bold, teletype))
Change some or all font properties of the writer object. Properties which are not set to AS_IS are set
to the values passed in while others are maintained at their current settings. The writer’s new_font()
method is called with the fully resolved font specification.

formatter.pop_font()
Restore the previous font.

formatter.push_margin(margin)
Increase the number of left margin indentations by one, associating the logical tag margin with the

1684 Chapter 33. Miscellaneous Services

The Python Library Reference, Release 3.5.7

new indentation. The initial margin level is 0. Changed values of the logical tag must be true values;
false values other than AS_IS are not sufficient to change the margin.

formatter.pop_margin()
Restore the previous margin.

formatter.push_style(*styles)
Push any number of arbitrary style specifications. All styles are pushed onto the styles stack in order.
A tuple representing the entire stack, including AS_IS values, is passed to the writer’s new_styles()
method.

formatter.pop_style(n=1)
Pop the last n style specifications passed to push_style(). A tuple representing the revised stack,
including AS_IS values, is passed to the writer’s new_styles() method.

formatter.set_spacing(spacing)
Set the spacing style for the writer.

formatter.assert_line_data(flag=1)
Inform the formatter that data has been added to the current paragraph out-of-band. This should be
used when the writer has been manipulated directly. The optional flag argument can be set to false if
the writer manipulations produced a hard line break at the end of the output.

33.1.2 Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications may use one of
these classes without modification or subclassing.

class formatter.NullFormatter(writer=None)
A formatter which does nothing. If writer is omitted, a NullWriter instance is created. No methods
of the writer are called by NullFormatter instances. Implementations should inherit from this class if
implementing a writer interface but don’t need to inherit any implementation.

class formatter.AbstractFormatter(writer)
The standard formatter. This implementation has demonstrated wide applicability to many writers,
and may be used directly in most circumstances. It has been used to implement a full-featured World
Wide Web browser.

33.1.3 The Writer Interface

Interfaces to create writers are dependent on the specific writer class being instantiated. The interfaces
described below are the required interfaces which all writers must support once initialized. Note that while
most applications can use the AbstractFormatter class as a formatter, the writer must typically be provided
by the application.

writer.flush()
Flush any buffered output or device control events.

writer.new_alignment(align)
Set the alignment style. The align value can be any object, but by convention is a string or None,
where None indicates that the writer’s “preferred” alignment should be used. Conventional align values
are 'left', 'center', 'right', and 'justify'.

writer.new_font(font)
Set the font style. The value of font will be None, indicating that the device’s default font should be
used, or a tuple of the form (size, italic, bold, teletype). Size will be a string indicating the size of font
that should be used; specific strings and their interpretation must be defined by the application. The

33.1. formatter — Generic output formatting 1685

The Python Library Reference, Release 3.5.7

italic, bold, and teletype values are Boolean values specifying which of those font attributes should be
used.

writer.new_margin(margin, level)
Set the margin level to the integer level and the logical tag to margin. Interpretation of the logical tag
is at the writer’s discretion; the only restriction on the value of the logical tag is that it not be a false
value for non-zero values of level.

writer.new_spacing(spacing)
Set the spacing style to spacing.

writer.new_styles(styles)
Set additional styles. The styles value is a tuple of arbitrary values; the value AS_IS should be ignored.
The styles tuple may be interpreted either as a set or as a stack depending on the requirements of the
application and writer implementation.

writer.send_line_break()
Break the current line.

writer.send_paragraph(blankline)
Produce a paragraph separation of at least blankline blank lines, or the equivalent. The blankline value
will be an integer. Note that the implementation will receive a call to send_line_break() before this
call if a line break is needed; this method should not include ending the last line of the paragraph. It
is only responsible for vertical spacing between paragraphs.

writer.send_hor_rule(*args, **kw)
Display a horizontal rule on the output device. The arguments to this method are entirely application-
and writer-specific, and should be interpreted with care. The method implementation may assume
that a line break has already been issued via send_line_break().

writer.send_flowing_data(data)
Output character data which may be word-wrapped and re-flowed as needed. Within any sequence of
calls to this method, the writer may assume that spans of multiple whitespace characters have been
collapsed to single space characters.

writer.send_literal_data(data)
Output character data which has already been formatted for display. Generally, this should be inter-
preted to mean that line breaks indicated by newline characters should be preserved and no new line
breaks should be introduced. The data may contain embedded newline and tab characters, unlike data
provided to the send_formatted_data() interface.

writer.send_label_data(data)
Set data to the left of the current left margin, if possible. The value of data is not restricted; treatment
of non-string values is entirely application- and writer-dependent. This method will only be called at
the beginning of a line.

33.1.4 Writer Implementations

Three implementations of the writer object interface are provided as examples by this module. Most appli-
cations will need to derive new writer classes from the NullWriter class.

class formatter.NullWriter
A writer which only provides the interface definition; no actions are taken on any methods. This should
be the base class for all writers which do not need to inherit any implementation methods.

class formatter.AbstractWriter
A writer which can be used in debugging formatters, but not much else. Each method simply announces
itself by printing its name and arguments on standard output.

1686 Chapter 33. Miscellaneous Services

The Python Library Reference, Release 3.5.7

class formatter.DumbWriter(file=None, maxcol=72)
Simple writer class which writes output on the file object passed in as file or, if file is omitted, on
standard output. The output is simply word-wrapped to the number of columns specified by maxcol.
This class is suitable for reflowing a sequence of paragraphs.

33.1. formatter — Generic output formatting 1687

The Python Library Reference, Release 3.5.7

1688 Chapter 33. Miscellaneous Services

CHAPTER

THIRTYFOUR

MS WINDOWS SPECIFIC SERVICES

This chapter describes modules that are only available on MS Windows platforms.

34.1 msilib — Read and write Microsoft Installer files

Source code: Lib/msilib/__init__.py

The msilib supports the creation of Microsoft Installer (.msi) files. Because these files often contain an
embedded “cabinet” file (.cab), it also exposes an API to create CAB files. Support for reading .cab files is
currently not implemented; read support for the .msi database is possible.

This package aims to provide complete access to all tables in an .msi file, therefore, it is a fairly low-level
API. Two primary applications of this package are the distutils command bdist_msi, and the creation of
Python installer package itself (although that currently uses a different version of msilib).

The package contents can be roughly split into four parts: low-level CAB routines, low-level MSI routines,
higher-level MSI routines, and standard table structures.

msilib.FCICreate(cabname, files)
Create a new CAB file named cabname. files must be a list of tuples, each containing the name of the
file on disk, and the name of the file inside the CAB file.

The files are added to the CAB file in the order they appear in the list. All files are added into a single
CAB file, using the MSZIP compression algorithm.

Callbacks to Python for the various steps of MSI creation are currently not exposed.

msilib.UuidCreate()
Return the string representation of a new unique identifier. This wraps the Windows API functions
UuidCreate() and UuidToString().

msilib.OpenDatabase(path, persist)
Return a new database object by calling MsiOpenDatabase. path is the file name of the MSI file; per-
sist can be one of the constants MSIDBOPEN_CREATEDIRECT, MSIDBOPEN_CREATE, MSID-
BOPEN_DIRECT, MSIDBOPEN_READONLY, or MSIDBOPEN_TRANSACT, and may include
the flag MSIDBOPEN_PATCHFILE. See the Microsoft documentation for the meaning of these flags;
depending on the flags, an existing database is opened, or a new one created.

msilib.CreateRecord(count)
Return a new record object by calling MSICreateRecord(). count is the number of fields of the record.

msilib.init_database(name, schema, ProductName, ProductCode, ProductVersion, Manufacturer)
Create and return a new database name, initialize it with schema, and set the properties ProductName,
ProductCode, ProductVersion, and Manufacturer.

1689

https://github.com/python/cpython/tree/3.5/Lib/msilib/__init__.py

The Python Library Reference, Release 3.5.7

schema must be a module object containing tables and _Validation_records attributes; typically,
msilib.schema should be used.

The database will contain just the schema and the validation records when this function returns.

msilib.add_data(database, table, records)
Add all records to the table named table in database.

The table argument must be one of the predefined tables in the MSI schema, e.g. 'Feature', 'File',
'Component', 'Dialog', 'Control', etc.

records should be a list of tuples, each one containing all fields of a record according to the schema of
the table. For optional fields, None can be passed.

Field values can be ints, strings, or instances of the Binary class.

class msilib.Binary(filename)
Represents entries in the Binary table; inserting such an object using add_data() reads the file named
filename into the table.

msilib.add_tables(database, module)
Add all table content from module to database. module must contain an attribute tables listing all
tables for which content should be added, and one attribute per table that has the actual content.

This is typically used to install the sequence tables.

msilib.add_stream(database, name, path)
Add the file path into the _Stream table of database, with the stream name name.

msilib.gen_uuid()
Return a new UUID, in the format that MSI typically requires (i.e. in curly braces, and with all
hexdigits in upper-case).

See also:

FCICreateFile UuidCreate UuidToString

34.1.1 Database Objects

Database.OpenView(sql)
Return a view object, by calling MSIDatabaseOpenView(). sql is the SQL statement to execute.

Database.Commit()
Commit the changes pending in the current transaction, by calling MSIDatabaseCommit().

Database.GetSummaryInformation(count)
Return a new summary information object, by calling MsiGetSummaryInformation(). count is the
maximum number of updated values.

See also:

MSIDatabaseOpenView MSIDatabaseCommit MSIGetSummaryInformation

34.1.2 View Objects

View.Execute(params)
Execute the SQL query of the view, through MSIViewExecute(). If params is not None, it is a record
describing actual values of the parameter tokens in the query.

1690 Chapter 34. MS Windows Specific Services

https://msdn.microsoft.com/library?url=/library/en-us/devnotes/winprog/fcicreate.asp
https://msdn.microsoft.com/library?url=/library/en-us/rpc/rpc/uuidcreate.asp
https://msdn.microsoft.com/library?url=/library/en-us/rpc/rpc/uuidtostring.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msidatabaseopenview.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msidatabasecommit.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msigetsummaryinformation.asp

The Python Library Reference, Release 3.5.7

View.GetColumnInfo(kind)
Return a record describing the columns of the view, through calling MsiViewGetColumnInfo(). kind
can be either MSICOLINFO_NAMES or MSICOLINFO_TYPES.

View.Fetch()
Return a result record of the query, through calling MsiViewFetch().

View.Modify(kind, data)
Modify the view, by calling MsiViewModify(). kind can be one of MSIMODIFY_SEEK, MSIMOD-
IFY_REFRESH, MSIMODIFY_INSERT, MSIMODIFY_UPDATE, MSIMODIFY_ASSIGN,
MSIMODIFY_REPLACE, MSIMODIFY_MERGE, MSIMODIFY_DELETE, MSIMOD-
IFY_INSERT_TEMPORARY, MSIMODIFY_VALIDATE, MSIMODIFY_VALIDATE_NEW,
MSIMODIFY_VALIDATE_FIELD, or MSIMODIFY_VALIDATE_DELETE.

data must be a record describing the new data.

View.Close()
Close the view, through MsiViewClose().

See also:

MsiViewExecute MSIViewGetColumnInfo MsiViewFetch MsiViewModify MsiViewClose

34.1.3 Summary Information Objects

SummaryInformation.GetProperty(field)
Return a property of the summary, through MsiSummaryInfoGetProperty(). field is the
name of the property, and can be one of the constants PID_CODEPAGE, PID_TITLE,
PID_SUBJECT, PID_AUTHOR, PID_KEYWORDS, PID_COMMENTS, PID_TEMPLATE,
PID_LASTAUTHOR, PID_REVNUMBER, PID_LASTPRINTED, PID_CREATE_DTM,
PID_LASTSAVE_DTM, PID_PAGECOUNT, PID_WORDCOUNT, PID_CHARCOUNT,
PID_APPNAME, or PID_SECURITY.

SummaryInformation.GetPropertyCount()
Return the number of summary properties, through MsiSummaryInfoGetPropertyCount().

SummaryInformation.SetProperty(field, value)
Set a property through MsiSummaryInfoSetProperty(). field can have the same values as in GetProp-
erty(), value is the new value of the property. Possible value types are integer and string.

SummaryInformation.Persist()
Write the modified properties to the summary information stream, using MsiSummaryInfoPersist().

See also:

MsiSummaryInfoGetProperty MsiSummaryInfoGetPropertyCount MsiSummaryInfoSetProperty MsiSum-
maryInfoPersist

34.1.4 Record Objects

Record.GetFieldCount()
Return the number of fields of the record, through MsiRecordGetFieldCount().

Record.GetInteger(field)
Return the value of field as an integer where possible. field must be an integer.

Record.GetString(field)
Return the value of field as a string where possible. field must be an integer.

34.1. msilib — Read and write Microsoft Installer files 1691

https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msiviewexecute.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msiviewgetcolumninfo.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msiviewfetch.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msiviewmodify.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msiviewclose.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msisummaryinfogetproperty.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msisummaryinfogetpropertycount.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msisummaryinfosetproperty.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msisummaryinfopersist.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msisummaryinfopersist.asp

The Python Library Reference, Release 3.5.7

Record.SetString(field, value)
Set field to value through MsiRecordSetString(). field must be an integer; value a string.

Record.SetStream(field, value)
Set field to the contents of the file named value, through MsiRecordSetStream(). field must be an
integer; value a string.

Record.SetInteger(field, value)
Set field to value through MsiRecordSetInteger(). Both field and value must be an integer.

Record.ClearData()
Set all fields of the record to 0, through MsiRecordClearData().

See also:

MsiRecordGetFieldCount MsiRecordSetString MsiRecordSetStream MsiRecordSetInteger MsiRecordClear

34.1.5 Errors

All wrappers around MSI functions raise MsiError; the string inside the exception will contain more detail.

34.1.6 CAB Objects

class msilib.CAB(name)
The class CAB represents a CAB file. During MSI construction, files will be added simultaneously to
the Files table, and to a CAB file. Then, when all files have been added, the CAB file can be written,
then added to the MSI file.

name is the name of the CAB file in the MSI file.

append(full, file, logical)
Add the file with the pathname full to the CAB file, under the name logical. If there is already a
file named logical, a new file name is created.

Return the index of the file in the CAB file, and the new name of the file inside the CAB file.

commit(database)
Generate a CAB file, add it as a stream to the MSI file, put it into the Media table, and remove
the generated file from the disk.

34.1.7 Directory Objects

class msilib.Directory(database, cab, basedir, physical, logical, default[, componentflags])
Create a new directory in the Directory table. There is a current component at each point in time for
the directory, which is either explicitly created through start_component(), or implicitly when files
are added for the first time. Files are added into the current component, and into the cab file. To
create a directory, a base directory object needs to be specified (can be None), the path to the physical
directory, and a logical directory name. default specifies the DefaultDir slot in the directory table.
componentflags specifies the default flags that new components get.

start_component(component=None, feature=None, flags=None, keyfile=None, uuid=None)
Add an entry to the Component table, and make this component the current component for this
directory. If no component name is given, the directory name is used. If no feature is given, the
current feature is used. If no flags are given, the directory’s default flags are used. If no keyfile is
given, the KeyPath is left null in the Component table.

1692 Chapter 34. MS Windows Specific Services

https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msirecordgetfieldcount.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msirecordsetstring.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msirecordsetstream.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msirecordsetinteger.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/msirecordclear.asp

The Python Library Reference, Release 3.5.7

add_file(file, src=None, version=None, language=None)
Add a file to the current component of the directory, starting a new one if there is no current
component. By default, the file name in the source and the file table will be identical. If the
src file is specified, it is interpreted relative to the current directory. Optionally, a version and a
language can be specified for the entry in the File table.

glob(pattern, exclude=None)
Add a list of files to the current component as specified in the glob pattern. Individual files can
be excluded in the exclude list.

remove_pyc()
Remove .pyc/.pyo files on uninstall.

See also:

Directory Table File Table Component Table FeatureComponents Table

34.1.8 Features

class msilib.Feature(db, id, title, desc, display, level=1, parent=None, directory=None, attributes=0)
Add a new record to the Feature table, using the values id, parent.id, title, desc, display, level, directory,
and attributes. The resulting feature object can be passed to the start_component() method of
Directory.

set_current()
Make this feature the current feature of msilib. New components are automatically added to the
default feature, unless a feature is explicitly specified.

See also:

Feature Table

34.1.9 GUI classes

msilib provides several classes that wrap the GUI tables in an MSI database. However, no standard user
interface is provided; use bdist_msi to create MSI files with a user-interface for installing Python packages.

class msilib.Control(dlg, name)
Base class of the dialog controls. dlg is the dialog object the control belongs to, and name is the
control’s name.

event(event, argument, condition=1, ordering=None)
Make an entry into the ControlEvent table for this control.

mapping(event, attribute)
Make an entry into the EventMapping table for this control.

condition(action, condition)
Make an entry into the ControlCondition table for this control.

class msilib.RadioButtonGroup(dlg, name, property)
Create a radio button control named name. property is the installer property that gets set when a
radio button is selected.

add(name, x, y, width, height, text, value=None)
Add a radio button named name to the group, at the coordinates x, y, width, height, and with
the label text. If value is None, it defaults to name.

34.1. msilib — Read and write Microsoft Installer files 1693

https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/directory_table.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/file_table.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/component_table.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/featurecomponents_table.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/feature_table.asp

The Python Library Reference, Release 3.5.7

class msilib.Dialog(db, name, x, y, w, h, attr, title, first, default, cancel)
Return a new Dialog object. An entry in the Dialog table is made, with the specified coordinates,
dialog attributes, title, name of the first, default, and cancel controls.

control(name, type, x, y, width, height, attributes, property, text, control_next, help)
Return a new Control object. An entry in the Control table is made with the specified parameters.

This is a generic method; for specific types, specialized methods are provided.

text(name, x, y, width, height, attributes, text)
Add and return a Text control.

bitmap(name, x, y, width, height, text)
Add and return a Bitmap control.

line(name, x, y, width, height)
Add and return a Line control.

pushbutton(name, x, y, width, height, attributes, text, next_control)
Add and return a PushButton control.

radiogroup(name, x, y, width, height, attributes, property, text, next_control)
Add and return a RadioButtonGroup control.

checkbox(name, x, y, width, height, attributes, property, text, next_control)
Add and return a CheckBox control.

See also:

Dialog Table Control Table Control Types ControlCondition Table ControlEvent Table EventMapping Table
RadioButton Table

34.1.10 Precomputed tables

msilib provides a few subpackages that contain only schema and table definitions. Currently, these definitions
are based on MSI version 2.0.

msilib.schema
This is the standard MSI schema for MSI 2.0, with the tables variable providing a list of table definitions,
and _Validation_records providing the data for MSI validation.

msilib.sequence
This module contains table contents for the standard sequence tables: AdminExecuteSequence, Ad-
minUISequence, AdvtExecuteSequence, InstallExecuteSequence, and InstallUISequence.

msilib.text
This module contains definitions for the UIText and ActionText tables, for the standard installer
actions.

34.2 msvcrt — Useful routines from the MS VC++ runtime

These functions provide access to some useful capabilities on Windows platforms. Some higher-level modules
use these functions to build the Windows implementations of their services. For example, the getpass module
uses this in the implementation of the getpass() function.

Further documentation on these functions can be found in the Platform API documentation.

1694 Chapter 34. MS Windows Specific Services

https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/dialog_table.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/control_table.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/controls.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/controlcondition_table.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/controlevent_table.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/eventmapping_table.asp
https://msdn.microsoft.com/library?url=/library/en-us/msi/setup/radiobutton_table.asp

The Python Library Reference, Release 3.5.7

The module implements both the normal and wide char variants of the console I/O api. The normal API
deals only with ASCII characters and is of limited use for internationalized applications. The wide char API
should be used where ever possible.

Changed in version 3.3: Operations in this module now raise OSError where IOError was raised.

34.2.1 File Operations

msvcrt.locking(fd, mode, nbytes)
Lock part of a file based on file descriptor fd from the C runtime. Raises OSError on failure. The locked
region of the file extends from the current file position for nbytes bytes, and may continue beyond the
end of the file. mode must be one of the LK_* constants listed below. Multiple regions in a file may
be locked at the same time, but may not overlap. Adjacent regions are not merged; they must be
unlocked individually.

msvcrt.LK_LOCK
msvcrt.LK_RLCK

Locks the specified bytes. If the bytes cannot be locked, the program immediately tries again after 1
second. If, after 10 attempts, the bytes cannot be locked, OSError is raised.

msvcrt.LK_NBLCK
msvcrt.LK_NBRLCK

Locks the specified bytes. If the bytes cannot be locked, OSError is raised.

msvcrt.LK_UNLCK
Unlocks the specified bytes, which must have been previously locked.

msvcrt.setmode(fd, flags)
Set the line-end translation mode for the file descriptor fd. To set it to text mode, flags should be
os.O_TEXT; for binary, it should be os.O_BINARY.

msvcrt.open_osfhandle(handle, flags)
Create a C runtime file descriptor from the file handle handle. The flags parameter should be a bitwise
OR of os.O_APPEND, os.O_RDONLY, and os.O_TEXT. The returned file descriptor may be used
as a parameter to os.fdopen() to create a file object.

msvcrt.get_osfhandle(fd)
Return the file handle for the file descriptor fd. Raises OSError if fd is not recognized.

34.2.2 Console I/O

msvcrt.kbhit()
Return true if a keypress is waiting to be read.

msvcrt.getch()
Read a keypress and return the resulting character as a byte string. Nothing is echoed to the console.
This call will block if a keypress is not already available, but will not wait for Enter to be pressed. If
the pressed key was a special function key, this will return '\000' or '\xe0'; the next call will return
the keycode. The Control-C keypress cannot be read with this function.

msvcrt.getwch()
Wide char variant of getch(), returning a Unicode value.

msvcrt.getche()
Similar to getch(), but the keypress will be echoed if it represents a printable character.

msvcrt.getwche()
Wide char variant of getche(), returning a Unicode value.

34.2. msvcrt — Useful routines from the MS VC++ runtime 1695

The Python Library Reference, Release 3.5.7

msvcrt.putch(char)
Print the byte string char to the console without buffering.

msvcrt.putwch(unicode_char)
Wide char variant of putch(), accepting a Unicode value.

msvcrt.ungetch(char)
Cause the byte string char to be “pushed back” into the console buffer; it will be the next character
read by getch() or getche().

msvcrt.ungetwch(unicode_char)
Wide char variant of ungetch(), accepting a Unicode value.

34.2.3 Other Functions

msvcrt.heapmin()
Force the malloc() heap to clean itself up and return unused blocks to the operating system. On failure,
this raises OSError.

34.3 winreg — Windows registry access

These functions expose the Windows registry API to Python. Instead of using an integer as the registry
handle, a handle object is used to ensure that the handles are closed correctly, even if the programmer
neglects to explicitly close them.

Changed in version 3.3: Several functions in this module used to raise a WindowsError, which is now an
alias of OSError.

34.3.1 Functions

This module offers the following functions:

winreg.CloseKey(hkey)
Closes a previously opened registry key. The hkey argument specifies a previously opened key.

Note: If hkey is not closed using this method (or via hkey.Close()), it is closed when the hkey object
is destroyed by Python.

winreg.ConnectRegistry(computer_name, key)
Establishes a connection to a predefined registry handle on another computer, and returns a handle
object.

computer_name is the name of the remote computer, of the form r"\\computername". If None, the
local computer is used.

key is the predefined handle to connect to.

The return value is the handle of the opened key. If the function fails, an OSError exception is raised.

Changed in version 3.3: See above.

1696 Chapter 34. MS Windows Specific Services

The Python Library Reference, Release 3.5.7

winreg.CreateKey(key, sub_key)
Creates or opens the specified key, returning a handle object.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that names the key this method opens or creates.

If key is one of the predefined keys, sub_key may be None. In that case, the handle returned is the
same key handle passed in to the function.

If the key already exists, this function opens the existing key.

The return value is the handle of the opened key. If the function fails, an OSError exception is raised.

Changed in version 3.3: See above.

winreg.CreateKeyEx(key, sub_key, reserved=0, access=KEY_WRITE)
Creates or opens the specified key, returning a handle object.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that names the key this method opens or creates.

reserved is a reserved integer, and must be zero. The default is zero.

access is an integer that specifies an access mask that describes the desired security access for the key.
Default is KEY_WRITE. See Access Rights for other allowed values.

If key is one of the predefined keys, sub_key may be None. In that case, the handle returned is the
same key handle passed in to the function.

If the key already exists, this function opens the existing key.

The return value is the handle of the opened key. If the function fails, an OSError exception is raised.

New in version 3.2.

Changed in version 3.3: See above.

winreg.DeleteKey(key, sub_key)
Deletes the specified key.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that must be a subkey of the key identified by the key parameter. This value must
not be None, and the key may not have subkeys.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is removed. If the method fails, an
OSError exception is raised.

Changed in version 3.3: See above.

winreg.DeleteKeyEx(key, sub_key, access=KEY_WOW64_64KEY, reserved=0)
Deletes the specified key.

Note: The DeleteKeyEx() function is implemented with the RegDeleteKeyEx Windows API function,
which is specific to 64-bit versions of Windows. See the RegDeleteKeyEx documentation.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that must be a subkey of the key identified by the key parameter. This value must
not be None, and the key may not have subkeys.

34.3. winreg — Windows registry access 1697

https://msdn.microsoft.com/en-us/library/ms724847%28VS.85%29.aspx

The Python Library Reference, Release 3.5.7

reserved is a reserved integer, and must be zero. The default is zero.

access is an integer that specifies an access mask that describes the desired security access for the key.
Default is KEY_WOW64_64KEY. See Access Rights for other allowed values.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is removed. If the method fails, an
OSError exception is raised.

On unsupported Windows versions, NotImplementedError is raised.

New in version 3.2.

Changed in version 3.3: See above.

winreg.DeleteValue(key, value)
Removes a named value from a registry key.

key is an already open key, or one of the predefined HKEY_* constants.

value is a string that identifies the value to remove.

winreg.EnumKey(key, index)
Enumerates subkeys of an open registry key, returning a string.

key is an already open key, or one of the predefined HKEY_* constants.

index is an integer that identifies the index of the key to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly
until an OSError exception is raised, indicating, no more values are available.

Changed in version 3.3: See above.

winreg.EnumValue(key, index)
Enumerates values of an open registry key, returning a tuple.

key is an already open key, or one of the predefined HKEY_* constants.

index is an integer that identifies the index of the value to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly,
until an OSError exception is raised, indicating no more values.

The result is a tuple of 3 items:

In-
dex

Meaning

0 A string that identifies the value name
1 An object that holds the value data, and whose type depends on the underlying registry

type
2 An integer that identifies the type of the value data (see table in docs for SetValueEx())

Changed in version 3.3: See above.

winreg.ExpandEnvironmentStrings(str)
Expands environment variable placeholders %NAME% in strings like REG_EXPAND_SZ:

>>> ExpandEnvironmentStrings('%windir%')
'C:\\Windows'

1698 Chapter 34. MS Windows Specific Services

The Python Library Reference, Release 3.5.7

winreg.FlushKey(key)
Writes all the attributes of a key to the registry.

key is an already open key, or one of the predefined HKEY_* constants.

It is not necessary to call FlushKey() to change a key. Registry changes are flushed to disk by the
registry using its lazy flusher. Registry changes are also flushed to disk at system shutdown. Unlike
CloseKey(), the FlushKey() method returns only when all the data has been written to the registry.
An application should only call FlushKey() if it requires absolute certainty that registry changes are
on disk.

Note: If you don’t know whether a FlushKey() call is required, it probably isn’t.

winreg.LoadKey(key, sub_key, file_name)
Creates a subkey under the specified key and stores registration information from a specified file into
that subkey.

key is a handle returned by ConnectRegistry() or one of the constants HKEY_USERS or
HKEY_LOCAL_MACHINE.

sub_key is a string that identifies the subkey to load.

file_name is the name of the file to load registry data from. This file must have been created with the
SaveKey() function. Under the file allocation table (FAT) file system, the filename may not have an
extension.

A call to LoadKey() fails if the calling process does not have the SE_RESTORE_PRIVILEGE priv-
ilege. Note that privileges are different from permissions – see the RegLoadKey documentation for
more details.

If key is a handle returned by ConnectRegistry(), then the path specified in file_name is relative to
the remote computer.

winreg.OpenKey(key, sub_key, reserved=0, access=KEY_READ)
winreg.OpenKeyEx(key, sub_key, reserved=0, access=KEY_READ)

Opens the specified key, returning a handle object.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that identifies the sub_key to open.

reserved is a reserved integer, and must be zero. The default is zero.

access is an integer that specifies an access mask that describes the desired security access for the key.
Default is KEY_READ. See Access Rights for other allowed values.

The result is a new handle to the specified key.

If the function fails, OSError is raised.

Changed in version 3.2: Allow the use of named arguments.

Changed in version 3.3: See above.

winreg.QueryInfoKey(key)
Returns information about a key, as a tuple.

key is an already open key, or one of the predefined HKEY_* constants.

The result is a tuple of 3 items:

34.3. winreg — Windows registry access 1699

https://msdn.microsoft.com/en-us/library/ms724889%28v=VS.85%29.aspx

The Python Library Reference, Release 3.5.7

In-
dex

Meaning

0 An integer giving the number of sub keys this key has.
1 An integer giving the number of values this key has.
2 An integer giving when the key was last modified (if available) as 100’s of nanoseconds since

Jan 1, 1601.

winreg.QueryValue(key, sub_key)
Retrieves the unnamed value for a key, as a string.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that holds the name of the subkey with which the value is associated. If this
parameter is None or empty, the function retrieves the value set by the SetValue() method for the key
identified by key.

Values in the registry have name, type, and data components. This method retrieves the data for a
key’s first value that has a NULL name. But the underlying API call doesn’t return the type, so always
use QueryValueEx() if possible.

winreg.QueryValueEx(key, value_name)
Retrieves the type and data for a specified value name associated with an open registry key.

key is an already open key, or one of the predefined HKEY_* constants.

value_name is a string indicating the value to query.

The result is a tuple of 2 items:

Index Meaning
0 The value of the registry item.
1 An integer giving the registry type for this value (see table in docs for SetValueEx())

winreg.SaveKey(key, file_name)
Saves the specified key, and all its subkeys to the specified file.

key is an already open key, or one of the predefined HKEY_* constants.

file_name is the name of the file to save registry data to. This file cannot already exist. If this filename
includes an extension, it cannot be used on file allocation table (FAT) file systems by the LoadKey()
method.

If key represents a key on a remote computer, the path described by file_name is relative to the remote
computer. The caller of this method must possess the SeBackupPrivilege security privilege. Note that
privileges are different than permissions – see the Conflicts Between User Rights and Permissions
documentation for more details.

This function passes NULL for security_attributes to the API.

winreg.SetValue(key, sub_key, type, value)
Associates a value with a specified key.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that names the subkey with which the value is associated.

type is an integer that specifies the type of the data. Currently this must be REG_SZ, meaning only
strings are supported. Use the SetValueEx() function for support for other data types.

value is a string that specifies the new value.

1700 Chapter 34. MS Windows Specific Services

https://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx
https://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx

The Python Library Reference, Release 3.5.7

If the key specified by the sub_key parameter does not exist, the SetValue function creates it.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as
files with the filenames stored in the configuration registry. This helps the registry perform efficiently.

The key identified by the key parameter must have been opened with KEY_SET_VALUE access.

winreg.SetValueEx(key, value_name, reserved, type, value)
Stores data in the value field of an open registry key.

key is an already open key, or one of the predefined HKEY_* constants.

value_name is a string that names the subkey with which the value is associated.

reserved can be anything – zero is always passed to the API.

type is an integer that specifies the type of the data. See Value Types for the available types.

value is a string that specifies the new value.

This method can also set additional value and type information for the specified key. The key identified
by the key parameter must have been opened with KEY_SET_VALUE access.

To open the key, use the CreateKey() or OpenKey() methods.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as
files with the filenames stored in the configuration registry. This helps the registry perform efficiently.

winreg.DisableReflectionKey(key)
Disables registry reflection for 32-bit processes running on a 64-bit operating system.

key is an already open key, or one of the predefined HKEY_* constants.

Will generally raise NotImplemented if executed on a 32-bit operating system.

If the key is not on the reflection list, the function succeeds but has no effect. Disabling reflection for
a key does not affect reflection of any subkeys.

winreg.EnableReflectionKey(key)
Restores registry reflection for the specified disabled key.

key is an already open key, or one of the predefined HKEY_* constants.

Will generally raise NotImplemented if executed on a 32-bit operating system.

Restoring reflection for a key does not affect reflection of any subkeys.

winreg.QueryReflectionKey(key)
Determines the reflection state for the specified key.

key is an already open key, or one of the predefined HKEY_* constants.

Returns True if reflection is disabled.

Will generally raise NotImplemented if executed on a 32-bit operating system.

34.3.2 Constants

The following constants are defined for use in many _winreg functions.

34.3. winreg — Windows registry access 1701

The Python Library Reference, Release 3.5.7

HKEY_* Constants

winreg.HKEY_CLASSES_ROOT
Registry entries subordinate to this key define types (or classes) of documents and the properties
associated with those types. Shell and COM applications use the information stored under this key.

winreg.HKEY_CURRENT_USER
Registry entries subordinate to this key define the preferences of the current user. These preferences
include the settings of environment variables, data about program groups, colors, printers, network
connections, and application preferences.

winreg.HKEY_LOCAL_MACHINE
Registry entries subordinate to this key define the physical state of the computer, including data about
the bus type, system memory, and installed hardware and software.

winreg.HKEY_USERS
Registry entries subordinate to this key define the default user configuration for new users on the local
computer and the user configuration for the current user.

winreg.HKEY_PERFORMANCE_DATA
Registry entries subordinate to this key allow you to access performance data. The data is not actually
stored in the registry; the registry functions cause the system to collect the data from its source.

winreg.HKEY_CURRENT_CONFIG
Contains information about the current hardware profile of the local computer system.

winreg.HKEY_DYN_DATA
This key is not used in versions of Windows after 98.

Access Rights

For more information, see Registry Key Security and Access.

winreg.KEY_ALL_ACCESS
Combines the STANDARD_RIGHTS_REQUIRED, KEY_QUERY_VALUE, KEY_SET_VALUE,
KEY_CREATE_SUB_KEY, KEY_ENUMERATE_SUB_KEYS, KEY_NOTIFY, and
KEY_CREATE_LINK access rights.

winreg.KEY_WRITE
Combines the STANDARD_RIGHTS_WRITE, KEY_SET_VALUE, and
KEY_CREATE_SUB_KEY access rights.

winreg.KEY_READ
Combines the STANDARD_RIGHTS_READ, KEY_QUERY_VALUE,
KEY_ENUMERATE_SUB_KEYS, and KEY_NOTIFY values.

winreg.KEY_EXECUTE
Equivalent to KEY_READ.

winreg.KEY_QUERY_VALUE
Required to query the values of a registry key.

winreg.KEY_SET_VALUE
Required to create, delete, or set a registry value.

winreg.KEY_CREATE_SUB_KEY
Required to create a subkey of a registry key.

winreg.KEY_ENUMERATE_SUB_KEYS
Required to enumerate the subkeys of a registry key.

1702 Chapter 34. MS Windows Specific Services

https://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx

The Python Library Reference, Release 3.5.7

winreg.KEY_NOTIFY
Required to request change notifications for a registry key or for subkeys of a registry key.

winreg.KEY_CREATE_LINK
Reserved for system use.

64-bit Specific

For more information, see Accessing an Alternate Registry View.

winreg.KEY_WOW64_64KEY
Indicates that an application on 64-bit Windows should operate on the 64-bit registry view.

winreg.KEY_WOW64_32KEY
Indicates that an application on 64-bit Windows should operate on the 32-bit registry view.

Value Types

For more information, see Registry Value Types.

winreg.REG_BINARY
Binary data in any form.

winreg.REG_DWORD
32-bit number.

winreg.REG_DWORD_LITTLE_ENDIAN
A 32-bit number in little-endian format.

winreg.REG_DWORD_BIG_ENDIAN
A 32-bit number in big-endian format.

winreg.REG_EXPAND_SZ
Null-terminated string containing references to environment variables (%PATH%).

winreg.REG_LINK
A Unicode symbolic link.

winreg.REG_MULTI_SZ
A sequence of null-terminated strings, terminated by two null characters. (Python handles this termi-
nation automatically.)

winreg.REG_NONE
No defined value type.

winreg.REG_RESOURCE_LIST
A device-driver resource list.

winreg.REG_FULL_RESOURCE_DESCRIPTOR
A hardware setting.

winreg.REG_RESOURCE_REQUIREMENTS_LIST
A hardware resource list.

winreg.REG_SZ
A null-terminated string.

34.3. winreg — Windows registry access 1703

https://msdn.microsoft.com/en-us/library/aa384129(v=VS.85).aspx
https://msdn.microsoft.com/en-us/library/ms724884%28v=VS.85%29.aspx

The Python Library Reference, Release 3.5.7

34.3.3 Registry Handle Objects

This object wraps a Windows HKEY object, automatically closing it when the object is destroyed. To
guarantee cleanup, you can call either the Close() method on the object, or the CloseKey() function.

All registry functions in this module return one of these objects.

All registry functions in this module which accept a handle object also accept an integer, however, use of
the handle object is encouraged.

Handle objects provide semantics for __bool__() – thus

if handle:
print("Yes")

will print Yes if the handle is currently valid (has not been closed or detached).

The object also support comparison semantics, so handle objects will compare true if they both reference
the same underlying Windows handle value.

Handle objects can be converted to an integer (e.g., using the built-in int() function), in which case the
underlying Windows handle value is returned. You can also use the Detach() method to return the integer
handle, and also disconnect the Windows handle from the handle object.

PyHKEY.Close()
Closes the underlying Windows handle.

If the handle is already closed, no error is raised.

PyHKEY.Detach()
Detaches the Windows handle from the handle object.

The result is an integer that holds the value of the handle before it is detached. If the handle is already
detached or closed, this will return zero.

After calling this function, the handle is effectively invalidated, but the handle is not closed. You
would call this function when you need the underlying Win32 handle to exist beyond the lifetime of
the handle object.

PyHKEY.__enter__()
PyHKEY.__exit__(*exc_info)

The HKEY object implements __enter__() and __exit__() and thus supports the context protocol
for the with statement:

with OpenKey(HKEY_LOCAL_MACHINE, "foo") as key:
... # work with key

will automatically close key when control leaves the with block.

34.4 winsound — Sound-playing interface for Windows

The winsound module provides access to the basic sound-playing machinery provided by Windows platforms.
It includes functions and several constants.

winsound.Beep(frequency, duration)
Beep the PC’s speaker. The frequency parameter specifies frequency, in hertz, of the sound, and must
be in the range 37 through 32,767. The duration parameter specifies the number of milliseconds the
sound should last. If the system is not able to beep the speaker, RuntimeError is raised.

1704 Chapter 34. MS Windows Specific Services

The Python Library Reference, Release 3.5.7

winsound.PlaySound(sound, flags)
Call the underlying PlaySound() function from the Platform API. The sound parameter may be a
filename, audio data as a string, or None. Its interpretation depends on the value of flags, which can
be a bitwise ORed combination of the constants described below. If the sound parameter is None, any
currently playing waveform sound is stopped. If the system indicates an error, RuntimeError is raised.

winsound.MessageBeep(type=MB_OK)
Call the underlying MessageBeep() function from the Platform API. This plays a sound as spec-
ified in the registry. The type argument specifies which sound to play; possible values are -
1, MB_ICONASTERISK, MB_ICONEXCLAMATION, MB_ICONHAND, MB_ICONQUESTION,
and MB_OK, all described below. The value -1 produces a “simple beep”; this is the final fallback if
a sound cannot be played otherwise.

winsound.SND_FILENAME
The sound parameter is the name of a WAV file. Do not use with SND_ALIAS.

winsound.SND_ALIAS
The sound parameter is a sound association name from the registry. If the registry contains no such
name, play the system default sound unless SND_NODEFAULT is also specified. If no default sound
is registered, raise RuntimeError. Do not use with SND_FILENAME.

All Win32 systems support at least the following; most systems support many more:

PlaySound() name Corresponding Control Panel Sound name
'SystemAsterisk' Asterisk
'SystemExclamation' Exclamation
'SystemExit' Exit Windows
'SystemHand' Critical Stop
'SystemQuestion' Question

For example:

import winsound
Play Windows exit sound.
winsound.PlaySound("SystemExit", winsound.SND_ALIAS)

Probably play Windows default sound, if any is registered (because
"*" probably isn't the registered name of any sound).
winsound.PlaySound("*", winsound.SND_ALIAS)

winsound.SND_LOOP
Play the sound repeatedly. The SND_ASYNC flag must also be used to avoid blocking. Cannot be
used with SND_MEMORY.

winsound.SND_MEMORY
The sound parameter to PlaySound() is a memory image of a WAV file, as a string.

Note: This module does not support playing from a memory image asynchronously, so a combination
of this flag and SND_ASYNC will raise RuntimeError.

winsound.SND_PURGE
Stop playing all instances of the specified sound.

Note: This flag is not supported on modern Windows platforms.

34.4. winsound — Sound-playing interface for Windows 1705

The Python Library Reference, Release 3.5.7

winsound.SND_ASYNC
Return immediately, allowing sounds to play asynchronously.

winsound.SND_NODEFAULT
If the specified sound cannot be found, do not play the system default sound.

winsound.SND_NOSTOP
Do not interrupt sounds currently playing.

winsound.SND_NOWAIT
Return immediately if the sound driver is busy.

Note: This flag is not supported on modern Windows platforms.

winsound.MB_ICONASTERISK
Play the SystemDefault sound.

winsound.MB_ICONEXCLAMATION
Play the SystemExclamation sound.

winsound.MB_ICONHAND
Play the SystemHand sound.

winsound.MB_ICONQUESTION
Play the SystemQuestion sound.

winsound.MB_OK
Play the SystemDefault sound.

1706 Chapter 34. MS Windows Specific Services

CHAPTER

THIRTYFIVE

UNIX SPECIFIC SERVICES

The modules described in this chapter provide interfaces to features that are unique to the Unix operating
system, or in some cases to some or many variants of it. Here’s an overview:

35.1 posix — The most common POSIX system calls

This module provides access to operating system functionality that is standardized by the C Standard and
the POSIX standard (a thinly disguised Unix interface).

Do not import this module directly. Instead, import the module os, which provides a portable version of
this interface. On Unix, the os module provides a superset of the posix interface. On non-Unix operating
systems the posix module is not available, but a subset is always available through the os interface. Once
os is imported, there is no performance penalty in using it instead of posix. In addition, os provides some
additional functionality, such as automatically calling putenv() when an entry in os.environ is changed.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by
the system calls raise OSError.

35.1.1 Large File Support

Several operating systems (including AIX, HP-UX, Irix and Solaris) provide support for files that are larger
than 2 GiB from a C programming model where int and long are 32-bit values. This is typically accomplished
by defining the relevant size and offset types as 64-bit values. Such files are sometimes referred to as large
files.

Large file support is enabled in Python when the size of an off_t is larger than a long and the long long
type is available and is at least as large as an off_t. It may be necessary to configure and compile Python
with certain compiler flags to enable this mode. For example, it is enabled by default with recent versions
of Irix, but with Solaris 2.6 and 2.7 you need to do something like:

CFLAGS="`getconf LFS_CFLAGS`" OPT="-g -O2 $CFLAGS" \
./configure

On large-file-capable Linux systems, this might work:

CFLAGS='-D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64' OPT="-g -O2 $CFLAGS" \
./configure

1707

The Python Library Reference, Release 3.5.7

35.1.2 Notable Module Contents

In addition to many functions described in the os module documentation, posix defines the following data
item:

posix.environ
A dictionary representing the string environment at the time the interpreter was started. Keys and
values are bytes on Unix and str on Windows. For example, environ[b'HOME'] (environ['HOME']
on Windows) is the pathname of your home directory, equivalent to getenv("HOME") in C.

Modifying this dictionary does not affect the string environment passed on by execv(), popen() or
system(); if you need to change the environment, pass environ to execve() or add variable assignments
and export statements to the command string for system() or popen().

Changed in version 3.2: On Unix, keys and values are bytes.

Note: The os module provides an alternate implementation of environ which updates the environment
on modification. Note also that updating os.environ will render this dictionary obsolete. Use of the os
module version of this is recommended over direct access to the posix module.

35.2 pwd — The password database

This module provides access to the Unix user account and password database. It is available on all Unix
versions.

Password database entries are reported as a tuple-like object, whose attributes correspond to the members
of the passwd structure (Attribute field below, see <pwd.h>):

Index Attribute Meaning
0 pw_name Login name
1 pw_passwd Optional encrypted password
2 pw_uid Numerical user ID
3 pw_gid Numerical group ID
4 pw_gecos User name or comment field
5 pw_dir User home directory
6 pw_shell User command interpreter

The uid and gid items are integers, all others are strings. KeyError is raised if the entry asked for cannot
be found.

Note: In traditional Unix the field pw_passwd usually contains a password encrypted with a DES derived
algorithm (see module crypt). However most modern unices use a so-called shadow password system. On
those unices the pw_passwd field only contains an asterisk ('*') or the letter 'x' where the encrypted
password is stored in a file /etc/shadow which is not world readable. Whether the pw_passwd field contains
anything useful is system-dependent. If available, the spwd module should be used where access to the
encrypted password is required.

It defines the following items:

1708 Chapter 35. Unix Specific Services

The Python Library Reference, Release 3.5.7

pwd.getpwuid(uid)
Return the password database entry for the given numeric user ID.

pwd.getpwnam(name)
Return the password database entry for the given user name.

pwd.getpwall()
Return a list of all available password database entries, in arbitrary order.

See also:

Module grp An interface to the group database, similar to this.

Module spwd An interface to the shadow password database, similar to this.

35.3 spwd — The shadow password database

This module provides access to the Unix shadow password database. It is available on various Unix versions.

You must have enough privileges to access the shadow password database (this usually means you have to
be root).

Shadow password database entries are reported as a tuple-like object, whose attributes correspond to the
members of the spwd structure (Attribute field below, see <shadow.h>):

Index Attribute Meaning
0 sp_namp Login name
1 sp_pwdp Encrypted password
2 sp_lstchg Date of last change
3 sp_min Minimal number of days between changes
4 sp_max Maximum number of days between changes
5 sp_warn Number of days before password expires to warn user about it
6 sp_inact Number of days after password expires until account is disabled
7 sp_expire Number of days since 1970-01-01 when account expires
8 sp_flag Reserved

The sp_namp and sp_pwdp items are strings, all others are integers. KeyError is raised if the entry asked
for cannot be found.

The following functions are defined:

spwd.getspnam(name)
Return the shadow password database entry for the given user name.

spwd.getspall()
Return a list of all available shadow password database entries, in arbitrary order.

See also:

Module grp An interface to the group database, similar to this.

Module pwd An interface to the normal password database, similar to this.

35.3. spwd — The shadow password database 1709

The Python Library Reference, Release 3.5.7

35.4 grp — The group database

This module provides access to the Unix group database. It is available on all Unix versions.

Group database entries are reported as a tuple-like object, whose attributes correspond to the members of
the group structure (Attribute field below, see <pwd.h>):

Index Attribute Meaning
0 gr_name the name of the group
1 gr_passwd the (encrypted) group password; often empty
2 gr_gid the numerical group ID
3 gr_mem all the group member’s user names

The gid is an integer, name and password are strings, and the member list is a list of strings. (Note that
most users are not explicitly listed as members of the group they are in according to the password database.
Check both databases to get complete membership information. Also note that a gr_name that starts with
a + or - is likely to be a YP/NIS reference and may not be accessible via getgrnam() or getgrgid().)

It defines the following items:

grp.getgrgid(gid)
Return the group database entry for the given numeric group ID. KeyError is raised if the entry asked
for cannot be found.

grp.getgrnam(name)
Return the group database entry for the given group name. KeyError is raised if the entry asked for
cannot be found.

grp.getgrall()
Return a list of all available group entries, in arbitrary order.

See also:

Module pwd An interface to the user database, similar to this.

Module spwd An interface to the shadow password database, similar to this.

35.5 crypt — Function to check Unix passwords

Source code: Lib/crypt.py

This module implements an interface to the crypt(3) routine, which is a one-way hash function based upon
a modified DES algorithm; see the Unix man page for further details. Possible uses include storing hashed
passwords so you can check passwords without storing the actual password, or attempting to crack Unix
passwords with a dictionary.

Notice that the behavior of this module depends on the actual implementation of the crypt(3) routine in the
running system. Therefore, any extensions available on the current implementation will also be available on
this module.

1710 Chapter 35. Unix Specific Services

https://github.com/python/cpython/tree/3.5/Lib/crypt.py

The Python Library Reference, Release 3.5.7

35.5.1 Hashing Methods

New in version 3.3.

The crypt module defines the list of hashing methods (not all methods are available on all platforms):

crypt.METHOD_SHA512
A Modular Crypt Format method with 16 character salt and 86 character hash. This is the strongest
method.

crypt.METHOD_SHA256
Another Modular Crypt Format method with 16 character salt and 43 character hash.

crypt.METHOD_MD5
Another Modular Crypt Format method with 8 character salt and 22 character hash.

crypt.METHOD_CRYPT
The traditional method with a 2 character salt and 13 characters of hash. This is the weakest method.

35.5.2 Module Attributes

New in version 3.3.

crypt.methods
A list of available password hashing algorithms, as crypt.METHOD_* objects. This list is sorted from
strongest to weakest, and is guaranteed to have at least crypt.METHOD_CRYPT.

35.5.3 Module Functions

The crypt module defines the following functions:

crypt.crypt(word, salt=None)
word will usually be a user’s password as typed at a prompt or in a graphical interface. The optional
salt is either a string as returned from mksalt(), one of the crypt.METHOD_* values (though not all
may be available on all platforms), or a full encrypted password including salt, as returned by this
function. If salt is not provided, the strongest method will be used (as returned by methods().

Checking a password is usually done by passing the plain-text password as word and the full results of
a previous crypt() call, which should be the same as the results of this call.

salt (either a random 2 or 16 character string, possibly prefixed with $digit$ to indicate the method)
which will be used to perturb the encryption algorithm. The characters in salt must be in the set
[./a-zA-Z0-9], with the exception of Modular Crypt Format which prefixes a $digit$.

Returns the hashed password as a string, which will be composed of characters from the same alphabet
as the salt.

Since a few crypt(3) extensions allow different values, with different sizes in the salt, it is recommended
to use the full crypted password as salt when checking for a password.

Changed in version 3.3: Accept crypt.METHOD_* values in addition to strings for salt.

crypt.mksalt(method=None)
Return a randomly generated salt of the specified method. If no method is given, the strongest method
available as returned by methods() is used.

The return value is a string either of 2 characters in length for crypt.METHOD_CRYPT, or 19
characters starting with $digit$ and 16 random characters from the set [./a-zA-Z0-9], suitable for
passing as the salt argument to crypt().

35.5. crypt — Function to check Unix passwords 1711

The Python Library Reference, Release 3.5.7

New in version 3.3.

35.5.4 Examples

A simple example illustrating typical use (a constant-time comparison operation is needed to limit exposure
to timing attacks. hmac.compare_digest() is suitable for this purpose):

import pwd
import crypt
import getpass
from hmac import compare_digest as compare_hash

def login():
username = input('Python login: ')
cryptedpasswd = pwd.getpwnam(username)[1]
if cryptedpasswd:

if cryptedpasswd == 'x' or cryptedpasswd == '*':
raise ValueError('no support for shadow passwords')

cleartext = getpass.getpass()
return compare_hash(crypt.crypt(cleartext, cryptedpasswd), cryptedpasswd)

else:
return True

To generate a hash of a password using the strongest available method and check it against the original:

import crypt
from hmac import compare_digest as compare_hash

hashed = crypt.crypt(plaintext)
if not compare_hash(hashed, crypt.crypt(plaintext, hashed)):

raise ValueError("hashed version doesn't validate against original")

35.6 termios — POSIX style tty control

This module provides an interface to the POSIX calls for tty I/O control. For a complete description of
these calls, see termios(2) Unix manual page. It is only available for those Unix versions that support POSIX
termios style tty I/O control configured during installation.

All functions in this module take a file descriptor fd as their first argument. This can be an integer file
descriptor, such as returned by sys.stdin.fileno(), or a file object, such as sys.stdin itself.

This module also defines all the constants needed to work with the functions provided here; these have the
same name as their counterparts in C. Please refer to your system documentation for more information on
using these terminal control interfaces.

The module defines the following functions:

termios.tcgetattr(fd)
Return a list containing the tty attributes for file descriptor fd, as follows: [iflag, oflag, cflag, lflag,
ispeed, ospeed, cc] where cc is a list of the tty special characters (each a string of length 1, except
the items with indices VMIN and VTIME, which are integers when these fields are defined). The
interpretation of the flags and the speeds as well as the indexing in the cc array must be done using
the symbolic constants defined in the termios module.

1712 Chapter 35. Unix Specific Services

The Python Library Reference, Release 3.5.7

termios.tcsetattr(fd, when, attributes)
Set the tty attributes for file descriptor fd from the attributes, which is a list like the one returned by
tcgetattr(). The when argument determines when the attributes are changed: TCSANOW to change
immediately, TCSADRAIN to change after transmitting all queued output, or TCSAFLUSH to change
after transmitting all queued output and discarding all queued input.

termios.tcsendbreak(fd, duration)
Send a break on file descriptor fd. A zero duration sends a break for 0.25 –0.5 seconds; a nonzero
duration has a system dependent meaning.

termios.tcdrain(fd)
Wait until all output written to file descriptor fd has been transmitted.

termios.tcflush(fd, queue)
Discard queued data on file descriptor fd. The queue selector specifies which queue: TCIFLUSH for
the input queue, TCOFLUSH for the output queue, or TCIOFLUSH for both queues.

termios.tcflow(fd, action)
Suspend or resume input or output on file descriptor fd. The action argument can be TCOOFF to
suspend output, TCOON to restart output, TCIOFF to suspend input, or TCION to restart input.

See also:

Module tty Convenience functions for common terminal control operations.

35.6.1 Example

Here’s a function that prompts for a password with echoing turned off. Note the technique using a separate
tcgetattr() call and a try . . . finally statement to ensure that the old tty attributes are restored exactly no
matter what happens:

def getpass(prompt="Password: "):
import termios, sys
fd = sys.stdin.fileno()
old = termios.tcgetattr(fd)
new = termios.tcgetattr(fd)
new[3] = new[3] & ~termios.ECHO # lflags
try:

termios.tcsetattr(fd, termios.TCSADRAIN, new)
passwd = input(prompt)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old)

return passwd

35.7 tty — Terminal control functions

Source code: Lib/tty.py

The tty module defines functions for putting the tty into cbreak and raw modes.

Because it requires the termios module, it will work only on Unix.

The tty module defines the following functions:

35.7. tty — Terminal control functions 1713

https://github.com/python/cpython/tree/3.5/Lib/tty.py

The Python Library Reference, Release 3.5.7

tty.setraw(fd, when=termios.TCSAFLUSH)
Change the mode of the file descriptor fd to raw. If when is omitted, it defaults to termios.
TCSAFLUSH, and is passed to termios.tcsetattr().

tty.setcbreak(fd, when=termios.TCSAFLUSH)
Change the mode of file descriptor fd to cbreak. If when is omitted, it defaults to termios.TCSAFLUSH,
and is passed to termios.tcsetattr().

See also:

Module termios Low-level terminal control interface.

35.8 pty — Pseudo-terminal utilities

Source code: Lib/pty.py

The pty module defines operations for handling the pseudo-terminal concept: starting another process and
being able to write to and read from its controlling terminal programmatically.

Because pseudo-terminal handling is highly platform dependent, there is code to do it only for Linux. (The
Linux code is supposed to work on other platforms, but hasn’t been tested yet.)

The pty module defines the following functions:

pty.fork()
Fork. Connect the child’s controlling terminal to a pseudo-terminal. Return value is (pid, fd). Note
that the child gets pid 0, and the fd is invalid. The parent’s return value is the pid of the child, and fd
is a file descriptor connected to the child’s controlling terminal (and also to the child’s standard input
and output).

pty.openpty()
Open a new pseudo-terminal pair, using os.openpty() if possible, or emulation code for generic Unix
systems. Return a pair of file descriptors (master, slave), for the master and the slave end, respectively.

pty.spawn(argv[, master_read[, stdin_read]])
Spawn a process, and connect its controlling terminal with the current process’s standard io. This is
often used to baffle programs which insist on reading from the controlling terminal.

The functions master_read and stdin_read should be functions which read from a file descriptor. The
defaults try to read 1024 bytes each time they are called.

Changed in version 3.4: spawn() now returns the status value from os.waitpid() on the child process.

35.8.1 Example

The following program acts like the Unix command script(1), using a pseudo-terminal to record all input
and output of a terminal session in a “typescript”.

import argparse
import os
import pty
import sys
import time

parser = argparse.ArgumentParser()

(continues on next page)

1714 Chapter 35. Unix Specific Services

https://github.com/python/cpython/tree/3.5/Lib/pty.py

The Python Library Reference, Release 3.5.7

(continued from previous page)

parser.add_argument('-a', dest='append', action='store_true')
parser.add_argument('-p', dest='use_python', action='store_true')
parser.add_argument('filename', nargs='?', default='typescript')
options = parser.parse_args()

shell = sys.executable if options.use_python else os.environ.get('SHELL', 'sh')
filename = options.filename
mode = 'ab' if options.append else 'wb'

with open(filename, mode) as script:
def read(fd):

data = os.read(fd, 1024)
script.write(data)
return data

print('Script started, file is', filename)
script.write(('Script started on %s\n' % time.asctime()).encode())

pty.spawn(shell, read)

script.write(('Script done on %s\n' % time.asctime()).encode())
print('Script done, file is', filename)

35.9 fcntl — The fcntl and ioctl system calls

This module performs file control and I/O control on file descriptors. It is an interface to the fcntl() and
ioctl() Unix routines. For a complete description of these calls, see fcntl(2) and ioctl(2) Unix manual pages.

All functions in this module take a file descriptor fd as their first argument. This can be an integer file
descriptor, such as returned by sys.stdin.fileno(), or an io.IOBase object, such as sys.stdin itself, which
provides a fileno() that returns a genuine file descriptor.

Changed in version 3.3: Operations in this module used to raise an IOError where they now raise an OSError.

The module defines the following functions:

fcntl.fcntl(fd, cmd, arg=0)
Perform the operation cmd on file descriptor fd (file objects providing a fileno() method are accepted
as well). The values used for cmd are operating system dependent, and are available as constants in
the fcntl module, using the same names as used in the relevant C header files. The argument arg can
either be an integer value, or a bytes object. With an integer value, the return value of this function
is the integer return value of the C fcntl() call. When the argument is bytes it represents a binary
structure, e.g. created by struct.pack(). The binary data is copied to a buffer whose address is passed
to the C fcntl() call. The return value after a successful call is the contents of the buffer, converted to
a bytes object. The length of the returned object will be the same as the length of the arg argument.
This is limited to 1024 bytes. If the information returned in the buffer by the operating system is
larger than 1024 bytes, this is most likely to result in a segmentation violation or a more subtle data
corruption.

If the fcntl() fails, an OSError is raised.

fcntl.ioctl(fd, request, arg=0, mutate_flag=True)
This function is identical to the fcntl() function, except that the argument handling is even more
complicated.

35.9. fcntl — The fcntl and ioctl system calls 1715

The Python Library Reference, Release 3.5.7

The request parameter is limited to values that can fit in 32-bits. Additional constants of interest for
use as the request argument can be found in the termios module, under the same names as used in the
relevant C header files.

The parameter arg can be one of an integer, an object supporting the read-only buffer interface (like
bytes) or an object supporting the read-write buffer interface (like bytearray).

In all but the last case, behaviour is as for the fcntl() function.

If a mutable buffer is passed, then the behaviour is determined by the value of the mutate_flag
parameter.

If it is false, the buffer’s mutability is ignored and behaviour is as for a read-only buffer, except that
the 1024 byte limit mentioned above is avoided – so long as the buffer you pass is at least as long as
what the operating system wants to put there, things should work.

If mutate_flag is true (the default), then the buffer is (in effect) passed to the underlying ioctl() system
call, the latter’s return code is passed back to the calling Python, and the buffer’s new contents reflect
the action of the ioctl(). This is a slight simplification, because if the supplied buffer is less than 1024
bytes long it is first copied into a static buffer 1024 bytes long which is then passed to ioctl() and
copied back into the supplied buffer.

If the ioctl() fails, an OSError exception is raised.

An example:

>>> import array, fcntl, struct, termios, os
>>> os.getpgrp()
13341
>>> struct.unpack('h', fcntl.ioctl(0, termios.TIOCGPGRP, " "))[0]
13341
>>> buf = array.array('h', [0])
>>> fcntl.ioctl(0, termios.TIOCGPGRP, buf, 1)
0
>>> buf
array('h', [13341])

fcntl.flock(fd, operation)
Perform the lock operation operation on file descriptor fd (file objects providing a fileno() method
are accepted as well). See the Unix manual flock(2) for details. (On some systems, this function is
emulated using fcntl().)

If the flock() fails, an OSError exception is raised.

fcntl.lockf(fd, cmd, len=0, start=0, whence=0)
This is essentially a wrapper around the fcntl() locking calls. fd is the file descriptor of the file to lock
or unlock, and cmd is one of the following values:

• LOCK_UN – unlock

• LOCK_SH – acquire a shared lock

• LOCK_EX – acquire an exclusive lock

When cmd is LOCK_SH or LOCK_EX, it can also be bitwise ORed with LOCK_NB to avoid blocking
on lock acquisition. If LOCK_NB is used and the lock cannot be acquired, an OSError will be raised
and the exception will have an errno attribute set to EACCES or EAGAIN (depending on the operating
system; for portability, check for both values). On at least some systems, LOCK_EX can only be used
if the file descriptor refers to a file opened for writing.

len is the number of bytes to lock, start is the byte offset at which the lock starts, relative to whence,
and whence is as with io.IOBase.seek(), specifically:

1716 Chapter 35. Unix Specific Services

The Python Library Reference, Release 3.5.7

• 0 – relative to the start of the file (os.SEEK_SET)

• 1 – relative to the current buffer position (os.SEEK_CUR)

• 2 – relative to the end of the file (os.SEEK_END)

The default for start is 0, which means to start at the beginning of the file. The default for len is 0
which means to lock to the end of the file. The default for whence is also 0.

Examples (all on a SVR4 compliant system):

import struct, fcntl, os

f = open(...)
rv = fcntl.fcntl(f, fcntl.F_SETFL, os.O_NDELAY)

lockdata = struct.pack('hhllhh', fcntl.F_WRLCK, 0, 0, 0, 0, 0)
rv = fcntl.fcntl(f, fcntl.F_SETLKW, lockdata)

Note that in the first example the return value variable rv will hold an integer value; in the second example
it will hold a bytes object. The structure lay-out for the lockdata variable is system dependent — therefore
using the flock() call may be better.

See also:

Module os If the locking flags O_SHLOCK and O_EXLOCK are present in the os module (on BSD only),
the os.open() function provides an alternative to the lockf() and flock() functions.

35.10 pipes — Interface to shell pipelines

Source code: Lib/pipes.py

The pipes module defines a class to abstract the concept of a pipeline — a sequence of converters from one
file to another.

Because the module uses /bin/sh command lines, a POSIX or compatible shell for os.system() and os.popen()
is required.

The pipes module defines the following class:

class pipes.Template
An abstraction of a pipeline.

Example:

>>> import pipes
>>> t = pipes.Template()
>>> t.append('tr a-z A-Z', '--')
>>> f = t.open('pipefile', 'w')
>>> f.write('hello world')
>>> f.close()
>>> open('pipefile').read()
'HELLO WORLD'

35.10. pipes — Interface to shell pipelines 1717

https://github.com/python/cpython/tree/3.5/Lib/pipes.py

The Python Library Reference, Release 3.5.7

35.10.1 Template Objects

Template objects following methods:

Template.reset()
Restore a pipeline template to its initial state.

Template.clone()
Return a new, equivalent, pipeline template.

Template.debug(flag)
If flag is true, turn debugging on. Otherwise, turn debugging off. When debugging is on, commands
to be executed are printed, and the shell is given set -x command to be more verbose.

Template.append(cmd, kind)
Append a new action at the end. The cmd variable must be a valid bourne shell command. The kind
variable consists of two letters.

The first letter can be either of '-' (which means the command reads its standard input), 'f' (which
means the commands reads a given file on the command line) or '.' (which means the commands
reads no input, and hence must be first.)

Similarly, the second letter can be either of '-' (which means the command writes to standard output),
'f' (which means the command writes a file on the command line) or '.' (which means the command
does not write anything, and hence must be last.)

Template.prepend(cmd, kind)
Add a new action at the beginning. See append() for explanations of the arguments.

Template.open(file, mode)
Return a file-like object, open to file, but read from or written to by the pipeline. Note that only one
of 'r', 'w' may be given.

Template.copy(infile, outfile)
Copy infile to outfile through the pipe.

35.11 resource — Resource usage information

This module provides basic mechanisms for measuring and controlling system resources utilized by a program.

Symbolic constants are used to specify particular system resources and to request usage information about
either the current process or its children.

An OSError is raised on syscall failure.

exception resource.error
A deprecated alias of OSError.

Changed in version 3.3: Following PEP 3151, this class was made an alias of OSError.

35.11.1 Resource Limits

Resources usage can be limited using the setrlimit() function described below. Each resource is controlled
by a pair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may be lowered
or raised by a process over time. The soft limit can never exceed the hard limit. The hard limit can be

1718 Chapter 35. Unix Specific Services

https://www.python.org/dev/peps/pep-3151

The Python Library Reference, Release 3.5.7

lowered to any value greater than the soft limit, but not raised. (Only processes with the effective UID of
the super-user can raise a hard limit.)

The specific resources that can be limited are system dependent. They are described in the getrlimit(2)
man page. The resources listed below are supported when the underlying operating system supports them;
resources which cannot be checked or controlled by the operating system are not defined in this module for
those platforms.

resource.RLIM_INFINITY
Constant used to represent the limit for an unlimited resource.

resource.getrlimit(resource)
Returns a tuple (soft, hard) with the current soft and hard limits of resource. Raises ValueError if an
invalid resource is specified, or error if the underlying system call fails unexpectedly.

resource.setrlimit(resource, limits)
Sets new limits of consumption of resource. The limits argument must be a tuple (soft, hard) of two
integers describing the new limits. A value of RLIM_INFINITY can be used to request a limit that is
unlimited.

Raises ValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit, or if a
process tries to raise its hard limit. Specifying a limit of RLIM_INFINITY when the hard or system
limit for that resource is not unlimited will result in a ValueError. A process with the effective UID of
super-user can request any valid limit value, including unlimited, but ValueError will still be raised if
the requested limit exceeds the system imposed limit.

setrlimit may also raise error if the underlying system call fails.

resource.prlimit(pid, resource[, limits])
Combines setrlimit() and getrlimit() in one function and supports to get and set the resources limits
of an arbitrary process. If pid is 0, then the call applies to the current process. resource and limits
have the same meaning as in setrlimit(), except that limits is optional.

When limits is not given the function returns the resource limit of the process pid. When limits is
given the resource limit of the process is set and the former resource limit is returned.

Raises ProcessLookupError when pid can’t be found and PermissionError when the user doesn’t have
CAP_SYS_RESOURCE for the process.

Availability: Linux 2.6.36 or later with glibc 2.13 or later

New in version 3.4.

These symbols define resources whose consumption can be controlled using the setrlimit() and getrlimit()
functions described below. The values of these symbols are exactly the constants used by C programs.

The Unix man page for getrlimit(2) lists the available resources. Note that not all systems use the same sym-
bol or same value to denote the same resource. This module does not attempt to mask platform differences
— symbols not defined for a platform will not be available from this module on that platform.

resource.RLIMIT_CORE
The maximum size (in bytes) of a core file that the current process can create. This may result in the
creation of a partial core file if a larger core would be required to contain the entire process image.

resource.RLIMIT_CPU
The maximum amount of processor time (in seconds) that a process can use. If this limit is exceeded,
a SIGXCPU signal is sent to the process. (See the signal module documentation for information about
how to catch this signal and do something useful, e.g. flush open files to disk.)

resource.RLIMIT_FSIZE
The maximum size of a file which the process may create.

35.11. resource — Resource usage information 1719

The Python Library Reference, Release 3.5.7

resource.RLIMIT_DATA
The maximum size (in bytes) of the process’s heap.

resource.RLIMIT_STACK
The maximum size (in bytes) of the call stack for the current process. This only affects the stack of
the main thread in a multi-threaded process.

resource.RLIMIT_RSS
The maximum resident set size that should be made available to the process.

resource.RLIMIT_NPROC
The maximum number of processes the current process may create.

resource.RLIMIT_NOFILE
The maximum number of open file descriptors for the current process.

resource.RLIMIT_OFILE
The BSD name for RLIMIT_NOFILE.

resource.RLIMIT_MEMLOCK
The maximum address space which may be locked in memory.

resource.RLIMIT_VMEM
The largest area of mapped memory which the process may occupy.

resource.RLIMIT_AS
The maximum area (in bytes) of address space which may be taken by the process.

resource.RLIMIT_MSGQUEUE
The number of bytes that can be allocated for POSIX message queues.

Availability: Linux 2.6.8 or later.

New in version 3.4.

resource.RLIMIT_NICE
The ceiling for the process’s nice level (calculated as 20 - rlim_cur).

Availability: Linux 2.6.12 or later.

New in version 3.4.

resource.RLIMIT_RTPRIO
The ceiling of the real-time priority.

Availability: Linux 2.6.12 or later.

New in version 3.4.

resource.RLIMIT_RTTIME
The time limit (in microseconds) on CPU time that a process can spend under real-time scheduling
without making a blocking syscall.

Availability: Linux 2.6.25 or later.

New in version 3.4.

resource.RLIMIT_SIGPENDING
The number of signals which the process may queue.

Availability: Linux 2.6.8 or later.

New in version 3.4.

1720 Chapter 35. Unix Specific Services

The Python Library Reference, Release 3.5.7

resource.RLIMIT_SBSIZE
The maximum size (in bytes) of socket buffer usage for this user. This limits the amount of network
memory, and hence the amount of mbufs, that this user may hold at any time.

Availability: FreeBSD 9 or later.

New in version 3.4.

resource.RLIMIT_SWAP
The maximum size (in bytes) of the swap space that may be reserved or used by all of this user id’s
processes. This limit is enforced only if bit 1 of the vm.overcommit sysctl is set. Please see tuning(7)
for a complete description of this sysctl.

