
What’s New in Python
Release 3.4.4

A. M. Kuchling

December 20, 2015

Python Software Foundation
Email: docs@python.org

Contents

1 Summary – Release Highlights 3

2 New Features 4
2.1 PEP 453: Explicit Bootstrapping of PIP in Python Installations 4

Bootstrapping pip By Default . 4
Documentation Changes . 5

2.2 PEP 446: Newly Created File Descriptors Are Non-Inheritable 5
2.3 Improvements to Codec Handling . 6
2.4 PEP 451: A ModuleSpec Type for the Import System . 7
2.5 Other Language Changes . 7

3 New Modules 8
3.1 asyncio . 8
3.2 ensurepip . 8
3.3 enum . 8
3.4 pathlib . 9
3.5 selectors . 9
3.6 statistics . 9
3.7 tracemalloc . 9

4 Improved Modules 9
4.1 abc . 9
4.2 aifc . 10
4.3 argparse . 10
4.4 audioop . 10
4.5 base64 . 10
4.6 collections . 10
4.7 colorsys . 10
4.8 contextlib . 10
4.9 dbm . 11
4.10 dis . 11
4.11 doctest . 12
4.12 email . 12
4.13 filecmp . 12
4.14 functools . 12
4.15 gc . 13
4.16 glob . 13
4.17 hashlib . 13

4.18 hmac . 13
4.19 html . 13
4.20 http . 14
4.21 idlelib and IDLE . 14
4.22 importlib . 14
4.23 inspect . 14
4.24 ipaddress . 15
4.25 logging . 15
4.26 marshal . 15
4.27 mmap . 15
4.28 multiprocessing . 15
4.29 operator . 16
4.30 os . 16
4.31 pdb . 16
4.32 pickle . 17
4.33 plistlib . 17
4.34 poplib . 17
4.35 pprint . 17
4.36 pty . 17
4.37 pydoc . 17
4.38 re . 18
4.39 resource . 18
4.40 select . 18
4.41 shelve . 18
4.42 shutil . 18
4.43 smtpd . 18
4.44 smtplib . 18
4.45 socket . 19
4.46 sqlite3 . 19
4.47 ssl . 19
4.48 stat . 20
4.49 struct . 20
4.50 subprocess . 20
4.51 sunau . 20
4.52 sys . 20
4.53 tarfile . 21
4.54 textwrap . 21
4.55 threading . 21
4.56 traceback . 21
4.57 types . 21
4.58 urllib . 21
4.59 unittest . 22
4.60 venv . 22
4.61 wave . 22
4.62 weakref . 23
4.63 xml.etree . 23
4.64 zipfile . 23

5 CPython Implementation Changes 23
5.1 PEP 445: Customization of CPython Memory Allocators . 23
5.2 PEP 442: Safe Object Finalization . 23
5.3 PEP 456: Secure and Interchangeable Hash Algorithm . 24
5.4 PEP 436: Argument Clinic . 24
5.5 Other Build and C API Changes . 24
5.6 Other Improvements . 25
5.7 Significant Optimizations . 26

6 Deprecated 26

6.1 Deprecations in the Python API . 26
6.2 Deprecated Features . 27

7 Removed 27
7.1 Operating Systems No Longer Supported . 27
7.2 API and Feature Removals . 28
7.3 Code Cleanups . 28

8 Porting to Python 3.4 28
8.1 Changes in ‘python’ Command Behavior . 28
8.2 Changes in the Python API . 29
8.3 Changes in the C API . 31

9 Changed in 3.4.3 32
9.1 PEP 476: Enabling certificate verification by default for stdlib http clients 32

Index 33

Author R. David Murray <rdmurray@bitdance.com> (Editor)

This article explains the new features in Python 3.4, compared to 3.3. Python 3.4 was released on March 16, 2014.
For full details, see the changelog.

See also:

PEP 429 – Python 3.4 Release Schedule

1 Summary – Release Highlights

New syntax features:

• No new syntax features were added in Python 3.4.

Other new features:

• pip should always be available (PEP 453).

• Newly created file descriptors are non-inheritable (PEP 446).

• command line option for isolated mode (issue 16499).

• improvements in the handling of codecs that are not text encodings (multiple issues).

• A ModuleSpec Type for the Import System (PEP 451). (Affects importer authors.)

• The marshal format has been made more compact and efficient (issue 16475).

New library modules:

• asyncio: New provisional API for asynchronous IO (PEP 3156).

• ensurepip: Bootstrapping the pip installer (PEP 453).

• enum: Support for enumeration types (PEP 435).

• pathlib: Object-oriented filesystem paths (PEP 428).

• selectors: High-level and efficient I/O multiplexing, built upon the select module primitives (part of
PEP 3156).

• statistics: A basic numerically stable statistics library (PEP 450).

• tracemalloc: Trace Python memory allocations (PEP 454).

mailto:rdmurray@bitdance.com
https://docs.python.org/3.4/whatsnew/changelog.html
https://www.python.org/dev/peps/pep-0429
https://www.python.org/dev/peps/pep-0453
https://www.python.org/dev/peps/pep-0446
https://bugs.python.org/issue16499
https://www.python.org/dev/peps/pep-0451
https://bugs.python.org/issue16475
https://www.python.org/dev/peps/pep-3156
https://www.python.org/dev/peps/pep-0453
https://www.python.org/dev/peps/pep-0435
https://www.python.org/dev/peps/pep-0428
https://www.python.org/dev/peps/pep-3156
https://www.python.org/dev/peps/pep-0450
https://www.python.org/dev/peps/pep-0454

Significantly improved library modules:

• Single-dispatch generic functions in functools (PEP 443).

• New pickle protocol 4 (PEP 3154).

• multiprocessing now has an option to avoid using os.fork on Unix (issue 8713).

• email has a new submodule, contentmanager, and a new Message subclass (EmailMessage) that
simplify MIME handling (issue 18891).

• The inspect and pydoc modules are now capable of correct introspection of a much wider variety of
callable objects, which improves the output of the Python help() system.

• The ipaddress module API has been declared stable

Security improvements:

• Secure and interchangeable hash algorithm (PEP 456).

• Make newly created file descriptors non-inheritable (PEP 446) to avoid leaking file descriptors to child
processes.

• New command line option for isolated mode, (issue 16499).

• multiprocessing now has an option to avoid using os.fork on Unix. spawn and forkserver are more
secure because they avoid sharing data with child processes.

• multiprocessing child processes on Windows no longer inherit all of the parent’s inheritable handles,
only the necessary ones.

• A new hashlib.pbkdf2_hmac() function provides the PKCS#5 password-based key derivation func-
tion 2.

• TLSv1.1 and TLSv1.2 support for ssl.

• Retrieving certificates from the Windows system cert store support for ssl.

• Server-side SNI (Server Name Indication) support for ssl.

• The ssl.SSLContext class has a lot of improvements.

• All modules in the standard library that support SSL now support server certificate verification, in-
cluding hostname matching (ssl.match_hostname()) and CRLs (Certificate Revocation lists, see
ssl.SSLContext.load_verify_locations()).

CPython implementation improvements:

• Safe object finalization (PEP 442).

• Leveraging PEP 442, in most cases module globals are no longer set to None during finalization (issue
18214).

• Configurable memory allocators (PEP 445).

• Argument Clinic (PEP 436).

Please read on for a comprehensive list of user-facing changes, including many other smaller improvements,
CPython optimizations, deprecations, and potential porting issues.

2 New Features

2.1 PEP 453: Explicit Bootstrapping of PIP in Python Installations

Bootstrapping pip By Default

The new ensurepip module (defined in PEP 453) provides a standard cross-platform mechanism to bootstrap
the pip installer into Python installations and virtual environments. The version of pip included with Python 3.4.0

https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-3154
https://bugs.python.org/issue8713
https://bugs.python.org/issue18891
https://www.python.org/dev/peps/pep-0456
https://www.python.org/dev/peps/pep-0446
https://bugs.python.org/issue16499
http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/PBKDF2
https://www.python.org/dev/peps/pep-0442
https://www.python.org/dev/peps/pep-0442
https://bugs.python.org/issue18214
https://bugs.python.org/issue18214
https://www.python.org/dev/peps/pep-0445
https://www.python.org/dev/peps/pep-0436
https://www.python.org/dev/peps/pep-0453

is pip 1.5.4, and future 3.4.x maintenance releases will update the bundled version to the latest version of pip
that is available at the time of creating the release candidate.

By default, the commands pipX and pipX.Y will be installed on all platforms (where X.Y stands for the version
of the Python installation), along with the pip Python package and its dependencies. On Windows and in virtual
environments on all platforms, the unversioned pip command will also be installed. On other platforms, the
system wide unversioned pip command typically refers to the separately installed Python 2 version.

The pyvenv command line utility and the venv module make use of the ensurepip module to make pip
readily available in virtual environments. When using the command line utility, pip is installed by default, while
when using the venv module venv-api installation of pip must be requested explicitly.

For CPython source builds on POSIX systems, the make install and make altinstall commands boot-
strap pip by default. This behaviour can be controlled through configure options, and overridden through Make-
file options.

On Windows and Mac OS X, the CPython installers now default to installing pip along with CPython itself (users
may opt out of installing it during the installation process). Window users will need to opt in to the automatic PATH
modifications to have pip available from the command line by default, otherwise it can still be accessed through
the Python launcher for Windows as py -m pip.

As discussed in the PEP, platform packagers may choose not to install these commands by default, as long as,
when invoked, they provide clear and simple directions on how to install them on that platform (usually using the
system package manager).

Note: To avoid conflicts between parallel Python 2 and Python 3 installations, only the versioned pip3 and
pip3.4 commands are bootstrapped by default when ensurepip is invoked directly - the --default-pip
option is needed to also request the unversioned pip command. pyvenv and the Windows installer ensure that
the unqualified pip command is made available in those environments, and pip can always be invoked via the
-m switch rather than directly to avoid ambiguity on systems with multiple Python installations.

Documentation Changes

As part of this change, the installing-index and distributing-index sections of the documentation have been com-
pletely redesigned as short getting started and FAQ documents. Most packaging documentation has now been
moved out to the Python Packaging Authority maintained Python Packaging User Guide and the documentation
of the individual projects.

However, as this migration is currently still incomplete, the legacy versions of those guides remaining available as
install-index and distutils-index.

See also:

PEP 453 – Explicit bootstrapping of pip in Python installations PEP written by Donald Stufft and Nick Cogh-
lan, implemented by Donald Stufft, Nick Coghlan, Martin von Löwis and Ned Deily.

2.2 PEP 446: Newly Created File Descriptors Are Non-Inheritable

PEP 446 makes newly created file descriptors non-inheritable. In general, this is the behavior an application will
want: when launching a new process, having currently open files also open in the new process can lead to all sorts
of hard to find bugs, and potentially to security issues.

However, there are occasions when inheritance is desired. To support these cases, the following new functions and
methods are available:

• os.get_inheritable(), os.set_inheritable()

• os.get_handle_inheritable(), os.set_handle_inheritable()

• socket.socket.get_inheritable(), socket.socket.set_inheritable()

See also:

https://www.python.org/dev/peps/pep-0453/#recommendations-for-downstream-distributors
https://packaging.python.org
https://www.python.org/dev/peps/pep-0453
https://www.python.org/dev/peps/pep-0446

PEP 446 – Make newly created file descriptors non-inheritable PEP written and implemented by Victor Stin-
ner.

2.3 Improvements to Codec Handling

Since it was first introduced, the codecs module has always been intended to operate as a type-neutral dynamic
encoding and decoding system. However, its close coupling with the Python text model, especially the type
restricted convenience methods on the builtin str, bytes and bytearray types, has historically obscured that
fact.

As a key step in clarifying the situation, the codecs.encode() and codecs.decode() convenience func-
tions are now properly documented in Python 2.7, 3.3 and 3.4. These functions have existed in the codecs
module (and have been covered by the regression test suite) since Python 2.4, but were previously only discover-
able through runtime introspection.

Unlike the convenience methods on str, bytes and bytearray, the codecs convenience functions support
arbitrary codecs in both Python 2 and Python 3, rather than being limited to Unicode text encodings (in Python 3)
or basestring <-> basestring conversions (in Python 2).

