
Socket Programming HOWTO
Release 3.5.4

Guido van Rossum
and the Python development team

August 07, 2017

Python Software Foundation
Email: docs@python.org

Contents

1 Sockets 1
1.1 History . 2

2 Creating a Socket 2
2.1 IPC . 3

3 Using a Socket 3
3.1 Binary Data . 5

4 Disconnecting 5
4.1 When Sockets Die . 5

5 Non-blocking Sockets 6

Author Gordon McMillan

Abstract

Sockets are used nearly everywhere, but are one of the most severely misunderstood technologies around. This is a
10,000 foot overview of sockets. It’s not really a tutorial - you’ll still have work to do in getting things operational.
It doesn’t cover the fine points (and there are a lot of them), but I hope it will give you enough background to begin
using them decently.

1 Sockets

I’m only going to talk about INET (i.e. IPv4) sockets, but they account for at least 99% of the sockets in use. And I’ll
only talk about STREAM (i.e. TCP) sockets - unless you really know what you’re doing (in which case this HOWTO

isn’t for you!), you’ll get better behavior and performance from a STREAM socket than anything else. I will try to
clear up the mystery of what a socket is, as well as some hints on how to work with blocking and non-blocking sockets.
But I’ll start by talking about blocking sockets. You’ll need to know how they work before dealing with non-blocking
sockets.

Part of the trouble with understanding these things is that “socket” can mean a number of subtly different things,
depending on context. So first, let’s make a distinction between a “client” socket - an endpoint of a conversation, and
a “server” socket, which is more like a switchboard operator. The client application (your browser, for example) uses
“client” sockets exclusively; the web server it’s talking to uses both “server” sockets and “client” sockets.

1.1 History

Of the various forms of IPC (Inter Process Communication), sockets are by far the most popular. On any given
platform, there are likely to be other forms of IPC that are faster, but for cross-platform communication, sockets are
about the only game in town.

They were invented in Berkeley as part of the BSD flavor of Unix. They spread like wildfire with the Internet.
With good reason — the combination of sockets with INET makes talking to arbitrary machines around the world
unbelievably easy (at least compared to other schemes).

2 Creating a Socket

Roughly speaking, when you clicked on the link that brought you to this page, your browser did something like the
following:

create an INET, STREAMing socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
now connect to the web server on port 80 - the normal http port
s.connect(("www.python.org", 80))

When the connect completes, the socket s can be used to send in a request for the text of the page. The same
socket will read the reply, and then be destroyed. That’s right, destroyed. Client sockets are normally only used for
one exchange (or a small set of sequential exchanges).

What happens in the web server is a bit more complex. First, the web server creates a “server socket”:

create an INET, STREAMing socket
serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
bind the socket to a public host, and a well-known port
serversocket.bind((socket.gethostname(), 80))
become a server socket
serversocket.listen(5)

A couple things to notice: we used socket.gethostname() so that the socket would be visible to the outside
world. If we had used s.bind(('localhost',80)) or s.bind(('127.0.0.1',80)) we would still
have a “server” socket, but one that was only visible within the same machine. s.bind(('',80)) specifies that
the socket is reachable by any address the machine happens to have.

A second thing to note: low number ports are usually reserved for “well known” services (HTTP, SNMP etc). If you’re
playing around, use a nice high number (4 digits).

Finally, the argument to listen tells the socket library that we want it to queue up as many as 5 connect requests
(the normal max) before refusing outside connections. If the rest of the code is written properly, that should be plenty.

Now that we have a “server” socket, listening on port 80, we can enter the mainloop of the web server:

while True:
accept connections from outside
(clientsocket, address) = serversocket.accept()
now do something with the clientsocket
in this case, we'll pretend this is a threaded server
ct = client_thread(clientsocket)
ct.run()

There’s actually 3 general ways in which this loop could work - dispatching a thread to handle clientsocket ,
create a new process to handle clientsocket , or restructure this app to use non-blocking sockets, and multiplex
between our “server” socket and any active clientsocket s using select . More about that later. The important
thing to understand now is this: this is all a “server” socket does. It doesn’t send any data. It doesn’t receive any data.
It just produces “client” sockets. Each clientsocket is created in response to some other “client” socket doing a
connect() to the host and port we’re bound to. As soon as we’ve created that clientsocket , we go back to
listening for more connections. The two “clients” are free to chat it up - they are using some dynamically allocated
port which will be recycled when the conversation ends.

2.1 IPC

If you need fast IPC between two processes on one machine, you should look into pipes or shared memory. If you
do decide to use AF_INET sockets, bind the “server” socket to 'localhost' . On most platforms, this will take a
shortcut around a couple of layers of network code and be quite a bit faster.

See also:

The multiprocessing integrates cross-platform IPC into a higher-level API.