Availability: FreeBSD 9 or later.

New in version 3.4.

resource.RLIMIT_NPTS
The maximum number of pseudo-terminals created by this user id.

Availability: FreeBSD 9 or later.

New in version 3.4.

35.11.2 Resource Usage

These functions are used to retrieve resource usage information:

resource.getrusage(who)
This function returns an object that describes the resources consumed by either the current process or
its children, as specified by the who parameter. The who parameter should be specified using one of
the RUSAGE_* constants described below.

The fields of the return value each describe how a particular system resource has been used, e.g. amount
of time spent running is user mode or number of times the process was swapped out of main memory.
Some values are dependent on the clock tick internal, e.g. the amount of memory the process is using.

For backward compatibility, the return value is also accessible as a tuple of 16 elements.

The fields ru_utime and ru_stime of the return value are floating point values representing the amount
of time spent executing in user mode and the amount of time spent executing in system mode, respec-
tively. The remaining values are integers. Consult the getrusage(2) man page for detailed information
about these values. A brief summary is presented here:

35.11. resource — Resource usage information 1721

The Python Library Reference, Release 3.5.7

Index Field Resource
0 ru_utime time in user mode (float)
1 ru_stime time in system mode (float)
2 ru_maxrss maximum resident set size
3 ru_ixrss shared memory size
4 ru_idrss unshared memory size
5 ru_isrss unshared stack size
6 ru_minflt page faults not requiring I/O
7 ru_majflt page faults requiring I/O
8 ru_nswap number of swap outs
9 ru_inblock block input operations
10 ru_oublock block output operations
11 ru_msgsnd messages sent
12 ru_msgrcv messages received
13 ru_nsignals signals received
14 ru_nvcsw voluntary context switches
15 ru_nivcsw involuntary context switches

This function will raise a ValueError if an invalid who parameter is specified. It may also raise error
exception in unusual circumstances.

resource.getpagesize()
Returns the number of bytes in a system page. (This need not be the same as the hardware page size.)

The following RUSAGE_* symbols are passed to the getrusage() function to specify which processes infor-
mation should be provided for.

resource.RUSAGE_SELF
Pass to getrusage() to request resources consumed by the calling process, which is the sum of resources
used by all threads in the process.

resource.RUSAGE_CHILDREN
Pass to getrusage() to request resources consumed by child processes of the calling process which have
been terminated and waited for.

resource.RUSAGE_BOTH
Pass to getrusage() to request resources consumed by both the current process and child processes.
May not be available on all systems.

resource.RUSAGE_THREAD
Pass to getrusage() to request resources consumed by the current thread. May not be available on all
systems.

New in version 3.2.

35.12 nis — Interface to Sun’s NIS (Yellow Pages)

The nis module gives a thin wrapper around the NIS library, useful for central administration of several
hosts.

Because NIS exists only on Unix systems, this module is only available for Unix.

The nis module defines the following functions:

1722 Chapter 35. Unix Specific Services

The Python Library Reference, Release 3.5.7

nis.match(key, mapname, domain=default_domain)
Return the match for key in map mapname, or raise an error (nis.error) if there is none. Both should
be strings, key is 8-bit clean. Return value is an arbitrary array of bytes (may contain NULL and other
joys).

Note that mapname is first checked if it is an alias to another name.

The domain argument allows overriding the NIS domain used for the lookup. If unspecified, lookup is
in the default NIS domain.

nis.cat(mapname, domain=default_domain)
Return a dictionary mapping key to value such that match(key, mapname)==value. Note that both
keys and values of the dictionary are arbitrary arrays of bytes.

Note that mapname is first checked if it is an alias to another name.

The domain argument allows overriding the NIS domain used for the lookup. If unspecified, lookup is
in the default NIS domain.

nis.maps(domain=default_domain)
Return a list of all valid maps.

The domain argument allows overriding the NIS domain used for the lookup. If unspecified, lookup is
in the default NIS domain.

nis.get_default_domain()
Return the system default NIS domain.

The nis module defines the following exception:

exception nis.error
An error raised when a NIS function returns an error code.

35.13 syslog — Unix syslog library routines

This module provides an interface to the Unix syslog library routines. Refer to the Unix manual pages for
a detailed description of the syslog facility.

This module wraps the system syslog family of routines. A pure Python library that can speak to a syslog
server is available in the logging.handlers module as SysLogHandler.

The module defines the following functions:

syslog.syslog(message)
syslog.syslog(priority, message)

Send the string message to the system logger. A trailing newline is added if necessary. Each message
is tagged with a priority composed of a facility and a level. The optional priority argument, which
defaults to LOG_INFO, determines the message priority. If the facility is not encoded in priority using
logical-or (LOG_INFO | LOG_USER), the value given in the openlog() call is used.

If openlog() has not been called prior to the call to syslog(), openlog() will be called with no arguments.

syslog.openlog([ident[, logoption[, facility]]])
Logging options of subsequent syslog() calls can be set by calling openlog(). syslog() will call openlog()
with no arguments if the log is not currently open.

The optional ident keyword argument is a string which is prepended to every message, and defaults to
sys.argv[0] with leading path components stripped. The optional logoption keyword argument (default

35.13. syslog — Unix syslog library routines 1723

The Python Library Reference, Release 3.5.7

is 0) is a bit field – see below for possible values to combine. The optional facility keyword argument
(default is LOG_USER) sets the default facility for messages which do not have a facility explicitly
encoded.

Changed in version 3.2: In previous versions, keyword arguments were not allowed, and ident was
required. The default for ident was dependent on the system libraries, and often was python instead
of the name of the python program file.

syslog.closelog()
Reset the syslog module values and call the system library closelog().

This causes the module to behave as it does when initially imported. For example, openlog() will be
called on the first syslog() call (if openlog() hasn’t already been called), and ident and other openlog()
parameters are reset to defaults.

syslog.setlogmask(maskpri)
Set the priority mask to maskpri and return the previous mask value. Calls to syslog() with a priority
level not set in maskpri are ignored. The default is to log all priorities. The function LOG_MASK(pri)
calculates the mask for the individual priority pri. The function LOG_UPTO(pri) calculates the mask
for all priorities up to and including pri.

The module defines the following constants:

Priority levels (high to low): LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_WARNING,
LOG_NOTICE, LOG_INFO, LOG_DEBUG.

Facilities: LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH, LOG_LPR,
LOG_NEWS, LOG_UUCP, LOG_CRON, LOG_SYSLOG, LOG_LOCAL0 to LOG_LOCAL7, and,
if defined in <syslog.h>, LOG_AUTHPRIV.

Log options: LOG_PID, LOG_CONS, LOG_NDELAY, and, if defined in <syslog.h>, LOG_ODELAY,
LOG_NOWAIT, and LOG_PERROR.

35.13.1 Examples

Simple example

A simple set of examples:

import syslog

syslog.syslog('Processing started')
if error:

syslog.syslog(syslog.LOG_ERR, 'Processing started')

An example of setting some log options, these would include the process ID in logged messages, and write
the messages to the destination facility used for mail logging:

syslog.openlog(logoption=syslog.LOG_PID, facility=syslog.LOG_MAIL)
syslog.syslog('E-mail processing initiated...')

1724 Chapter 35. Unix Specific Services

CHAPTER

THIRTYSIX

SUPERSEDED MODULES

The modules described in this chapter are deprecated and only kept for backwards compatibility. They have
been superseded by other modules.

36.1 optparse — Parser for command line options

Source code: Lib/optparse.py

Deprecated since version 3.2: The optparse module is deprecated and will not be developed further; devel-
opment will continue with the argparse module.

optparse is a more convenient, flexible, and powerful library for parsing command-line options than the old
getopt module. optparse uses a more declarative style of command-line parsing: you create an instance of
OptionParser, populate it with options, and parse the command line. optparse allows users to specify options
in the conventional GNU/POSIX syntax, and additionally generates usage and help messages for you.

Here’s an example of using optparse in a simple script:

from optparse import OptionParser
...
parser = OptionParser()
parser.add_option("-f", "--file", dest="filename",

help="write report to FILE", metavar="FILE")
parser.add_option("-q", "--quiet",

action="store_false", dest="verbose", default=True,
help="don't print status messages to stdout")

(options, args) = parser.parse_args()

With these few lines of code, users of your script can now do the “usual thing” on the command-line, for
example:

<yourscript> --file=outfile -q

As it parses the command line, optparse sets attributes of the options object returned by parse_args() based
on user-supplied command-line values. When parse_args() returns from parsing this command line, options.
filename will be "outfile" and options.verbose will be False. optparse supports both long and short options,
allows short options to be merged together, and allows options to be associated with their arguments in a
variety of ways. Thus, the following command lines are all equivalent to the above example:

1725

https://github.com/python/cpython/tree/3.5/Lib/optparse.py

The Python Library Reference, Release 3.5.7

<yourscript> -f outfile --quiet
<yourscript> --quiet --file outfile
<yourscript> -q -foutfile
<yourscript> -qfoutfile

Additionally, users can run one of

<yourscript> -h
<yourscript> --help

and optparse will print out a brief summary of your script’s options:

Usage: <yourscript> [options]

Options:
-h, --help show this help message and exit
-f FILE, --file=FILE write report to FILE
-q, --quiet don't print status messages to stdout

where the value of yourscript is determined at runtime (normally from sys.argv[0]).

36.1.1 Background

optparse was explicitly designed to encourage the creation of programs with straightforward, conventional
command-line interfaces. To that end, it supports only the most common command-line syntax and semantics
conventionally used under Unix. If you are unfamiliar with these conventions, read this section to acquaint
yourself with them.

Terminology

argument a string entered on the command-line, and passed by the shell to execl() or execv(). In Python,
arguments are elements of sys.argv[1:] (sys.argv[0] is the name of the program being executed). Unix
shells also use the term “word”.

It is occasionally desirable to substitute an argument list other than sys.argv[1:], so you should read
“argument” as “an element of sys.argv[1:], or of some other list provided as a substitute for sys.argv[1:]”.

option an argument used to supply extra information to guide or customize the execution of a program.
There are many different syntaxes for options; the traditional Unix syntax is a hyphen (“-“) followed
by a single letter, e.g. -x or -F. Also, traditional Unix syntax allows multiple options to be merged into
a single argument, e.g. -x -F is equivalent to -xF. The GNU project introduced -- followed by a series
of hyphen-separated words, e.g. --file or --dry-run. These are the only two option syntaxes provided
by optparse.

Some other option syntaxes that the world has seen include:

• a hyphen followed by a few letters, e.g. -pf (this is not the same as multiple options merged into
a single argument)

• a hyphen followed by a whole word, e.g. -file (this is technically equivalent to the previous syntax,
but they aren’t usually seen in the same program)

• a plus sign followed by a single letter, or a few letters, or a word, e.g. +f, +rgb

• a slash followed by a letter, or a few letters, or a word, e.g. /f, /file

1726 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

These option syntaxes are not supported by optparse, and they never will be. This is deliberate: the
first three are non-standard on any environment, and the last only makes sense if you’re exclusively
targeting VMS, MS-DOS, and/or Windows.

option argument an argument that follows an option, is closely associated with that option, and is consumed
from the argument list when that option is. With optparse, option arguments may either be in a
separate argument from their option:

-f foo
--file foo

or included in the same argument:

-ffoo
--file=foo

Typically, a given option either takes an argument or it doesn’t. Lots of people want an “optional option
arguments” feature, meaning that some options will take an argument if they see it, and won’t if they
don’t. This is somewhat controversial, because it makes parsing ambiguous: if -a takes an optional
argument and -b is another option entirely, how do we interpret -ab? Because of this ambiguity,
optparse does not support this feature.

positional argument something leftover in the argument list after options have been parsed, i.e. after options
and their arguments have been parsed and removed from the argument list.

required option an option that must be supplied on the command-line; note that the phrase “required option”
is self-contradictory in English. optparse doesn’t prevent you from implementing required options, but
doesn’t give you much help at it either.

For example, consider this hypothetical command-line:

prog -v --report report.txt foo bar

-v and --report are both options. Assuming that --report takes one argument, report.txt is an option
argument. foo and bar are positional arguments.

What are options for?

Options are used to provide extra information to tune or customize the execution of a program. In case
it wasn’t clear, options are usually optional. A program should be able to run just fine with no options
whatsoever. (Pick a random program from the Unix or GNU toolsets. Can it run without any options at
all and still make sense? The main exceptions are find, tar, and dd—all of which are mutant oddballs that
have been rightly criticized for their non-standard syntax and confusing interfaces.)

Lots of people want their programs to have “required options”. Think about it. If it’s required, then it’s not
optional! If there is a piece of information that your program absolutely requires in order to run successfully,
that’s what positional arguments are for.

As an example of good command-line interface design, consider the humble cp utility, for copying files. It
doesn’t make much sense to try to copy files without supplying a destination and at least one source. Hence,
cp fails if you run it with no arguments. However, it has a flexible, useful syntax that does not require any
options at all:

cp SOURCE DEST
cp SOURCE ... DEST-DIR

You can get pretty far with just that. Most cp implementations provide a bunch of options to tweak exactly
how the files are copied: you can preserve mode and modification time, avoid following symlinks, ask before

36.1. optparse — Parser for command line options 1727

The Python Library Reference, Release 3.5.7

clobbering existing files, etc. But none of this distracts from the core mission of cp, which is to copy either
one file to another, or several files to another directory.

What are positional arguments for?

Positional arguments are for those pieces of information that your program absolutely, positively requires to
run.

A good user interface should have as few absolute requirements as possible. If your program requires 17
distinct pieces of information in order to run successfully, it doesn’t much matter how you get that information
from the user—most people will give up and walk away before they successfully run the program. This applies
whether the user interface is a command-line, a configuration file, or a GUI: if you make that many demands
on your users, most of them will simply give up.

In short, try to minimize the amount of information that users are absolutely required to supply—use sensible
defaults whenever possible. Of course, you also want to make your programs reasonably flexible. That’s
what options are for. Again, it doesn’t matter if they are entries in a config file, widgets in the “Preferences”
dialog of a GUI, or command-line options—the more options you implement, the more flexible your program
is, and the more complicated its implementation becomes. Too much flexibility has drawbacks as well, of
course; too many options can overwhelm users and make your code much harder to maintain.

36.1.2 Tutorial

While optparse is quite flexible and powerful, it’s also straightforward to use in most cases. This section
covers the code patterns that are common to any optparse-based program.

First, you need to import the OptionParser class; then, early in the main program, create an OptionParser
instance:

from optparse import OptionParser
...
parser = OptionParser()

Then you can start defining options. The basic syntax is:

parser.add_option(opt_str, ...,
attr=value, ...)

Each option has one or more option strings, such as -f or --file, and several option attributes that tell optparse
what to expect and what to do when it encounters that option on the command line.

Typically, each option will have one short option string and one long option string, e.g.:

parser.add_option("-f", "--file", ...)

You’re free to define as many short option strings and as many long option strings as you like (including
zero), as long as there is at least one option string overall.

The option strings passed to OptionParser.add_option() are effectively labels for the option defined by that
call. For brevity, we will frequently refer to encountering an option on the command line; in reality, optparse
encounters option strings and looks up options from them.

Once all of your options are defined, instruct optparse to parse your program’s command line:

(options, args) = parser.parse_args()

1728 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

(If you like, you can pass a custom argument list to parse_args(), but that’s rarely necessary: by default it
uses sys.argv[1:].)

parse_args() returns two values:

• options, an object containing values for all of your options—e.g. if --file takes a single string argument,
then options.file will be the filename supplied by the user, or None if the user did not supply that
option

• args, the list of positional arguments leftover after parsing options

This tutorial section only covers the four most important option attributes: action, type, dest (destination),
and help. Of these, action is the most fundamental.

Understanding option actions

Actions tell optparse what to do when it encounters an option on the command line. There is a fixed set
of actions hard-coded into optparse; adding new actions is an advanced topic covered in section Extending
optparse. Most actions tell optparse to store a value in some variable—for example, take a string from the
command line and store it in an attribute of options.

If you don’t specify an option action, optparse defaults to store.

The store action

The most common option action is store, which tells optparse to take the next argument (or the remainder
of the current argument), ensure that it is of the correct type, and store it to your chosen destination.

For example:

parser.add_option("-f", "--file",
action="store", type="string", dest="filename")

Now let’s make up a fake command line and ask optparse to parse it:

args = ["-f", "foo.txt"]
(options, args) = parser.parse_args(args)

When optparse sees the option string -f, it consumes the next argument, foo.txt, and stores it in options.
filename. So, after this call to parse_args(), options.filename is "foo.txt".

Some other option types supported by optparse are int and float. Here’s an option that expects an integer
argument:

parser.add_option("-n", type="int", dest="num")

Note that this option has no long option string, which is perfectly acceptable. Also, there’s no explicit action,
since the default is store.

Let’s parse another fake command-line. This time, we’ll jam the option argument right up against the option:
since -n42 (one argument) is equivalent to -n 42 (two arguments), the code

(options, args) = parser.parse_args(["-n42"])
print(options.num)

will print 42.

If you don’t specify a type, optparse assumes string. Combined with the fact that the default action is store,
that means our first example can be a lot shorter:

36.1. optparse — Parser for command line options 1729

The Python Library Reference, Release 3.5.7

parser.add_option("-f", "--file", dest="filename")

If you don’t supply a destination, optparse figures out a sensible default from the option strings: if the first
long option string is --foo-bar, then the default destination is foo_bar. If there are no long option strings,
optparse looks at the first short option string: the default destination for -f is f.

optparse also includes the built-in complex type. Adding types is covered in section Extending optparse.

Handling boolean (flag) options

Flag options—set a variable to true or false when a particular option is seen —are quite common. optparse
supports them with two separate actions, store_true and store_false. For example, you might have a verbose
flag that is turned on with -v and off with -q:

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose")

Here we have two different options with the same destination, which is perfectly OK. (It just means you
have to be a bit careful when setting default values— see below.)

When optparse encounters -v on the command line, it sets options.verbose to True; when it encounters -q,
options.verbose is set to False.

Other actions

Some other actions supported by optparse are:

"store_const" store a constant value

"append" append this option’s argument to a list

"count" increment a counter by one

"callback" call a specified function

These are covered in section Reference Guide, Reference Guide and section Option Callbacks.

Default values

All of the above examples involve setting some variable (the “destination”) when certain command-line
options are seen. What happens if those options are never seen? Since we didn’t supply any defaults, they
are all set to None. This is usually fine, but sometimes you want more control. optparse lets you supply a
default value for each destination, which is assigned before the command line is parsed.

First, consider the verbose/quiet example. If we want optparse to set verbose to True unless -q is seen, then
we can do this:

parser.add_option("-v", action="store_true", dest="verbose", default=True)
parser.add_option("-q", action="store_false", dest="verbose")

Since default values apply to the destination rather than to any particular option, and these two options
happen to have the same destination, this is exactly equivalent:

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose", default=True)

1730 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

Consider this:

parser.add_option("-v", action="store_true", dest="verbose", default=False)
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Again, the default value for verbose will be True: the last default value supplied for any particular destination
is the one that counts.

A clearer way to specify default values is the set_defaults() method of OptionParser, which you can call at
any time before calling parse_args():

parser.set_defaults(verbose=True)
parser.add_option(...)
(options, args) = parser.parse_args()

As before, the last value specified for a given option destination is the one that counts. For clarity, try to
use one method or the other of setting default values, not both.

Generating help

optparse’s ability to generate help and usage text automatically is useful for creating user-friendly command-
line interfaces. All you have to do is supply a help value for each option, and optionally a short usage message
for your whole program. Here’s an OptionParser populated with user-friendly (documented) options:

usage = "usage: %prog [options] arg1 arg2"
parser = OptionParser(usage=usage)
parser.add_option("-v", "--verbose",

action="store_true", dest="verbose", default=True,
help="make lots of noise [default]")

parser.add_option("-q", "--quiet",
action="store_false", dest="verbose",
help="be vewwy quiet (I'm hunting wabbits)")

parser.add_option("-f", "--filename",
metavar="FILE", help="write output to FILE")

parser.add_option("-m", "--mode",
default="intermediate",
help="interaction mode: novice, intermediate, "

"or expert [default: %default]")

If optparse encounters either -h or --help on the command-line, or if you just call parser.print_help(), it
prints the following to standard output:

Usage: <yourscript> [options] arg1 arg2

Options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I'm hunting wabbits)
-f FILE, --filename=FILE

write output to FILE
-m MODE, --mode=MODE interaction mode: novice, intermediate, or

expert [default: intermediate]

(If the help output is triggered by a help option, optparse exits after printing the help text.)

There’s a lot going on here to help optparse generate the best possible help message:

• the script defines its own usage message:

36.1. optparse — Parser for command line options 1731

The Python Library Reference, Release 3.5.7

usage = "usage: %prog [options] arg1 arg2"

optparse expands %prog in the usage string to the name of the current program, i.e. os.path.
basename(sys.argv[0]). The expanded string is then printed before the detailed option help.

If you don’t supply a usage string, optparse uses a bland but sensible default: "Usage: %prog [options]",
which is fine if your script doesn’t take any positional arguments.

• every option defines a help string, and doesn’t worry about line-wrapping— optparse takes care of
wrapping lines and making the help output look good.

• options that take a value indicate this fact in their automatically-generated help message, e.g. for the
“mode” option:

-m MODE, --mode=MODE

Here, “MODE” is called the meta-variable: it stands for the argument that the user is expected to
supply to -m/--mode. By default, optparse converts the destination variable name to uppercase and
uses that for the meta-variable. Sometimes, that’s not what you want—for example, the --filename
option explicitly sets metavar="FILE", resulting in this automatically-generated option description:

-f FILE, --filename=FILE

This is important for more than just saving space, though: the manually written help text uses the
meta-variable FILE to clue the user in that there’s a connection between the semi-formal syntax -f
FILE and the informal semantic description “write output to FILE”. This is a simple but effective way
to make your help text a lot clearer and more useful for end users.

• options that have a default value can include %default in the help string—optparse will replace it with
str() of the option’s default value. If an option has no default value (or the default value is None),
%default expands to none.

Grouping Options

When dealing with many options, it is convenient to group these options for better help output. An Option-
Parser can contain several option groups, each of which can contain several options.

An option group is obtained using the class OptionGroup:

class optparse.OptionGroup(parser, title, description=None)
where

• parser is the OptionParser instance the group will be insterted in to

• title is the group title

• description, optional, is a long description of the group

OptionGroup inherits from OptionContainer (like OptionParser) and so the add_option() method can be
used to add an option to the group.

Once all the options are declared, using the OptionParser method add_option_group() the group is added
to the previously defined parser.

Continuing with the parser defined in the previous section, adding an OptionGroup to a parser is easy:

group = OptionGroup(parser, "Dangerous Options",
"Caution: use these options at your own risk. "
"It is believed that some of them bite.")

(continues on next page)

1732 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

(continued from previous page)

group.add_option("-g", action="store_true", help="Group option.")
parser.add_option_group(group)

This would result in the following help output:

Usage: <yourscript> [options] arg1 arg2

Options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I'm hunting wabbits)
-f FILE, --filename=FILE

write output to FILE
-m MODE, --mode=MODE interaction mode: novice, intermediate, or

expert [default: intermediate]

Dangerous Options:
Caution: use these options at your own risk. It is believed that some
of them bite.

-g Group option.

A bit more complete example might involve using more than one group: still extending the previous example:

group = OptionGroup(parser, "Dangerous Options",
"Caution: use these options at your own risk. "
"It is believed that some of them bite.")

group.add_option("-g", action="store_true", help="Group option.")
parser.add_option_group(group)

group = OptionGroup(parser, "Debug Options")
group.add_option("-d", "--debug", action="store_true",

help="Print debug information")
group.add_option("-s", "--sql", action="store_true",

help="Print all SQL statements executed")
group.add_option("-e", action="store_true", help="Print every action done")
parser.add_option_group(group)

that results in the following output:

Usage: <yourscript> [options] arg1 arg2

Options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I'm hunting wabbits)
-f FILE, --filename=FILE

write output to FILE
-m MODE, --mode=MODE interaction mode: novice, intermediate, or expert

[default: intermediate]

Dangerous Options:
Caution: use these options at your own risk. It is believed that some
of them bite.

-g Group option.

(continues on next page)

36.1. optparse — Parser for command line options 1733

The Python Library Reference, Release 3.5.7

(continued from previous page)

Debug Options:
-d, --debug Print debug information
-s, --sql Print all SQL statements executed
-e Print every action done

Another interesting method, in particular when working programmatically with option groups is:

OptionParser.get_option_group(opt_str)
Return the OptionGroup to which the short or long option string opt_str (e.g. '-o' or '--option')
belongs. If there’s no such OptionGroup, return None.

Printing a version string

Similar to the brief usage string, optparse can also print a version string for your program. You have to
supply the string as the version argument to OptionParser:

parser = OptionParser(usage="%prog [-f] [-q]", version="%prog 1.0")

%prog is expanded just like it is in usage. Apart from that, version can contain anything you like. When
you supply it, optparse automatically adds a --version option to your parser. If it encounters this option on
the command line, it expands your version string (by replacing %prog), prints it to stdout, and exits.

For example, if your script is called /usr/bin/foo:

$ /usr/bin/foo --version
foo 1.0

The following two methods can be used to print and get the version string:

OptionParser.print_version(file=None)
Print the version message for the current program (self.version) to file (default stdout). As with
print_usage(), any occurrence of %prog in self.version is replaced with the name of the current program.
Does nothing if self.version is empty or undefined.

OptionParser.get_version()
Same as print_version() but returns the version string instead of printing it.

How optparse handles errors

There are two broad classes of errors that optparse has to worry about: programmer errors and user errors.
Programmer errors are usually erroneous calls to OptionParser.add_option(), e.g. invalid option strings,
unknown option attributes, missing option attributes, etc. These are dealt with in the usual way: raise an
exception (either optparse.OptionError or TypeError) and let the program crash.

Handling user errors is much more important, since they are guaranteed to happen no matter how stable
your code is. optparse can automatically detect some user errors, such as bad option arguments (passing
-n 4x where -n takes an integer argument), missing arguments (-n at the end of the command line, where
-n takes an argument of any type). Also, you can call OptionParser.error() to signal an application-defined
error condition:

(options, args) = parser.parse_args()
...
if options.a and options.b:

parser.error("options -a and -b are mutually exclusive")

1734 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

In either case, optparse handles the error the same way: it prints the program’s usage message and an error
message to standard error and exits with error status 2.

Consider the first example above, where the user passes 4x to an option that takes an integer:

$ /usr/bin/foo -n 4x
Usage: foo [options]

foo: error: option -n: invalid integer value: '4x'

Or, where the user fails to pass a value at all:

$ /usr/bin/foo -n
Usage: foo [options]

foo: error: -n option requires an argument

optparse-generated error messages take care always to mention the option involved in the error; be sure to
do the same when calling OptionParser.error() from your application code.

If optparse’s default error-handling behaviour does not suit your needs, you’ll need to subclass OptionParser
and override its exit() and/or error() methods.

Putting it all together

Here’s what optparse-based scripts usually look like:

from optparse import OptionParser
...
def main():

usage = "usage: %prog [options] arg"
parser = OptionParser(usage)
parser.add_option("-f", "--file", dest="filename",

help="read data from FILENAME")
parser.add_option("-v", "--verbose",

action="store_true", dest="verbose")
parser.add_option("-q", "--quiet",

action="store_false", dest="verbose")
...
(options, args) = parser.parse_args()
if len(args) != 1:

parser.error("incorrect number of arguments")
if options.verbose:

print("reading %s..." % options.filename)
...

if __name__ == "__main__":
main()

36.1.3 Reference Guide

Creating the parser

The first step in using optparse is to create an OptionParser instance.

36.1. optparse — Parser for command line options 1735

The Python Library Reference, Release 3.5.7

class optparse.OptionParser(...)
The OptionParser constructor has no required arguments, but a number of optional keyword arguments.
You should always pass them as keyword arguments, i.e. do not rely on the order in which the arguments
are declared.

usage (default: "%prog [options]") The usage summary to print when your program is run incorrectly
or with a help option. When optparse prints the usage string, it expands %prog to os.path.
basename(sys.argv[0]) (or to prog if you passed that keyword argument). To suppress a usage
message, pass the special value optparse.SUPPRESS_USAGE.

option_list (default: []) A list of Option objects to populate the parser with. The options in op-
tion_list are added after any options in standard_option_list (a class attribute that may be set by
OptionParser subclasses), but before any version or help options. Deprecated; use add_option()
after creating the parser instead.

option_class (default: optparse.Option) Class to use when adding options to the parser in
add_option().

version (default: None) A version string to print when the user supplies a version option. If you supply
a true value for version, optparse automatically adds a version option with the single option string
--version. The substring %prog is expanded the same as for usage.

conflict_handler (default: "error") Specifies what to do when options with conflicting option strings
are added to the parser; see section Conflicts between options.

description (default: None) A paragraph of text giving a brief overview of your program. optparse
reformats this paragraph to fit the current terminal width and prints it when the user requests
help (after usage, but before the list of options).

formatter (default: a new IndentedHelpFormatter) An instance of optparse.HelpFormatter that will
be used for printing help text. optparse provides two concrete classes for this purpose: Indented-
HelpFormatter and TitledHelpFormatter.

add_help_option (default: True) If true, optparse will add a help option (with option strings -h and
--help) to the parser.

prog The string to use when expanding %prog in usage and version instead of os.path.basename(sys.
argv[0]).

epilog (default: None) A paragraph of help text to print after the option help.

Populating the parser

There are several ways to populate the parser with options. The preferred way is by using OptionParser.
add_option(), as shown in section Tutorial. add_option() can be called in one of two ways:

• pass it an Option instance (as returned by make_option())

• pass it any combination of positional and keyword arguments that are acceptable to make_option()
(i.e., to the Option constructor), and it will create the Option instance for you

The other alternative is to pass a list of pre-constructed Option instances to the OptionParser constructor,
as in:

option_list = [
make_option("-f", "--filename",

action="store", type="string", dest="filename"),
make_option("-q", "--quiet",

action="store_false", dest="verbose"),

(continues on next page)

1736 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

(continued from previous page)

]
parser = OptionParser(option_list=option_list)

(make_option() is a factory function for creating Option instances; currently it is an alias for the Option
constructor. A future version of optparse may split Option into several classes, and make_option() will pick
the right class to instantiate. Do not instantiate Option directly.)

Defining options

Each Option instance represents a set of synonymous command-line option strings, e.g. -f and --file. You can
specify any number of short or long option strings, but you must specify at least one overall option string.

The canonical way to create an Option instance is with the add_option() method of OptionParser.

OptionParser.add_option(option)
OptionParser.add_option(*opt_str, attr=value, ...)

To define an option with only a short option string:

parser.add_option("-f", attr=value, ...)

And to define an option with only a long option string:

parser.add_option("--foo", attr=value, ...)

The keyword arguments define attributes of the new Option object. The most important option
attribute is action, and it largely determines which other attributes are relevant or required. If you
pass irrelevant option attributes, or fail to pass required ones, optparse raises an OptionError exception
explaining your mistake.

An option’s action determines what optparse does when it encounters this option on the command-line.
The standard option actions hard-coded into optparse are:

"store" store this option’s argument (default)

"store_const" store a constant value

"store_true" store a true value

"store_false" store a false value

"append" append this option’s argument to a list

"append_const" append a constant value to a list

"count" increment a counter by one

"callback" call a specified function

"help" print a usage message including all options and the documentation for them

(If you don’t supply an action, the default is "store". For this action, you may also supply type and
dest option attributes; see Standard option actions.)

As you can see, most actions involve storing or updating a value somewhere. optparse always creates a
special object for this, conventionally called options (it happens to be an instance of optparse.Values).
Option arguments (and various other values) are stored as attributes of this object, according to the dest
(destination) option attribute.

For example, when you call

36.1. optparse — Parser for command line options 1737

The Python Library Reference, Release 3.5.7

parser.parse_args()

one of the first things optparse does is create the options object:

options = Values()

If one of the options in this parser is defined with

parser.add_option("-f", "--file", action="store", type="string", dest="filename")

and the command-line being parsed includes any of the following:

-ffoo
-f foo
--file=foo
--file foo

then optparse, on seeing this option, will do the equivalent of

options.filename = "foo"

The type and dest option attributes are almost as important as action, but action is the only one that makes
sense for all options.

Option attributes

The following option attributes may be passed as keyword arguments to OptionParser.add_option(). If you
pass an option attribute that is not relevant to a particular option, or fail to pass a required option attribute,
optparse raises OptionError.

Option.action
(default: "store")

Determines optparse’s behaviour when this option is seen on the command line; the available options
are documented here.

Option.type
(default: "string")

The argument type expected by this option (e.g., "string" or "int"); the available option types are
documented here.

Option.dest
(default: derived from option strings)

If the option’s action implies writing or modifying a value somewhere, this tells optparse where to write
it: dest names an attribute of the options object that optparse builds as it parses the command line.

Option.default
The value to use for this option’s destination if the option is not seen on the command line. See also
OptionParser.set_defaults().

Option.nargs
(default: 1)

How many arguments of type type should be consumed when this option is seen. If > 1, optparse will
store a tuple of values to dest.

1738 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

Option.const
For actions that store a constant value, the constant value to store.

Option.choices
For options of type "choice", the list of strings the user may choose from.

Option.callback
For options with action "callback", the callable to call when this option is seen. See section Option
Callbacks for detail on the arguments passed to the callable.

Option.callback_args
Option.callback_kwargs

Additional positional and keyword arguments to pass to callback after the four standard callback
arguments.

Option.help
Help text to print for this option when listing all available options after the user supplies a help option
(such as --help). If no help text is supplied, the option will be listed without help text. To hide this
option, use the special value optparse.SUPPRESS_HELP.

Option.metavar
(default: derived from option strings)

Stand-in for the option argument(s) to use when printing help text. See section Tutorial for an example.

Standard option actions

The various option actions all have slightly different requirements and effects. Most actions have several rel-
evant option attributes which you may specify to guide optparse’s behaviour; a few have required attributes,
which you must specify for any option using that action.

• "store" [relevant: type, dest, nargs, choices]

The option must be followed by an argument, which is converted to a value according to type and
stored in dest. If nargs > 1, multiple arguments will be consumed from the command line; all will be
converted according to type and stored to dest as a tuple. See the Standard option types section.

If choices is supplied (a list or tuple of strings), the type defaults to "choice".

If type is not supplied, it defaults to "string".

If dest is not supplied, optparse derives a destination from the first long option string (e.g., --foo-bar
implies foo_bar). If there are no long option strings, optparse derives a destination from the first short
option string (e.g., -f implies f).

Example:

parser.add_option("-f")
parser.add_option("-p", type="float", nargs=3, dest="point")

As it parses the command line

-f foo.txt -p 1 -3.5 4 -fbar.txt

optparse will set

options.f = "foo.txt"
options.point = (1.0, -3.5, 4.0)
options.f = "bar.txt"

36.1. optparse — Parser for command line options 1739

The Python Library Reference, Release 3.5.7

• "store_const" [required: const; relevant: dest]

The value const is stored in dest.

Example:

parser.add_option("-q", "--quiet",
action="store_const", const=0, dest="verbose")

parser.add_option("-v", "--verbose",
action="store_const", const=1, dest="verbose")

parser.add_option("--noisy",
action="store_const", const=2, dest="verbose")

If --noisy is seen, optparse will set

options.verbose = 2

• "store_true" [relevant: dest]

A special case of "store_const" that stores a true value to dest.

• "store_false" [relevant: dest]

Like "store_true", but stores a false value.

Example:

parser.add_option("--clobber", action="store_true", dest="clobber")
parser.add_option("--no-clobber", action="store_false", dest="clobber")

• "append" [relevant: type, dest, nargs, choices]

The option must be followed by an argument, which is appended to the list in dest. If no default value
for dest is supplied, an empty list is automatically created when optparse first encounters this option
on the command-line. If nargs > 1, multiple arguments are consumed, and a tuple of length nargs is
appended to dest.

The defaults for type and dest are the same as for the "store" action.

Example:

parser.add_option("-t", "--tracks", action="append", type="int")

If -t3 is seen on the command-line, optparse does the equivalent of:

options.tracks = []
options.tracks.append(int("3"))

If, a little later on, --tracks=4 is seen, it does:

options.tracks.append(int("4"))

The append action calls the append method on the current value of the option. This means that
any default value specified must have an append method. It also means that if the default value is
non-empty, the default elements will be present in the parsed value for the option, with any values
from the command line appended after those default values:

>>> parser.add_option("--files", action="append", default=['~/.mypkg/defaults'])
>>> opts, args = parser.parse_args(['--files', 'overrides.mypkg'])
>>> opts.files
['~/.mypkg/defaults', 'overrides.mypkg']

1740 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

• "append_const" [required: const; relevant: dest]

Like "store_const", but the value const is appended to dest; as with "append", dest defaults to None,
and an empty list is automatically created the first time the option is encountered.

• "count" [relevant: dest]

Increment the integer stored at dest. If no default value is supplied, dest is set to zero before being
incremented the first time.

Example:

parser.add_option("-v", action="count", dest="verbosity")

The first time -v is seen on the command line, optparse does the equivalent of:

options.verbosity = 0
options.verbosity += 1

Every subsequent occurrence of -v results in

options.verbosity += 1

• "callback" [required: callback; relevant: type, nargs, callback_args, callback_kwargs]

Call the function specified by callback, which is called as

func(option, opt_str, value, parser, *args, **kwargs)

See section Option Callbacks for more detail.

• "help"

Prints a complete help message for all the options in the current option parser. The help message is
constructed from the usage string passed to OptionParser’s constructor and the help string passed to
every option.

If no help string is supplied for an option, it will still be listed in the help message. To omit an option
entirely, use the special value optparse.SUPPRESS_HELP.

optparse automatically adds a help option to all OptionParsers, so you do not normally need to create
one.

Example:

from optparse import OptionParser, SUPPRESS_HELP

usually, a help option is added automatically, but that can
be suppressed using the add_help_option argument
parser = OptionParser(add_help_option=False)

parser.add_option("-h", "--help", action="help")
parser.add_option("-v", action="store_true", dest="verbose",

help="Be moderately verbose")
parser.add_option("--file", dest="filename",

help="Input file to read data from")
parser.add_option("--secret", help=SUPPRESS_HELP)

If optparse sees either -h or --help on the command line, it will print something like the following help
message to stdout (assuming sys.argv[0] is "foo.py"):

36.1. optparse — Parser for command line options 1741

The Python Library Reference, Release 3.5.7

Usage: foo.py [options]

Options:
-h, --help Show this help message and exit
-v Be moderately verbose
--file=FILENAME Input file to read data from

After printing the help message, optparse terminates your process with sys.exit(0).

• "version"

Prints the version number supplied to the OptionParser to stdout and exits. The version number
is actually formatted and printed by the print_version() method of OptionParser. Generally only
relevant if the version argument is supplied to the OptionParser constructor. As with help options,
you will rarely create version options, since optparse automatically adds them when needed.

Standard option types

optparse has five built-in option types: "string", "int", "choice", "float" and "complex". If you need to add
new option types, see section Extending optparse.

Arguments to string options are not checked or converted in any way: the text on the command line is stored
in the destination (or passed to the callback) as-is.

Integer arguments (type "int") are parsed as follows:

• if the number starts with 0x, it is parsed as a hexadecimal number

• if the number starts with 0, it is parsed as an octal number

• if the number starts with 0b, it is parsed as a binary number

• otherwise, the number is parsed as a decimal number

The conversion is done by calling int() with the appropriate base (2, 8, 10, or 16). If this fails, so will
optparse, although with a more useful error message.

"float" and "complex" option arguments are converted directly with float() and complex(), with similar
error-handling.

"choice" options are a subtype of "string" options. The choices option attribute (a sequence of strings) defines
the set of allowed option arguments. optparse.check_choice() compares user-supplied option arguments
against this master list and raises OptionValueError if an invalid string is given.

Parsing arguments

The whole point of creating and populating an OptionParser is to call its parse_args() method:

(options, args) = parser.parse_args(args=None, values=None)

where the input parameters are

args the list of arguments to process (default: sys.argv[1:])

values an optparse.Values object to store option arguments in (default: a new instance of Values) – if you
give an existing object, the option defaults will not be initialized on it

and the return values are

options the same object that was passed in as values, or the optparse.Values instance created by optparse

1742 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

args the leftover positional arguments after all options have been processed

The most common usage is to supply neither keyword argument. If you supply values, it will be modified
with repeated setattr() calls (roughly one for every option argument stored to an option destination) and
returned by parse_args().

If parse_args() encounters any errors in the argument list, it calls the OptionParser’s error() method with
an appropriate end-user error message. This ultimately terminates your process with an exit status of 2 (the
traditional Unix exit status for command-line errors).

Querying and manipulating your option parser

The default behavior of the option parser can be customized slightly, and you can also poke around your
option parser and see what’s there. OptionParser provides several methods to help you out:

OptionParser.disable_interspersed_args()
Set parsing to stop on the first non-option. For example, if -a and -b are both simple options that take
no arguments, optparse normally accepts this syntax:

prog -a arg1 -b arg2

and treats it as equivalent to

prog -a -b arg1 arg2

To disable this feature, call disable_interspersed_args(). This restores traditional Unix syntax, where
option parsing stops with the first non-option argument.

Use this if you have a command processor which runs another command which has options of its own
and you want to make sure these options don’t get confused. For example, each command might have
a different set of options.

OptionParser.enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command argu-
ments. This is the default behavior.

OptionParser.get_option(opt_str)
Returns the Option instance with the option string opt_str, or None if no options have that option
string.

OptionParser.has_option(opt_str)
Return true if the OptionParser has an option with option string opt_str (e.g., -q or --verbose).

OptionParser.remove_option(opt_str)
If the OptionParser has an option corresponding to opt_str, that option is removed. If that option
provided any other option strings, all of those option strings become invalid. If opt_str does not occur
in any option belonging to this OptionParser, raises ValueError.

Conflicts between options

If you’re not careful, it’s easy to define options with conflicting option strings:

parser.add_option("-n", "--dry-run", ...)
...
parser.add_option("-n", "--noisy", ...)

36.1. optparse — Parser for command line options 1743

The Python Library Reference, Release 3.5.7

(This is particularly true if you’ve defined your own OptionParser subclass with some standard options.)

Every time you add an option, optparse checks for conflicts with existing options. If it finds any, it invokes the
current conflict-handling mechanism. You can set the conflict-handling mechanism either in the constructor:

parser = OptionParser(..., conflict_handler=handler)

or with a separate call:

parser.set_conflict_handler(handler)

The available conflict handlers are:

"error" (default) assume option conflicts are a programming error and raise OptionConflictError

"resolve" resolve option conflicts intelligently (see below)

As an example, let’s define an OptionParser that resolves conflicts intelligently and add conflicting options
to it:

parser = OptionParser(conflict_handler="resolve")
parser.add_option("-n", "--dry-run", ..., help="do no harm")
parser.add_option("-n", "--noisy", ..., help="be noisy")

At this point, optparse detects that a previously-added option is already using the -n option string. Since
conflict_handler is "resolve", it resolves the situation by removing -n from the earlier option’s list of option
strings. Now --dry-run is the only way for the user to activate that option. If the user asks for help, the help
message will reflect that:

Options:
--dry-run do no harm
...
-n, --noisy be noisy

It’s possible to whittle away the option strings for a previously-added option until there are none left, and the
user has no way of invoking that option from the command-line. In that case, optparse removes that option
completely, so it doesn’t show up in help text or anywhere else. Carrying on with our existing OptionParser:

parser.add_option("--dry-run", ..., help="new dry-run option")

At this point, the original -n/--dry-run option is no longer accessible, so optparse removes it, leaving this
help text:

Options:
...
-n, --noisy be noisy
--dry-run new dry-run option

Cleanup

OptionParser instances have several cyclic references. This should not be a problem for Python’s garbage
collector, but you may wish to break the cyclic references explicitly by calling destroy() on your OptionParser
once you are done with it. This is particularly useful in long-running applications where large object graphs
are reachable from your OptionParser.

1744 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

Other methods

OptionParser supports several other public methods:

OptionParser.set_usage(usage)
Set the usage string according to the rules described above for the usage constructor keyword argument.
Passing None sets the default usage string; use optparse.SUPPRESS_USAGE to suppress a usage
message.

OptionParser.print_usage(file=None)
Print the usage message for the current program (self.usage) to file (default stdout). Any occurrence
of the string %prog in self.usage is replaced with the name of the current program. Does nothing if
self.usage is empty or not defined.

OptionParser.get_usage()
Same as print_usage() but returns the usage string instead of printing it.

OptionParser.set_defaults(dest=value, ...)
Set default values for several option destinations at once. Using set_defaults() is the preferred way to
set default values for options, since multiple options can share the same destination. For example, if
several “mode” options all set the same destination, any one of them can set the default, and the last
one wins:

parser.add_option("--advanced", action="store_const",
dest="mode", const="advanced",
default="novice") # overridden below

parser.add_option("--novice", action="store_const",
dest="mode", const="novice",
default="advanced") # overrides above setting

To avoid this confusion, use set_defaults():

parser.set_defaults(mode="advanced")
parser.add_option("--advanced", action="store_const",

dest="mode", const="advanced")
parser.add_option("--novice", action="store_const",

dest="mode", const="novice")

36.1.4 Option Callbacks

When optparse’s built-in actions and types aren’t quite enough for your needs, you have two choices: extend
optparse or define a callback option. Extending optparse is more general, but overkill for a lot of simple
cases. Quite often a simple callback is all you need.

There are two steps to defining a callback option:

• define the option itself using the "callback" action

• write the callback; this is a function (or method) that takes at least four arguments, as described below

Defining a callback option

As always, the easiest way to define a callback option is by using the OptionParser.add_option() method.
Apart from action, the only option attribute you must specify is callback, the function to call:

parser.add_option("-c", action="callback", callback=my_callback)

36.1. optparse — Parser for command line options 1745

The Python Library Reference, Release 3.5.7

callback is a function (or other callable object), so you must have already defined my_callback() when you
create this callback option. In this simple case, optparse doesn’t even know if -c takes any arguments, which
usually means that the option takes no arguments—the mere presence of -c on the command-line is all it
needs to know. In some circumstances, though, you might want your callback to consume an arbitrary
number of command-line arguments. This is where writing callbacks gets tricky; it’s covered later in this
section.

optparse always passes four particular arguments to your callback, and it will only pass additional arguments
if you specify them via callback_args and callback_kwargs. Thus, the minimal callback function signature
is:

def my_callback(option, opt, value, parser):

The four arguments to a callback are described below.

There are several other option attributes that you can supply when you define a callback option:

type has its usual meaning: as with the "store" or "append" actions, it instructs optparse to consume
one argument and convert it to type. Rather than storing the converted value(s) anywhere, though,
optparse passes it to your callback function.

nargs also has its usual meaning: if it is supplied and > 1, optparse will consume nargs arguments, each of
which must be convertible to type. It then passes a tuple of converted values to your callback.

callback_args a tuple of extra positional arguments to pass to the callback

callback_kwargs a dictionary of extra keyword arguments to pass to the callback

How callbacks are called

All callbacks are called as follows:

func(option, opt_str, value, parser, *args, **kwargs)

where

option is the Option instance that’s calling the callback

opt_str is the option string seen on the command-line that’s triggering the callback. (If an abbreviated long
option was used, opt_str will be the full, canonical option string—e.g. if the user puts --foo on the
command-line as an abbreviation for --foobar, then opt_str will be "--foobar".)

value is the argument to this option seen on the command-line. optparse will only expect an argument if
type is set; the type of value will be the type implied by the option’s type. If type for this option is
None (no argument expected), then value will be None. If nargs > 1, value will be a tuple of values of
the appropriate type.

parser is the OptionParser instance driving the whole thing, mainly useful because you can access some
other interesting data through its instance attributes:

parser.largs the current list of leftover arguments, ie. arguments that have been consumed but are
neither options nor option arguments. Feel free to modify parser.largs, e.g. by adding more
arguments to it. (This list will become args, the second return value of parse_args().)

parser.rargs the current list of remaining arguments, ie. with opt_str and value (if applicable) removed,
and only the arguments following them still there. Feel free to modify parser.rargs, e.g. by
consuming more arguments.

parser.values the object where option values are by default stored (an instance of opt-
parse.OptionValues). This lets callbacks use the same mechanism as the rest of optparse for

1746 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

storing option values; you don’t need to mess around with globals or closures. You can also access
or modify the value(s) of any options already encountered on the command-line.

args is a tuple of arbitrary positional arguments supplied via the callback_args option attribute.

kwargs is a dictionary of arbitrary keyword arguments supplied via callback_kwargs.

Raising errors in a callback

The callback function should raise OptionValueError if there are any problems with the option or its argu-
ment(s). optparse catches this and terminates the program, printing the error message you supply to stderr.
Your message should be clear, concise, accurate, and mention the option at fault. Otherwise, the user will
have a hard time figuring out what he did wrong.

Callback example 1: trivial callback

Here’s an example of a callback option that takes no arguments, and simply records that the option was
seen:

def record_foo_seen(option, opt_str, value, parser):
parser.values.saw_foo = True

parser.add_option("--foo", action="callback", callback=record_foo_seen)

Of course, you could do that with the "store_true" action.

Callback example 2: check option order

Here’s a slightly more interesting example: record the fact that -a is seen, but blow up if it comes after -b
in the command-line.

def check_order(option, opt_str, value, parser):
if parser.values.b:

raise OptionValueError("can't use -a after -b")
parser.values.a = 1

...
parser.add_option("-a", action="callback", callback=check_order)
parser.add_option("-b", action="store_true", dest="b")

Callback example 3: check option order (generalized)

If you want to re-use this callback for several similar options (set a flag, but blow up if -b has already been
seen), it needs a bit of work: the error message and the flag that it sets must be generalized.

def check_order(option, opt_str, value, parser):
if parser.values.b:

raise OptionValueError("can't use %s after -b" % opt_str)
setattr(parser.values, option.dest, 1)

...
parser.add_option("-a", action="callback", callback=check_order, dest='a')
parser.add_option("-b", action="store_true", dest="b")
parser.add_option("-c", action="callback", callback=check_order, dest='c')

36.1. optparse — Parser for command line options 1747

The Python Library Reference, Release 3.5.7

Callback example 4: check arbitrary condition

Of course, you could put any condition in there—you’re not limited to checking the values of already-defined
options. For example, if you have options that should not be called when the moon is full, all you have to
do is this:

def check_moon(option, opt_str, value, parser):
if is_moon_full():

raise OptionValueError("%s option invalid when moon is full"
% opt_str)

setattr(parser.values, option.dest, 1)
...
parser.add_option("--foo",

action="callback", callback=check_moon, dest="foo")

(The definition of is_moon_full() is left as an exercise for the reader.)

Callback example 5: fixed arguments

Things get slightly more interesting when you define callback options that take a fixed number of arguments.
Specifying that a callback option takes arguments is similar to defining a "store" or "append" option: if you
define type, then the option takes one argument that must be convertible to that type; if you further define
nargs, then the option takes nargs arguments.

Here’s an example that just emulates the standard "store" action:

def store_value(option, opt_str, value, parser):
setattr(parser.values, option.dest, value)

...
parser.add_option("--foo",

action="callback", callback=store_value,
type="int", nargs=3, dest="foo")

Note that optparse takes care of consuming 3 arguments and converting them to integers for you; all you
have to do is store them. (Or whatever; obviously you don’t need a callback for this example.)

Callback example 6: variable arguments

Things get hairy when you want an option to take a variable number of arguments. For this case, you must
write a callback, as optparse doesn’t provide any built-in capabilities for it. And you have to deal with
certain intricacies of conventional Unix command-line parsing that optparse normally handles for you. In
particular, callbacks should implement the conventional rules for bare -- and - arguments:

• either -- or - can be option arguments

• bare -- (if not the argument to some option): halt command-line processing and discard the --

• bare - (if not the argument to some option): halt command-line processing but keep the - (append it
to parser.largs)

If you want an option that takes a variable number of arguments, there are several subtle, tricky issues to
worry about. The exact implementation you choose will be based on which trade-offs you’re willing to make
for your application (which is why optparse doesn’t support this sort of thing directly).

Nevertheless, here’s a stab at a callback for an option with variable arguments:

1748 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

def vararg_callback(option, opt_str, value, parser):
assert value is None
value = []

def floatable(str):
try:

float(str)
return True

except ValueError:
return False

for arg in parser.rargs:
stop on --foo like options
if arg[:2] == "--" and len(arg) > 2:

break
stop on -a, but not on -3 or -3.0
if arg[:1] == "-" and len(arg) > 1 and not floatable(arg):

break
value.append(arg)

del parser.rargs[:len(value)]
setattr(parser.values, option.dest, value)

...
parser.add_option("-c", "--callback", dest="vararg_attr",

action="callback", callback=vararg_callback)

36.1.5 Extending optparse

Since the two major controlling factors in how optparse interprets command-line options are the action and
type of each option, the most likely direction of extension is to add new actions and new types.

Adding new types

To add new types, you need to define your own subclass of optparse’s Option class. This class has a couple
of attributes that define optparse’s types: TYPES and TYPE_CHECKER.

Option.TYPES
A tuple of type names; in your subclass, simply define a new tuple TYPES that builds on the standard
one.

Option.TYPE_CHECKER
A dictionary mapping type names to type-checking functions. A type-checking function has the fol-
lowing signature:

def check_mytype(option, opt, value)

where option is an Option instance, opt is an option string (e.g., -f), and value is the string from
the command line that must be checked and converted to your desired type. check_mytype() should
return an object of the hypothetical type mytype. The value returned by a type-checking function
will wind up in the OptionValues instance returned by OptionParser.parse_args(), or be passed to a
callback as the value parameter.

Your type-checking function should raise OptionValueError if it encounters any problems. OptionVal-
ueError takes a single string argument, which is passed as-is to OptionParser’s error() method, which

36.1. optparse — Parser for command line options 1749

The Python Library Reference, Release 3.5.7

in turn prepends the program name and the string "error:" and prints everything to stderr before
terminating the process.

Here’s a silly example that demonstrates adding a "complex" option type to parse Python-style complex
numbers on the command line. (This is even sillier than it used to be, because optparse 1.3 added built-in
support for complex numbers, but never mind.)

First, the necessary imports:

from copy import copy
from optparse import Option, OptionValueError

You need to define your type-checker first, since it’s referred to later (in the TYPE_CHECKER class
attribute of your Option subclass):

def check_complex(option, opt, value):
try:

return complex(value)
except ValueError:

raise OptionValueError(
"option %s: invalid complex value: %r" % (opt, value))

Finally, the Option subclass:

class MyOption (Option):
TYPES = Option.TYPES + ("complex",)
TYPE_CHECKER = copy(Option.TYPE_CHECKER)
TYPE_CHECKER["complex"] = check_complex

(If we didn’t make a copy() of Option.TYPE_CHECKER, we would end up modifying the
TYPE_CHECKER attribute of optparse’s Option class. This being Python, nothing stops you from doing
that except good manners and common sense.)

That’s it! Now you can write a script that uses the new option type just like any other optparse-based script,
except you have to instruct your OptionParser to use MyOption instead of Option:

parser = OptionParser(option_class=MyOption)
parser.add_option("-c", type="complex")

Alternately, you can build your own option list and pass it to OptionParser; if you don’t use add_option()
in the above way, you don’t need to tell OptionParser which option class to use:

option_list = [MyOption("-c", action="store", type="complex", dest="c")]
parser = OptionParser(option_list=option_list)

Adding new actions

Adding new actions is a bit trickier, because you have to understand that optparse has a couple of classifi-
cations for actions:

“store” actions actions that result in optparse storing a value to an attribute of the current OptionValues
instance; these options require a dest attribute to be supplied to the Option constructor.

“typed” actions actions that take a value from the command line and expect it to be of a certain type; or
rather, a string that can be converted to a certain type. These options require a type attribute to the
Option constructor.

1750 Chapter 36. Superseded Modules

The Python Library Reference, Release 3.5.7

These are overlapping sets: some default “store” actions are "store", "store_const", "append", and "count",
while the default “typed” actions are "store", "append", and "callback".

When you add an action, you need to categorize it by listing it in at least one of the following class attributes
of Option (all are lists of strings):

Option.ACTIONS
All actions must be listed in ACTIONS.

Option.STORE_ACTIONS
“store” actions are additionally listed here.

Option.TYPED_ACTIONS
“typed” actions are additionally listed here.

Option.ALWAYS_TYPED_ACTIONS
Actions that always take a type (i.e. whose options always take a value) are additionally listed here.
The only effect of this is that optparse assigns the default type, "string", to options with no explicit
type whose action is listed in ALWAYS_TYPED_ACTIONS.

In order to actually implement your new action, you must override Option’s take_action() method and add
a case that recognizes your action.

For example, let’s add an "extend" action. This is similar to the standard "append" action, but instead of
taking a single value from the command-line and appending it to an existing list, "extend" will take multiple
values in a single comma-delimited string, and extend an existing list with them. That is, if --names is an
"extend" option of type "string", the command line

--names=foo,bar --names blah --names ding,dong

would result in a list

["foo", "bar", "blah", "ding", "dong"]

Again we define a subclass of Option:

class MyOption(Option):

ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)

def take_action(self, action, dest, opt, value, values, parser):
if action == "extend":

lvalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)

else:
Option.take_action(

self, action, dest, opt, value, values, parser)

Features of note:

• "extend" both expects a value on the command-line and stores that value somewhere, so it goes in
both STORE_ACTIONS and TYPED_ACTIONS.

• to ensure that optparse assigns the default type of "string" to "extend" actions, we put the "extend"
action in ALWAYS_TYPED_ACTIONS as well.

• MyOption.take_action() implements just this one new action, and passes control back to Option.
take_action() for the standard optparse actions.

36.1. optparse — Parser for command line options 1751

The Python Library Reference, Release 3.5.7

• values is an instance of the optparse_parser.Values class, which provides the very useful ensure_value()
method. ensure_value() is essentially getattr() with a safety valve; it is called as

values.ensure_value(attr, value)

If the attr attribute of values doesn’t exist or is None, then ensure_value() first sets it to value, and
then returns ‘value. This is very handy for actions like "extend", "append", and "count", all of which
accumulate data in a variable and expect that variable to be of a certain type (a list for the first two,
an integer for the latter). Using ensure_value() means that scripts using your action don’t have to
worry about setting a default value for the option destinations in question; they can just leave the
default as None and ensure_value() will take care of getting it right when it’s needed.

36.2 imp — Access the import internals

Source code: Lib/imp.py

Deprecated since version 3.4: The imp package is pending deprecation in favor of importlib.

This module provides an interface to the mechanisms used to implement the import statement. It defines
the following constants and functions:

imp.get_magic()
Return the magic string value used to recognize byte-compiled code files (.pyc files). (This value may
be different for each Python version.)

Deprecated since version 3.4: Use importlib.util.MAGIC_NUMBER instead.

imp.get_suffixes()
Return a list of 3-element tuples, each describing a particular type of module. Each triple has the form
(suffix, mode, type), where suffix is a string to be appended to the module name to form the filename
to search for, mode is the mode string to pass to the built-in open() function to open the file (this can
be 'r' for text files or 'rb' for binary files), and type is the file type, which has one of the values
PY_SOURCE, PY_COMPILED, or C_EXTENSION, described below.

Deprecated since version 3.3: Use the constants defined on importlib.machinery instead.

imp.find_module(name[, path])
Try to find the module name. If path is omitted or None, the list of directory names given by sys.path
is searched, but first a few special places are searched: the function tries to find a built-in module with
the given name (C_BUILTIN), then a frozen module (PY_FROZEN), and on some systems some
other places are looked in as well (on Windows, it looks in the registry which may point to a specific
file).

Otherwise, path must be a list of directory names; each directory is searched for files with any of the
suffixes returned by get_suffixes() above. Invalid names in the list are silently ignored (but all list
items must be strings).

If search is successful, the return value is a 3-element tuple (file, pathname, description):

file is an open file object positioned at the beginning, pathname is the pathname of the file found, and
description is a 3-element tuple as contained in the list returned by get_suffixes() describing the kind
of module found.

If the module does not live in a file, the returned file is None, pathname is the empty string, and the
description tuple contains empty strings for its suffix and mode; the module type is indicated as given

1752 Chapter 36. Superseded Modules

https://github.com/python/cpython/tree/3.5/Lib/imp.py

The Python Library Reference, Release 3.5.7

in parentheses above. If the search is unsuccessful, ImportError is raised. Other exceptions indicate
problems with the arguments or environment.

If the module is a package, file is None, pathname is the package path and the last item in the description
tuple is PKG_DIRECTORY.

This function does not handle hierarchical module names (names containing dots). In order to find
P.M, that is, submodule M of package P, use find_module() and load_module() to find and load
package P, and then use find_module() with the path argument set to P.__path__. When P itself
has a dotted name, apply this recipe recursively.

Deprecated since version 3.3: Use importlib.util.find_spec() instead unless Python 3.3 compatibility
is required, in which case use importlib.find_loader().

imp.load_module(name, file, pathname, description)
Load a module that was previously found by find_module() (or by an otherwise conducted search
yielding compatible results). This function does more than importing the module: if the module was
already imported, it will reload the module! The name argument indicates the full module name
(including the package name, if this is a submodule of a package). The file argument is an open file,
and pathname is the corresponding file name; these can be None and '', respectively, when the module
is a package or not being loaded from a file. The description argument is a tuple, as would be returned
by get_suffixes(), describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually Im-
portError) is raised.

Important: the caller is responsible for closing the file argument, if it was not None, even when an
exception is raised. This is best done using a try . . . finally statement.

Deprecated since version 3.3: If previously used in conjunction with imp.find_module() then consider
using importlib.import_module(), otherwise use the loader returned by the replacement you chose for
imp.find_module(). If you called imp.load_module() and related functions directly then use the classes
in importlib.machinery, e.g. importlib.machinery.SourceFileLoader(name, path).load_module().

imp.new_module(name)
Return a new empty module object called name. This object is not inserted in sys.modules.

Deprecated since version 3.4: Use types.ModuleType instead.

imp.reload(module)
Reload a previously imported module. The argument must be a module object, so it must have been
successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value
is the module object (the same as the module argument).

When reload(module) is executed:

• Python modules’ code is recompiled and the module-level code reexecuted, defining a new set
of objects which are bound to names in the module’s dictionary. The init function of extension
modules is not called a second time.

• As with all other objects in Python the old objects are only reclaimed after their reference counts
drop to zero.

• The names in the module namespace are updated to point to any new or changed objects.

• Other references to the old objects (such as names external to the module) are not rebound to
refer to the new objects and must be updated in each namespace where they occur if that is
desired.

There are a number of other caveats:

36.2. imp — Access the import internals 1753

The Python Library Reference, Release 3.5.7

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Re-
definitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a global table or cache of
objects — with a try statement it can test for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except
for sys, __main__ and builtins. In many cases, however, extension modules are not designed to be
initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from . . . import . . . , calling reload() for the
other module does not redefine the objects imported from it — one way around this is to re-execute
the from statement, another is to use import and qualified names (module.*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect
the method definitions of the instances — they continue to use the old class definition. The same is
true for derived classes.

Changed in version 3.3: Relies on both __name__ and __loader__ being defined on the module
being reloaded instead of just __name__.

Deprecated since version 3.4: Use importlib.reload() instead.

The following functions are conveniences for handling PEP 3147 byte-compiled file paths.

New in version 3.2.

imp.cache_from_source(path, debug_override=None)
Return the PEP 3147 path to the byte-compiled file associated with the source path. For example,
if path is /foo/bar/baz.py the return value would be /foo/bar/__pycache__/baz.cpython-32.pyc
for Python 3.2. The cpython-32 string comes from the current magic tag (see get_tag(); if sys.
implementation.cache_tag is not defined then NotImplementedError will be raised). By passing in
True or False for debug_override you can override the system’s value for __debug__, leading to
optimized bytecode.

path need not exist.

Changed in version 3.3: If sys.implementation.cache_tag is None, then NotImplementedError is raised.

Deprecated since version 3.4: Use importlib.util.cache_from_source() instead.

Changed in version 3.5: The debug_override parameter no longer creates a .pyo file.

imp.source_from_cache(path)
Given the path to a PEP 3147 file name, return the associated source code file path. For example,
if path is /foo/bar/__pycache__/baz.cpython-32.pyc the returned path would be /foo/bar/baz.py.
path need not exist, however if it does not conform to PEP 3147 format, a ValueError is raised. If
sys.implementation.cache_tag is not defined, NotImplementedError is raised.

Changed in version 3.3: Raise NotImplementedError when sys.implementation.cache_tag is not de-
fined.

Deprecated since version 3.4: Use importlib.util.source_from_cache() instead.

imp.get_tag()
Return the PEP 3147 magic tag string matching this version of Python’s magic number, as returned
by get_magic().

1754 Chapter 36. Superseded Modules

https://www.python.org/dev/peps/pep-3147
https://www.python.org/dev/peps/pep-3147
https://www.python.org/dev/peps/pep-3147
https://www.python.org/dev/peps/pep-3147
https://www.python.org/dev/peps/pep-3147

The Python Library Reference, Release 3.5.7

Deprecated since version 3.4: Use sys.implementation.cache_tag directly starting in Python 3.3.

The following functions help interact with the import system’s internal locking mechanism. Locking se-
mantics of imports are an implementation detail which may vary from release to release. However, Python
ensures that circular imports work without any deadlocks.

imp.lock_held()
Return True if the global import lock is currently held, else False. On platforms without threads,
always return False.

On platforms with threads, a thread executing an import first holds a global import lock, then sets up a
per-module lock for the rest of the import. This blocks other threads from importing the same module
until the original import completes, preventing other threads from seeing incomplete module objects
constructed by the original thread. An exception is made for circular imports, which by construction
have to expose an incomplete module object at some point.

Changed in version 3.3: The locking scheme has changed to per-module locks for the most part. A
global import lock is kept for some critical tasks, such as initializing the per-module locks.

Deprecated since version 3.4.

imp.acquire_lock()
Acquire the interpreter’s global import lock for the current thread. This lock should be used by import
hooks to ensure thread-safety when importing modules.

Once a thread has acquired the import lock, the same thread may acquire it again without blocking;
the thread must release it once for each time it has acquired it.

On platforms without threads, this function does nothing.

Changed in version 3.3: The locking scheme has changed to per-module locks for the most part. A
global import lock is kept for some critical tasks, such as initializing the per-module locks.

Deprecated since version 3.4.

imp.release_lock()
Release the interpreter’s global import lock. On platforms without threads, this function does nothing.

Changed in version 3.3: The locking scheme has changed to per-module locks for the most part. A
global import lock is kept for some critical tasks, such as initializing the per-module locks.

Deprecated since version 3.4.

The following constants with integer values, defined in this module, are used to indicate the search result of
find_module().

imp.PY_SOURCE
The module was found as a source file.

Deprecated since version 3.3.

imp.PY_COMPILED
The module was found as a compiled code object file.

Deprecated since version 3.3.

imp.C_EXTENSION
The module was found as dynamically loadable shared library.

Deprecated since version 3.3.

imp.PKG_DIRECTORY
The module was found as a package directory.

Deprecated since version 3.3.

36.2. imp — Access the import internals 1755

The Python Library Reference, Release 3.5.7

imp.C_BUILTIN
The module was found as a built-in module.

Deprecated since version 3.3.

imp.PY_FROZEN
The module was found as a frozen module.

Deprecated since version 3.3.

class imp.NullImporter(path_string)
The NullImporter type is a PEP 302 import hook that handles non-directory path strings by failing
to find any modules. Calling this type with an existing directory or empty string raises ImportError.
Otherwise, a NullImporter instance is returned.

Instances have only one method:

find_module(fullname[, path])
This method always returns None, indicating that the requested module could not be found.

Changed in version 3.3: None is inserted into sys.path_importer_cache instead of an instance of
NullImporter.

Deprecated since version 3.4: Insert None into sys.path_importer_cache instead.

36.2.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical
module names). (This implementation wouldn’t work in that version, since find_module() has been extended
and load_module() has been added in 1.4.)

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:

return sys.modules[name]
except KeyError:

pass

If any of the following calls raises an exception,
there's a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)

finally:
Since we may exit via an exception, close fp explicitly.
if fp:

fp.close()

1756 Chapter 36. Superseded Modules

https://www.python.org/dev/peps/pep-0302

CHAPTER

THIRTYSEVEN

UNDOCUMENTED MODULES

Here’s a quick listing of modules that are currently undocumented, but that should be documented. Feel
free to contribute documentation for them! (Send via email to docs@python.org.)

The idea and original contents for this chapter were taken from a posting by Fredrik Lundh; the specific
contents of this chapter have been substantially revised.

37.1 Platform specific modules

These modules are used to implement the os.path module, and are not documented beyond this mention.
There’s little need to document these.

ntpath — Implementation of os.path on Win32, Win64, and WinCE platforms.

posixpath — Implementation of os.path on POSIX.

1757

mailto:docs@python.org

The Python Library Reference, Release 3.5.7

1758 Chapter 37. Undocumented Modules

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be
executed interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or
within a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/
scripts/2to3. See 2to3 - Automated Python 2 to 3 code translation.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces
when other techniques like hasattr() would be clumsy or subtly wrong (for example with magic meth-
ods). ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are
still recognized by isinstance() and issubclass(); see the abc module documentation. Python comes
with many built-in ABCs for data structures (in the collections.abc module), numbers (in the numbers
module), streams (in the io module), import finders and loaders (in the importlib.abc module). You
can create your own ABCs with the abc module.

argument A value passed to a function (or method) when calling the function. There are two kinds of
argument:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed
as a value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in
the following calls to complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can
appear at the beginning of an argument list and/or be passed as elements of an iterable preceded
by *. For example, 3 and 5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the
rules governing this assignment. Syntactically, any expression can be used to represent an argument;
the evaluated value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and
parameters, and PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement
by defining __aenter__() and __aexit__() methods. Introduced by PEP 492.

1759

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492

The Python Library Reference, Release 3.5.7

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous
iterator from its __aiter__() method. Introduced by PEP 492.

asynchronous iterator An object that implements __aiter__() and __anext__() methods. __anext__
must return an awaitable object. async for resolves awaitable returned from asynchronous iterator’s
__anext__() method until it raises StopAsyncIteration exception. Introduced by PEP 492.

attribute A value associated with an object which is referenced by name using dotted expressions. For
example, if an object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an
__await__() method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in
binary mode ('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO
and gzip.GzipFile.