In Python 3.4, the interpreter is able to identify the known non-text encodings provided in the standard library and
direct users towards these general purpose convenience functions when appropriate:

>>> b"abcdef".decode("hex")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
LookupError: 'hex' is not a text encoding; use codecs.decode() to handle arbitrary codecs

>>> "hello".encode("rot13")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
LookupError: 'rot13' is not a text encoding; use codecs.encode() to handle arbitrary codecs

>>> open("foo.txt", encoding="hex")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
LookupError: 'hex' is not a text encoding; use codecs.open() to handle arbitrary codecs

In a related change, whenever it is feasible without breaking backwards compatibility, exceptions raised during
encoding and decoding operations are wrapped in a chained exception of the same type that mentions the name of
the codec responsible for producing the error:

>>> import codecs

>>> codecs.decode(b"abcdefgh", "hex")
Traceback (most recent call last):

File "/usr/lib/python3.4/encodings/hex_codec.py", line 20, in hex_decode
return (binascii.a2b_hex(input), len(input))

binascii.Error: Non-hexadecimal digit found

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

binascii.Error: decoding with 'hex' codec failed (Error: Non-hexadecimal digit found)

>>> codecs.encode("hello", "bz2")
Traceback (most recent call last):

File "/usr/lib/python3.4/encodings/bz2_codec.py", line 17, in bz2_encode
return (bz2.compress(input), len(input))

File "/usr/lib/python3.4/bz2.py", line 498, in compress

https://www.python.org/dev/peps/pep-0446

return comp.compress(data) + comp.flush()
TypeError: 'str' does not support the buffer interface

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: encoding with 'bz2' codec failed (TypeError: 'str' does not support the buffer interface)

Finally, as the examples above show, these improvements have permitted the restoration of the convenience aliases
for the non-Unicode codecs that were themselves restored in Python 3.2. This means that encoding binary data to
and from its hexadecimal representation (for example) can now be written as:

>>> from codecs import encode, decode
>>> encode(b"hello", "hex")
b'68656c6c6f'
>>> decode(b"68656c6c6f", "hex")
b'hello'

The binary and text transforms provided in the standard library are detailed in binary-transforms and text-
transforms.

(Contributed by Nick Coghlan in issue 7475, issue 17827, issue 17828 and issue 19619.)

2.4 PEP 451: A ModuleSpec Type for the Import System

PEP 451 provides an encapsulation of the information about a module that the import machinery will use to load
it (that is, a module specification). This helps simplify both the import implementation and several import-related
APIs. The change is also a stepping stone for several future import-related improvements.

The public-facing changes from the PEP are entirely backward-compatible. Furthermore, they should be transpar-
ent to everyone but importer authors. Key finder and loader methods have been deprecated, but they will continue
working. New importers should use the new methods described in the PEP. Existing importers should be updated
to implement the new methods. See the Deprecated section for a list of methods that should be replaced and their
replacements.

2.5 Other Language Changes

Some smaller changes made to the core Python language are:

• Unicode database updated to UCD version 6.3.

• min() and max() now accept a default keyword-only argument that can be used to specify the value they
return if the iterable they are evaluating has no elements. (Contributed by Julian Berman in issue 18111.)

• Module objects are now weakref‘able.

• Module __file__ attributes (and related values) should now always contain absolute paths by default,
with the sole exception of __main__.__file__when a script has been executed directly using a relative
path. (Contributed by Brett Cannon in issue 18416.)

• All the UTF-* codecs (except UTF-7) now reject surrogates during both encoding and decoding unless
the surrogatepass error handler is used, with the exception of the UTF-16 decoder (which accepts
valid surrogate pairs) and the UTF-16 encoder (which produces them while encoding non-BMP characters).
(Contributed by Victor Stinner, Kang-Hao (Kenny) Lu and Serhiy Storchaka in issue 12892.)

• New German EBCDIC codec cp273. (Contributed by Michael Bierenfeld and Andrew Kuchling in issue
1097797.)

• New Ukrainian codec cp1125. (Contributed by Serhiy Storchaka in issue 19668.)

• bytes.join() and bytearray.join() now accept arbitrary buffer objects as arguments. (Contributed by
Antoine Pitrou in issue 15958.)

https://bugs.python.org/issue7475
https://bugs.python.org/issue17827
https://bugs.python.org/issue17828
https://bugs.python.org/issue19619
https://www.python.org/dev/peps/pep-0451
https://mail.python.org/pipermail/python-dev/2013-November/130111.html
https://bugs.python.org/issue18111
https://bugs.python.org/issue18416
https://bugs.python.org/issue12892
https://bugs.python.org/issue1097797
https://bugs.python.org/issue1097797
https://bugs.python.org/issue19668
https://bugs.python.org/issue15958

• The int constructor now accepts any object that has an __index__ method for its base argument. (Con-
tributed by Mark Dickinson in issue 16772.)

• Frame objects now have a clear() method that clears all references to local variables from the frame.
(Contributed by Antoine Pitrou in issue 17934.)

• memoryview is now registered as a Sequence, and supports the reversed() builtin. (Contributed by
Nick Coghlan and Claudiu Popa in issue 18690 and issue 19078.)

• Signatures reported by help() have been modified and improved in several cases as a result of the intro-
duction of Argument Clinic and other changes to the inspect and pydoc modules.

• __length_hint__() is now part of the formal language specification (see PEP 424). (Contributed by
Armin Ronacher in issue 16148.)

3 New Modules

3.1 asyncio

The new asyncio module (defined in PEP 3156) provides a standard pluggable event loop model for Python,
providing solid asynchronous IO support in the standard library, and making it easier for other event loop imple-
mentations to interoperate with the standard library and each other.

For Python 3.4, this module is considered a provisional API.

See also:

PEP 3156 – Asynchronous IO Support Rebooted: the “asyncio” Module PEP written and implementation
led by Guido van Rossum.

3.2 ensurepip

The new ensurepipmodule is the primary infrastructure for the PEP 453 implementation. In the normal course
of events end users will not need to interact with this module, but it can be used to manually bootstrap pip if the
automated bootstrapping into an installation or virtual environment was declined.

ensurepip includes a bundled copy of pip, up-to-date as of the first release candidate of the release of CPython
with which it ships (this applies to both maintenance releases and feature releases). ensurepip does not access
the internet. If the installation has Internet access, after ensurepip is run the bundled pip can be used to
upgrade pip to a more recent release than the bundled one. (Note that such an upgraded version of pip is
considered to be a separately installed package and will not be removed if Python is uninstalled.)

The module is named ensurepip because if called when pip is already installed, it does nothing. It also has an
--upgrade option that will cause it to install the bundled copy of pip if the existing installed version of pip
is older than the bundled copy.

3.3 enum

The new enum module (defined in PEP 435) provides a standard implementation of enumeration types, allowing
other modules (such as socket) to provide more informative error messages and better debugging support by
replacing opaque integer constants with backwards compatible enumeration values.

See also:

PEP 435 – Adding an Enum type to the Python standard library PEP written by Barry Warsaw, Eli Bender-
sky and Ethan Furman, implemented by Ethan Furman.

https://bugs.python.org/issue16772
https://bugs.python.org/issue17934
https://bugs.python.org/issue18690
https://bugs.python.org/issue19078
https://www.python.org/dev/peps/pep-0424
https://bugs.python.org/issue16148
https://www.python.org/dev/peps/pep-3156
https://www.python.org/dev/peps/pep-3156
https://www.python.org/dev/peps/pep-0453
https://www.python.org/dev/peps/pep-0435
https://www.python.org/dev/peps/pep-0435

3.4 pathlib

The new pathlib module offers classes representing filesystem paths with semantics appropriate for different
operating systems. Path classes are divided between pure paths, which provide purely computational operations
without I/O, and concrete paths, which inherit from pure paths but also provide I/O operations.

For Python 3.4, this module is considered a provisional API.

See also:

PEP 428 – The pathlib module – object-oriented filesystem paths PEP written and implemented by Antoine
Pitrou.

3.5 selectors

The new selectors module (created as part of implementing PEP 3156) allows high-level and efficient I/O
multiplexing, built upon the select module primitives.

3.6 statistics

The new statistics module (defined in PEP 450) offers some core statistics functionality directly in the
standard library. This module supports calculation of the mean, median, mode, variance and standard deviation of
a data series.

See also:

PEP 450 – Adding A Statistics Module To The Standard Library PEP written and implemented by Steven
D’Aprano

3.7 tracemalloc

The new tracemalloc module (defined in PEP 454) is a debug tool to trace memory blocks allocated by
Python. It provides the following information:

• Trace where an object was allocated

• Statistics on allocated memory blocks per filename and per line number: total size, number and average size
of allocated memory blocks

• Compute the differences between two snapshots to detect memory leaks

See also:

PEP 454 – Add a new tracemalloc module to trace Python memory allocations PEP written and imple-
mented by Victor Stinner

4 Improved Modules

4.1 abc

New function abc.get_cache_token() can be used to know when to invalidate caches that are affected by
changes in the object graph. (Contributed by Łukasz Langa in issue 16832.)

New class ABC has ABCMeta as its meta class. Using ABC as a base class has essentially the same effect as
specifying metaclass=abc.ABCMeta, but is simpler to type and easier to read. (Contributed by Bruno Dupuis
in issue 16049.)

https://www.python.org/dev/peps/pep-0428
https://www.python.org/dev/peps/pep-3156
https://www.python.org/dev/peps/pep-0450
https://www.python.org/dev/peps/pep-0450
https://www.python.org/dev/peps/pep-0454
https://www.python.org/dev/peps/pep-0454
https://bugs.python.org/issue16832
https://bugs.python.org/issue16049

4.2 aifc

The getparams() method now returns a namedtuple rather than a plain tuple. (Contributed by Claudiu Popa
in issue 17818.)

aifc.open() now supports the context management protocol: when used in a with block, the close()
method of the returned object will be called automatically at the end of the block. (Contributed by Serhiy Stor-
chacha in issue 16486.)

The writeframesraw() and writeframes() methods now accept any bytes-like object. (Contributed by
Serhiy Storchaka in issue 8311.)

4.3 argparse

The FileType class now accepts encoding and errors arguments, which are passed through to open(). (Con-
tributed by Lucas Maystre in issue 11175.)

4.4 audioop

audioop now supports 24-bit samples. (Contributed by Serhiy Storchaka in issue 12866.)

New byteswap() function converts big-endian samples to little-endian and vice versa. (Contributed by Serhiy
Storchaka in issue 19641.)

All audioop functions now accept any bytes-like object. Strings are not accepted: they didn’t work before, now
they raise an error right away. (Contributed by Serhiy Storchaka in issue 16685.)

4.5 base64

The encoding and decoding functions in base64 now accept any bytes-like object in cases where it previously
required a bytes or bytearray instance. (Contributed by Nick Coghlan in issue 17839.)

New functions a85encode(), a85decode(), b85encode(), and b85decode() provide the ability to
encode and decode binary data from and to Ascii85 and the git/mercurial Base85 formats, respectively. The
a85 functions have options that can be used to make them compatible with the variants of the Ascii85 encoding,
including the Adobe variant. (Contributed by Martin Morrison, the Mercurial project, Serhiy Storchaka, and
Antoine Pitrou in issue 17618.)

4.6 collections

The ChainMap.new_child() method now accepts an m argument specifying the child map to add to the
chain. This allows an existing mapping and/or a custom mapping type to be used for the child. (Contributed by
Vinay Sajip in issue 16613.)

4.7 colorsys

The number of digits in the coefficients for the RGB — YIQ conversions have been expanded so that they match
the FCC NTSC versions. The change in results should be less than 1% and may better match results found
elsewhere. (Contributed by Brian Landers and Serhiy Storchaka in issue 14323.)

4.8 contextlib

The new contextlib.suppress context manager helps to clarify the intent of code that deliberately sup-
presses exceptions from a single statement. (Contributed by Raymond Hettinger in issue 15806 and Zero Piraeus
in issue 19266.)

https://bugs.python.org/issue17818
https://bugs.python.org/issue16486
https://bugs.python.org/issue8311
https://bugs.python.org/issue11175
https://bugs.python.org/issue12866
https://bugs.python.org/issue19641
https://bugs.python.org/issue16685
https://bugs.python.org/issue17839
https://bugs.python.org/issue17618
https://bugs.python.org/issue16613
https://bugs.python.org/issue14323
https://bugs.python.org/issue15806
https://bugs.python.org/issue19266

The new contextlib.redirect_stdout() context manager makes it easier for utility scripts to han-
dle inflexible APIs that write their output to sys.stdout and don’t provide any options to redirect it. Using
the context manager, the sys.stdout output can be redirected to any other stream or, in conjunction with
io.StringIO, to a string. The latter can be especially useful, for example, to capture output from a function
that was written to implement a command line interface. It is recommended only for utility scripts because it
affects the global state of sys.stdout. (Contributed by Raymond Hettinger in issue 15805.)