3 Using a Socket

The first thing to note, is that the web browser’s “client” socket and the web server’s “client” socket are identical
beasts. That is, this is a “peer to peer” conversation. Or to put it another way, as the designer, you will have to decide
what the rules of etiquette are for a conversation. Normally, the connect ing socket starts the conversation, by
sending in a request, or perhaps a signon. But that’s a design decision - it’s not a rule of sockets.

Now there are two sets of verbs to use for communication. You can use send and recv , or you can transform your
client socket into a file-like beast and use read and write . The latter is the way Java presents its sockets. I’m not
going to talk about it here, except to warn you that you need to use flush on sockets. These are buffered “files”, and
a common mistake is to write something, and then read for a reply. Without a flush in there, you may wait
forever for the reply, because the request may still be in your output buffer.

Now we come to the major stumbling block of sockets - send and recv operate on the network buffers. They
do not necessarily handle all the bytes you hand them (or expect from them), because their major focus is handling
the network buffers. In general, they return when the associated network buffers have been filled (send) or emptied
(recv). They then tell you how many bytes they handled. It is your responsibility to call them again until your
message has been completely dealt with.

When a recv returns 0 bytes, it means the other side has closed (or is in the process of closing) the connection. You
will not receive any more data on this connection. Ever. You may be able to send data successfully; I’ll talk more
about this later.

A protocol like HTTP uses a socket for only one transfer. The client sends a request, then reads a reply. That’s it. The
socket is discarded. This means that a client can detect the end of the reply by receiving 0 bytes.

But if you plan to reuse your socket for further transfers, you need to realize that there is no EOT (End of Transfer)
on a socket. I repeat: if a socket send or recv returns after handling 0 bytes, the connection has been broken.

If the connection has not been broken, you may wait on a recv forever, because the socket will not tell you that
there’s nothing more to read (for now). Now if you think about that a bit, you’ll come to realize a fundamental truth
of sockets: messages must either be fixed length (yuck), or be delimited (shrug), or indicate how long they are (much
better), or end by shutting down the connection. The choice is entirely yours, (but some ways are righter than others).

Assuming you don’t want to end the connection, the simplest solution is a fixed length message:

class MySocket:
"""demonstration class only

- coded for clarity, not efficiency
"""

def __init__(self, sock=None):
if sock is None:

self.sock = socket.socket(
socket.AF_INET, socket.SOCK_STREAM)

else:
self.sock = sock

def connect(self, host, port):
self.sock.connect((host, port))

def mysend(self, msg):
totalsent = 0
while totalsent < MSGLEN:

sent = self.sock.send(msg[totalsent:])
if sent == 0:

raise RuntimeError("socket connection broken")
totalsent = totalsent + sent

def myreceive(self):
chunks = []
bytes_recd = 0
while bytes_recd < MSGLEN:

chunk = self.sock.recv(min(MSGLEN - bytes_recd, 2048))
if chunk == b'':

raise RuntimeError("socket connection broken")
chunks.append(chunk)
bytes_recd = bytes_recd + len(chunk)

return b''.join(chunks)

The sending code here is usable for almost any messaging scheme - in Python you send strings, and you can use
len() to determine its length (even if it has embedded \0 characters). It’s mostly the receiving code that gets more
complex. (And in C, it’s not much worse, except you can’t use strlen if the message has embedded \0 s.)

The easiest enhancement is to make the first character of the message an indicator of message type, and have the type
determine the length. Now you have two recv s - the first to get (at least) that first character so you can look up the
length, and the second in a loop to get the rest. If you decide to go the delimited route, you’ll be receiving in some
arbitrary chunk size, (4096 or 8192 is frequently a good match for network buffer sizes), and scanning what you’ve
received for a delimiter.

One complication to be aware of: if your conversational protocol allows multiple messages to be sent back to back
(without some kind of reply), and you pass recv an arbitrary chunk size, you may end up reading the start of a
following message. You’ll need to put that aside and hold onto it, until it’s needed.

Prefixing the message with its length (say, as 5 numeric characters) gets more complex, because (believe it or not),
you may not get all 5 characters in one recv . In playing around, you’ll get away with it; but in high network loads,

your code will very quickly break unless you use two recv loops - the first to determine the length, the second to get
the data part of the message. Nasty. This is also when you’ll discover that send does not always manage to get rid
of everything in one pass. And despite having read this, you will eventually get bit by it!

In the interests of space, building your character, (and preserving my competitive position), these enhancements are
left as an exercise for the reader. Lets move on to cleaning up.

3.1 Binary Data

It is perfectly possible to send binary data over a socket. The major problem is that not all machines use the same
formats for binary data. For example, a Motorola chip will represent a 16 bit integer with the value 1 as the two
hex bytes 00 01. Intel and DEC, however, are byte-reversed - that same 1 is 01 00. Socket libraries have calls for
converting 16 and 32 bit integers - ntohl,htonl,ntohs,htons where “n” means network and “h” means host,
“s” means short and “l” means long. Where network order is host order, these do nothing, but where the machine is
byte-reversed, these swap the bytes around appropriately.