See also:

A text file reads and writes str objects.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous buffer. This
includes all bytes, bytearray, and array.array objects, as well as many common memoryview objects.
Bytes-like objects can be used for various operations that work with binary data; these include com-
pression, saving to a binary file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as
“read-write bytes-like objects”. Example mutable buffer objects include bytearray and a memoryview
of a bytearray. Other operations require the binary data to be stored in immutable objects (“read-only
bytes-like objects”); examples of these include bytes and a memoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program
in the CPython interpreter. The bytecode is also cached in .pyc files so that executing the same file
is faster the second time (recompilation from source to bytecode can be avoided). This “intermediate
language” is said to run on a virtual machine that executes the machine code corresponding to each
bytecode. Do note that bytecodes are not expected to work between different Python virtual machines,
nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions
which operate on instances of the class.

coercion The implicit conversion of an instance of one type to another during an operation which involves
two arguments of the same type. For example, int(3.15) converts the floating point number to the
integer 3, but in 3+4.5, each argument is of a different type (one int, one float), and both must be
converted to the same type before they can be added or it will raise a TypeError. Without coercion, all
arguments of even compatible types would have to be normalized to the same value by the programmer,
e.g., float(3)+4.5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a
sum of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit
(the square root of -1), often written i in mathematics or j in engineering. Python has built-in support
for complex numbers, which are written with this latter notation; the imaginary part is written with
a j suffix, e.g., 3+1j. To get access to complex equivalents of the math module, use cmath. Use of
complex numbers is a fairly advanced mathematical feature. If you’re not aware of a need for them,
it’s almost certain you can safely ignore them.

1760 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/~guido/

The Python Library Reference, Release 3.5.7

context manager An object which controls the environment seen in a with statement by defining __en-
ter__() and __exit__() methods. See PEP 343.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-
dimensional buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid
out in memory next to each other, in order of increasing indexes starting from zero. In multidimensional
C-contiguous arrays, the last index varies the fastest when visiting items in order of memory address.
However, in Fortran contiguous arrays, the first index varies the fastest.

coroutine Coroutines is a more generalized form of subroutines. Subroutines are entered at one point and
exited at another point. Coroutines can be entered, exited, and resumed at many different points.
They can be implemented with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with
the async def statement, and may contain await, async for, and async with keywords. These were
introduced by PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org.
The term “CPython” is used when necessary to distinguish this implementation from others such as
Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for
function definitions and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally,
using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but
if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key
to a deep understanding of Python because they are the basis for many features including functions,
methods, properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object
with __hash__() and __eq__() methods. Called a hash in Perl.

dictionary view The objects returned from dict.keys(), dict.values(), and dict.items() are called dictionary
views. They provide a dynamic view on the dictionary’s entries, which means that when the dictio-
nary changes, the view reflects these changes. To force the dictionary view to become a full list use
list(dictview). See Dictionary view objects.

docstring A string literal which appears as the first expression in a class, function or module. While ignored
when the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of
the enclosing class, function or module. Since it is available via introspection, it is the canonical place
for documentation of the object.

1761

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python Library Reference, Release 3.5.7

duck-typing A programming style which does not look at an object’s type to determine if it has the right
interface; instead, the method or attribute is simply called or used (“If it looks like a duck and quacks
like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code
improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type()
or isinstance(). (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employs hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast
style is characterized by the presence of many try and except statements. The technique contrasts
with the LBYL style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is
an accumulation of expression elements like literals, names, attribute access, operators or function
calls which all return a value. In contrast to many other languages, not all language constructs are
expressions. There are also statements which cannot be used as expressions, such as if. Assignments
are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with
user code.

file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or
to another type of storage or communication device (for example standard input/output, in-memory
buffers, sockets, pipes, etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files.
Their interfaces are defined in the io module. The canonical way to create a file object is by using the
open() function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and
path entry finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is
//. For example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true
division. Note that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more
arguments which may be used in the execution of the body. See also parameter, method, and the
function section.

function annotation An arbitrary metadata value associated with a function parameter or return value. Its
syntax is explained in section function. Annotations may be accessed via the __annotations__ special
attribute of a function object.

Python itself does not assign any particular meaning to function annotations. They are intended to
be interpreted by third-party libraries or tools. See PEP 3107, which describes some of their potential
uses.

__future__ A pseudo-module which programmers can use to enable new language features which are not
compatible with the current interpreter.

By importing the __future__ module and evaluating its variables, you can see when a new feature
was first added to the language and when it becomes the default:

1762 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-3107

The Python Library Reference, Release 3.5.7

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference
cycles.

generator A function which returns a generator iterator. It looks like a normal function except that it
contains yield expressions for producing a series of values usable in a for-loop or that can be retrieved
one at a time with the next() function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases
where the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.

Each yield temporarily suspends processing, remembering the location execution state (including local
variables and pending try-statements). When the generator iterator resumes, it picks-up where it
left-off (in contrast to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optional if expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed of multiple functions implementing the same operation for different
types. Which implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP 443.

GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread
executes Python bytecode at a time. This simplifies the CPython implementation by making the
object model (including critical built-in types such as dict) implicitly safe against concurrent access.
Locking the entire interpreter makes it easier for the interpreter to be multi-threaded, at the expense
of much of the parallelism afforded by multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL
when doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always
released when doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer gran-
ularity) have not been successful because performance suffered in the common single-processor case.
It is believed that overcoming this performance issue would make the implementation much more
complicated and therefore costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs
a __hash__() method), and can be compared to other objects (it needs an __eq__() method).
Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures
use the hash value internally.

All of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictio-
naries) are not. Objects which are instances of user-defined classes are hashable by default. They all
compare unequal (except with themselves), and their hash value is derived from their id().

1763

https://www.python.org/dev/peps/pep-0443

The Python Library Reference, Release 3.5.7

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environ-
ment which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an
object cannot be altered. A new object has to be created if a different value has to be stored. They
play an important role in places where a constant hash value is needed, for example as a key in a
dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to
import. During import, this list of locations usually comes from sys.path, but for subpackages it may
also come from the parent package’s __path__ attribute.

importing The process by which Python code in one module is made available to Python code in another
module.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at
the interpreter prompt, immediately execute them and see their results. Just launch python with no
arguments (possibly by selecting it from your computer’s main menu). It is a very powerful way to
test out new ideas or inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can
be blurry because of the presence of the bytecode compiler. This means that source files can be run
directly without explicitly creating an executable which is then run. Interpreted languages typically
have a shorter development/debug cycle than compiled ones, though their programs generally also run
more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it
gradually releases all allocated resources, such as modules and various critical internal structures. It
also makes several calls to the garbage collector. This can trigger the execution of code in user-defined
destructors or weakref callbacks. Code executed during the shutdown phase can encounter various
exceptions as the resources it relies on may not function anymore (common examples are library
modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main__ module or the script being run has
finished executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of
any classes you define with an __iter__() or __getitem__() method. Iterables can be used in a for
loop and in many other places where a sequence is needed (zip(), map(), . . .). When an iterable object
is passed as an argument to the built-in function iter(), it returns an iterator for the object. This
iterator is good for one pass over the set of values. When using iterables, it is usually not necessary
to call iter() or deal with iterator objects yourself. The for statement does that automatically for you,
creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also
iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or
passing it to the built-in function next()) return successive items in the stream. When no more data
are available a StopIteration exception is raised instead. At this point, the iterator object is exhausted
and any further calls to its __next__() method just raise StopIteration again. Iterators are required
to have an __iter__() method that returns the iterator object itself so every iterator is also iterable
and may be used in most places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a list) produces a fresh new
iterator each time you pass it to the iter() function or use it in a for loop. Attempting this with an
iterator will just return the same exhausted iterator object used in the previous iteration pass, making
it appear like an empty container.

1764 Appendix A. Glossary

The Python Library Reference, Release 3.5.7

More information can be found in Iterator Types.

key function A key function or collation function is a callable that returns a value used for sorting or
ordering. For example, locale.strxfrm() is used to produce a sort key that is aware of locale specific
sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped.
They include min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.nlargest(),
and itertools.groupby().

There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression
such as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors:
attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how to create
and use key functions.

keyword argument See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function
is called. The syntax to create a lambda function is lambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or
lookups. This style contrasts with the EAFP approach and is characterized by the presence of many
if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between
“the looking” and “the leaping”. For example, the code, if key in mapping: return mapping[key] can
fail if another thread removes key from mapping after the test, but before the lookup. This issue can
be solved with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a
linked list since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with
the results. result = ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list of strings
containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted,
all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

mapping A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but
different from path entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base
classes. The metaclass is responsible for taking those three arguments and creating the class. Most
object oriented programming languages provide a default implementation. What makes Python special
is that it is possible to create custom metaclasses. Most users never need this tool, but when the need
arises, metaclasses can provide powerful, elegant solutions. They have been used for logging attribute
access, adding thread-safety, tracking object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class,
the method will get the instance object as its first argument (which is usually called self). See function
and nested scope.

1765

https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.7

method resolution order Method Resolution Order is the order in which base classes are searched for a
member during lookup. See The Python 2.3 Method Resolution Order for details of the algorithm
used by the Python interpreter since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace con-
taining arbitrary Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time.localtime() returns a tuple-like object where the year is accessible either with an index
such as t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple(). The latter approach automatically provides extra features such as a self-documenting
representation like Employee(name='jones', title='programmer').

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functions builtins.open and os.
open() are distinguished by their namespaces. Namespaces also aid readability and maintainability by
making it clear which module implements a function. For instance, writing random.seed() or itertools.
islice() makes it clear that those functions are implemented by the random and itertools modules,
respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace
packages may have no physical representation, and specifically are not like a regular package because
they have no __init__.py file.

See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined
inside another function can refer to variables in the outer function. Note that nested scopes by default
work only for reference and not for assignment. Local variables both read and write in the innermost
scope. Likewise, global variables read and write to the global namespace. The nonlocal allows writing
to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python ver-
sions, only new-style classes could use Python’s newer, versatile features like __slots__, descriptors,
properties, __getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base
class of any new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package
is a Python module with an __path__ attribute.

See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases,
arguments) that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword
argument. This is the default kind of parameter, for example foo and bar in the following:

1766 Appendix A. Glossary

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-0420

The Python Library Reference, Release 3.5.7

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no
syntax for defining positional-only parameters. However, some built-in functions have positional-
only parameters (e.g. abs()).

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only pa-
rameters can be defined by including a single var-positional parameter or bare * in the parameter
list of the function definition before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in
addition to any positional arguments already accepted by other parameters). Such a parameter
can be defined by prepending the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to
any keyword arguments already accepted by other parameters). Such a parameter can be defined
by prepending the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some
optional arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and
parameters, the inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for
importing.

path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows
how to locate modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to
find modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace
package, as defined in PEP 420.

positional argument See argument.

provisional API A provisional API is one which has been deliberately excluded from the standard library’s
backwards compatibility guarantees. While major changes to such interfaces are not expected, as
long as they are marked provisional, backwards incompatible changes (up to and including removal
of the interface) may occur if deemed necessary by core developers. Such changes will not be made
gratuitously – they will occur only if serious fundamental flaws are uncovered that were missed prior
to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” -
every attempt will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic
design errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.

1767

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411

The Python Library Reference, Release 3.5.7

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common
idiom in Python is to loop over all elements of an iterable using a for statement. Many other languages
don’t have this type of construct, so people unfamiliar with Python sometimes use a numerical counter
instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

qualified name A dotted name showing the “path” from a module’s global scope to a class, function or method
defined in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name
is the same as the object’s name:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module,
including any parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of
the CPython implementation. The sys module defines a getrefcount() function that programmers can
call to return the reference count for a particular object.

regular package A traditional package, such as a directory containing an __init__.py file.

See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right
and is best reserved for rare cases where there are large numbers of instances in a memory-critical
application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__()
special method and defines a __len__() method that returns the length of the sequence. Some built-
in sequence types are list, str, tuple, and bytes. Note that dict also supports __getitem__() and
__len__(), but is considered a mapping rather than a sequence because the lookups use arbitrary
immutable keys rather than integers.

1768 Appendix A. Glossary

https://www.python.org/dev/peps/pep-3155

The Python Library Reference, Release 3.5.7

The collections.abc.Sequence abstract base class defines a much richer interface that goes beyond just
__getitem__() and __len__(), adding count(), index(), __contains__(), and __reversed__().
Types that implement this expanded interface can be registered explicitly using register().

single dispatch A form of generic function dispatch where the implementation is chosen based on the type
of a single argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation,
[] with colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket
(subscript) notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such
as addition. Such methods have names starting and ending with double underscores. Special methods
are documented in specialnames.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one of
several constructs with a keyword, such as if, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similar to named tuple
in that elements can either be accessed either by index or as an attribute. However, they do not have
any of the named tuple methods like _make() or _asdict(). Examples of struct sequences include
sys.float_info and the return value of os.stat().

text encoding A codec which encodes Unicode strings to bytes.

text file A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented
datastream and handles the text encoding automatically. Examples of text files are files opened in text
mode ('r' or 'w'), sys.stdin, sys.stdout, and instances of io.StringIO.

See also:

A binary file reads and write bytes objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostro-
phe (‘). While they don’t provide any functionality not available with single-quoted strings, they are
useful for a number of reasons. They allow you to include unescaped single and double quotes within
a string and they can span multiple lines without the use of the continuation character, making them
especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s
type is accessible as its __class__ attribute or can be retrieved with type(obj).

universal newlines A manner of interpreting text streams in which all of the following are recognized as
ending a line: the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old
Macintosh convention '\r'. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional
use.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications
to install and upgrade Python distribution packages without interfering with the behaviour of other
Python applications running on the same system.

See also scripts-pyvenv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode
emitted by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and
using the language. The listing can be found by typing “import this” at the interactive prompt.

1769

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

The Python Library Reference, Release 3.5.7

1770 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically
written for the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If
you want to contribute, please take a look at the reporting-bugs page for information on how to do so. New
volunteers are always welcome!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python docu-
mentation. See Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful
documentation – Thank You!

1771

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.5/Misc/ACKS

The Python Library Reference, Release 3.5.7

1772 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
https://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s
principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI,
see https://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen
PythonLabs team. In October of the same year, the PythonLabs team moved to Digital Creations (now
Zope Corporation; see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see https:
//www.python.org/psf/) was formed, a non-profit organization created specifically to own Python-related
Intellectual Property. Zope Corporation is a sponsoring member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Histor-
ically, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the
various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses,
unlike the GPL, let you distribute a modified version without making your changes open source. The GPL-
compatible licenses make it possible to combine Python with other software that is released under the GPL;
the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases
possible.

1773

https://www.cwi.nl/
https://www.cnri.reston.va.us/
http://www.zope.com/
https://www.python.org/psf/
https://www.python.org/psf/
https://opensource.org/

The Python Library Reference, Release 3.5.7

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.5.7

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and
the Individual or Organization ("Licensee") accessing and otherwise using Python
3.5.7 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.5.7 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice of
copyright, i.e., "Copyright © 2001-2019 Python Software Foundation; All Rights
Reserved" are retained in Python 3.5.7 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.5.7 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python
3.5.7.

4. PSF is making Python 3.5.7 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY␣

→˓REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR␣

→˓THAT THE
USE OF PYTHON 3.5.7 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.5.7
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

→˓OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.5.7, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between PSF and Licensee. This License
Agreement does not grant permission to use PSF trademarks or trade name in a
trademark sense to endorse or promote products or services of Licensee, or any
third party.

8. By copying, installing or otherwise using Python 3.5.7, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1774 Appendix C. History and License

The Python Library Reference, Release 3.5.7

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

→˓OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 1775

The Python Library Reference, Release 3.5.7

(continued from previous page)

prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright

(continues on next page)

1776 Appendix C. History and License

The Python Library Reference, Release 3.5.7

(continued from previous page)

notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software
incorporated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/
~m-mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 1777

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Library Reference, Release 3.5.7

(continued from previous page)

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate source
files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \
| The Regents of the University of California. |
| All rights reserved. |
| |

(continues on next page)

1778 Appendix C. History and License

http://www.wide.ad.jp/

The Python Library Reference, Release 3.5.7

(continued from previous page)

| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 1779

The Python Library Reference, Release 3.5.7

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.6 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

1780 Appendix C. History and License

The Python Library Reference, Release 3.5.7

C.3.7 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.8 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 1781

The Python Library Reference, Release 3.5.7

(continued from previous page)

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.10 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(continues on next page)

1782 Appendix C. History and License

The Python Library Reference, Release 3.5.7

(continued from previous page)

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 SipHash24

The file Python/pyhash.c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algo-
rithm. The contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and
from strings, is derived from the file of the same name by David M. Gay, currently available from http:
//www.netlib.org/fp/. The original file, as retrieved on March 16, 2009, contains the following copyright
and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 1783

http://www.netlib.org/fp/
http://www.netlib.org/fp/

The Python Library Reference, Release 3.5.7

(continued from previous page)

*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy
of the OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/*␣
→˓==

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

(continues on next page)

1784 Appendix C. History and License

The Python Library Reference, Release 3.5.7

(continued from previous page)

*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*␣

→˓==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 1785

The Python Library Reference, Release 3.5.7

(continued from previous page)

* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1786 Appendix C. History and License

The Python Library Reference, Release 3.5.7

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system
is too old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenses and Acknowledgements for Incorporated Software 1787

The Python Library Reference, Release 3.5.7

C.3.17 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.18 libmpdec

The _decimal Module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(continues on next page)

1788 Appendix C. History and License

The Python Library Reference, Release 3.5.7

(continued from previous page)

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 1789

The Python Library Reference, Release 3.5.7

1790 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2019 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

1791

The Python Library Reference, Release 3.5.7

1792 Appendix D. Copyright

BIBLIOGRAPHY

[C99] ISO/IEC 9899:1999. “Programming languages – C.” A public draft of this standard is available at
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf.

1793

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

The Python Library Reference, Release 3.5.7

1794 Bibliography

PYTHON MODULE INDEX

_
__future__, 1591
__main__, 1562
_dummy_thread, 790
_thread, 788

a
abc, 1579
aifc, 1232
argparse, 569
array, 228
ast, 1649
asynchat, 914
asyncio, 850
asyncore, 910
atexit, 1583
audioop, 1229

b
base64, 1014
bdb, 1489
binascii, 1018
binhex, 1017
bisect, 226
builtins, 1561
bz2, 439

c
calendar, 198
cgi, 1087
cgitb, 1094
chunk, 1240
cmath, 271
cmd, 1299
code, 1615
codecs, 152
codeop, 1617
collections, 202
collections.abc, 218
colorsys, 1241
compileall, 1666
concurrent.futures, 762

configparser, 473
contextlib, 1567
copy, 242
copyreg, 402
cProfile, 1504
crypt (Unix), 1710
csv, 467
ctypes, 673
curses (Unix), 641
curses.ascii, 660
curses.panel, 663
curses.textpad, 659

d
datetime, 171
dbm, 407
dbm.dumb, 410
dbm.gnu (Unix), 408
dbm.ndbm (Unix), 409
decimal, 274
difflib, 122
dis, 1668
distutils, 1527
doctest, 1368
dummy_threading, 787

e
email, 927
email.charset, 964
email.contentmanager, 954
email.encoders, 966
email.errors, 966
email.generator, 939
email.header, 961
email.headerregistry, 949
email.iterators, 970
email.message, 927
email.mime, 959
email.parser, 936
email.policy, 942
email.utils, 968
encodings.idna, 168

1795

The Python Library Reference, Release 3.5.7

encodings.mbcs, 169
encodings.utf_8_sig, 169
ensurepip, 1527
enum, 250
errno, 667

f
faulthandler, 1493
fcntl (Unix), 1715
filecmp, 370
fileinput, 363
fnmatch, 378
formatter, 1683
fpectl (Unix), 1613
fractions, 301
ftplib, 1139
functools, 329

g
gc, 1592
getopt, 600
getpass, 640
gettext, 1249
glob, 377
grp (Unix), 1710
gzip, 437

h
hashlib, 499
heapq, 222
hmac, 502
html, 1023
html.entities, 1028
html.parser, 1023
http, 1131
http.client, 1133
http.cookiejar, 1193
http.cookies, 1190
http.server, 1184

i
imaplib, 1147
imghdr, 1242
imp, 1752
importlib, 1627
importlib.abc, 1630
importlib.machinery, 1635
importlib.util, 1640
inspect, 1595
io, 549
ipaddress, 1215
itertools, 315

j
json, 983
json.tool, 991

k
keyword, 1659

l
lib2to3, 1480
linecache, 379
locale, 1257
logging, 602
logging.config, 618
logging.handlers, 628
lzma, 442

m
macpath, 388
mailbox, 993
mailcap, 992
marshal, 405
math, 266
mimetypes, 1011
mmap, 922
modulefinder, 1624
msilib (Windows), 1689
msvcrt (Windows), 1694
multiprocessing, 719
multiprocessing.connection, 748
multiprocessing.dummy, 753
multiprocessing.managers, 740
multiprocessing.pool, 746
multiprocessing.sharedctypes, 737

n
netrc, 491
nis (Unix), 1722
nntplib, 1154
numbers, 263

o
operator, 335
optparse, 1725
os, 505
os.path, 359
ossaudiodev (Linux, FreeBSD), 1243

p
parser, 1645
pathlib, 343
pdb, 1496
pickle, 389
pickletools, 1680
pipes (Unix), 1717

1796 Python Module Index

The Python Library Reference, Release 3.5.7

pkgutil, 1621
platform, 664
plistlib, 495
poplib, 1145
posix (Unix), 1707
pprint, 243
profile, 1504
pstats, 1506
pty (Linux), 1714
pwd (Unix), 1708
py_compile, 1665
pyclbr, 1663
pydoc, 1367

q
queue, 785
quopri, 1020

r
random, 304
re, 103
readline (Unix), 140
reprlib, 248
resource (Unix), 1718
rlcompleter, 144
runpy, 1625

s
sched, 783
select, 839
selectors, 846
shelve, 403
shlex, 1304
shutil, 380
signal, 916
site, 1610
smtpd, 1167
smtplib, 1160
sndhdr, 1243
socket, 791
socketserver, 1176
spwd (Unix), 1709
sqlite3, 411
ssl, 811
stat, 365
statistics, 308
string, 93
stringprep, 139
struct, 147
subprocess, 768
sunau, 1235
symbol, 1657
symtable, 1654
sys, 1543

sysconfig, 1558
syslog (Unix), 1723

t
tabnanny, 1663
tarfile, 455
telnetlib, 1170
tempfile, 372
termios (Unix), 1712
test, 1480
test.support, 1483
textwrap, 133
threading, 707
time, 561
timeit, 1510
tkinter, 1309
tkinter.scrolledtext (Tk), 1342
tkinter.tix, 1337
tkinter.ttk, 1320
token, 1657
tokenize, 1659
trace, 1515
traceback, 1585
tracemalloc, 1517
tty (Unix), 1713
turtle, 1265
turtledemo, 1297
types, 239
typing, 1353

u
unicodedata, 137
unittest, 1392
unittest.mock, 1421
urllib, 1104
urllib.error, 1130
urllib.parse, 1123
urllib.request, 1105
urllib.response, 1122
urllib.robotparser, 1131
uu, 1020
uuid, 1173

v
venv, 1529

w
warnings, 1562
wave, 1237
weakref, 231
webbrowser, 1085
winreg (Windows), 1696
winsound (Windows), 1704
wsgiref, 1095

Python Module Index 1797

The Python Library Reference, Release 3.5.7

wsgiref.handlers, 1100
wsgiref.headers, 1097
wsgiref.simple_server, 1098
wsgiref.util, 1095
wsgiref.validate, 1099

x
xdrlib, 492
xml, 1029
xml.dom, 1046
xml.dom.minidom, 1056
xml.dom.pulldom, 1061
xml.etree.ElementTree, 1030
xml.parsers.expat, 1074
xml.parsers.expat.errors, 1081
xml.parsers.expat.model, 1081
xml.sax, 1062
xml.sax.handler, 1064
xml.sax.saxutils, 1069
xml.sax.xmlreader, 1070
xmlrpc.client, 1202
xmlrpc.server, 1210

z
zipapp, 1537
zipfile, 448
zipimport, 1619
zlib, 433

1798 Python Module Index

INDEX

Symbols
! (pdb command), 1501
!=

operator, 28
*

operator, 29
**

operator, 29
+

operator, 29
-

operator, 29
–create <tarfile> <source1> ... <sourceN>

tarfile command line option, 462
–details

inspect command line option, 1610
–extract <tarfile> [<output_dir>]

tarfile command line option, 462
–help

trace command line option, 1515
–ignore-dir=<dir>

trace command line option, 1516
–ignore-module=<mod>

trace command line option, 1516
–info

zipapp command line option, 1538
–list <tarfile>

tarfile command line option, 462
–locals

unittest command line option, 1395
–sort-keys

command line option, 992
–test <tarfile>

tarfile command line option, 462
–user-base

site command line option, 1612
–user-site

site command line option, 1612
–version

trace command line option, 1515
-C, –coverdir=<dir>

trace command line option, 1516

-R, –no-report
trace command line option, 1516

-T, –trackcalls
trace command line option, 1515

-a, –annotate
pickletools command line option, 1681

-b
compileall command line option, 1666

-b, –buffer
unittest command line option, 1395

-c <tarfile> <source1> ... <sourceN>
tarfile command line option, 462

-c <zipfile> <source1> ... <sourceN>
zipfile command line option, 454

-c, –catch
unittest command line option, 1395

-c, –clock
timeit command line option, 1513

-c, –count
trace command line option, 1515

-d destdir
compileall command line option, 1666

-e <tarfile> [<output_dir>]
tarfile command line option, 462

-e <zipfile> <output_dir>
zipfile command line option, 455

-e, –exact
tokenize command line option, 1661

-f
compileall command line option, 1666

-f, –failfast
unittest command line option, 1395

-f, –file=<file>
trace command line option, 1516

-g, –timing
trace command line option, 1516

-h, –help
command line option, 992
timeit command line option, 1513
tokenize command line option, 1661
zipapp command line option, 1538

-i list

1799

The Python Library Reference, Release 3.5.7

compileall command line option, 1666
-j N

compileall command line option, 1666
-l

compileall command line option, 1666
-l <tarfile>

tarfile command line option, 462
-l <zipfile>

zipfile command line option, 454
-l, –indentlevel=<num>

pickletools command line option, 1681
-l, –listfuncs

trace command line option, 1515
-m <mainfn>, –main=<mainfn>

zipapp command line option, 1538
-m, –memo

pickletools command line option, 1681
-m, –missing

trace command line option, 1516
-n N, –number=N

timeit command line option, 1512
-o <output>, –output=<output>

zipapp command line option, 1538
-o, –output=<file>

pickletools command line option, 1681
-p <interpreter>, –python=<interpreter>

zipapp command line option, 1538
-p, –pattern pattern

unittest-discover command line option, 1396
-p, –preamble=<preamble>

pickletools command line option, 1681
-p, –process

timeit command line option, 1512
-q

compileall command line option, 1666
-r

compileall command line option, 1666
-r N, –repeat=N

timeit command line option, 1512
-r, –report

trace command line option, 1515
-s S, –setup=S

timeit command line option, 1512
-s, –start-directory directory

unittest-discover command line option, 1396
-s, –summary

trace command line option, 1516
-t <tarfile>

tarfile command line option, 462
-t <zipfile>

zipfile command line option, 455
-t, –time

timeit command line option, 1512
-t, –top-level-directory directory

unittest-discover command line option, 1396
-t, –trace

trace command line option, 1515
-u, –unit=U

timeit command line option, 1512
-v, –verbose

tarfile command line option, 462
timeit command line option, 1513
unittest-discover command line option, 1396

-x regex
compileall command line option, 1666

..., 1759

.ini
file, 473

.pdbrc
file, 1498

/
operator, 29

//
operator, 29

==
operator, 28

%
operator, 29

% formatting, 49, 63
% interpolation, 49, 63
&

operator, 30
_CData (class in ctypes), 700
_FuncPtr (class in ctypes), 695
_Pointer (class in ctypes), 705
_SimpleCData (class in ctypes), 701
__abs__() (in module operator), 336
__add__() (in module operator), 336
__and__() (in module operator), 336
__bases__ (class attribute), 81
__bytes__() (email.message.Message method), 929
__call__() (email.headerregistry.HeaderRegistry

method), 953
__call__() (weakref.finalize method), 234
__callback__ (weakref.ref attribute), 232
__cause__ (traceback.TracebackException at-

tribute), 1587
__ceil__() (fractions.Fraction method), 303
__class__ (instance attribute), 81
__class__ (unittest.mock.Mock attribute), 1430
__code__ (function object attribute), 80
__concat__() (in module operator), 337
__contains__() (email.message.Message method),

931
__contains__() (in module operator), 337
__contains__() (mailbox.Mailbox method), 995
__context__ (traceback.TracebackException at-

tribute), 1587

1800 Index

The Python Library Reference, Release 3.5.7

__copy__() (copy protocol), 243
__debug__ (built-in variable), 25
__deepcopy__() (copy protocol), 243
__del__() (io.IOBase method), 553
__delitem__() (email.message.Message method),

931
__delitem__() (in module operator), 338
__delitem__() (mailbox.MH method), 999
__delitem__() (mailbox.Mailbox method), 994
__dict__ (object attribute), 81
__dir__() (unittest.mock.Mock method), 1426
__displayhook__ (in module sys), 1545
__doc__ (types.ModuleType attribute), 240
__enter__() (contextmanager method), 78
__enter__() (winreg.PyHKEY method), 1704
__eq__() (email.charset.Charset method), 965
__eq__() (email.header.Header method), 963
__eq__() (in module operator), 336
__eq__() (instance method), 28
__eq__() (memoryview method), 67
__excepthook__ (in module sys), 1545
__exit__() (contextmanager method), 78
__exit__() (winreg.PyHKEY method), 1704
__floor__() (fractions.Fraction method), 303
__floordiv__() (in module operator), 336
__format__, 11
__format__() (datetime.date method), 178
__format__() (datetime.datetime method), 184
__format__() (datetime.time method), 188
__future__, 1762
__future__ (module), 1591
__ge__() (in module operator), 336
__ge__() (instance method), 28
__getitem__() (email.headerregistry.HeaderRegistry

method), 953
__getitem__() (email.message.Message method),

931
__getitem__() (in module operator), 338
__getitem__() (mailbox.Mailbox method), 995
__getnewargs__() (object method), 395
__getnewargs_ex__() (object method), 395
__getstate__() (copy protocol), 399
__getstate__() (object method), 395
__gt__() (in module operator), 336
__gt__() (instance method), 28
__iadd__() (in module operator), 341
__iand__() (in module operator), 341
__iconcat__() (in module operator), 341
__ifloordiv__() (in module operator), 341
__ilshift__() (in module operator), 341
__imatmul__() (in module operator), 341
__imod__() (in module operator), 341
__import__() (built-in function), 23
__import__() (in module importlib), 1628

__imul__() (in module operator), 341
__index__() (in module operator), 336
__init__() (difflib.HtmlDiff method), 123
__init__() (logging.Handler method), 607
__interactivehook__ (in module sys), 1551
__inv__() (in module operator), 336
__invert__() (in module operator), 336
__ior__() (in module operator), 341
__ipow__() (in module operator), 341
__irshift__() (in module operator), 341
__isub__() (in module operator), 341
__iter__() (container method), 34
__iter__() (iterator method), 35
__iter__() (mailbox.Mailbox method), 994
__iter__() (unittest.TestSuite method), 1411
__itruediv__() (in module operator), 342
__ixor__() (in module operator), 342
__le__() (in module operator), 336
__le__() (instance method), 28
__len__() (email.message.Message method), 930
__len__() (mailbox.Mailbox method), 995
__loader__ (types.ModuleType attribute), 240
__lshift__() (in module operator), 337
__lt__() (in module operator), 336
__lt__() (instance method), 28
__main__

module, 1625, 1626
__main__ (module), 1562
__matmul__() (in module operator), 337
__missing__(), 75
__missing__() (collections.defaultdict method),

210
__mod__() (in module operator), 337
__mro__ (class attribute), 82
__mul__() (in module operator), 337
__name__ (definition attribute), 81
__name__ (types.ModuleType attribute), 240
__ne__() (email.charset.Charset method), 965
__ne__() (email.header.Header method), 963
__ne__() (in module operator), 336
__ne__() (instance method), 28
__neg__() (in module operator), 337
__next__() (csv.csvreader method), 471
__next__() (iterator method), 35
__not__() (in module operator), 336
__or__() (in module operator), 337
__package__ (types.ModuleType attribute), 240
__pos__() (in module operator), 337
__pow__() (in module operator), 337
__qualname__ (definition attribute), 81
__reduce__() (object method), 396
__reduce_ex__() (object method), 396
__repr__() (multiprocessing.managers.BaseProxy

method), 745

Index 1801

The Python Library Reference, Release 3.5.7

__repr__() (netrc.netrc method), 492
__round__() (fractions.Fraction method), 303
__rshift__() (in module operator), 337
__setitem__() (email.message.Message method),

931
__setitem__() (in module operator), 338
__setitem__() (mailbox.Mailbox method), 994
__setitem__() (mailbox.Maildir method), 997
__setstate__() (copy protocol), 399
__setstate__() (object method), 395
__slots__, 1768
__stderr__ (in module sys), 1556
__stdin__ (in module sys), 1556
__stdout__ (in module sys), 1556
__str__() (datetime.date method), 177
__str__() (datetime.datetime method), 184
__str__() (datetime.time method), 188
__str__() (email.charset.Charset method), 965
__str__() (email.header.Header method), 963
__str__() (email.headerregistry.Address method),

954
__str__() (email.headerregistry.Group method),

954
__str__() (email.message.Message method), 928
__str__() (multiprocessing.managers.BaseProxy

method), 746
__sub__() (in module operator), 337
__subclasses__() (class method), 82
__subclasshook__() (abc.ABCMeta method), 1579
__suppress_context__

(traceback.TracebackException attribute),
1587

__truediv__() (in module operator), 337
__xor__() (in module operator), 337
anonymous (ctypes.Structure attribute), 704
_asdict() (collections.somenamedtuple method), 213
_b_base_ (ctypes._CData attribute), 701
_b_needsfree_ (ctypes._CData attribute), 701
_callmethod() (multiprocessing.managers.BaseProxy

method), 745
_clear_type_cache() (in module sys), 1544
_current_frames() (in module sys), 1544
_debugmallocstats() (in module sys), 1544
_dummy_thread (module), 790
_exit() (in module os), 538
_fields (ast.AST attribute), 1649
_fields (collections.somenamedtuple attribute), 213
fields (ctypes.Structure attribute), 704
_flush() (wsgiref.handlers.BaseHandler method),

1101
_get_child_mock() (unittest.mock.Mock method),

1426
_getframe() (in module sys), 1548

_getvalue() (multiprocessing.managers.BaseProxy
method), 745

_handle (ctypes.PyDLL attribute), 694
length (ctypes.Array attribute), 705
_locale

module, 1257
_make() (collections.somenamedtuple class method),

213
_makeResult() (unittest.TextTestRunner method),

1417
_name (ctypes.PyDLL attribute), 694
_objects (ctypes._CData attribute), 701
pack (ctypes.Structure attribute), 704
_parse() (gettext.NullTranslations method), 1252
_replace() (collections.somenamedtuple method),

213
_setroot() (xml.etree.ElementTree.ElementTree

method), 1042
_source (collections.somenamedtuple attribute), 213
_structure() (in module email.iterators), 970
_thread (module), 788
type (ctypes.Array attribute), 705
type (ctypes._Pointer attribute), 705
_write() (wsgiref.handlers.BaseHandler method),

1101
_xoptions (in module sys), 1557
^

operator, 30
~

operator, 30
|

operator, 30
>>>, 1759
>

operator, 28
>=

operator, 28
>>

operator, 30
<

operator, 28
<=

operator, 28
<<

operator, 30
<protocol>_proxy, 1108
2to3, 1759

A
A (in module re), 109
A-LAW, 1234, 1243
a-LAW, 1229
a2b_base64() (in module binascii), 1018
a2b_hex() (in module binascii), 1019

1802 Index

The Python Library Reference, Release 3.5.7

a2b_hqx() (in module binascii), 1018
a2b_qp() (in module binascii), 1018
a2b_uu() (in module binascii), 1018
a85decode() (in module base64), 1016
a85encode() (in module base64), 1015
ABC (class in abc), 1580
abc (module), 1579
ABCMeta (class in abc), 1579
abiflags (in module sys), 1543
abort() (asyncio.DatagramTransport method), 878
abort() (asyncio.WriteTransport method), 877
abort() (ftplib.FTP method), 1142
abort() (in module os), 537
abort() (threading.Barrier method), 718
above() (curses.panel.Panel method), 663
abs() (built-in function), 5
abs() (decimal.Context method), 288
abs() (in module operator), 336
abspath() (in module os.path), 359
abstract base class, 1759
AbstractBasicAuthHandler (class in urllib.request),

1108
abstractclassmethod() (in module abc), 1581
AbstractDigestAuthHandler (class in urllib.request),

1109
AbstractEventLoop (class in asyncio), 851
AbstractEventLoopPolicy (class in asyncio), 865
AbstractFormatter (class in formatter), 1685
abstractmethod() (in module abc), 1580
abstractproperty() (in module abc), 1582
AbstractSet (class in typing), 1361
abstractstaticmethod() (in module abc), 1582
AbstractWriter (class in formatter), 1686
accept() (asyncore.dispatcher method), 912
accept() (multiprocessing.connection.Listener

method), 749
accept() (socket.socket method), 801
access() (in module os), 520
accumulate() (in module itertools), 316
acos() (in module cmath), 272
acos() (in module math), 269
acosh() (in module cmath), 273
acosh() (in module math), 270
acquire() (_thread.lock method), 789
acquire() (asyncio.Condition method), 900
acquire() (asyncio.Lock method), 899
acquire() (asyncio.Semaphore method), 901
acquire() (logging.Handler method), 607
acquire() (multiprocessing.Lock method), 735
acquire() (multiprocessing.RLock method), 736
acquire() (threading.Condition method), 714
acquire() (threading.Lock method), 711
acquire() (threading.RLock method), 712
acquire() (threading.Semaphore method), 715

acquire_lock() (in module imp), 1755
Action (class in argparse), 589
action (optparse.Option attribute), 1738
ACTIONS (optparse.Option attribute), 1751
active_children() (in module multiprocessing), 731
active_count() (in module threading), 707
add() (decimal.Context method), 288
add() (frozenset method), 74
add() (in module audioop), 1229
add() (in module operator), 336
add() (mailbox.Mailbox method), 994
add() (mailbox.Maildir method), 997
add() (msilib.RadioButtonGroup method), 1693
add() (pstats.Stats method), 1506
add() (tarfile.TarFile method), 460
add() (tkinter.ttk.Notebook method), 1326
add_alias() (in module email.charset), 966
add_alternative() (email.message.EmailMessage

method), 956
add_argument() (argparse.ArgumentParser

method), 579
add_argument_group() (argparse.ArgumentParser

method), 596
add_attachment() (email.message.EmailMessage

method), 956
add_cgi_vars() (wsgiref.handlers.BaseHandler

method), 1102
add_charset() (in module email.charset), 965
add_codec() (in module email.charset), 966
add_cookie_header() (http.cookiejar.CookieJar

method), 1195
add_data() (in module msilib), 1690
add_done_callback() (asyncio.Future method), 870
add_done_callback() (concurrent.futures.Future

method), 766
add_fallback() (gettext.NullTranslations method),

1252
add_file() (msilib.Directory method), 1692
add_flag() (mailbox.MaildirMessage method), 1002
add_flag() (mailbox.mboxMessage method), 1004
add_flag() (mailbox.MMDFMessage method), 1008
add_flowing_data() (formatter.formatter method),

1684
add_folder() (mailbox.Maildir method), 997
add_folder() (mailbox.MH method), 999
add_get_handler() (email.contentmanager.ContentManager

method), 957
add_handler() (urllib.request.OpenerDirector

method), 1111
add_header() (email.message.Message method), 931
add_header() (urllib.request.Request method), 1110
add_header() (wsgiref.headers.Headers method),

1098
add_history() (in module readline), 142

Index 1803

The Python Library Reference, Release 3.5.7

add_hor_rule() (formatter.formatter method), 1684
add_label() (mailbox.BabylMessage method), 1007
add_label_data() (formatter.formatter method),

1684
add_line_break() (formatter.formatter method),

1684
add_literal_data() (formatter.formatter method),

1684
add_mutually_exclusive_group()

(argparse.ArgumentParser method), 597
add_option() (optparse.OptionParser method), 1737
add_parent() (urllib.request.BaseHandler method),

1112
add_password() (urllib.request.HTTPPasswordMgr

method), 1114
add_password() (urllib.request.HTTPPasswordMgrWithPriorAuth

method), 1114
add_reader() (asyncio.AbstractEventLoop method),

857
add_related() (email.message.EmailMessage

method), 956
add_section() (configparser.ConfigParser method),

487
add_section() (configparser.RawConfigParser

method), 490
add_sequence() (mailbox.MHMessage method),

1006
add_set_handler() (email.contentmanager.ContentManager

method), 958
add_signal_handler() (asyncio.AbstractEventLoop

method), 859
add_stream() (in module msilib), 1690
add_subparsers() (argparse.ArgumentParser

method), 593
add_tables() (in module msilib), 1690
add_type() (in module mimetypes), 1012
add_unredirected_header() (urllib.request.Request

method), 1110
add_writer() (asyncio.AbstractEventLoop method),

857
addch() (curses.window method), 648
addCleanup() (unittest.TestCase method), 1410
addcomponent() (turtle.Shape method), 1294
addError() (unittest.TestResult method), 1415
addExpectedFailure() (unittest.TestResult method),

1416
addFailure() (unittest.TestResult method), 1415
addfile() (tarfile.TarFile method), 460
addFilter() (logging.Handler method), 607
addFilter() (logging.Logger method), 606
addHandler() (logging.Logger method), 606
addLevelName() (in module logging), 615
addnstr() (curses.window method), 648
AddPackagePath() (in module modulefinder), 1624

addr (smtpd.SMTPChannel attribute), 1169
addr_spec (email.headerregistry.Address attribute),

953
Address (class in email.headerregistry), 953
address (email.headerregistry.SingleAddressHeader

attribute), 951
address (multiprocessing.connection.Listener at-

tribute), 749
address (multiprocessing.managers.BaseManager at-

tribute), 741
address_exclude() (ipaddress.IPv4Network method),

1221
address_exclude() (ipaddress.IPv6Network method),

1223
address_family (socketserver.BaseServer attribute),

1179
address_string() (http.server.BaseHTTPRequestHandler

method), 1187
addresses (email.headerregistry.AddressHeader at-

tribute), 951
addresses (email.headerregistry.Group attribute),

954
AddressHeader (class in email.headerregistry), 951
addressof() (in module ctypes), 698
AddressValueError, 1227
addshape() (in module turtle), 1292
addsitedir() (in module site), 1612
addSkip() (unittest.TestResult method), 1416
addstr() (curses.window method), 648
addSubTest() (unittest.TestResult method), 1416
addSuccess() (unittest.TestResult method), 1416
addTest() (unittest.TestSuite method), 1411
addTests() (unittest.TestSuite method), 1411
addTypeEqualityFunc() (unittest.TestCase method),

1408
addUnexpectedSuccess() (unittest.TestResult

method), 1416
adjusted() (decimal.Decimal method), 280
adler32() (in module zlib), 433
ADPCM, Intel/DVI, 1229
adpcm2lin() (in module audioop), 1229
AF_CAN (in module socket), 794
AF_INET (in module socket), 793
AF_INET6 (in module socket), 793
AF_LINK (in module socket), 795
AF_RDS (in module socket), 795
AF_UNIX (in module socket), 793
aifc (module), 1232
aifc() (aifc.aifc method), 1234
AIFF, 1232, 1240
aiff() (aifc.aifc method), 1234
AIFF-C, 1232, 1240
alarm() (in module signal), 918
alaw2lin() (in module audioop), 1229

1804 Index

The Python Library Reference, Release 3.5.7

ALERT_DESCRIPTION_HANDSHAKE_FAILURE
(in module ssl), 822

ALERT_DESCRIPTION_INTERNAL_ERROR
(in module ssl), 822

algorithms_available (in module hashlib), 500
algorithms_guaranteed (in module hashlib), 500
alias (pdb command), 1501
alignment() (in module ctypes), 698
alive (weakref.finalize attribute), 234
all() (built-in function), 5
all_errors (in module ftplib), 1141
all_features (in module xml.sax.handler), 1066
all_frames (tracemalloc.Filter attribute), 1523
all_properties (in module xml.sax.handler), 1066
all_suffixes() (in module importlib.machinery), 1636
all_tasks() (asyncio.Task class method), 871
allocate_lock() (in module _thread), 788
allow_reuse_address (socketserver.BaseServer at-

tribute), 1179
allowed_domains() (http.cookiejar.DefaultCookiePolicy

method), 1199
alt() (in module curses.ascii), 662
ALT_DIGITS (in module locale), 1261
altsep (in module os), 548
altzone (in module time), 562
ALWAYS_TYPED_ACTIONS (optparse.Option

attribute), 1751
AMPER (in module token), 1657
AMPEREQUAL (in module token), 1657
and

operator, 27, 28
and_() (in module operator), 336
annotation (inspect.Parameter attribute), 1602
answer_challenge() (in module multiprocess-

ing.connection), 749
anticipate_failure() (in module test.support), 1485
Any (in module typing), 1365
ANY (in module unittest.mock), 1449
any() (built-in function), 5
AnyStr (in module typing), 1366
api_version (in module sys), 1557
apop() (poplib.POP3 method), 1146
append() (array.array method), 229
append() (collections.deque method), 207
append() (email.header.Header method), 962
append() (imaplib.IMAP4 method), 1149
append() (msilib.CAB method), 1692
append() (pipes.Template method), 1718
append() (sequence method), 37
append() (xml.etree.ElementTree.Element method),

1040
append_history_file() (in module readline), 141
appendChild() (xml.dom.Node method), 1049
appendleft() (collections.deque method), 207

application_uri() (in module wsgiref.util), 1095
apply (2to3 fixer), 1476
apply() (multiprocessing.pool.Pool method), 746
apply_async() (multiprocessing.pool.Pool method),

746
apply_defaults() (inspect.BoundArguments

method), 1603
architecture() (in module platform), 664
archive (zipimport.zipimporter attribute), 1620
aRepr (in module reprlib), 248
argparse (module), 569
args (BaseException attribute), 84
args (functools.partial attribute), 335
args (inspect.BoundArguments attribute), 1603
args (pdb command), 1500
args (subprocess.CompletedProcess attribute), 769
args (subprocess.Popen attribute), 776
argtypes (ctypes._FuncPtr attribute), 695
argument, 1759
ArgumentDefaultsHelpFormatter (class in argparse),

575
ArgumentError, 695
ArgumentParser (class in argparse), 571
arguments (inspect.BoundArguments attribute),

1603
argv (in module sys), 1543
arithmetic, 29
ArithmeticError, 84
array

module, 51
array (class in array), 229
Array (class in ctypes), 705
array (module), 228
Array() (in module multiprocessing), 737
Array() (in module multiprocessing.sharedctypes),

738
Array() (multiprocessing.managers.SyncManager

method), 742
arrays, 228
arraysize (sqlite3.Cursor attribute), 423
article() (nntplib.NNTP method), 1159
as_bytes() (email.message.Message method), 929
as_completed() (in module asyncio), 873
as_completed() (in module concurrent.futures), 767
as_integer_ratio() (float method), 32
AS_IS (in module formatter), 1683
as_posix() (pathlib.PurePath method), 350
as_string() (email.message.Message method), 928
as_tuple() (decimal.Decimal method), 280
as_uri() (pathlib.PurePath method), 350
ASCII (in module re), 109
ascii() (built-in function), 5
ascii() (in module curses.ascii), 662
ascii_letters (in module string), 93

Index 1805

The Python Library Reference, Release 3.5.7

ascii_lowercase (in module string), 93
ascii_uppercase (in module string), 93
asctime() (in module time), 562
asin() (in module cmath), 272
asin() (in module math), 269
asinh() (in module cmath), 273
asinh() (in module math), 270
assert

statement, 84
assert_any_call() (unittest.mock.Mock method),

1425
assert_called_once_with() (unittest.mock.Mock

method), 1424
assert_called_with() (unittest.mock.Mock method),

1424
assert_has_calls() (unittest.mock.Mock method),

1425
assert_line_data() (formatter.formatter method),

1685
assert_not_called() (unittest.mock.Mock method),

1425
assertAlmostEqual() (unittest.TestCase method),

1407
assertCountEqual() (unittest.TestCase method),

1408
assertDictEqual() (unittest.TestCase method), 1409
assertEqual() (unittest.TestCase method), 1403
assertFalse() (unittest.TestCase method), 1403
assertGreater() (unittest.TestCase method), 1407
assertGreaterEqual() (unittest.TestCase method),

1407
assertIn() (unittest.TestCase method), 1404
AssertionError, 84
assertIs() (unittest.TestCase method), 1403
assertIsInstance() (unittest.TestCase method), 1404
assertIsNone() (unittest.TestCase method), 1403
assertIsNot() (unittest.TestCase method), 1403
assertIsNotNone() (unittest.TestCase method), 1403
assertLess() (unittest.TestCase method), 1407
assertLessEqual() (unittest.TestCase method), 1407
assertListEqual() (unittest.TestCase method), 1408
assertLogs() (unittest.TestCase method), 1406
assertMultiLineEqual() (unittest.TestCase method),

1408
assertNotAlmostEqual() (unittest.TestCase

method), 1407
assertNotEqual() (unittest.TestCase method), 1403
assertNotIn() (unittest.TestCase method), 1404
assertNotIsInstance() (unittest.TestCase method),

1404
assertNotRegex() (unittest.TestCase method), 1407
assertRaises() (unittest.TestCase method), 1404
assertRaisesRegex() (unittest.TestCase method),

1405

assertRegex() (unittest.TestCase method), 1407
asserts (2to3 fixer), 1476
assertSequenceEqual() (unittest.TestCase method),

1408
assertSetEqual() (unittest.TestCase method), 1408
assertTrue() (unittest.TestCase method), 1403
assertTupleEqual() (unittest.TestCase method), 1408
assertWarns() (unittest.TestCase method), 1405
assertWarnsRegex() (unittest.TestCase method),

1405
assignment

slice, 37
subscript, 37

AST (class in ast), 1649
ast (module), 1649
astimezone() (datetime.datetime method), 182
ASYNC (in module token), 1657
async() (in module asyncio), 873
async_chat (class in asynchat), 914
async_chat.ac_in_buffer_size (in module asyn-

chat), 914
async_chat.ac_out_buffer_size (in module asyn-

chat), 914
AsyncGenerator (class in typing), 1363
asynchat (module), 914
asynchronous context manager, 1759
asynchronous iterable, 1760
asynchronous iterator, 1760
asyncio (module), 850
asyncio.subprocess.DEVNULL (in module asyncio),

894
asyncio.subprocess.PIPE (in module asyncio), 894
asyncio.subprocess.Process (class in asyncio), 894
asyncio.subprocess.STDOUT (in module asyncio),

894
AsyncIterable (class in collections.abc), 221
AsyncIterable (class in typing), 1362
AsyncIterator (class in collections.abc), 221
AsyncIterator (class in typing), 1362
asyncore (module), 910
AsyncResult (class in multiprocessing.pool), 748
AT (in module token), 1657
at_eof() (asyncio.StreamReader method), 888
atan() (in module cmath), 273
atan() (in module math), 269
atan2() (in module math), 269
atanh() (in module cmath), 273
atanh() (in module math), 270
ATEQUAL (in module token), 1657
atexit (module), 1583
atexit (weakref.finalize attribute), 234
atof() (in module locale), 1262
atoi() (in module locale), 1262
attach() (email.message.Message method), 929

1806 Index

The Python Library Reference, Release 3.5.7

attach_mock() (unittest.mock.Mock method), 1426
AttlistDeclHandler() (xml.parsers.expat.xmlparser

method), 1078
attrgetter() (in module operator), 338
attrib (xml.etree.ElementTree.Element attribute),

1040
attribute, 1760
AttributeError, 84
attributes (xml.dom.Node attribute), 1048
AttributesImpl (class in xml.sax.xmlreader), 1071
AttributesNSImpl (class in xml.sax.xmlreader), 1071
attroff() (curses.window method), 648
attron() (curses.window method), 648
attrset() (curses.window method), 648
Audio Interchange File Format, 1232, 1240
AUDIO_FILE_ENCODING_ADPCM_G721 (in

module sunau), 1236
AUDIO_FILE_ENCODING_ADPCM_G722 (in

module sunau), 1236
AUDIO_FILE_ENCODING_ADPCM_G723_3

(in module sunau), 1236
AUDIO_FILE_ENCODING_ADPCM_G723_5

(in module sunau), 1236
AUDIO_FILE_ENCODING_ALAW_8 (in module

sunau), 1235
AUDIO_FILE_ENCODING_DOUBLE (in module

sunau), 1236
AUDIO_FILE_ENCODING_FLOAT (in module

sunau), 1236
AUDIO_FILE_ENCODING_LINEAR_16 (in

module sunau), 1235
AUDIO_FILE_ENCODING_LINEAR_24 (in

module sunau), 1235
AUDIO_FILE_ENCODING_LINEAR_32 (in

module sunau), 1235
AUDIO_FILE_ENCODING_LINEAR_8 (in mod-

ule sunau), 1235
AUDIO_FILE_ENCODING_MULAW_8 (in mod-

ule sunau), 1235
AUDIO_FILE_MAGIC (in module sunau), 1235
AUDIODEV, 1244
audioop (module), 1229
auth() (ftplib.FTP_TLS method), 1144
auth() (smtplib.SMTP method), 1164
authenticate() (imaplib.IMAP4 method), 1149
AuthenticationError, 728
authenticators() (netrc.netrc method), 492
authkey (multiprocessing.Process attribute), 727
avg() (in module audioop), 1229
avgpp() (in module audioop), 1229
avoids_symlink_attacks (shutil.rmtree attribute),

383
AWAIT (in module token), 1657
awaitable, 1760

Awaitable (class in collections.abc), 220
Awaitable (class in typing), 1362

B
b16decode() (in module base64), 1015
b16encode() (in module base64), 1015
b2a_base64() (in module binascii), 1018
b2a_hex() (in module binascii), 1019
b2a_hqx() (in module binascii), 1019
b2a_qp() (in module binascii), 1018
b2a_uu() (in module binascii), 1018
b32decode() (in module base64), 1015
b32encode() (in module base64), 1015
b64decode() (in module base64), 1014
b64encode() (in module base64), 1014
b85decode() (in module base64), 1016
b85encode() (in module base64), 1016
Babyl (class in mailbox), 1000
BabylMessage (class in mailbox), 1006
back() (in module turtle), 1270
backslashreplace_errors() (in module codecs), 157
backward() (in module turtle), 1270
BadStatusLine, 1135
BadZipFile, 448
BadZipfile, 448
Balloon (class in tkinter.tix), 1338
Barrier (class in multiprocessing), 734
Barrier (class in threading), 718
Barrier() (multiprocessing.managers.SyncManager

method), 741
base64

encoding, 1014
module, 1018

base64 (module), 1014
base_exec_prefix (in module sys), 1543
base_prefix (in module sys), 1543
BaseCGIHandler (class in wsgiref.handlers), 1101
BaseCookie (class in http.cookies), 1190
BaseEventLoop (class in asyncio), 851
BaseException, 84
BaseHandler (class in urllib.request), 1107
BaseHandler (class in wsgiref.handlers), 1101
BaseHeader (class in email.headerregistry), 949
BaseHTTPRequestHandler (class in http.server),

1184
BaseManager (class in multiprocessing.managers),

740
basename() (in module os.path), 359
BaseProxy (class in multiprocessing.managers), 745
BaseRequestHandler (class in socketserver), 1180
BaseRotatingHandler (class in logging.handlers), 630
BaseSelector (class in selectors), 847
BaseServer (class in socketserver), 1178
basestring (2to3 fixer), 1477

Index 1807

The Python Library Reference, Release 3.5.7

BaseSubprocessTransport (class in asyncio), 879
BaseTransport (class in asyncio), 876
basicConfig() (in module logging), 616
BasicContext (class in decimal), 286
BasicInterpolation (class in configparser), 477
baudrate() (in module curses), 642
bbox() (tkinter.ttk.Treeview method), 1330
BDADDR_ANY (in module socket), 795
BDADDR_LOCAL (in module socket), 795
bdb

module, 1496
Bdb (class in bdb), 1490
bdb (module), 1489
BdbQuit, 1489
BDFL, 1760
beep() (in module curses), 642
Beep() (in module winsound), 1704
BEFORE_ASYNC_WITH (opcode), 1674
begin_fill() (in module turtle), 1280
begin_poly() (in module turtle), 1285
below() (curses.panel.Panel method), 663
Benchmarking, 1510
benchmarking, 562
betavariate() (in module random), 306
bgcolor() (in module turtle), 1287
bgpic() (in module turtle), 1287
bias() (in module audioop), 1229
bidirectional() (in module unicodedata), 137
BigEndianStructure (class in ctypes), 704
bin() (built-in function), 6
binary

data, packing, 147
literals, 29

Binary (class in msilib), 1690
Binary (class in xmlrpc.client), 1205
binary file, 1760
binary mode, 17
binary semaphores, 788
BINARY_ADD (opcode), 1673
BINARY_AND (opcode), 1673
BINARY_FLOOR_DIVIDE (opcode), 1673
BINARY_LSHIFT (opcode), 1673
BINARY_MATRIX_MULTIPLY (opcode), 1672
BINARY_MODULO (opcode), 1673
BINARY_MULTIPLY (opcode), 1672
BINARY_OR (opcode), 1673
BINARY_POWER (opcode), 1672
BINARY_RSHIFT (opcode), 1673
BINARY_SUBSCR (opcode), 1673
BINARY_SUBTRACT (opcode), 1673
BINARY_TRUE_DIVIDE (opcode), 1673
BINARY_XOR (opcode), 1673
binascii (module), 1018
bind (widgets), 1318

bind() (asyncore.dispatcher method), 912
bind() (inspect.Signature method), 1601
bind() (socket.socket method), 801
bind_partial() (inspect.Signature method), 1601
bind_port() (in module test.support), 1486
bind_textdomain_codeset() (in module gettext),

1249
bindtextdomain() (in module gettext), 1249
binhex

module, 1018
binhex (module), 1017
binhex() (in module binhex), 1017
bisect (module), 226
bisect() (in module bisect), 226
bisect_left() (in module bisect), 226
bisect_right() (in module bisect), 226
bit_length() (int method), 30
bitmap() (msilib.Dialog method), 1694
bitwise

operations, 30
bk() (in module turtle), 1270
bkgd() (curses.window method), 648
bkgdset() (curses.window method), 649
block_size (hmac.HMAC attribute), 503
blocked_domains() (http.cookiejar.DefaultCookiePolicy

method), 1199
BlockingIOError, 88, 550
body() (nntplib.NNTP method), 1159
body_encode() (email.charset.Charset method), 965
body_encoding (email.charset.Charset attribute),

964
body_line_iterator() (in module email.iterators),

970
BOM (in module codecs), 155
BOM_BE (in module codecs), 155
BOM_LE (in module codecs), 155
BOM_UTF16 (in module codecs), 155
BOM_UTF16_BE (in module codecs), 155
BOM_UTF16_LE (in module codecs), 155
BOM_UTF32 (in module codecs), 155
BOM_UTF32_BE (in module codecs), 155
BOM_UTF32_LE (in module codecs), 155
BOM_UTF8 (in module codecs), 155
bool (built-in class), 6
Boolean

object, 29
operations, 27
type, 6
values, 81

BOOLEAN_STATES (in module configparser), 483
bootstrap() (in module ensurepip), 1529
border() (curses.window method), 649
bottom() (curses.panel.Panel method), 663
bottom_panel() (in module curses.panel), 663

1808 Index

The Python Library Reference, Release 3.5.7

BoundArguments (class in inspect), 1603
BoundaryError, 967
BoundedSemaphore (class in asyncio), 902
BoundedSemaphore (class in multiprocessing), 734
BoundedSemaphore (class in threading), 715
BoundedSemaphore() (multiprocessing.managers.SyncManager

method), 741
box() (curses.window method), 649
bpformat() (bdb.Breakpoint method), 1489
bpprint() (bdb.Breakpoint method), 1490
break (pdb command), 1498
break_anywhere() (bdb.Bdb method), 1491
break_here() (bdb.Bdb method), 1491
break_long_words (textwrap.TextWrapper at-

tribute), 136
BREAK_LOOP (opcode), 1674
break_on_hyphens (textwrap.TextWrapper at-

tribute), 136
Breakpoint (class in bdb), 1489
breakpoints, 1346
broadcast_address (ipaddress.IPv4Network at-

tribute), 1221
broadcast_address (ipaddress.IPv6Network at-

tribute), 1223
broken (threading.Barrier attribute), 718
BrokenBarrierError, 719
BrokenPipeError, 89
BrokenProcessPool, 767
BROWSER, 1085, 1086
BsdDbShelf (class in shelve), 404
buffer (2to3 fixer), 1477
buffer (io.TextIOBase attribute), 558
buffer (unittest.TestResult attribute), 1414
buffer protocol

binary sequence types, 51
str (built-in class), 42

buffer size, I/O, 17
buffer_info() (array.array method), 229
buffer_size (xml.parsers.expat.xmlparser attribute),

1076
buffer_text (xml.parsers.expat.xmlparser attribute),

1076
buffer_used (xml.parsers.expat.xmlparser attribute),

1077
BufferedIOBase (class in io), 554
BufferedRandom (class in io), 557
BufferedReader (class in io), 556
BufferedRWPair (class in io), 557
BufferedWriter (class in io), 557
BufferError, 84
BufferingHandler (class in logging.handlers), 637
BufferTooShort, 728
bufsize() (ossaudiodev.oss_audio_device method),

1246

BUILD_LIST (opcode), 1676
BUILD_LIST_UNPACK (opcode), 1677
BUILD_MAP (opcode), 1676
BUILD_MAP_UNPACK (opcode), 1677
BUILD_MAP_UNPACK_WITH_CALL (opcode),

1677
build_opener() (in module urllib.request), 1106
BUILD_SET (opcode), 1676
BUILD_SET_UNPACK (opcode), 1677
BUILD_SLICE (opcode), 1679
BUILD_TUPLE (opcode), 1676
BUILD_TUPLE_UNPACK (opcode), 1676
built-in

types, 27
built-in function

compile, 80, 240, 1647
complex, 29
eval, 80, 245, 1647
exec, 10, 80, 1647
float, 29
hash, 37
int, 29
len, 35, 75
max, 35
min, 35
slice, 1679
type, 80

builtin_module_names (in module sys), 1544
BuiltinFunctionType (in module types), 240
BuiltinImporter (class in importlib.machinery), 1636
BuiltinMethodType (in module types), 240
builtins (module), 1561
ButtonBox (class in tkinter.tix), 1338
bye() (in module turtle), 1293
byref() (in module ctypes), 698
byte-code

file, 1665, 1752
bytearray

formatting, 63
interpolation, 63
methods, 54
object, 37, 51, 53

bytearray (built-in class), 6
bytecode, 1760
Bytecode (class in dis), 1669
Bytecode.codeobj (in module dis), 1669
Bytecode.first_line (in module dis), 1669
BYTECODE_SUFFIXES (in module im-

portlib.machinery), 1636
byteorder (in module sys), 1543
bytes

formatting, 63
interpolation, 63
methods, 54

Index 1809

The Python Library Reference, Release 3.5.7

object, 51, 52
str (built-in class), 42

bytes (built-in class), 6
bytes (uuid.UUID attribute), 1174
bytes-like object, 1760
bytes_le (uuid.UUID attribute), 1174
BytesFeedParser (class in email.parser), 937
BytesGenerator (class in email.generator), 940
BytesIO (class in io), 556
BytesParser (class in email.parser), 938
ByteString (class in collections.abc), 220
ByteString (class in typing), 1361
byteswap() (array.array method), 229
byteswap() (in module audioop), 1230
BytesWarning, 90
bz2 (module), 439
BZ2Compressor (class in bz2), 441
BZ2Decompressor (class in bz2), 441
BZ2File (class in bz2), 440

C
C

language, 29, 30
structures, 147

C-contiguous, 1761
c_bool (class in ctypes), 703
C_BUILTIN (in module imp), 1755
c_byte (class in ctypes), 702
c_char (class in ctypes), 702
c_char_p (class in ctypes), 702
c_contiguous (memoryview attribute), 72
c_double (class in ctypes), 702
C_EXTENSION (in module imp), 1755
c_float (class in ctypes), 702
c_int (class in ctypes), 702
c_int16 (class in ctypes), 702
c_int32 (class in ctypes), 702
c_int64 (class in ctypes), 702
c_int8 (class in ctypes), 702
c_long (class in ctypes), 702
c_longdouble (class in ctypes), 702
c_longlong (class in ctypes), 702
c_short (class in ctypes), 702
c_size_t (class in ctypes), 702
c_ssize_t (class in ctypes), 702
c_ubyte (class in ctypes), 702
c_uint (class in ctypes), 703
c_uint16 (class in ctypes), 703
c_uint32 (class in ctypes), 703
c_uint64 (class in ctypes), 703
c_uint8 (class in ctypes), 703
c_ulong (class in ctypes), 703
c_ulonglong (class in ctypes), 703
c_ushort (class in ctypes), 703

c_void_p (class in ctypes), 703
c_wchar (class in ctypes), 703
c_wchar_p (class in ctypes), 703
CAB (class in msilib), 1692
cache_from_source() (in module imp), 1754
cache_from_source() (in module importlib.util),

1640
cached (importlib.machinery.ModuleSpec attribute),

1639
CacheFTPHandler (class in urllib.request), 1109
calcsize() (in module struct), 148
Calendar (class in calendar), 198
calendar (module), 198
calendar() (in module calendar), 201
call() (in module subprocess), 778
call() (in module unittest.mock), 1448
call_args (unittest.mock.Mock attribute), 1428
call_args_list (unittest.mock.Mock attribute), 1429
call_at() (asyncio.AbstractEventLoop method), 852
call_count (unittest.mock.Mock attribute), 1427
call_exception_handler()

(asyncio.AbstractEventLoop method),
860

CALL_FUNCTION (opcode), 1678
CALL_FUNCTION_KW (opcode), 1679
CALL_FUNCTION_VAR (opcode), 1679
CALL_FUNCTION_VAR_KW (opcode), 1679
call_later() (asyncio.AbstractEventLoop method),

852
call_list() (unittest.mock.call method), 1448
call_soon() (asyncio.AbstractEventLoop method),

852
call_soon_threadsafe() (asyncio.AbstractEventLoop

method), 852
call_tracing() (in module sys), 1544
Callable (class in collections.abc), 219
Callable (in module typing), 1366
callable() (built-in function), 6
CallableProxyType (in module weakref), 235
callback (optparse.Option attribute), 1739
callback() (contextlib.ExitStack method), 1572
callback_args (optparse.Option attribute), 1739
callback_kwargs (optparse.Option attribute), 1739
callbacks (in module gc), 1594
called (unittest.mock.Mock attribute), 1426
CalledProcessError, 770
CAN_BCM (in module socket), 794
can_change_color() (in module curses), 642
can_fetch() (urllib.robotparser.RobotFileParser

method), 1131
CAN_RAW_FD_FRAMES (in module socket), 795
can_symlink() (in module test.support), 1485
can_write_eof() (asyncio.StreamWriter method),

888

1810 Index

The Python Library Reference, Release 3.5.7

can_write_eof() (asyncio.WriteTransport method),
878

cancel() (asyncio.Future method), 869
cancel() (asyncio.Handle method), 861
cancel() (asyncio.Task method), 872
cancel() (concurrent.futures.Future method), 766
cancel() (sched.scheduler method), 784
cancel() (threading.Timer method), 717
cancel_dump_traceback_later() (in module fault-

handler), 1495
cancel_join_thread() (multiprocessing.Queue

method), 730
cancelled() (asyncio.Future method), 869
cancelled() (concurrent.futures.Future method), 766
CancelledError, 767
CannotSendHeader, 1135
CannotSendRequest, 1135
canonic() (bdb.Bdb method), 1490
canonical() (decimal.Context method), 289
canonical() (decimal.Decimal method), 280
capa() (poplib.POP3 method), 1146
capitalize() (bytearray method), 59
capitalize() (bytes method), 59
capitalize() (str method), 42
captured_stderr() (in module test.support), 1485
captured_stdin() (in module test.support), 1485
captured_stdout() (in module test.support), 1485
captureWarnings() (in module logging), 617
capwords() (in module string), 103
casefold() (str method), 42
cast() (in module ctypes), 698
cast() (in module typing), 1364
cast() (memoryview method), 69
cat() (in module nis), 1723
catch_warnings (class in warnings), 1567
category() (in module unicodedata), 137
cbreak() (in module curses), 642
ccc() (ftplib.FTP_TLS method), 1144
CDLL (class in ctypes), 692
ceil() (in module math), 30, 266
center() (bytearray method), 57
center() (bytes method), 57
center() (str method), 43
CERT_NONE (in module ssl), 818
CERT_OPTIONAL (in module ssl), 818
CERT_REQUIRED (in module ssl), 818
cert_store_stats() (ssl.SSLContext method), 826
cert_time_to_seconds() (in module ssl), 816
CertificateError, 813
certificates, 830
CFUNCTYPE() (in module ctypes), 696
CGI

debugging, 1093
exceptions, 1094

protocol, 1087
security, 1092
tracebacks, 1094

cgi (module), 1087
cgi_directories (http.server.CGIHTTPRequestHandler

attribute), 1189
CGIHandler (class in wsgiref.handlers), 1100
CGIHTTPRequestHandler (class in http.server),

1189
cgitb (module), 1094
CGIXMLRPCRequestHandler (class in xml-

rpc.server), 1210
chain() (in module itertools), 317
chaining

comparisons, 28
ChainMap (class in collections), 202
change_cwd() (in module test.support), 1485
CHANNEL_BINDING_TYPES (in module ssl),

821
channel_class (smtpd.SMTPServer attribute), 1168
channels() (ossaudiodev.oss_audio_device method),