The contextlib documentation has also been updated to include a discussion of the differences between single
use, reusable and reentrant context managers.

4.9 dbm

dbm.open() objects now support the context management protocol. When used in a with statement, the
close method of the database object will be called automatically at the end of the block. (Contributed by
Claudiu Popa and Nick Coghlan in issue 19282.)

4.10 dis

Functions show_code(), dis(), distb(), and disassemble() now accept a keyword-only file argument
that controls where they write their output.

The dis module is now built around an Instruction class that provides object oriented access to the details
of each individual bytecode operation.

A new method, get_instructions(), provides an iterator that emits the Instruction stream for a given piece
of Python code. Thus it is now possible to write a program that inspects and manipulates a bytecode object in
ways different from those provided by the dis module itself. For example:

>>> import dis
>>> for instr in dis.get_instructions(lambda x: x + 1):
... print(instr.opname)
LOAD_FAST
LOAD_CONST
BINARY_ADD
RETURN_VALUE

The various display tools in the dis module have been rewritten to use these new components.

In addition, a new application-friendly class Bytecode provides an object-oriented API for inspecting bytecode
in both in human-readable form and for iterating over instructions. The Bytecode constructor takes the same
arguments that get_instruction() does (plus an optional current_offset), and the resulting object can be
iterated to produce Instruction objects. But it also has a dis method, equivalent to calling dis on the
constructor argument, but returned as a multi-line string:

>>> bytecode = dis.Bytecode(lambda x: x +1, current_offset=3)
>>> for instr in bytecode:
... print('{} ({})'.format(instr.opname, instr.opcode))
LOAD_FAST (124)
LOAD_CONST (100)
BINARY_ADD (23)
RETURN_VALUE (83)
>>> bytecode.dis().splitlines()
[' 1 0 LOAD_FAST 0 (x)',
' --> 3 LOAD_CONST 1 (1)',
' 6 BINARY_ADD',
' 7 RETURN_VALUE']

Bytecode also has a class method, from_traceback(), that provides the ability to manipulate a traceback
(that is, print(Bytecode.from_traceback(tb).dis()) is equivalent to distb(tb)).

(Contributed by Nick Coghlan, Ryan Kelly and Thomas Kluyver in issue 11816 and Claudiu Popa in issue 17916.)

https://bugs.python.org/issue15805
https://bugs.python.org/issue19282
https://bugs.python.org/issue11816
https://bugs.python.org/issue17916

New function stack_effect() computes the effect on the Python stack of a given opcode and argument,
information that is not otherwise available. (Contributed by Larry Hastings in issue 19722.)

4.11 doctest

A new option flag, FAIL_FAST, halts test running as soon as the first failure is detected. (Contributed by R.
David Murray and Daniel Urban in issue 16522.)

The doctest command line interface now uses argparse, and has two new options, -o and -f. -o allows
doctest options to be specified on the command line, and -f is a shorthand for -o FAIL_FAST (to parallel the
similar option supported by the unittest CLI). (Contributed by R. David Murray in issue 11390.)

doctest will now find doctests in extension module __doc__ strings. (Contributed by Zachary Ware in issue
3158.)

4.12 email

as_string() now accepts a policy argument to override the default policy of the message when generating a
string representation of it. This means that as_string can now be used in more circumstances, instead of having
to create and use a generator in order to pass formatting parameters to its flatten method. (Contributed by
R. David Murray in issue 18600.)

New method as_bytes() added to produce a bytes representation of the message in a fashion similar to how
as_string produces a string representation. It does not accept the maxheaderlen argument, but does accept the
unixfrom and policy arguments. The Message __bytes__() method calls it, meaning that bytes(mymsg)
will now produce the intuitive result: a bytes object containing the fully formatted message. (Contributed by R.
David Murray in issue 18600.)

The Message.set_param() message now accepts a replace keyword argument. When specified, the associ-
ated header will be updated without changing its location in the list of headers. For backward compatibility, the
default is False. (Contributed by R. David Murray in issue 18891.) A pair of new subclasses of Message
have been added (EmailMessage and MIMEPart), along with a new sub-module, contentmanager and a
new policy attribute content_manager. All documentation is currently in the new module, which is being
added as part of email’s new provisional API. These classes provide a number of new methods that make extract-
ing content from and inserting content into email messages much easier. For details, see the contentmanager
documentation and the email-contentmanager-api-examples. These API additions complete the bulk of the work
that was planned as part of the email6 project. The currently provisional API is scheduled to become final in
Python 3.5 (possibly with a few minor additions in the area of error handling). (Contributed by R. David Murray
in issue 18891.)

4.13 filecmp

A new clear_cache() function provides the ability to clear the filecmp comparison cache, which uses
os.stat() information to determine if the file has changed since the last compare. This can be used, for
example, if the file might have been changed and re-checked in less time than the resolution of a particular
filesystem’s file modification time field. (Contributed by Mark Levitt in issue 18149.)

New module attribute DEFAULT_IGNORES provides the list of directories that are used as the default value for
the ignore parameter of the dircmp() function. (Contributed by Eli Bendersky in issue 15442.)

4.14 functools

The new partialmethod() descriptor brings partial argument application to descriptors, just as partial()
provides for normal callables. The new descriptor also makes it easier to get arbitrary callables (including
partial() instances) to behave like normal instance methods when included in a class definition. (Contributed
by Alon Horev and Nick Coghlan in issue 4331.) The new singledispatch() decorator brings support for
single-dispatch generic functions to the Python standard library. Where object oriented programming focuses on

https://bugs.python.org/issue19722
https://bugs.python.org/issue16522
https://bugs.python.org/issue11390
https://bugs.python.org/issue3158
https://bugs.python.org/issue3158
https://bugs.python.org/issue18600
https://bugs.python.org/issue18600
https://bugs.python.org/issue18891
https://bugs.python.org/issue18891
https://bugs.python.org/issue18149
https://bugs.python.org/issue15442
https://bugs.python.org/issue4331

grouping multiple operations on a common set of data into a class, a generic function focuses on grouping multiple
implementations of an operation that allows it to work with different kinds of data.

See also:

PEP 443 – Single-dispatch generic functions PEP written and implemented by Łukasz Langa.

total_ordering() now supports a return value of NotImplemented from the underlying comparison
function. (Contributed by Katie Miller in issue 10042.)

A pure-python version of the partial() function is now in the stdlib; in CPython it is overridden by the C
accelerated version, but it is available for other implementations to use. (Contributed by Brian Thorne in issue
12428.)

4.15 gc

New function get_stats() returns a list of three per-generation dictionaries containing the collections statistics
since interpreter startup. (Contributed by Antoine Pitrou in issue 16351.)

4.16 glob

A new function escape() provides a way to escape special characters in a filename so that they do not become
part of the globbing expansion but are instead matched literally. (Contributed by Serhiy Storchaka in issue 8402.)

4.17 hashlib

A new hashlib.pbkdf2_hmac() function provides the PKCS#5 password-based key derivation function 2.
(Contributed by Christian Heimes in issue 18582.)

The name attribute of hashlib hash objects is now a formally supported interface. It has always existed in
CPython’s hashlib (although it did not return lower case names for all supported hashes), but it was not a
public interface and so some other Python implementations have not previously supported it. (Contributed by
Jason R. Coombs in issue 18532.)

4.18 hmac

hmac now accepts bytearray as well as bytes for the key argument to the new() function, and the msg pa-
rameter to both the new() function and the update()method now accepts any type supported by the hashlib
module. (Contributed by Jonas Borgström in issue 18240.)

The digestmod argument to the hmac.new() function may now be any hash digest name recognized by
hashlib. In addition, the current behavior in which the value of digestmod defaults to MD5 is deprecated:
in a future version of Python there will be no default value. (Contributed by Christian Heimes in issue 17276.)

With the addition of block_size and name attributes (and the formal documentation of the digest_size
attribute), the hmac module now conforms fully to the PEP 247 API. (Contributed by Christian Heimes in issue
18775.)

4.19 html

New function unescape() function converts HTML5 character references to the corresponding Unicode char-
acters. (Contributed by Ezio Melotti in issue 2927.)

HTMLParser accepts a new keyword argument convert_charrefs that, when True, automatically converts all
character references. For backward-compatibility, its value defaults to False, but it will change to True in
a future version of Python, so you are invited to set it explicitly and update your code to use this new feature.
(Contributed by Ezio Melotti in issue 13633.)

The strict argument of HTMLParser is now deprecated. (Contributed by Ezio Melotti in issue 15114.)

https://www.python.org/dev/peps/pep-0443
https://bugs.python.org/issue10042
https://bugs.python.org/issue12428
https://bugs.python.org/issue12428
https://bugs.python.org/issue16351
https://bugs.python.org/issue8402
http://en.wikipedia.org/wiki/PBKDF2
https://bugs.python.org/issue18582
https://bugs.python.org/issue18532
https://bugs.python.org/issue18240
https://bugs.python.org/issue17276
https://www.python.org/dev/peps/pep-0247
https://bugs.python.org/issue18775
https://bugs.python.org/issue18775
https://bugs.python.org/issue2927
https://bugs.python.org/issue13633
https://bugs.python.org/issue15114

4.20 http

send_error() now accepts an optional additional explain parameter which can be used to provide an extended
error description, overriding the hardcoded default if there is one. This extended error description will be formatted
using the error_message_format attribute and sent as the body of the error response. (Contributed by Karl
Cow in issue 12921.)

The http.server command line interface now has a -b/--bind option that causes the server to listen on a
specific address. (Contributed by Malte Swart in issue 17764.)

4.21 idlelib and IDLE

Since idlelib implements the IDLE shell and editor and is not intended for import by other programs, it gets
improvements with every release. See Lib/idlelib/NEWS.txt for a cumulative list of changes since 3.3.0,
as well as changes made in future 3.4.x releases. This file is also available from the IDLE Help → About IDLE
dialog.

4.22 importlib

The InspectLoader ABC defines a new method, source_to_code() that accepts source data and a path
and returns a code object. The default implementation is equivalent to compile(data, path, ’exec’,
dont_inherit=True). (Contributed by Eric Snow and Brett Cannon in issue 15627.)

InspectLoader also now has a default implementation for the get_code() method. However, it will nor-
mally be desirable to override the default implementation for performance reasons. (Contributed by Brett Cannon
in issue 18072.)

The reload() function has been moved from imp to importlib as part of the imp module deprecation.
(Contributed by Berker Peksag in issue 18193.)

importlib.util now has a MAGIC_NUMBER attribute providing access to the bytecode version number.
This replaces the get_magic() function in the deprecated imp module. (Contributed by Brett Cannon in issue
18192.)

New importlib.util functions cache_from_source() and source_from_cache() replace the
same-named functions in the deprecated imp module. (Contributed by Brett Cannon in issue 18194.)

The importlib bootstrap NamespaceLoader now conforms to the InspectLoader ABC, which means
that runpy and python -m can now be used with namespace packages. (Contributed by Brett Cannon in issue
18058.)

importlib.util has a new function decode_source() that decodes source from bytes using universal
newline processing. This is useful for implementing InspectLoader.get_source() methods.

importlib.machinery.ExtensionFileLoader now has a get_filename() method. This was in-
advertently omitted in the original implementation. (Contributed by Eric Snow in issue 19152.)

4.23 inspect

The inspect module now offers a basic command line interface to quickly display source code and other infor-
mation for modules, classes and functions. (Contributed by Claudiu Popa and Nick Coghlan in issue 18626.)

unwrap() makes it easy to unravel wrapper function chains created by functools.wraps() (and any other
API that sets the __wrapped__ attribute on a wrapper function). (Contributed by Daniel Urban, Aaron Iles and
Nick Coghlan in issue 13266.)