In these days of 32 bit machines, the ascii representation of binary data is frequently smaller than the binary repre-
sentation. That’s because a surprising amount of the time, all those longs have the value 0, or maybe 1. The string
“0” would be two bytes, while binary is four. Of course, this doesn’t fit well with fixed-length messages. Decisions,
decisions.

4 Disconnecting

Strictly speaking, you’re supposed to use shutdown on a socket before you close it. The shutdown is an
advisory to the socket at the other end. Depending on the argument you pass it, it can mean “I’m not going to send
anymore, but I’ll still listen”, or “I’m not listening, good riddance!”. Most socket libraries, however, are so used
to programmers neglecting to use this piece of etiquette that normally a close is the same as shutdown();
close() . So in most situations, an explicit shutdown is not needed.

One way to use shutdown effectively is in an HTTP-like exchange. The client sends a request and then does a
shutdown(1) . This tells the server “This client is done sending, but can still receive.” The server can detect “EOF”
by a receive of 0 bytes. It can assume it has the complete request. The server sends a reply. If the send completes
successfully then, indeed, the client was still receiving.

Python takes the automatic shutdown a step further, and says that when a socket is garbage collected, it will automati-
cally do a close if it’s needed. But relying on this is a very bad habit. If your socket just disappears without doing
a close , the socket at the other end may hang indefinitely, thinking you’re just being slow. Please close your
sockets when you’re done.

4.1 When Sockets Die

Probably the worst thing about using blocking sockets is what happens when the other side comes down hard (without
doing a close). Your socket is likely to hang. TCP is a reliable protocol, and it will wait a long, long time before
giving up on a connection. If you’re using threads, the entire thread is essentially dead. There’s not much you can do
about it. As long as you aren’t doing something dumb, like holding a lock while doing a blocking read, the thread isn’t
really consuming much in the way of resources. Do not try to kill the thread - part of the reason that threads are more
efficient than processes is that they avoid the overhead associated with the automatic recycling of resources. In other
words, if you do manage to kill the thread, your whole process is likely to be screwed up.

5 Non-blocking Sockets

If you’ve understood the preceding, you already know most of what you need to know about the mechanics of using
sockets. You’ll still use the same calls, in much the same ways. It’s just that, if you do it right, your app will be almost
inside-out.

In Python, you use socket.setblocking(0) to make it non-blocking. In C, it’s more complex, (for one
thing, you’ll need to choose between the BSD flavor O_NONBLOCK and the almost indistinguishable Posix flavor
O_NDELAY , which is completely different from TCP_NODELAY), but it’s the exact same idea. You do this after
creating the socket, but before using it. (Actually, if you’re nuts, you can switch back and forth.)

The major mechanical difference is that send , recv , connect and accept can return without having done
anything. You have (of course) a number of choices. You can check return code and error codes and generally drive
yourself crazy. If you don’t believe me, try it sometime. Your app will grow large, buggy and suck CPU. So let’s skip
the brain-dead solutions and do it right.

Use select .

In C, coding select is fairly complex. In Python, it’s a piece of cake, but it’s close enough to the C version that if
you understand select in Python, you’ll have little trouble with it in C:

ready_to_read, ready_to_write, in_error = \
select.select(

potential_readers,
potential_writers,
potential_errs,
timeout)

You pass select three lists: the first contains all sockets that you might want to try reading; the second all the
sockets you might want to try writing to, and the last (normally left empty) those that you want to check for errors.
You should note that a socket can go into more than one list. The select call is blocking, but you can give it a
timeout. This is generally a sensible thing to do - give it a nice long timeout (say a minute) unless you have good
reason to do otherwise.

In return, you will get three lists. They contain the sockets that are actually readable, writable and in error. Each of
these lists is a subset (possibly empty) of the corresponding list you passed in.

If a socket is in the output readable list, you can be as-close-to-certain-as-we-ever-get-in-this-business that a recv on
that socket will return something. Same idea for the writable list. You’ll be able to send something. Maybe not all you
want to, but something is better than nothing. (Actually, any reasonably healthy socket will return as writable - it just
means outbound network buffer space is available.)

If you have a “server” socket, put it in the potential_readers list. If it comes out in the readable list, your accept will
(almost certainly) work. If you have created a new socket to connect to someone else, put it in the potential_writers
list. If it shows up in the writable list, you have a decent chance that it has connected.

Actually, select can be handy even with blocking sockets. It’s one way of determining whether you will block -
the socket returns as readable when there’s something in the buffers. However, this still doesn’t help with the problem
of determining whether the other end is done, or just busy with something else.

Portability alert: On Unix, select works both with the sockets and files. Don’t try this on Windows. On Windows,
select works with sockets only. Also note that in C, many of the more advanced socket options are done differently
on Windows. In fact, on Windows I usually use threads (which work very, very well) with my sockets.

	Sockets
	History

	Creating a Socket
	IPC

	Using a Socket
	Binary Data

	Disconnecting
	When Sockets Die

	Non-blocking Sockets