1246
CHAR_MAX (in module locale), 1263
character, 137
CharacterDataHandler()

(xml.parsers.expat.xmlparser method),
1078

characters() (xml.sax.handler.ContentHandler
method), 1068

characters_written (BlockingIOError attribute), 88
Charset (class in email.charset), 964
charset() (gettext.NullTranslations method), 1252
chdir() (in module os), 521
check (lzma.LZMADecompressor attribute), 445
check() (imaplib.IMAP4 method), 1150
check() (in module tabnanny), 1663
check_call() (in module subprocess), 778
check_hostname (ssl.SSLContext attribute), 829
check_output() (doctest.OutputChecker method),

1388
check_output() (in module subprocess), 778
check_returncode() (subprocess.CompletedProcess

method), 769
check_unused_args() (string.Formatter method), 95
check_warnings() (in module test.support), 1484
checkbox() (msilib.Dialog method), 1694
checkcache() (in module linecache), 379
checkfuncname() (in module bdb), 1493
CheckList (class in tkinter.tix), 1340
checksum

Cyclic Redundancy Check, 434
chflags() (in module os), 521
chgat() (curses.window method), 649
childNodes (xml.dom.Node attribute), 1049

Index 1811

The Python Library Reference, Release 3.5.7

ChildProcessError, 88
chmod() (in module os), 521
chmod() (pathlib.Path method), 354
choice() (in module random), 305
choices (optparse.Option attribute), 1739
chown() (in module os), 522
chown() (in module shutil), 383
chr() (built-in function), 6
chroot() (in module os), 522
Chunk (class in chunk), 1240
chunk (module), 1240
cipher

DES, 1710
cipher() (ssl.SSLSocket method), 824
circle() (in module turtle), 1272
CIRCUMFLEX (in module token), 1657
CIRCUMFLEXEQUAL (in module token), 1657
Clamped (class in decimal), 293
class, 1760
Class (class in symtable), 1656
Class browser, 1343
classmethod() (built-in function), 7
ClassVar (in module typing), 1366
CLD_CONTINUED (in module os), 544
CLD_DUMPED (in module os), 544
CLD_EXITED (in module os), 544
CLD_TRAPPED (in module os), 544
clean() (mailbox.Maildir method), 997
cleandoc() (in module inspect), 1600
clear (pdb command), 1499
Clear Breakpoint, 1346
clear() (asyncio.Event method), 899
clear() (collections.deque method), 207
clear() (curses.window method), 649
clear() (dict method), 76
clear() (email.message.EmailMessage method), 957
clear() (frozenset method), 74
clear() (http.cookiejar.CookieJar method), 1196
clear() (in module turtle), 1280, 1287
clear() (mailbox.Mailbox method), 995
clear() (sequence method), 37
clear() (threading.Event method), 716
clear() (xml.etree.ElementTree.Element method),

1040
clear_all_breaks() (bdb.Bdb method), 1492
clear_all_file_breaks() (bdb.Bdb method), 1492
clear_bpbynumber() (bdb.Bdb method), 1492
clear_break() (bdb.Bdb method), 1492
clear_cache() (in module filecmp), 371
clear_content() (email.message.EmailMessage

method), 957
clear_flags() (decimal.Context method), 287
clear_frames() (in module traceback), 1586
clear_history() (in module readline), 141

clear_session_cookies() (http.cookiejar.CookieJar
method), 1196

clear_traces() (in module tracemalloc), 1521
clear_traps() (decimal.Context method), 287
clearcache() (in module linecache), 379
ClearData() (msilib.Record method), 1692
clearok() (curses.window method), 649
clearscreen() (in module turtle), 1287
clearstamp() (in module turtle), 1273
clearstamps() (in module turtle), 1273
Client() (in module multiprocessing.connection), 749
client_address (http.server.BaseHTTPRequestHandler

attribute), 1185
clock() (in module time), 562
clock_getres() (in module time), 563
clock_gettime() (in module time), 563
CLOCK_HIGHRES (in module time), 563
CLOCK_MONOTONIC (in module time), 563
CLOCK_MONOTONIC_RAW (in module time),

563
CLOCK_PROCESS_CPUTIME_ID (in module

time), 563
CLOCK_REALTIME (in module time), 563
clock_settime() (in module time), 563
CLOCK_THREAD_CPUTIME_ID (in module

time), 564
clone() (email.generator.BytesGenerator method),

941
clone() (email.generator.Generator method), 940
clone() (email.policy.Policy method), 944
clone() (in module turtle), 1285
clone() (pipes.Template method), 1718
cloneNode() (xml.dom.Node method), 1050
close() (aifc.aifc method), 1234
close() (asyncio.AbstractEventLoop method), 851
close() (asyncio.BaseSubprocessTransport method),

879
close() (asyncio.BaseTransport method), 876
close() (asyncio.Server method), 860
close() (asyncio.StreamWriter method), 888
close() (asyncore.dispatcher method), 912
close() (chunk.Chunk method), 1241
close() (contextlib.ExitStack method), 1572
close() (dbm.dumb.dumbdbm method), 411
close() (dbm.gnu.gdbm method), 409
close() (dbm.ndbm.ndbm method), 410
close() (email.parser.FeedParser method), 937
close() (ftplib.FTP method), 1144
close() (html.parser.HTMLParser method), 1025
close() (http.client.HTTPConnection method), 1137
close() (imaplib.IMAP4 method), 1150
close() (in module fileinput), 364
close() (in module os), 512
close() (io.IOBase method), 552

1812 Index

The Python Library Reference, Release 3.5.7

close() (logging.FileHandler method), 629
close() (logging.Handler method), 608
close() (logging.handlers.MemoryHandler method),

638
close() (logging.handlers.NTEventLogHandler

method), 636
close() (logging.handlers.SocketHandler method),

633
close() (logging.handlers.SysLogHandler method),

635
close() (mailbox.Mailbox method), 996
close() (mailbox.Maildir method), 997
close() (mailbox.MH method), 1000
close() (mmap.mmap method), 924
Close() (msilib.View method), 1691
close() (multiprocessing.Connection method), 733
close() (multiprocessing.connection.Listener

method), 749
close() (multiprocessing.pool.Pool method), 747
close() (multiprocessing.Queue method), 730
close() (ossaudiodev.oss_audio_device method),

1244
close() (ossaudiodev.oss_mixer_device method),

1247
close() (select.devpoll method), 841
close() (select.epoll method), 843
close() (select.kqueue method), 844
close() (selectors.BaseSelector method), 848
close() (shelve.Shelf method), 404
close() (socket.socket method), 801
close() (sqlite3.Connection method), 415
close() (sqlite3.Cursor method), 422
close() (sunau.AU_read method), 1236
close() (sunau.AU_write method), 1237
close() (tarfile.TarFile method), 460
close() (telnetlib.Telnet method), 1172
close() (urllib.request.BaseHandler method), 1112
close() (wave.Wave_read method), 1238
close() (wave.Wave_write method), 1239
Close() (winreg.PyHKEY method), 1704
close() (xml.etree.ElementTree.TreeBuilder method),

1043
close() (xml.etree.ElementTree.XMLParser method),

1044
close() (xml.etree.ElementTree.XMLPullParser

method), 1045
close() (xml.sax.xmlreader.IncrementalParser

method), 1072
close() (zipfile.ZipFile method), 450
close_connection (http.server.BaseHTTPRequestHandler

attribute), 1185
close_when_done() (asynchat.async_chat method),

915
closed (http.client.HTTPResponse attribute), 1138

closed (io.IOBase attribute), 552
closed (mmap.mmap attribute), 924
closed (ossaudiodev.oss_audio_device attribute),

1247
closed (select.devpoll attribute), 841
closed (select.epoll attribute), 843
closed (select.kqueue attribute), 844
CloseKey() (in module winreg), 1696
closelog() (in module syslog), 1724
closerange() (in module os), 512
closing() (in module contextlib), 1568
clrtobot() (curses.window method), 649
clrtoeol() (curses.window method), 650
cmath (module), 271
cmd

module, 1496
Cmd (class in cmd), 1299
cmd (module), 1299
cmd (subprocess.CalledProcessError attribute), 770
cmd (subprocess.TimeoutExpired attribute), 769
cmdloop() (cmd.Cmd method), 1300
cmdqueue (cmd.Cmd attribute), 1301
cmp() (in module filecmp), 370
cmp_op (in module dis), 1680
cmp_to_key() (in module functools), 329
cmpfiles() (in module filecmp), 371
CMSG_LEN() (in module socket), 799
CMSG_SPACE() (in module socket), 800
CO_COROUTINE (in module inspect), 1609
CO_GENERATOR (in module inspect), 1609
CO_ITERABLE_COROUTINE (in module in-

spect), 1609
CO_NESTED (in module inspect), 1609
CO_NEWLOCALS (in module inspect), 1609
CO_NOFREE (in module inspect), 1609
CO_OPTIMIZED (in module inspect), 1609
CO_VARARGS (in module inspect), 1609
CO_VARKEYWORDS (in module inspect), 1609
code (module), 1615
code (SystemExit attribute), 87
code (urllib.error.HTTPError attribute), 1130
code (xml.etree.ElementTree.ParseError attribute),

1045
code (xml.parsers.expat.ExpatError attribute), 1079
code object, 80, 406
code_info() (in module dis), 1670
CodecInfo (class in codecs), 153
Codecs, 152

decode, 152
encode, 152

codecs (module), 152
coded_value (http.cookies.Morsel attribute), 1191
codeop (module), 1617
codepoint2name (in module html.entities), 1028

Index 1813

The Python Library Reference, Release 3.5.7

codes (in module xml.parsers.expat.errors), 1081
CODESET (in module locale), 1260
CodeType (in module types), 240
coercion, 1760
col_offset (ast.AST attribute), 1650
collapse_addresses() (in module ipaddress), 1226
collapse_rfc2231_value() (in module email.utils),

970
collect() (in module gc), 1592
collect_incoming_data() (asynchat.async_chat

method), 915
collections (module), 202
collections.abc (module), 218
colno (json.JSONDecodeError attribute), 989
colno (re.error attribute), 113
COLON (in module token), 1657
color() (in module turtle), 1279
color_content() (in module curses), 642
color_pair() (in module curses), 642
colormode() (in module turtle), 1291
colorsys (module), 1241
COLS, 647
column() (tkinter.ttk.Treeview method), 1331
COLUMNS, 648
columns (os.terminal_size attribute), 519
combinations() (in module itertools), 318
combinations_with_replacement() (in module iter-

tools), 318
combine() (datetime.datetime class method), 180
combining() (in module unicodedata), 137
ComboBox (class in tkinter.tix), 1338
Combobox (class in tkinter.ttk), 1324
COMMA (in module token), 1657
command (http.server.BaseHTTPRequestHandler

attribute), 1185
command line option

–sort-keys, 992
-h, –help, 992
infile, 991
outfile, 992

CommandCompiler (class in codeop), 1618
commands (pdb command), 1499
comment (http.cookiejar.Cookie attribute), 1200
COMMENT (in module tokenize), 1659
comment (zipfile.ZipFile attribute), 452
comment (zipfile.ZipInfo attribute), 453
Comment() (in module xml.etree.ElementTree), 1037
comment_url (http.cookiejar.Cookie attribute), 1201
commenters (shlex.shlex attribute), 1306
CommentHandler() (xml.parsers.expat.xmlparser

method), 1079
commit() (msilib.CAB method), 1692
Commit() (msilib.Database method), 1690
commit() (sqlite3.Connection method), 415

common (filecmp.dircmp attribute), 372
Common Gateway Interface, 1087
common_dirs (filecmp.dircmp attribute), 372
common_files (filecmp.dircmp attribute), 372
common_funny (filecmp.dircmp attribute), 372
common_types (in module mimetypes), 1012
commonpath() (in module os.path), 359
commonprefix() (in module os.path), 360
communicate() (asyncio.asyncio.subprocess.Process

method), 895
communicate() (subprocess.Popen method), 775
compare() (decimal.Context method), 289
compare() (decimal.Decimal method), 280
compare() (difflib.Differ method), 131
compare_digest() (in module hmac), 503
compare_networks() (ipaddress.IPv4Network

method), 1222
compare_networks() (ipaddress.IPv6Network

method), 1224
COMPARE_OP (opcode), 1677
compare_signal() (decimal.Context method), 289
compare_signal() (decimal.Decimal method), 281
compare_to() (tracemalloc.Snapshot method), 1523
compare_total() (decimal.Context method), 289
compare_total() (decimal.Decimal method), 281
compare_total_mag() (decimal.Context method),

289
compare_total_mag() (decimal.Decimal method),

281
comparing

objects, 28
comparison

operator, 28
COMPARISON_FLAGS (in module doctest), 1377
comparisons

chaining, 28
Compat32 (class in email.policy), 946
compat32 (in module email.policy), 946
compile

built-in function, 80, 240, 1647
Compile (class in codeop), 1617
compile() (built-in function), 7
compile() (in module py_compile), 1665
compile() (in module re), 109
compile() (parser.ST method), 1648
compile_command() (in module code), 1615
compile_command() (in module codeop), 1617
compile_dir() (in module compileall), 1667
compile_file() (in module compileall), 1667
compile_path() (in module compileall), 1668
compileall (module), 1666
compileall command line option

-b, 1666
-d destdir, 1666

1814 Index

The Python Library Reference, Release 3.5.7

-f, 1666
-i list, 1666
-j N, 1666
-l, 1666
-q, 1666
-r, 1666
-x regex, 1666
directory ..., 1666
file ..., 1666

compilest() (in module parser), 1647
complete() (rlcompleter.Completer method), 145
complete_statement() (in module sqlite3), 414
completedefault() (cmd.Cmd method), 1300
CompletedProcess (class in subprocess), 769
complex

built-in function, 29
complex (built-in class), 8
Complex (class in numbers), 263
complex number, 1760
complex number

literals, 29
object, 29

compress() (bz2.BZ2Compressor method), 441
compress() (in module bz2), 442
compress() (in module gzip), 438
compress() (in module itertools), 319
compress() (in module lzma), 445
compress() (in module zlib), 433
compress() (lzma.LZMACompressor method), 444
compress() (zlib.Compress method), 435
compress_size (zipfile.ZipInfo attribute), 454
compress_type (zipfile.ZipInfo attribute), 453
compressed (ipaddress.IPv4Address attribute), 1217
compressed (ipaddress.IPv4Network attribute), 1221
compressed (ipaddress.IPv6Address attribute), 1218
compressed (ipaddress.IPv6Network attribute), 1223
compression() (ssl.SSLSocket method), 824
CompressionError, 457
compressobj() (in module zlib), 433
COMSPEC, 543, 772
concat() (in module operator), 337
concatenation

operation, 35
concurrent.futures (module), 762
Condition (class in asyncio), 900
Condition (class in multiprocessing), 735
Condition (class in threading), 714
condition (pdb command), 1499
condition() (msilib.Control method), 1693
Condition() (multiprocessing.managers.SyncManager

method), 741
ConfigParser (class in configparser), 486
configparser (module), 473
configuration

file, 473
file, debugger, 1498
file, path, 1610

configuration information, 1558
configure() (tkinter.ttk.Style method), 1334
configure_mock() (unittest.mock.Mock method),

1426
confstr() (in module os), 547
confstr_names (in module os), 547
conjugate() (complex number method), 29
conjugate() (decimal.Decimal method), 281
conjugate() (numbers.Complex method), 263
conn (smtpd.SMTPChannel attribute), 1169
connect() (asyncore.dispatcher method), 912
connect() (ftplib.FTP method), 1142
connect() (http.client.HTTPConnection method),

1137
connect() (in module sqlite3), 413
connect() (multiprocessing.managers.BaseManager

method), 740
connect() (smtplib.SMTP method), 1163
connect() (socket.socket method), 801
connect_accepted_socket()

(asyncio.BaseEventLoop method), 856
connect_ex() (socket.socket method), 801
connect_read_pipe() (asyncio.AbstractEventLoop

method), 858
connect_write_pipe() (asyncio.AbstractEventLoop

method), 858
Connection (class in multiprocessing), 733
Connection (class in sqlite3), 415
connection (sqlite3.Cursor attribute), 423
connection_lost() (asyncio.BaseProtocol method),

880
connection_made() (asyncio.BaseProtocol method),

880
ConnectionAbortedError, 89
ConnectionError, 88
ConnectionRefusedError, 89
ConnectionResetError, 89
ConnectRegistry() (in module winreg), 1696
const (optparse.Option attribute), 1738
constructor() (in module copyreg), 402
consumed (asyncio.LimitOverrunError attribute),

889
container

iteration over, 34
Container (class in collections.abc), 219
Container (class in typing), 1361
contains() (in module operator), 337
content type

MIME, 1011
content_manager (email.policy.EmailPolicy at-

tribute), 947

Index 1815

The Python Library Reference, Release 3.5.7

content_type (email.headerregistry.ContentTypeHeader
attribute), 952

ContentDispositionHeader (class in
email.headerregistry), 952

ContentHandler (class in xml.sax.handler), 1064
ContentManager (class in email.contentmanager),

957
contents (ctypes._Pointer attribute), 706
ContentTooShortError, 1130
ContentTransferEncoding (class in

email.headerregistry), 952
ContentTypeHeader (class in email.headerregistry),

952
Context (class in decimal), 287
context (ssl.SSLSocket attribute), 825
context management protocol, 78
context manager, 1761
context manager, 78
context_diff() (in module difflib), 124
ContextDecorator (class in contextlib), 1570
contextlib (module), 1567
contextmanager() (in module contextlib), 1568
contiguous, 1761
contiguous (memoryview attribute), 72
continue (pdb command), 1500
CONTINUE_LOOP (opcode), 1674
Control (class in msilib), 1693
Control (class in tkinter.tix), 1338
control() (msilib.Dialog method), 1694
control() (select.kqueue method), 845
controlnames (in module curses.ascii), 662
controls() (ossaudiodev.oss_mixer_device method),

1247
ConversionError, 495
conversions

numeric, 30
convert_arg_line_to_args()

(argparse.ArgumentParser method), 599
convert_field() (string.Formatter method), 95
Cookie (class in http.cookiejar), 1194
CookieError, 1190
CookieJar (class in http.cookiejar), 1194
cookiejar (urllib.request.HTTPCookieProcessor at-

tribute), 1114
CookiePolicy (class in http.cookiejar), 1194
Coordinated Universal Time, 562
Copy, 1346
copy

module, 402
protocol, 395

copy (module), 242
copy() (collections.deque method), 208
copy() (decimal.Context method), 288
copy() (dict method), 76

copy() (frozenset method), 73
copy() (hashlib.hash method), 501
copy() (hmac.HMAC method), 503
copy() (http.cookies.Morsel method), 1192
copy() (imaplib.IMAP4 method), 1150
copy() (in module copy), 242
copy() (in module multiprocessing.sharedctypes), 738
copy() (in module shutil), 381
copy() (pipes.Template method), 1718
copy() (sequence method), 37
copy() (types.MappingProxyType method), 241
copy() (zlib.Compress method), 435
copy() (zlib.Decompress method), 436
copy2() (in module shutil), 381
copy_abs() (decimal.Context method), 289
copy_abs() (decimal.Decimal method), 281
copy_decimal() (decimal.Context method), 288
copy_location() (in module ast), 1653
copy_negate() (decimal.Context method), 289
copy_negate() (decimal.Decimal method), 281
copy_sign() (decimal.Context method), 289
copy_sign() (decimal.Decimal method), 281
copyfile() (in module shutil), 380
copyfileobj() (in module shutil), 380
copying files, 380
copymode() (in module shutil), 381
copyreg (module), 402
copyright (built-in variable), 26
copyright (in module sys), 1544
copysign() (in module math), 266
copystat() (in module shutil), 381
copytree() (in module shutil), 382
coroutine, 1761
Coroutine (class in collections.abc), 220
Coroutine (class in typing), 1362
coroutine function, 1761
coroutine() (in module asyncio), 867
coroutine() (in module types), 242
CoroutineType (in module types), 240
cos() (in module cmath), 273
cos() (in module math), 269
cosh() (in module cmath), 273
cosh() (in module math), 270
count (tracemalloc.Statistic attribute), 1524
count (tracemalloc.StatisticDiff attribute), 1525
count() (array.array method), 229
count() (bytearray method), 54
count() (bytes method), 54
count() (collections.deque method), 208
count() (in module itertools), 319
count() (sequence method), 35
count() (str method), 43
count_diff (tracemalloc.StatisticDiff attribute), 1525
Counter (class in collections), 205

1816 Index

The Python Library Reference, Release 3.5.7

countOf() (in module operator), 338
countTestCases() (unittest.TestCase method), 1409
countTestCases() (unittest.TestSuite method), 1411
CoverageResults (class in trace), 1517
cProfile (module), 1504
CPU time, 562
cpu_count() (in module multiprocessing), 731
cpu_count() (in module os), 547
CPython, 1761
CRC (zipfile.ZipInfo attribute), 454
crc32() (in module binascii), 1019
crc32() (in module zlib), 434
crc_hqx() (in module binascii), 1019
create() (imaplib.IMAP4 method), 1150
create() (in module venv), 1533
create() (venv.EnvBuilder method), 1532
create_aggregate() (sqlite3.Connection method), 416
create_archive() (in module zipapp), 1538
create_autospec() (in module unittest.mock), 1449
create_collation() (sqlite3.Connection method), 416
create_configuration() (venv.EnvBuilder method),

1533
create_connection() (asyncio.AbstractEventLoop

method), 854
create_connection() (in module socket), 796
create_datagram_endpoint()

(asyncio.AbstractEventLoop method),
854

create_decimal() (decimal.Context method), 288
create_decimal_from_float() (decimal.Context

method), 288
create_default_context() (in module ssl), 814
create_function() (sqlite3.Connection method), 416
create_future() (asyncio.AbstractEventLoop

method), 853
create_module() (importlib.abc.Loader method),

1631
create_module() (importlib.machinery.ExtensionFileLoader

method), 1639
CREATE_NEW_CONSOLE (in module subpro-

cess), 777
CREATE_NEW_PROCESS_GROUP (in module

subprocess), 777
create_server() (asyncio.AbstractEventLoop

method), 856
create_socket() (asyncore.dispatcher method), 912
create_stats() (profile.Profile method), 1505
create_string_buffer() (in module ctypes), 698
create_subprocess_exec() (in module asyncio), 892
create_subprocess_shell() (in module asyncio), 893
create_system (zipfile.ZipInfo attribute), 453
create_task() (asyncio.AbstractEventLoop method),

853
create_unicode_buffer() (in module ctypes), 698

create_unix_connection()
(asyncio.AbstractEventLoop method),
855

create_unix_server() (asyncio.AbstractEventLoop
method), 856

create_version (zipfile.ZipInfo attribute), 453
createAttribute() (xml.dom.Document method),

1051
createAttributeNS() (xml.dom.Document method),

1051
createComment() (xml.dom.Document method),

1051
createDocument() (xml.dom.DOMImplementation

method), 1048
createDocumentType()

(xml.dom.DOMImplementation method),
1048

createElement() (xml.dom.Document method), 1051
createElementNS() (xml.dom.Document method),

1051
createfilehandler() (tkinter.Widget.tk method), 1320
CreateKey() (in module winreg), 1696
CreateKeyEx() (in module winreg), 1697
createLock() (logging.Handler method), 607
createLock() (logging.NullHandler method), 630
createProcessingInstruction() (xml.dom.Document

method), 1051
CreateRecord() (in module msilib), 1689
createSocket() (logging.handlers.SocketHandler

method), 633
createTextNode() (xml.dom.Document method),

1051
credits (built-in variable), 26
critical() (in module logging), 615
critical() (logging.Logger method), 606
CRNCYSTR (in module locale), 1260
cross() (in module audioop), 1230
crypt

module, 1708
crypt (module), 1710
crypt() (in module crypt), 1711
crypt(3), 1710, 1711
cryptography, 499
csv, 467
csv (module), 467
cte (email.headerregistry.ContentTransferEncoding

attribute), 952
cte_type (email.policy.Policy attribute), 944
ctermid() (in module os), 506
ctime() (datetime.date method), 177
ctime() (datetime.datetime method), 184
ctime() (in module time), 564
ctrl() (in module curses.ascii), 662
CTRL_BREAK_EVENT (in module signal), 918

Index 1817

The Python Library Reference, Release 3.5.7

CTRL_C_EVENT (in module signal), 918
ctypes (module), 673
curdir (in module os), 547
currency() (in module locale), 1262
current() (tkinter.ttk.Combobox method), 1324
current_process() (in module multiprocessing), 731
current_task() (asyncio.Task class method), 871
current_thread() (in module threading), 707
CurrentByteIndex (xml.parsers.expat.xmlparser at-

tribute), 1077
CurrentColumnNumber

(xml.parsers.expat.xmlparser attribute),
1077

currentframe() (in module inspect), 1607
CurrentLineNumber (xml.parsers.expat.xmlparser

attribute), 1077
curs_set() (in module curses), 642
curses (module), 641
curses.ascii (module), 660
curses.panel (module), 663
curses.textpad (module), 659
Cursor (class in sqlite3), 420
cursor() (sqlite3.Connection method), 415
cursyncup() (curses.window method), 650
Cut, 1346
cwd() (ftplib.FTP method), 1144
cwd() (pathlib.Path class method), 353
cycle() (in module itertools), 320
Cyclic Redundancy Check, 434

D
D_FMT (in module locale), 1260
D_T_FMT (in module locale), 1260
daemon (multiprocessing.Process attribute), 727
daemon (threading.Thread attribute), 710
data

packing binary, 147
tabular, 467

Data (class in plistlib), 497
data (collections.UserDict attribute), 217
data (collections.UserList attribute), 217
data (select.kevent attribute), 846
data (selectors.SelectorKey attribute), 847
data (urllib.request.Request attribute), 1110
data (xml.dom.Comment attribute), 1053
data (xml.dom.ProcessingInstruction attribute),

1054
data (xml.dom.Text attribute), 1054
data (xmlrpc.client.Binary attribute), 1205
data() (xml.etree.ElementTree.TreeBuilder method),

1043
data_open() (urllib.request.DataHandler method),

1116
data_received() (asyncio.Protocol method), 880

database
Unicode, 137

DatabaseError, 424
databases, 410
datagram_received() (asyncio.DatagramProtocol

method), 881
DatagramHandler (class in logging.handlers), 634
DatagramProtocol (class in asyncio), 880
DatagramRequestHandler (class in socketserver),

1180
DataHandler (class in urllib.request), 1109
date (class in datetime), 175
date() (datetime.datetime method), 182
date() (nntplib.NNTP method), 1159
date_time (zipfile.ZipInfo attribute), 453
date_time_string() (http.server.BaseHTTPRequestHandler

method), 1187
DateHeader (class in email.headerregistry), 950
datetime (class in datetime), 179
DateTime (class in xmlrpc.client), 1205
datetime (email.headerregistry.DateHeader at-

tribute), 950
datetime (module), 171
day (datetime.date attribute), 176
day (datetime.datetime attribute), 181
day_abbr (in module calendar), 201
day_name (in module calendar), 201
daylight (in module time), 564
Daylight Saving Time, 562
DbfilenameShelf (class in shelve), 404
dbm (module), 407
dbm.dumb (module), 410
dbm.gnu

module, 404
dbm.gnu (module), 408
dbm.ndbm

module, 404
dbm.ndbm (module), 409
debug (imaplib.IMAP4 attribute), 1153
DEBUG (in module re), 109
debug (shlex.shlex attribute), 1307
debug (zipfile.ZipFile attribute), 452
debug() (in module doctest), 1390
debug() (in module logging), 614
debug() (logging.Logger method), 604
debug() (pipes.Template method), 1718
debug() (unittest.TestCase method), 1402
debug() (unittest.TestSuite method), 1411
DEBUG_BYTECODE_SUFFIXES (in module im-

portlib.machinery), 1635
DEBUG_COLLECTABLE (in module gc), 1595
DEBUG_LEAK (in module gc), 1595
DEBUG_SAVEALL (in module gc), 1595
debug_src() (in module doctest), 1390

1818 Index

The Python Library Reference, Release 3.5.7

DEBUG_STATS (in module gc), 1595
DEBUG_UNCOLLECTABLE (in module gc), 1595
debugger, 1345, 1549, 1554

configuration file, 1498
debugging, 1496

CGI, 1093
DebuggingServer (class in smtpd), 1168
debuglevel (http.client.HTTPResponse attribute),

1138
DebugRunner (class in doctest), 1390
Decimal (class in decimal), 279
decimal (module), 274
decimal() (in module unicodedata), 137
DecimalException (class in decimal), 293
decode

Codecs, 152
decode (codecs.CodecInfo attribute), 153
decode() (bytearray method), 54
decode() (bytes method), 54
decode() (codecs.Codec method), 157
decode() (codecs.IncrementalDecoder method), 159
decode() (in module base64), 1016
decode() (in module codecs), 152
decode() (in module quopri), 1020
decode() (in module uu), 1021
decode() (json.JSONDecoder method), 987
decode() (xmlrpc.client.Binary method), 1206
decode() (xmlrpc.client.DateTime method), 1205
decode_header() (in module email.header), 963
decode_header() (in module nntplib), 1160
decode_params() (in module email.utils), 970
decode_rfc2231() (in module email.utils), 970
decode_source() (in module importlib.util), 1640
decodebytes() (in module base64), 1016
DecodedGenerator (class in email.generator), 941
decodestring() (in module base64), 1016
decodestring() (in module quopri), 1020
decomposition() (in module unicodedata), 138
decompress() (bz2.BZ2Decompressor method), 441
decompress() (in module bz2), 442
decompress() (in module gzip), 438
decompress() (in module lzma), 445
decompress() (in module zlib), 434
decompress() (lzma.LZMADecompressor method),

445
decompress() (zlib.Decompress method), 436
decompressobj() (in module zlib), 435
decorator, 1761
DEDENT (in module token), 1657
dedent() (in module textwrap), 134
deepcopy() (in module copy), 242
def_prog_mode() (in module curses), 642
def_shell_mode() (in module curses), 642
default (in module email.policy), 948

DEFAULT (in module unittest.mock), 1448
default (inspect.Parameter attribute), 1601
default (optparse.Option attribute), 1738
default() (cmd.Cmd method), 1300
default() (json.JSONEncoder method), 988
DEFAULT_BUFFER_SIZE (in module io), 550
default_bufsize (in module xml.dom.pulldom), 1062
default_exception_handler()

(asyncio.AbstractEventLoop method),
859

default_factory (collections.defaultdict attribute),
211

DEFAULT_FORMAT (in module tarfile), 457
DEFAULT_IGNORES (in module filecmp), 372
default_open() (urllib.request.BaseHandler

method), 1112
DEFAULT_PROTOCOL (in module pickle), 391
default_timer() (in module timeit), 1511
DefaultContext (class in decimal), 287
DefaultCookiePolicy (class in http.cookiejar), 1194
defaultdict (class in collections), 210
DefaultDict (class in typing), 1362
DefaultHandler() (xml.parsers.expat.xmlparser

method), 1079
DefaultHandlerExpand()

(xml.parsers.expat.xmlparser method),
1079

defaults() (configparser.ConfigParser method), 487
DefaultSelector (class in selectors), 849
defaultTestLoader (in module unittest), 1416
defaultTestResult() (unittest.TestCase method),

1409
defects (email.headerregistry.BaseHeader attribute),

949
defects (email.message.Message attribute), 935
defpath (in module os), 548
DefragResult (class in urllib.parse), 1127
DefragResultBytes (class in urllib.parse), 1128
degrees() (in module math), 269
degrees() (in module turtle), 1276
del

statement, 37, 75
del_param() (email.message.Message method), 933
delattr() (built-in function), 8
delay() (in module turtle), 1288
delay_output() (in module curses), 642
delayload (http.cookiejar.FileCookieJar attribute),

1196
delch() (curses.window method), 650
dele() (poplib.POP3 method), 1146
delete() (ftplib.FTP method), 1144
delete() (imaplib.IMAP4 method), 1150
delete() (tkinter.ttk.Treeview method), 1331
DELETE_ATTR (opcode), 1676

Index 1819

The Python Library Reference, Release 3.5.7

DELETE_DEREF (opcode), 1678
DELETE_FAST (opcode), 1678
DELETE_GLOBAL (opcode), 1676
DELETE_NAME (opcode), 1676
DELETE_SUBSCR (opcode), 1674
deleteacl() (imaplib.IMAP4 method), 1150
deletefilehandler() (tkinter.Widget.tk method), 1320
DeleteKey() (in module winreg), 1697
DeleteKeyEx() (in module winreg), 1697
deleteln() (curses.window method), 650
deleteMe() (bdb.Breakpoint method), 1489
DeleteValue() (in module winreg), 1698
delimiter (csv.Dialect attribute), 471
delitem() (in module operator), 338
deliver_challenge() (in module multiprocess-

ing.connection), 748
delocalize() (in module locale), 1262
demo_app() (in module wsgiref.simple_server), 1098
denominator (fractions.Fraction attribute), 302
denominator (numbers.Rational attribute), 264
DeprecationWarning, 90
deque (class in collections), 207
Deque (class in typing), 1361
dequeue() (logging.handlers.QueueListener method),

640
DER_cert_to_PEM_cert() (in module ssl), 817
derwin() (curses.window method), 650
DES

cipher, 1710
description (sqlite3.Cursor attribute), 423
description() (nntplib.NNTP method), 1158
descriptions() (nntplib.NNTP method), 1157
descriptor, 1761
dest (optparse.Option attribute), 1738
detach() (io.BufferedIOBase method), 554
detach() (io.TextIOBase method), 558
detach() (socket.socket method), 801
detach() (tkinter.ttk.Treeview method), 1331
detach() (weakref.finalize method), 234
Detach() (winreg.PyHKEY method), 1704
detect_api_mismatch() (in module test.support),

1487
detect_encoding() (in module tokenize), 1660
deterministic profiling, 1502
device_encoding() (in module os), 512
devnull (in module os), 548
DEVNULL (in module subprocess), 769
devpoll() (in module select), 840
DevpollSelector (class in selectors), 849
dgettext() (in module gettext), 1250
Dialect (class in csv), 469
dialect (csv.csvreader attribute), 472
dialect (csv.csvwriter attribute), 472
Dialog (class in msilib), 1693

dict (2to3 fixer), 1477
dict (built-in class), 75
Dict (class in typing), 1362
dict() (multiprocessing.managers.SyncManager

method), 742
dictConfig() (in module logging.config), 618
dictionary, 1761
dictionary

object, 75
type, operations on, 75

dictionary view, 1761
DictReader (class in csv), 469
DictWriter (class in csv), 469
diff_bytes() (in module difflib), 127
diff_files (filecmp.dircmp attribute), 372
Differ (class in difflib), 123, 130
difference() (frozenset method), 73
difference_update() (frozenset method), 74
difflib (module), 122
digest() (hashlib.hash method), 501
digest() (hmac.HMAC method), 502
digest_size (hmac.HMAC attribute), 503
digit() (in module unicodedata), 137
digits (in module string), 93
dir() (built-in function), 8
dir() (ftplib.FTP method), 1143
dircmp (class in filecmp), 371
directory

changing, 521
creating, 524
deleting, 382, 526
site-packages, 1610
traversal, 534, 535
walking, 534, 535

Directory (class in msilib), 1692
directory ...

compileall command line option, 1666
DirEntry (class in os), 527
DirList (class in tkinter.tix), 1339
dirname() (in module os.path), 360
DirSelectBox (class in tkinter.tix), 1339
DirSelectDialog (class in tkinter.tix), 1339
DirTree (class in tkinter.tix), 1339
dis (module), 1668
dis() (dis.Bytecode method), 1669
dis() (in module dis), 1670
dis() (in module pickletools), 1681
disable (pdb command), 1499
disable() (bdb.Breakpoint method), 1489
disable() (in module faulthandler), 1494
disable() (in module gc), 1592
disable() (in module logging), 615
disable() (profile.Profile method), 1505

1820 Index

The Python Library Reference, Release 3.5.7

disable_interspersed_args() (optparse.OptionParser
method), 1743

DisableReflectionKey() (in module winreg), 1701
disassemble() (in module dis), 1670
discard (http.cookiejar.Cookie attribute), 1200
discard() (frozenset method), 74
discard() (mailbox.Mailbox method), 994
discard() (mailbox.MH method), 999
discard_buffers() (asynchat.async_chat method),

915
disco() (in module dis), 1670
discover() (unittest.TestLoader method), 1413
disk_usage() (in module shutil), 383
dispatch_call() (bdb.Bdb method), 1491
dispatch_exception() (bdb.Bdb method), 1491
dispatch_line() (bdb.Bdb method), 1491
dispatch_return() (bdb.Bdb method), 1491
dispatch_table (pickle.Pickler attribute), 393
dispatcher (class in asyncore), 911
dispatcher_with_send (class in asyncore), 912
display (pdb command), 1501
display_name (email.headerregistry.Address at-

tribute), 953
display_name (email.headerregistry.Group at-

tribute), 954
displayhook() (in module sys), 1544
dist() (in module platform), 667
distance() (in module turtle), 1275
distb() (in module dis), 1670
distutils (module), 1527
divide() (decimal.Context method), 289
divide_int() (decimal.Context method), 289
DivisionByZero (class in decimal), 293
divmod() (built-in function), 9
divmod() (decimal.Context method), 289
DllCanUnloadNow() (in module ctypes), 699
DllGetClassObject() (in module ctypes), 699
dllhandle (in module sys), 1544
dngettext() (in module gettext), 1250
do_clear() (bdb.Bdb method), 1491
do_command() (curses.textpad.Textbox method),

659
do_GET() (http.server.SimpleHTTPRequestHandler

method), 1188
do_handshake() (ssl.SSLSocket method), 823
do_HEAD() (http.server.SimpleHTTPRequestHandler

method), 1188
do_POST() (http.server.CGIHTTPRequestHandler

method), 1189
doc (json.JSONDecodeError attribute), 989
doc_header (cmd.Cmd attribute), 1301
DocCGIXMLRPCRequestHandler (class in xml-

rpc.server), 1214
DocFileSuite() (in module doctest), 1381

doCleanups() (unittest.TestCase method), 1410
docmd() (smtplib.SMTP method), 1163
docstring, 1761
docstring (doctest.DocTest attribute), 1384
DocTest (class in doctest), 1384
doctest (module), 1368
DocTestFailure, 1391
DocTestFinder (class in doctest), 1385
DocTestParser (class in doctest), 1386
DocTestRunner (class in doctest), 1386
DocTestSuite() (in module doctest), 1382
doctype() (xml.etree.ElementTree.TreeBuilder

method), 1043
doctype() (xml.etree.ElementTree.XMLParser

method), 1044
documentation

generation, 1367
online, 1367

documentElement (xml.dom.Document attribute),
1051

DocXMLRPCRequestHandler (class in xml-
rpc.server), 1214

DocXMLRPCServer (class in xmlrpc.server), 1214
domain (email.headerregistry.Address attribute), 953
domain_initial_dot (http.cookiejar.Cookie at-

tribute), 1201
domain_return_ok() (http.cookiejar.CookiePolicy

method), 1197
domain_specified (http.cookiejar.Cookie attribute),

1201
DomainLiberal (http.cookiejar.DefaultCookiePolicy

attribute), 1200
DomainRFC2965Match

(http.cookiejar.DefaultCookiePolicy at-
tribute), 1200

DomainStrict (http.cookiejar.DefaultCookiePolicy
attribute), 1200

DomainStrictNoDots (http.cookiejar.DefaultCookiePolicy
attribute), 1200

DomainStrictNonDomain
(http.cookiejar.DefaultCookiePolicy at-
tribute), 1200

DOMEventStream (class in xml.dom.pulldom), 1062
DOMException, 1054
DomstringSizeErr, 1054
done() (asyncio.Future method), 869
done() (concurrent.futures.Future method), 766
done() (in module turtle), 1290
done() (xdrlib.Unpacker method), 494
DONT_ACCEPT_BLANKLINE (in module

doctest), 1376
DONT_ACCEPT_TRUE_FOR_1 (in module

doctest), 1375
dont_write_bytecode (in module sys), 1545

Index 1821

The Python Library Reference, Release 3.5.7

doRollover() (logging.handlers.RotatingFileHandler
method), 632

doRollover() (logging.handlers.TimedRotatingFileHandler
method), 633

DOT (in module token), 1657
dot() (in module turtle), 1273
DOTALL (in module re), 110
doublequote (csv.Dialect attribute), 471
DOUBLESLASH (in module token), 1657
DOUBLESLASHEQUAL (in module token), 1657
DOUBLESTAR (in module token), 1657
DOUBLESTAREQUAL (in module token), 1657
doupdate() (in module curses), 642
down (pdb command), 1498
down() (in module turtle), 1276
drain() (asyncio.StreamWriter method), 888
drop_whitespace (textwrap.TextWrapper attribute),

135
dropwhile() (in module itertools), 320
dst() (datetime.datetime method), 183
dst() (datetime.time method), 188
dst() (datetime.timezone method), 195
dst() (datetime.tzinfo method), 189
DTDHandler (class in xml.sax.handler), 1064
duck-typing, 1762
DumbWriter (class in formatter), 1686
dummy_threading (module), 787
dump() (in module ast), 1654
dump() (in module json), 985
dump() (in module marshal), 406
dump() (in module pickle), 391
dump() (in module plistlib), 496
dump() (in module xml.etree.ElementTree), 1037
dump() (pickle.Pickler method), 392
dump() (tracemalloc.Snapshot method), 1524
dump_stats() (profile.Profile method), 1505
dump_stats() (pstats.Stats method), 1506
dump_traceback() (in module faulthandler), 1494
dump_traceback_later() (in module faulthandler),

1494
dumps() (in module json), 985
dumps() (in module marshal), 406
dumps() (in module pickle), 391
dumps() (in module plistlib), 496
dumps() (in module xmlrpc.client), 1208
dup() (in module os), 512
dup() (socket.socket method), 802
dup2() (in module os), 512
DUP_TOP (opcode), 1672
DUP_TOP_TWO (opcode), 1672
DuplicateOptionError, 490
DuplicateSectionError, 490
dwFlags (subprocess.STARTUPINFO attribute), 776
DynamicClassAttribute() (in module types), 242

E
e (in module cmath), 274
e (in module math), 271
E2BIG (in module errno), 668
EACCES (in module errno), 668
EADDRINUSE (in module errno), 672
EADDRNOTAVAIL (in module errno), 672
EADV (in module errno), 671
EAFNOSUPPORT (in module errno), 672
EAFP, 1762
EAGAIN (in module errno), 668
EALREADY (in module errno), 673
east_asian_width() (in module unicodedata), 137
EBADE (in module errno), 670
EBADF (in module errno), 668
EBADFD (in module errno), 671
EBADMSG (in module errno), 671
EBADR (in module errno), 670
EBADRQC (in module errno), 670
EBADSLT (in module errno), 670
EBFONT (in module errno), 670
EBUSY (in module errno), 668
ECHILD (in module errno), 668
echo() (in module curses), 643
echochar() (curses.window method), 650
ECHRNG (in module errno), 670
ECOMM (in module errno), 671
ECONNABORTED (in module errno), 672
ECONNREFUSED (in module errno), 673
ECONNRESET (in module errno), 672
EDEADLK (in module errno), 669
EDEADLOCK (in module errno), 670
EDESTADDRREQ (in module errno), 672
edit() (curses.textpad.Textbox method), 659
EDOM (in module errno), 669
EDOTDOT (in module errno), 671
EDQUOT (in module errno), 673
EEXIST (in module errno), 668
EFAULT (in module errno), 668
EFBIG (in module errno), 669
effective() (in module bdb), 1493
ehlo() (smtplib.SMTP method), 1163
ehlo_or_helo_if_needed() (smtplib.SMTP

method), 1163
EHOSTDOWN (in module errno), 673
EHOSTUNREACH (in module errno), 673
EIDRM (in module errno), 670
EILSEQ (in module errno), 671
EINPROGRESS (in module errno), 673
EINTR (in module errno), 668
EINVAL (in module errno), 669
EIO (in module errno), 668
EISCONN (in module errno), 673
EISDIR (in module errno), 668

1822 Index

The Python Library Reference, Release 3.5.7

EISNAM (in module errno), 673
EL2HLT (in module errno), 670
EL2NSYNC (in module errno), 670
EL3HLT (in module errno), 670
EL3RST (in module errno), 670
Element (class in xml.etree.ElementTree), 1039
element_create() (tkinter.ttk.Style method), 1335
element_names() (tkinter.ttk.Style method), 1336
element_options() (tkinter.ttk.Style method), 1336
ElementDeclHandler() (xml.parsers.expat.xmlparser

method), 1078
elements() (collections.Counter method), 205
ElementTree (class in xml.etree.ElementTree), 1041
ELIBACC (in module errno), 671
ELIBBAD (in module errno), 671
ELIBEXEC (in module errno), 671
ELIBMAX (in module errno), 671
ELIBSCN (in module errno), 671
Ellinghouse, Lance, 1021
Ellipsis (built-in variable), 25
ELLIPSIS (in module doctest), 1376
ELLIPSIS (in module token), 1657
ELNRNG (in module errno), 670
ELOOP (in module errno), 669
email (module), 927
email.charset (module), 964
email.contentmanager (module), 954
email.encoders (module), 966
email.errors (module), 966
email.generator (module), 939
email.header (module), 961
email.headerregistry (module), 949
email.iterators (module), 970
email.message (module), 927
email.mime (module), 959
email.parser (module), 936
email.policy (module), 942
email.utils (module), 968
EmailMessage (class in email.message), 955
EmailPolicy (class in email.policy), 946
EMFILE (in module errno), 669
emit() (logging.FileHandler method), 629
emit() (logging.Handler method), 608
emit() (logging.handlers.BufferingHandler method),

638
emit() (logging.handlers.DatagramHandler method),

634
emit() (logging.handlers.HTTPHandler method), 638
emit() (logging.handlers.NTEventLogHandler

method), 636
emit() (logging.handlers.QueueHandler method), 639
emit() (logging.handlers.RotatingFileHandler

method), 632
emit() (logging.handlers.SMTPHandler method), 637

emit() (logging.handlers.SocketHandler method), 633
emit() (logging.handlers.SysLogHandler method),

635
emit() (logging.handlers.TimedRotatingFileHandler

method), 633
emit() (logging.handlers.WatchedFileHandler

method), 630
emit() (logging.NullHandler method), 630
emit() (logging.StreamHandler method), 629
EMLINK (in module errno), 669
Empty, 785
empty (inspect.Parameter attribute), 1601
empty (inspect.Signature attribute), 1601
empty() (asyncio.Queue method), 902
empty() (multiprocessing.Queue method), 729
empty() (multiprocessing.SimpleQueue method), 730
empty() (queue.Queue method), 786
empty() (sched.scheduler method), 784
EMPTY_NAMESPACE (in module xml.dom), 1047
emptyline() (cmd.Cmd method), 1300
EMSGSIZE (in module errno), 672
EMULTIHOP (in module errno), 671
enable (pdb command), 1499
enable() (bdb.Breakpoint method), 1489
enable() (imaplib.IMAP4 method), 1150
enable() (in module cgitb), 1094
enable() (in module faulthandler), 1494
enable() (in module gc), 1592
enable() (profile.Profile method), 1505
enable_callback_tracebacks() (in module sqlite3),

415
enable_interspersed_args() (optparse.OptionParser

method), 1743
enable_load_extension() (sqlite3.Connection

method), 418
enable_traversal() (tkinter.ttk.Notebook method),

1326
ENABLE_USER_SITE (in module site), 1611
EnableReflectionKey() (in module winreg), 1701
ENAMETOOLONG (in module errno), 669
ENAVAIL (in module errno), 673
enclose() (curses.window method), 650
encode

Codecs, 152
encode (codecs.CodecInfo attribute), 153
encode() (codecs.Codec method), 157
encode() (codecs.IncrementalEncoder method), 158
encode() (email.header.Header method), 963
encode() (in module base64), 1016
encode() (in module codecs), 152
encode() (in module quopri), 1020
encode() (in module uu), 1021
encode() (json.JSONEncoder method), 989
encode() (str method), 43

Index 1823

The Python Library Reference, Release 3.5.7

encode() (xmlrpc.client.Binary method), 1206
encode() (xmlrpc.client.DateTime method), 1205
encode_7or8bit() (in module email.encoders), 966
encode_base64() (in module email.encoders), 966
encode_noop() (in module email.encoders), 966
encode_quopri() (in module email.encoders), 966
encode_rfc2231() (in module email.utils), 970
encodebytes() (in module base64), 1017
EncodedFile() (in module codecs), 154
encodePriority() (logging.handlers.SysLogHandler

method), 635
encodestring() (in module base64), 1017
encodestring() (in module quopri), 1020
encoding

base64, 1014
quoted-printable, 1020

encoding (curses.window attribute), 650
ENCODING (in module tarfile), 457
ENCODING (in module tokenize), 1660
encoding (io.TextIOBase attribute), 558
encoding (UnicodeError attribute), 88
encodings.idna (module), 168
encodings.mbcs (module), 169
encodings.utf_8_sig (module), 169
encodings_map (in module mimetypes), 1012
encodings_map (mimetypes.MimeTypes attribute),

1013
end (UnicodeError attribute), 88
end() (re.match method), 116
end() (xml.etree.ElementTree.TreeBuilder method),

1043
end_fill() (in module turtle), 1280
END_FINALLY (opcode), 1675
end_headers() (http.server.BaseHTTPRequestHandler

method), 1187
end_paragraph() (formatter.formatter method),

1683
end_poly() (in module turtle), 1285
EndCdataSectionHandler()

(xml.parsers.expat.xmlparser method),
1079

EndDoctypeDeclHandler()
(xml.parsers.expat.xmlparser method),
1078

endDocument() (xml.sax.handler.ContentHandler
method), 1067

endElement() (xml.sax.handler.ContentHandler
method), 1067

EndElementHandler() (xml.parsers.expat.xmlparser
method), 1078

endElementNS() (xml.sax.handler.ContentHandler
method), 1068

endheaders() (http.client.HTTPConnection
method), 1137

ENDMARKER (in module token), 1657
EndNamespaceDeclHandler()

(xml.parsers.expat.xmlparser method),
1079

endpos (re.match attribute), 117
endPrefixMapping() (xml.sax.handler.ContentHandler

method), 1067
endswith() (bytearray method), 54
endswith() (bytes method), 54
endswith() (str method), 43
endwin() (in module curses), 643
ENETDOWN (in module errno), 672
ENETRESET (in module errno), 672
ENETUNREACH (in module errno), 672
ENFILE (in module errno), 669
ENOANO (in module errno), 670
ENOBUFS (in module errno), 672
ENOCSI (in module errno), 670
ENODATA (in module errno), 670
ENODEV (in module errno), 668
ENOENT (in module errno), 668
ENOEXEC (in module errno), 668
ENOLCK (in module errno), 669
ENOLINK (in module errno), 671
ENOMEM (in module errno), 668
ENOMSG (in module errno), 669
ENONET (in module errno), 671
ENOPKG (in module errno), 671
ENOPROTOOPT (in module errno), 672
ENOSPC (in module errno), 669
ENOSR (in module errno), 670
ENOSTR (in module errno), 670
ENOSYS (in module errno), 669
ENOTBLK (in module errno), 668
ENOTCONN (in module errno), 673
ENOTDIR (in module errno), 668
ENOTEMPTY (in module errno), 669
ENOTNAM (in module errno), 673
ENOTSOCK (in module errno), 672
ENOTTY (in module errno), 669
ENOTUNIQ (in module errno), 671
enqueue() (logging.handlers.QueueHandler method),

639
enqueue_sentinel() (logging.handlers.QueueListener

method), 640
ensure_directories() (venv.EnvBuilder method),

1532
ensure_future() (in module asyncio), 873
ensurepip (module), 1527
enter() (sched.scheduler method), 784
enter_context() (contextlib.ExitStack method), 1572
enterabs() (sched.scheduler method), 784
entities (xml.dom.DocumentType attribute), 1051

1824 Index

The Python Library Reference, Release 3.5.7

EntityDeclHandler() (xml.parsers.expat.xmlparser
method), 1078

entitydefs (in module html.entities), 1028
EntityResolver (class in xml.sax.handler), 1064
Enum (class in enum), 250
enum (module), 250
enum_certificates() (in module ssl), 817
enum_crls() (in module ssl), 818
enumerate() (built-in function), 9
enumerate() (in module threading), 707
EnumKey() (in module winreg), 1698
EnumValue() (in module winreg), 1698
EnvBuilder (class in venv), 1532
environ (in module os), 506
environ (in module posix), 1708
environb (in module os), 506
environment variable

<protocol>_proxy, 1108
AUDIODEV, 1244
BROWSER, 1085, 1086
COLS, 647
COLUMNS, 648
COMSPEC, 543, 772
HOME, 360
HOMEDRIVE, 360
HOMEPATH, 360
http_proxy, 1106, 1118
IDLESTARTUP, 1348
KDEDIR, 1087
LANG, 1249, 1251, 1258, 1261
LANGUAGE, 1249, 1251
LC_ALL, 1249, 1251
LC_MESSAGES, 1249, 1251
LINES, 643, 647, 648
LNAME, 641
LOGNAME, 508, 641
MIXERDEV, 1244
no_proxy, 1108
PAGER, 1367
PATH, 538, 541, 548, 1085, 1092, 1094
POSIXLY_CORRECT, 601
PYTHON_DOM, 1047
PYTHONASYNCIODEBUG, 860, 904
PYTHONDOCS, 1368
PYTHONDONTWRITEBYTECODE, 1545
PYTHONFAULTHANDLER, 1494
PYTHONIOENCODING, 1556
PYTHONNOUSERSITE, 1611, 1612
PYTHONPATH, 1092, 1552
PYTHONSTARTUP, 143, 1348, 1551, 1611
PYTHONTRACEMALLOC, 1517, 1518, 1522
PYTHONUSERBASE, 1612
SystemRoot, 773
TEMP, 375

TERM, 646, 647
TIX_LIBRARY, 1338
TMP, 375
TMPDIR, 375
TZ, 568, 569
USER, 641
USERNAME, 508, 641
USERPROFILE, 360

environment variables
deleting, 511
setting, 509

EnvironmentError, 88
Environments

virtual, 1529
EnvironmentVarGuard (class in test.support), 1487
ENXIO (in module errno), 668
eof (bz2.BZ2Decompressor attribute), 441
eof (lzma.LZMADecompressor attribute), 445
eof (shlex.shlex attribute), 1307
eof (ssl.MemoryBIO attribute), 837
eof (zlib.Decompress attribute), 436
eof_received() (asyncio.Protocol method), 881
EOFError, 84
EOPNOTSUPP (in module errno), 672
EOVERFLOW (in module errno), 671
EPERM (in module errno), 667
EPFNOSUPPORT (in module errno), 672
epilogue (email.message.Message attribute), 935
EPIPE (in module errno), 669
epoch, 561
epoll() (in module select), 840
EpollSelector (class in selectors), 849
EPROTO (in module errno), 671
EPROTONOSUPPORT (in module errno), 672
EPROTOTYPE (in module errno), 672
eq() (in module operator), 336
EQEQUAL (in module token), 1657
EQUAL (in module token), 1657
ERA (in module locale), 1261
ERA_D_FMT (in module locale), 1261
ERA_D_T_FMT (in module locale), 1261
ERA_T_FMT (in module locale), 1261
ERANGE (in module errno), 669
erase() (curses.window method), 650
erasechar() (in module curses), 643
EREMCHG (in module errno), 671
EREMOTE (in module errno), 671
EREMOTEIO (in module errno), 673
ERESTART (in module errno), 672
erf() (in module math), 270
erfc() (in module math), 270
EROFS (in module errno), 669
ERR (in module curses), 654
errcheck (ctypes._FuncPtr attribute), 695

Index 1825

The Python Library Reference, Release 3.5.7

errcode (xmlrpc.client.ProtocolError attribute), 1207
errmsg (xmlrpc.client.ProtocolError attribute), 1207
errno

module, 85
errno (module), 667
errno (OSError attribute), 85
Error, 384, 424, 470, 490, 495, 1009, 1017, 1019, 1021,

1085, 1235, 1238, 1257
error, 113, 147, 242, 407, 408, 410, 433, 505, 601, 642,

788, 793, 840, 1075, 1229, 1718, 1723
error() (argparse.ArgumentParser method), 599
error() (in module logging), 615
error() (logging.Logger method), 606
error() (urllib.request.OpenerDirector method), 1111
error() (xml.sax.handler.ErrorHandler method), 1069
error_body (wsgiref.handlers.BaseHandler at-

tribute), 1103
error_content_type (http.server.BaseHTTPRequestHandler

attribute), 1185
error_headers (wsgiref.handlers.BaseHandler at-

tribute), 1103
error_leader() (shlex.shlex method), 1306
error_message_format

(http.server.BaseHTTPRequestHandler
attribute), 1185

error_output() (wsgiref.handlers.BaseHandler
method), 1103

error_perm, 1141
error_proto, 1141, 1145
error_received() (asyncio.DatagramProtocol

method), 881
error_reply, 1141
error_status (wsgiref.handlers.BaseHandler at-

tribute), 1103
error_temp, 1141
ErrorByteIndex (xml.parsers.expat.xmlparser at-

tribute), 1077
errorcode (in module errno), 667
ErrorCode (xml.parsers.expat.xmlparser attribute),

1077
ErrorColumnNumber (xml.parsers.expat.xmlparser

attribute), 1077
ErrorHandler (class in xml.sax.handler), 1065
ErrorLineNumber (xml.parsers.expat.xmlparser at-

tribute), 1077
Errors

logging, 602
errors (io.TextIOBase attribute), 558
errors (unittest.TestLoader attribute), 1412
errors (unittest.TestResult attribute), 1414
ErrorString() (in module xml.parsers.expat), 1075
ERRORTOKEN (in module token), 1657
escape (shlex.shlex attribute), 1306
escape() (in module cgi), 1091

escape() (in module glob), 377
escape() (in module html), 1023
escape() (in module re), 112
escape() (in module xml.sax.saxutils), 1069
escapechar (csv.Dialect attribute), 471
escapedquotes (shlex.shlex attribute), 1307
ESHUTDOWN (in module errno), 673
ESOCKTNOSUPPORT (in module errno), 672
ESPIPE (in module errno), 669
ESRCH (in module errno), 668
ESRMNT (in module errno), 671
ESTALE (in module errno), 673
ESTRPIPE (in module errno), 672
ETIME (in module errno), 670
ETIMEDOUT (in module errno), 673
Etiny() (decimal.Context method), 288
ETOOMANYREFS (in module errno), 673
Etop() (decimal.Context method), 288
ETXTBSY (in module errno), 669
EUCLEAN (in module errno), 673
EUNATCH (in module errno), 670
EUSERS (in module errno), 672
eval

built-in function, 80, 245, 1647
eval() (built-in function), 9
Event (class in asyncio), 899
Event (class in multiprocessing), 735
Event (class in threading), 716
event scheduling, 783
event() (msilib.Control method), 1693
Event() (multiprocessing.managers.SyncManager

method), 741
events (selectors.SelectorKey attribute), 847
events (widgets), 1318
EWOULDBLOCK (in module errno), 669
EX_CANTCREAT (in module os), 539
EX_CONFIG (in module os), 539
EX_DATAERR (in module os), 538
EX_IOERR (in module os), 539
EX_NOHOST (in module os), 539
EX_NOINPUT (in module os), 538
EX_NOPERM (in module os), 539
EX_NOTFOUND (in module os), 539
EX_NOUSER (in module os), 538
EX_OK (in module os), 538
EX_OSERR (in module os), 539
EX_OSFILE (in module os), 539
EX_PROTOCOL (in module os), 539
EX_SOFTWARE (in module os), 539
EX_TEMPFAIL (in module os), 539
EX_UNAVAILABLE (in module os), 539
EX_USAGE (in module os), 538
Example (class in doctest), 1385
example (doctest.DocTestFailure attribute), 1391

1826 Index

The Python Library Reference, Release 3.5.7

example (doctest.UnexpectedException attribute),
1391

examples (doctest.DocTest attribute), 1384
exc_info (doctest.UnexpectedException attribute),

1391
exc_info() (in module sys), 1545
exc_msg (doctest.Example attribute), 1385
exc_type (traceback.TracebackException attribute),

1587
excel (class in csv), 469
excel_tab (class in csv), 470
except

statement, 83
except (2to3 fixer), 1477
excepthook() (in module sys), 1094, 1545
Exception, 84
EXCEPTION (in module tkinter), 1320
exception() (asyncio.Future method), 869
exception() (asyncio.StreamReader method), 887
exception() (concurrent.futures.Future method), 766
exception() (in module logging), 615
exception() (logging.Logger method), 606
exceptions

in CGI scripts, 1094
EXDEV (in module errno), 668
exec

built-in function, 10, 80, 1647
exec (2to3 fixer), 1477
exec() (built-in function), 10
exec_module() (importlib.abc.InspectLoader

method), 1633
exec_module() (importlib.abc.Loader method), 1632
exec_module() (importlib.abc.SourceLoader

method), 1635
exec_module() (importlib.machinery.ExtensionFileLoader

method), 1639
exec_prefix (in module sys), 1545
execfile (2to3 fixer), 1477
execl() (in module os), 537
execle() (in module os), 537
execlp() (in module os), 537
execlpe() (in module os), 537
executable (in module sys), 1546
Executable Zip Files, 1537
Execute() (msilib.View method), 1690
execute() (sqlite3.Connection method), 415
execute() (sqlite3.Cursor method), 420
executemany() (sqlite3.Connection method), 415
executemany() (sqlite3.Cursor method), 421
executescript() (sqlite3.Connection method), 415
executescript() (sqlite3.Cursor method), 421
ExecutionLoader (class in importlib.abc), 1633
Executor (class in concurrent.futures), 762
execv() (in module os), 537

execve() (in module os), 537
execvp() (in module os), 537
execvpe() (in module os), 537
ExFileSelectBox (class in tkinter.tix), 1339
EXFULL (in module errno), 670
exists() (in module os.path), 360
exists() (pathlib.Path method), 354
exists() (tkinter.ttk.Treeview method), 1331
exit (built-in variable), 25
exit() (argparse.ArgumentParser method), 599
exit() (in module _thread), 788
exit() (in module sys), 1546
exitcode (multiprocessing.Process attribute), 727
exitfunc (2to3 fixer), 1477
exitonclick() (in module turtle), 1293
ExitStack (class in contextlib), 1571
exp() (decimal.Context method), 289
exp() (decimal.Decimal method), 281
exp() (in module cmath), 272
exp() (in module math), 268
expand() (re.match method), 115
expand_tabs (textwrap.TextWrapper attribute), 135
ExpandEnvironmentStrings() (in module winreg),

1698
expandNode() (xml.dom.pulldom.DOMEventStream

method), 1062
expandtabs() (bytearray method), 59
expandtabs() (bytes method), 59
expandtabs() (str method), 43
expanduser() (in module os.path), 360
expanduser() (pathlib.Path method), 354
expandvars() (in module os.path), 360
Expat, 1074
ExpatError, 1075
expect() (telnetlib.Telnet method), 1172
expected (asyncio.IncompleteReadError attribute),

889
expectedFailure() (in module unittest), 1400
expectedFailures (unittest.TestResult attribute),

1414
expires (http.cookiejar.Cookie attribute), 1200
exploded (ipaddress.IPv4Address attribute), 1217
exploded (ipaddress.IPv4Network attribute), 1221
exploded (ipaddress.IPv6Address attribute), 1218
exploded (ipaddress.IPv6Network attribute), 1223
expm1() (in module math), 268
expovariate() (in module random), 306
expr() (in module parser), 1646
expression, 1762
expunge() (imaplib.IMAP4 method), 1150
extend() (array.array method), 230
extend() (collections.deque method), 208
extend() (sequence method), 37

Index 1827

The Python Library Reference, Release 3.5.7

extend() (xml.etree.ElementTree.Element method),
1040

extend_path() (in module pkgutil), 1621
EXTENDED_ARG (opcode), 1679
ExtendedContext (class in decimal), 286
ExtendedInterpolation (class in configparser), 478
extendleft() (collections.deque method), 208
extension module, 1762
EXTENSION_SUFFIXES (in module im-

portlib.machinery), 1636
ExtensionFileLoader (class in importlib.machinery),

1638
extensions_map (http.server.SimpleHTTPRequestHandler

attribute), 1188
External Data Representation, 390, 492
external_attr (zipfile.ZipInfo attribute), 454
ExternalClashError, 1009
ExternalEntityParserCreate()

(xml.parsers.expat.xmlparser method),
1076

ExternalEntityRefHandler()
(xml.parsers.expat.xmlparser method),
1079

extra (zipfile.ZipInfo attribute), 453
extract() (tarfile.TarFile method), 459
extract() (traceback.StackSummary class method),

1588
extract() (zipfile.ZipFile method), 450
extract_cookies() (http.cookiejar.CookieJar

method), 1195
extract_stack() (in module traceback), 1586
extract_tb() (in module traceback), 1585
extract_version (zipfile.ZipInfo attribute), 454
extractall() (tarfile.TarFile method), 459
extractall() (zipfile.ZipFile method), 451
ExtractError, 457
extractfile() (tarfile.TarFile method), 460
extsep (in module os), 548

F
f_contiguous (memoryview attribute), 72
F_LOCK (in module os), 514
F_OK (in module os), 521
F_TEST (in module os), 514
F_TLOCK (in module os), 514
F_ULOCK (in module os), 514
fabs() (in module math), 266
factorial() (in module math), 266
factory() (importlib.util.LazyLoader class method),

1642
fail() (unittest.TestCase method), 1409
FAIL_FAST (in module doctest), 1377
failfast (unittest.TestResult attribute), 1415
failureException (unittest.TestCase attribute), 1409

failures (unittest.TestResult attribute), 1414
False, 27, 81
false, 27
False (Built-in object), 27
False (built-in variable), 25
family (socket.socket attribute), 807
FancyURLopener (class in urllib.request), 1121
fast (pickle.Pickler attribute), 393
fatalError() (xml.sax.handler.ErrorHandler method),

1069
Fault (class in xmlrpc.client), 1206
faultCode (xmlrpc.client.Fault attribute), 1206
faulthandler (module), 1493
faultString (xmlrpc.client.Fault attribute), 1206
fchdir() (in module os), 522
fchmod() (in module os), 513
fchown() (in module os), 513
FCICreate() (in module msilib), 1689
fcntl (module), 1715
fcntl() (in module fcntl), 1715
fd (selectors.SelectorKey attribute), 847
fd() (in module turtle), 1270
fdatasync() (in module os), 513
fdopen() (in module os), 512
Feature (class in msilib), 1693
feature_external_ges (in module xml.sax.handler),

1065
feature_external_pes (in module xml.sax.handler),

1065
feature_namespace_prefixes (in module

xml.sax.handler), 1065
feature_namespaces (in module xml.sax.handler),

1065
feature_string_interning (in module

xml.sax.handler), 1065
feature_validation (in module xml.sax.handler),

1065
feed() (email.parser.FeedParser method), 937
feed() (html.parser.HTMLParser method), 1024
feed() (xml.etree.ElementTree.XMLParser method),

1044
feed() (xml.etree.ElementTree.XMLPullParser

method), 1045
feed() (xml.sax.xmlreader.IncrementalParser

method), 1072
feed_data() (asyncio.StreamReader method), 887
feed_eof() (asyncio.StreamReader method), 887
FeedParser (class in email.parser), 936
fetch() (imaplib.IMAP4 method), 1150
Fetch() (msilib.View method), 1691
fetchall() (sqlite3.Cursor method), 422
fetchmany() (sqlite3.Cursor method), 422
fetchone() (sqlite3.Cursor method), 422
fflags (select.kevent attribute), 845

1828 Index

The Python Library Reference, Release 3.5.7

field_size_limit() (in module csv), 468
fieldnames (csv.csvreader attribute), 472
fields (uuid.UUID attribute), 1174
file

.ini, 473

.pdbrc, 1498
byte-code, 1665, 1752
configuration, 473
copying, 380
debugger configuration, 1498
large files, 1707
mime.types, 1012
path configuration, 1610
plist, 495
temporary, 372

file (pyclbr.Class attribute), 1664
file (pyclbr.Function attribute), 1664
file ...

compileall command line option, 1666
file control

UNIX, 1715
file name

temporary, 372
file object, 1762
file object

io module, 549
open() built-in function, 15

file-like object, 1762
FILE_ATTRIBUTE_ARCHIVE (in module stat),

370
FILE_ATTRIBUTE_COMPRESSED (in module

stat), 370
FILE_ATTRIBUTE_DEVICE (in module stat),

370
FILE_ATTRIBUTE_DIRECTORY (in module

stat), 370
FILE_ATTRIBUTE_ENCRYPTED (in module

stat), 370
FILE_ATTRIBUTE_HIDDEN (in module stat),

370
FILE_ATTRIBUTE_INTEGRITY_STREAM (in

module stat), 370
FILE_ATTRIBUTE_NO_SCRUB_DATA (in

module stat), 370
FILE_ATTRIBUTE_NORMAL (in module stat),

370
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED

(in module stat), 370
FILE_ATTRIBUTE_OFFLINE (in module stat),

370
FILE_ATTRIBUTE_READONLY (in module

stat), 370
FILE_ATTRIBUTE_REPARSE_POINT (in mod-

ule stat), 370

FILE_ATTRIBUTE_SPARSE_FILE (in module
stat), 370

FILE_ATTRIBUTE_SYSTEM (in module stat),
370

FILE_ATTRIBUTE_TEMPORARY (in module
stat), 370

FILE_ATTRIBUTE_VIRTUAL (in module stat),
370

file_dispatcher (class in asyncore), 913
file_open() (urllib.request.FileHandler method),

1116
file_size (zipfile.ZipInfo attribute), 454
file_wrapper (class in asyncore), 913
filecmp (module), 370
fileConfig() (in module logging.config), 619
FileCookieJar (class in http.cookiejar), 1194
FileEntry (class in tkinter.tix), 1339
FileExistsError, 89
FileFinder (class in importlib.machinery), 1637
FileHandler (class in logging), 629
FileHandler (class in urllib.request), 1109
FileInput (class in fileinput), 364
fileinput (module), 363
FileIO (class in io), 555
filelineno() (in module fileinput), 364
FileLoader (class in importlib.abc), 1634
filemode() (in module stat), 367
filename (doctest.DocTest attribute), 1384
filename (http.cookiejar.FileCookieJar attribute),

1196
filename (OSError attribute), 86
filename (traceback.TracebackException attribute),