As part of the implementation of the new enum module, the inspect module now has substantially better
support for custom __dir__ methods and dynamic class attributes provided through metaclasses. (Contributed
by Ethan Furman in issue 18929 and issue 19030.)

https://bugs.python.org/issue12921
https://bugs.python.org/issue17764
https://bugs.python.org/issue15627
https://bugs.python.org/issue18072
https://bugs.python.org/issue18193
https://bugs.python.org/issue18192
https://bugs.python.org/issue18192
https://bugs.python.org/issue18194
https://bugs.python.org/issue18058
https://bugs.python.org/issue18058
https://bugs.python.org/issue19152
https://bugs.python.org/issue18626
https://bugs.python.org/issue13266
https://bugs.python.org/issue18929
https://bugs.python.org/issue19030

getfullargspec() and getargspec() now use the signature() API. This allows them to support a
much broader range of callables, including those with __signature__ attributes, those with metadata provided
by argument clinic, functools.partial() objects and more. Note that, unlike signature(), these func-
tions still ignore __wrapped__ attributes, and report the already bound first argument for bound methods, so it
is still necessary to update your code to use signature() directly if those features are desired. (Contributed by
Yury Selivanov in issue 17481.)

signature() now supports duck types of CPython functions, which adds support for functions compiled with
Cython. (Contributed by Stefan Behnel and Yury Selivanov in issue 17159.)

4.24 ipaddress

ipaddress was added to the standard library in Python 3.3 as a provisional API. With the release of Python 3.4,
this qualification has been removed: ipaddress is now considered a stable API, covered by the normal standard
library requirements to maintain backwards compatibility.

A new is_global property is True if an address is globally routeable. (Contributed by Peter Moody in issue
17400.)

4.25 logging

The TimedRotatingFileHandler has a new atTime parameter that can be used to specify the time of day
when rollover should happen. (Contributed by Ronald Oussoren in issue 9556.)

SocketHandler and DatagramHandler now support Unix domain sockets (by setting port to None). (Con-
tributed by Vinay Sajip in commit ce46195b56a9.)

fileConfig() now accepts a configparser.RawConfigParser subclass instance for the fname pa-
rameter. This facilitates using a configuration file when logging configuration is just a part of the overall appli-
cation configuration, or where the application modifies the configuration before passing it to fileConfig().
(Contributed by Vinay Sajip in issue 16110.)

Logging configuration data received from a socket via the logging.config.listen() function can now be
validated before being processed by supplying a verification function as the argument to the new verify keyword
argument. (Contributed by Vinay Sajip in issue 15452.)

4.26 marshal

The default marshal version has been bumped to 3. The code implementing the new version restores the Python2
behavior of recording only one copy of interned strings and preserving the interning on deserialization, and extends
this “one copy” ability to any object type (including handling recursive references). This reduces both the size of
.pyc files and the amount of memory a module occupies in memory when it is loaded from a .pyc (or .pyo)
file. (Contributed by Kristján Valur Jónsson in issue 16475, with additional speedups by Antoine Pitrou in issue
19219.)

4.27 mmap

mmap objects can now be weakrefed. (Contributed by Valerie Lambert in issue 4885.)

4.28 multiprocessing

On Unix two new start methods, spawn and forkserver, have been added for starting processes
using multiprocessing. These make the mixing of processes with threads more robust, and the
spawn method matches the semantics that multiprocessing has always used on Windows. New function
get_all_start_methods() reports all start methods available on the platform, get_start_method()

https://bugs.python.org/issue17481
https://bugs.python.org/issue17159
https://bugs.python.org/issue17400
https://bugs.python.org/issue17400
https://bugs.python.org/issue9556
https://bugs.python.org/issue16110
https://bugs.python.org/issue15452
https://bugs.python.org/issue16475
https://bugs.python.org/issue19219
https://bugs.python.org/issue19219
https://bugs.python.org/issue4885

reports the current start method, and set_start_method() sets the start method. (Contributed by Richard
Oudkerk in issue 8713.)

multiprocessing also now has the concept of a context, which determines how child processes are created.
New function get_context() returns a context that uses a specified start method. It has the same API as
the multiprocessing module itself, so you can use it to create Pools and other objects that will operate
within that context. This allows a framework and an application or different parts of the same application to use
multiprocessing without interfering with each other. (Contributed by Richard Oudkerk in issue 18999.)

Except when using the old fork start method, child processes no longer inherit unneeded handles/file descriptors
from their parents (part of issue 8713).

multiprocessing now relies on runpy (which implements the -m switch) to initialise __main__ appro-
priately in child processes when using the spawn or forkserver start methods. This resolves some edge cases
where combining multiprocessing, the -m command line switch, and explicit relative imports could cause obscure
failures in child processes. (Contributed by Nick Coghlan in issue 19946.)

4.29 operator

New function length_hint() provides an implementation of the specification for how the
__length_hint__() special method should be used, as part of the PEP 424 formal specification of
this language feature. (Contributed by Armin Ronacher in issue 16148.)

There is now a pure-python version of the operator module available for reference and for use by alternate
implementations of Python. (Contributed by Zachary Ware in issue 16694.)

4.30 os

There are new functions to get and set the inheritable flag of a file descriptor (os.get_inheritable(),
os.set_inheritable()) or a Windows handle (os.get_handle_inheritable(),
os.set_handle_inheritable()).

New function cpu_count() reports the number of CPUs available on the platform on which Python is run-
ning (or None if the count can’t be determined). The multiprocessing.cpu_count() function is now
implemented in terms of this function). (Contributed by Trent Nelson, Yogesh Chaudhari, Victor Stinner, and
Charles-François Natali in issue 17914.)

os.path.samestat() is now available on the Windows platform (and the os.path.samefile() imple-
mentation is now shared between Unix and Windows). (Contributed by Brian Curtin in issue 11939.)

os.path.ismount() now recognizes volumes mounted below a drive root on Windows. (Contributed by Tim
Golden in issue 9035.)

os.open() supports two new flags on platforms that provide them, O_PATH (un-opened file descriptor), and
O_TMPFILE (unnamed temporary file; as of 3.4.0 release available only on Linux systems with a kernel version
of 3.11 or newer that have uapi headers). (Contributed by Christian Heimes in issue 18673 and Benjamin Peterson,
respectively.)

4.31 pdb

pdb has been enhanced to handle generators, yield, and yield from in a more useful fashion. This is
especially helpful when debugging asyncio based programs. (Contributed by Andrew Svetlov and Xavier de
Gaye in issue 16596.)

The print command has been removed from pdb, restoring access to the Python print() function from
the pdb command line. Python2’s pdb did not have a print command; instead, entering print executed the
print statement. In Python3 print was mistakenly made an alias for the pdb p command. p, however, prints
the repr of its argument, not the str like the Python2 print command did. Worse, the Python3 pdb print
command shadowed the Python3 print function, making it inaccessible at the pdb prompt. (Contributed by
Connor Osborn in issue 18764.)

https://bugs.python.org/issue8713
https://bugs.python.org/issue18999
https://bugs.python.org/issue8713
https://bugs.python.org/issue19946
https://www.python.org/dev/peps/pep-0424
https://bugs.python.org/issue16148
https://bugs.python.org/issue16694
https://bugs.python.org/issue17914
https://bugs.python.org/issue11939
https://bugs.python.org/issue9035
https://bugs.python.org/issue18673
https://bugs.python.org/issue16596
https://bugs.python.org/issue18764

4.32 pickle

pickle now supports (but does not use by default) a new pickle protocol, protocol 4. This new protocol addresses
a number of issues that were present in previous protocols, such as the serialization of nested classes, very large
strings and containers, and classes whose __new__() method takes keyword-only arguments. It also provides
some efficiency improvements.

See also:

PEP 3154 – Pickle protocol 4 PEP written by Antoine Pitrou and implemented by Alexandre Vassalotti.

4.33 plistlib

plistlib now has an API that is similar to the standard pattern for stdlib serialization protocols, with new
load(), dump(), loads(), and dumps() functions. (The older API is now deprecated.) In addition to the
already supported XML plist format (FMT_XML), it also now supports the binary plist format (FMT_BINARY).
(Contributed by Ronald Oussoren and others in issue 14455.)

4.34 poplib

Two new methods have been added to poplib: capa(), which returns the list of capabilities advertised by the
POP server, and stls(), which switches a clear-text POP3 session into an encrypted POP3 session if the POP
server supports it. (Contributed by Lorenzo Catucci in issue 4473.)

4.35 pprint

The pprint module’s PrettyPrinter class and its pformat(), and pprint() functions have a new op-
tion, compact, that controls how the output is formatted. Currently setting compact to True means that sequences
will be printed with as many sequence elements as will fit within width on each (indented) line. (Contributed by
Serhiy Storchaka in issue 19132.)

Long strings are now wrapped using Python’s normal line continuation syntax. (Contributed by Antoine Pitrou in
issue 17150.)

4.36 pty

pty.spawn() now returns the status value from os.waitpid() on the child process, instead of None. (Con-
tributed by Gregory P. Smith.)

4.37 pydoc

The pydoc module is now based directly on the inspect.signature() introspection API, allowing it to
provide signature information for a wider variety of callable objects. This change also means that __wrapped__
attributes are now taken into account when displaying help information. (Contributed by Larry Hastings in issue
19674.)

The pydoc module no longer displays the self parameter for already bound methods. Instead, it aims to always
display the exact current signature of the supplied callable. (Contributed by Larry Hastings in issue 20710.)

In addition to the changes that have been made to pydoc directly, its handling of custom __dir__ methods and
various descriptor behaviours has also been improved substantially by the underlying changes in the inspect
module.

As the help() builtin is based on pydoc, the above changes also affect the behaviour of help().

https://www.python.org/dev/peps/pep-3154
https://bugs.python.org/issue14455
https://bugs.python.org/issue4473
https://bugs.python.org/issue19132
https://bugs.python.org/issue17150
https://bugs.python.org/issue19674
https://bugs.python.org/issue19674
https://bugs.python.org/issue20710

4.38 re

New fullmatch() function and regex.fullmatch() method anchor the pattern at both ends of the string
to match. This provides a way to be explicit about the goal of the match, which avoids a class of subtle bugs
where $ characters get lost during code changes or the addition of alternatives to an existing regular expression.
(Contributed by Matthew Barnett in issue 16203.)

The repr of regex objects now includes the pattern and the flags; the repr of match objects now includes the start,
end, and the part of the string that matched. (Contributed by Hugo Lopes Tavares and Serhiy Storchaka in issue
13592 and issue 17087.)

4.39 resource

New prlimit() function, available on Linux platforms with a kernel version of 2.6.36 or later and glibc of 2.13
or later, provides the ability to query or set the resource limits for processes other than the one making the call.
(Contributed by Christian Heimes in issue 16595.)

On Linux kernel version 2.6.36 or later, there are there are also some new Linux specific constants:
RLIMIT_MSGQUEUE, RLIMIT_NICE, RLIMIT_RTPRIO, RLIMIT_RTTIME, and RLIMIT_SIGPENDING.
(Contributed by Christian Heimes in issue 19324.)

On FreeBSD version 9 and later, there some new FreeBSD specific constants: RLIMIT_SBSIZE,
RLIMIT_SWAP, and RLIMIT_NPTS. (Contributed by Claudiu Popa in issue 19343.)

4.40 select

epoll objects now support the context management protocol. When used in a with statement, the close()
method will be called automatically at the end of the block. (Contributed by Serhiy Storchaka in issue 16488.)

devpoll objects now have fileno() and close() methods, as well as a new attribute closed. (Con-
tributed by Victor Stinner in issue 18794.)

4.41 shelve

Shelf instances may now be used in with statements, and will be automatically closed at the end of the with
block. (Contributed by Filip Gruszczyński in issue 13896.)

4.42 shutil

copyfile() now raises a specific Error subclass, SameFileError, when the source and destination are
the same file, which allows an application to take appropriate action on this specific error. (Contributed by Atsuo
Ishimoto and Hynek Schlawack in issue 1492704.)

4.43 smtpd

The SMTPServer and SMTPChannel classes now accept a map keyword argument which, if specified, is
passed in to asynchat.async_chat as its map argument. This allows an application to avoid affecting the
global socket map. (Contributed by Vinay Sajip in issue 11959.)

4.44 smtplib

SMTPException is now a subclass of OSError, which allows both socket level errors and SMTP protocol
level errors to be caught in one try/except statement by code that only cares whether or not an error occurred.
(Contributed by Ned Jackson Lovely in issue 2118.)

https://bugs.python.org/issue16203
https://bugs.python.org/issue13592
https://bugs.python.org/issue13592
https://bugs.python.org/issue17087
https://bugs.python.org/issue16595
https://bugs.python.org/issue19324
https://bugs.python.org/issue19343
https://bugs.python.org/issue16488
https://bugs.python.org/issue18794
https://bugs.python.org/issue13896
https://bugs.python.org/issue1492704
https://bugs.python.org/issue11959
https://bugs.python.org/issue2118

4.45 socket

The socket module now supports the CAN_BCM protocol on platforms that support it. (Contributed by Brian
Thorne in issue 15359.)

Socket objects have new methods to get or set their inheritable flag, get_inheritable() and
set_inheritable().

The socket.AF_* and socket.SOCK_* constants are now enumeration values using the new enum module.
This allows meaningful names to be printed during debugging, instead of integer “magic numbers”.

The AF_LINK constant is now available on BSD and OSX.

inet_pton() and inet_ntop() are now supported on Windows. (Contributed by Atsuo Ishimoto in issue
7171.)

4.46 sqlite3

A new boolean parameter to the connect() function, uri, can be used to indicate that the database parameter is
a uri (see the SQLite URI documentation). (Contributed by poq in issue 13773.)

4.47 ssl

PROTOCOL_TLSv1_1 and PROTOCOL_TLSv1_2 (TLSv1.1 and TLSv1.2 support) have been added; support
for these protocols is only available if Python is linked with OpenSSL 1.0.1 or later. (Contributed by Michele
Orrù and Antoine Pitrou in issue 16692.) New function create_default_context() provides a standard
way to obtain an SSLContext whose settings are intended to be a reasonable balance between compatibility
and security. These settings are more stringent than the defaults provided by the SSLContext constructor, and
may be adjusted in the future, without prior deprecation, if best-practice security requirements change. The new
recommended best practice for using stdlib libraries that support SSL is to use create_default_context()
to obtain an SSLContext object, modify it if needed, and then pass it as the context argument of the appropriate
stdlib API. (Contributed by Christian Heimes in issue 19689.)

SSLContext method load_verify_locations() accepts a new optional argument cadata, which can
be used to provide PEM or DER encoded certificates directly via strings or bytes, respectively. (Contributed by
Christian Heimes in issue 18138.)

New function get_default_verify_paths() returns a named tuple of the paths and environment variables
that the set_default_verify_paths()method uses to set OpenSSL’s default cafile and capath. This
can be an aid in debugging default verification issues. (Contributed by Christian Heimes in issue 18143.)

SSLContext has a new method, cert_store_stats(), that reports the number of loaded X.509 certs,
X.509 CA certs, and certificate revocation lists (crls), as well as a get_ca_certs() method that returns a
list of the loaded CA certificates. (Contributed by Christian Heimes in issue 18147.)

If OpenSSL 0.9.8 or later is available, SSLContext has an new attribute verify_flags that
can be used to control the certificate verification process by setting it to some combination of
the new constants VERIFY_DEFAULT, VERIFY_CRL_CHECK_LEAF, VERIFY_CRL_CHECK_CHAIN, or
VERIFY_X509_STRICT. OpenSSL does not do any CRL verification by default. (Contributed by Christien
Heimes in issue 8813.)

New SSLContext method load_default_certs() loads a set of default “certificate authority” (CA) cer-
tificates from default locations, which vary according to the platform. It can be used to load both TLS web
server authentication certificates (purpose=SERVER_AUTH) for a client to use to verify a server, and certifi-
cates for a server to use in verifying client certificates (purpose=CLIENT_AUTH). (Contributed by Christian
Heimes in issue 19292.) Two new windows-only functions, enum_certificates() and enum_crls()
provide the ability to retrieve certificates, certificate information, and CRLs from the Windows cert store. (Con-
tributed by Christian Heimes in issue 17134.) Support for server-side SNI (Server Name Indication) using the
new ssl.SSLContext.set_servername_callback() method. (Contributed by Daniel Black in issue
8109.)

https://bugs.python.org/issue15359
https://bugs.python.org/issue7171
https://bugs.python.org/issue7171
http://www.sqlite.org/uri.html
https://bugs.python.org/issue13773
https://bugs.python.org/issue16692
https://bugs.python.org/issue19689
https://bugs.python.org/issue18138
https://bugs.python.org/issue18143
https://bugs.python.org/issue18147
https://bugs.python.org/issue8813
https://bugs.python.org/issue19292
https://bugs.python.org/issue17134
https://bugs.python.org/issue8109
https://bugs.python.org/issue8109

The dictionary returned by SSLSocket.getpeercert() contains additional X509v3 extension items:
crlDistributionPoints, calIssuers, and OCSP URIs. (Contributed by Christian Heimes in issue
18379.)

4.48 stat

The stat module is now backed by a C implementation in _stat. A C implementation is required as most of
the values aren’t standardized and are platform-dependent. (Contributed by Christian Heimes in issue 11016.)

The module supports new ST_MODE flags, S_IFDOOR, S_IFPORT, and S_IFWHT. (Contributed by Christian
Hiemes in issue 11016.)

4.49 struct

New function iter_unpack and a new struct.Struct.iter_unpack() method on compiled formats
provide streamed unpacking of a buffer containing repeated instances of a given format of data. (Contributed by
Antoine Pitrou in issue 17804.)

4.50 subprocess

check_output() now accepts an input argument that can be used to provide the contents of stdin for the
command that is run. (Contributed by Zack Weinberg in issue 16624.)

getstatus() and getstatusoutput() now work on Windows. This change was actually inadvertently
made in 3.3.4. (Contributed by Tim Golden in issue 10197.)

4.51 sunau

The getparams() method now returns a namedtuple rather than a plain tuple. (Contributed by Claudiu Popa
in issue 18901.)

sunau.open() now supports the context management protocol: when used in a with block, the close
method of the returned object will be called automatically at the end of the block. (Contributed by Serhiy Stor-
chaka in issue 18878.)

AU_write.setsampwidth() now supports 24 bit samples, thus adding support for writing 24 sample using
the module. (Contributed by Serhiy Storchaka in issue 19261.)

The writeframesraw() and writeframes() methods now accept any bytes-like object. (Contributed by
Serhiy Storchaka in issue 8311.)

4.52 sys

New function sys.getallocatedblocks() returns the current number of blocks allocated by the in-
terpreter. (In CPython with the default --with-pymalloc setting, this is allocations made through the
PyObject_Malloc() API.) This can be useful for tracking memory leaks, especially if automated via a test
suite. (Contributed by Antoine Pitrou in issue 13390.)

When the Python interpreter starts in interactive mode, it checks for an __interactivehook__ attribute on
the sys module. If the attribute exists, its value is called with no arguments just before interactive mode is
started. The check is made after the PYTHONSTARTUP file is read, so it can be set there. The site module
sets it to a function that enables tab completion and history saving (in ~/.python-history) if the plat-
form supports readline. If you do not want this (new) behavior, you can override it in PYTHONSTARTUP,
sitecustomize, or usercustomize by deleting this attribute from sys (or setting it to some other callable).
(Contributed by Éric Araujo and Antoine Pitrou in issue 5845.)

https://bugs.python.org/issue18379
https://bugs.python.org/issue18379
https://bugs.python.org/issue11016
https://bugs.python.org/issue11016
https://bugs.python.org/issue17804
https://bugs.python.org/issue16624
https://bugs.python.org/issue10197
https://bugs.python.org/issue18901
https://bugs.python.org/issue18878
https://bugs.python.org/issue19261
https://bugs.python.org/issue8311
https://bugs.python.org/issue13390
https://bugs.python.org/issue5845

4.53 tarfile

The tarfile module now supports a simple tarfile-commandline when called as a script directly or via -m. This
can be used to create and extract tarfile archives. (Contributed by Berker Peksag in issue 13477.)

4.54 textwrap

The TextWrapper class has two new attributes/constructor arguments: max_lines, which limits the number
of lines in the output, and placeholder, which is a string that will appear at the end of the output if it has
been truncated because of max_lines. Building on these capabilities, a new convenience function shorten()
collapses all of the whitespace in the input to single spaces and produces a single line of a given width that ends
with the placeholder (by default, [...]). (Contributed by Antoine Pitrou and Serhiy Storchaka in issue 18585
and issue 18725.)

4.55 threading

The Thread object representing the main thread can be obtained from the new main_thread() function. In
normal conditions this will be the thread from which the Python interpreter was started. (Contributed by Andrew
Svetlov in issue 18882.)

4.56 traceback

A new traceback.clear_frames() function takes a traceback object and clears the local variables in all
of the frames it references, reducing the amount of memory consumed. (Contributed by Andrew Kuchling in issue
1565525.)

4.57 types

A new DynamicClassAttribute() descriptor provides a way to define an attribute that acts normally when
looked up through an instance object, but which is routed to the class __getattr__ when looked up through
the class. This allows one to have properties active on a class, and have virtual attributes on the class with the
same name (see Enum for an example). (Contributed by Ethan Furman in issue 19030.)

4.58 urllib

urllib.request now supports data: URLs via the DataHandler class. (Contributed by Mathias Panzen-
böck in issue 16423.)

The http method that will be used by a Request class can now be specified by setting a method class attribute
on the subclass. (Contributed by Jason R Coombs in issue 18978.)

Request objects are now reusable: if the full_url or data attributes are modified, all relevant internal
properties are updated. This means, for example, that it is now possible to use the same Request object in
more than one OpenerDirector.open() call with different data arguments, or to modify a Request‘s
url rather than recomputing it from scratch. There is also a new remove_header() method that can be used
to remove headers from a Request. (Contributed by Alexey Kachayev in issue 16464, Daniel Wozniak in issue
17485, and Damien Brecht and Senthil Kumaran in issue 17272.)

HTTPError objects now have a headers attribute that provides access to the HTTP response headers associated
with the error. (Contributed by Berker Peksag in issue 15701.)

https://bugs.python.org/issue13477
https://bugs.python.org/issue18585
https://bugs.python.org/issue18725
https://bugs.python.org/issue18882
https://bugs.python.org/issue1565525
https://bugs.python.org/issue1565525
https://bugs.python.org/issue19030
https://bugs.python.org/issue16423
https://bugs.python.org/issue18978
https://bugs.python.org/issue16464
https://bugs.python.org/issue17485
https://bugs.python.org/issue17485
https://bugs.python.org/issue17272
https://bugs.python.org/issue15701

4.59 unittest

The TestCase class has a new method, subTest(), that produces a context manager whose with block
becomes a “sub-test”. This context manager allows a test method to dynamically generate subtests by, say, calling
the subTest context manager inside a loop. A single test method can thereby produce an indefinite number
of separately-identified and separately-counted tests, all of which will run even if one or more of them fail. For
example:

class NumbersTest(unittest.TestCase):
def test_even(self):

for i in range(6):
with self.subTest(i=i):

self.assertEqual(i % 2, 0)

will result in six subtests, each identified in the unittest verbose output with a label consisting of the variable
name i and a particular value for that variable (i=0, i=1, etc). See subtests for the full version of this example.
(Contributed by Antoine Pitrou in issue 16997.)

unittest.main() now accepts an iterable of test names for defaultTest, where previously it only accepted a
single test name as a string. (Contributed by Jyrki Pulliainen in issue 15132.)

If SkipTest is raised during test discovery (that is, at the module level in the test file), it is now reported as a
skip instead of an error. (Contributed by Zach Ware in issue 16935.)

discover() now sorts the discovered files to provide consistent test ordering. (Contributed by Martin Melin
and Jeff Ramnani in issue 16709.)

TestSuite now drops references to tests as soon as the test has been run, if the test is successful. On Python
interpreters that do garbage collection, this allows the tests to be garbage collected if nothing else is holding a
reference to the test. It is possible to override this behavior by creating a TestSuite subclass that defines a
custom _removeTestAtIndex method. (Contributed by Tom Wardill, Matt McClure, and Andrew Svetlov in
issue 11798.)