1587
filename (tracemalloc.Frame attribute), 1523
filename (zipfile.ZipInfo attribute), 453
filename() (in module fileinput), 364
filename2 (OSError attribute), 86
filename_only (in module tabnanny), 1663
filename_pattern (tracemalloc.Filter attribute), 1523
filenames

pathname expansion, 377
wildcard expansion, 378

fileno() (http.client.HTTPResponse method), 1138
fileno() (in module fileinput), 364
fileno() (io.IOBase method), 552
fileno() (multiprocessing.Connection method), 733
fileno() (ossaudiodev.oss_audio_device method),

1244
fileno() (ossaudiodev.oss_mixer_device method),

1247
fileno() (select.devpoll method), 841
fileno() (select.epoll method), 843
fileno() (select.kqueue method), 844
fileno() (selectors.DevpollSelector method), 849

Index 1829

The Python Library Reference, Release 3.5.7

fileno() (selectors.EpollSelector method), 849
fileno() (selectors.KqueueSelector method), 849
fileno() (socket.socket method), 802
fileno() (socketserver.BaseServer method), 1178
fileno() (telnetlib.Telnet method), 1172
FileNotFoundError, 89
fileobj (selectors.SelectorKey attribute), 847
FileSelectBox (class in tkinter.tix), 1339
FileType (class in argparse), 596
FileWrapper (class in wsgiref.util), 1097
fill() (in module textwrap), 133
fill() (textwrap.TextWrapper method), 137
fillcolor() (in module turtle), 1278
filling() (in module turtle), 1279
filter (2to3 fixer), 1477
Filter (class in logging), 609
Filter (class in tracemalloc), 1523
filter (select.kevent attribute), 845
filter() (built-in function), 10
filter() (in module curses), 643
filter() (in module fnmatch), 379
filter() (logging.Filter method), 609
filter() (logging.Handler method), 607
filter() (logging.Logger method), 606
FILTER_DIR (in module unittest.mock), 1450
filter_traces() (tracemalloc.Snapshot method), 1524
filterfalse() (in module itertools), 320
filterwarnings() (in module warnings), 1567
finalize (class in weakref), 234
find() (bytearray method), 55
find() (bytes method), 55
find() (doctest.DocTestFinder method), 1385
find() (in module gettext), 1251
find() (mmap.mmap method), 924
find() (str method), 43
find() (xml.etree.ElementTree.Element method),

1040
find() (xml.etree.ElementTree.ElementTree method),

1042
find_class() (pickle protocol), 400
find_class() (pickle.Unpickler method), 393
find_library() (in module ctypes.util), 699
find_loader() (importlib.abc.PathEntryFinder

method), 1631
find_loader() (importlib.machinery.FileFinder

method), 1637
find_loader() (in module importlib), 1628
find_loader() (in module pkgutil), 1622
find_longest_match() (difflib.SequenceMatcher

method), 128
find_module() (imp.NullImporter method), 1756
find_module() (importlib.abc.Finder method), 1630
find_module() (importlib.abc.MetaPathFinder

method), 1630

find_module() (importlib.abc.PathEntryFinder
method), 1631

find_module() (importlib.machinery.PathFinder
class method), 1637

find_module() (in module imp), 1752
find_module() (zipimport.zipimporter method),

1620
find_msvcrt() (in module ctypes.util), 699
find_spec() (importlib.abc.MetaPathFinder

method), 1630
find_spec() (importlib.abc.PathEntryFinder

method), 1631
find_spec() (importlib.machinery.FileFinder

method), 1637
find_spec() (importlib.machinery.PathFinder class

method), 1636
find_spec() (in module importlib.util), 1641
find_unused_port() (in module test.support), 1486
find_user_password() (urllib.request.HTTPPasswordMgr

method), 1114
findall() (in module re), 111
findall() (re.regex method), 114
findall() (xml.etree.ElementTree.Element method),

1040
findall() (xml.etree.ElementTree.ElementTree

method), 1042
findCaller() (logging.Logger method), 606
finder, 1762
Finder (class in importlib.abc), 1630
findfactor() (in module audioop), 1230
findfile() (in module test.support), 1483
findfit() (in module audioop), 1230
finditer() (in module re), 111
finditer() (re.regex method), 114
findlabels() (in module dis), 1671
findlinestarts() (in module dis), 1671
findmatch() (in module mailcap), 992
findmax() (in module audioop), 1230
findtext() (xml.etree.ElementTree.Element method),

1040
findtext() (xml.etree.ElementTree.ElementTree

method), 1042
finish() (socketserver.BaseRequestHandler method),

1180
finish_request() (socketserver.BaseServer method),

1179
firstChild (xml.dom.Node attribute), 1049
firstkey() (dbm.gnu.gdbm method), 409
firstweekday() (in module calendar), 200
fix_missing_locations() (in module ast), 1653
fix_sentence_endings (textwrap.TextWrapper at-

tribute), 136
flag_bits (zipfile.ZipInfo attribute), 454
flags (in module sys), 1546

1830 Index

The Python Library Reference, Release 3.5.7

flags (re.regex attribute), 114
flags (select.kevent attribute), 845
flash() (in module curses), 643
flatten() (email.generator.BytesGenerator method),

941
flatten() (email.generator.Generator method), 940
flattening

objects, 389
float

built-in function, 29
float (built-in class), 11
float_info (in module sys), 1546
float_repr_style (in module sys), 1547
floating point

literals, 29
object, 29

FloatingPointError, 84, 1613
FloatOperation (class in decimal), 294
flock() (in module fcntl), 1716
floor division, 1762
floor() (in module math), 30, 266
floordiv() (in module operator), 336
flush() (bz2.BZ2Compressor method), 441
flush() (formatter.writer method), 1685
flush() (io.BufferedWriter method), 557
flush() (io.IOBase method), 552
flush() (logging.Handler method), 607
flush() (logging.handlers.BufferingHandler method),

638
flush() (logging.handlers.MemoryHandler method),

638
flush() (logging.StreamHandler method), 629
flush() (lzma.LZMACompressor method), 444
flush() (mailbox.Mailbox method), 996
flush() (mailbox.Maildir method), 997
flush() (mailbox.MH method), 1000
flush() (mmap.mmap method), 924
flush() (zlib.Compress method), 435
flush() (zlib.Decompress method), 436
flush_headers() (http.server.BaseHTTPRequestHandler

method), 1187
flush_softspace() (formatter.formatter method),

1684
flushinp() (in module curses), 643
FlushKey() (in module winreg), 1698
fma() (decimal.Context method), 289
fma() (decimal.Decimal method), 282
fmod() (in module math), 267
FMT_BINARY (in module plistlib), 497
FMT_XML (in module plistlib), 497
fnmatch (module), 378
fnmatch() (in module fnmatch), 378
fnmatchcase() (in module fnmatch), 378
focus() (tkinter.ttk.Treeview method), 1331

fold() (email.headerregistry.BaseHeader method),
950

fold() (email.policy.Compat32 method), 946
fold() (email.policy.EmailPolicy method), 948
fold() (email.policy.Policy method), 945
fold_binary() (email.policy.Compat32 method), 946
fold_binary() (email.policy.EmailPolicy method),

948
fold_binary() (email.policy.Policy method), 946
FOR_ITER (opcode), 1677
forget() (in module test.support), 1483
forget() (tkinter.ttk.Notebook method), 1326
fork() (in module os), 540
fork() (in module pty), 1714
ForkingMixIn (class in socketserver), 1177
ForkingTCPServer (class in socketserver), 1177
ForkingUDPServer (class in socketserver), 1177
forkpty() (in module os), 540
Form (class in tkinter.tix), 1341
format (memoryview attribute), 71
format (struct.Struct attribute), 152
format() (built-in function), 11
format() (in module locale), 1262
format() (logging.Formatter method), 608
format() (logging.Handler method), 608
format() (pprint.PrettyPrinter method), 245
format() (str method), 43
format() (string.Formatter method), 94
format() (traceback.TracebackException method),

1587
format() (tracemalloc.Traceback method), 1526
format_datetime() (in module email.utils), 969
format_exc() (in module traceback), 1586
format_exception() (in module traceback), 1586
format_exception_only() (in module traceback),

1586
format_exception_only()

(traceback.TracebackException method),
1587

format_field() (string.Formatter method), 95
format_help() (argparse.ArgumentParser method),

598
format_list() (in module traceback), 1586
format_map() (str method), 44
format_stack() (in module traceback), 1586
format_stack_entry() (bdb.Bdb method), 1493
format_string() (in module locale), 1262
format_tb() (in module traceback), 1586
format_usage() (argparse.ArgumentParser method),

598
formataddr() (in module email.utils), 968
formatargspec() (in module inspect), 1604
formatargvalues() (in module inspect), 1605
formatdate() (in module email.utils), 969

Index 1831

The Python Library Reference, Release 3.5.7

FormatError, 1010
FormatError() (in module ctypes), 699
formatException() (logging.Formatter method), 609
formatmonth() (calendar.HTMLCalendar method),

200
formatmonth() (calendar.TextCalendar method), 199
formatStack() (logging.Formatter method), 609
Formatter (class in logging), 608
Formatter (class in string), 94
formatter (module), 1683
formatTime() (logging.Formatter method), 609
formatting, bytearray (%), 63
formatting, bytes (%), 63
formatting, string (%), 49
formatwarning() (in module warnings), 1567
formatyear() (calendar.HTMLCalendar method), 200
formatyear() (calendar.TextCalendar method), 200
formatyearpage() (calendar.HTMLCalendar

method), 200
Fortran contiguous, 1761
forward() (in module turtle), 1270
found_terminator() (asynchat.async_chat method),

915
fpathconf() (in module os), 513
fpectl (module), 1613
fqdn (smtpd.SMTPChannel attribute), 1170
Fraction (class in fractions), 301
fractions (module), 301
Frame (class in tracemalloc), 1523
frame (tkinter.scrolledtext.ScrolledText attribute),

1342
FrameSummary (class in traceback), 1588
FrameType (in module types), 240
freeze_support() (in module multiprocessing), 731
frexp() (in module math), 267
from_address() (ctypes._CData method), 700
from_buffer() (ctypes._CData method), 700
from_buffer_copy() (ctypes._CData method), 700
from_bytes() (int class method), 31
from_callable() (inspect.Signature class method),

1601
from_decimal() (fractions.Fraction method), 303
from_exception() (traceback.TracebackException

class method), 1587
from_float() (decimal.Decimal method), 282
from_float() (fractions.Fraction method), 302
from_iterable() (itertools.chain class method), 318
from_list() (traceback.StackSummary class

method), 1588
from_param() (ctypes._CData method), 701
from_traceback() (dis.Bytecode class method), 1669
frombuf() (tarfile.TarInfo class method), 460
frombytes() (array.array method), 230
fromfd() (in module socket), 796

fromfd() (select.epoll method), 843
fromfd() (select.kqueue method), 844
fromfile() (array.array method), 230
fromhex() (bytearray class method), 53
fromhex() (bytes class method), 52
fromhex() (float class method), 32
fromkeys() (collections.Counter method), 206
fromkeys() (dict class method), 76
fromlist() (array.array method), 230
fromordinal() (datetime.date class method), 176
fromordinal() (datetime.datetime class method), 180
fromshare() (in module socket), 797
fromstring() (array.array method), 230
fromstring() (in module xml.etree.ElementTree),

1037
fromstringlist() (in module xml.etree.ElementTree),

1037
fromtarfile() (tarfile.TarInfo class method), 460
fromtimestamp() (datetime.date class method), 175
fromtimestamp() (datetime.datetime class method),

179
fromunicode() (array.array method), 230
fromutc() (datetime.timezone method), 195
fromutc() (datetime.tzinfo method), 190
FrozenImporter (class in importlib.machinery), 1636
frozenset (built-in class), 72
FrozenSet (class in typing), 1362
fsdecode() (in module os), 507
fsencode() (in module os), 507
fstat() (in module os), 513
fstatvfs() (in module os), 513
fsum() (in module math), 267
fsync() (in module os), 513
FTP, 1122

ftplib (standard module), 1139
protocol, 1122, 1139

FTP (class in ftplib), 1140
ftp_open() (urllib.request.FTPHandler method),

1116
FTP_TLS (class in ftplib), 1140
FTPHandler (class in urllib.request), 1109
ftplib (module), 1139
ftruncate() (in module os), 513
Full, 785
full() (asyncio.Queue method), 902
full() (multiprocessing.Queue method), 729
full() (queue.Queue method), 786
full_url (urllib.request.Request attribute), 1109
fullmatch() (in module re), 110
fullmatch() (re.regex method), 114
func (functools.partial attribute), 335
funcattrs (2to3 fixer), 1477
function, 1762
Function (class in symtable), 1655

1832 Index

The Python Library Reference, Release 3.5.7

function annotation, 1762
FunctionTestCase (class in unittest), 1410
FunctionType (in module types), 239
functools (module), 329
funny_files (filecmp.dircmp attribute), 372
future (2to3 fixer), 1477
Future (class in asyncio), 869
Future (class in concurrent.futures), 765
FutureWarning, 90
fwalk() (in module os), 535

G
G.722, 1234
gaierror, 793
gamma() (in module math), 270
gammavariate() (in module random), 306
garbage (in module gc), 1594
garbage collection, 1763
gather() (curses.textpad.Textbox method), 660
gather() (in module asyncio), 874
gauss() (in module random), 306
gc (module), 1592
gcd() (in module fractions), 303
gcd() (in module math), 267
ge() (in module operator), 336
gen_uuid() (in module msilib), 1690
generator, 1763
generator, 1763
Generator (class in collections.abc), 220
Generator (class in email.generator), 939
Generator (class in typing), 1362
generator expression, 1763
generator expression, 1763
generator iterator, 1763
GeneratorExit, 85
GeneratorType (in module types), 240
Generic (class in typing), 1359
generic function, 1763
generic_visit() (ast.NodeVisitor method), 1653
genops() (in module pickletools), 1681
get() (asyncio.Queue method), 902
get() (configparser.ConfigParser method), 488
get() (dict method), 76
get() (email.message.Message method), 931
get() (in module webbrowser), 1086
get() (mailbox.Mailbox method), 995
get() (multiprocessing.pool.AsyncResult method),

748
get() (multiprocessing.Queue method), 730
get() (multiprocessing.SimpleQueue method), 731
get() (ossaudiodev.oss_mixer_device method), 1247
get() (queue.Queue method), 786
get() (tkinter.ttk.Combobox method), 1324
get() (types.MappingProxyType method), 241

get() (xml.etree.ElementTree.Element method), 1040
GET_AITER (opcode), 1674
get_all() (email.message.Message method), 931
get_all() (wsgiref.headers.Headers method), 1098
get_all_breaks() (bdb.Bdb method), 1492
get_all_start_methods() (in module multiprocess-

ing), 732
GET_ANEXT (opcode), 1674
get_app() (wsgiref.simple_server.WSGIServer

method), 1099
get_archive_formats() (in module shutil), 386
GET_AWAITABLE (opcode), 1674
get_begidx() (in module readline), 143
get_blocking() (in module os), 514
get_body() (email.message.EmailMessage method),

955
get_body_encoding() (email.charset.Charset

method), 964
get_boundary() (email.message.Message method),

934
get_bpbynumber() (bdb.Bdb method), 1492
get_break() (bdb.Bdb method), 1492
get_breaks() (bdb.Bdb method), 1492
get_buffer() (xdrlib.Packer method), 493
get_buffer() (xdrlib.Unpacker method), 494
get_bytes() (mailbox.Mailbox method), 995
get_ca_certs() (ssl.SSLContext method), 827
get_cache_token() (in module abc), 1583
get_channel_binding() (ssl.SSLSocket method), 825
get_charset() (email.message.Message method), 930
get_charsets() (email.message.Message method), 934
get_children() (symtable.SymbolTable method),

1655
get_children() (tkinter.ttk.Treeview method), 1330
get_clock_info() (in module time), 564
get_close_matches() (in module difflib), 125
get_code() (importlib.abc.InspectLoader method),

1633
get_code() (importlib.abc.SourceLoader method),

1635
get_code() (importlib.machinery.ExtensionFileLoader

method), 1639
get_code() (importlib.machinery.SourcelessFileLoader

method), 1638
get_code() (zipimport.zipimporter method), 1620
get_completer() (in module readline), 142
get_completer_delims() (in module readline), 143
get_completion_type() (in module readline), 142
get_config_h_filename() (in module sysconfig),

1561
get_config_var() (in module sysconfig), 1558
get_config_vars() (in module sysconfig), 1558
get_content() (email.contentmanager.ContentManager

method), 957

Index 1833

The Python Library Reference, Release 3.5.7

get_content() (email.message.EmailMessage
method), 956

get_content() (in module email.contentmanager),
958

get_content_charset() (email.message.Message
method), 934

get_content_disposition() (email.message.Message
method), 934

get_content_maintype() (email.message.Message
method), 932

get_content_subtype() (email.message.Message
method), 932

get_content_type() (email.message.Message
method), 932

get_context() (in module multiprocessing), 732
get_coroutine_wrapper() (in module sys), 1549
get_count() (in module gc), 1593
get_current_history_length() (in module readline),

141
get_data() (importlib.abc.FileLoader method), 1634
get_data() (importlib.abc.ResourceLoader method),

1632
get_data() (in module pkgutil), 1623
get_data() (zipimport.zipimporter method), 1620
get_date() (mailbox.MaildirMessage method), 1003
get_debug() (asyncio.AbstractEventLoop method),

860
get_debug() (in module gc), 1592
get_default() (argparse.ArgumentParser method),

598
get_default_domain() (in module nis), 1723
get_default_type() (email.message.Message

method), 932
get_default_verify_paths() (in module ssl), 817
get_dialect() (in module csv), 468
get_docstring() (in module ast), 1653
get_doctest() (doctest.DocTestParser method), 1386
get_endidx() (in module readline), 143
get_environ() (wsgiref.simple_server.WSGIRequestHandler

method), 1099
get_errno() (in module ctypes), 699
get_event_loop() (asyncio.AbstractEventLoopPolicy

method), 865
get_event_loop() (in module asyncio), 863
get_event_loop_policy() (in module asyncio), 866
get_examples() (doctest.DocTestParser method),

1386
get_exception_handler()

(asyncio.AbstractEventLoop method),
859

get_exec_path() (in module os), 507
get_extra_info() (asyncio.BaseTransport method),

876
get_extra_info() (asyncio.StreamWriter method),

888
get_field() (string.Formatter method), 94
get_file() (mailbox.Babyl method), 1000
get_file() (mailbox.Mailbox method), 995
get_file() (mailbox.Maildir method), 998
get_file() (mailbox.mbox method), 998
get_file() (mailbox.MH method), 1000
get_file() (mailbox.MMDF method), 1001
get_file_breaks() (bdb.Bdb method), 1492
get_filename() (email.message.Message method),

934
get_filename() (importlib.abc.ExecutionLoader

method), 1634
get_filename() (importlib.abc.FileLoader method),

1634
get_filename() (importlib.machinery.ExtensionFileLoader

method), 1639
get_filename() (zipimport.zipimporter method),

1620
get_flags() (mailbox.MaildirMessage method), 1002
get_flags() (mailbox.mboxMessage method), 1004
get_flags() (mailbox.MMDFMessage method), 1008
get_folder() (mailbox.Maildir method), 997
get_folder() (mailbox.MH method), 999
get_frees() (symtable.Function method), 1655
get_from() (mailbox.mboxMessage method), 1004
get_from() (mailbox.MMDFMessage method), 1008
get_full_url() (urllib.request.Request method), 1110
get_globals() (symtable.Function method), 1655
get_grouped_opcodes() (difflib.SequenceMatcher

method), 129
get_handle_inheritable() (in module os), 519
get_header() (urllib.request.Request method), 1111
get_history_item() (in module readline), 142
get_history_length() (in module readline), 141
get_id() (symtable.SymbolTable method), 1655
get_ident() (in module _thread), 788
get_ident() (in module threading), 707
get_identifiers() (symtable.SymbolTable method),

1655
get_importer() (in module pkgutil), 1622
get_info() (mailbox.MaildirMessage method), 1003
get_inheritable() (in module os), 519
get_inheritable() (socket.socket method), 802
get_instructions() (in module dis), 1671
get_interpreter() (in module zipapp), 1539
GET_ITER (opcode), 1672
get_key() (selectors.BaseSelector method), 848
get_labels() (mailbox.Babyl method), 1000
get_labels() (mailbox.BabylMessage method), 1007
get_last_error() (in module ctypes), 699
get_line_buffer() (in module readline), 141
get_lineno() (symtable.SymbolTable method), 1655
get_loader() (in module pkgutil), 1622

1834 Index

The Python Library Reference, Release 3.5.7

get_locals() (symtable.Function method), 1655
get_logger() (in module multiprocessing), 752
get_magic() (in module imp), 1752
get_makefile_filename() (in module sysconfig), 1561
get_map() (selectors.BaseSelector method), 849
get_matching_blocks() (difflib.SequenceMatcher

method), 128
get_message() (mailbox.Mailbox method), 995
get_method() (urllib.request.Request method), 1110
get_methods() (symtable.Class method), 1656
get_mixed_type_key() (in module ipaddress), 1226
get_name() (symtable.Symbol method), 1656
get_name() (symtable.SymbolTable method), 1655
get_namespace() (symtable.Symbol method), 1656
get_namespaces() (symtable.Symbol method), 1656
get_nonstandard_attr() (http.cookiejar.Cookie

method), 1201
get_nowait() (asyncio.Queue method), 902
get_nowait() (multiprocessing.Queue method), 730
get_nowait() (queue.Queue method), 786
get_object_traceback() (in module tracemalloc),

1521
get_objects() (in module gc), 1593
get_opcodes() (difflib.SequenceMatcher method),

128
get_option() (optparse.OptionParser method), 1743
get_option_group() (optparse.OptionParser

method), 1734
get_osfhandle() (in module msvcrt), 1695
get_output_charset() (email.charset.Charset

method), 965
get_param() (email.message.Message method), 933
get_parameters() (symtable.Function method), 1655
get_params() (email.message.Message method), 932
get_path() (in module sysconfig), 1559
get_path_names() (in module sysconfig), 1559
get_paths() (in module sysconfig), 1560
get_payload() (email.message.Message method), 929
get_pid() (asyncio.BaseSubprocessTransport

method), 879
get_pipe_transport() (asyncio.BaseSubprocessTransport

method), 879
get_platform() (in module sysconfig), 1560
get_poly() (in module turtle), 1285
get_position() (xdrlib.Unpacker method), 494
get_protocol() (asyncio.BaseTransport method), 877
get_python_version() (in module sysconfig), 1560
get_recsrc() (ossaudiodev.oss_mixer_device

method), 1248
get_referents() (in module gc), 1593
get_referrers() (in module gc), 1593
get_request() (socketserver.BaseServer method),

1179

get_returncode() (asyncio.BaseSubprocessTransport
method), 879

get_scheme() (wsgiref.handlers.BaseHandler
method), 1102

get_scheme_names() (in module sysconfig), 1559
get_sequences() (mailbox.MH method), 999
get_sequences() (mailbox.MHMessage method),

1006
get_server() (multiprocessing.managers.BaseManager

method), 740
get_server_certificate() (in module ssl), 817
get_shapepoly() (in module turtle), 1284
get_socket() (telnetlib.Telnet method), 1172
get_source() (importlib.abc.InspectLoader method),

1633
get_source() (importlib.abc.SourceLoader method),

1635
get_source() (importlib.machinery.ExtensionFileLoader

method), 1639
get_source() (importlib.machinery.SourcelessFileLoader

method), 1638
get_source() (zipimport.zipimporter method), 1620
get_stack() (asyncio.Task method), 872
get_stack() (bdb.Bdb method), 1493
get_start_method() (in module multiprocessing),

732
get_starttag_text() (html.parser.HTMLParser

method), 1025
get_stats() (in module gc), 1593
get_stderr() (wsgiref.handlers.BaseHandler

method), 1102
get_stderr() (wsgiref.simple_server.WSGIRequestHandler

method), 1099
get_stdin() (wsgiref.handlers.BaseHandler method),

1101
get_string() (mailbox.Mailbox method), 995
get_subdir() (mailbox.MaildirMessage method),

1002
get_suffixes() (in module imp), 1752
get_symbols() (symtable.SymbolTable method),

1655
get_tag() (in module imp), 1754
get_task_factory() (asyncio.AbstractEventLoop

method), 853
get_terminal_size() (in module os), 519
get_terminal_size() (in module shutil), 387
get_terminator() (asynchat.async_chat method),

915
get_threshold() (in module gc), 1593
get_token() (shlex.shlex method), 1305
get_traceback_limit() (in module tracemalloc), 1522
get_traced_memory() (in module tracemalloc), 1522
get_tracemalloc_memory() (in module tracemal-

loc), 1522

Index 1835

The Python Library Reference, Release 3.5.7

get_type() (symtable.SymbolTable method), 1655
get_type_hints() (in module typing), 1364
get_unixfrom() (email.message.Message method),

929
get_unpack_formats() (in module shutil), 387
get_usage() (optparse.OptionParser method), 1745
get_value() (string.Formatter method), 94
get_version() (optparse.OptionParser method), 1734
get_visible() (mailbox.BabylMessage method), 1007
get_wch() (curses.window method), 650
get_write_buffer_limits() (asyncio.WriteTransport

method), 878
get_write_buffer_size() (asyncio.WriteTransport

method), 878
GET_YIELD_FROM_ITER (opcode), 1672
getacl() (imaplib.IMAP4 method), 1150
getaddresses() (in module email.utils), 968
getaddrinfo() (asyncio.AbstractEventLoop method),

858
getaddrinfo() (in module socket), 797
getallocatedblocks() (in module sys), 1547
getannotation() (imaplib.IMAP4 method), 1150
getargspec() (in module inspect), 1604
getargvalues() (in module inspect), 1604
getatime() (in module os.path), 360
getattr() (built-in function), 12
getattr_static() (in module inspect), 1607
getAttribute() (xml.dom.Element method), 1052
getAttributeNode() (xml.dom.Element method),

1052
getAttributeNodeNS() (xml.dom.Element method),

1052
getAttributeNS() (xml.dom.Element method), 1052
GetBase() (xml.parsers.expat.xmlparser method),

1076
getbegyx() (curses.window method), 650
getbkgd() (curses.window method), 650
getboolean() (configparser.ConfigParser method),

488
getbuffer() (io.BytesIO method), 556
getByteStream() (xml.sax.xmlreader.InputSource

method), 1073
getcallargs() (in module inspect), 1605
getcanvas() (in module turtle), 1292
getcapabilities() (nntplib.NNTP method), 1156
getcaps() (in module mailcap), 993
getch() (curses.window method), 650
getch() (in module msvcrt), 1695
getCharacterStream() (xml.sax.xmlreader.InputSource

method), 1073
getche() (in module msvcrt), 1695
getcheckinterval() (in module sys), 1548
getChild() (logging.Logger method), 604

getchildren() (xml.etree.ElementTree.Element
method), 1041

getclasstree() (in module inspect), 1604
getclosurevars() (in module inspect), 1605
GetColumnInfo() (msilib.View method), 1690
getColumnNumber() (xml.sax.xmlreader.Locator

method), 1073
getcomments() (in module inspect), 1599
getcompname() (aifc.aifc method), 1233
getcompname() (sunau.AU_read method), 1236
getcompname() (wave.Wave_read method), 1238
getcomptype() (aifc.aifc method), 1233
getcomptype() (sunau.AU_read method), 1236
getcomptype() (wave.Wave_read method), 1238
getContentHandler() (xml.sax.xmlreader.XMLReader

method), 1071
getcontext() (in module decimal), 286
getcoroutinelocals() (in module inspect), 1609
getcoroutinestate() (in module inspect), 1608
getctime() (in module os.path), 361
getcwd() (in module os), 523
getcwdb() (in module os), 523
getcwdu (2to3 fixer), 1477
getdecoder() (in module codecs), 153
getdefaultencoding() (in module sys), 1548
getdefaultlocale() (in module locale), 1261
getdefaulttimeout() (in module socket), 800
getdlopenflags() (in module sys), 1548
getdoc() (in module inspect), 1599
getDOMImplementation() (in module xml.dom),

1047
getDTDHandler() (xml.sax.xmlreader.XMLReader

method), 1072
getEffectiveLevel() (logging.Logger method), 604
getegid() (in module os), 507
getElementsByTagName() (xml.dom.Document

method), 1052
getElementsByTagName() (xml.dom.Element

method), 1052
getElementsByTagNameNS() (xml.dom.Document

method), 1052
getElementsByTagNameNS() (xml.dom.Element

method), 1052
getencoder() (in module codecs), 153
getEncoding() (xml.sax.xmlreader.InputSource

method), 1073
getEntityResolver() (xml.sax.xmlreader.XMLReader

method), 1072
getenv() (in module os), 507
getenvb() (in module os), 507
getErrorHandler() (xml.sax.xmlreader.XMLReader

method), 1072
geteuid() (in module os), 507

1836 Index

The Python Library Reference, Release 3.5.7

getEvent() (xml.dom.pulldom.DOMEventStream
method), 1062

getEventCategory() (logging.handlers.NTEventLogHandler
method), 637

getEventType() (logging.handlers.NTEventLogHandler
method), 637

getException() (xml.sax.SAXException method),
1064

getFeature() (xml.sax.xmlreader.XMLReader
method), 1072

GetFieldCount() (msilib.Record method), 1691
getfile() (in module inspect), 1599
getfilesystemencoding() (in module sys), 1548
getfirst() (cgi.FieldStorage method), 1090
getfloat() (configparser.ConfigParser method), 488
getfmts() (ossaudiodev.oss_audio_device method),

1245
getfqdn() (in module socket), 797
getframeinfo() (in module inspect), 1606
getframerate() (aifc.aifc method), 1233
getframerate() (sunau.AU_read method), 1236
getframerate() (wave.Wave_read method), 1238
getfullargspec() (in module inspect), 1604
getgeneratorlocals() (in module inspect), 1608
getgeneratorstate() (in module inspect), 1608
getgid() (in module os), 507
getgrall() (in module grp), 1710
getgrgid() (in module grp), 1710
getgrnam() (in module grp), 1710
getgrouplist() (in module os), 508
getgroups() (in module os), 508
getheader() (http.client.HTTPResponse method),

1137
getheaders() (http.client.HTTPResponse method),

1137
gethostbyaddr() (in module socket), 511, 798
gethostbyname() (in module socket), 797
gethostbyname_ex() (in module socket), 798
gethostname() (in module socket), 511, 798
getincrementaldecoder() (in module codecs), 153
getincrementalencoder() (in module codecs), 153
getinfo() (zipfile.ZipFile method), 450
getinnerframes() (in module inspect), 1606
GetInputContext() (xml.parsers.expat.xmlparser

method), 1076
getint() (configparser.ConfigParser method), 488
GetInteger() (msilib.Record method), 1691
getitem() (in module operator), 338
getiterator() (xml.etree.ElementTree.Element

method), 1041
getiterator() (xml.etree.ElementTree.ElementTree

method), 1042
getitimer() (in module signal), 920
getkey() (curses.window method), 650

GetLastError() (in module ctypes), 699
getLength() (xml.sax.xmlreader.Attributes method),

1074
getLevelName() (in module logging), 615
getline() (in module linecache), 379
getLineNumber() (xml.sax.xmlreader.Locator

method), 1073
getlist() (cgi.FieldStorage method), 1090
getloadavg() (in module os), 547
getlocale() (in module locale), 1261
getLogger() (in module logging), 613
getLoggerClass() (in module logging), 613
getlogin() (in module os), 508
getLogRecordFactory() (in module logging), 613
getmark() (aifc.aifc method), 1233
getmark() (sunau.AU_read method), 1237
getmark() (wave.Wave_read method), 1239
getmarkers() (aifc.aifc method), 1233
getmarkers() (sunau.AU_read method), 1236
getmarkers() (wave.Wave_read method), 1239
getmaxyx() (curses.window method), 650
getmember() (tarfile.TarFile method), 458
getmembers() (in module inspect), 1597
getmembers() (tarfile.TarFile method), 459
getMessage() (logging.LogRecord method), 611
getMessage() (xml.sax.SAXException method), 1064
getMessageID() (logging.handlers.NTEventLogHandler

method), 637
getmodule() (in module inspect), 1599
getmoduleinfo() (in module inspect), 1597
getmodulename() (in module inspect), 1597
getmouse() (in module curses), 643
getmro() (in module inspect), 1605
getmtime() (in module os.path), 361
getname() (chunk.Chunk method), 1241
getName() (threading.Thread method), 710
getNameByQName() (xml.sax.xmlreader.AttributesNS

method), 1074
getnameinfo() (asyncio.AbstractEventLoop method),

858
getnameinfo() (in module socket), 798
getnames() (tarfile.TarFile method), 459
getNames() (xml.sax.xmlreader.Attributes method),

1074
getnchannels() (aifc.aifc method), 1233
getnchannels() (sunau.AU_read method), 1236
getnchannels() (wave.Wave_read method), 1238
getnframes() (aifc.aifc method), 1233
getnframes() (sunau.AU_read method), 1236
getnframes() (wave.Wave_read method), 1238
getnode, 1175
getnode() (in module uuid), 1174
getopt (module), 600
getopt() (in module getopt), 600

Index 1837

The Python Library Reference, Release 3.5.7

GetoptError, 601
getouterframes() (in module inspect), 1606
getoutput() (in module subprocess), 782
getpagesize() (in module resource), 1722
getparams() (aifc.aifc method), 1233
getparams() (sunau.AU_read method), 1236
getparams() (wave.Wave_read method), 1238
getparyx() (curses.window method), 651
getpass (module), 640
getpass() (in module getpass), 640
GetPassWarning, 641
getpeercert() (ssl.SSLSocket method), 823
getpeername() (socket.socket method), 802
getpen() (in module turtle), 1285
getpgid() (in module os), 508
getpgrp() (in module os), 508
getpid() (in module os), 508
getpos() (html.parser.HTMLParser method), 1025
getppid() (in module os), 508
getpreferredencoding() (in module locale), 1261
getpriority() (in module os), 508
getprofile() (in module sys), 1549
GetProperty() (msilib.SummaryInformation

method), 1691
getProperty() (xml.sax.xmlreader.XMLReader

method), 1072
GetPropertyCount() (msilib.SummaryInformation

method), 1691
getprotobyname() (in module socket), 798
getproxies() (in module urllib.request), 1106
getPublicId() (xml.sax.xmlreader.InputSource

method), 1073
getPublicId() (xml.sax.xmlreader.Locator method),

1073
getpwall() (in module pwd), 1709
getpwnam() (in module pwd), 1709
getpwuid() (in module pwd), 1708
getQNameByName() (xml.sax.xmlreader.AttributesNS

method), 1074
getQNames() (xml.sax.xmlreader.AttributesNS

method), 1074
getquota() (imaplib.IMAP4 method), 1150
getquotaroot() (imaplib.IMAP4 method), 1150
getrandbits() (in module random), 305
getreader() (in module codecs), 153
getrecursionlimit() (in module sys), 1548
getrefcount() (in module sys), 1548
getresgid() (in module os), 509
getresponse() (http.client.HTTPConnection

method), 1136
getresuid() (in module os), 509
getrlimit() (in module resource), 1719
getroot() (xml.etree.ElementTree.ElementTree

method), 1042

getrusage() (in module resource), 1721
getsample() (in module audioop), 1230
getsampwidth() (aifc.aifc method), 1233
getsampwidth() (sunau.AU_read method), 1236
getsampwidth() (wave.Wave_read method), 1238
getscreen() (in module turtle), 1286
getservbyname() (in module socket), 798
getservbyport() (in module socket), 798
GetSetDescriptorType (in module types), 240
getshapes() (in module turtle), 1292
getsid() (in module os), 511
getsignal() (in module signal), 919
getsitepackages() (in module site), 1612
getsize() (chunk.Chunk method), 1241
getsize() (in module os.path), 361
getsizeof() (in module sys), 1548
getsockname() (socket.socket method), 802
getsockopt() (socket.socket method), 802
getsource() (in module inspect), 1599
getsourcefile() (in module inspect), 1599
getsourcelines() (in module inspect), 1599
getspall() (in module spwd), 1709
getspnam() (in module spwd), 1709
getstate() (codecs.IncrementalDecoder method), 159
getstate() (codecs.IncrementalEncoder method), 158
getstate() (in module random), 304
getstatusoutput() (in module subprocess), 782
getstr() (curses.window method), 651
GetString() (msilib.Record method), 1691
getSubject() (logging.handlers.SMTPHandler

method), 637
GetSummaryInformation() (msilib.Database

method), 1690
getswitchinterval() (in module sys), 1548
getSystemId() (xml.sax.xmlreader.InputSource

method), 1073
getSystemId() (xml.sax.xmlreader.Locator method),

1073
getsyx() (in module curses), 643
gettarinfo() (tarfile.TarFile method), 460
gettempdir() (in module tempfile), 375
gettempdirb() (in module tempfile), 375
gettempprefix() (in module tempfile), 375
gettempprefixb() (in module tempfile), 375
getTestCaseNames() (unittest.TestLoader method),

1413
gettext (module), 1249
gettext() (gettext.GNUTranslations method), 1253
gettext() (gettext.NullTranslations method), 1252
gettext() (in module gettext), 1250
gettimeout() (socket.socket method), 802
gettrace() (in module sys), 1549
getturtle() (in module turtle), 1285

1838 Index

The Python Library Reference, Release 3.5.7

getType() (xml.sax.xmlreader.Attributes method),
1074

getuid() (in module os), 509
geturl() (urllib.parse.urllib.parse.SplitResult

method), 1127
getuser() (in module getpass), 641
getuserbase() (in module site), 1612
getusersitepackages() (in module site), 1612
getvalue() (io.BytesIO method), 556
getvalue() (io.StringIO method), 560
getValue() (xml.sax.xmlreader.Attributes method),

1074
getValueByQName() (xml.sax.xmlreader.AttributesNS

method), 1074
getwch() (in module msvcrt), 1695
getwche() (in module msvcrt), 1695
getweakrefcount() (in module weakref), 233
getweakrefs() (in module weakref), 233
getwelcome() (ftplib.FTP method), 1142
getwelcome() (nntplib.NNTP method), 1156
getwelcome() (poplib.POP3 method), 1146
getwin() (in module curses), 643
getwindowsversion() (in module sys), 1549
getwriter() (in module codecs), 153
getxattr() (in module os), 536
getyx() (curses.window method), 651
gid (tarfile.TarInfo attribute), 461
GIL, 1763
glob

module, 378
glob (module), 377
glob() (in module glob), 377
glob() (msilib.Directory method), 1693
glob() (pathlib.Path method), 354
global interpreter lock, 1763
globals() (built-in function), 12
globs (doctest.DocTest attribute), 1384
gmtime() (in module time), 564
gname (tarfile.TarInfo attribute), 461
GNOME, 1254
GNU_FORMAT (in module tarfile), 457
gnu_getopt() (in module getopt), 601
GNUTranslations (class in gettext), 1253
got (doctest.DocTestFailure attribute), 1391
goto() (in module turtle), 1271
Graphical User Interface, 1309
GREATER (in module token), 1657
GREATEREQUAL (in module token), 1657
Greenwich Mean Time, 562
Group (class in email.headerregistry), 954
group() (nntplib.NNTP method), 1158
group() (pathlib.Path method), 355
group() (re.match method), 115
groupby() (in module itertools), 320

groupdict() (re.match method), 116
groupindex (re.regex attribute), 114
groups (email.headerregistry.AddressHeader at-

tribute), 951
groups (re.regex attribute), 114
groups() (re.match method), 116
grp (module), 1710
gt() (in module operator), 336
guess_all_extensions() (in module mimetypes), 1011
guess_all_extensions() (mimetypes.MimeTypes

method), 1013
guess_extension() (in module mimetypes), 1011
guess_extension() (mimetypes.MimeTypes method),

1013
guess_scheme() (in module wsgiref.util), 1095
guess_type() (in module mimetypes), 1011
guess_type() (mimetypes.MimeTypes method), 1013
GUI, 1309
gzip (module), 437
GzipFile (class in gzip), 437

H
halfdelay() (in module curses), 644
Handle (class in asyncio), 861
handle() (http.server.BaseHTTPRequestHandler

method), 1186
handle() (logging.Handler method), 608
handle() (logging.handlers.QueueListener method),

640
handle() (logging.Logger method), 606
handle() (logging.NullHandler method), 630
handle() (socketserver.BaseRequestHandler

method), 1180
handle() (wsgiref.simple_server.WSGIRequestHandler

method), 1099
handle_accept() (asyncore.dispatcher method), 911
handle_accepted() (asyncore.dispatcher method),

911
handle_charref() (html.parser.HTMLParser

method), 1025
handle_close() (asyncore.dispatcher method), 911
handle_comment() (html.parser.HTMLParser

method), 1025
handle_connect() (asyncore.dispatcher method), 911
handle_data() (html.parser.HTMLParser method),

1025
handle_decl() (html.parser.HTMLParser method),

1026
handle_defect() (email.policy.Policy method), 944
handle_endtag() (html.parser.HTMLParser

method), 1025
handle_entityref() (html.parser.HTMLParser

method), 1025
handle_error() (asyncore.dispatcher method), 911

Index 1839

The Python Library Reference, Release 3.5.7

handle_error() (socketserver.BaseServer method),
1179

handle_expect_100() (http.server.BaseHTTPRequestHandler
method), 1186

handle_expt() (asyncore.dispatcher method), 911
handle_one_request() (http.server.BaseHTTPRequestHandler

method), 1186
handle_pi() (html.parser.HTMLParser method),

1026
handle_read() (asyncore.dispatcher method), 911
handle_request() (socketserver.BaseServer method),

1178
handle_request() (xmlrpc.server.CGIXMLRPCRequestHandler

method), 1214
handle_startendtag() (html.parser.HTMLParser

method), 1025
handle_starttag() (html.parser.HTMLParser

method), 1025
handle_timeout() (socketserver.BaseServer method),

1179
handle_write() (asyncore.dispatcher method), 911
handleError() (logging.Handler method), 608
handleError() (logging.handlers.SocketHandler

method), 633
handler() (in module cgitb), 1095
HAS_ALPN (in module ssl), 821
has_children() (symtable.SymbolTable method),

1655
has_colors() (in module curses), 643
HAS_ECDH (in module ssl), 821
has_exec() (symtable.SymbolTable method), 1655
has_extn() (smtplib.SMTP method), 1163
has_header() (csv.Sniffer method), 470
has_header() (urllib.request.Request method), 1110
has_ic() (in module curses), 643
has_il() (in module curses), 643
has_ipv6 (in module socket), 795
has_key (2to3 fixer), 1477
has_key() (in module curses), 644
has_location (importlib.machinery.ModuleSpec at-

tribute), 1640
has_nonstandard_attr() (http.cookiejar.Cookie

method), 1201
HAS_NPN (in module ssl), 821
has_option() (configparser.ConfigParser method),

487
has_option() (optparse.OptionParser method), 1743
has_section() (configparser.ConfigParser method),

487
HAS_SNI (in module ssl), 821
hasattr() (built-in function), 12
hasAttribute() (xml.dom.Element method), 1052
hasAttributeNS() (xml.dom.Element method), 1052
hasAttributes() (xml.dom.Node method), 1049

hasChildNodes() (xml.dom.Node method), 1049
hascompare (in module dis), 1680
hasconst (in module dis), 1680
hasFeature() (xml.dom.DOMImplementation

method), 1048
hasfree (in module dis), 1680
hash

built-in function, 37
hash() (built-in function), 12
hash.block_size (in module hashlib), 500
hash.digest_size (in module hashlib), 500
hash_info (in module sys), 1549
hashable, 1763
Hashable (class in collections.abc), 219
Hashable (class in typing), 1361
hasHandlers() (logging.Logger method), 606
hashlib (module), 499
hasjabs (in module dis), 1680
hasjrel (in module dis), 1680
haslocal (in module dis), 1680
hasname (in module dis), 1680
HAVE_ARGUMENT (opcode), 1680
HAVE_THREADS (in module decimal), 292
HCI_DATA_DIR (in module socket), 795
HCI_FILTER (in module socket), 795
HCI_TIME_STAMP (in module socket), 795
head() (nntplib.NNTP method), 1159
Header (class in email.header), 962
header_encode() (email.charset.Charset method),

965
header_encode_lines() (email.charset.Charset

method), 965
header_encoding (email.charset.Charset attribute),

964
header_factory (email.policy.EmailPolicy attribute),

947
header_fetch_parse() (email.policy.Compat32

method), 946
header_fetch_parse() (email.policy.EmailPolicy

method), 947
header_fetch_parse() (email.policy.Policy method),

945
header_items() (urllib.request.Request method),

1111
header_max_count() (email.policy.EmailPolicy

method), 947
header_max_count() (email.policy.Policy method),

945
header_offset (zipfile.ZipInfo attribute), 454
header_source_parse() (email.policy.Compat32

method), 946
header_source_parse() (email.policy.EmailPolicy

method), 947

1840 Index

The Python Library Reference, Release 3.5.7

header_source_parse() (email.policy.Policy
method), 945

header_store_parse() (email.policy.Compat32
method), 946

header_store_parse() (email.policy.EmailPolicy
method), 947

header_store_parse() (email.policy.Policy method),
945

HeaderError, 457
HeaderParseError, 967
HeaderRegistry (class in email.headerregistry), 952
headers

MIME, 1011, 1087
Headers (class in wsgiref.headers), 1097
headers (http.server.BaseHTTPRequestHandler at-

tribute), 1185
headers (urllib.error.HTTPError attribute), 1130
headers (xmlrpc.client.ProtocolError attribute), 1207
heading() (in module turtle), 1275
heading() (tkinter.ttk.Treeview method), 1331
heapify() (in module heapq), 222
heapmin() (in module msvcrt), 1696
heappop() (in module heapq), 222
heappush() (in module heapq), 222
heappushpop() (in module heapq), 222
heapq (module), 222
heapreplace() (in module heapq), 222
helo() (smtplib.SMTP method), 1163
help

online, 1367
help (optparse.Option attribute), 1739
help (pdb command), 1498
help() (built-in function), 12
help() (nntplib.NNTP method), 1158
herror, 793
hex (uuid.UUID attribute), 1174
hex() (built-in function), 12
hex() (bytearray method), 53
hex() (bytes method), 52
hex() (float method), 32
hex() (memoryview method), 68
hexadecimal

literals, 29
hexbin() (in module binhex), 1017
hexdigest() (hashlib.hash method), 501
hexdigest() (hmac.HMAC method), 502
hexdigits (in module string), 93
hexlify() (in module binascii), 1019
hexversion (in module sys), 1550
hidden() (curses.panel.Panel method), 663
hide() (curses.panel.Panel method), 663
hide() (tkinter.ttk.Notebook method), 1326
hide_cookie2 (http.cookiejar.CookiePolicy at-

tribute), 1198

hideturtle() (in module turtle), 1281
HierarchyRequestErr, 1054
HIGHEST_PROTOCOL (in module pickle), 391
HKEY_CLASSES_ROOT (in module winreg), 1702
HKEY_CURRENT_CONFIG (in module winreg),

1702
HKEY_CURRENT_USER (in module winreg),

1702
HKEY_DYN_DATA (in module winreg), 1702
HKEY_LOCAL_MACHINE (in module winreg),

1702
HKEY_PERFORMANCE_DATA (in module win-

reg), 1702
HKEY_USERS (in module winreg), 1702
hline() (curses.window method), 651
HList (class in tkinter.tix), 1340
hls_to_rgb() (in module colorsys), 1242
hmac (module), 502
HOME, 360
home() (in module turtle), 1272
home() (pathlib.Path class method), 353
HOMEDRIVE, 360
HOMEPATH, 360
hook_compressed() (in module fileinput), 365
hook_encoded() (in module fileinput), 365
host (urllib.request.Request attribute), 1110
hostmask (ipaddress.IPv4Network attribute), 1221
hostmask (ipaddress.IPv6Network attribute), 1223
hosts (netrc.netrc attribute), 492
hosts() (ipaddress.IPv4Network method), 1221
hosts() (ipaddress.IPv6Network method), 1223
hour (datetime.datetime attribute), 181
hour (datetime.time attribute), 187
HRESULT (class in ctypes), 703
hStdError (subprocess.STARTUPINFO attribute),

777
hStdInput (subprocess.STARTUPINFO attribute),

777
hStdOutput (subprocess.STARTUPINFO attribute),

777
hsv_to_rgb() (in module colorsys), 1242
ht() (in module turtle), 1281
HTML, 1023, 1122
html (module), 1023
html.entities (module), 1028
html.parser (module), 1023
html5 (in module html.entities), 1028
HTMLCalendar (class in calendar), 200
HtmlDiff (class in difflib), 123
HTMLParser (class in html.parser), 1023
htonl() (in module socket), 798
htons() (in module socket), 798
HTTP

http (standard module), 1131

Index 1841

The Python Library Reference, Release 3.5.7

http.client (standard module), 1133
protocol, 1087, 1122, 1131, 1133, 1184

HTTP (in module email.policy), 948
http (module), 1131
http.client (module), 1133
http.cookiejar (module), 1193
http.cookies (module), 1190
http.server (module), 1184
http_error_301() (urllib.request.HTTPRedirectHandler

method), 1113
http_error_302() (urllib.request.HTTPRedirectHandler

method), 1114
http_error_303() (urllib.request.HTTPRedirectHandler

method), 1114
http_error_307() (urllib.request.HTTPRedirectHandler

method), 1114
http_error_401() (urllib.request.HTTPBasicAuthHandler

method), 1115
http_error_401() (urllib.request.HTTPDigestAuthHandler

method), 1115
http_error_407() (urllib.request.ProxyBasicAuthHandler

method), 1115
http_error_407() (urllib.request.ProxyDigestAuthHandler

method), 1115
http_error_auth_reqed()

(urllib.request.AbstractBasicAuthHandler
method), 1115

http_error_auth_reqed()
(urllib.request.AbstractDigestAuthHandler
method), 1115

http_error_default() (urllib.request.BaseHandler
method), 1112

http_error_nnn() (urllib.request.BaseHandler
method), 1113

http_open() (urllib.request.HTTPHandler method),
1115

HTTP_PORT (in module http.client), 1135
http_proxy, 1106, 1118
http_response() (urllib.request.HTTPErrorProcessor

method), 1116
http_version (wsgiref.handlers.BaseHandler at-

tribute), 1103
HTTPBasicAuthHandler (class in urllib.request),

1108
HTTPConnection (class in http.client), 1134
HTTPCookieProcessor (class in urllib.request), 1108
httpd, 1184
HTTPDefaultErrorHandler (class in urllib.request),

1107
HTTPDigestAuthHandler (class in urllib.request),

1109
HTTPError, 1130
HTTPErrorProcessor (class in urllib.request), 1109
HTTPException, 1134

HTTPHandler (class in logging.handlers), 638
HTTPHandler (class in urllib.request), 1109
HTTPPasswordMgr (class in urllib.request), 1108
HTTPPasswordMgrWithDefaultRealm (class in url-

lib.request), 1108
HTTPPasswordMgrWithPriorAuth (class in url-

lib.request), 1108
HTTPRedirectHandler (class in urllib.request), 1107
HTTPResponse (class in http.client), 1134
https_open() (urllib.request.HTTPSHandler

method), 1116
HTTPS_PORT (in module http.client), 1135
https_response() (urllib.request.HTTPErrorProcessor

method), 1117
HTTPSConnection (class in http.client), 1134
HTTPServer (class in http.server), 1184
HTTPSHandler (class in urllib.request), 1109
HTTPStatus (class in http), 1132
hypot() (in module math), 269

I
I (in module re), 109
I/O control

buffering, 17, 802
POSIX, 1712
tty, 1712
UNIX, 1715

iadd() (in module operator), 341
iand() (in module operator), 341
iconcat() (in module operator), 341
id() (built-in function), 13
id() (unittest.TestCase method), 1409
idcok() (curses.window method), 651
ident (select.kevent attribute), 845
ident (threading.Thread attribute), 710
identchars (cmd.Cmd attribute), 1301
identify() (tkinter.ttk.Notebook method), 1326
identify() (tkinter.ttk.Treeview method), 1332
identify() (tkinter.ttk.Widget method), 1323
identify_column() (tkinter.ttk.Treeview method),

1332
identify_element() (tkinter.ttk.Treeview method),

1332
identify_region() (tkinter.ttk.Treeview method),

1332
identify_row() (tkinter.ttk.Treeview method), 1332
idioms (2to3 fixer), 1477
IDLE, 1764
IDLE, 1342
IDLESTARTUP, 1348
idlok() (curses.window method), 651
IEEE-754, 1613
if

statement, 27

1842 Index

The Python Library Reference, Release 3.5.7

if_indextoname() (in module socket), 800
if_nameindex() (in module socket), 800
if_nametoindex() (in module socket), 800
ifloordiv() (in module operator), 341
iglob() (in module glob), 377
ignorableWhitespace() (xml.sax.handler.ContentHandler

method), 1068
ignore (pdb command), 1499
ignore_errors() (in module codecs), 157
IGNORE_EXCEPTION_DETAIL (in module

doctest), 1376
ignore_patterns() (in module shutil), 382
IGNORECASE (in module re), 109
ihave() (nntplib.NNTP method), 1159
IISCGIHandler (class in wsgiref.handlers), 1100
ilshift() (in module operator), 341
imag (numbers.Complex attribute), 263
imap() (multiprocessing.pool.Pool method), 747
IMAP4

protocol, 1147
IMAP4 (class in imaplib), 1147
IMAP4.abort, 1148
IMAP4.error, 1148
IMAP4.readonly, 1148
IMAP4_SSL

protocol, 1147
IMAP4_SSL (class in imaplib), 1148
IMAP4_stream

protocol, 1147
IMAP4_stream (class in imaplib), 1148
imap_unordered() (multiprocessing.pool.Pool

method), 747
imaplib (module), 1147
imatmul() (in module operator), 341
imghdr (module), 1242
immedok() (curses.window method), 651
immutable, 1764
immutable

sequence types, 37
imod() (in module operator), 341
imp

module, 23
imp (module), 1752
ImpImporter (class in pkgutil), 1621
implementation (in module sys), 1550
ImpLoader (class in pkgutil), 1622
import

statement, 23, 1752
import (2to3 fixer), 1478
import path, 1764
import_fresh_module() (in module test.support),

1486
IMPORT_FROM (opcode), 1677
import_module() (in module importlib), 1628

import_module() (in module test.support), 1486
IMPORT_NAME (opcode), 1677
IMPORT_STAR (opcode), 1675
importer, 1764
ImportError, 85
importing, 1764
importlib (module), 1627
importlib.abc (module), 1630
importlib.machinery (module), 1635
importlib.util (module), 1640
imports (2to3 fixer), 1478
imports2 (2to3 fixer), 1478
ImportWarning, 90
ImproperConnectionState, 1135
imul() (in module operator), 341
in

operator, 28, 35
in_dll() (ctypes._CData method), 701
in_table_a1() (in module stringprep), 139
in_table_b1() (in module stringprep), 139
in_table_c11() (in module stringprep), 139
in_table_c11_c12() (in module stringprep), 139
in_table_c12() (in module stringprep), 139
in_table_c21() (in module stringprep), 139
in_table_c21_c22() (in module stringprep), 139
in_table_c22() (in module stringprep), 139
in_table_c3() (in module stringprep), 140
in_table_c4() (in module stringprep), 140
in_table_c5() (in module stringprep), 140
in_table_c6() (in module stringprep), 140
in_table_c7() (in module stringprep), 140
in_table_c8() (in module stringprep), 140
in_table_c9() (in module stringprep), 140
in_table_d1() (in module stringprep), 140
in_table_d2() (in module stringprep), 140
in_transaction (sqlite3.Connection attribute), 415
inch() (curses.window method), 651
inclusive (tracemalloc.Filter attribute), 1523
Incomplete, 1019
IncompleteRead, 1135
IncompleteReadError, 889
increment_lineno() (in module ast), 1653
IncrementalDecoder (class in codecs), 158
incrementaldecoder (codecs.CodecInfo attribute),

153
IncrementalEncoder (class in codecs), 158
incrementalencoder (codecs.CodecInfo attribute),

153
IncrementalNewlineDecoder (class in io), 560
IncrementalParser (class in xml.sax.xmlreader), 1070
indent (doctest.Example attribute), 1385
INDENT (in module token), 1657
indent() (in module textwrap), 134
IndentationError, 87

Index 1843

The Python Library Reference, Release 3.5.7

index() (array.array method), 230
index() (bytearray method), 55
index() (bytes method), 55
index() (collections.deque method), 208
index() (in module operator), 336
index() (sequence method), 35
index() (str method), 44
index() (tkinter.ttk.Notebook method), 1326
index() (tkinter.ttk.Treeview method), 1332
IndexError, 85
indexOf() (in module operator), 338
IndexSizeErr, 1054
inet_aton() (in module socket), 799
inet_ntoa() (in module socket), 799
inet_ntop() (in module socket), 799
inet_pton() (in module socket), 799
Inexact (class in decimal), 293
inf (in module math), 271
infile

command line option, 991
infile (shlex.shlex attribute), 1307
Infinity, 11
info() (dis.Bytecode method), 1669
info() (gettext.NullTranslations method), 1252
info() (in module logging), 614
info() (logging.Logger method), 605
infolist() (zipfile.ZipFile method), 450
ini file, 473
init() (in module mimetypes), 1012
init_color() (in module curses), 644
init_database() (in module msilib), 1689
init_pair() (in module curses), 644
inited (in module mimetypes), 1012
initgroups() (in module os), 509
initial_indent (textwrap.TextWrapper attribute),

136
initscr() (in module curses), 644
inode() (os.DirEntry method), 528
INPLACE_ADD (opcode), 1673
INPLACE_AND (opcode), 1674
INPLACE_FLOOR_DIVIDE (opcode), 1673
INPLACE_LSHIFT (opcode), 1674
INPLACE_MATRIX_MULTIPLY (opcode), 1673
INPLACE_MODULO (opcode), 1673
INPLACE_MULTIPLY (opcode), 1673
INPLACE_OR (opcode), 1674
INPLACE_POWER (opcode), 1673
INPLACE_RSHIFT (opcode), 1674
INPLACE_SUBTRACT (opcode), 1673
INPLACE_TRUE_DIVIDE (opcode), 1673
INPLACE_XOR (opcode), 1674
input (2to3 fixer), 1478
input() (built-in function), 13
input() (in module fileinput), 363

input_charset (email.charset.Charset attribute), 964
input_codec (email.charset.Charset attribute), 964
InputOnly (class in tkinter.tix), 1341
InputSource (class in xml.sax.xmlreader), 1071
insch() (curses.window method), 651
insdelln() (curses.window method), 651
insert() (array.array method), 230
insert() (collections.deque method), 208
insert() (sequence method), 37
insert() (tkinter.ttk.Notebook method), 1326
insert() (tkinter.ttk.Treeview method), 1332
insert() (xml.etree.ElementTree.Element method),

1041
insert_text() (in module readline), 141
insertBefore() (xml.dom.Node method), 1050
insertln() (curses.window method), 651
insnstr() (curses.window method), 651
insort() (in module bisect), 226
insort_left() (in module bisect), 226
insort_right() (in module bisect), 226
inspect (module), 1595
inspect command line option

–details, 1610
InspectLoader (class in importlib.abc), 1633
insstr() (curses.window method), 651
install() (gettext.NullTranslations method), 1252
install() (in module gettext), 1251
install_opener() (in module urllib.request), 1106
install_scripts() (venv.EnvBuilder method), 1533
installHandler() (in module unittest), 1420
instate() (tkinter.ttk.Widget method), 1323
instr() (curses.window method), 651
instream (shlex.shlex attribute), 1307
Instruction (class in dis), 1671
Instruction.arg (in module dis), 1671
Instruction.argrepr (in module dis), 1671
Instruction.argval (in module dis), 1671
Instruction.is_jump_target (in module dis), 1671
Instruction.offset (in module dis), 1671
Instruction.opcode (in module dis), 1671
Instruction.opname (in module dis), 1671
Instruction.starts_line (in module dis), 1671
int

built-in function, 29
int (built-in class), 13
int (uuid.UUID attribute), 1174
Int2AP() (in module imaplib), 1148
int_info (in module sys), 1551
integer

literals, 29
object, 29
types, operations on, 30

Integral (class in numbers), 264
Integrated Development Environment, 1342

1844 Index

The Python Library Reference, Release 3.5.7

IntegrityError, 424
Intel/DVI ADPCM, 1229
IntEnum (class in enum), 250
interact (pdb command), 1501
interact() (code.InteractiveConsole method), 1616
interact() (in module code), 1615
interact() (telnetlib.Telnet method), 1172
interactive, 1764
InteractiveConsole (class in code), 1615
InteractiveInterpreter (class in code), 1615
intern (2to3 fixer), 1478
intern() (in module sys), 1551
internal_attr (zipfile.ZipInfo attribute), 454
Internaldate2tuple() (in module imaplib), 1148
internalSubset (xml.dom.DocumentType attribute),

1051
Internet, 1085
interpolation, bytearray (%), 63
interpolation, bytes (%), 63
interpolation, string (%), 49
InterpolationDepthError, 491
InterpolationError, 491
InterpolationMissingOptionError, 491
InterpolationSyntaxError, 491
interpreted, 1764
interpreter prompts, 1553
interpreter shutdown, 1764
interrupt() (sqlite3.Connection method), 417
interrupt_main() (in module _thread), 788
InterruptedError, 89
intersection() (frozenset method), 73
intersection_update() (frozenset method), 74
intro (cmd.Cmd attribute), 1301
InuseAttributeErr, 1054
inv() (in module operator), 336
InvalidAccessErr, 1054
invalidate_caches() (importlib.abc.MetaPathFinder

method), 1631
invalidate_caches() (importlib.abc.PathEntryFinder

method), 1631
invalidate_caches() (importlib.machinery.FileFinder

method), 1637
invalidate_caches() (importlib.machinery.PathFinder

class method), 1637
invalidate_caches() (in module importlib), 1629
InvalidCharacterErr, 1055
InvalidModificationErr, 1055
InvalidOperation (class in decimal), 293
InvalidStateErr, 1055
InvalidStateError, 869
InvalidURL, 1135
invert() (in module operator), 336
io (class in typing), 1363
io (module), 549

io.StringIO
object, 42

IOBase (class in io), 551
ioctl() (in module fcntl), 1715
ioctl() (socket.socket method), 802
IOError, 88
ior() (in module operator), 341
ip (ipaddress.IPv4Interface attribute), 1225
ip (ipaddress.IPv6Interface attribute), 1225
ip_address() (in module ipaddress), 1215
ip_interface() (in module ipaddress), 1216
ip_network() (in module ipaddress), 1216
ipaddress (module), 1215
ipow() (in module operator), 341
ipv4_mapped (ipaddress.IPv6Address attribute),

1218
IPv4Address (class in ipaddress), 1216
IPv4Interface (class in ipaddress), 1225
IPv4Network (class in ipaddress), 1220
IPv6Address (class in ipaddress), 1217
IPv6Interface (class in ipaddress), 1225
IPv6Network (class in ipaddress), 1222
irshift() (in module operator), 341
is

operator, 28
is not

operator, 28
is_() (in module operator), 336
is_absolute() (pathlib.PurePath method), 350
is_alive() (multiprocessing.Process method), 726
is_alive() (threading.Thread method), 710
is_assigned() (symtable.Symbol method), 1656
is_attachment() (email.message.EmailMessage

method), 955
is_authenticated() (urllib.request.HTTPPasswordMgrWithPriorAuth

method), 1115
is_block_device() (pathlib.Path method), 355
is_blocked() (http.cookiejar.DefaultCookiePolicy

method), 1199
is_canonical() (decimal.Context method), 289
is_canonical() (decimal.Decimal method), 282
is_char_device() (pathlib.Path method), 355
IS_CHARACTER_JUNK() (in module difflib), 127
is_check_supported() (in module lzma), 446
is_closed() (asyncio.AbstractEventLoop method),

851
is_closing() (asyncio.BaseTransport method), 876
is_declared_global() (symtable.Symbol method),

1656
is_dir() (os.DirEntry method), 528
is_dir() (pathlib.Path method), 355
is_enabled() (in module faulthandler), 1494
is_expired() (http.cookiejar.Cookie method), 1201
is_fifo() (pathlib.Path method), 355

Index 1845

The Python Library Reference, Release 3.5.7

is_file() (os.DirEntry method), 528
is_file() (pathlib.Path method), 355
is_finalizing() (in module sys), 1551
is_finite() (decimal.Context method), 289
is_finite() (decimal.Decimal method), 282
is_free() (symtable.Symbol method), 1656
is_global (ipaddress.IPv4Address attribute), 1217
is_global (ipaddress.IPv6Address attribute), 1218
is_global() (symtable.Symbol method), 1656
is_hop_by_hop() (in module wsgiref.util), 1097
is_imported() (symtable.Symbol method), 1656
is_infinite() (decimal.Context method), 289
is_infinite() (decimal.Decimal method), 282
is_integer() (float method), 32
is_jython (in module test.support), 1483
IS_LINE_JUNK() (in module difflib), 127
is_linetouched() (curses.window method), 652
is_link_local (ipaddress.IPv4Address attribute),

1217
is_link_local (ipaddress.IPv4Network attribute),

1221
is_link_local (ipaddress.IPv6Address attribute),

1218
is_link_local (ipaddress.IPv6Network attribute),

1223
is_local() (symtable.Symbol method), 1656
is_loopback (ipaddress.IPv4Address attribute), 1217
is_loopback (ipaddress.IPv4Network attribute),

1221
is_loopback (ipaddress.IPv6Address attribute), 1218
is_loopback (ipaddress.IPv6Network attribute),

1223
is_multicast (ipaddress.IPv4Address attribute),

1217
is_multicast (ipaddress.IPv4Network attribute),

1220
is_multicast (ipaddress.IPv6Address attribute),

1218
is_multicast (ipaddress.IPv6Network attribute),

1223
is_multipart() (email.message.Message method), 929
is_namespace() (symtable.Symbol method), 1656
is_nan() (decimal.Context method), 289
is_nan() (decimal.Decimal method), 282
is_nested() (symtable.SymbolTable method), 1655
is_normal() (decimal.Context method), 289
is_normal() (decimal.Decimal method), 282
is_not() (in module operator), 336
is_not_allowed() (http.cookiejar.DefaultCookiePolicy

method), 1199
is_optimized() (symtable.SymbolTable method),

1655
is_package() (importlib.abc.InspectLoader method),

1633

is_package() (importlib.abc.SourceLoader method),
1635

is_package() (importlib.machinery.ExtensionFileLoader
method), 1639

is_package() (importlib.machinery.SourceFileLoader
method), 1638

is_package() (importlib.machinery.SourcelessFileLoader
method), 1638

is_package() (zipimport.zipimporter method), 1620
is_parameter() (symtable.Symbol method), 1656
is_private (ipaddress.IPv4Address attribute), 1217
is_private (ipaddress.IPv4Network attribute), 1220
is_private (ipaddress.IPv6Address attribute), 1218
is_private (ipaddress.IPv6Network attribute), 1223
is_python_build() (in module sysconfig), 1561
is_qnan() (decimal.Context method), 289
is_qnan() (decimal.Decimal method), 282
is_referenced() (symtable.Symbol method), 1656
is_reserved (ipaddress.IPv4Address attribute), 1217
is_reserved (ipaddress.IPv4Network attribute), 1221
is_reserved (ipaddress.IPv6Address attribute), 1218
is_reserved (ipaddress.IPv6Network attribute), 1223
is_reserved() (pathlib.PurePath method), 351
is_resource_enabled() (in module test.support),

1483
is_running() (asyncio.AbstractEventLoop method),

851
is_set() (asyncio.Event method), 900
is_set() (threading.Event method), 716
is_signed() (decimal.Context method), 289
is_signed() (decimal.Decimal method), 282
is_site_local (ipaddress.IPv6Address attribute),

1218
is_site_local (ipaddress.IPv6Network attribute),

1224
is_snan() (decimal.Context method), 289
is_snan() (decimal.Decimal method), 283
is_socket() (pathlib.Path method), 355
is_subnormal() (decimal.Context method), 290
is_subnormal() (decimal.Decimal method), 283
is_symlink() (os.DirEntry method), 528
is_symlink() (pathlib.Path method), 355
is_tarfile() (in module tarfile), 457
is_term_resized() (in module curses), 644
is_tracing() (in module tracemalloc), 1522
is_tracked() (in module gc), 1593
is_unspecified (ipaddress.IPv4Address attribute),