A new test assertion context-manager, assertLogs(), will ensure that a given block of code emits a log mes-
sage using the logging module. By default the message can come from any logger and have a priority of INFO
or higher, but both the logger name and an alternative minimum logging level may be specified. The object re-
turned by the context manager can be queried for the LogRecords and/or formatted messages that were logged.
(Contributed by Antoine Pitrou in issue 18937.)

Test discovery now works with namespace packages (Contributed by Claudiu Popa in issue 17457.)

unittest.mock objects now inspect their specification signatures when matching calls, which means an argu-
ment can now be matched by either position or name, instead of only by position. (Contributed by Antoine Pitrou
in issue 17015.)

mock_open() objects now have readline and readlines methods. (Contributed by Toshio Kuratomi in
issue 17467.)

4.60 venv

venv now includes activation scripts for the csh and fish shells. (Contributed by Andrew Svetlov in issue
15417.)

EnvBuilder and the create() convenience function take a new keyword argument with_pip, which defaults
to False, that controls whether or not EnvBuilder ensures that pip is installed in the virtual environment.
(Contributed by Nick Coghlan in issue 19552 as part of the PEP 453 implementation.)

4.61 wave

The getparams() method now returns a namedtuple rather than a plain tuple. (Contributed by Claudiu Popa
in issue 17487.)

https://bugs.python.org/issue16997
https://bugs.python.org/issue15132
https://bugs.python.org/issue16935
https://bugs.python.org/issue16709
https://bugs.python.org/issue11798
https://bugs.python.org/issue18937
https://bugs.python.org/issue17457
https://bugs.python.org/issue17015
https://bugs.python.org/issue17467
https://bugs.python.org/issue15417
https://bugs.python.org/issue15417
https://bugs.python.org/issue19552
https://www.python.org/dev/peps/pep-0453
https://bugs.python.org/issue17487

wave.open() now supports the context management protocol. (Contributed by Claudiu Popa in issue 17616.)

wave can now write output to unseekable files. (Contributed by David Jones, Guilherme Polo, and Serhiy Stor-
chaka in issue 5202.)

The writeframesraw() and writeframes() methods now accept any bytes-like object. (Contributed by
Serhiy Storchaka in issue 8311.)

4.62 weakref

New WeakMethod class simulates weak references to bound methods. (Contributed by Antoine Pitrou in issue
14631.)

New finalize class makes it possible to register a callback to be invoked when an object is garbage collected,
without needing to carefully manage the lifecycle of the weak reference itself. (Contributed by Richard Oudkerk
in issue 15528.)

The callback, if any, associated with a ref is now exposed via the __callback__ attribute. (Contributed by
Mark Dickinson in issue 17643.)

4.63 xml.etree

A new parser, XMLPullParser, allows a non-blocking applications to parse XML documents. An example can
be seen at elementtree-pull-parsing. (Contributed by Antoine Pitrou in issue 17741.)

The xml.etree.ElementTree tostring() and tostringlist() functions, and the ElementTree
write() method, now have a short_empty_elements keyword-only parameter providing control over whether el-
ements with no content are written in abbreviated (<tag />) or expanded (<tag></tag>) form. (Contributed
by Ariel Poliak and Serhiy Storchaka in issue 14377.)

4.64 zipfile

The writepy() method of the PyZipFile class has a new filterfunc option that can be used to control which
directories and files are added to the archive. For example, this could be used to exclude test files from the archive.
(Contributed by Christian Tismer in issue 19274.)

The allowZip64 parameter to ZipFile and PyZipfile is now True by default. (Contributed by William
Mallard in issue 17201.)

5 CPython Implementation Changes

5.1 PEP 445: Customization of CPython Memory Allocators

PEP 445 adds new C level interfaces to customize memory allocation in the CPython interpreter.

See also:

PEP 445 – Add new APIs to customize Python memory allocators PEP written and implemented by Victor
Stinner.

5.2 PEP 442: Safe Object Finalization

PEP 442 removes the current limitations and quirks of object finalization in CPython. With it, objects with
__del__() methods, as well as generators with finally clauses, can be finalized when they are part of a
reference cycle.

https://bugs.python.org/issue17616
https://bugs.python.org/issue5202
https://bugs.python.org/issue8311
https://bugs.python.org/issue14631
https://bugs.python.org/issue14631
https://bugs.python.org/issue15528
https://bugs.python.org/issue17643
https://bugs.python.org/issue17741
https://bugs.python.org/issue14377
https://bugs.python.org/issue19274
https://bugs.python.org/issue17201
https://www.python.org/dev/peps/pep-0445
https://www.python.org/dev/peps/pep-0445
https://www.python.org/dev/peps/pep-0442

As part of this change, module globals are no longer forcibly set to None during interpreter shutdown in most
cases, instead relying on the normal operation of the cyclic garbage collector. This avoids a whole class of
interpreter-shutdown-time errors, usually involving __del__ methods, that have plagued Python since the cyclic
GC was first introduced.

See also:

PEP 442 – Safe object finalization PEP written and implemented by Antoine Pitrou.

5.3 PEP 456: Secure and Interchangeable Hash Algorithm

PEP 456 follows up on earlier security fix work done on Python’s hash algorithm to address certain DOS attacks to
which public facing APIs backed by dictionary lookups may be subject. (See issue 14621 for the start of the current
round of improvements.) The PEP unifies CPython’s hash code to make it easier for a packager to substitute a
different hash algorithm, and switches Python’s default implementation to a SipHash implementation on platforms
that have a 64 bit data type. Any performance differences in comparison with the older FNV algorithm are trivial.

The PEP adds additional fields to the sys.hash_info struct sequence to describe the hash algorithm in use by
the currently executing binary. Otherwise, the PEP does not alter any existing CPython APIs.

5.4 PEP 436: Argument Clinic

“Argument Clinic” (PEP 436) is now part of the CPython build process and can be used to simplify the process of
defining and maintaining accurate signatures for builtins and standard library extension modules implemented in
C.

Some standard library extension modules have been converted to use Argument Clinic in Python 3.4, and pydoc
and inspect have been updated accordingly.

It is expected that signature metadata for programmatic introspection will be added to additional callables imple-
mented in C as part of Python 3.4 maintenance releases.

Note: The Argument Clinic PEP is not fully up to date with the state of the implementation. This has been
deemed acceptable by the release manager and core development team in this case, as Argument Clinic will not
be made available as a public API for third party use in Python 3.4.

See also:

PEP 436 – The Argument Clinic DSL PEP written and implemented by Larry Hastings.

5.5 Other Build and C API Changes

• The new PyType_GetSlot() function has been added to the stable ABI, allowing retrieval of function
pointers from named type slots when using the limited API. (Contributed by Martin von Löwis in issue
17162.)

• The new Py_SetStandardStreamEncoding() pre-initialization API allows applications embedding
the CPython interpreter to reliably force a particular encoding and error handler for the standard streams.
(Contributed by Bastien Montagne and Nick Coghlan in issue 16129.)

• Most Python C APIs that don’t mutate string arguments are now correctly marked as accepting const
char * rather than char *. (Contributed by Serhiy Storchaka in issue 1772673.)

• A new shell version of python-config can be used even when a python interpreter is not available (for
example, in cross compilation scenarios).

• PyUnicode_FromFormat() now supports width and precision specifications for %s, %A, %U, %V, %S,
and %R. (Contributed by Ysj Ray and Victor Stinner in issue 7330.)

https://www.python.org/dev/peps/pep-0442
https://www.python.org/dev/peps/pep-0456
https://bugs.python.org/issue14621
https://www.python.org/dev/peps/pep-0436
https://www.python.org/dev/peps/pep-0436
https://bugs.python.org/issue17162
https://bugs.python.org/issue17162
https://bugs.python.org/issue16129
https://bugs.python.org/issue1772673
https://bugs.python.org/issue7330

• New function PyStructSequence_InitType2() supplements the existing
PyStructSequence_InitType() function. The difference is that it returns 0 on success and
-1 on failure.

• The CPython source can now be compiled using the address sanity checking features of recent versions of
GCC and clang: the false alarms in the small object allocator have been silenced. (Contributed by Dhiru
Kholia in issue 18596.)

• The Windows build now uses Address Space Layout Randomization and Data Execution Prevention. (Con-
tributed by Christian Heimes in issue 16632.)

• New function PyObject_LengthHint() is the C API equivalent of operator.length_hint().
(Contributed by Armin Ronacher in issue 16148.)

5.6 Other Improvements

• The python command has a new option, -I, which causes it to run in “isolated mode”, which means
that sys.path contains neither the script’s directory nor the user’s site-packages directory, and
all PYTHON* environment variables are ignored (it implies both -s and -E). Other restrictions may also
be applied in the future, with the goal being to isolate the execution of a script from the user’s environment.
This is appropriate, for example, when Python is used to run a system script. On most POSIX systems it
can and should be used in the #! line of system scripts. (Contributed by Christian Heimes in issue 16499.)

• Tab-completion is now enabled by default in the interactive interpreter on systems that support readline.
History is also enabled by default, and is written to (and read from) the file ~/.python-history.
(Contributed by Antoine Pitrou and Éric Araujo in issue 5845.)

• Invoking the Python interpreter with --version now outputs the version to standard output instead of
standard error (issue 18338). Similar changes were made to argparse (issue 18920) and other modules
that have script-like invocation capabilities (issue 18922).

• The CPython Windows installer now adds .py to the PATHEXT variable when extensions are registered,
allowing users to run a python script at the windows command prompt by just typing its name without the
.py extension. (Contributed by Paul Moore in issue 18569.)

• A new make target coverage-report will build python, run the test suite, and generate an HTML coverage
report for the C codebase using gcov and lcov.

• The -R option to the python regression test suite now also checks for memory allocation leaks, using
sys.getallocatedblocks(). (Contributed by Antoine Pitrou in issue 13390.)

• python -m now works with namespace packages.

• The stat module is now implemented in C, which means it gets the values for its constants from the C
header files, instead of having the values hard-coded in the python module as was previously the case.

• Loading multiple python modules from a single OS module (.so, .dll) now works correctly (previously
it silently returned the first python module in the file). (Contributed by Václav Šmilauer in issue 16421.)

• A new opcode, LOAD_CLASSDEREF, has been added to fix a bug in the loading of free variables in class
bodies that could be triggered by certain uses of __prepare__. (Contributed by Benjamin Peterson in issue
17853.)

• A number of MemoryError-related crashes were identified and fixed by Victor Stinner using his PEP 445-
based pyfailmalloc tool (issue 18408, issue 18520).

• The pyvenv command now accepts a --copies option to use copies rather than symlinks even on systems
where symlinks are the default. (Contributed by Vinay Sajip in issue 18807.)

• The pyvenv command also accepts a --without-pip option to suppress the otherwise-automatic boot-
strapping of pip into the virtual environment. (Contributed by Nick Coghlan in issue 19552 as part of the
PEP 453 implementation.)

https://bugs.python.org/issue18596
http://en.wikipedia.org/wiki/ASLR
http://en.wikipedia.org/wiki/Data_Execution_Prevention
https://bugs.python.org/issue16632
https://bugs.python.org/issue16148
https://bugs.python.org/issue16499
https://bugs.python.org/issue5845
https://bugs.python.org/issue18338
https://bugs.python.org/issue18920
https://bugs.python.org/issue18922
https://bugs.python.org/issue18569
https://docs.python.org/devguide/coverage.html#measuring-coverage-of-c-code-with-gcov-and-lcov
http://ltp.sourceforge.net/coverage/lcov.php
https://bugs.python.org/issue13390
https://bugs.python.org/issue16421
https://bugs.python.org/issue17853
https://bugs.python.org/issue17853
https://www.python.org/dev/peps/pep-0445
https://bugs.python.org/issue18408
https://bugs.python.org/issue18520
https://bugs.python.org/issue18807
https://bugs.python.org/issue19552
https://www.python.org/dev/peps/pep-0453

• The encoding name is now optional in the value set for the PYTHONIOENCODING environment variable.
This makes it possible to set just the error handler, without changing the default encoding. (Contributed by
Serhiy Storchaka in issue 18818.)

• The bz2, lzma, and gzip module open functions now support x (exclusive creation) mode. (Contributed
by Tim Heaney and Vajrasky Kok in issue 19201, issue 19222, and issue 19223.)

5.7 Significant Optimizations

• The UTF-32 decoder is now 3x to 4x faster. (Contributed by Serhiy Storchaka in issue 14625.)

• The cost of hash collisions for sets is now reduced. Each hash table probe now checks a series of con-
secutive, adjacent key/hash pairs before continuing to make random probes through the hash table. This
exploits cache locality to make collision resolution less expensive. The collision resolution scheme can
be described as a hybrid of linear probing and open addressing. The number of additional linear probes
defaults to nine. This can be changed at compile-time by defining LINEAR_PROBES to be any value.
Set LINEAR_PROBES=0 to turn-off linear probing entirely. (Contributed by Raymond Hettinger in issue
18771.)

• The interpreter starts about 30% faster. A couple of measures lead to the speedup. The interpreter loads
fewer modules on startup, e.g. the re, collections and locale modules and their dependencies are
no longer imported by default. The marshal module has been improved to load compiled Python code
faster. (Contributed by Antoine Pitrou, Christian Heimes and Victor Stinner in issue 19219, issue 19218,
issue 19209, issue 19205 and issue 9548.)

• bz2.BZ2File is now as fast or faster than the Python2 version for most cases. lzma.LZMAFile has
also been optimized. (Contributed by Serhiy Storchaka and Nadeem Vawda in issue 16034.)

• random.getrandbits() is 20%-40% faster for small integers (the most common use case). (Con-
tributed by Serhiy Storchaka in issue 16674.)

• By taking advantage of the new storage format for strings, pickling of strings is now significantly faster.
(Contributed by Victor Stinner and Antoine Pitrou in issue 15596.)

• A performance issue in io.FileIO.readall() has been solved. This particularly affects Windows,
and significantly speeds up the case of piping significant amounts of data through subprocess. (Con-
tributed by Richard Oudkerk in issue 15758.)

• html.escape() is now 10x faster. (Contributed by Matt Bryant in issue 18020.)

• On Windows, the native VirtualAlloc is now used instead of the CRT malloc in obmalloc. Artifi-
cial benchmarks show about a 3% memory savings.

• os.urandom() now uses a lazily-opened persistent file descriptor so as to avoid using many file descrip-
tors when run in parallel from multiple threads. (Contributed by Antoine Pitrou in issue 18756.)

6 Deprecated

This section covers various APIs and other features that have been deprecated in Python 3.4, and will be
removed in Python 3.5 or later. In most (but not all) cases, using the deprecated APIs will produce a
DeprecationWarning when the interpreter is run with deprecation warnings enabled (for example, by us-
ing -Wd).

6.1 Deprecations in the Python API

• As mentioned in PEP 451: A ModuleSpec Type for the Import System, a number of importlib
methods and functions are deprecated: importlib.find_loader() is replaced by
importlib.util.find_spec(); importlib.machinery.PathFinder.find_module()
is replaced by importlib.machinery.PathFinder.find_spec();
importlib.abc.MetaPathFinder.find_module() is replaced by

https://bugs.python.org/issue18818
https://bugs.python.org/issue19201
https://bugs.python.org/issue19222
https://bugs.python.org/issue19223
https://bugs.python.org/issue14625
https://bugs.python.org/issue18771
https://bugs.python.org/issue18771
https://bugs.python.org/issue19219
https://bugs.python.org/issue19218
https://bugs.python.org/issue19209
https://bugs.python.org/issue19205
https://bugs.python.org/issue9548
https://bugs.python.org/issue16034
https://bugs.python.org/issue16674
https://bugs.python.org/issue15596
https://bugs.python.org/issue15758
https://bugs.python.org/issue18020
https://bugs.python.org/issue18756

importlib.abc.MetaPathFinder.find_spec(); importlib.abc.PathEntryFinder.find_loader()
and find_module() are replaced by importlib.abc.PathEntryFinder.find_spec(); all
of the xxxLoader ABC load_module methods (importlib.abc.Loader.load_module(),
importlib.abc.InspectLoader.load_module(), importlib.abc.FileLoader.load_module(),
importlib.abc.SourceLoader.load_module()) should no longer be implemented, instead
loaders should implement an exec_module method (importlib.abc.Loader.exec_module(),
importlib.abc.InspectLoader.exec_module() importlib.abc.SourceLoader.exec_module())
and let the import system take care of the rest; and importlib.abc.Loader.module_repr(),
importlib.util.module_for_loader(), importlib.util.set_loader(), and
importlib.util.set_package() are no longer needed because their functions are now han-
dled automatically by the import system.

• The imp module is pending deprecation. To keep compatibility with Python 2/3 code bases, the module’s
removal is currently not scheduled.

• The formatter module is pending deprecation and is slated for removal in Python 3.6.

• MD5 as the default digestmod for the hmac.new() function is deprecated. Python 3.6 will require an
explicit digest name or constructor as digestmod argument.

• The internal Netrc class in the ftplib module has been documented as deprecated in its docstring for
quite some time. It now emits a DeprecationWarning and will be removed completely in Python 3.5.

• The undocumented endtime argument to subprocess.Popen.wait() should not have been exposed
and is hopefully not in use; it is deprecated and will mostly likely be removed in Python 3.5.

• The strict argument of HTMLParser is deprecated.

• The plistlib readPlist(), writePlist(), readPlistFromBytes(), and
writePlistToBytes() functions are deprecated in favor of the corresponding new functions
load(), dump(), loads(), and dumps(). Data() is deprecated in favor of just using the bytes
constructor.

• The sysconfig key SO is deprecated, it has been replaced by EXT_SUFFIX.

• The U mode accepted by various open functions is deprecated. In Python3 it does not do anything useful,
and should be replaced by appropriate uses of io.TextIOWrapper (if needed) and its newline argument.

• The parser argument of xml.etree.ElementTree.iterparse() has been deprecated, as has the
html argument of XMLParser(). To prepare for the removal of the latter, all arguments to XMLParser
should be passed by keyword.

6.2 Deprecated Features

• Running idle with the -n flag (no subprocess) is deprecated. However, the feature will not be removed until
issue 18823 is resolved.

• The site module adding a “site-python” directory to sys.path, if it exists, is deprecated (issue 19375).

7 Removed

7.1 Operating Systems No Longer Supported

Support for the following operating systems has been removed from the source and build tools:

• OS/2 (issue 16135).

• Windows 2000 (changeset e52df05b496a).

• Windows systems where COMSPEC points to command.com (issue 14470).

• VMS (issue 16136).

https://bugs.python.org/issue18823
https://bugs.python.org/issue19375
https://bugs.python.org/issue16135
https://bugs.python.org/issue14470
https://bugs.python.org/issue16136

7.2 API and Feature Removals

The following obsolete and previously deprecated APIs and features have been removed:

• The unmaintained Misc/TextMate and Misc/vim directories have been removed (see the devguide for
suggestions on what to use instead).

• The SO makefile macro is removed (it was replaced by the SHLIB_SUFFIX and EXT_SUFFIX macros)
(issue 16754).

• The PyThreadState.tick_counter field has been removed; its value has been meaningless since
Python 3.2, when the “new GIL” was introduced (issue 19199).

• PyLoader and PyPycLoader have been removed from importlib. (Contributed by Taras Lyapun in
issue 15641.)

• The strict argument to HTTPConnection and HTTPSConnection has been removed. HTTP 0.9-style
“Simple Responses” are no longer supported.

• The deprecated urllib.request.Request getter and setter methods add_data, has_data,
get_data, get_type, get_host, get_selector, set_proxy, get_origin_req_host, and
is_unverifiable have been removed (use direct attribute access instead).

• Support for loading the deprecated TYPE_INT64 has been removed from marshal. (Contributed by Dan
Riti in issue 15480.)

• inspect.Signature: positional-only parameters are now required to have a valid name.

• object.__format__() no longer accepts non-empty format strings, it now raises a TypeError in-
stead. Using a non-empty string has been deprecated since Python 3.2. This change has been made to
prevent a situation where previously working (but incorrect) code would start failing if an object gained a
__format__ method, which means that your code may now raise a TypeError if you are using an ’s’
format code with objects that do not have a __format__ method that handles it. See issue 7994 for back-
ground.

• difflib.SequenceMatcher.isbjunk() and difflib.SequenceMatcher.isbpopular()
were deprecated in 3.2, and have now been removed: use x in sm.bjunk and x in sm.bpopular,
where sm is a SequenceMatcher object (issue 13248).

7.3 Code Cleanups

• The unused and undocumented internal Scanner class has been removed from the pydoc module.

• The private and effectively unused _gestalt module has been removed, along with the private
platform functions _mac_ver_lookup, _mac_ver_gstalt, and _bcd2str, which would only
have ever been called on badly broken OSX systems (see issue 18393).

• The hardcoded copies of certain stat constants that were included in the tarfile module namespace
have been removed.

8 Porting to Python 3.4

This section lists previously described changes and other bugfixes that may require changes to your code.

8.1 Changes in ‘python’ Command Behavior

• In a posix shell, setting the PATH environment variable to an empty value is equivalent to not setting it at
all. However, setting PYTHONPATH to an empty value was not equivalent to not setting it at all: setting
PYTHONPATH to an empty value was equivalent to setting it to ., which leads to confusion when reasoning
by analogy to how PATH works. The behavior now conforms to the posix convention for PATH.

https://docs.python.org/devguide
https://bugs.python.org/issue16754
https://bugs.python.org/issue19199
https://bugs.python.org/issue15641
https://bugs.python.org/issue15480
https://bugs.python.org/issue7994
https://bugs.python.org/issue13248
https://bugs.python.org/issue18393

• The [X refs, Y blocks] output of a debug (--with-pydebug) build of the CPython interpreter is now off
by default. It can be re-enabled using the -X showrefcount option. (Contributed by Ezio Melotti in
issue 17323.)

• The python command and most stdlib scripts (as well as argparse) now output --version information
to stdout instead of stderr (for issue list see Other Improvements above).

8.2 Changes in the Python API

• The ABCs defined in importlib.abc now either raise the appropriate exception or return a default
value instead of raising NotImplementedError blindly. This will only affect code calling super()
and falling through all the way to the ABCs. For compatibility, catch both NotImplementedError or
the appropriate exception as needed.

• The module type now initializes the __package__ and __loader__ attributes to None by default. To
determine if these attributes were set in a backwards-compatible fashion, use e.g. getattr(module,
’__loader__’, None) is not None. (issue 17115.)

• importlib.util.module_for_loader() now sets __loader__ and __package__ uncon-
ditionally to properly support reloading. If this is not desired then you will need to set these attributes
manually. You can use importlib.util.module_to_load() for module management.

• Import now resets relevant attributes (e.g. __name__, __loader__, __package__, __file__,
__cached__) unconditionally when reloading. Note that this restores a pre-3.3 behavior in that it means
a module is re-found when re-loaded (issue 19413).

• Frozen packages no longer set __path__ to a list containing the package name, they now set it to an empty
list. The previous behavior could cause the import system to do the wrong thing on submodule imports if
there was also a directory with the same name as the frozen package. The correct way to determine if a
module is a package or not is to use hasattr(module, ’__path__’) (issue 18065).

• Frozen modules no longer define a __file__ attribute. It’s semantically incorrect for frozen modules to
set the attribute as they are not loaded from any explicit location. If you must know that a module comes
from frozen code then you can see if the module’s __spec__.location is set to ’frozen’, check if
the loader is a subclass of importlib.machinery.FrozenImporter, or if Python 2 compatibility
is necessary you can use imp.is_frozen().

• py_compile.compile() now raises FileExistsError if the file path it would write to is a symlink
or a non-regular file. This is to act as a warning that import will overwrite those files with a regular file
regardless of what type of file path they were originally.

• importlib.abc.SourceLoader.get_source() no longer raises ImportError when the
source code being loaded triggers a SyntaxError or UnicodeDecodeError. As ImportError
is meant to be raised only when source code cannot be found but it should, it was felt to be over-
reaching/overloading of that meaning when the source code is found but improperly structured. If you
were catching ImportError before and wish to continue to ignore syntax or decoding issues, catch all three
exceptions now.

• functools.update_wrapper() and functools.wraps() now correctly set the __wrapped__
attribute to the function being wrapped, even if that function also had its __wrapped__ attribute set.
This means __wrapped__ attributes now correctly link a stack of decorated functions rather than every
__wrapped__ attribute in the chain referring to the innermost function. Introspection libraries that as-
sumed the previous behaviour was intentional can use inspect.unwrap() to access the first function in
the chain that has no __wrapped__ attribute.