1217
is_unspecified (ipaddress.IPv4Network attribute),

1220
is_unspecified (ipaddress.IPv6Address attribute),

1218
is_unspecified (ipaddress.IPv6Network attribute),

1223

1846 Index

The Python Library Reference, Release 3.5.7

is_wintouched() (curses.window method), 652
is_zero() (decimal.Context method), 290
is_zero() (decimal.Decimal method), 283
is_zipfile() (in module zipfile), 448
isabs() (in module os.path), 361
isabstract() (in module inspect), 1598
IsADirectoryError, 89
isalnum() (bytearray method), 60
isalnum() (bytes method), 60
isalnum() (in module curses.ascii), 661
isalnum() (str method), 44
isalpha() (bytearray method), 60
isalpha() (bytes method), 60
isalpha() (in module curses.ascii), 661
isalpha() (str method), 44
isascii() (in module curses.ascii), 661
isatty() (chunk.Chunk method), 1241
isatty() (in module os), 514
isatty() (io.IOBase method), 552
isawaitable() (in module inspect), 1598
isblank() (in module curses.ascii), 661
isblk() (tarfile.TarInfo method), 462
isbuiltin() (in module inspect), 1598
ischr() (tarfile.TarInfo method), 461
isclass() (in module inspect), 1597
isclose() (in module cmath), 273
isclose() (in module math), 267
iscntrl() (in module curses.ascii), 661
iscode() (in module inspect), 1598
iscoroutine() (in module asyncio), 874
iscoroutine() (in module inspect), 1598
iscoroutinefunction() (in module asyncio), 874
iscoroutinefunction() (in module inspect), 1598
isctrl() (in module curses.ascii), 662
isDaemon() (threading.Thread method), 710
isdatadescriptor() (in module inspect), 1598
isdecimal() (str method), 44
isdev() (tarfile.TarInfo method), 462
isdigit() (bytearray method), 60
isdigit() (bytes method), 60
isdigit() (in module curses.ascii), 661
isdigit() (str method), 44
isdir() (in module os.path), 361
isdir() (tarfile.TarInfo method), 461
isdisjoint() (frozenset method), 73
isdown() (in module turtle), 1278
iselement() (in module xml.etree.ElementTree), 1038
isenabled() (in module gc), 1592
isEnabledFor() (logging.Logger method), 604
isendwin() (in module curses), 644
ISEOF() (in module token), 1657
isexpr() (in module parser), 1647
isexpr() (parser.ST method), 1648
isfifo() (tarfile.TarInfo method), 462

isfile() (in module os.path), 361
isfile() (tarfile.TarInfo method), 461
isfinite() (in module cmath), 273
isfinite() (in module math), 268
isfirstline() (in module fileinput), 364
isframe() (in module inspect), 1598
isfunction() (in module inspect), 1597
isgenerator() (in module inspect), 1598
isgeneratorfunction() (in module inspect), 1598
isgetsetdescriptor() (in module inspect), 1599
isgraph() (in module curses.ascii), 662
isidentifier() (str method), 44
isinf() (in module cmath), 273
isinf() (in module math), 268
isinstance (2to3 fixer), 1478
isinstance() (built-in function), 13
iskeyword() (in module keyword), 1659
isleap() (in module calendar), 201
islice() (in module itertools), 321
islink() (in module os.path), 361
islnk() (tarfile.TarInfo method), 461
islower() (bytearray method), 60
islower() (bytes method), 60
islower() (in module curses.ascii), 662
islower() (str method), 44
ismemberdescriptor() (in module inspect), 1599
ismeta() (in module curses.ascii), 662
ismethod() (in module inspect), 1597
ismethoddescriptor() (in module inspect), 1598
ismodule() (in module inspect), 1597
ismount() (in module os.path), 361
isnan() (in module cmath), 273
isnan() (in module math), 268
ISNONTERMINAL() (in module token), 1657
isnumeric() (str method), 44
isocalendar() (datetime.date method), 177
isocalendar() (datetime.datetime method), 184
isoformat() (datetime.date method), 177
isoformat() (datetime.datetime method), 184
isoformat() (datetime.time method), 187
isolation_level (sqlite3.Connection attribute), 415
isoweekday() (datetime.date method), 177
isoweekday() (datetime.datetime method), 184
isprint() (in module curses.ascii), 662
isprintable() (str method), 45
ispunct() (in module curses.ascii), 662
isreadable() (in module pprint), 245
isreadable() (pprint.PrettyPrinter method), 245
isrecursive() (in module pprint), 245
isrecursive() (pprint.PrettyPrinter method), 245
isreg() (tarfile.TarInfo method), 461
isReservedKey() (http.cookies.Morsel method), 1192
isroutine() (in module inspect), 1598
isSameNode() (xml.dom.Node method), 1049

Index 1847

The Python Library Reference, Release 3.5.7

isspace() (bytearray method), 61
isspace() (bytes method), 61
isspace() (in module curses.ascii), 662
isspace() (str method), 45
isstdin() (in module fileinput), 364
issubclass() (built-in function), 13
issubset() (frozenset method), 73
issuite() (in module parser), 1647
issuite() (parser.ST method), 1648
issuperset() (frozenset method), 73
issym() (tarfile.TarInfo method), 461
ISTERMINAL() (in module token), 1657
istitle() (bytearray method), 61
istitle() (bytes method), 61
istitle() (str method), 45
istraceback() (in module inspect), 1598
isub() (in module operator), 341
isupper() (bytearray method), 61
isupper() (bytes method), 61
isupper() (in module curses.ascii), 662
isupper() (str method), 45
isvisible() (in module turtle), 1281
isxdigit() (in module curses.ascii), 662
item() (tkinter.ttk.Treeview method), 1332
item() (xml.dom.NamedNodeMap method), 1053
item() (xml.dom.NodeList method), 1050
itemgetter() (in module operator), 338
items() (configparser.ConfigParser method), 489
items() (dict method), 76
items() (email.message.Message method), 931
items() (mailbox.Mailbox method), 995
items() (types.MappingProxyType method), 241
items() (xml.etree.ElementTree.Element method),

1040
itemsize (array.array attribute), 229
itemsize (memoryview attribute), 71
ItemsView (class in collections.abc), 220
ItemsView (class in typing), 1362
iter() (built-in function), 13
iter() (xml.etree.ElementTree.Element method),

1041
iter() (xml.etree.ElementTree.ElementTree method),

1042
iter_attachments() (email.message.EmailMessage

method), 955
iter_child_nodes() (in module ast), 1653
iter_fields() (in module ast), 1653
iter_importers() (in module pkgutil), 1622
iter_modules() (in module pkgutil), 1622
iter_parts() (email.message.EmailMessage method),

956
iter_unpack() (in module struct), 148
iter_unpack() (struct.Struct method), 152
iterable, 1764

Iterable (class in collections.abc), 220
Iterable (class in typing), 1360
iterator, 1764
Iterator (class in collections.abc), 220
Iterator (class in typing), 1360
iterator protocol, 34
iterdecode() (in module codecs), 154
iterdir() (pathlib.Path method), 355
iterdump() (sqlite3.Connection method), 420
iterencode() (in module codecs), 154
iterencode() (json.JSONEncoder method), 989
iterfind() (xml.etree.ElementTree.Element method),

1041
iterfind() (xml.etree.ElementTree.ElementTree

method), 1042
iteritems() (mailbox.Mailbox method), 995
iterkeys() (mailbox.Mailbox method), 994
itermonthdates() (calendar.Calendar method), 199
itermonthdays() (calendar.Calendar method), 199
itermonthdays2() (calendar.Calendar method), 199
iterparse() (in module xml.etree.ElementTree), 1038
itertext() (xml.etree.ElementTree.Element method),

1041
itertools (2to3 fixer), 1478
itertools (module), 315
itertools_imports (2to3 fixer), 1478
itervalues() (mailbox.Mailbox method), 994
iterweekdays() (calendar.Calendar method), 199
ITIMER_PROF (in module signal), 918
ITIMER_REAL (in module signal), 918
ITIMER_VIRTUAL (in module signal), 918
ItimerError, 918
itruediv() (in module operator), 342
ixor() (in module operator), 342

J
Jansen, Jack, 1021
java_ver() (in module platform), 666
join() (asyncio.Queue method), 902
join() (bytearray method), 55
join() (bytes method), 55
join() (in module os.path), 361
join() (multiprocessing.JoinableQueue method), 731
join() (multiprocessing.pool.Pool method), 748
join() (multiprocessing.Process method), 726
join() (queue.Queue method), 786
join() (str method), 45
join() (threading.Thread method), 710
join_thread() (multiprocessing.Queue method), 730
JoinableQueue (class in multiprocessing), 731
joinpath() (pathlib.PurePath method), 351
js_output() (http.cookies.BaseCookie method), 1191
js_output() (http.cookies.Morsel method), 1192
json (module), 983

1848 Index

The Python Library Reference, Release 3.5.7

json.tool (module), 991
JSONDecodeError, 989
JSONDecoder (class in json), 986
JSONEncoder (class in json), 987
jump (pdb command), 1500
JUMP_ABSOLUTE (opcode), 1677
JUMP_FORWARD (opcode), 1677
JUMP_IF_FALSE_OR_POP (opcode), 1677
JUMP_IF_TRUE_OR_POP (opcode), 1677

K
kbhit() (in module msvcrt), 1695
KDEDIR, 1087
kevent() (in module select), 840
key (http.cookies.Morsel attribute), 1191
key function, 1765
KEY_ALL_ACCESS (in module winreg), 1702
KEY_CREATE_LINK (in module winreg), 1703
KEY_CREATE_SUB_KEY (in module winreg),

1702
KEY_ENUMERATE_SUB_KEYS (in module win-

reg), 1702
KEY_EXECUTE (in module winreg), 1702
KEY_NOTIFY (in module winreg), 1702
KEY_QUERY_VALUE (in module winreg), 1702
KEY_READ (in module winreg), 1702
KEY_SET_VALUE (in module winreg), 1702
KEY_WOW64_32KEY (in module winreg), 1703
KEY_WOW64_64KEY (in module winreg), 1703
KEY_WRITE (in module winreg), 1702
KeyboardInterrupt, 85
KeyError, 85
keyname() (in module curses), 644
keypad() (curses.window method), 652
keyrefs() (weakref.WeakKeyDictionary method), 233
keys() (dict method), 76
keys() (email.message.Message method), 931
keys() (mailbox.Mailbox method), 994
keys() (sqlite3.Row method), 423
keys() (types.MappingProxyType method), 241
keys() (xml.etree.ElementTree.Element method),

1040
KeysView (class in collections.abc), 220
KeysView (class in typing), 1362
keyword (module), 1659
keyword argument, 1765
keywords (functools.partial attribute), 335
kill() (asyncio.asyncio.subprocess.Process method),

895
kill() (asyncio.BaseSubprocessTransport method),

879
kill() (in module os), 540
kill() (subprocess.Popen method), 776
killchar() (in module curses), 644

killpg() (in module os), 540
kind (inspect.Parameter attribute), 1602
knownfiles (in module mimetypes), 1012
kqueue() (in module select), 840
KqueueSelector (class in selectors), 849
kwargs (inspect.BoundArguments attribute), 1603
kwlist (in module keyword), 1659

L
L (in module re), 110
LabelEntry (class in tkinter.tix), 1338
LabelFrame (class in tkinter.tix), 1338
lambda, 1765
LambdaType (in module types), 239
LANG, 1249, 1251, 1258, 1261
LANGUAGE, 1249, 1251
language

C, 29, 30
large files, 1707
LargeZipFile, 448
last() (nntplib.NNTP method), 1159
last_accepted (multiprocessing.connection.Listener

attribute), 750
last_traceback (in module sys), 1551
last_type (in module sys), 1551
last_value (in module sys), 1551
lastChild (xml.dom.Node attribute), 1049
lastcmd (cmd.Cmd attribute), 1301
lastgroup (re.match attribute), 117
lastindex (re.match attribute), 117
lastResort (in module logging), 617
lastrowid (sqlite3.Cursor attribute), 423
layout() (tkinter.ttk.Style method), 1335
lazycache() (in module linecache), 379
LazyLoader (class in importlib.util), 1642
LBRACE (in module token), 1657
LBYL, 1765
LC_ALL, 1249, 1251
LC_ALL (in module locale), 1263
LC_COLLATE (in module locale), 1262
LC_CTYPE (in module locale), 1262
LC_MESSAGES, 1249, 1251
LC_MESSAGES (in module locale), 1263
LC_MONETARY (in module locale), 1263
LC_NUMERIC (in module locale), 1263
LC_TIME (in module locale), 1263
lchflags() (in module os), 523
lchmod() (in module os), 523
lchmod() (pathlib.Path method), 356
lchown() (in module os), 523
ldexp() (in module math), 268
ldgettext() (in module gettext), 1250
ldngettext() (in module gettext), 1250
le() (in module operator), 336

Index 1849

The Python Library Reference, Release 3.5.7

leapdays() (in module calendar), 201
leaveok() (curses.window method), 652
left (filecmp.dircmp attribute), 371
left() (in module turtle), 1270
left_list (filecmp.dircmp attribute), 371
left_only (filecmp.dircmp attribute), 372
LEFTSHIFT (in module token), 1657
LEFTSHIFTEQUAL (in module token), 1657
len

built-in function, 35, 75
len() (built-in function), 14
length (xml.dom.NamedNodeMap attribute), 1053
length (xml.dom.NodeList attribute), 1050
length_hint() (in module operator), 338
LESS (in module token), 1657
LESSEQUAL (in module token), 1657
lexists() (in module os.path), 360
lgamma() (in module math), 270
lgettext() (gettext.GNUTranslations method), 1253
lgettext() (gettext.NullTranslations method), 1252
lgettext() (in module gettext), 1250
lib2to3 (module), 1480
libc_ver() (in module platform), 667
library (in module dbm.ndbm), 410
library (ssl.SSLError attribute), 812
LibraryLoader (class in ctypes), 694
license (built-in variable), 26
LifoQueue (class in asyncio), 903
LifoQueue (class in queue), 785
light-weight processes, 788
limit_denominator() (fractions.Fraction method),

303
LimitOverrunError, 889
lin2adpcm() (in module audioop), 1230
lin2alaw() (in module audioop), 1230
lin2lin() (in module audioop), 1230
lin2ulaw() (in module audioop), 1231
line() (msilib.Dialog method), 1694
line-buffered I/O, 17
line_buffering (io.TextIOWrapper attribute), 560
line_num (csv.csvreader attribute), 472
linecache (module), 379
lineno (ast.AST attribute), 1650
lineno (doctest.DocTest attribute), 1384
lineno (doctest.Example attribute), 1385
lineno (json.JSONDecodeError attribute), 989
lineno (pyclbr.Class attribute), 1664
lineno (pyclbr.Function attribute), 1664
lineno (re.error attribute), 113
lineno (shlex.shlex attribute), 1307
lineno (traceback.TracebackException attribute),

1587
lineno (tracemalloc.Filter attribute), 1523
lineno (tracemalloc.Frame attribute), 1523

lineno (xml.parsers.expat.ExpatError attribute),
1080

lineno() (in module fileinput), 364
LINES, 643, 647, 648
lines (os.terminal_size attribute), 519
linesep (email.policy.Policy attribute), 944
linesep (in module os), 548
lineterminator (csv.Dialect attribute), 471
LineTooLong, 1135
link() (in module os), 523
linkname (tarfile.TarInfo attribute), 461
linux_distribution() (in module platform), 667
list, 1765
list

object, 37, 38
type, operations on, 37

list (built-in class), 38
List (class in typing), 1361
list (pdb command), 1500
list comprehension, 1765
list() (imaplib.IMAP4 method), 1150
list() (multiprocessing.managers.SyncManager

method), 742
list() (nntplib.NNTP method), 1157
list() (poplib.POP3 method), 1146
list() (tarfile.TarFile method), 459
LIST_APPEND (opcode), 1674
list_dialects() (in module csv), 468
list_folders() (mailbox.Maildir method), 997
list_folders() (mailbox.MH method), 999
listdir() (in module os), 523
listen() (asyncore.dispatcher method), 912
listen() (in module logging.config), 619
listen() (in module turtle), 1289
listen() (socket.socket method), 802
Listener (class in multiprocessing.connection), 749
listMethods() (xmlrpc.client.ServerProxy.system

method), 1204
ListNoteBook (class in tkinter.tix), 1340
listxattr() (in module os), 536
literal_eval() (in module ast), 1653
literals

binary, 29
complex number, 29
floating point, 29
hexadecimal, 29
integer, 29
numeric, 29
octal, 29

LittleEndianStructure (class in ctypes), 704
ljust() (bytearray method), 57
ljust() (bytes method), 57
ljust() (str method), 45
LK_LOCK (in module msvcrt), 1695

1850 Index

The Python Library Reference, Release 3.5.7

LK_NBLCK (in module msvcrt), 1695
LK_NBRLCK (in module msvcrt), 1695
LK_RLCK (in module msvcrt), 1695
LK_UNLCK (in module msvcrt), 1695
ll (pdb command), 1500
LMTP (class in smtplib), 1161
ln() (decimal.Context method), 290
ln() (decimal.Decimal method), 283
LNAME, 641
lngettext() (gettext.GNUTranslations method), 1254
lngettext() (gettext.NullTranslations method), 1252
lngettext() (in module gettext), 1250
load() (http.cookiejar.FileCookieJar method), 1196
load() (http.cookies.BaseCookie method), 1191
load() (in module json), 986
load() (in module marshal), 406
load() (in module pickle), 391
load() (in module plistlib), 495
load() (pickle.Unpickler method), 393
load() (tracemalloc.Snapshot class method), 1524
LOAD_ATTR (opcode), 1677
LOAD_BUILD_CLASS (opcode), 1675
load_cert_chain() (ssl.SSLContext method), 826
LOAD_CLASSDEREF (opcode), 1678
LOAD_CLOSURE (opcode), 1678
LOAD_CONST (opcode), 1676
load_default_certs() (ssl.SSLContext method), 826
LOAD_DEREF (opcode), 1678
load_dh_params() (ssl.SSLContext method), 828
load_extension() (sqlite3.Connection method), 418
LOAD_FAST (opcode), 1678
LOAD_GLOBAL (opcode), 1678
load_module() (importlib.abc.FileLoader method),

1634
load_module() (importlib.abc.InspectLoader

method), 1633
load_module() (importlib.abc.Loader method), 1632
load_module() (importlib.abc.SourceLoader

method), 1635
load_module() (importlib.machinery.SourceFileLoader

method), 1638
load_module() (importlib.machinery.SourcelessFileLoader

method), 1638
load_module() (in module imp), 1753
load_module() (zipimport.zipimporter method),

1620
LOAD_NAME (opcode), 1676
load_package_tests() (in module test.support), 1487
load_verify_locations() (ssl.SSLContext method),

827
loader, 1765
Loader (class in importlib.abc), 1631
loader (importlib.machinery.ModuleSpec attribute),

1639

loader_state (importlib.machinery.ModuleSpec at-
tribute), 1639

LoadError, 1193
LoadKey() (in module winreg), 1699
LoadLibrary() (ctypes.LibraryLoader method), 694
loads() (in module json), 986
loads() (in module marshal), 406
loads() (in module pickle), 392
loads() (in module plistlib), 496
loads() (in module xmlrpc.client), 1209
loadTestsFromModule() (unittest.TestLoader

method), 1412
loadTestsFromName() (unittest.TestLoader

method), 1412
loadTestsFromNames() (unittest.TestLoader

method), 1413
loadTestsFromTestCase() (unittest.TestLoader

method), 1412
local (class in threading), 708
localcontext() (in module decimal), 286
LOCALE (in module re), 110
locale (module), 1257
localeconv() (in module locale), 1258
LocaleHTMLCalendar (class in calendar), 200
LocaleTextCalendar (class in calendar), 200
localName (xml.dom.Attr attribute), 1053
localName (xml.dom.Node attribute), 1049
locals() (built-in function), 14
localtime() (in module email.utils), 969
localtime() (in module time), 564
Locator (class in xml.sax.xmlreader), 1071
Lock (class in asyncio), 898
Lock (class in multiprocessing), 735
Lock (class in threading), 711
lock() (mailbox.Babyl method), 1000
lock() (mailbox.Mailbox method), 996
lock() (mailbox.Maildir method), 997
lock() (mailbox.mbox method), 998
lock() (mailbox.MH method), 999
lock() (mailbox.MMDF method), 1001
Lock() (multiprocessing.managers.SyncManager

method), 741
lock_held() (in module imp), 1755
locked() (_thread.lock method), 789
locked() (asyncio.Condition method), 900
locked() (asyncio.Lock method), 899
locked() (asyncio.Semaphore method), 901
lockf() (in module fcntl), 1716
lockf() (in module os), 514
locking() (in module msvcrt), 1695
LockType (in module _thread), 788
log() (in module cmath), 272
log() (in module logging), 615
log() (in module math), 268

Index 1851

The Python Library Reference, Release 3.5.7

log() (logging.Logger method), 606
log10() (decimal.Context method), 290
log10() (decimal.Decimal method), 283
log10() (in module cmath), 272
log10() (in module math), 269
log1p() (in module math), 268
log2() (in module math), 268
log_date_time_string()

(http.server.BaseHTTPRequestHandler
method), 1187

log_error() (http.server.BaseHTTPRequestHandler
method), 1187

log_exception() (wsgiref.handlers.BaseHandler
method), 1102

log_message() (http.server.BaseHTTPRequestHandler
method), 1187

log_request() (http.server.BaseHTTPRequestHandler
method), 1187

log_to_stderr() (in module multiprocessing), 752
logb() (decimal.Context method), 290
logb() (decimal.Decimal method), 283
Logger (class in logging), 603
LoggerAdapter (class in logging), 613
logging

Errors, 602
logging (module), 602
logging.config (module), 618
logging.handlers (module), 628
logical_and() (decimal.Context method), 290
logical_and() (decimal.Decimal method), 283
logical_invert() (decimal.Context method), 290
logical_invert() (decimal.Decimal method), 283
logical_or() (decimal.Context method), 290
logical_or() (decimal.Decimal method), 283
logical_xor() (decimal.Context method), 290
logical_xor() (decimal.Decimal method), 283
login() (ftplib.FTP method), 1142
login() (imaplib.IMAP4 method), 1150
login() (nntplib.NNTP method), 1156
login() (smtplib.SMTP method), 1164
login_cram_md5() (imaplib.IMAP4 method), 1150
LOGNAME, 508, 641
lognormvariate() (in module random), 306
logout() (imaplib.IMAP4 method), 1151
LogRecord (class in logging), 610
long (2to3 fixer), 1478
longMessage (unittest.TestCase attribute), 1409
longname() (in module curses), 644
lookup() (in module codecs), 152
lookup() (in module unicodedata), 137
lookup() (symtable.SymbolTable method), 1655
lookup() (tkinter.ttk.Style method), 1335
lookup_error() (in module codecs), 156
LookupError, 84

loop() (in module asyncore), 910
lower() (bytearray method), 61
lower() (bytes method), 61
lower() (str method), 45
LPAR (in module token), 1657
lru_cache() (in module functools), 329
lseek() (in module os), 514
lshift() (in module operator), 337
LSQB (in module token), 1657
lstat() (in module os), 523
lstat() (pathlib.Path method), 356
lstrip() (bytearray method), 57
lstrip() (bytes method), 57
lstrip() (str method), 45
lsub() (imaplib.IMAP4 method), 1151
lt() (in module operator), 336
lt() (in module turtle), 1270
LWPCookieJar (class in http.cookiejar), 1197
lzma (module), 442
LZMACompressor (class in lzma), 443
LZMADecompressor (class in lzma), 444
LZMAError, 442
LZMAFile (class in lzma), 443

M
M (in module re), 110
mac_ver() (in module platform), 667
machine() (in module platform), 664
macpath (module), 388
macros (netrc.netrc attribute), 492
MAGIC_NUMBER (in module importlib.util), 1640
MagicMock (class in unittest.mock), 1445
Mailbox (class in mailbox), 993
mailbox (module), 993
mailcap (module), 992
Maildir (class in mailbox), 996
MaildirMessage (class in mailbox), 1002
mailfrom (smtpd.SMTPChannel attribute), 1170
MailmanProxy (class in smtpd), 1169
main() (in module py_compile), 1665
main() (in module site), 1612
main() (in module unittest), 1417
main_thread() (in module threading), 707
mainloop() (in module turtle), 1290
maintype (email.headerregistry.ContentTypeHeader

attribute), 952
major (email.headerregistry.MIMEVersionHeader at-

tribute), 952
major() (in module os), 525
make_alternative() (email.message.EmailMessage

method), 956
make_archive() (in module shutil), 385
make_bad_fd() (in module test.support), 1486
MAKE_CLOSURE (opcode), 1679

1852 Index

The Python Library Reference, Release 3.5.7

make_cookies() (http.cookiejar.CookieJar method),
1195

make_file() (difflib.HtmlDiff method), 124
MAKE_FUNCTION (opcode), 1678
make_header() (in module email.header), 963
make_mixed() (email.message.EmailMessage

method), 956
make_msgid() (in module email.utils), 970
make_parser() (in module xml.sax), 1063
make_related() (email.message.EmailMessage

method), 956
make_server() (in module wsgiref.simple_server),

1098
make_table() (difflib.HtmlDiff method), 124
makedev() (in module os), 525
makedirs() (in module os), 524
makeelement() (xml.etree.ElementTree.Element

method), 1041
makefile() (socket.socket method), 802
makeLogRecord() (in module logging), 616
makePickle() (logging.handlers.SocketHandler

method), 633
makeRecord() (logging.Logger method), 606
makeSocket() (logging.handlers.DatagramHandler

method), 634
makeSocket() (logging.handlers.SocketHandler

method), 633
maketrans() (bytearray static method), 55
maketrans() (bytes static method), 55
maketrans() (str static method), 45
mangle_from_ (email.policy.Compat32 attribute),

946
mangle_from_ (email.policy.Policy attribute), 944
map (2to3 fixer), 1478
map() (built-in function), 14
map() (concurrent.futures.Executor method), 762
map() (multiprocessing.pool.Pool method), 747
map() (tkinter.ttk.Style method), 1334
MAP_ADD (opcode), 1674
map_async() (multiprocessing.pool.Pool method),

747
map_table_b2() (in module stringprep), 139
map_table_b3() (in module stringprep), 139
map_to_type() (email.headerregistry.HeaderRegistry

method), 953
mapLogRecord() (logging.handlers.HTTPHandler

method), 638
mapping, 1765
mapping

object, 75
types, operations on, 75

Mapping (class in collections.abc), 220
Mapping (class in typing), 1361
mapping() (msilib.Control method), 1693

MappingProxyType (class in types), 241
MappingView (class in collections.abc), 220
MappingView (class in typing), 1362
mapPriority() (logging.handlers.SysLogHandler

method), 636
maps (collections.ChainMap attribute), 202
maps() (in module nis), 1723
marshal (module), 405
marshalling

objects, 389
masking

operations, 30
match() (in module nis), 1722
match() (in module re), 110
match() (pathlib.PurePath method), 351
match() (re.regex method), 114
match_hostname() (in module ssl), 816
math

module, 30, 274
math (module), 266
matmul() (in module operator), 337
max

built-in function, 35
max (datetime.date attribute), 176
max (datetime.datetime attribute), 180
max (datetime.time attribute), 187
max (datetime.timedelta attribute), 173
max() (built-in function), 14
max() (decimal.Context method), 290
max() (decimal.Decimal method), 283
max() (in module audioop), 1231
max_count (email.headerregistry.BaseHeader at-

tribute), 949
MAX_EMAX (in module decimal), 292
MAX_INTERPOLATION_DEPTH (in module

configparser), 490
max_line_length (email.policy.Policy attribute), 944
max_lines (textwrap.TextWrapper attribute), 136
max_mag() (decimal.Context method), 290
max_mag() (decimal.Decimal method), 283
MAX_PREC (in module decimal), 292
max_prefixlen (ipaddress.IPv4Address attribute),

1216
max_prefixlen (ipaddress.IPv4Network attribute),

1220
max_prefixlen (ipaddress.IPv6Address attribute),

1218
max_prefixlen (ipaddress.IPv6Network attribute),

1223
maxarray (reprlib.Repr attribute), 249
maxdeque (reprlib.Repr attribute), 249
maxdict (reprlib.Repr attribute), 249
maxDiff (unittest.TestCase attribute), 1409
maxfrozenset (reprlib.Repr attribute), 249

Index 1853

The Python Library Reference, Release 3.5.7

maxlen (collections.deque attribute), 208
maxlevel (reprlib.Repr attribute), 249
maxlist (reprlib.Repr attribute), 249
maxlong (reprlib.Repr attribute), 249
maxother (reprlib.Repr attribute), 249
maxpp() (in module audioop), 1231
maxset (reprlib.Repr attribute), 249
maxsize (asyncio.Queue attribute), 903
maxsize (in module sys), 1551
maxstring (reprlib.Repr attribute), 249
maxtuple (reprlib.Repr attribute), 249
maxunicode (in module sys), 1551
MAXYEAR (in module datetime), 172
MB_ICONASTERISK (in module winsound), 1706
MB_ICONEXCLAMATION (in module winsound),

1706
MB_ICONHAND (in module winsound), 1706
MB_ICONQUESTION (in module winsound), 1706
MB_OK (in module winsound), 1706
mbox (class in mailbox), 998
mboxMessage (class in mailbox), 1004
mean() (in module statistics), 309
median() (in module statistics), 309
median_grouped() (in module statistics), 310
median_high() (in module statistics), 310
median_low() (in module statistics), 310
MemberDescriptorType (in module types), 240
memmove() (in module ctypes), 699
MemoryBIO (class in ssl), 837
MemoryError, 85
MemoryHandler (class in logging.handlers), 638
memoryview

object, 51
memoryview (built-in class), 66
memset() (in module ctypes), 699
merge() (in module heapq), 223
Message (class in email.message), 928
Message (class in mailbox), 1001
message digest, MD5, 499
message_from_binary_file() (in module email), 938
message_from_bytes() (in module email), 938
message_from_file() (in module email), 938
message_from_string() (in module email), 938
MessageBeep() (in module winsound), 1705
MessageClass (http.server.BaseHTTPRequestHandler

attribute), 1186
MessageError, 966
MessageParseError, 967
messages (in module xml.parsers.expat.errors), 1081
meta path finder, 1765
meta() (in module curses), 644
meta_path (in module sys), 1552
metaclass, 1765
metaclass (2to3 fixer), 1478

MetaPathFinder (class in importlib.abc), 1630
metavar (optparse.Option attribute), 1739
MetavarTypeHelpFormatter (class in argparse), 575
Meter (class in tkinter.tix), 1339
method, 1765
method

object, 80
method (urllib.request.Request attribute), 1110
method resolution order, 1766
method_calls (unittest.mock.Mock attribute), 1429
METHOD_CRYPT (in module crypt), 1711
METHOD_MD5 (in module crypt), 1711
METHOD_SHA256 (in module crypt), 1711
METHOD_SHA512 (in module crypt), 1711
methodattrs (2to3 fixer), 1478
methodcaller() (in module operator), 339
methodHelp() (xmlrpc.client.ServerProxy.system

method), 1204
methods

bytearray, 54
bytes, 54
string, 42

methods (in module crypt), 1711
methods (pyclbr.Class attribute), 1664
methodSignature() (xmlrpc.client.ServerProxy.system

method), 1204
MethodType (in module types), 240
MH (class in mailbox), 999
MHMessage (class in mailbox), 1005
microsecond (datetime.datetime attribute), 181
microsecond (datetime.time attribute), 187
MIME

base64 encoding, 1014
content type, 1011
headers, 1011, 1087
quoted-printable encoding, 1020

MIMEApplication (class in email.mime.application),
960

MIMEAudio (class in email.mime.audio), 960
MIMEBase (class in email.mime.base), 959
MIMEImage (class in email.mime.image), 960
MIMEMessage (class in email.mime.message), 961
MIMEMultipart (class in email.mime.multipart), 960
MIMENonMultipart (class in

email.mime.nonmultipart), 959
MIMEPart (class in email.message), 957
MIMEText (class in email.mime.text), 961
MimeTypes (class in mimetypes), 1013
mimetypes (module), 1011
MIMEVersionHeader (class in email.headerregistry),

951
min

built-in function, 35
min (datetime.date attribute), 176

1854 Index

The Python Library Reference, Release 3.5.7

min (datetime.datetime attribute), 180
min (datetime.time attribute), 187
min (datetime.timedelta attribute), 173
min() (built-in function), 14
min() (decimal.Context method), 290
min() (decimal.Decimal method), 283
MIN_EMIN (in module decimal), 292
MIN_ETINY (in module decimal), 292
min_mag() (decimal.Context method), 290
min_mag() (decimal.Decimal method), 283
MINEQUAL (in module token), 1657
minmax() (in module audioop), 1231
minor (email.headerregistry.MIMEVersionHeader at-

tribute), 952
minor() (in module os), 525
MINUS (in module token), 1657
minus() (decimal.Context method), 290
minute (datetime.datetime attribute), 181
minute (datetime.time attribute), 187
MINYEAR (in module datetime), 171
mirrored() (in module unicodedata), 137
misc_header (cmd.Cmd attribute), 1301
MissingSectionHeaderError, 491
MIXERDEV, 1244
mkd() (ftplib.FTP method), 1144
mkdir() (in module os), 524
mkdir() (pathlib.Path method), 356
mkdtemp() (in module tempfile), 374
mkfifo() (in module os), 524
mknod() (in module os), 525
mksalt() (in module crypt), 1711
mkstemp() (in module tempfile), 374
mktemp() (in module tempfile), 376
mktime() (in module time), 564
mktime_tz() (in module email.utils), 969
mlsd() (ftplib.FTP method), 1143
mmap (class in mmap), 922
mmap (module), 922
MMDF (class in mailbox), 1001
MMDFMessage (class in mailbox), 1008
Mock (class in unittest.mock), 1423
mock_add_spec() (unittest.mock.Mock method),

1426
mock_calls (unittest.mock.Mock attribute), 1429
mock_open() (in module unittest.mock), 1451
mod() (in module operator), 337
mode (io.FileIO attribute), 556
mode (ossaudiodev.oss_audio_device attribute),

1247
mode (tarfile.TarInfo attribute), 461
mode() (in module statistics), 311
mode() (in module turtle), 1291
modf() (in module math), 268

modified() (urllib.robotparser.RobotFileParser
method), 1131

Modify() (msilib.View method), 1691
modify() (select.devpoll method), 842
modify() (select.epoll method), 843
modify() (select.poll method), 844
modify() (selectors.BaseSelector method), 848
module, 1766
module

__main__, 1625, 1626
_locale, 1257
array, 51
base64, 1018
bdb, 1496
binhex, 1018
cmd, 1496
copy, 402
crypt, 1708
dbm.gnu, 404
dbm.ndbm, 404
errno, 85
glob, 378
imp, 23
math, 30, 274
os, 1707
pickle, 243, 402, 403, 405
pty, 516
pwd, 360
pyexpat, 1074
re, 42, 378
search path, 379, 1552, 1610
shelve, 405
signal, 789
sitecustomize, 1611
socket, 1085
stat, 529
string, 1262
struct, 806
sys, 17
types, 80
urllib.request, 1133
usercustomize, 1611
uu, 1018

module (pyclbr.Class attribute), 1664
module (pyclbr.Function attribute), 1664
module spec, 1766
module_for_loader() (in module importlib.util),

1641
module_from_spec() (in module importlib.util),

1641
module_repr() (importlib.abc.Loader method), 1632
ModuleFinder (class in modulefinder), 1624
modulefinder (module), 1624
modules (in module sys), 1552

Index 1855

The Python Library Reference, Release 3.5.7

modules (modulefinder.ModuleFinder attribute),
1624

ModuleSpec (class in importlib.machinery), 1639
ModuleType (class in types), 240
monotonic() (in module time), 564
month (datetime.date attribute), 176
month (datetime.datetime attribute), 180
month() (in module calendar), 201
month_abbr (in module calendar), 201
month_name (in module calendar), 201
monthcalendar() (in module calendar), 201
monthdatescalendar() (calendar.Calendar method),

199
monthdays2calendar() (calendar.Calendar method),

199
monthdayscalendar() (calendar.Calendar method),

199
monthrange() (in module calendar), 201
Morsel (class in http.cookies), 1191
most_common() (collections.Counter method), 205
mouseinterval() (in module curses), 644
mousemask() (in module curses), 645
move() (curses.panel.Panel method), 663
move() (curses.window method), 652
move() (in module shutil), 383
move() (mmap.mmap method), 924
move() (tkinter.ttk.Treeview method), 1332
move_to_end() (collections.OrderedDict method),

215
MozillaCookieJar (class in http.cookiejar), 1197
MRO, 1766
mro() (class method), 82
msg (http.client.HTTPResponse attribute), 1138
msg (json.JSONDecodeError attribute), 989
msg (re.error attribute), 113
msg (traceback.TracebackException attribute), 1587
msg() (telnetlib.Telnet method), 1172
msi, 1689
msilib (module), 1689
msvcrt (module), 1694
mt_interact() (telnetlib.Telnet method), 1172
mtime (gzip.GzipFile attribute), 438
mtime (tarfile.TarInfo attribute), 461
mtime() (urllib.robotparser.RobotFileParser

method), 1131
mul() (in module audioop), 1231
mul() (in module operator), 337
MultiCall (class in xmlrpc.client), 1208
MULTILINE (in module re), 110
MultipartConversionError, 967
multiply() (decimal.Context method), 290
multiprocessing (module), 719
multiprocessing.connection (module), 748
multiprocessing.dummy (module), 753

multiprocessing.Manager() (in module multiprocess-
ing.sharedctypes), 740

multiprocessing.managers (module), 740
multiprocessing.pool (module), 746
multiprocessing.sharedctypes (module), 737
mutable, 1766
mutable

sequence types, 37
MutableMapping (class in collections.abc), 220
MutableMapping (class in typing), 1361
MutableSequence (class in collections.abc), 220
MutableSequence (class in typing), 1361
MutableSet (class in collections.abc), 220
MutableSet (class in typing), 1361
mvderwin() (curses.window method), 652
mvwin() (curses.window method), 652
myrights() (imaplib.IMAP4 method), 1151

N
N_TOKENS (in module token), 1657
n_waiting (threading.Barrier attribute), 718
name (codecs.CodecInfo attribute), 153
name (doctest.DocTest attribute), 1384
name (email.headerregistry.BaseHeader attribute),

949
name (hashlib.hash attribute), 500
name (hmac.HMAC attribute), 503
name (http.cookiejar.Cookie attribute), 1200
name (importlib.abc.FileLoader attribute), 1634
name (importlib.machinery.ExtensionFileLoader at-

tribute), 1638
name (importlib.machinery.ModuleSpec attribute),

1639
name (importlib.machinery.SourceFileLoader at-

tribute), 1638
name (importlib.machinery.SourcelessFileLoader at-

tribute), 1638
name (in module os), 505
NAME (in module token), 1657
name (inspect.Parameter attribute), 1601
name (io.FileIO attribute), 556
name (multiprocessing.Process attribute), 726
name (os.DirEntry attribute), 527
name (ossaudiodev.oss_audio_device attribute),

1247
name (pyclbr.Class attribute), 1664
name (pyclbr.Function attribute), 1664
name (tarfile.TarInfo attribute), 461
name (threading.Thread attribute), 710
name (xml.dom.Attr attribute), 1053
name (xml.dom.DocumentType attribute), 1051
name() (in module unicodedata), 137
name2codepoint (in module html.entities), 1028
named tuple, 1766

1856 Index

The Python Library Reference, Release 3.5.7

NamedTemporaryFile() (in module tempfile), 373
namedtuple() (in module collections), 212
NamedTuple() (in module typing), 1364
NameError, 85
namelist() (zipfile.ZipFile method), 450
nameprep() (in module encodings.idna), 169
namer (logging.handlers.BaseRotatingHandler at-

tribute), 630
namereplace_errors() (in module codecs), 157
namespace, 1766
Namespace (class in argparse), 592
Namespace (class in multiprocessing.managers), 742
namespace package, 1766
namespace() (imaplib.IMAP4 method), 1151
Namespace() (multiprocessing.managers.SyncManager

method), 741
NAMESPACE_DNS (in module uuid), 1175
NAMESPACE_OID (in module uuid), 1175
NAMESPACE_URL (in module uuid), 1175
NAMESPACE_X500 (in module uuid), 1175
NamespaceErr, 1055
namespaceURI (xml.dom.Node attribute), 1049
NaN, 11
nan (in module math), 271
NannyNag, 1663
napms() (in module curses), 645
nargs (optparse.Option attribute), 1738
nbytes (memoryview attribute), 71
ndiff() (in module difflib), 125
ndim (memoryview attribute), 72
ne (2to3 fixer), 1478
ne() (in module operator), 336
needs_input (bz2.BZ2Decompressor attribute), 442
needs_input (lzma.LZMADecompressor attribute),

445
neg() (in module operator), 337
nested scope, 1766
NetmaskValueError, 1227
netrc (class in netrc), 491
netrc (module), 491
NetrcParseError, 491
netscape (http.cookiejar.CookiePolicy attribute),

1198
network (ipaddress.IPv4Interface attribute), 1225
network (ipaddress.IPv6Interface attribute), 1226
Network News Transfer Protocol, 1154
network_address (ipaddress.IPv4Network attribute),

1221
network_address (ipaddress.IPv6Network attribute),

1223
new() (in module hashlib), 500
new() (in module hmac), 502
new-style class, 1766
new_alignment() (formatter.writer method), 1685

new_child() (collections.ChainMap method), 202
new_class() (in module types), 239
new_event_loop() (asyncio.AbstractEventLoopPolicy

method), 865
new_event_loop() (in module asyncio), 863
new_font() (formatter.writer method), 1685
new_margin() (formatter.writer method), 1686
new_module() (in module imp), 1753
new_panel() (in module curses.panel), 663
new_spacing() (formatter.writer method), 1686
new_styles() (formatter.writer method), 1686
newgroups() (nntplib.NNTP method), 1157
NEWLINE (in module token), 1657
newlines (io.TextIOBase attribute), 558
newnews() (nntplib.NNTP method), 1157
newpad() (in module curses), 645
NewType() (in module typing), 1364
newwin() (in module curses), 645
next (2to3 fixer), 1478
next (pdb command), 1500
next() (built-in function), 15
next() (nntplib.NNTP method), 1159
next() (tarfile.TarFile method), 459
next() (tkinter.ttk.Treeview method), 1332
next_minus() (decimal.Context method), 290
next_minus() (decimal.Decimal method), 283
next_plus() (decimal.Context method), 290
next_plus() (decimal.Decimal method), 283
next_toward() (decimal.Context method), 290
next_toward() (decimal.Decimal method), 284
nextfile() (in module fileinput), 364
nextkey() (dbm.gnu.gdbm method), 409
nextSibling (xml.dom.Node attribute), 1049
ngettext() (gettext.GNUTranslations method), 1253
ngettext() (gettext.NullTranslations method), 1252
ngettext() (in module gettext), 1250
nice() (in module os), 540
nis (module), 1722
NL (in module tokenize), 1660
nl() (in module curses), 645
nl_langinfo() (in module locale), 1259
nlargest() (in module heapq), 223
nlst() (ftplib.FTP method), 1143
NNTP

protocol, 1154
NNTP (class in nntplib), 1154
nntp_implementation (nntplib.NNTP attribute),

1156
NNTP_SSL (class in nntplib), 1155
nntp_version (nntplib.NNTP attribute), 1156
NNTPDataError, 1155
NNTPError, 1155
nntplib (module), 1154
NNTPPermanentError, 1155

Index 1857

The Python Library Reference, Release 3.5.7

NNTPProtocolError, 1155
NNTPReplyError, 1155
NNTPTemporaryError, 1155
no_proxy, 1108
no_type_check() (in module typing), 1365
no_type_check_decorator() (in module typing),

1365
nocbreak() (in module curses), 645
NoDataAllowedErr, 1055
node() (in module platform), 664
nodelay() (curses.window method), 652
nodeName (xml.dom.Node attribute), 1049
NodeTransformer (class in ast), 1654
nodeType (xml.dom.Node attribute), 1048
nodeValue (xml.dom.Node attribute), 1049
NodeVisitor (class in ast), 1653
noecho() (in module curses), 645
NOEXPR (in module locale), 1260
NoModificationAllowedErr, 1055
nonblock() (ossaudiodev.oss_audio_device method),

1245
NonCallableMagicMock (class in unittest.mock),

1445
NonCallableMock (class in unittest.mock), 1430
None (Built-in object), 27
None (built-in variable), 25
nonl() (in module curses), 645
nonzero (2to3 fixer), 1478
noop() (imaplib.IMAP4 method), 1151
noop() (poplib.POP3 method), 1146
NoOptionError, 491
NOP (opcode), 1672
noqiflush() (in module curses), 645
noraw() (in module curses), 645
normalize() (decimal.Context method), 290
normalize() (decimal.Decimal method), 284
normalize() (in module locale), 1261
normalize() (in module unicodedata), 138
normalize() (xml.dom.Node method), 1050
NORMALIZE_WHITESPACE (in module doctest),

1376
normalvariate() (in module random), 306
normcase() (in module os.path), 361
normpath() (in module os.path), 362
NoSectionError, 490
NoSuchMailboxError, 1009
not

operator, 28
not in

operator, 28, 35
not_() (in module operator), 336
NotADirectoryError, 89
notationDecl() (xml.sax.handler.DTDHandler

method), 1069

NotationDeclHandler() (xml.parsers.expat.xmlparser
method), 1078

notations (xml.dom.DocumentType attribute), 1051
NotConnected, 1135
NoteBook (class in tkinter.tix), 1340
Notebook (class in tkinter.ttk), 1326
NotEmptyError, 1009
NOTEQUAL (in module token), 1657
NotFoundErr, 1055
notify() (asyncio.Condition method), 900
notify() (threading.Condition method), 714
notify_all() (asyncio.Condition method), 900
notify_all() (threading.Condition method), 715
notimeout() (curses.window method), 652
NotImplemented (built-in variable), 25
NotImplementedError, 85
NotStandaloneHandler()

(xml.parsers.expat.xmlparser method),
1079

NotSupportedErr, 1055
noutrefresh() (curses.window method), 652
now() (datetime.datetime class method), 179
NSIG (in module signal), 918
nsmallest() (in module heapq), 223
NT_OFFSET (in module token), 1657
NTEventLogHandler (class in logging.handlers), 636
ntohl() (in module socket), 798
ntohs() (in module socket), 798
ntransfercmd() (ftplib.FTP method), 1143
NullFormatter (class in formatter), 1685
NullHandler (class in logging), 630
NullImporter (class in imp), 1756
NullTranslations (class in gettext), 1252
NullWriter (class in formatter), 1686
num_addresses (ipaddress.IPv4Network attribute),

1221
num_addresses (ipaddress.IPv6Network attribute),

1223
Number (class in numbers), 263
NUMBER (in module token), 1657
number_class() (decimal.Context method), 290
number_class() (decimal.Decimal method), 284
numbers (module), 263
numerator (fractions.Fraction attribute), 302
numerator (numbers.Rational attribute), 264
numeric

conversions, 30
literals, 29
object, 28, 29
types, operations on, 29

numeric() (in module unicodedata), 137
Numerical Python, 20
numinput() (in module turtle), 1291
numliterals (2to3 fixer), 1479

1858 Index

The Python Library Reference, Release 3.5.7

O
O_APPEND (in module os), 515
O_ASYNC (in module os), 515
O_BINARY (in module os), 515
O_CLOEXEC (in module os), 515
O_CREAT (in module os), 515
O_DIRECT (in module os), 515
O_DIRECTORY (in module os), 515
O_DSYNC (in module os), 515
O_EXCL (in module os), 515
O_EXLOCK (in module os), 515
O_NDELAY (in module os), 515
O_NOATIME (in module os), 515
O_NOCTTY (in module os), 515
O_NOFOLLOW (in module os), 515
O_NOINHERIT (in module os), 515
O_NONBLOCK (in module os), 515
O_PATH (in module os), 515
O_RANDOM (in module os), 515
O_RDONLY (in module os), 515
O_RDWR (in module os), 515
O_RSYNC (in module os), 515
O_SEQUENTIAL (in module os), 515
O_SHLOCK (in module os), 515
O_SHORT_LIVED (in module os), 515
O_SYNC (in module os), 515
O_TEMPORARY (in module os), 515
O_TEXT (in module os), 515
O_TMPFILE (in module os), 515
O_TRUNC (in module os), 515
O_WRONLY (in module os), 515
obj (memoryview attribute), 70
object, 1766
object

Boolean, 29
bytearray, 37, 51, 53
bytes, 51, 52
code, 80, 406
complex number, 29
dictionary, 75
floating point, 29
integer, 29
io.StringIO, 42
list, 37, 38
mapping, 75
memoryview, 51
method, 80
numeric, 28, 29
range, 40
sequence, 35
set, 72
socket, 791
string, 41
traceback, 1545, 1585

tuple, 37, 39
type, 22

object (built-in class), 15
object (UnicodeError attribute), 88
objects

comparing, 28
flattening, 389
marshalling, 389
persistent, 389
pickling, 389
serializing, 389

obufcount() (ossaudiodev.oss_audio_device
method), 1246

obuffree() (ossaudiodev.oss_audio_device method),
1246

oct() (built-in function), 15
octal

literals, 29
octdigits (in module string), 93
offset (traceback.TracebackException attribute),

1587
offset (xml.parsers.expat.ExpatError attribute), 1080
OK (in module curses), 654
OleDLL (class in ctypes), 693
onclick() (in module turtle), 1284, 1289
ondrag() (in module turtle), 1285
onecmd() (cmd.Cmd method), 1300
onkey() (in module turtle), 1289
onkeypress() (in module turtle), 1289
onkeyrelease() (in module turtle), 1289
onrelease() (in module turtle), 1284
onscreenclick() (in module turtle), 1289
ontimer() (in module turtle), 1290
OP (in module token), 1657
OP_ALL (in module ssl), 820
OP_CIPHER_SERVER_PREFERENCE (in mod-

ule ssl), 820
OP_NO_COMPRESSION (in module ssl), 821
OP_NO_SSLv2 (in module ssl), 820
OP_NO_SSLv3 (in module ssl), 820
OP_NO_TLSv1 (in module ssl), 820
OP_NO_TLSv1_1 (in module ssl), 820
OP_NO_TLSv1_2 (in module ssl), 820
OP_SINGLE_DH_USE (in module ssl), 820
OP_SINGLE_ECDH_USE (in module ssl), 820
open() (built-in function), 15
open() (imaplib.IMAP4 method), 1151
open() (in module aifc), 1233
open() (in module bz2), 439
open() (in module codecs), 154
open() (in module dbm), 407
open() (in module dbm.dumb), 410
open() (in module dbm.gnu), 408
open() (in module dbm.ndbm), 410

Index 1859

The Python Library Reference, Release 3.5.7

open() (in module gzip), 437
open() (in module io), 550
open() (in module lzma), 442
open() (in module os), 514
open() (in module ossaudiodev), 1244
open() (in module shelve), 403
open() (in module sunau), 1235
open() (in module tarfile), 455
open() (in module tokenize), 1660
open() (in module wave), 1238
open() (in module webbrowser), 1085
open() (pathlib.Path method), 356
open() (pipes.Template method), 1718
open() (tarfile.TarFile class method), 458
open() (telnetlib.Telnet method), 1172
open() (urllib.request.OpenerDirector method), 1111
open() (urllib.request.URLopener method), 1120
open() (webbrowser.controller method), 1087
open() (zipfile.ZipFile method), 450
open_connection() (in module asyncio), 886
open_new() (in module webbrowser), 1086
open_new() (webbrowser.controller method), 1087
open_new_tab() (in module webbrowser), 1086
open_new_tab() (webbrowser.controller method),

1087
open_osfhandle() (in module msvcrt), 1695
open_unix_connection() (in module asyncio), 886
open_unknown() (urllib.request.URLopener

method), 1121
OpenDatabase() (in module msilib), 1689
OpenerDirector (class in urllib.request), 1107
openfp() (in module sunau), 1235
openfp() (in module wave), 1238
OpenKey() (in module winreg), 1699
OpenKeyEx() (in module winreg), 1699
openlog() (in module syslog), 1723
openmixer() (in module ossaudiodev), 1244
openpty() (in module os), 516
openpty() (in module pty), 1714
OpenSSL

(use in module hashlib), 499
(use in module ssl), 811

OPENSSL_VERSION (in module ssl), 821
OPENSSL_VERSION_INFO (in module ssl), 821
OPENSSL_VERSION_NUMBER (in module ssl),

821
OpenView() (msilib.Database method), 1690
operation

concatenation, 35
repetition, 35
slice, 35
subscript, 35

operations
bitwise, 30

Boolean, 27
masking, 30
shifting, 30

operations on
dictionary type, 75
integer types, 30
list type, 37
mapping types, 75
numeric types, 29
sequence types, 35, 37

operator
!=, 28
*, 29
**, 29
+, 29
-, 29
/, 29
//, 29
==, 28
%, 29
&, 30
^, 30
~, 30
|, 30
>, 28
>=, 28
>>, 30
<, 28
<=, 28
<<, 30
and, 27, 28
comparison, 28
in, 28, 35
is, 28
is not, 28
not, 28
not in, 28, 35
or, 27, 28

operator (2to3 fixer), 1479
operator (module), 335
opmap (in module dis), 1680
opname (in module dis), 1680
optimize() (in module pickletools), 1682
OPTIMIZED_BYTECODE_SUFFIXES (in mod-

ule importlib.machinery), 1636
Optional (in module typing), 1366
OptionGroup (class in optparse), 1732
OptionMenu (class in tkinter.tix), 1339
OptionParser (class in optparse), 1735
options (doctest.Example attribute), 1385
options (ssl.SSLContext attribute), 830
options() (configparser.ConfigParser method), 487
optionxform() (configparser.ConfigParser method),

489

1860 Index

The Python Library Reference, Release 3.5.7

optionxform() (in module configparser), 483
optparse (module), 1725
or

operator, 27, 28
or_() (in module operator), 337
ord() (built-in function), 18
ordered_attributes (xml.parsers.expat.xmlparser at-

tribute), 1077
OrderedDict (class in collections), 215
origin (importlib.machinery.ModuleSpec attribute),

1639
origin_req_host (urllib.request.Request attribute),

1110
origin_server (wsgiref.handlers.BaseHandler at-

tribute), 1103
os

module, 1707
os (module), 505
os.path (module), 359
os_environ (wsgiref.handlers.BaseHandler at-

tribute), 1102
OSError, 85
ossaudiodev (module), 1243
OSSAudioError, 1244
outfile

command line option, 992
output (subprocess.CalledProcessError attribute),

770
output (subprocess.TimeoutExpired attribute), 770
output (unittest.TestCase attribute), 1406
output() (http.cookies.BaseCookie method), 1191
output() (http.cookies.Morsel method), 1192
output_charset (email.charset.Charset attribute),

964
output_charset() (gettext.NullTranslations

method), 1252
output_codec (email.charset.Charset attribute), 964
output_difference() (doctest.OutputChecker

method), 1388
OutputChecker (class in doctest), 1388
OutputString() (http.cookies.Morsel method), 1192
over() (nntplib.NNTP method), 1158
Overflow (class in decimal), 293
OverflowError, 86
overlaps() (ipaddress.IPv4Network method), 1221
overlaps() (ipaddress.IPv6Network method), 1223
overlay() (curses.window method), 652
overload() (in module typing), 1364
overwrite() (curses.window method), 652
owner() (pathlib.Path method), 356

P
p (pdb command), 1500
P_ALL (in module os), 543

P_DETACH (in module os), 542
P_NOWAIT (in module os), 542
P_NOWAITO (in module os), 542
P_OVERLAY (in module os), 542
P_PGID (in module os), 543
P_PID (in module os), 543
P_WAIT (in module os), 542
pack() (in module struct), 147
pack() (mailbox.MH method), 999
pack() (struct.Struct method), 152
pack_array() (xdrlib.Packer method), 493
pack_bytes() (xdrlib.Packer method), 493
pack_double() (xdrlib.Packer method), 493
pack_farray() (xdrlib.Packer method), 493
pack_float() (xdrlib.Packer method), 493
pack_fopaque() (xdrlib.Packer method), 493
pack_fstring() (xdrlib.Packer method), 493
pack_into() (in module struct), 148
pack_into() (struct.Struct method), 152
pack_list() (xdrlib.Packer method), 493
pack_opaque() (xdrlib.Packer method), 493
pack_string() (xdrlib.Packer method), 493
package, 1766
package, 1610
packed (ipaddress.IPv4Address attribute), 1217
packed (ipaddress.IPv6Address attribute), 1218
Packer (class in xdrlib), 492
packing

binary data, 147
packing (widgets), 1315
PAGER, 1367
pair_content() (in module curses), 645
pair_number() (in module curses), 646
PanedWindow (class in tkinter.tix), 1340
parameter, 1766
Parameter (class in inspect), 1601
ParameterizedMIMEHeader (class in

email.headerregistry), 952
parameters (inspect.Signature attribute), 1601
params (email.headerregistry.ParameterizedMIMEHeader

attribute), 952
pardir (in module os), 548
paren (2to3 fixer), 1479
parent (importlib.machinery.ModuleSpec attribute),

1640
parent (urllib.request.BaseHandler attribute), 1112
parent() (tkinter.ttk.Treeview method), 1333
parentNode (xml.dom.Node attribute), 1048
parents (collections.ChainMap attribute), 203
paretovariate() (in module random), 306
parse() (doctest.DocTestParser method), 1386
parse() (email.parser.BytesParser method), 938
parse() (email.parser.Parser method), 937
parse() (in module ast), 1653

Index 1861

The Python Library Reference, Release 3.5.7

parse() (in module cgi), 1091
parse() (in module xml.dom.minidom), 1057
parse() (in module xml.dom.pulldom), 1062
parse() (in module xml.etree.ElementTree), 1038
parse() (in module xml.sax), 1063
parse() (string.Formatter method), 94
parse() (urllib.robotparser.RobotFileParser method),

1131
parse() (xml.etree.ElementTree.ElementTree

method), 1042
Parse() (xml.parsers.expat.xmlparser method), 1076
parse() (xml.sax.xmlreader.XMLReader method),

1071
parse_and_bind() (in module readline), 140
parse_args() (argparse.ArgumentParser method),

589
PARSE_COLNAMES (in module sqlite3), 413
parse_config_h() (in module sysconfig), 1561
PARSE_DECLTYPES (in module sqlite3), 413
parse_header() (in module cgi), 1091
parse_known_args() (argparse.ArgumentParser

method), 599
parse_multipart() (in module cgi), 1091
parse_qs() (in module cgi), 1091
parse_qs() (in module urllib.parse), 1124
parse_qsl() (in module cgi), 1091
parse_qsl() (in module urllib.parse), 1125
parseaddr() (in module email.utils), 968
parsebytes() (email.parser.BytesParser method), 938
parsedate() (in module email.utils), 968
parsedate_to_datetime() (in module email.utils),

969
parsedate_tz() (in module email.utils), 969
ParseError (class in xml.etree.ElementTree), 1045
ParseFile() (xml.parsers.expat.xmlparser method),

1076
ParseFlags() (in module imaplib), 1149
Parser (class in email.parser), 937
parser (module), 1645
ParserCreate() (in module xml.parsers.expat), 1075
ParserError, 1648
ParseResult (class in urllib.parse), 1127
ParseResultBytes (class in urllib.parse), 1128
parsestr() (email.parser.Parser method), 937
parseString() (in module xml.dom.minidom), 1057
parseString() (in module xml.dom.pulldom), 1062
parseString() (in module xml.sax), 1063
parsing

Python source code, 1645
URL, 1123

ParsingError, 491
partial (asyncio.IncompleteReadError attribute), 889
partial() (imaplib.IMAP4 method), 1151
partial() (in module functools), 331

partialmethod (class in functools), 331
parties (threading.Barrier attribute), 718
partition() (bytearray method), 55
partition() (bytes method), 55
partition() (str method), 46
pass_() (poplib.POP3 method), 1146
Paste, 1346
patch() (in module unittest.mock), 1435
patch.dict() (in module unittest.mock), 1438
patch.multiple() (in module unittest.mock), 1440
patch.object() (in module unittest.mock), 1438
patch.stopall() (in module unittest.mock), 1442
PATH, 538, 541, 548, 1085, 1092, 1094
path

configuration file, 1610
module search, 379, 1552, 1610
operations, 343, 359

Path (class in pathlib), 352
path (http.cookiejar.Cookie attribute), 1200
path (http.server.BaseHTTPRequestHandler at-

tribute), 1185
path (importlib.abc.FileLoader attribute), 1634
path (importlib.machinery.ExtensionFileLoader at-

tribute), 1639
path (importlib.machinery.FileFinder attribute),

1637
path (importlib.machinery.SourceFileLoader at-

tribute), 1638
path (importlib.machinery.SourcelessFileLoader at-

tribute), 1638
path (in module sys), 1552
path (os.DirEntry attribute), 527
path based finder, 1767
Path browser, 1343
path entry, 1767
path entry finder, 1767
path entry hook, 1767
path_hook() (importlib.machinery.FileFinder class

method), 1637
path_hooks (in module sys), 1552
path_importer_cache (in module sys), 1552
path_mtime() (importlib.abc.SourceLoader

method), 1635
path_return_ok() (http.cookiejar.CookiePolicy

method), 1198
path_stats() (importlib.abc.SourceLoader method),

1634
path_stats() (importlib.machinery.SourceFileLoader

method), 1638
pathconf() (in module os), 525
pathconf_names (in module os), 525
PathEntryFinder (class in importlib.abc), 1631
PathFinder (class in importlib.machinery), 1636
pathlib (module), 343

1862 Index

The Python Library Reference, Release 3.5.7

pathname2url() (in module urllib.request), 1106
pathsep (in module os), 548
pattern (re.error attribute), 113
pattern (re.regex attribute), 114
pause() (in module signal), 919
pause_reading() (asyncio.ReadTransport method),

877
pause_writing() (asyncio.BaseProtocol method), 881
PAX_FORMAT (in module tarfile), 457
pax_headers (tarfile.TarFile attribute), 460
pax_headers (tarfile.TarInfo attribute), 461
pbkdf2_hmac() (in module hashlib), 501
pd() (in module turtle), 1276
Pdb (class in pdb), 1496, 1497
pdb (module), 1496
peek() (bz2.BZ2File method), 440
peek() (gzip.GzipFile method), 438
peek() (io.BufferedReader method), 557
peek() (lzma.LZMAFile method), 443
peek() (weakref.finalize method), 234
peer (smtpd.SMTPChannel attribute), 1170
PEM_cert_to_DER_cert() (in module ssl), 817
pen() (in module turtle), 1277
pencolor() (in module turtle), 1278
pending (ssl.MemoryBIO attribute), 837
pending() (ssl.SSLSocket method), 825
PendingDeprecationWarning, 90
pendown() (in module turtle), 1276
pensize() (in module turtle), 1277
penup() (in module turtle), 1276
PERCENT (in module token), 1657
PERCENTEQUAL (in module token), 1657
perf_counter() (in module time), 565
Performance, 1510
PermissionError, 89
permutations() (in module itertools), 322
Persist() (msilib.SummaryInformation method),

1691
persistence, 389
persistent

objects, 389
persistent_id (pickle protocol), 396
persistent_id() (pickle.Pickler method), 392
persistent_load (pickle protocol), 396
persistent_load() (pickle.Unpickler method), 393
PF_CAN (in module socket), 794
PF_RDS (in module socket), 795
pformat() (in module pprint), 244
pformat() (pprint.PrettyPrinter method), 245
phase() (in module cmath), 272
pi (in module cmath), 274
pi (in module math), 271
pickle

module, 243, 402, 403, 405

pickle (module), 389
pickle() (in module copyreg), 402
PickleError, 392
Pickler (class in pickle), 392
pickletools (module), 1680
pickletools command line option

-a, –annotate, 1681
-l, –indentlevel=<num>, 1681
-m, –memo, 1681
-o, –output=<file>, 1681
-p, –preamble=<preamble>, 1681

pickling
objects, 389

PicklingError, 392
pid (asyncio.asyncio.subprocess.Process attribute),

896
pid (multiprocessing.Process attribute), 727
pid (subprocess.Popen attribute), 776
PIPE (in module subprocess), 769
Pipe() (in module multiprocessing), 729
pipe() (in module os), 516
pipe2() (in module os), 516
PIPE_BUF (in module select), 841
pipe_connection_lost()

(asyncio.SubprocessProtocol method),
880

pipe_data_received() (asyncio.SubprocessProtocol
method), 880

pipes (module), 1717
PKG_DIRECTORY (in module imp), 1755
pkgutil (module), 1621
placeholder (textwrap.TextWrapper attribute), 136
platform (in module sys), 1552
platform (module), 664
platform() (in module platform), 665
PlaySound() (in module winsound), 1705
plist

file, 495
plistlib (module), 495
plock() (in module os), 540
PLUS (in module token), 1657
plus() (decimal.Context method), 290
PLUSEQUAL (in module token), 1657
pm() (in module pdb), 1497
POINTER() (in module ctypes), 699
pointer() (in module ctypes), 699
polar() (in module cmath), 272
Policy (class in email.policy), 943
poll() (in module select), 840
poll() (multiprocessing.Connection method), 733
poll() (select.devpoll method), 842
poll() (select.epoll method), 843
poll() (select.poll method), 844
poll() (subprocess.Popen method), 774

Index 1863

The Python Library Reference, Release 3.5.7

PollSelector (class in selectors), 849
Pool (class in multiprocessing.pool), 746
pop() (array.array method), 230
pop() (collections.deque method), 208
pop() (dict method), 76
pop() (frozenset method), 74
pop() (mailbox.Mailbox method), 995
pop() (sequence method), 37
POP3

protocol, 1145
POP3 (class in poplib), 1145
POP3_SSL (class in poplib), 1145
pop_alignment() (formatter.formatter method),

1684
pop_all() (contextlib.ExitStack method), 1572
POP_BLOCK (opcode), 1675
POP_EXCEPT (opcode), 1675
pop_font() (formatter.formatter method), 1684
POP_JUMP_IF_FALSE (opcode), 1677
POP_JUMP_IF_TRUE (opcode), 1677
pop_margin() (formatter.formatter method), 1685
pop_source() (shlex.shlex method), 1306
pop_style() (formatter.formatter method), 1685
POP_TOP (opcode), 1672
Popen (class in subprocess), 771
popen() (in module os), 540, 841
popen() (in module platform), 666
popitem() (collections.OrderedDict method), 215
popitem() (dict method), 76
popitem() (mailbox.Mailbox method), 996
popleft() (collections.deque method), 208
poplib (module), 1145
PopupMenu (class in tkinter.tix), 1339
port (http.cookiejar.Cookie attribute), 1200
port_specified (http.cookiejar.Cookie attribute),

1201
portion, 1767
pos (json.JSONDecodeError attribute), 989
pos (re.error attribute), 113
pos (re.match attribute), 117
pos() (in module operator), 337
pos() (in module turtle), 1274
position (xml.etree.ElementTree.ParseError at-

tribute), 1046
position() (in module turtle), 1274
positional argument, 1767
POSIX

I/O control, 1712
threads, 788

posix (module), 1707
POSIX_FADV_DONTNEED (in module os), 516
POSIX_FADV_NOREUSE (in module os), 516
POSIX_FADV_NORMAL (in module os), 516
POSIX_FADV_RANDOM (in module os), 516

POSIX_FADV_SEQUENTIAL (in module os), 516
POSIX_FADV_WILLNEED (in module os), 516
posix_fadvise() (in module os), 516
posix_fallocate() (in module os), 516
POSIXLY_CORRECT, 601
PosixPath (class in pathlib), 353
post() (nntplib.NNTP method), 1159
post() (ossaudiodev.oss_audio_device method),

1246
post_mortem() (in module pdb), 1497
post_setup() (venv.EnvBuilder method), 1533
postcmd() (cmd.Cmd method), 1301
postloop() (cmd.Cmd method), 1301
pow() (built-in function), 18
pow() (in module math), 269
pow() (in module operator), 337
power() (decimal.Context method), 291
pp (pdb command), 1501
pprint (module), 243
pprint() (in module pprint), 244
pprint() (pprint.PrettyPrinter method), 245
prcal() (in module calendar), 201
pread() (in module os), 516
preamble (email.message.Message attribute), 935
precmd() (cmd.Cmd method), 1300
prefix (in module sys), 1553
prefix (xml.dom.Attr attribute), 1053
prefix (xml.dom.Node attribute), 1049
prefix (zipimport.zipimporter attribute), 1620
PREFIXES (in module site), 1611
prefixlen (ipaddress.IPv4Network attribute), 1221
prefixlen (ipaddress.IPv6Network attribute), 1223
preloop() (cmd.Cmd method), 1301
prepare() (logging.handlers.QueueHandler method),

639
prepare() (logging.handlers.QueueListener method),

640
prepare_class() (in module types), 239
prepare_input_source() (in module

xml.sax.saxutils), 1070
prepend() (pipes.Template method), 1718
PrettyPrinter (class in pprint), 244
prev() (tkinter.ttk.Treeview method), 1333
previousSibling (xml.dom.Node attribute), 1049
print (2to3 fixer), 1479
print() (built-in function), 18
print_callees() (pstats.Stats method), 1508
print_callers() (pstats.Stats method), 1507
print_directory() (in module cgi), 1091
print_environ() (in module cgi), 1091
print_environ_usage() (in module cgi), 1091
print_exc() (in module traceback), 1585
print_exc() (timeit.Timer method), 1512
print_exception() (in module traceback), 1585

1864 Index

The Python Library Reference, Release 3.5.7

PRINT_EXPR (opcode), 1674
print_form() (in module cgi), 1091
print_help() (argparse.ArgumentParser method),

598
print_last() (in module traceback), 1585
print_stack() (asyncio.Task method), 872
print_stack() (in module traceback), 1585
print_stats() (profile.Profile method), 1505
print_stats() (pstats.Stats method), 1507
print_tb() (in module traceback), 1585
print_usage() (argparse.ArgumentParser method),

598
print_usage() (optparse.OptionParser method), 1745
print_version() (optparse.OptionParser method),

1734
printable (in module string), 94
printdir() (zipfile.ZipFile method), 451
printf-style formatting, 49, 63
PRIO_PGRP (in module os), 509
PRIO_PROCESS (in module os), 509
PRIO_USER (in module os), 509
PriorityQueue (class in asyncio), 903
PriorityQueue (class in queue), 785
prlimit() (in module resource), 1719
prmonth() (calendar.TextCalendar method), 200
prmonth() (in module calendar), 201
ProactorEventLoop (class in asyncio), 864
process

group, 508
id, 508
id of parent, 508
killing, 540
scheduling priority, 508, 510
signalling, 540

Process (class in multiprocessing), 726
process() (logging.LoggerAdapter method), 613
process_exited() (asyncio.SubprocessProtocol

method), 880
process_message() (smtpd.SMTPServer method),

1168
process_request() (socketserver.BaseServer method),

1180
process_time() (in module time), 565
process_tokens() (in module tabnanny), 1663
ProcessError, 728
processes, light-weight, 788
ProcessingInstruction() (in module

xml.etree.ElementTree), 1038
processingInstruction()

(xml.sax.handler.ContentHandler method),
1068

ProcessingInstructionHandler()
(xml.parsers.expat.xmlparser method),
1078

ProcessLookupError, 89
processor time, 562
processor() (in module platform), 665
ProcessPoolExecutor (class in concurrent.futures),

765
product() (in module itertools), 323
Profile (class in profile), 1505
profile (module), 1504
profile function, 708, 1549, 1554
profiler, 1549, 1554
profiling, deterministic, 1502
ProgrammingError, 424
Progressbar (class in tkinter.ttk), 1327
prompt (cmd.Cmd attribute), 1301
prompt_user_passwd()

(urllib.request.FancyURLopener method),
1121

prompts, interpreter, 1553
propagate (logging.Logger attribute), 603
property (built-in class), 18
property list, 495
property_declaration_handler (in module

xml.sax.handler), 1066
property_dom_node (in module xml.sax.handler),

1066
property_lexical_handler (in module

xml.sax.handler), 1066
property_xml_string (in module xml.sax.handler),

1066
PropertyMock (class in unittest.mock), 1431
prot_c() (ftplib.FTP_TLS method), 1144
prot_p() (ftplib.FTP_TLS method), 1144
proto (socket.socket attribute), 807
protocol

CGI, 1087
context management, 78
copy, 395
FTP, 1122, 1139
HTTP, 1087, 1122, 1131, 1133, 1184
IMAP4, 1147
IMAP4_SSL, 1147
IMAP4_stream, 1147
iterator, 34
NNTP, 1154
POP3, 1145
SMTP, 1160
Telnet, 1170

Protocol (class in asyncio), 880
protocol (ssl.SSLContext attribute), 830
PROTOCOL_SSLv2 (in module ssl), 819
PROTOCOL_SSLv23 (in module ssl), 819
PROTOCOL_SSLv3 (in module ssl), 819
PROTOCOL_TLS (in module ssl), 819
PROTOCOL_TLSv1 (in module ssl), 819

Index 1865

The Python Library Reference, Release 3.5.7

PROTOCOL_TLSv1_1 (in module ssl), 819
PROTOCOL_TLSv1_2 (in module ssl), 819
protocol_version (http.server.BaseHTTPRequestHandler

attribute), 1186
PROTOCOL_VERSION (imaplib.IMAP4 at-

tribute), 1153
ProtocolError (class in xmlrpc.client), 1207
provisional API, 1767
provisional package, 1767
proxy() (in module weakref), 232
proxyauth() (imaplib.IMAP4 method), 1151
ProxyBasicAuthHandler (class in urllib.request),

1108
ProxyDigestAuthHandler (class in urllib.request),

1109
ProxyHandler (class in urllib.request), 1108
ProxyType (in module weakref), 235
ProxyTypes (in module weakref), 235
pryear() (calendar.TextCalendar method), 200
ps1 (in module sys), 1553
ps2 (in module sys), 1553
pstats (module), 1506
pstdev() (in module statistics), 311
pthread_kill() (in module signal), 919
pthread_sigmask() (in module signal), 919
pthreads, 788
pty

module, 516
pty (module), 1714
pu() (in module turtle), 1276
publicId (xml.dom.DocumentType attribute), 1050
PullDom (class in xml.dom.pulldom), 1062
punctuation (in module string), 93
PurePath (class in pathlib), 345
PurePath.anchor (in module pathlib), 348
PurePath.drive (in module pathlib), 348
PurePath.name (in module pathlib), 349
PurePath.parent (in module pathlib), 349
PurePath.parents (in module pathlib), 349
PurePath.parts (in module pathlib), 348
PurePath.root (in module pathlib), 348
PurePath.stem (in module pathlib), 350
PurePath.suffix (in module pathlib), 350
PurePath.suffixes (in module pathlib), 350
PurePosixPath (class in pathlib), 346
PureProxy (class in smtpd), 1169
PureWindowsPath (class in pathlib), 346
purge() (in module re), 113
Purpose.CLIENT_AUTH (in module ssl), 822
Purpose.SERVER_AUTH (in module ssl), 822
push() (asynchat.async_chat method), 915
push() (code.InteractiveConsole method), 1616
push() (contextlib.ExitStack method), 1572

push_alignment() (formatter.formatter method),
1684

push_font() (formatter.formatter method), 1684
push_margin() (formatter.formatter method), 1684
push_source() (shlex.shlex method), 1306
push_style() (formatter.formatter method), 1685
push_token() (shlex.shlex method), 1306
push_with_producer() (asynchat.async_chat

method), 915
pushbutton() (msilib.Dialog method), 1694
put() (asyncio.Queue method), 903
put() (multiprocessing.Queue method), 730
put() (multiprocessing.SimpleQueue method), 731
put() (queue.Queue method), 786
put_nowait() (asyncio.Queue method), 903
put_nowait() (multiprocessing.Queue method), 730
put_nowait() (queue.Queue method), 786
putch() (in module msvcrt), 1696
putenv() (in module os), 509
putheader() (http.client.HTTPConnection method),

1137
putp() (in module curses), 646
putrequest() (http.client.HTTPConnection method),

1137
putwch() (in module msvcrt), 1696
putwin() (curses.window method), 653
pvariance() (in module statistics), 311
pwd

module, 360
pwd (module), 1708
pwd() (ftplib.FTP method), 1144
pwrite() (in module os), 517
py_compile (module), 1665
PY_COMPILED (in module imp), 1755
PY_FROZEN (in module imp), 1756
py_object (class in ctypes), 703
PY_SOURCE (in module imp), 1755
pyclbr (module), 1663
PyCompileError, 1665
PyDLL (class in ctypes), 693
pydoc (module), 1367
pyexpat

module, 1074
PYFUNCTYPE() (in module ctypes), 696
Python 3000, 1768
Python Editor, 1342
Python Enhancement Proposals

PEP 205, 235
PEP 227, 1592
PEP 235, 1628
PEP 238, 1592
PEP 249, 413
PEP 255, 1592
PEP 263, 1628

1866 Index

The Python Library Reference, Release 3.5.7

PEP 273, 1619
PEP 282, 618
PEP 302, 1619, 1628
PEP 305, 467
PEP 3105, 1592
PEP 3112, 1592
PEP 3115, 239
PEP 3120, 1628
PEP 3147, 1628
PEP 3148, 767
PEP 328, 1592, 1628
PEP 338, 1627
PEP 343, 1576, 1592
PEP 362, 1603
PEP 366, 1627, 1628
PEP 383, 156
PEP 393, 167
PEP 420, 1628
PEP 451, 1627, 1628
PEP 453, 1528
PEP 479, 1592
PEP 488, 1628
PEP 489, 1628

Python Enhancement Proposals
PEP 236, 7
PEP 237, 51, 65
PEP 238, 1762
PEP 249, 411
PEP 263, 1659, 1660
PEP 278, 1769
PEP 282, 386
PEP 292, 101
PEP 302, 23, 379, 1552, 1621, 1625, 1630–1634,

1756, 1762, 1765
PEP 307, 390
PEP 3101, 94
PEP 3107, 1762
PEP 3116, 1769
PEP 3118, 67
PEP 3119, 222, 1579
PEP 3141, 263, 1579
PEP 3147, 1626, 1640, 1665–1668, 1754
PEP 3149, 1543
PEP 3151, 89, 793, 840, 1718
PEP 3153, 910
PEP 3154, 391
PEP 3155, 1768
PEP 3156, 910
PEP 324, 768
PEP 328, 24
PEP 3333, 1095–1100, 1103
PEP 342, 220
PEP 343, 1761
PEP 362, 1759, 1767

PEP 370, 1613
PEP 378, 97
PEP 380, 850, 866
PEP 383, 791
PEP 393, 162, 1552
PEP 397, 1531
PEP 405, 1529
PEP 411, 1549, 1556, 1767
PEP 420, 1762, 1766, 1767
PEP 421, 1551
PEP 428, 344
PEP 442, 1594
PEP 443, 1763
PEP 451, 1552, 1622, 1626, 1627, 1762
PEP 461, 65
PEP 475, 18, 89, 515, 517, 518, 544, 565, 801,

803–806, 841–845, 848, 921
PEP 483, 1353
PEP 484, 1353, 1355, 1359, 1360, 1365
PEP 485, 268, 274
PEP 488, 1640, 1665
PEP 489, 1636, 1639
PEP 492, 1549, 1556, 1609, 1759–1761
PEP 526, 1366
PEP 8, 980

python_branch() (in module platform), 665
python_build() (in module platform), 665
python_compiler() (in module platform), 665
PYTHON_DOM, 1047
python_implementation() (in module platform), 665
python_revision() (in module platform), 665
python_version() (in module platform), 665
python_version_tuple() (in module platform), 665
PYTHONASYNCIODEBUG, 860, 904
PYTHONDOCS, 1368
PYTHONDONTWRITEBYTECODE, 1545
PYTHONFAULTHANDLER, 1494
Pythonic, 1768
PYTHONIOENCODING, 1556
PYTHONNOUSERSITE, 1611, 1612
PYTHONPATH, 1092, 1552
PYTHONSTARTUP, 143, 1348, 1551, 1611
PYTHONTRACEMALLOC, 1517, 1518, 1522
PYTHONUSERBASE, 1612
PyZipFile (class in zipfile), 452

Q
qiflush() (in module curses), 646
QName (class in xml.etree.ElementTree), 1043
qsize() (asyncio.Queue method), 903
qsize() (multiprocessing.Queue method), 729
qsize() (queue.Queue method), 786
qualified name, 1768
quantize() (decimal.Context method), 291

Index 1867

The Python Library Reference, Release 3.5.7

quantize() (decimal.Decimal method), 284
QueryInfoKey() (in module winreg), 1699
QueryReflectionKey() (in module winreg), 1701
QueryValue() (in module winreg), 1700
QueryValueEx() (in module winreg), 1700
Queue (class in asyncio), 902
Queue (class in multiprocessing), 729
Queue (class in queue), 785
queue (module), 785
queue (sched.scheduler attribute), 785
Queue() (multiprocessing.managers.SyncManager

method), 742
QueueEmpty, 904
QueueFull, 904
QueueHandler (class in logging.handlers), 639
QueueListener (class in logging.handlers), 639
quick_ratio() (difflib.SequenceMatcher method), 129
quit (built-in variable), 25
quit (pdb command), 1502
quit() (ftplib.FTP method), 1144
quit() (nntplib.NNTP method), 1156
quit() (poplib.POP3 method), 1146
quit() (smtplib.SMTP method), 1166
quopri (module), 1020
quote() (in module email.utils), 968
quote() (in module shlex), 1305
quote() (in module urllib.parse), 1128
QUOTE_ALL (in module csv), 470
quote_from_bytes() (in module urllib.parse), 1128
QUOTE_MINIMAL (in module csv), 470
QUOTE_NONE (in module csv), 470
QUOTE_NONNUMERIC (in module csv), 470
quote_plus() (in module urllib.parse), 1128
quoteattr() (in module xml.sax.saxutils), 1070
quotechar (csv.Dialect attribute), 471
quoted-printable

encoding, 1020
quotes (shlex.shlex attribute), 1307
quoting (csv.Dialect attribute), 471

R
R_OK (in module os), 521
radians() (in module math), 269
radians() (in module turtle), 1276
RadioButtonGroup (class in msilib), 1693
radiogroup() (msilib.Dialog method), 1694
radix() (decimal.Context method), 291
radix() (decimal.Decimal method), 284
RADIXCHAR (in module locale), 1260
raise

statement, 83
raise (2to3 fixer), 1479
raise_on_defect (email.policy.Policy attribute), 944
RAISE_VARARGS (opcode), 1678

RAND_add() (in module ssl), 816
RAND_bytes() (in module ssl), 815
RAND_egd() (in module ssl), 816
RAND_pseudo_bytes() (in module ssl), 815
RAND_status() (in module ssl), 815
randint() (in module random), 305
random (module), 304
random() (in module random), 305
randrange() (in module random), 305
range

object, 40
range (built-in class), 40
RARROW (in module token), 1657
ratecv() (in module audioop), 1231
ratio() (difflib.SequenceMatcher method), 129
Rational (class in numbers), 263
raw (io.BufferedIOBase attribute), 554
raw() (in module curses), 646
raw_data_manager (in module

email.contentmanager), 958
raw_decode() (json.JSONDecoder method), 987
raw_input (2to3 fixer), 1479
raw_input() (code.InteractiveConsole method), 1617
RawArray() (in module multiprocess-

ing.sharedctypes), 738
RawConfigParser (class in configparser), 490
RawDescriptionHelpFormatter (class in argparse),

575
RawIOBase (class in io), 553
RawPen (class in turtle), 1293
RawTextHelpFormatter (class in argparse), 575
RawTurtle (class in turtle), 1293
RawValue() (in module multiprocess-

ing.sharedctypes), 738
RBRACE (in module token), 1657
rcpttos (smtpd.SMTPChannel attribute), 1170
re

module, 42, 378
re (class in typing), 1364
re (module), 103
re (re.match attribute), 117
read() (asyncio.StreamReader method), 887
read() (chunk.Chunk method), 1241
read() (codecs.StreamReader method), 160
read() (configparser.ConfigParser method), 487
read() (http.client.HTTPResponse method), 1137
read() (imaplib.IMAP4 method), 1151
read() (in module os), 517
read() (io.BufferedIOBase method), 554
read() (io.BufferedReader method), 557
read() (io.RawIOBase method), 553
read() (io.TextIOBase method), 558
read() (mimetypes.MimeTypes method), 1013
read() (mmap.mmap method), 924

1868 Index

The Python Library Reference, Release 3.5.7

read() (ossaudiodev.oss_audio_device method),
1244

read() (ssl.MemoryBIO method), 837
read() (ssl.SSLSocket method), 823
read() (urllib.robotparser.RobotFileParser method),

1131
read() (zipfile.ZipFile method), 451
read1() (io.BufferedIOBase method), 554
read1() (io.BufferedReader method), 557
read1() (io.BytesIO method), 556
read_all() (telnetlib.Telnet method), 1171
read_byte() (mmap.mmap method), 924
read_bytes() (pathlib.Path method), 356
read_dict() (configparser.ConfigParser method), 488
read_eager() (telnetlib.Telnet method), 1171
read_environ() (in module wsgiref.handlers), 1104
read_events() (xml.etree.ElementTree.XMLPullParser

method), 1045
read_file() (configparser.ConfigParser method), 488
read_history_file() (in module readline), 141
read_init_file() (in module readline), 141
read_lazy() (telnetlib.Telnet method), 1171
read_mime_types() (in module mimetypes), 1012
read_sb_data() (telnetlib.Telnet method), 1172
read_some() (telnetlib.Telnet method), 1171
read_string() (configparser.ConfigParser method),

488
read_text() (pathlib.Path method), 356
read_token() (shlex.shlex method), 1306
read_until() (telnetlib.Telnet method), 1171
read_very_eager() (telnetlib.Telnet method), 1171
read_very_lazy() (telnetlib.Telnet method), 1171
read_windows_registry() (mimetypes.MimeTypes

method), 1014
READABLE (in module tkinter), 1320
readable() (asyncore.dispatcher method), 912
readable() (io.IOBase method), 552
readall() (io.RawIOBase method), 553
reader() (in module csv), 467
ReadError, 457
readexactly() (asyncio.StreamReader method), 887
readfp() (configparser.ConfigParser method), 489
readfp() (mimetypes.MimeTypes method), 1013
readframes() (aifc.aifc method), 1233
readframes() (sunau.AU_read method), 1236
readframes() (wave.Wave_read method), 1238
readinto() (http.client.HTTPResponse method),

1137
readinto() (io.BufferedIOBase method), 555
readinto() (io.RawIOBase method), 554
readinto1() (io.BufferedIOBase method), 555
readinto1() (io.BytesIO method), 556
readline (module), 140
readline() (asyncio.StreamReader method), 887

readline() (codecs.StreamReader method), 160
readline() (imaplib.IMAP4 method), 1151
readline() (io.IOBase method), 552
readline() (io.TextIOBase method), 558
readline() (mmap.mmap method), 924
readlines() (codecs.StreamReader method), 161
readlines() (io.IOBase method), 552
readlink() (in module os), 525
readmodule() (in module pyclbr), 1664
readmodule_ex() (in module pyclbr), 1664
readonly (memoryview attribute), 71
readPlist() (in module plistlib), 496
readPlistFromBytes() (in module plistlib), 497
ReadTransport (class in asyncio), 877
readuntil() (asyncio.StreamReader method), 887
readv() (in module os), 518
ready() (multiprocessing.pool.AsyncResult method),

748
Real (class in numbers), 263
real (numbers.Complex attribute), 263
Real Media File Format, 1240
real_quick_ratio() (difflib.SequenceMatcher

method), 129
realpath() (in module os.path), 362
reason (http.client.HTTPResponse attribute), 1138
reason (ssl.SSLError attribute), 812
reason (UnicodeError attribute), 88
reason (urllib.error.HTTPError attribute), 1130
reason (urllib.error.URLError attribute), 1130
reattach() (tkinter.ttk.Treeview method), 1333
reccontrols() (ossaudiodev.oss_mixer_device

method), 1247
received_data (smtpd.SMTPChannel attribute),

1170
received_lines (smtpd.SMTPChannel attribute),

1169
recent() (imaplib.IMAP4 method), 1151
records (unittest.TestCase attribute), 1406
rect() (in module cmath), 272
rectangle() (in module curses.textpad), 659
RecursionError, 86
recursive_repr() (in module reprlib), 249
recv() (asyncore.dispatcher method), 912
recv() (multiprocessing.Connection method), 733
recv() (socket.socket method), 803
recv_bytes() (multiprocessing.Connection method),

733
recv_bytes_into() (multiprocessing.Connection

method), 733
recv_into() (socket.socket method), 805
recvfrom() (socket.socket method), 803
recvfrom_into() (socket.socket method), 804
recvmsg() (socket.socket method), 803
recvmsg_into() (socket.socket method), 804

Index 1869

The Python Library Reference, Release 3.5.7

redirect_request() (urllib.request.HTTPRedirectHandler
method), 1113

redirect_stderr() (in module contextlib), 1570
redirect_stdout() (in module contextlib), 1569
redisplay() (in module readline), 141
redrawln() (curses.window method), 653
redrawwin() (curses.window method), 653
reduce (2to3 fixer), 1479
reduce() (in module functools), 332
ref (class in weakref), 232
reference count, 1768
ReferenceError, 86, 235
ReferenceType (in module weakref), 235
refold_source (email.policy.EmailPolicy attribute),

947
refresh() (curses.window method), 653
REG_BINARY (in module winreg), 1703
REG_DWORD (in module winreg), 1703
REG_DWORD_BIG_ENDIAN (in module win-

reg), 1703
REG_DWORD_LITTLE_ENDIAN (in module

winreg), 1703
REG_EXPAND_SZ (in module winreg), 1703
REG_FULL_RESOURCE_DESCRIPTOR (in

module winreg), 1703
REG_LINK (in module winreg), 1703
REG_MULTI_SZ (in module winreg), 1703
REG_NONE (in module winreg), 1703
REG_RESOURCE_LIST (in module winreg), 1703
REG_RESOURCE_REQUIREMENTS_LIST (in

module winreg), 1703
REG_SZ (in module winreg), 1703
register() (abc.ABCMeta method), 1579
register() (in module atexit), 1583
register() (in module codecs), 154
register() (in module faulthandler), 1495
register() (in module webbrowser), 1086
register() (multiprocessing.managers.BaseManager

method), 740
register() (select.devpoll method), 842
register() (select.epoll method), 843
register() (select.poll method), 843
register() (selectors.BaseSelector method), 848
register_adapter() (in module sqlite3), 414
register_archive_format() (in module shutil), 386
register_converter() (in module sqlite3), 414
register_defect() (email.policy.Policy method), 944
register_dialect() (in module csv), 468
register_error() (in module codecs), 156
register_function() (xmlrpc.server.CGIXMLRPCRequestHandler

method), 1213
register_function() (xmlrpc.server.SimpleXMLRPCServer

method), 1210

register_instance() (xmlrpc.server.CGIXMLRPCRequestHandler
method), 1213

register_instance() (xmlrpc.server.SimpleXMLRPCServer
method), 1211

register_introspection_functions()
(xmlrpc.server.CGIXMLRPCRequestHandler
method), 1213

register_introspection_functions()
(xmlrpc.server.SimpleXMLRPCServer
method), 1211

register_multicall_functions()
(xmlrpc.server.CGIXMLRPCRequestHandler
method), 1214

register_multicall_functions()
(xmlrpc.server.SimpleXMLRPCServer
method), 1211

register_namespace() (in module
xml.etree.ElementTree), 1038

register_optionflag() (in module doctest), 1377
register_shape() (in module turtle), 1292
register_unpack_format() (in module shutil), 386
registerDOMImplementation() (in module xml.dom),

1046
registerResult() (in module unittest), 1420
regular package, 1768
relative

URL, 1123
relative_to() (pathlib.PurePath method), 352
release() (_thread.lock method), 789
release() (asyncio.Condition method), 900
release() (asyncio.Lock method), 899
release() (asyncio.Semaphore method), 901
release() (in module platform), 665
release() (logging.Handler method), 607
release() (memoryview method), 68
release() (multiprocessing.Lock method), 735
release() (multiprocessing.RLock method), 736
release() (threading.Condition method), 714
release() (threading.Lock method), 711
release() (threading.RLock method), 712
release() (threading.Semaphore method), 715
release_lock() (in module imp), 1755
reload (2to3 fixer), 1479
reload() (in module imp), 1753
reload() (in module importlib), 1629
relpath() (in module os.path), 362
remainder() (decimal.Context method), 291
remainder_near() (decimal.Context method), 291
remainder_near() (decimal.Decimal method), 284
RemoteDisconnected, 1135
remove() (array.array method), 230
remove() (collections.deque method), 208
remove() (frozenset method), 74
remove() (in module os), 526

1870 Index

The Python Library Reference, Release 3.5.7

remove() (mailbox.Mailbox method), 994
remove() (mailbox.MH method), 999
remove() (sequence method), 37
remove() (xml.etree.ElementTree.Element method),

1041
remove_done_callback() (asyncio.Future method),

870
remove_flag() (mailbox.MaildirMessage method),

1003
remove_flag() (mailbox.mboxMessage method), 1004
remove_flag() (mailbox.MMDFMessage method),

1008
remove_folder() (mailbox.Maildir method), 997
remove_folder() (mailbox.MH method), 999
remove_header() (urllib.request.Request method),

1110
remove_history_item() (in module readline), 142
remove_label() (mailbox.BabylMessage method),

1007
remove_option() (configparser.ConfigParser

method), 489
remove_option() (optparse.OptionParser method),

1743
remove_pyc() (msilib.Directory method), 1693
remove_reader() (asyncio.AbstractEventLoop

method), 857
remove_section() (configparser.ConfigParser

method), 489
remove_sequence() (mailbox.MHMessage method),

1006
remove_signal_handler()

(asyncio.AbstractEventLoop method),
859

remove_writer() (asyncio.AbstractEventLoop
method), 857

removeAttribute() (xml.dom.Element method), 1052
removeAttributeNode() (xml.dom.Element method),

1052
removeAttributeNS() (xml.dom.Element method),

1052
removeChild() (xml.dom.Node method), 1050
removedirs() (in module os), 526
removeFilter() (logging.Handler method), 607
removeFilter() (logging.Logger method), 606
removeHandler() (in module unittest), 1420
removeHandler() (logging.Logger method), 606
removeResult() (in module unittest), 1420
removexattr() (in module os), 536
rename() (ftplib.FTP method), 1143
rename() (imaplib.IMAP4 method), 1151
rename() (in module os), 526
rename() (pathlib.Path method), 357
renames (2to3 fixer), 1479
renames() (in module os), 526

reorganize() (dbm.gnu.gdbm method), 409
repeat() (in module itertools), 323
repeat() (in module timeit), 1511
repeat() (timeit.Timer method), 1511
repetition

operation, 35
replace() (bytearray method), 55
replace() (bytes method), 55
replace() (curses.panel.Panel method), 663
replace() (datetime.date method), 177
replace() (datetime.datetime method), 182
replace() (datetime.time method), 187
replace() (in module os), 526
replace() (inspect.Parameter method), 1602
replace() (inspect.Signature method), 1601
replace() (pathlib.Path method), 357
replace() (str method), 46
replace_errors() (in module codecs), 157
replace_header() (email.message.Message method),

932
replace_history_item() (in module readline), 142
replace_whitespace (textwrap.TextWrapper at-

tribute), 135
replaceChild() (xml.dom.Node method), 1050
ReplacePackage() (in module modulefinder), 1624
report() (filecmp.dircmp method), 371
report() (modulefinder.ModuleFinder method), 1624
REPORT_CDIFF (in module doctest), 1377
report_failure() (doctest.DocTestRunner method),

1387
report_full_closure() (filecmp.dircmp method), 371
REPORT_NDIFF (in module doctest), 1377
REPORT_ONLY_FIRST_FAILURE (in module

doctest), 1377
report_partial_closure() (filecmp.dircmp method),

371
report_start() (doctest.DocTestRunner method),

1387
report_success() (doctest.DocTestRunner method),

1387
REPORT_UDIFF (in module doctest), 1377
report_unexpected_exception()

(doctest.DocTestRunner method), 1387
REPORTING_FLAGS (in module doctest), 1377
repr (2to3 fixer), 1479
Repr (class in reprlib), 248
repr() (built-in function), 20
repr() (in module reprlib), 249
repr() (reprlib.Repr method), 249
repr1() (reprlib.Repr method), 249
reprlib (module), 248
Request (class in urllib.request), 1107
request() (http.client.HTTPConnection method),

1136

Index 1871

The Python Library Reference, Release 3.5.7

request_queue_size (socketserver.BaseServer at-
tribute), 1179

request_uri() (in module wsgiref.util), 1095
request_version (http.server.BaseHTTPRequestHandler

attribute), 1185
RequestHandlerClass (socketserver.BaseServer at-

tribute), 1179
requestline (http.server.BaseHTTPRequestHandler

attribute), 1185
requires() (in module test.support), 1483
reserved (zipfile.ZipInfo attribute), 454
RESERVED_FUTURE (in module uuid), 1175
RESERVED_MICROSOFT (in module uuid), 1175
RESERVED_NCS (in module uuid), 1175
reset() (bdb.Bdb method), 1490
reset() (codecs.IncrementalDecoder method), 159
reset() (codecs.IncrementalEncoder method), 158
reset() (codecs.StreamReader method), 161
reset() (codecs.StreamWriter method), 160
reset() (html.parser.HTMLParser method), 1025
reset() (in module turtle), 1280, 1287
reset() (ossaudiodev.oss_audio_device method),

1246
reset() (pipes.Template method), 1718
reset() (threading.Barrier method), 718
reset() (xdrlib.Packer method), 493
reset() (xdrlib.Unpacker method), 494
reset() (xml.dom.pulldom.DOMEventStream

method), 1062
reset() (xml.sax.xmlreader.IncrementalParser

method), 1072
reset_mock() (unittest.mock.Mock method), 1425
reset_prog_mode() (in module curses), 646
reset_shell_mode() (in module curses), 646
resetbuffer() (code.InteractiveConsole method), 1617
resetlocale() (in module locale), 1262
resetscreen() (in module turtle), 1287
resetty() (in module curses), 646
resetwarnings() (in module warnings), 1567
resize() (curses.window method), 653
resize() (in module ctypes), 700
resize() (mmap.mmap method), 925
resize_term() (in module curses), 646
resizemode() (in module turtle), 1281
resizeterm() (in module curses), 646
resolution (datetime.date attribute), 176
resolution (datetime.datetime attribute), 180
resolution (datetime.time attribute), 187
resolution (datetime.timedelta attribute), 173
resolve() (pathlib.Path method), 357
resolve_name() (in module importlib.util), 1641
resolveEntity() (xml.sax.handler.EntityResolver

method), 1069
resource (module), 1718

ResourceDenied, 1483
ResourceLoader (class in importlib.abc), 1632
ResourceWarning, 90
response (nntplib.NNTPError attribute), 1155
response() (imaplib.IMAP4 method), 1151
ResponseNotReady, 1135
responses (http.server.BaseHTTPRequestHandler

attribute), 1186
responses (in module http.client), 1135
restart (pdb command), 1501
restore() (in module difflib), 126
restype (ctypes._FuncPtr attribute), 695
result() (asyncio.Future method), 869
result() (concurrent.futures.Future method), 766
results() (trace.Trace method), 1517
resume_reading() (asyncio.ReadTransport method),

877
resume_writing() (asyncio.BaseProtocol method),

881
retr() (poplib.POP3 method), 1146
retrbinary() (ftplib.FTP method), 1142
retrieve() (urllib.request.URLopener method), 1121
retrlines() (ftplib.FTP method), 1142
return (pdb command), 1500
return_annotation (inspect.Signature attribute),

1601
return_ok() (http.cookiejar.CookiePolicy method),

1197
RETURN_VALUE (opcode), 1675
return_value (unittest.mock.Mock attribute), 1427
returncode (asyncio.asyncio.subprocess.Process at-

tribute), 896
returncode (subprocess.CalledProcessError at-

tribute), 770
returncode (subprocess.CompletedProcess at-

tribute), 769
returncode (subprocess.Popen attribute), 776
reverse() (array.array method), 230
reverse() (collections.deque method), 208
reverse() (in module audioop), 1231
reverse() (sequence method), 37
reverse_order() (pstats.Stats method), 1507
reverse_pointer (ipaddress.IPv4Address attribute),

1217
reverse_pointer (ipaddress.IPv6Address attribute),

1218
reversed() (built-in function), 20
Reversible (class in typing), 1360
revert() (http.cookiejar.FileCookieJar method), 1196
rewind() (aifc.aifc method), 1233
rewind() (sunau.AU_read method), 1236
rewind() (wave.Wave_read method), 1238
RFC

RFC 1014, 492

1872 Index

The Python Library Reference, Release 3.5.7

RFC 1521, 1017
RFC 1738, 1130
RFC 1808, 1130
RFC 1832, 492
RFC 1869, 1162
RFC 1870, 1170
RFC 2109, 1190, 1195
RFC 2368, 1130
RFC 2396, 1130
RFC 2732, 1130
RFC 2965, 1195
RFC 3490, 167
RFC 3492, 167
RFC 3986, 1129
RFC 4122, 1175
RFC 821, 1162
RFC 854, 1171

RFC
RFC 1014, 492
RFC 1123, 566
RFC 1321, 499
RFC 1422, 831
RFC 1521, 1020
RFC 1522, 1020
RFC 1524, 992
RFC 1730, 1147
RFC 1750, 816
RFC 1766, 1261
RFC 1808, 1123
RFC 1832, 492
RFC 1869, 1160
RFC 1870, 1167
RFC 1894, 982
RFC 1939, 1145
RFC 2045, 927, 932, 933, 952, 961, 1014, 1017
RFC 2046, 927, 959, 961
RFC 2047, 927, 940, 947, 950, 961–963, 968
RFC 2060, 1147, 1152
RFC 2068, 1190
RFC 2104, 502
RFC 2109, 1190–1193
RFC 2183, 934
RFC 2231, 927, 932, 933, 961, 970, 980
RFC 2295, 1133
RFC 2373, 1217
RFC 2396, 1125
RFC 2397, 1116
RFC 2449, 1146
RFC 2518, 1132
RFC 2595, 1145, 1147
RFC 2616, 1097, 1113, 1121
RFC 2774, 1133
RFC 2818, 816
RFC 2821, 927

RFC 2822, 566, 927, 928, 930, 937, 938, 940, 941,
961–963, 967–970, 1001, 1185

RFC 2964, 1195
RFC 2965, 1107, 1193
RFC 2980, 1154, 1160
RFC 3056, 1218
RFC 3171, 1217
RFC 3229, 1132
RFC 3280, 824
RFC 3330, 1217
RFC 3454, 139
RFC 3490, 168, 169
RFC 3492, 168
RFC 3493, 811
RFC 3542, 799
RFC 3548, 1014, 1015, 1018
RFC 3659, 1143
RFC 3879, 1218
RFC 3927, 1217
RFC 3977, 1154, 1156, 1157, 1160
RFC 3986, 1124, 1126
RFC 4122, 1173, 1175
RFC 4180, 467
RFC 4193, 1218
RFC 4217, 1140
RFC 4291, 1218
RFC 4366, 821
RFC 4380, 1218
RFC 4627, 983, 990
RFC 4642, 1155
RFC 4918, 1132, 1133
RFC 4954, 1164
RFC 5161, 1150
RFC 5246, 822
RFC 5280, 817
RFC 5321, 954, 1167, 1168
RFC 5322, 944, 946, 947, 949–951, 953, 954, 1166
RFC 5735, 1217
RFC 5842, 1132, 1133
RFC 5929, 825
RFC 6066, 828
RFC 6125, 816
RFC 6152, 1168
RFC 6531, 947, 1161, 1167–1169
RFC 6532, 947
RFC 6585, 1133
RFC 6855, 1150
RFC 6856, 1147
RFC 7159, 983, 989, 991
RFC 7231, 1132, 1133
RFC 7232, 1132, 1133
RFC 7233, 1132, 1133
RFC 7235, 1132, 1133
RFC 7238, 1132

Index 1873

The Python Library Reference, Release 3.5.7

RFC 7301, 821, 828
RFC 821, 1160
RFC 822, 566, 961, 1137, 1163, 1165, 1166, 1253
RFC 854, 1170
RFC 959, 1140
RFC 977, 1154

rfc2109 (http.cookiejar.Cookie attribute), 1201
rfc2109_as_netscape (http.cookiejar.DefaultCookiePolicy

attribute), 1199
rfc2965 (http.cookiejar.CookiePolicy attribute), 1198
RFC_4122 (in module uuid), 1175
rfile (http.server.BaseHTTPRequestHandler at-

tribute), 1185
rfind() (bytearray method), 56
rfind() (bytes method), 56
rfind() (mmap.mmap method), 925
rfind() (str method), 46
rgb_to_hls() (in module colorsys), 1242
rgb_to_hsv() (in module colorsys), 1242
rgb_to_yiq() (in module colorsys), 1241
rglob() (pathlib.Path method), 357
right (filecmp.dircmp attribute), 371
right() (in module turtle), 1270
right_list (filecmp.dircmp attribute), 372
right_only (filecmp.dircmp attribute), 372
RIGHTSHIFT (in module token), 1657
RIGHTSHIFTEQUAL (in module token), 1657
rindex() (bytearray method), 56
rindex() (bytes method), 56
rindex() (str method), 46
rjust() (bytearray method), 57
rjust() (bytes method), 57
rjust() (str method), 46
rlcompleter (module), 144
rlecode_hqx() (in module binascii), 1019
rledecode_hqx() (in module binascii), 1019
RLIM_INFINITY (in module resource), 1719
RLIMIT_AS (in module resource), 1720
RLIMIT_CORE (in module resource), 1719
RLIMIT_CPU (in module resource), 1719
RLIMIT_DATA (in module resource), 1719
RLIMIT_FSIZE (in module resource), 1719
RLIMIT_MEMLOCK (in module resource), 1720
RLIMIT_MSGQUEUE (in module resource), 1720
RLIMIT_NICE (in module resource), 1720
RLIMIT_NOFILE (in module resource), 1720
RLIMIT_NPROC (in module resource), 1720
RLIMIT_NPTS (in module resource), 1721
RLIMIT_OFILE (in module resource), 1720
RLIMIT_RSS (in module resource), 1720
RLIMIT_RTPRIO (in module resource), 1720
RLIMIT_RTTIME (in module resource), 1720
RLIMIT_SBSIZE (in module resource), 1720
RLIMIT_SIGPENDING (in module resource), 1720

RLIMIT_STACK (in module resource), 1720
RLIMIT_SWAP (in module resource), 1721
RLIMIT_VMEM (in module resource), 1720
RLock (class in multiprocessing), 735
RLock (class in threading), 712
RLock() (multiprocessing.managers.SyncManager

method), 742
rmd() (ftplib.FTP method), 1144
rmdir() (in module os), 526
rmdir() (pathlib.Path method), 357
RMFF, 1240
rms() (in module audioop), 1231
rmtree() (in module shutil), 382
RobotFileParser (class in urllib.robotparser), 1131
robots.txt, 1131
rollback() (sqlite3.Connection method), 415
ROT_THREE (opcode), 1672
ROT_TWO (opcode), 1672
rotate() (collections.deque method), 208
rotate() (decimal.Context method), 291
rotate() (decimal.Decimal method), 285
rotate() (logging.handlers.BaseRotatingHandler

method), 631
RotatingFileHandler (class in logging.handlers), 631
rotation_filename() (logging.handlers.BaseRotatingHandler

method), 631
rotator (logging.handlers.BaseRotatingHandler at-

tribute), 631
round() (built-in function), 20
ROUND_05UP (in module decimal), 292
ROUND_CEILING (in module decimal), 292
ROUND_DOWN (in module decimal), 292
ROUND_FLOOR (in module decimal), 292
ROUND_HALF_DOWN (in module decimal), 292
ROUND_HALF_EVEN (in module decimal), 292
ROUND_HALF_UP (in module decimal), 292
ROUND_UP (in module decimal), 292
Rounded (class in decimal), 293
Row (class in sqlite3), 423
row_factory (sqlite3.Connection attribute), 419
rowcount (sqlite3.Cursor attribute), 422
RPAR (in module token), 1657
rpartition() (bytearray method), 56
rpartition() (bytes method), 56
rpartition() (str method), 46
rpc_paths (xmlrpc.server.SimpleXMLRPCRequestHandler

attribute), 1211
rpop() (poplib.POP3 method), 1146
rset() (poplib.POP3 method), 1146
rshift() (in module operator), 337
rsplit() (bytearray method), 57
rsplit() (bytes method), 57
rsplit() (str method), 46
RSQB (in module token), 1657

1874 Index

The Python Library Reference, Release 3.5.7

rstrip() (bytearray method), 58
rstrip() (bytes method), 58
rstrip() (str method), 46
rt() (in module turtle), 1270
RTLD_DEEPBIND (in module os), 548
RTLD_GLOBAL (in module os), 548
RTLD_LAZY (in module os), 548
RTLD_LOCAL (in module os), 548
RTLD_NODELETE (in module os), 548
RTLD_NOLOAD (in module os), 548
RTLD_NOW (in module os), 548
ruler (cmd.Cmd attribute), 1301
run (pdb command), 1501
Run script, 1344
run() (bdb.Bdb method), 1493
run() (doctest.DocTestRunner method), 1387
run() (in module pdb), 1497
run() (in module profile), 1504
run() (in module subprocess), 768
run() (multiprocessing.Process method), 726
run() (pdb.Pdb method), 1498
run() (profile.Profile method), 1505
run() (sched.scheduler method), 784
run() (threading.Thread method), 710
run() (trace.Trace method), 1516
run() (unittest.TestCase method), 1402
run() (unittest.TestSuite method), 1411
run() (unittest.TextTestRunner method), 1417
run() (wsgiref.handlers.BaseHandler method), 1101
run_coroutine_threadsafe() (in module asyncio),

874
run_docstring_examples() (in module doctest), 1381
run_doctest() (in module test.support), 1484
run_forever() (asyncio.AbstractEventLoop method),

851
run_in_executor() (asyncio.AbstractEventLoop

method), 859
run_module() (in module runpy), 1625
run_path() (in module runpy), 1626
run_script() (modulefinder.ModuleFinder method),

1624
run_unittest() (in module test.support), 1483
run_until_complete() (asyncio.AbstractEventLoop

method), 851
run_with_locale() (in module test.support), 1486
runcall() (bdb.Bdb method), 1493
runcall() (in module pdb), 1497
runcall() (pdb.Pdb method), 1498
runcall() (profile.Profile method), 1505
runcode() (code.InteractiveInterpreter method), 1616
runctx() (bdb.Bdb method), 1493
runctx() (in module profile), 1505
runctx() (profile.Profile method), 1505
runctx() (trace.Trace method), 1516

runeval() (bdb.Bdb method), 1493
runeval() (in module pdb), 1497
runeval() (pdb.Pdb method), 1498
runfunc() (trace.Trace method), 1516
running() (concurrent.futures.Future method), 766
runpy (module), 1625
runsource() (code.InteractiveInterpreter method),

1616
RuntimeError, 86
RuntimeWarning, 90
RUSAGE_BOTH (in module resource), 1722
RUSAGE_CHILDREN (in module resource), 1722
RUSAGE_SELF (in module resource), 1722
RUSAGE_THREAD (in module resource), 1722

S
S (in module re), 110
S_ENFMT (in module stat), 369
S_IEXEC (in module stat), 369
S_IFBLK (in module stat), 368
S_IFCHR (in module stat), 368
S_IFDIR (in module stat), 368
S_IFDOOR (in module stat), 368
S_IFIFO (in module stat), 368
S_IFLNK (in module stat), 368
S_IFMT() (in module stat), 366
S_IFPORT (in module stat), 368
S_IFREG (in module stat), 368
S_IFSOCK (in module stat), 368
S_IFWHT (in module stat), 368
S_IMODE() (in module stat), 366
S_IREAD (in module stat), 369
S_IRGRP (in module stat), 369
S_IROTH (in module stat), 369
S_IRUSR (in module stat), 368
S_IRWXG (in module stat), 369
S_IRWXO (in module stat), 369
S_IRWXU (in module stat), 368
S_ISBLK() (in module stat), 365
S_ISCHR() (in module stat), 365
S_ISDIR() (in module stat), 365
S_ISDOOR() (in module stat), 366
S_ISFIFO() (in module stat), 366
S_ISGID (in module stat), 368
S_ISLNK() (in module stat), 366
S_ISPORT() (in module stat), 366
S_ISREG() (in module stat), 366
S_ISSOCK() (in module stat), 366
S_ISUID (in module stat), 368
S_ISVTX (in module stat), 368
S_ISWHT() (in module stat), 366
S_IWGRP (in module stat), 369
S_IWOTH (in module stat), 369
S_IWRITE (in module stat), 369

Index 1875

The Python Library Reference, Release 3.5.7

S_IWUSR (in module stat), 369
S_IXGRP (in module stat), 369
S_IXOTH (in module stat), 369
S_IXUSR (in module stat), 369
safe_substitute() (string.Template method), 102
saferepr() (in module pprint), 245
same_files (filecmp.dircmp attribute), 372
same_quantum() (decimal.Context method), 291
same_quantum() (decimal.Decimal method), 285
samefile() (in module os.path), 362
samefile() (pathlib.Path method), 357
SameFileError, 380
sameopenfile() (in module os.path), 362
samestat() (in module os.path), 362
sample() (in module random), 305
save() (http.cookiejar.FileCookieJar method), 1196
SaveKey() (in module winreg), 1700
savetty() (in module curses), 646
SAX2DOM (class in xml.dom.pulldom), 1062
SAXException, 1063
SAXNotRecognizedException, 1064
SAXNotSupportedException, 1064
SAXParseException, 1064
scaleb() (decimal.Context method), 291
scaleb() (decimal.Decimal method), 285
scandir() (in module os), 527
scanf(), 118
sched (module), 783
SCHED_BATCH (in module os), 546
SCHED_FIFO (in module os), 546
sched_get_priority_max() (in module os), 546
sched_get_priority_min() (in module os), 546
sched_getaffinity() (in module os), 547
sched_getparam() (in module os), 546
sched_getscheduler() (in module os), 546
SCHED_IDLE (in module os), 546
SCHED_OTHER (in module os), 545
sched_param (class in os), 546
sched_priority (os.sched_param attribute), 546
SCHED_RESET_ON_FORK (in module os), 546
SCHED_RR (in module os), 546
sched_rr_get_interval() (in module os), 546
sched_setaffinity() (in module os), 546
sched_setparam() (in module os), 546
sched_setscheduler() (in module os), 546
SCHED_SPORADIC (in module os), 546
sched_yield() (in module os), 546
scheduler (class in sched), 783
schema (in module msilib), 1694
Screen (class in turtle), 1294
screensize() (in module turtle), 1287
script_from_examples() (in module doctest), 1389
scroll() (curses.window method), 653
ScrolledCanvas (class in turtle), 1294

scrollok() (curses.window method), 653
search

path, module, 379, 1552, 1610
search() (imaplib.IMAP4 method), 1151
search() (in module re), 110
search() (re.regex method), 113
second (datetime.datetime attribute), 181
second (datetime.time attribute), 187
seconds since the epoch, 561
SECTCRE (in module configparser), 484
sections() (configparser.ConfigParser method), 487
secure (http.cookiejar.Cookie attribute), 1200
secure hash algorithm, SHA1, SHA224, SHA256,

SHA384, SHA512, 499
Secure Sockets Layer, 811
security

CGI, 1092
see() (tkinter.ttk.Treeview method), 1333
seed() (in module random), 304
seek() (chunk.Chunk method), 1241
seek() (io.IOBase method), 552
seek() (io.TextIOBase method), 558
seek() (mmap.mmap method), 925
SEEK_CUR (in module os), 514
SEEK_END (in module os), 514
SEEK_SET (in module os), 514
seekable() (io.IOBase method), 553
seen_greeting (smtpd.SMTPChannel attribute),

1170
Select (class in tkinter.tix), 1339
select (module), 839
select() (imaplib.IMAP4 method), 1151
select() (in module select), 840
select() (selectors.BaseSelector method), 848
select() (tkinter.ttk.Notebook method), 1326
selected_alpn_protocol() (ssl.SSLSocket method),

825
selected_npn_protocol() (ssl.SSLSocket method),

825
selection() (tkinter.ttk.Treeview method), 1333
selection_add() (tkinter.ttk.Treeview method), 1333
selection_remove() (tkinter.ttk.Treeview method),

1333
selection_set() (tkinter.ttk.Treeview method), 1333
selection_toggle() (tkinter.ttk.Treeview method),

1333
selector (urllib.request.Request attribute), 1110
SelectorEventLoop (class in asyncio), 864
SelectorKey (class in selectors), 847
selectors (module), 846
SelectSelector (class in selectors), 849
Semaphore (class in asyncio), 901
Semaphore (class in multiprocessing), 736
Semaphore (class in threading), 715

1876 Index

The Python Library Reference, Release 3.5.7

Semaphore() (multiprocessing.managers.SyncManager
method), 742

semaphores, binary, 788
SEMI (in module token), 1657
send() (asyncore.dispatcher method), 912
send() (http.client.HTTPConnection method), 1137
send() (imaplib.IMAP4 method), 1152
send() (logging.handlers.DatagramHandler method),

634
send() (logging.handlers.SocketHandler method), 633
send() (multiprocessing.Connection method), 733
send() (socket.socket method), 805
send_bytes() (multiprocessing.Connection method),

733
send_error() (http.server.BaseHTTPRequestHandler

method), 1186
send_flowing_data() (formatter.writer method),

1686
send_header() (http.server.BaseHTTPRequestHandler

method), 1187
send_hor_rule() (formatter.writer method), 1686
send_label_data() (formatter.writer method), 1686
send_line_break() (formatter.writer method), 1686
send_literal_data() (formatter.writer method), 1686
send_message() (smtplib.SMTP method), 1166
send_paragraph() (formatter.writer method), 1686
send_response() (http.server.BaseHTTPRequestHandler

method), 1186
send_response_only() (http.server.BaseHTTPRequestHandler

method), 1187
send_signal() (asyncio.asyncio.subprocess.Process

method), 895
send_signal() (asyncio.BaseSubprocessTransport

method), 879
send_signal() (subprocess.Popen method), 775
sendall() (socket.socket method), 805
sendcmd() (ftplib.FTP method), 1142
sendfile() (in module os), 517
sendfile() (socket.socket method), 806
sendfile() (wsgiref.handlers.BaseHandler method),

1103
sendmail() (smtplib.SMTP method), 1165
sendmsg() (socket.socket method), 805
sendto() (asyncio.DatagramTransport method), 878
sendto() (socket.socket method), 805
sentinel (in module unittest.mock), 1447
sentinel (multiprocessing.Process attribute), 727
sep (in module os), 548
sequence, 1768
sequence

iteration, 34
object, 35
types, immutable, 37
types, mutable, 37

types, operations on, 35, 37
Sequence (class in collections.abc), 220
Sequence (class in typing), 1361
sequence (in module msilib), 1694
sequence2st() (in module parser), 1646
SequenceMatcher (class in difflib), 123, 127
serializing

objects, 389
serve_forever() (socketserver.BaseServer method),

1178
server

WWW, 1087, 1184
Server (class in asyncio), 860
server (http.server.BaseHTTPRequestHandler at-

tribute), 1185
server_activate() (socketserver.BaseServer method),

1180
server_address (socketserver.BaseServer attribute),

1179
server_bind() (socketserver.BaseServer method),

1180
server_close() (socketserver.BaseServer method),

1179
server_hostname (ssl.SSLSocket attribute), 825
server_side (ssl.SSLSocket attribute), 825
server_software (wsgiref.handlers.BaseHandler at-

tribute), 1102
server_version (http.server.BaseHTTPRequestHandler

attribute), 1185
server_version (http.server.SimpleHTTPRequestHandler

attribute), 1188
ServerProxy (class in xmlrpc.client), 1202
service_actions() (socketserver.BaseServer method),

1178
session_stats() (ssl.SSLContext method), 829
set

object, 72
set (built-in class), 72
Set (class in collections.abc), 220
Set (class in typing), 1362
Set Breakpoint, 1346
set() (asyncio.Event method), 900
set() (configparser.ConfigParser method), 489
set() (configparser.RawConfigParser method), 490
set() (http.cookies.Morsel method), 1191
set() (ossaudiodev.oss_mixer_device method), 1248
set() (test.support.EnvironmentVarGuard method),

1487
set() (threading.Event method), 716
set() (tkinter.ttk.Combobox method), 1324
set() (tkinter.ttk.Treeview method), 1333
set() (xml.etree.ElementTree.Element method), 1040
SET_ADD (opcode), 1674
set_allowed_domains()

Index 1877

The Python Library Reference, Release 3.5.7

(http.cookiejar.DefaultCookiePolicy
method), 1199

set_alpn_protocols() (ssl.SSLContext method), 827
set_app() (wsgiref.simple_server.WSGIServer

method), 1099
set_authorizer() (sqlite3.Connection method), 417
set_blocked_domains()

(http.cookiejar.DefaultCookiePolicy
method), 1199

set_blocking() (in module os), 517
set_boundary() (email.message.Message method),

934
set_break() (bdb.Bdb method), 1492
set_charset() (email.message.Message method), 930
set_children() (tkinter.ttk.Treeview method), 1330
set_ciphers() (ssl.SSLContext method), 827
set_completer() (in module readline), 142
set_completer_delims() (in module readline), 143
set_completion_display_matches_hook() (in mod-

ule readline), 143
set_content() (email.contentmanager.ContentManager

method), 957
set_content() (email.message.EmailMessage

method), 956
set_content() (in module email.contentmanager),

958
set_continue() (bdb.Bdb method), 1492
set_cookie() (http.cookiejar.CookieJar method),

1195
set_cookie_if_ok() (http.cookiejar.CookieJar

method), 1195
set_coroutine_wrapper() (in module sys), 1555
set_current() (msilib.Feature method), 1693
set_data() (importlib.abc.SourceLoader method),

1635
set_data() (importlib.machinery.SourceFileLoader

method), 1638
set_date() (mailbox.MaildirMessage method), 1003
set_debug() (asyncio.AbstractEventLoop method),

860
set_debug() (in module gc), 1592
set_debuglevel() (ftplib.FTP method), 1141
set_debuglevel() (http.client.HTTPConnection

method), 1136
set_debuglevel() (nntplib.NNTP method), 1160
set_debuglevel() (poplib.POP3 method), 1146
set_debuglevel() (smtplib.SMTP method), 1162
set_debuglevel() (telnetlib.Telnet method), 1172
set_default_executor() (asyncio.AbstractEventLoop

method), 859
set_default_type() (email.message.Message

method), 932
set_default_verify_paths() (ssl.SSLContext

method), 827

set_defaults() (argparse.ArgumentParser method),
598

set_defaults() (optparse.OptionParser method),
1745

set_ecdh_curve() (ssl.SSLContext method), 829
set_errno() (in module ctypes), 700
set_event_loop() (asyncio.AbstractEventLoopPolicy

method), 865
set_event_loop() (in module asyncio), 863
set_event_loop_policy() (in module asyncio), 866
set_exception() (asyncio.Future method), 870
set_exception() (asyncio.StreamReader method),

887
set_exception() (concurrent.futures.Future method),

767
set_exception_handler()

(asyncio.AbstractEventLoop method),
859

set_executable() (in module multiprocessing), 732
set_flags() (mailbox.MaildirMessage method), 1002
set_flags() (mailbox.mboxMessage method), 1004
set_flags() (mailbox.MMDFMessage method), 1008
set_from() (mailbox.mboxMessage method), 1004
set_from() (mailbox.MMDFMessage method), 1008
set_handle_inheritable() (in module os), 519
set_history_length() (in module readline), 141
set_info() (mailbox.MaildirMessage method), 1003
set_inheritable() (in module os), 519
set_inheritable() (socket.socket method), 806
set_labels() (mailbox.BabylMessage method), 1007
set_last_error() (in module ctypes), 700
set_literal (2to3 fixer), 1479
set_loader() (in module importlib.util), 1642
set_next() (bdb.Bdb method), 1492
set_nonstandard_attr() (http.cookiejar.Cookie

method), 1201
set_npn_protocols() (ssl.SSLContext method), 828
set_ok() (http.cookiejar.CookiePolicy method), 1197
set_option_negotiation_callback() (telnetlib.Telnet

method), 1172
set_output_charset() (gettext.NullTranslations

method), 1252
set_package() (in module importlib.util), 1642
set_param() (email.message.Message method), 933
set_pasv() (ftplib.FTP method), 1142
set_payload() (email.message.Message method), 930
set_policy() (http.cookiejar.CookieJar method),

1195
set_position() (xdrlib.Unpacker method), 494
set_pre_input_hook() (in module readline), 142
set_progress_handler() (sqlite3.Connection

method), 417
set_protocol() (asyncio.BaseTransport method), 877
set_proxy() (urllib.request.Request method), 1111

1878 Index

The Python Library Reference, Release 3.5.7

set_quit() (bdb.Bdb method), 1492
set_recsrc() (ossaudiodev.oss_mixer_device

method), 1248
set_result() (asyncio.Future method), 870
set_result() (concurrent.futures.Future method), 767
set_return() (bdb.Bdb method), 1492
set_running_or_notify_cancel()

(concurrent.futures.Future method), 766
set_seq1() (difflib.SequenceMatcher method), 128
set_seq2() (difflib.SequenceMatcher method), 128
set_seqs() (difflib.SequenceMatcher method), 127
set_sequences() (mailbox.MH method), 999
set_sequences() (mailbox.MHMessage method),

1006
set_server_documentation()

(xmlrpc.server.DocCGIXMLRPCRequestHandler
method), 1215

set_server_documentation()
(xmlrpc.server.DocXMLRPCServer
method), 1215

set_server_name() (xmlrpc.server.DocCGIXMLRPCRequestHandler
method), 1215

set_server_name() (xmlrpc.server.DocXMLRPCServer
method), 1214

set_server_title() (xmlrpc.server.DocCGIXMLRPCRequestHandler
method), 1215

set_server_title() (xmlrpc.server.DocXMLRPCServer
method), 1214

set_servername_callback() (ssl.SSLContext
method), 828

set_spacing() (formatter.formatter method), 1685
set_start_method() (in module multiprocessing),

732
set_startup_hook() (in module readline), 142
set_step() (bdb.Bdb method), 1491
set_subdir() (mailbox.MaildirMessage method),

1002
set_task_factory() (asyncio.AbstractEventLoop

method), 853
set_terminator() (asynchat.async_chat method),

915
set_threshold() (in module gc), 1593
set_trace() (bdb.Bdb method), 1492
set_trace() (in module bdb), 1493
set_trace() (in module pdb), 1497
set_trace() (pdb.Pdb method), 1498
set_trace_callback() (sqlite3.Connection method),

418
set_transport() (asyncio.StreamReader method),

887
set_tunnel() (http.client.HTTPConnection method),

1136
set_type() (email.message.Message method), 933
set_unittest_reportflags() (in module doctest), 1383

set_unixfrom() (email.message.Message method),
929

set_until() (bdb.Bdb method), 1492
set_url() (urllib.robotparser.RobotFileParser

method), 1131
set_usage() (optparse.OptionParser method), 1745
set_userptr() (curses.panel.Panel method), 664
set_visible() (mailbox.BabylMessage method), 1007
set_wakeup_fd() (in module signal), 920
set_write_buffer_limits() (asyncio.WriteTransport

method), 878
setacl() (imaplib.IMAP4 method), 1152
setannotation() (imaplib.IMAP4 method), 1152
setattr() (built-in function), 20
setAttribute() (xml.dom.Element method), 1052
setAttributeNode() (xml.dom.Element method),

1052
setAttributeNodeNS() (xml.dom.Element method),

1053
setAttributeNS() (xml.dom.Element method), 1053
SetBase() (xml.parsers.expat.xmlparser method),

1076
setblocking() (socket.socket method), 806
setByteStream() (xml.sax.xmlreader.InputSource

method), 1073
setcbreak() (in module tty), 1714
setCharacterStream() (xml.sax.xmlreader.InputSource

method), 1073
setcheckinterval() (in module sys), 1553
setcomptype() (aifc.aifc method), 1234
setcomptype() (sunau.AU_write method), 1237
setcomptype() (wave.Wave_write method), 1239
setContentHandler() (xml.sax.xmlreader.XMLReader

method), 1071
setcontext() (in module decimal), 286
setDaemon() (threading.Thread method), 710
setdefault() (dict method), 76
setdefault() (http.cookies.Morsel method), 1192
setdefaulttimeout() (in module socket), 800
setdlopenflags() (in module sys), 1554
setDocumentLocator() (xml.sax.handler.ContentHandler

method), 1066
setDTDHandler() (xml.sax.xmlreader.XMLReader

method), 1072
setegid() (in module os), 509
setEncoding() (xml.sax.xmlreader.InputSource

method), 1073
setEntityResolver() (xml.sax.xmlreader.XMLReader

method), 1072
setErrorHandler() (xml.sax.xmlreader.XMLReader

method), 1072
seteuid() (in module os), 509
setFeature() (xml.sax.xmlreader.XMLReader

method), 1072

Index 1879

The Python Library Reference, Release 3.5.7

setfirstweekday() (in module calendar), 200
setfmt() (ossaudiodev.oss_audio_device method),

1245
setFormatter() (logging.Handler method), 607
setframerate() (aifc.aifc method), 1234
setframerate() (sunau.AU_write method), 1237
setframerate() (wave.Wave_write method), 1239
setgid() (in module os), 510
setgroups() (in module os), 510
seth() (in module turtle), 1271
setheading() (in module turtle), 1271
sethostname() (in module socket), 800
SetInteger() (msilib.Record method), 1692
setitem() (in module operator), 338
setitimer() (in module signal), 919
setLevel() (logging.Handler method), 607
setLevel() (logging.Logger method), 604
setlocale() (in module locale), 1258
setLocale() (xml.sax.xmlreader.XMLReader

method), 1072
setLoggerClass() (in module logging), 617
setlogmask() (in module syslog), 1724
setLogRecordFactory() (in module logging), 617
setmark() (aifc.aifc method), 1234
setMaxConns() (urllib.request.CacheFTPHandler

method), 1116
setmode() (in module msvcrt), 1695
setName() (threading.Thread method), 710
setnchannels() (aifc.aifc method), 1234
setnchannels() (sunau.AU_write method), 1237
setnchannels() (wave.Wave_write method), 1239
setnframes() (aifc.aifc method), 1234
setnframes() (sunau.AU_write method), 1237
setnframes() (wave.Wave_write method), 1239
SetParamEntityParsing()

(xml.parsers.expat.xmlparser method),
1076

setparameters() (ossaudiodev.oss_audio_device
method), 1246

setparams() (aifc.aifc method), 1234
setparams() (sunau.AU_write method), 1237
setparams() (wave.Wave_write method), 1239
setpassword() (zipfile.ZipFile method), 451
setpgid() (in module os), 510
setpgrp() (in module os), 510
setpos() (aifc.aifc method), 1233
setpos() (in module turtle), 1271
setpos() (sunau.AU_read method), 1236
setpos() (wave.Wave_read method), 1239
setposition() (in module turtle), 1271
setpriority() (in module os), 510
setprofile() (in module sys), 1554
setprofile() (in module threading), 708

SetProperty() (msilib.SummaryInformation
method), 1691

setProperty() (xml.sax.xmlreader.XMLReader
method), 1072

setPublicId() (xml.sax.xmlreader.InputSource
method), 1073

setquota() (imaplib.IMAP4 method), 1152
setraw() (in module tty), 1713
setrecursionlimit() (in module sys), 1554
setregid() (in module os), 510
setresgid() (in module os), 510
setresuid() (in module os), 510
setreuid() (in module os), 511
setrlimit() (in module resource), 1719
setsampwidth() (aifc.aifc method), 1234
setsampwidth() (sunau.AU_write method), 1237
setsampwidth() (wave.Wave_write method), 1239
setscrreg() (curses.window method), 653
setsid() (in module os), 511
setsockopt() (socket.socket method), 806
setstate() (codecs.IncrementalDecoder method), 159
setstate() (codecs.IncrementalEncoder method), 158
setstate() (in module random), 304
SetStream() (msilib.Record method), 1692
SetString() (msilib.Record method), 1691
setswitchinterval() (in module sys), 1554
setSystemId() (xml.sax.xmlreader.InputSource

method), 1073
setsyx() (in module curses), 646
setTarget() (logging.handlers.MemoryHandler

method), 638
settiltangle() (in module turtle), 1283
settimeout() (socket.socket method), 806
setTimeout() (urllib.request.CacheFTPHandler

method), 1116
settrace() (in module sys), 1554
settrace() (in module threading), 708
settscdump() (in module sys), 1555
setuid() (in module os), 511
setundobuffer() (in module turtle), 1286
setup() (in module turtle), 1293
setup() (socketserver.BaseRequestHandler method),

1180
setUp() (unittest.TestCase method), 1401
SETUP_ASYNC_WITH (opcode), 1674
setup_environ() (wsgiref.handlers.BaseHandler

method), 1102
SETUP_EXCEPT (opcode), 1678
SETUP_FINALLY (opcode), 1678
SETUP_LOOP (opcode), 1678
setup_python() (venv.EnvBuilder method), 1533
setup_scripts() (venv.EnvBuilder method), 1533
setup_testing_defaults() (in module wsgiref.util),

1096

1880 Index

The Python Library Reference, Release 3.5.7

SETUP_WITH (opcode), 1675
setUpClass() (unittest.TestCase method), 1402
setupterm() (in module curses), 646
SetValue() (in module winreg), 1700
SetValueEx() (in module winreg), 1701
setworldcoordinates() (in module turtle), 1288
setx() (in module turtle), 1271
setxattr() (in module os), 536
sety() (in module turtle), 1271
SF_APPEND (in module stat), 370
SF_ARCHIVED (in module stat), 370
SF_IMMUTABLE (in module stat), 370
SF_MNOWAIT (in module os), 518
SF_NODISKIO (in module os), 518
SF_NOUNLINK (in module stat), 370
SF_SNAPSHOT (in module stat), 370
SF_SYNC (in module os), 518
Shape (class in turtle), 1294
shape (memoryview attribute), 72
shape() (in module turtle), 1281
shapesize() (in module turtle), 1282
shapetransform() (in module turtle), 1283
share() (socket.socket method), 807
shared_ciphers() (ssl.SSLSocket method), 824
shearfactor() (in module turtle), 1282
Shelf (class in shelve), 404
shelve

module, 405
shelve (module), 403
shield() (in module asyncio), 875
shift() (decimal.Context method), 291
shift() (decimal.Decimal method), 285
shift_path_info() (in module wsgiref.util), 1096
shifting

operations, 30
shlex (class in shlex), 1305
shlex (module), 1304
shortDescription() (unittest.TestCase method), 1410
shorten() (in module textwrap), 133
shouldFlush() (logging.handlers.BufferingHandler

method), 638
shouldFlush() (logging.handlers.MemoryHandler

method), 638
shouldStop (unittest.TestResult attribute), 1414
show() (curses.panel.Panel method), 664
show_code() (in module dis), 1670
showsyntaxerror() (code.InteractiveInterpreter

method), 1616
showtraceback() (code.InteractiveInterpreter

method), 1616
showturtle() (in module turtle), 1281
showwarning() (in module warnings), 1566
shuffle() (in module random), 305

shutdown() (concurrent.futures.Executor method),
763

shutdown() (imaplib.IMAP4 method), 1152
shutdown() (in module logging), 616
shutdown() (multiprocessing.managers.BaseManager

method), 740
shutdown() (socket.socket method), 806
shutdown() (socketserver.BaseServer method), 1179
shutil (module), 380
side_effect (unittest.mock.Mock attribute), 1427
SIG_BLOCK (in module signal), 918
SIG_DFL (in module signal), 917
SIG_IGN (in module signal), 917
SIG_SETMASK (in module signal), 918
SIG_UNBLOCK (in module signal), 918
siginterrupt() (in module signal), 920
signal

module, 789
signal (module), 916
signal() (in module signal), 920
Signature (class in inspect), 1600
signature (inspect.BoundArguments attribute), 1603
signature() (in module inspect), 1600
sigpending() (in module signal), 920
sigtimedwait() (in module signal), 921
sigwait() (in module signal), 921
sigwaitinfo() (in module signal), 921
Simple Mail Transfer Protocol, 1160
SimpleCookie (class in http.cookies), 1190
simplefilter() (in module warnings), 1567
SimpleHandler (class in wsgiref.handlers), 1101
SimpleHTTPRequestHandler (class in http.server),

1188
SimpleNamespace (class in types), 241
SimpleQueue (class in multiprocessing), 730
SimpleXMLRPCRequestHandler (class in xml-

rpc.server), 1210
SimpleXMLRPCServer (class in xmlrpc.server), 1210
sin() (in module cmath), 273
sin() (in module math), 269
single dispatch, 1769
SingleAddressHeader (class in email.headerregistry),

951
singledispatch() (in module functools), 332
sinh() (in module cmath), 273
sinh() (in module math), 270
site (module), 1610
site command line option

–user-base, 1612
–user-site, 1612

site-packages
directory, 1610

sitecustomize
module, 1611

Index 1881

The Python Library Reference, Release 3.5.7

sixtofour (ipaddress.IPv6Address attribute), 1218
size (struct.Struct attribute), 152
size (tarfile.TarInfo attribute), 461
size (tracemalloc.Statistic attribute), 1525
size (tracemalloc.StatisticDiff attribute), 1525
size (tracemalloc.Trace attribute), 1525
size() (ftplib.FTP method), 1144
size() (mmap.mmap method), 925
size_diff (tracemalloc.StatisticDiff attribute), 1525
Sized (class in collections.abc), 219
Sized (class in typing), 1361
sizeof() (in module ctypes), 700
SKIP (in module doctest), 1377
skip() (chunk.Chunk method), 1241
skip() (in module unittest), 1400
skip_unless_symlink() (in module test.support),

1485
skipIf() (in module unittest), 1400
skipinitialspace (csv.Dialect attribute), 471
skipped (unittest.TestResult attribute), 1414
skippedEntity() (xml.sax.handler.ContentHandler

method), 1068
SkipTest, 1400
skipTest() (unittest.TestCase method), 1402
skipUnless() (in module unittest), 1400
SLASH (in module token), 1657
SLASHEQUAL (in module token), 1657
slave() (nntplib.NNTP method), 1159
sleep() (in module asyncio), 875
sleep() (in module time), 565
slice, 1769
slice

assignment, 37
built-in function, 1679
operation, 35

slice (built-in class), 20
SMTP

protocol, 1160
SMTP (class in smtplib), 1160
SMTP (in module email.policy), 948
smtp_server (smtpd.SMTPChannel attribute), 1169
SMTP_SSL (class in smtplib), 1161
smtp_state (smtpd.SMTPChannel attribute), 1169
SMTPAuthenticationError, 1162
SMTPChannel (class in smtpd), 1169
SMTPConnectError, 1162
smtpd (module), 1167
SMTPDataError, 1162
SMTPException, 1162
SMTPHandler (class in logging.handlers), 637
SMTPHeloError, 1162
smtplib (module), 1160
SMTPNotSupportedError, 1162
SMTPRecipientsRefused, 1162

SMTPResponseException, 1162
SMTPSenderRefused, 1162
SMTPServer (class in smtpd), 1167
SMTPServerDisconnected, 1162
SMTPUTF8 (in module email.policy), 948
Snapshot (class in tracemalloc), 1523
SND_ALIAS (in module winsound), 1705
SND_ASYNC (in module winsound), 1705
SND_FILENAME (in module winsound), 1705
SND_LOOP (in module winsound), 1705
SND_MEMORY (in module winsound), 1705
SND_NODEFAULT (in module winsound), 1706
SND_NOSTOP (in module winsound), 1706
SND_NOWAIT (in module winsound), 1706
SND_PURGE (in module winsound), 1705
sndhdr (module), 1243
sniff() (csv.Sniffer method), 470
Sniffer (class in csv), 470
sock_accept() (asyncio.AbstractEventLoop

method), 858
SOCK_CLOEXEC (in module socket), 794
sock_connect() (asyncio.AbstractEventLoop

method), 857
SOCK_DGRAM (in module socket), 794
SOCK_NONBLOCK (in module socket), 794
SOCK_RAW (in module socket), 794
SOCK_RDM (in module socket), 794
sock_recv() (asyncio.AbstractEventLoop method),

857
sock_sendall() (asyncio.AbstractEventLoop

method), 857
SOCK_SEQPACKET (in module socket), 794
SOCK_STREAM (in module socket), 794
socket

module, 1085
object, 791

socket (module), 791
socket (socketserver.BaseServer attribute), 1179
socket() (imaplib.IMAP4 method), 1152
socket() (in module socket), 796, 841
socket_type (socketserver.BaseServer attribute),

1179
SocketHandler (class in logging.handlers), 633
socketpair() (in module socket), 796
sockets (asyncio.Server attribute), 861
socketserver (module), 1176
SocketType (in module socket), 797
SOL_RDS (in module socket), 795
SOMAXCONN (in module socket), 794
sort() (imaplib.IMAP4 method), 1152
sort() (list method), 39
sort_stats() (pstats.Stats method), 1506
sorted() (built-in function), 20

1882 Index

The Python Library Reference, Release 3.5.7

sortTestMethodsUsing (unittest.TestLoader at-
tribute), 1414

source (doctest.Example attribute), 1385
source (pdb command), 1501
source (shlex.shlex attribute), 1307
source_from_cache() (in module imp), 1754
source_from_cache() (in module importlib.util),

1640
SOURCE_SUFFIXES (in module im-

portlib.machinery), 1635
source_to_code() (importlib.abc.InspectLoader

static method), 1633
SourceFileLoader (class in importlib.machinery),

1637
sourcehook() (shlex.shlex method), 1306
SourcelessFileLoader (class in importlib.machinery),

1638
SourceLoader (class in importlib.abc), 1634
span() (re.match method), 117
spawn() (in module pty), 1714
spawnl() (in module os), 541
spawnle() (in module os), 541
spawnlp() (in module os), 541
spawnlpe() (in module os), 541
spawnv() (in module os), 541
spawnve() (in module os), 541
spawnvp() (in module os), 541
spawnvpe() (in module os), 541
spec_from_file_location() (in module im-

portlib.util), 1642
spec_from_loader() (in module importlib.util), 1642
special method, 1769
specified_attributes (xml.parsers.expat.xmlparser

attribute), 1077
speed() (in module turtle), 1274
speed() (ossaudiodev.oss_audio_device method),