• inspect.getfullargspec() has been reimplemented on top of inspect.signature() and
hence handles a much wider variety of callable objects than it did in the past. It is expected that addi-
tional builtin and extension module callables will gain signature metadata over the course of the Python 3.4
series. Code that assumes that inspect.getfullargspec() will fail on non-Python callables may
need to be adjusted accordingly.

https://bugs.python.org/issue17323
https://bugs.python.org/issue17115
https://bugs.python.org/issue19413
https://bugs.python.org/issue18065

• importlib.machinery.PathFinder now passes on the current working directory to objects in
sys.path_hooks for the empty string. This results in sys.path_importer_cache never con-
taining ’’, thus iterating through sys.path_importer_cache based on sys.path will not find all
keys. A module’s __file__ when imported in the current working directory will also now have an abso-
lute path, including when using -m with the interpreter (except for __main__.__file__ when a script
has been executed directly using a relative path) (Contributed by Brett Cannon in issue 18416). is specified
on the command-line) (issue 18416).

• The removal of the strict argument to HTTPConnection and HTTPSConnection changes the meaning
of the remaining arguments if you are specifying them positionally rather than by keyword. If you’ve been
paying attention to deprecation warnings your code should already be specifying any additional arguments
via keywords.

• Strings between from __future__ import ... statements now always raise a SyntaxError.
Previously if there was no leading docstring, an interstitial string would sometimes be ignored. This brings
CPython into compliance with the language spec; Jython and PyPy already were. (issue 17434).

• ssl.SSLSocket.getpeercert() and ssl.SSLSocket.do_handshake() now raise an
OSError with ENOTCONN when the SSLSocket is not connected, instead of the previous behavior
of raising an AttributeError. In addition, getpeercert() will raise a ValueError if the hand-
shake has not yet been done.

• base64.b32decode() now raises a binascii.Error when the input string contains non-b32-
alphabet characters, instead of a TypeError. This particular TypeError was missed when the other
TypeErrors were converted. (Contributed by Serhiy Storchaka in issue 18011.) Note: this change was
also inadvertently applied in Python 3.3.3.

• The file attribute is now automatically closed when the creating cgi.FieldStorage instance is
garbage collected. If you were pulling the file object out separately from the cgi.FieldStorage in-
stance and not keeping the instance alive, then you should either store the entire cgi.FieldStorage
instance or read the contents of the file before the cgi.FieldStorage instance is garbage collected.

• Calling read or write on a closed SSL socket now raises an informative ValueError rather than the
previous more mysterious AttributeError (issue 9177).

• slice.indices() no longer produces an OverflowError for huge values. As a consequence of this
fix, slice.indices() now raises a ValueError if given a negative length; previously it returned
nonsense values (issue 14794).

• The complex constructor, unlike the cmath functions, was incorrectly accepting float values if an
object’s __complex__ special method returned one. This now raises a TypeError. (issue 16290.)

• The int constructor in 3.2 and 3.3 erroneously accepts float values for the base parameter. It is unlikely
anyone was doing this, but if so, it will now raise a TypeError (issue 16772).

• Defaults for keyword-only arguments are now evaluated after defaults for regular keyword arguments, in-
stead of before. Hopefully no one wrote any code that depends on the previous buggy behavior (issue
16967).

• Stale thread states are now cleared after fork(). This may cause some system resources to be released that
previously were incorrectly kept perpetually alive (for example, database connections kept in thread-local
storage). (issue 17094.)

• Parameter names in __annotations__ dicts are now mangled properly, similarly to
__kwdefaults__. (Contributed by Yury Selivanov in issue 20625.)

• hashlib.hash.name now always returns the identifier in lower case. Previously some builtin hashes
had uppercase names, but now that it is a formal public interface the naming has been made consistent (issue
18532).

• Because unittest.TestSuite now drops references to tests after they are run, test harnesses that
re-use a TestSuite to re-run a set of tests may fail. Test suites should not be re-used in this fashion
since it means state is retained between test runs, breaking the test isolation that unittest is designed
to provide. However, if the lack of isolation is considered acceptable, the old behavior can be restored by

https://bugs.python.org/issue18416
https://bugs.python.org/issue18416
https://bugs.python.org/issue17434
https://bugs.python.org/issue18011
https://bugs.python.org/issue9177
https://bugs.python.org/issue14794
https://bugs.python.org/issue16290
https://bugs.python.org/issue16772
https://bugs.python.org/issue16967
https://bugs.python.org/issue16967
https://bugs.python.org/issue17094
https://bugs.python.org/issue20625
https://bugs.python.org/issue18532
https://bugs.python.org/issue18532

creating a TestSuite subclass that defines a _removeTestAtIndex method that does nothing (see
TestSuite.__iter__()) (issue 11798).

• unittest now uses argparse for command line parsing. There are certain invalid command forms that
used to work that are no longer allowed; in theory this should not cause backward compatibility issues since
the disallowed command forms didn’t make any sense and are unlikely to be in use.

• The re.split(), re.findall(), and re.sub() functions, and the group() and groups()
methods of match objects now always return a bytes object when the string to be matched is a bytes-
like object. Previously the return type matched the input type, so if your code was depending on the return
value being, say, a bytearray, you will need to change your code.

• audioop functions now raise an error immediately if passed string input, instead of failing randomly later
on (issue 16685).

• The new convert_charrefs argument to HTMLParser currently defaults to False for backward compat-
ibility, but will eventually be changed to default to True. It is recommended that you add this keyword,
with the appropriate value, to any HTMLParser calls in your code (issue 13633).

• Since the digestmod argument to the hmac.new() function will in the future have no default, all calls to
hmac.new() should be changed to explicitly specify a digestmod (issue 17276).

• Calling sysconfig.get_config_var() with the SO key, or looking SO up in the results of a call to
sysconfig.get_config_vars() is deprecated. This key should be replaced by EXT_SUFFIX or
SHLIB_SUFFIX, depending on the context (issue 19555).

• Any calls to open functions that specify U should be modified. U is ineffective in Python3 and will even-
tually raise an error if used. Depending on the function, the equivalent of its old Python2 behavior can be
achieved using either a newline argument, or if necessary by wrapping the stream in TextIOWrapper to
use its newline argument (issue 15204).

• If you use pyvenv in a script and desire that pip not be installed, you must add --without-pip to your
command invocation.

• The default behavior of json.dump() and json.dumps() when an indent is specified has changed: it
no longer produces trailing spaces after the item separating commas at the ends of lines. This will matter
only if you have tests that are doing white-space-sensitive comparisons of such output (issue 16333).

• doctest now looks for doctests in extension module __doc__ strings, so if your doctest test discovery
includes extension modules that have things that look like doctests in them you may see test failures you’ve
never seen before when running your tests (issue 3158).

• The collections.abc module has been slightly refactored as part of the Python startup improvements.
As a consequence of this, it is no longer the case that importing collections automatically imports
collections.abc. If your program depended on the (undocumented) implicit import, you will need to
add an explicit import collections.abc (issue 20784).

8.3 Changes in the C API

• PyEval_EvalFrameEx(), PyObject_Repr(), and PyObject_Str(), along with some other in-
ternal C APIs, now include a debugging assertion that ensures they are not used in situations where they
may silently discard a currently active exception. In cases where discarding the active exception is expected
and desired (for example, because it has already been saved locally with PyErr_Fetch() or is being
deliberately replaced with a different exception), an explicit PyErr_Clear() call will be needed to avoid
triggering the assertion when invoking these operations (directly or indirectly) and running against a version
of Python that is compiled with assertions enabled.

• PyErr_SetImportError() now sets TypeError when its msg argument is not set. Previously only
NULL was returned with no exception set.

• The result of the PyOS_ReadlineFunctionPointer callback must now be a string allocated by
PyMem_RawMalloc() or PyMem_RawRealloc(), or NULL if an error occurred, instead of a string
allocated by PyMem_Malloc() or PyMem_Realloc() (issue 16742)

https://bugs.python.org/issue11798
https://bugs.python.org/issue16685
https://bugs.python.org/issue13633
https://bugs.python.org/issue17276
https://bugs.python.org/issue19555
https://bugs.python.org/issue15204
https://bugs.python.org/issue16333
https://bugs.python.org/issue3158
https://bugs.python.org/issue20784
https://bugs.python.org/issue16742

• PyThread_set_key_value() now always set the value. In Python 3.3, the function did nothing if the
key already exists (if the current value is a non-NULL pointer).

• The f_tstate (thread state) field of the PyFrameObject structure has been removed to fix a bug: see
issue 14432 for the rationale.

9 Changed in 3.4.3

9.1 PEP 476: Enabling certificate verification by default for stdlib http clients

http.client and modules which use it, such as urllib.request and xmlrpc.client, will now verify
that the server presents a certificate which is signed by a CA in the platform trust store and whose hostname
matches the hostname being requested by default, significantly improving security for many applications.

For applications which require the old previous behavior, they can pass an alternate context:

import urllib.request
import ssl

This disables all verification
context = ssl._create_unverified_context()

This allows using a specific certificate for the host, which doesn't need
to be in the trust store
context = ssl.create_default_context(cafile="/path/to/file.crt")

urllib.request.urlopen("https://invalid-cert", context=context)

https://bugs.python.org/issue14432

Index

E
environment variable

PATH, 28
PATHEXT, 25
PYTHON*, 25
PYTHONIOENCODING, 26
PYTHONPATH, 28
PYTHONSTARTUP, 20

P
PATH, 28
PATHEXT, 25
Python Enhancement Proposals

PEP 247, 13
PEP 3154, 4, 17
PEP 3156, 3, 8, 9
PEP 424, 8, 16
PEP 428, 3, 9
PEP 429, 3
PEP 435, 3, 8
PEP 436, 4, 24
PEP 442, 4, 23, 24
PEP 443, 4, 13
PEP 445, 4, 23, 25
PEP 446, 3–6
PEP 450, 3, 9
PEP 451, 3, 7
PEP 453, 3–5, 8, 22, 25
PEP 454, 3, 9
PEP 456, 4, 24

PYTHON*, 25
PYTHONIOENCODING, 26
PYTHONPATH, 28
PYTHONSTARTUP, 20

33

	Summary – Release Highlights
	New Features
	PEP 453: Explicit Bootstrapping of PIP in Python Installations
	Bootstrapping pip By Default
	Documentation Changes

	PEP 446: Newly Created File Descriptors Are Non-Inheritable
	Improvements to Codec Handling
	PEP 451: A ModuleSpec Type for the Import System
	Other Language Changes

	New Modules
	asyncio
	ensurepip
	enum
	pathlib
	selectors
	statistics
	tracemalloc

	Improved Modules
	abc
	aifc
	argparse
	audioop
	base64
	collections
	colorsys
	contextlib
	dbm
	dis
	doctest
	email
	filecmp
	functools
	gc
	glob
	hashlib
	hmac
	html
	http
	idlelib and IDLE
	importlib
	inspect
	ipaddress
	logging
	marshal
	mmap
	multiprocessing
	operator
	os
	pdb
	pickle
	plistlib
	poplib
	pprint
	pty
	pydoc
	re
	resource
	select
	shelve
	shutil
	smtpd
	smtplib
	socket
	sqlite3
	ssl
	stat
	struct
	subprocess
	sunau
	sys
	tarfile
	textwrap
	threading
	traceback
	types
	urllib
	unittest
	venv
	wave
	weakref
	xml.etree
	zipfile

	CPython Implementation Changes
	PEP 445: Customization of CPython Memory Allocators
	PEP 442: Safe Object Finalization
	PEP 456: Secure and Interchangeable Hash Algorithm
	PEP 436: Argument Clinic
	Other Build and C API Changes
	Other Improvements
	Significant Optimizations

	Deprecated
	Deprecations in the Python API
	Deprecated Features

	Removed
	Operating Systems No Longer Supported
	API and Feature Removals
	Code Cleanups

	Porting to Python 3.4
	Changes in `python' Command Behavior
	Changes in the Python API
	Changes in the C API

	Changed in 3.4.3
	PEP 476: Enabling certificate verification by default for stdlib http clients

	Index