1246
split() (bytearray method), 58
split() (bytes method), 58
split() (in module os.path), 362
split() (in module re), 111
split() (in module shlex), 1304
split() (re.regex method), 114
split() (str method), 46
splitdrive() (in module os.path), 362
splitext() (in module os.path), 363
splitlines() (bytearray method), 61
splitlines() (bytes method), 61
splitlines() (str method), 47
SplitResult (class in urllib.parse), 1127
SplitResultBytes (class in urllib.parse), 1128
splitunc() (in module os.path), 363
SpooledTemporaryFile() (in module tempfile), 373
sprintf-style formatting, 49, 63

spwd (module), 1709
sqlite3 (module), 411
sqlite_version (in module sqlite3), 413
sqlite_version_info (in module sqlite3), 413
sqrt() (decimal.Context method), 291
sqrt() (decimal.Decimal method), 285
sqrt() (in module cmath), 272
sqrt() (in module math), 269
SSL, 811
ssl (module), 811
ssl_version (ftplib.FTP_TLS attribute), 1144
SSLContext (class in ssl), 826
SSLEOFError, 813
SSLError, 812
SSLObject (class in ssl), 836
SSLSocket (class in ssl), 822
SSLSyscallError, 813
SSLWantReadError, 812
SSLWantWriteError, 813
SSLZeroReturnError, 812
st() (in module turtle), 1281
st2list() (in module parser), 1647
st2tuple() (in module parser), 1647
ST_ATIME (in module stat), 367
st_atime (os.stat_result attribute), 530
st_atime_ns (os.stat_result attribute), 530
st_birthtime (os.stat_result attribute), 531
st_blksize (os.stat_result attribute), 530
st_blocks (os.stat_result attribute), 530
st_creator (os.stat_result attribute), 531
ST_CTIME (in module stat), 367
st_ctime (os.stat_result attribute), 530
st_ctime_ns (os.stat_result attribute), 530
ST_DEV (in module stat), 367
st_dev (os.stat_result attribute), 529
st_file_attributes (os.stat_result attribute), 531
st_flags (os.stat_result attribute), 530
st_gen (os.stat_result attribute), 531
ST_GID (in module stat), 367
st_gid (os.stat_result attribute), 529
ST_INO (in module stat), 367
st_ino (os.stat_result attribute), 529
ST_MODE (in module stat), 367
st_mode (os.stat_result attribute), 529
ST_MTIME (in module stat), 367
st_mtime (os.stat_result attribute), 530
st_mtime_ns (os.stat_result attribute), 530
ST_NLINK (in module stat), 367
st_nlink (os.stat_result attribute), 529
st_rdev (os.stat_result attribute), 530
st_rsize (os.stat_result attribute), 531
ST_SIZE (in module stat), 367
st_size (os.stat_result attribute), 529
st_type (os.stat_result attribute), 531

Index 1883

The Python Library Reference, Release 3.5.7

ST_UID (in module stat), 367
st_uid (os.stat_result attribute), 529
stack (traceback.TracebackException attribute),

1587
stack viewer, 1345
stack() (in module inspect), 1607
stack_effect() (in module dis), 1671
stack_size() (in module _thread), 788
stack_size() (in module threading), 708
stackable

streams, 152
StackSummary (class in traceback), 1588
stamp() (in module turtle), 1273
standard_b64decode() (in module base64), 1015
standard_b64encode() (in module base64), 1015
standarderror (2to3 fixer), 1479
standend() (curses.window method), 653
standout() (curses.window method), 653
STAR (in module token), 1657
STAREQUAL (in module token), 1657
starmap() (in module itertools), 323
starmap() (multiprocessing.pool.Pool method), 747
starmap_async() (multiprocessing.pool.Pool

method), 747
start (range attribute), 40
start (UnicodeError attribute), 88
start() (in module tracemalloc), 1522
start() (logging.handlers.QueueListener method),

640
start() (multiprocessing.managers.BaseManager

method), 740
start() (multiprocessing.Process method), 726
start() (re.match method), 116
start() (threading.Thread method), 710
start() (tkinter.ttk.Progressbar method), 1327
start() (xml.etree.ElementTree.TreeBuilder method),

1043
start_color() (in module curses), 646
start_component() (msilib.Directory method), 1692
start_new_thread() (in module _thread), 788
start_server() (in module asyncio), 886
start_unix_server() (in module asyncio), 887
StartCdataSectionHandler()

(xml.parsers.expat.xmlparser method),
1079

StartDoctypeDeclHandler()
(xml.parsers.expat.xmlparser method),
1078

startDocument() (xml.sax.handler.ContentHandler
method), 1067

startElement() (xml.sax.handler.ContentHandler
method), 1067

StartElementHandler() (xml.parsers.expat.xmlparser
method), 1078

startElementNS() (xml.sax.handler.ContentHandler
method), 1067

STARTF_USESHOWWINDOW (in module subpro-
cess), 777

STARTF_USESTDHANDLES (in module subpro-
cess), 777

startfile() (in module os), 542
StartNamespaceDeclHandler()

(xml.parsers.expat.xmlparser method),
1079

startPrefixMapping() (xml.sax.handler.ContentHandler
method), 1067

startswith() (bytearray method), 56
startswith() (bytes method), 56
startswith() (str method), 47
startTest() (unittest.TestResult method), 1415
startTestRun() (unittest.TestResult method), 1415
starttls() (imaplib.IMAP4 method), 1152
starttls() (nntplib.NNTP method), 1156
starttls() (smtplib.SMTP method), 1164
STARTUPINFO (class in subprocess), 776
stat

module, 529
stat (module), 365
stat() (in module os), 529
stat() (nntplib.NNTP method), 1158
stat() (os.DirEntry method), 528
stat() (pathlib.Path method), 353
stat() (poplib.POP3 method), 1146
stat_float_times() (in module os), 531
stat_result (class in os), 529
state() (tkinter.ttk.Widget method), 1323
statement, 1769
statement

assert, 84
del, 37, 75
except, 83
if, 27
import, 23, 1752
raise, 83
try, 83
while, 27

staticmethod() (built-in function), 21
Statistic (class in tracemalloc), 1524
StatisticDiff (class in tracemalloc), 1525
statistics (module), 308
statistics() (tracemalloc.Snapshot method), 1524
StatisticsError, 313
Stats (class in pstats), 1506
status (http.client.HTTPResponse attribute), 1138
status() (imaplib.IMAP4 method), 1152
statvfs() (in module os), 531
STD_ERROR_HANDLE (in module subprocess),

777

1884 Index

The Python Library Reference, Release 3.5.7

STD_INPUT_HANDLE (in module subprocess),
777

STD_OUTPUT_HANDLE (in module subprocess),
777

StdButtonBox (class in tkinter.tix), 1339
stderr (asyncio.asyncio.subprocess.Process at-

tribute), 895
stderr (in module sys), 1556
stderr (subprocess.CalledProcessError attribute),

770
stderr (subprocess.CompletedProcess attribute), 769
stderr (subprocess.Popen attribute), 776
stderr (subprocess.TimeoutExpired attribute), 770
stdev() (in module statistics), 312
stdin (asyncio.asyncio.subprocess.Process attribute),

895
stdin (in module sys), 1556
stdin (subprocess.Popen attribute), 776
stdout (asyncio.asyncio.subprocess.Process at-

tribute), 895
STDOUT (in module subprocess), 769
stdout (in module sys), 1556
stdout (subprocess.CalledProcessError attribute),

770
stdout (subprocess.CompletedProcess attribute), 769
stdout (subprocess.Popen attribute), 776
stdout (subprocess.TimeoutExpired attribute), 770
step (pdb command), 1500
step (range attribute), 40
step() (tkinter.ttk.Progressbar method), 1327
stereocontrols() (ossaudiodev.oss_mixer_device

method), 1247
stls() (poplib.POP3 method), 1147
stop (range attribute), 40
stop() (asyncio.AbstractEventLoop method), 851
stop() (in module tracemalloc), 1522
stop() (logging.handlers.QueueListener method), 640
stop() (tkinter.ttk.Progressbar method), 1327
stop() (unittest.TestResult method), 1415
stop_here() (bdb.Bdb method), 1491
StopAsyncIteration, 87
StopIteration, 86
stopListening() (in module logging.config), 620
stopTest() (unittest.TestResult method), 1415
stopTestRun() (unittest.TestResult method), 1415
storbinary() (ftplib.FTP method), 1142
store() (imaplib.IMAP4 method), 1152
STORE_ACTIONS (optparse.Option attribute),

1751
STORE_ATTR (opcode), 1676
STORE_DEREF (opcode), 1678
STORE_FAST (opcode), 1678
STORE_GLOBAL (opcode), 1676
STORE_NAME (opcode), 1676

STORE_SUBSCR (opcode), 1674
storlines() (ftplib.FTP method), 1143
str (built-in class), 42

(see also string), 41
str() (in module locale), 1262
strcoll() (in module locale), 1262
StreamError, 457
StreamHandler (class in logging), 629
StreamReader (class in asyncio), 887
StreamReader (class in codecs), 160
streamreader (codecs.CodecInfo attribute), 153
StreamReaderProtocol (class in asyncio), 889
StreamReaderWriter (class in codecs), 161
StreamRecoder (class in codecs), 161
StreamRequestHandler (class in socketserver), 1180
streams, 152

stackable, 152
StreamWriter (class in asyncio), 888
StreamWriter (class in codecs), 159
streamwriter (codecs.CodecInfo attribute), 153
strerror (OSError attribute), 86
strerror() (in module os), 511
strftime() (datetime.date method), 177
strftime() (datetime.datetime method), 184
strftime() (datetime.time method), 188
strftime() (in module time), 565
strict (csv.Dialect attribute), 471
strict (in module email.policy), 948
strict_domain (http.cookiejar.DefaultCookiePolicy

attribute), 1199
strict_errors() (in module codecs), 157
strict_ns_domain (http.cookiejar.DefaultCookiePolicy

attribute), 1199
strict_ns_set_initial_dollar

(http.cookiejar.DefaultCookiePolicy at-
tribute), 1199

strict_ns_set_path (http.cookiejar.DefaultCookiePolicy
attribute), 1199

strict_ns_unverifiable (http.cookiejar.DefaultCookiePolicy
attribute), 1199

strict_rfc2965_unverifiable
(http.cookiejar.DefaultCookiePolicy at-
tribute), 1199

strides (memoryview attribute), 72
string

format() (built-in function), 11
formatting, 49
interpolation, 49
methods, 42
module, 1262
object, 41
str (built-in class), 42
str() (built-in function), 21
text sequence type, 41

Index 1885

The Python Library Reference, Release 3.5.7

STRING (in module token), 1657
string (module), 93
string (re.match attribute), 117
string_at() (in module ctypes), 700
StringIO (class in io), 560
stringprep (module), 139
strip() (bytearray method), 59
strip() (bytes method), 59
strip() (str method), 48
strip_dirs() (pstats.Stats method), 1506
stripspaces (curses.textpad.Textbox attribute), 660
strptime() (datetime.datetime class method), 180
strptime() (in module time), 567
struct

module, 806
Struct (class in struct), 151
struct (module), 147
struct sequence, 1769
struct_time (class in time), 567
Structure (class in ctypes), 704
structures

C, 147
strxfrm() (in module locale), 1262
STType (in module parser), 1648
Style (class in tkinter.ttk), 1334
sub() (in module operator), 337
sub() (in module re), 112
sub() (re.regex method), 114
subdirs (filecmp.dircmp attribute), 372
SubElement() (in module xml.etree.ElementTree),

1038
submit() (concurrent.futures.Executor method), 762
submodule_search_locations

(importlib.machinery.ModuleSpec at-
tribute), 1639

subn() (in module re), 112
subn() (re.regex method), 114
subnets() (ipaddress.IPv4Network method), 1222
subnets() (ipaddress.IPv6Network method), 1223
Subnormal (class in decimal), 294
suboffsets (memoryview attribute), 72
subpad() (curses.window method), 653
subprocess (module), 768
subprocess_exec() (asyncio.AbstractEventLoop

method), 893
subprocess_shell() (asyncio.AbstractEventLoop

method), 894
SubprocessError, 769
SubprocessProtocol (class in asyncio), 880
subscribe() (imaplib.IMAP4 method), 1152
subscript

assignment, 37
operation, 35

subsequent_indent (textwrap.TextWrapper at-
tribute), 136

substitute() (string.Template method), 102
subTest() (unittest.TestCase method), 1402
subtract() (collections.Counter method), 205
subtract() (decimal.Context method), 291
subtype (email.headerregistry.ContentTypeHeader

attribute), 952
subwin() (curses.window method), 653
successful() (multiprocessing.pool.AsyncResult

method), 748
suffix_map (in module mimetypes), 1012
suffix_map (mimetypes.MimeTypes attribute), 1013
suite() (in module parser), 1646
suiteClass (unittest.TestLoader attribute), 1414
sum() (built-in function), 21
summarize() (doctest.DocTestRunner method), 1388
summarize_address_range() (in module ipaddress),

1226
sunau (module), 1235
super (pyclbr.Class attribute), 1664
super() (built-in function), 21
supernet() (ipaddress.IPv4Network method), 1222
supernet() (ipaddress.IPv6Network method), 1224
supports_bytes_environ (in module os), 511
supports_dir_fd (in module os), 532
supports_effective_ids (in module os), 532
supports_fd (in module os), 532
supports_follow_symlinks (in module os), 533
supports_unicode_filenames (in module os.path),

363
SupportsAbs (class in typing), 1361
SupportsFloat (class in typing), 1361
SupportsInt (class in typing), 1360
SupportsRound (class in typing), 1361
suppress() (in module contextlib), 1569
SuppressCrashReport (class in test.support), 1487
SW_HIDE (in module subprocess), 777
swapcase() (bytearray method), 62
swapcase() (bytes method), 62
swapcase() (str method), 48
sym_name (in module symbol), 1657
Symbol (class in symtable), 1656
symbol (module), 1657
SymbolTable (class in symtable), 1655
symlink() (in module os), 533
symlink_to() (pathlib.Path method), 358
symmetric_difference() (frozenset method), 73
symmetric_difference_update() (frozenset method),

74
symtable (module), 1654
symtable() (in module symtable), 1655
sync() (dbm.dumb.dumbdbm method), 411
sync() (dbm.gnu.gdbm method), 409

1886 Index

The Python Library Reference, Release 3.5.7

sync() (in module os), 533
sync() (ossaudiodev.oss_audio_device method),

1246
sync() (shelve.Shelf method), 403
syncdown() (curses.window method), 654
synchronized() (in module multiprocess-

ing.sharedctypes), 738
SyncManager (class in multiprocessing.managers),

741
syncok() (curses.window method), 654
syncup() (curses.window method), 654
SyntaxErr, 1055
SyntaxError, 87
SyntaxWarning, 90
sys

module, 17
sys (module), 1543
sys_exc (2to3 fixer), 1479
sys_version (http.server.BaseHTTPRequestHandler

attribute), 1185
sysconf() (in module os), 547
sysconf_names (in module os), 547
sysconfig (module), 1558
syslog (module), 1723
syslog() (in module syslog), 1723
SysLogHandler (class in logging.handlers), 634
system() (in module os), 542
system() (in module platform), 665
system_alias() (in module platform), 665
SystemError, 87
SystemExit, 87
systemId (xml.dom.DocumentType attribute), 1051
SystemRandom (class in random), 306
SystemRoot, 773

T
T_FMT (in module locale), 1260
T_FMT_AMPM (in module locale), 1260
tab() (tkinter.ttk.Notebook method), 1326
TabError, 87
tabnanny (module), 1663
tabs() (tkinter.ttk.Notebook method), 1326
tabsize (textwrap.TextWrapper attribute), 135
tabular

data, 467
tag (xml.etree.ElementTree.Element attribute), 1039
tag_bind() (tkinter.ttk.Treeview method), 1333
tag_configure() (tkinter.ttk.Treeview method), 1333
tag_has() (tkinter.ttk.Treeview method), 1333
tagName (xml.dom.Element attribute), 1052
tail (xml.etree.ElementTree.Element attribute), 1039
take_snapshot() (in module tracemalloc), 1522
takewhile() (in module itertools), 324
tan() (in module cmath), 273

tan() (in module math), 269
tanh() (in module cmath), 273
tanh() (in module math), 270
TarError, 457
TarFile (class in tarfile), 456, 458
tarfile (module), 455
tarfile command line option

–create <tarfile> <source1> ... <sourceN>, 462
–extract <tarfile> [<output_dir>], 462
–list <tarfile>, 462
–test <tarfile>, 462
-c <tarfile> <source1> ... <sourceN>, 462
-e <tarfile> [<output_dir>], 462
-l <tarfile>, 462
-t <tarfile>, 462
-v, –verbose, 462

target (xml.dom.ProcessingInstruction attribute),
1054

TarInfo (class in tarfile), 460
Task (class in asyncio), 871
task_done() (asyncio.Queue method), 903
task_done() (multiprocessing.JoinableQueue

method), 731
task_done() (queue.Queue method), 786
tb_locals (unittest.TestResult attribute), 1415
tbreak (pdb command), 1499
tcdrain() (in module termios), 1713
tcflow() (in module termios), 1713
tcflush() (in module termios), 1713
tcgetattr() (in module termios), 1712
tcgetpgrp() (in module os), 518
Tcl() (in module tkinter), 1310
TCPServer (class in socketserver), 1176
tcsendbreak() (in module termios), 1713
tcsetattr() (in module termios), 1712
tcsetpgrp() (in module os), 518
tearDown() (unittest.TestCase method), 1401
tearDownClass() (unittest.TestCase method), 1402
tee() (in module itertools), 324
tell() (aifc.aifc method), 1233, 1234
tell() (chunk.Chunk method), 1241
tell() (io.IOBase method), 553
tell() (io.TextIOBase method), 559
tell() (mmap.mmap method), 925
tell() (sunau.AU_read method), 1236
tell() (sunau.AU_write method), 1237
tell() (wave.Wave_read method), 1239
tell() (wave.Wave_write method), 1240
Telnet (class in telnetlib), 1171
telnetlib (module), 1170
TEMP, 375
temp_cwd() (in module test.support), 1485
temp_dir() (in module test.support), 1485
temp_umask() (in module test.support), 1485

Index 1887

The Python Library Reference, Release 3.5.7

tempdir (in module tempfile), 375
tempfile (module), 372
Template (class in pipes), 1717
Template (class in string), 102
template (string.Template attribute), 102
temporary

file, 372
file name, 372

TemporaryDirectory() (in module tempfile), 374
TemporaryFile() (in module tempfile), 373
teredo (ipaddress.IPv6Address attribute), 1218
TERM, 646, 647
termattrs() (in module curses), 646
terminal_size (class in os), 519
terminate() (asyncio.asyncio.subprocess.Process

method), 895
terminate() (asyncio.BaseSubprocessTransport

method), 879
terminate() (multiprocessing.pool.Pool method), 747
terminate() (multiprocessing.Process method), 727
terminate() (subprocess.Popen method), 775
termios (module), 1712
termname() (in module curses), 647
test (doctest.DocTestFailure attribute), 1391
test (doctest.UnexpectedException attribute), 1391
test (module), 1480
test() (in module cgi), 1091
test.support (module), 1483
TestCase (class in unittest), 1401
TestFailed, 1483
testfile() (in module doctest), 1379
TESTFN (in module test.support), 1483
TestLoader (class in unittest), 1412
testMethodPrefix (unittest.TestLoader attribute),

1414
testmod() (in module doctest), 1380
TestResult (class in unittest), 1414
tests (in module imghdr), 1243
testsource() (in module doctest), 1390
testsRun (unittest.TestResult attribute), 1414
TestSuite (class in unittest), 1411
testzip() (zipfile.ZipFile method), 451
Text (class in typing), 1363
text (in module msilib), 1694
text (traceback.TracebackException attribute), 1587
text (xml.etree.ElementTree.Element attribute),

1039
text encoding, 1769
text file, 1769
text mode, 17
text() (msilib.Dialog method), 1694
text_factory (sqlite3.Connection attribute), 419
Textbox (class in curses.textpad), 659
TextCalendar (class in calendar), 199

textdomain() (in module gettext), 1250
textinput() (in module turtle), 1290
TextIOBase (class in io), 558
TextIOWrapper (class in io), 559
TextTestResult (class in unittest), 1416
TextTestRunner (class in unittest), 1416
textwrap (module), 133
TextWrapper (class in textwrap), 135
theme_create() (tkinter.ttk.Style method), 1336
theme_names() (tkinter.ttk.Style method), 1336
theme_settings() (tkinter.ttk.Style method), 1336
theme_use() (tkinter.ttk.Style method), 1337
THOUSEP (in module locale), 1260
Thread (class in threading), 709
thread() (imaplib.IMAP4 method), 1153
thread_info (in module sys), 1557
threading (module), 707
ThreadingMixIn (class in socketserver), 1177
ThreadingTCPServer (class in socketserver), 1177
ThreadingUDPServer (class in socketserver), 1177
ThreadPoolExecutor (class in concurrent.futures),

764
threads

POSIX, 788
throw (2to3 fixer), 1479
tigetflag() (in module curses), 647
tigetnum() (in module curses), 647
tigetstr() (in module curses), 647
TILDE (in module token), 1657
tilt() (in module turtle), 1282
tiltangle() (in module turtle), 1283
time (class in datetime), 186
time (module), 561
time() (asyncio.AbstractEventLoop method), 853
time() (datetime.datetime method), 182
time() (in module time), 568
Time2Internaldate() (in module imaplib), 1149
timedelta (class in datetime), 173
TimedRotatingFileHandler (class in log-

ging.handlers), 632
timegm() (in module calendar), 201
timeit (module), 1510
timeit command line option

-c, –clock, 1513
-h, –help, 1513
-n N, –number=N, 1512
-p, –process, 1512
-r N, –repeat=N, 1512
-s S, –setup=S, 1512
-t, –time, 1512
-u, –unit=U, 1512
-v, –verbose, 1513

timeit() (in module timeit), 1511
timeit() (timeit.Timer method), 1511

1888 Index

The Python Library Reference, Release 3.5.7

timeout, 793
timeout (socketserver.BaseServer attribute), 1179
timeout (subprocess.TimeoutExpired attribute), 770
timeout() (curses.window method), 654
TIMEOUT_MAX (in module _thread), 788
TIMEOUT_MAX (in module threading), 708
TimeoutError, 89, 728, 767, 869
TimeoutExpired, 769
Timer (class in threading), 717
Timer (class in timeit), 1511
times() (in module os), 543
timestamp() (datetime.datetime method), 183
timetuple() (datetime.date method), 177
timetuple() (datetime.datetime method), 183
timetz() (datetime.datetime method), 182
timezone (class in datetime), 195
timezone (in module time), 568
title() (bytearray method), 62
title() (bytes method), 62
title() (in module turtle), 1293
title() (str method), 48
Tix, 1337
tix_addbitmapdir() (tkinter.tix.tixCommand

method), 1341
tix_cget() (tkinter.tix.tixCommand method), 1341
tix_configure() (tkinter.tix.tixCommand method),

1341
tix_filedialog() (tkinter.tix.tixCommand method),

1341
tix_getbitmap() (tkinter.tix.tixCommand method),

1341
tix_getimage() (tkinter.tix.tixCommand method),

1342
TIX_LIBRARY, 1338
tix_option_get() (tkinter.tix.tixCommand method),

1342
tix_resetoptions() (tkinter.tix.tixCommand

method), 1342
tixCommand (class in tkinter.tix), 1341
Tk, 1309
Tk (class in tkinter), 1310
Tk (class in tkinter.tix), 1338
Tk Option Data Types, 1317
Tkinter, 1309
tkinter (module), 1309
tkinter.scrolledtext (module), 1342
tkinter.tix (module), 1337
tkinter.ttk (module), 1320
TList (class in tkinter.tix), 1340
TLS, 811
TMP, 375
TMPDIR, 375
to_bytes() (int method), 31
to_eng_string() (decimal.Context method), 291

to_eng_string() (decimal.Decimal method), 285
to_integral() (decimal.Decimal method), 285
to_integral_exact() (decimal.Context method), 292
to_integral_exact() (decimal.Decimal method), 285
to_integral_value() (decimal.Decimal method), 285
to_sci_string() (decimal.Context method), 292
ToASCII() (in module encodings.idna), 169
tobuf() (tarfile.TarInfo method), 461
tobytes() (array.array method), 230
tobytes() (memoryview method), 68
today() (datetime.date class method), 175
today() (datetime.datetime class method), 179
tofile() (array.array method), 230
tok_name (in module token), 1657
token (module), 1657
token (shlex.shlex attribute), 1307
TokenError, 1660
tokenize (module), 1659
tokenize command line option

-e, –exact, 1661
-h, –help, 1661

tokenize() (in module tokenize), 1659
tolist() (array.array method), 230
tolist() (memoryview method), 68
tolist() (parser.ST method), 1648
tomono() (in module audioop), 1231
toordinal() (datetime.date method), 177
toordinal() (datetime.datetime method), 183
top() (curses.panel.Panel method), 664
top() (poplib.POP3 method), 1146
top_panel() (in module curses.panel), 663
toprettyxml() (xml.dom.minidom.Node method),

1058
tostereo() (in module audioop), 1231
tostring() (array.array method), 230
tostring() (in module xml.etree.ElementTree), 1039
tostringlist() (in module xml.etree.ElementTree),

1039
total_changes (sqlite3.Connection attribute), 420
total_ordering() (in module functools), 330
total_seconds() (datetime.timedelta method), 175
totuple() (parser.ST method), 1648
touch() (pathlib.Path method), 358
touchline() (curses.window method), 654
touchwin() (curses.window method), 654
tounicode() (array.array method), 230
ToUnicode() (in module encodings.idna), 169
towards() (in module turtle), 1275
toxml() (xml.dom.minidom.Node method), 1058
tparm() (in module curses), 647
Trace (class in trace), 1516
Trace (class in tracemalloc), 1525
trace (module), 1515
trace command line option

Index 1889

The Python Library Reference, Release 3.5.7

–help, 1515
–ignore-dir=<dir>, 1516
–ignore-module=<mod>, 1516
–version, 1515
-C, –coverdir=<dir>, 1516
-R, –no-report, 1516
-T, –trackcalls, 1515
-c, –count, 1515
-f, –file=<file>, 1516
-g, –timing, 1516
-l, –listfuncs, 1515
-m, –missing, 1516
-r, –report, 1515
-s, –summary, 1516
-t, –trace, 1515

trace function, 708, 1549, 1554
trace() (in module inspect), 1607
trace_dispatch() (bdb.Bdb method), 1490
traceback

object, 1545, 1585
Traceback (class in tracemalloc), 1525
traceback (module), 1585
traceback (tracemalloc.Statistic attribute), 1525
traceback (tracemalloc.StatisticDiff attribute), 1525
traceback (tracemalloc.Trace attribute), 1525
traceback_limit (tracemalloc.Snapshot attribute),

1524
traceback_limit (wsgiref.handlers.BaseHandler at-

tribute), 1103
TracebackException (class in traceback), 1586
tracebacklimit (in module sys), 1557
tracebacks

in CGI scripts, 1094
TracebackType (in module types), 240
tracemalloc (module), 1517
tracer() (in module turtle), 1288
traces (tracemalloc.Snapshot attribute), 1524
transfercmd() (ftplib.FTP method), 1143
TransientResource (class in test.support), 1487
translate() (bytearray method), 56
translate() (bytes method), 56
translate() (in module fnmatch), 379
translate() (str method), 48
translation() (in module gettext), 1251
transport (asyncio.StreamWriter attribute), 888
Transport Layer Security, 811
Tree (class in tkinter.tix), 1340
TreeBuilder (class in xml.etree.ElementTree), 1043
Treeview (class in tkinter.ttk), 1330
triangular() (in module random), 306
triple-quoted string, 1769
True, 27, 81
true, 27
True (built-in variable), 25

truediv() (in module operator), 337
trunc() (in module math), 30, 268
truncate() (in module os), 533
truncate() (io.IOBase method), 553
truth

value, 27
truth() (in module operator), 336
try

statement, 83
ttk, 1320
tty

I/O control, 1712
tty (module), 1713
ttyname() (in module os), 518
tuple

object, 37, 39
tuple (built-in class), 39
Tuple (in module typing), 1366
tuple2st() (in module parser), 1646
tuple_params (2to3 fixer), 1479
turnoff_sigfpe() (in module fpectl), 1613
turnon_sigfpe() (in module fpectl), 1613
Turtle (class in turtle), 1294
turtle (module), 1265
turtledemo (module), 1297
turtles() (in module turtle), 1292
TurtleScreen (class in turtle), 1294
turtlesize() (in module turtle), 1282
type, 1769
type

Boolean, 6
built-in function, 80
object, 22
operations on dictionary, 75
operations on list, 37

type (built-in class), 22
Type (class in typing), 1360
type (optparse.Option attribute), 1738
type (socket.socket attribute), 807
type (tarfile.TarInfo attribute), 461
type (urllib.request.Request attribute), 1110
TYPE_CHECKER (optparse.Option attribute),

1749
TYPE_CHECKING (in module typing), 1367
typeahead() (in module curses), 647
typecode (array.array attribute), 229
typecodes (in module array), 229
TYPED_ACTIONS (optparse.Option attribute),

1751
typed_subpart_iterator() (in module

email.iterators), 970
TypeError, 87
types

built-in, 27

1890 Index

The Python Library Reference, Release 3.5.7

immutable sequence, 37
module, 80
mutable sequence, 37
operations on integer, 30
operations on mapping, 75
operations on numeric, 29
operations on sequence, 35, 37

types (2to3 fixer), 1479
types (module), 239
TYPES (optparse.Option attribute), 1749
types_map (in module mimetypes), 1012
types_map (mimetypes.MimeTypes attribute), 1013
types_map_inv (mimetypes.MimeTypes attribute),

1013
TypeVar (class in typing), 1359
typing (module), 1353
TZ, 568, 569
tzinfo (class in datetime), 189
tzinfo (datetime.datetime attribute), 181
tzinfo (datetime.time attribute), 187
tzname (in module time), 568
tzname() (datetime.datetime method), 183
tzname() (datetime.time method), 188
tzname() (datetime.timezone method), 195
tzname() (datetime.tzinfo method), 190
tzset() (in module time), 568

U
u-LAW, 1229, 1234, 1243
ucd_3_2_0 (in module unicodedata), 138
udata (select.kevent attribute), 846
UDPServer (class in socketserver), 1176
UF_APPEND (in module stat), 369
UF_COMPRESSED (in module stat), 369
UF_HIDDEN (in module stat), 370
UF_IMMUTABLE (in module stat), 369
UF_NODUMP (in module stat), 369
UF_NOUNLINK (in module stat), 369
UF_OPAQUE (in module stat), 369
uid (tarfile.TarInfo attribute), 461
uid() (imaplib.IMAP4 method), 1153
uidl() (poplib.POP3 method), 1146
ulaw2lin() (in module audioop), 1231
umask() (in module os), 511
unalias (pdb command), 1501
uname (tarfile.TarInfo attribute), 461
uname() (in module os), 511
uname() (in module platform), 666
UNARY_INVERT (opcode), 1672
UNARY_NEGATIVE (opcode), 1672
UNARY_NOT (opcode), 1672
UNARY_POSITIVE (opcode), 1672
UnboundLocalError, 87
unbuffered I/O, 17

UNC paths
and os.makedirs(), 524

unconsumed_tail (zlib.Decompress attribute), 436
unctrl() (in module curses), 647
unctrl() (in module curses.ascii), 662
Underflow (class in decimal), 294
undisplay (pdb command), 1501
undo() (in module turtle), 1274
undobufferentries() (in module turtle), 1286
undoc_header (cmd.Cmd attribute), 1301
unescape() (in module html), 1023
unescape() (in module xml.sax.saxutils), 1069
UnexpectedException, 1391
unexpectedSuccesses (unittest.TestResult attribute),

1414
unget_wch() (in module curses), 647
ungetch() (in module curses), 647
ungetch() (in module msvcrt), 1696
ungetmouse() (in module curses), 647
ungetwch() (in module msvcrt), 1696
unhexlify() (in module binascii), 1019
Unicode, 137, 152

database, 137
unicode (2to3 fixer), 1479
unicodedata (module), 137
UnicodeDecodeError, 88
UnicodeEncodeError, 88
UnicodeError, 87
UnicodeTranslateError, 88
UnicodeWarning, 90
unidata_version (in module unicodedata), 138
unified_diff() (in module difflib), 126
uniform() (in module random), 305
UnimplementedFileMode, 1135
Union (class in ctypes), 704
Union (in module typing), 1365
union() (frozenset method), 73
unique() (in module enum), 250, 253
unittest (module), 1392
unittest command line option

–locals, 1395
-b, –buffer, 1395
-c, –catch, 1395
-f, –failfast, 1395

unittest-discover command line option
-p, –pattern pattern, 1396
-s, –start-directory directory, 1396
-t, –top-level-directory directory, 1396
-v, –verbose, 1396

unittest.mock (module), 1421
universal newlines, 1769
universal newlines

bytearray.splitlines method, 61
bytes.splitlines method, 61

Index 1891

The Python Library Reference, Release 3.5.7

csv.reader function, 467
importlib.abc.InspectLoader.get_source

method, 1633
io.IncrementalNewlineDecoder class, 560
io.TextIOWrapper class, 559
open() built-in function, 17
str.splitlines method, 47
subprocess module, 770
zipfile.ZipFile.open method, 450

UNIX
file control, 1715
I/O control, 1715

unix_dialect (class in csv), 470
UnixDatagramServer (class in socketserver), 1176
UnixStreamServer (class in socketserver), 1176
unknown_decl() (html.parser.HTMLParser

method), 1026
unknown_open() (urllib.request.BaseHandler

method), 1112
unknown_open() (urllib.request.UnknownHandler

method), 1116
UnknownHandler (class in urllib.request), 1109
UnknownProtocol, 1135
UnknownTransferEncoding, 1135
unlink() (in module os), 534
unlink() (pathlib.Path method), 358
unlink() (xml.dom.minidom.Node method), 1058
unlock() (mailbox.Babyl method), 1000
unlock() (mailbox.Mailbox method), 996
unlock() (mailbox.Maildir method), 997
unlock() (mailbox.mbox method), 998
unlock() (mailbox.MH method), 999
unlock() (mailbox.MMDF method), 1001
unpack() (in module struct), 148
unpack() (struct.Struct method), 152
unpack_archive() (in module shutil), 386
unpack_array() (xdrlib.Unpacker method), 494
unpack_bytes() (xdrlib.Unpacker method), 494
unpack_double() (xdrlib.Unpacker method), 494
UNPACK_EX (opcode), 1676
unpack_farray() (xdrlib.Unpacker method), 494
unpack_float() (xdrlib.Unpacker method), 494
unpack_fopaque() (xdrlib.Unpacker method), 494
unpack_from() (in module struct), 148
unpack_from() (struct.Struct method), 152
unpack_fstring() (xdrlib.Unpacker method), 494
unpack_list() (xdrlib.Unpacker method), 494
unpack_opaque() (xdrlib.Unpacker method), 494
UNPACK_SEQUENCE (opcode), 1676
unpack_string() (xdrlib.Unpacker method), 494
Unpacker (class in xdrlib), 492
unparsedEntityDecl() (xml.sax.handler.DTDHandler

method), 1069
UnparsedEntityDeclHandler()

(xml.parsers.expat.xmlparser method),
1078

Unpickler (class in pickle), 393
UnpicklingError, 392
unquote() (in module email.utils), 968
unquote() (in module urllib.parse), 1128
unquote_plus() (in module urllib.parse), 1129
unquote_to_bytes() (in module urllib.parse), 1129
unregister() (in module atexit), 1583
unregister() (in module faulthandler), 1495
unregister() (select.devpoll method), 842
unregister() (select.epoll method), 843
unregister() (select.poll method), 844
unregister() (selectors.BaseSelector method), 848
unregister_archive_format() (in module shutil), 386
unregister_dialect() (in module csv), 468
unregister_unpack_format() (in module shutil), 387
unset() (test.support.EnvironmentVarGuard

method), 1487
unsetenv() (in module os), 511
UnstructuredHeader (class in email.headerregistry),

950
unsubscribe() (imaplib.IMAP4 method), 1153
UnsupportedOperation, 550
until (pdb command), 1500
untokenize() (in module tokenize), 1660
untouchwin() (curses.window method), 654
unused_data (bz2.BZ2Decompressor attribute), 441
unused_data (lzma.LZMADecompressor attribute),

445
unused_data (zlib.Decompress attribute), 435
unverifiable (urllib.request.Request attribute), 1110
unwrap() (in module inspect), 1605
unwrap() (ssl.SSLSocket method), 825
up (pdb command), 1498
up() (in module turtle), 1276
update() (collections.Counter method), 206
update() (dict method), 77
update() (frozenset method), 74
update() (hashlib.hash method), 501
update() (hmac.HMAC method), 502
update() (http.cookies.Morsel method), 1192
update() (in module turtle), 1289
update() (mailbox.Mailbox method), 996
update() (mailbox.Maildir method), 997
update() (trace.CoverageResults method), 1517
update_authenticated()

(urllib.request.HTTPPasswordMgrWithPriorAuth
method), 1114

update_lines_cols() (in module curses), 647
update_panels() (in module curses.panel), 663
update_visible() (mailbox.BabylMessage method),

1007
update_wrapper() (in module functools), 334

1892 Index

The Python Library Reference, Release 3.5.7

upper() (bytearray method), 63
upper() (bytes method), 63
upper() (str method), 49
urandom() (in module os), 548
URL, 1087, 1123, 1131, 1184

parsing, 1123
relative, 1123

url (xmlrpc.client.ProtocolError attribute), 1207
url2pathname() (in module urllib.request), 1106
urlcleanup() (in module urllib.request), 1120
urldefrag() (in module urllib.parse), 1126
urlencode() (in module urllib.parse), 1129
URLError, 1130
urljoin() (in module urllib.parse), 1126
urllib (2to3 fixer), 1480
urllib (module), 1104
urllib.error (module), 1130
urllib.parse (module), 1123
urllib.request

module, 1133
urllib.request (module), 1105
urllib.response (module), 1122
urllib.robotparser (module), 1131
urlopen() (in module urllib.request), 1105
URLopener (class in urllib.request), 1120
urlparse() (in module urllib.parse), 1123
urlretrieve() (in module urllib.request), 1119
urlsafe_b64decode() (in module base64), 1015
urlsafe_b64encode() (in module base64), 1015
urlsplit() (in module urllib.parse), 1125
urlunparse() (in module urllib.parse), 1125
urlunsplit() (in module urllib.parse), 1125
urn (uuid.UUID attribute), 1174
use_default_colors() (in module curses), 648
use_env() (in module curses), 647
use_rawinput (cmd.Cmd attribute), 1301
UseForeignDTD() (xml.parsers.expat.xmlparser

method), 1076
USER, 641
user

effective id, 507
id, 509
id, setting, 511

user() (poplib.POP3 method), 1146
USER_BASE (in module site), 1612
user_call() (bdb.Bdb method), 1491
user_exception() (bdb.Bdb method), 1491
user_line() (bdb.Bdb method), 1491
user_return() (bdb.Bdb method), 1491
USER_SITE (in module site), 1611
usercustomize

module, 1611
UserDict (class in collections), 216
UserList (class in collections), 217

USERNAME, 508, 641
username (email.headerregistry.Address attribute),

953
USERPROFILE, 360
userptr() (curses.panel.Panel method), 664
UserString (class in collections), 217
UserWarning, 90
USTAR_FORMAT (in module tarfile), 457
UTC, 562
utc (datetime.timezone attribute), 195
utcfromtimestamp() (datetime.datetime class

method), 180
utcnow() (datetime.datetime class method), 179
utcoffset() (datetime.datetime method), 183
utcoffset() (datetime.time method), 188
utcoffset() (datetime.timezone method), 195
utcoffset() (datetime.tzinfo method), 189
utctimetuple() (datetime.datetime method), 183
utf8 (email.policy.EmailPolicy attribute), 947
utf8() (poplib.POP3 method), 1147
utf8_enabled (imaplib.IMAP4 attribute), 1153
utime() (in module os), 534
uu

module, 1018
uu (module), 1020
UUID (class in uuid), 1173
uuid (module), 1173
uuid1, 1175
uuid1() (in module uuid), 1175
uuid3, 1175
uuid3() (in module uuid), 1175
uuid4, 1175
uuid4() (in module uuid), 1175
uuid5, 1175
uuid5() (in module uuid), 1175
UuidCreate() (in module msilib), 1689

V
v4_int_to_packed() (in module ipaddress), 1226
v6_int_to_packed() (in module ipaddress), 1226
validator() (in module wsgiref.validate), 1099
value

truth, 27
value (ctypes._SimpleCData attribute), 701
value (http.cookiejar.Cookie attribute), 1200
value (http.cookies.Morsel attribute), 1191
value (xml.dom.Attr attribute), 1053
Value() (in module multiprocessing), 737
Value() (in module multiprocessing.sharedctypes),

738
Value() (multiprocessing.managers.SyncManager

method), 742
value_decode() (http.cookies.BaseCookie method),

1190

Index 1893

The Python Library Reference, Release 3.5.7

value_encode() (http.cookies.BaseCookie method),
1190

ValueError, 88
valuerefs() (weakref.WeakValueDictionary method),

233
values

Boolean, 81
values() (dict method), 77
values() (email.message.Message method), 931
values() (mailbox.Mailbox method), 994
values() (types.MappingProxyType method), 241
ValuesView (class in collections.abc), 220
ValuesView (class in typing), 1362
variance() (in module statistics), 312
variant (uuid.UUID attribute), 1174
vars() (built-in function), 22
VBAR (in module token), 1657
vbar (tkinter.scrolledtext.ScrolledText attribute),

1342
VBAREQUAL (in module token), 1657
Vec2D (class in turtle), 1294
venv (module), 1529
VERBOSE (in module re), 110
verbose (in module tabnanny), 1663
verbose (in module test.support), 1483
verify() (smtplib.SMTP method), 1163
VERIFY_CRL_CHECK_CHAIN (in module ssl),

818
VERIFY_CRL_CHECK_LEAF (in module ssl),

818
VERIFY_DEFAULT (in module ssl), 818
verify_flags (ssl.SSLContext attribute), 830
verify_mode (ssl.SSLContext attribute), 830
verify_request() (socketserver.BaseServer method),

1180
VERIFY_X509_STRICT (in module ssl), 819
VERIFY_X509_TRUSTED_FIRST (in module

ssl), 819
version (email.headerregistry.MIMEVersionHeader

attribute), 952
version (http.client.HTTPResponse attribute), 1138
version (http.cookiejar.Cookie attribute), 1200
version (in module curses), 654
version (in module marshal), 406
version (in module sqlite3), 413
version (in module sys), 1557
version (ipaddress.IPv4Address attribute), 1216
version (ipaddress.IPv4Network attribute), 1220
version (ipaddress.IPv6Address attribute), 1218
version (ipaddress.IPv6Network attribute), 1223
version (urllib.request.URLopener attribute), 1121
version (uuid.UUID attribute), 1174
version() (in module ensurepip), 1529
version() (in module platform), 665

version() (ssl.SSLSocket method), 825
version_info (in module sqlite3), 413
version_info (in module sys), 1557
version_string() (http.server.BaseHTTPRequestHandler

method), 1187
vformat() (string.Formatter method), 94
virtual

Environments, 1529
virtual environment, 1769
virtual machine, 1769
visit() (ast.NodeVisitor method), 1653
vline() (curses.window method), 654
voidcmd() (ftplib.FTP method), 1142
volume (zipfile.ZipInfo attribute), 454
vonmisesvariate() (in module random), 306

W
W_OK (in module os), 521
wait() (asyncio.asyncio.subprocess.Process method),

895
wait() (asyncio.Condition method), 901
wait() (asyncio.Event method), 900
wait() (in module asyncio), 875
wait() (in module concurrent.futures), 767
wait() (in module multiprocessing.connection), 750
wait() (in module os), 543
wait() (multiprocessing.pool.AsyncResult method),

748
wait() (subprocess.Popen method), 774
wait() (threading.Barrier method), 718
wait() (threading.Condition method), 714
wait() (threading.Event method), 716
wait3() (in module os), 544
wait4() (in module os), 544
wait_closed() (asyncio.Server method), 861
wait_for() (asyncio.Condition method), 901
wait_for() (in module asyncio), 876
wait_for() (threading.Condition method), 714
waitid() (in module os), 543
waitpid() (in module os), 544
walk() (email.message.Message method), 934
walk() (in module ast), 1653
walk() (in module os), 534
walk_packages() (in module pkgutil), 1623
walk_stack() (in module traceback), 1586
walk_tb() (in module traceback), 1586
want (doctest.Example attribute), 1385
warn() (in module warnings), 1566
warn_explicit() (in module warnings), 1566
Warning, 90, 424
warning() (in module logging), 615
warning() (logging.Logger method), 605
warning() (xml.sax.handler.ErrorHandler method),

1069

1894 Index

The Python Library Reference, Release 3.5.7

warnings, 1562
warnings (module), 1562
WarningsRecorder (class in test.support), 1488
warnoptions (in module sys), 1557
wasSuccessful() (unittest.TestResult method), 1415
WatchedFileHandler (class in logging.handlers), 630
wave (module), 1237
WCONTINUED (in module os), 544
WCOREDUMP() (in module os), 545
WeakKeyDictionary (class in weakref), 233
WeakMethod (class in weakref), 233
weakref (module), 231
WeakSet (class in weakref), 233
WeakValueDictionary (class in weakref), 233
webbrowser (module), 1085
weekday() (datetime.date method), 177
weekday() (datetime.datetime method), 184
weekday() (in module calendar), 201
weekheader() (in module calendar), 201
weibullvariate() (in module random), 306
WEXITED (in module os), 543
WEXITSTATUS() (in module os), 545
wfile (http.server.BaseHTTPRequestHandler at-

tribute), 1185
what() (in module imghdr), 1242
what() (in module sndhdr), 1243
whathdr() (in module sndhdr), 1243
whatis (pdb command), 1501
where (pdb command), 1498
which() (in module shutil), 383
whichdb() (in module dbm), 407
while

statement, 27
whitespace (in module string), 94
whitespace (shlex.shlex attribute), 1306
whitespace_split (shlex.shlex attribute), 1307
Widget (class in tkinter.ttk), 1323
width (textwrap.TextWrapper attribute), 135
width() (in module turtle), 1277
WIFCONTINUED() (in module os), 545
WIFEXITED() (in module os), 545
WIFSIGNALED() (in module os), 545
WIFSTOPPED() (in module os), 545
win32_ver() (in module platform), 666
WinDLL (class in ctypes), 693
window manager (widgets), 1316
window() (curses.panel.Panel method), 664
window_height() (in module turtle), 1292
window_width() (in module turtle), 1293
Windows ini file, 473
WindowsError, 88
WindowsPath (class in pathlib), 353
WindowsRegistryFinder (class in im-

portlib.machinery), 1636

winerror (OSError attribute), 85
WinError() (in module ctypes), 700
WINFUNCTYPE() (in module ctypes), 696
winreg (module), 1696
WinSock, 841
winsound (module), 1704
winver (in module sys), 1557
WITH_CLEANUP_FINISH (opcode), 1675
WITH_CLEANUP_START (opcode), 1675
with_hostmask (ipaddress.IPv4Interface attribute),

1225
with_hostmask (ipaddress.IPv4Network attribute),

1221
with_hostmask (ipaddress.IPv6Interface attribute),

1226
with_hostmask (ipaddress.IPv6Network attribute),

1223
with_name() (pathlib.PurePath method), 352
with_netmask (ipaddress.IPv4Interface attribute),

1225
with_netmask (ipaddress.IPv4Network attribute),

1221
with_netmask (ipaddress.IPv6Interface attribute),

1226
with_netmask (ipaddress.IPv6Network attribute),

1223
with_prefixlen (ipaddress.IPv4Interface attribute),

1225
with_prefixlen (ipaddress.IPv4Network attribute),

1221
with_prefixlen (ipaddress.IPv6Interface attribute),

1226
with_prefixlen (ipaddress.IPv6Network attribute),

1223
with_suffix() (pathlib.PurePath method), 352
with_traceback() (BaseException method), 84
WNOHANG (in module os), 544
WNOWAIT (in module os), 543
wordchars (shlex.shlex attribute), 1306
World Wide Web, 1085, 1123, 1131
wrap() (in module textwrap), 133
wrap() (textwrap.TextWrapper method), 136
wrap_bio() (ssl.SSLContext method), 829
wrap_future() (in module asyncio), 874
wrap_socket() (in module ssl), 813
wrap_socket() (ssl.SSLContext method), 829
wrapper() (in module curses), 648
wraps() (in module functools), 334
WRITABLE (in module tkinter), 1320
writable() (asyncore.dispatcher method), 912
writable() (io.IOBase method), 553
write() (asyncio.StreamWriter method), 889
write() (asyncio.WriteTransport method), 878
write() (code.InteractiveInterpreter method), 1616

Index 1895

The Python Library Reference, Release 3.5.7

write() (codecs.StreamWriter method), 159
write() (configparser.ConfigParser method), 489
write() (email.generator.BytesGenerator method),

941
write() (email.generator.Generator method), 940
write() (in module os), 518
write() (in module turtle), 1280
write() (io.BufferedIOBase method), 555
write() (io.BufferedWriter method), 557
write() (io.RawIOBase method), 554
write() (io.TextIOBase method), 559
write() (mmap.mmap method), 925
write() (ossaudiodev.oss_audio_device method),

1245
write() (ssl.MemoryBIO method), 837
write() (ssl.SSLSocket method), 823
write() (telnetlib.Telnet method), 1172
write() (xml.etree.ElementTree.ElementTree

method), 1042
write() (zipfile.ZipFile method), 451
write_byte() (mmap.mmap method), 925
write_bytes() (pathlib.Path method), 358
write_docstringdict() (in module turtle), 1296
write_eof() (asyncio.StreamWriter method), 889
write_eof() (asyncio.WriteTransport method), 878
write_eof() (ssl.MemoryBIO method), 837
write_history_file() (in module readline), 141
write_results() (trace.CoverageResults method),

1517
write_text() (pathlib.Path method), 358
writeall() (ossaudiodev.oss_audio_device method),

1245
writeframes() (aifc.aifc method), 1234
writeframes() (sunau.AU_write method), 1237
writeframes() (wave.Wave_write method), 1240
writeframesraw() (aifc.aifc method), 1234
writeframesraw() (sunau.AU_write method), 1237
writeframesraw() (wave.Wave_write method), 1240
writeheader() (csv.DictWriter method), 472
writelines() (asyncio.StreamWriter method), 889
writelines() (asyncio.WriteTransport method), 878
writelines() (codecs.StreamWriter method), 160
writelines() (io.IOBase method), 553
writePlist() (in module plistlib), 496
writePlistToBytes() (in module plistlib), 497
writepy() (zipfile.PyZipFile method), 452
writer (formatter.formatter attribute), 1683
writer() (in module csv), 468
writerow() (csv.csvwriter method), 472
writerows() (csv.csvwriter method), 472
writestr() (zipfile.ZipFile method), 451
WriteTransport (class in asyncio), 877
writev() (in module os), 518
writexml() (xml.dom.minidom.Node method), 1058

WrongDocumentErr, 1055
ws_comma (2to3 fixer), 1480
wsgi_file_wrapper (wsgiref.handlers.BaseHandler

attribute), 1103
wsgi_multiprocess (wsgiref.handlers.BaseHandler at-

tribute), 1102
wsgi_multithread (wsgiref.handlers.BaseHandler at-

tribute), 1102
wsgi_run_once (wsgiref.handlers.BaseHandler at-

tribute), 1102
wsgiref (module), 1095
wsgiref.handlers (module), 1100
wsgiref.headers (module), 1097
wsgiref.simple_server (module), 1098
wsgiref.util (module), 1095
wsgiref.validate (module), 1099
WSGIRequestHandler (class in ws-

giref.simple_server), 1099
WSGIServer (class in wsgiref.simple_server), 1099
wShowWindow (subprocess.STARTUPINFO at-

tribute), 777
WSTOPPED (in module os), 543
WSTOPSIG() (in module os), 545
wstring_at() (in module ctypes), 700
WTERMSIG() (in module os), 545
WUNTRACED (in module os), 545
WWW, 1085, 1123, 1131

server, 1087, 1184

X
X (in module re), 110
X509 certificate, 830
X_OK (in module os), 521
xatom() (imaplib.IMAP4 method), 1153
XATTR_CREATE (in module os), 537
XATTR_REPLACE (in module os), 537
XATTR_SIZE_MAX (in module os), 537
xcor() (in module turtle), 1275
XDR, 492
xdrlib (module), 492
xhdr() (nntplib.NNTP method), 1160
XHTML, 1023
XHTML_NAMESPACE (in module xml.dom), 1047
xml (module), 1029
XML() (in module xml.etree.ElementTree), 1039
xml.dom (module), 1046
xml.dom.minidom (module), 1056
xml.dom.pulldom (module), 1061
xml.etree.ElementTree (module), 1030
xml.parsers.expat (module), 1074
xml.parsers.expat.errors (module), 1081
xml.parsers.expat.model (module), 1081
xml.sax (module), 1062
xml.sax.handler (module), 1064

1896 Index

The Python Library Reference, Release 3.5.7

xml.sax.saxutils (module), 1069
xml.sax.xmlreader (module), 1070
XML_ERROR_ABORTED (in module

xml.parsers.expat.errors), 1083
XML_ERROR_ASYNC_ENTITY (in module

xml.parsers.expat.errors), 1081
XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

(in module xml.parsers.expat.errors), 1081
XML_ERROR_BAD_CHAR_REF (in module

xml.parsers.expat.errors), 1082
XML_ERROR_BINARY_ENTITY_REF (in mod-

ule xml.parsers.expat.errors), 1082
XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING

(in module xml.parsers.expat.errors), 1083
XML_ERROR_DUPLICATE_ATTRIBUTE (in

module xml.parsers.expat.errors), 1082
XML_ERROR_ENTITY_DECLARED_IN_PE

(in module xml.parsers.expat.errors), 1083
XML_ERROR_EXTERNAL_ENTITY_HANDLING

(in module xml.parsers.expat.errors), 1082
XML_ERROR_FEATURE_REQUIRES_XML_DTD

(in module xml.parsers.expat.errors), 1083
XML_ERROR_FINISHED (in module

xml.parsers.expat.errors), 1083
XML_ERROR_INCOMPLETE_PE (in module

xml.parsers.expat.errors), 1083
XML_ERROR_INCORRECT_ENCODING (in

module xml.parsers.expat.errors), 1082
XML_ERROR_INVALID_TOKEN (in module

xml.parsers.expat.errors), 1082
XML_ERROR_JUNK_AFTER_DOC_ELEMENT

(in module xml.parsers.expat.errors), 1082
XML_ERROR_MISPLACED_XML_PI (in mod-

ule xml.parsers.expat.errors), 1082
XML_ERROR_NO_ELEMENTS (in module

xml.parsers.expat.errors), 1082
XML_ERROR_NO_MEMORY (in module

xml.parsers.expat.errors), 1082
XML_ERROR_NOT_STANDALONE (in module

xml.parsers.expat.errors), 1082
XML_ERROR_NOT_SUSPENDED (in module

xml.parsers.expat.errors), 1083
XML_ERROR_PARAM_ENTITY_REF (in mod-

ule xml.parsers.expat.errors), 1082
XML_ERROR_PARTIAL_CHAR (in module

xml.parsers.expat.errors), 1082
XML_ERROR_PUBLICID (in module

xml.parsers.expat.errors), 1083
XML_ERROR_RECURSIVE_ENTITY_REF (in

module xml.parsers.expat.errors), 1082
XML_ERROR_SUSPEND_PE (in module

xml.parsers.expat.errors), 1083
XML_ERROR_SUSPENDED (in module

xml.parsers.expat.errors), 1083

XML_ERROR_SYNTAX (in module
xml.parsers.expat.errors), 1082

XML_ERROR_TAG_MISMATCH (in module
xml.parsers.expat.errors), 1082

XML_ERROR_TEXT_DECL (in module
xml.parsers.expat.errors), 1083

XML_ERROR_UNBOUND_PREFIX (in module
xml.parsers.expat.errors), 1083

XML_ERROR_UNCLOSED_CDATA_SECTION
(in module xml.parsers.expat.errors), 1082

XML_ERROR_UNCLOSED_TOKEN (in module
xml.parsers.expat.errors), 1082

XML_ERROR_UNDECLARING_PREFIX (in
module xml.parsers.expat.errors), 1083

XML_ERROR_UNDEFINED_ENTITY (in mod-
ule xml.parsers.expat.errors), 1082

XML_ERROR_UNEXPECTED_STATE (in mod-
ule xml.parsers.expat.errors), 1083

XML_ERROR_UNKNOWN_ENCODING (in
module xml.parsers.expat.errors), 1082

XML_ERROR_XML_DECL (in module
xml.parsers.expat.errors), 1083

XML_NAMESPACE (in module xml.dom), 1047
xmlcharrefreplace_errors() (in module codecs), 157
XmlDeclHandler() (xml.parsers.expat.xmlparser

method), 1077
XMLFilterBase (class in xml.sax.saxutils), 1070
XMLGenerator (class in xml.sax.saxutils), 1070
XMLID() (in module xml.etree.ElementTree), 1039
XMLNS_NAMESPACE (in module xml.dom), 1047
XMLParser (class in xml.etree.ElementTree), 1044
XMLParserType (in module xml.parsers.expat),

1075
XMLPullParser (class in xml.etree.ElementTree),

1045
XMLReader (class in xml.sax.xmlreader), 1070
xmlrpc.client (module), 1202
xmlrpc.server (module), 1210
xor() (in module operator), 337
xover() (nntplib.NNTP method), 1160
xpath() (nntplib.NNTP method), 1160
xrange (2to3 fixer), 1480
xreadlines (2to3 fixer), 1480
xview() (tkinter.ttk.Treeview method), 1333

Y
Y2K, 561
ycor() (in module turtle), 1275
year (datetime.date attribute), 176
year (datetime.datetime attribute), 180
Year 2000, 561
Year 2038, 561
yeardatescalendar() (calendar.Calendar method),

199

Index 1897

The Python Library Reference, Release 3.5.7

yeardays2calendar() (calendar.Calendar method),
199

yeardayscalendar() (calendar.Calendar method), 199
YESEXPR (in module locale), 1260
YIELD_FROM (opcode), 1675
YIELD_VALUE (opcode), 1675
yiq_to_rgb() (in module colorsys), 1242
yview() (tkinter.ttk.Treeview method), 1333

Z
Zen of Python, 1769
ZeroDivisionError, 88
zfill() (bytearray method), 63
zfill() (bytes method), 63
zfill() (str method), 49
zip (2to3 fixer), 1480
zip() (built-in function), 23
ZIP_BZIP2 (in module zipfile), 449
ZIP_DEFLATED (in module zipfile), 448
zip_longest() (in module itertools), 324
ZIP_LZMA (in module zipfile), 449
ZIP_STORED (in module zipfile), 448
zipapp (module), 1537
zipapp command line option

–info, 1538
-h, –help, 1538
-m <mainfn>, –main=<mainfn>, 1538
-o <output>, –output=<output>, 1538
-p <interpreter>, –python=<interpreter>, 1538

ZipFile (class in zipfile), 449
zipfile (module), 448
zipfile command line option

-c <zipfile> <source1> ... <sourceN>, 454
-e <zipfile> <output_dir>, 455
-l <zipfile>, 454
-t <zipfile>, 455

zipimport (module), 1619
zipimporter (class in zipimport), 1620
ZipImportError, 1619
ZipInfo (class in zipfile), 448
zlib (module), 433
ZLIB_RUNTIME_VERSION (in module zlib), 436
ZLIB_VERSION (in module zlib), 436

1898 Index

	Introduction
	Built-in Functions
	Built-in Constants
	Constants added by the site module

	Built-in Types
	Truth Value Testing
	Boolean Operations — and, or, not
	Comparisons
	Numeric Types — int, float, complex
	Iterator Types
	Sequence Types — list, tuple, range
	Text Sequence Type — str
	Binary Sequence Types — bytes, bytearray, memoryview
	Set Types — set, frozenset
	Mapping Types — dict
	Context Manager Types
	Other Built-in Types
	Special Attributes

	Built-in Exceptions
	Base classes
	Concrete exceptions
	Warnings
	Exception hierarchy

	Text Processing Services
	string — Common string operations
	re — Regular expression operations
	difflib — Helpers for computing deltas
	textwrap — Text wrapping and filling
	unicodedata — Unicode Database
	stringprep — Internet String Preparation
	readline — GNU readline interface
	rlcompleter — Completion function for GNU readline

	Binary Data Services
	struct — Interpret bytes as packed binary data
	codecs — Codec registry and base classes

	Data Types
	datetime — Basic date and time types
	calendar — General calendar-related functions
	collections — Container datatypes
	collections.abc — Abstract Base Classes for Containers
	heapq — Heap queue algorithm
	bisect — Array bisection algorithm
	array — Efficient arrays of numeric values
	weakref — Weak references
	types — Dynamic type creation and names for built-in types
	copy — Shallow and deep copy operations
	pprint — Data pretty printer
	reprlib — Alternate repr() implementation
	enum — Support for enumerations

	Numeric and Mathematical Modules
	numbers — Numeric abstract base classes
	math — Mathematical functions
	cmath — Mathematical functions for complex numbers
	decimal — Decimal fixed point and floating point arithmetic
	fractions — Rational numbers
	random — Generate pseudo-random numbers
	statistics — Mathematical statistics functions

	Functional Programming Modules
	itertools — Functions creating iterators for efficient looping
	functools — Higher-order functions and operations on callable objects
	operator — Standard operators as functions

	File and Directory Access
	pathlib — Object-oriented filesystem paths
	os.path — Common pathname manipulations
	fileinput — Iterate over lines from multiple input streams
	stat — Interpreting stat() results
	filecmp — File and Directory Comparisons
	tempfile — Generate temporary files and directories
	glob — Unix style pathname pattern expansion
	fnmatch — Unix filename pattern matching
	linecache — Random access to text lines
	shutil — High-level file operations
	macpath — Mac OS 9 path manipulation functions

	Data Persistence
	pickle — Python object serialization
	copyreg — Register pickle support functions
	shelve — Python object persistence
	marshal — Internal Python object serialization
	dbm — Interfaces to Unix “databases”
	sqlite3 — DB-API 2.0 interface for SQLite databases

	Data Compression and Archiving
	zlib — Compression compatible with gzip
	gzip — Support for gzip files
	bz2 — Support for bzip2 compression
	lzma — Compression using the LZMA algorithm
	zipfile — Work with ZIP archives
	tarfile — Read and write tar archive files

	File Formats
	csv — CSV File Reading and Writing
	configparser — Configuration file parser
	netrc — netrc file processing
	xdrlib — Encode and decode XDR data
	plistlib — Generate and parse Mac OS X .plist files

	Cryptographic Services
	hashlib — Secure hashes and message digests
	hmac — Keyed-Hashing for Message Authentication

	Generic Operating System Services
	os — Miscellaneous operating system interfaces
	io — Core tools for working with streams
	time — Time access and conversions
	argparse — Parser for command-line options, arguments and sub-commands
	getopt — C-style parser for command line options
	logging — Logging facility for Python
	logging.config — Logging configuration
	logging.handlers — Logging handlers
	getpass — Portable password input
	curses — Terminal handling for character-cell displays
	curses.textpad — Text input widget for curses programs
	curses.ascii — Utilities for ASCII characters
	curses.panel — A panel stack extension for curses
	platform — Access to underlying platform’s identifying data
	errno — Standard errno system symbols
	ctypes — A foreign function library for Python

	Concurrent Execution
	threading — Thread-based parallelism
	multiprocessing — Process-based parallelism
	The concurrent package
	concurrent.futures — Launching parallel tasks
	subprocess — Subprocess management
	sched — Event scheduler
	queue — A synchronized queue class
	dummy_threading — Drop-in replacement for the threading module
	_thread — Low-level threading API
	_dummy_thread — Drop-in replacement for the _thread module

	Interprocess Communication and Networking
	socket — Low-level networking interface
	ssl — TLS/SSL wrapper for socket objects
	select — Waiting for I/O completion
	selectors — High-level I/O multiplexing
	asyncio — Asynchronous I/O, event loop, coroutines and tasks
	asyncore — Asynchronous socket handler
	asynchat — Asynchronous socket command/response handler
	signal — Set handlers for asynchronous events
	mmap — Memory-mapped file support

	Internet Data Handling
	email — An email and MIME handling package
	json — JSON encoder and decoder
	mailcap — Mailcap file handling
	mailbox — Manipulate mailboxes in various formats
	mimetypes — Map filenames to MIME types
	base64 — Base16, Base32, Base64, Base85 Data Encodings
	binhex — Encode and decode binhex4 files
	binascii — Convert between binary and ASCII
	quopri — Encode and decode MIME quoted-printable data
	uu — Encode and decode uuencode files

	Structured Markup Processing Tools
	html — HyperText Markup Language support
	html.parser — Simple HTML and XHTML parser
	html.entities — Definitions of HTML general entities
	XML Processing Modules
	xml.etree.ElementTree — The ElementTree XML API
	xml.dom — The Document Object Model API
	xml.dom.minidom — Minimal DOM implementation
	xml.dom.pulldom — Support for building partial DOM trees
	xml.sax — Support for SAX2 parsers
	xml.sax.handler — Base classes for SAX handlers
	xml.sax.saxutils — SAX Utilities
	xml.sax.xmlreader — Interface for XML parsers
	xml.parsers.expat — Fast XML parsing using Expat

	Internet Protocols and Support
	webbrowser — Convenient Web-browser controller
	cgi — Common Gateway Interface support
	cgitb — Traceback manager for CGI scripts
	wsgiref — WSGI Utilities and Reference Implementation
	urllib — URL handling modules
	urllib.request — Extensible library for opening URLs
	urllib.response — Response classes used by urllib
	urllib.parse — Parse URLs into components
	urllib.error — Exception classes raised by urllib.request
	urllib.robotparser — Parser for robots.txt
	http — HTTP modules
	http.client — HTTP protocol client
	ftplib — FTP protocol client
	poplib — POP3 protocol client
	imaplib — IMAP4 protocol client
	nntplib — NNTP protocol client
	smtplib — SMTP protocol client
	smtpd — SMTP Server
	telnetlib — Telnet client
	uuid — UUID objects according to RFC 4122
	socketserver — A framework for network servers
	http.server — HTTP servers
	http.cookies — HTTP state management
	http.cookiejar — Cookie handling for HTTP clients
	xmlrpc — XMLRPC server and client modules
	xmlrpc.client — XML-RPC client access
	xmlrpc.server — Basic XML-RPC servers
	ipaddress — IPv4/IPv6 manipulation library

	Multimedia Services
	audioop — Manipulate raw audio data
	aifc — Read and write AIFF and AIFC files
	sunau — Read and write Sun AU files
	wave — Read and write WAV files
	chunk — Read IFF chunked data
	colorsys — Conversions between color systems
	imghdr — Determine the type of an image
	sndhdr — Determine type of sound file
	ossaudiodev — Access to OSS-compatible audio devices

	Internationalization
	gettext — Multilingual internationalization services
	locale — Internationalization services

	Program Frameworks
	turtle — Turtle graphics
	cmd — Support for line-oriented command interpreters
	shlex — Simple lexical analysis

	Graphical User Interfaces with Tk
	tkinter — Python interface to Tcl/Tk
	tkinter.ttk — Tk themed widgets
	tkinter.tix — Extension widgets for Tk
	tkinter.scrolledtext — Scrolled Text Widget
	IDLE
	Other Graphical User Interface Packages

	Development Tools
	typing — Support for type hints
	pydoc — Documentation generator and online help system
	doctest — Test interactive Python examples
	unittest — Unit testing framework
	unittest.mock — mock object library
	unittest.mock — getting started
	2to3 - Automated Python 2 to 3 code translation
	test — Regression tests package for Python
	test.support — Utilities for the Python test suite

	Debugging and Profiling
	bdb — Debugger framework
	faulthandler — Dump the Python traceback
	pdb — The Python Debugger
	The Python Profilers
	timeit — Measure execution time of small code snippets
	trace — Trace or track Python statement execution
	tracemalloc — Trace memory allocations

	Software Packaging and Distribution
	distutils — Building and installing Python modules
	ensurepip — Bootstrapping the pip installer
	venv — Creation of virtual environments
	zipapp — Manage executable python zip archives

	Python Runtime Services
	sys — System-specific parameters and functions
	sysconfig — Provide access to Python’s configuration information
	builtins — Built-in objects
	__main__ — Top-level script environment
	warnings — Warning control
	contextlib — Utilities for with-statement contexts
	abc — Abstract Base Classes
	atexit — Exit handlers
	traceback — Print or retrieve a stack traceback
	__future__ — Future statement definitions
	gc — Garbage Collector interface
	inspect — Inspect live objects
	site — Site-specific configuration hook
	fpectl — Floating point exception control

	Custom Python Interpreters
	code — Interpreter base classes
	codeop — Compile Python code

	Importing Modules
	zipimport — Import modules from Zip archives
	pkgutil — Package extension utility
	modulefinder — Find modules used by a script
	runpy — Locating and executing Python modules
	importlib — The implementation of import

	Python Language Services
	parser — Access Python parse trees
	ast — Abstract Syntax Trees
	symtable — Access to the compiler’s symbol tables
	symbol — Constants used with Python parse trees
	token — Constants used with Python parse trees
	keyword — Testing for Python keywords
	tokenize — Tokenizer for Python source
	tabnanny — Detection of ambiguous indentation
	pyclbr — Python class browser support
	py_compile — Compile Python source files
	compileall — Byte-compile Python libraries
	dis — Disassembler for Python bytecode
	pickletools — Tools for pickle developers

	Miscellaneous Services
	formatter — Generic output formatting

	MS Windows Specific Services
	msilib — Read and write Microsoft Installer files
	msvcrt — Useful routines from the MS VC++ runtime
	winreg — Windows registry access
	winsound — Sound-playing interface for Windows

	Unix Specific Services
	posix — The most common POSIX system calls
	pwd — The password database
	spwd — The shadow password database
	grp — The group database
	crypt — Function to check Unix passwords
	termios — POSIX style tty control
	tty — Terminal control functions
	pty — Pseudo-terminal utilities
	fcntl — The fcntl and ioctl system calls
	pipes — Interface to shell pipelines
	resource — Resource usage information
	nis — Interface to Sun’s NIS (Yellow Pages)
	syslog — Unix syslog library routines

	Superseded Modules
	optparse — Parser for command line options
	imp — Access the import internals

	Undocumented Modules
	Platform specific modules

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Bibliography
	Python Module Index
	Index

