The Python Library Reference
Release 3.4.10rc1

Guido van Rossum
and the Python development team

March 03, 2019

Introduction

Built-in Functions

Built-in Constants

3.1 Constants added by the site module

Built-in Types

4.1 Truth Value Testing
4.2 Boolean Operations — and, or, not

43 CompariSons v .o v e e e
4.4 Numeric Types — int, float, complex

45 Tterator Types
4.6 Sequence Types — list, tuple, range

47 Text Sequence Type — str

4.8

49 SetTypes — set, frozenset

4.10 Mapping Types — dict

4.11 Context Manager Types

4.12 Other Built-in Types

4.13 Special Attributeso

Binary Sequence Types — bytes, bytearray, memoryview

Built-in Exceptions

5.1
52
53
54

Baseclasses,

Concrete exceptions

Warnings o

Exception hierarchy

Text Processing Services

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

string — Common string operations
re — Regular expression operations

difflib — Helpers for computing deltas
textwrap — Text wrapping and filling
unicodedata — Unicode Database

stringprep — Internet String Preparation
readline — GNU readline interface
rlcompleter — Completion function for GNU readline

Binary Data Services

7.1
7.2

struct — Interpret bytes as packed binary data
codecs — Codec registry and base classes

CONTENTS

.......................... 34

8 Data Types

8.1 datetime —Basicdateand imetypes it e e e e e e e e e
8.2 calendar — General calendar-related functions L.
83 collections— Containerdatatypes o i it e e e
84 collections.abc — Abstract Base Classes for Containers
8.5 heapg—Heapqueuealgorithm
8.6 bisect — Array bisection algorithm e
8.7 array — Efficient arrays of numeric values L L L
8.8 weakref —Weakreferences L e
8.9 types — Dynamic type creation and names for built-intypes L.
8.10 copy — Shallow and deep copy Operations v v v vttt e e e
8.11 pprint —Datapretty prinfer ottt e e e e e e e e e e e e
8.12 reprlib — Alternate repr () implementationo
8.13 enum — Support for enumerationsol o e e

Numeric and Mathematical Modules

9.1 numbers — Numeric abstractbase classeso
9.2 math — Mathematical functions e
9.3 cmath — Mathematical functions for complex numberso oL
9.4 decimal — Decimal fixed point and floating point arithmetic
9.5 fractions—Rationalnumbers
9.6 random — Generate pseudo-random nUMDbETS oL . e e e e e e e e
9.7 statistics— Mathematical statistics functions

10 Functional Programming Modules

10.1 itertools — Functions creating iterators for efficient looping
10.2 functools — Higher-order functions and operations on callable objects
10.3 operator — Standard operators as functionso oo L.

11 File and Directory Access

11.1 pathlib — Object-oriented filesystem paths
11.2 os.path — Common pathname manipulations
11.3 fileinput — Iterate over lines from multiple input streams
11.4 stat —Interpreting stat () resultS o e
11.5 filecmp — File and Directory Comparisons v v v v v v v vt v et e e
11.6 tempfile — Generate temporary files and directories
11.7 glob — Unix style pathname pattern expansion
11.8 fnmatch — Unix filename pattern matching oL
119 linecache —Randomaccesstotextlines
11.10 shutil — High-level fileoperations v it et e e
11.11 macpath — Mac OS 9 path manipulation functions

12 Data Persistence

12.1 pickle — Python object serialization i e
12.2 copyreg— Register pickle support functionso
12.3 shelve —Pythonobjectpersistence
12.4 marshal — Internal Python object serialization
12.5 dbm — Interfaces to Unix “databases” e
12.6 sglite3 — DB-API 2.0 interface for SQLite databases

13 Data Compression and Archiving

13.1 zlib — Compression compatible withgzip
13.2 gzip—Supportforgzipfiles. e e
13.3 bz2 — Support for bzip2 compression e e e e
13.4 1lzma — Compression using the LZMA algorithm

159
159
185
188
204
207
210
212
215
223
226
227
232
234

247
247
250
254
257
283
286
290

297
297
310
317

325
325
339
343
345
350
352
355
356
357
358
365

367
367
380
380
383
384
388

13,5 zipfile—WorkwithZIParchives e 420

13.6 tarfile —Readand write tar archivefiles L 0oL, 426
14 File Formats 437
14.1 csv—CSV File Reading and Writing e 437
142 configparser — Configuration fileparser 443
143 netrc—netrc file processingo e e e e e e e e e e 460
144 xdrlib —Encode anddecode XDRdata 461
145 plistlib — Generate and parse Mac OS X .plistfiles 464
15 Cryptographic Services 469
15.1 hashlib — Secure hashes and message digests 469
15.2 hmac — Keyed-Hashing for Message Authentication 472
16 Generic Operating System Services 475
16.1 os — Miscellaneous operating system interfaceso 475
16.2 io— Core tools for working with streams L 515
16.3 time — Time access and CONVEISIONS« v v v v v v vttt e e e e e e e e e e e 527
16.4 argparse — Parser for command-line options, arguments and sub-commands 535
16.5 getopt — C-style parser for command lineoptions 565
16.6 logging — Logging facility for Python oo 0oL 567
16.7 logging.config— Logging configuration 582
16.8 logging.handlers —Logginghandlers 592
16.9 getpass —Portable passwordinput.o e e e 604
16.10 curses — Terminal handling for character-cell displays 604
16.11 curses.textpad — Text input widget for curses programs 621
16.12 curses.ascii — Utilities for ASCII characters 622
16.13 curses.panel — A panel stack extension forcurses oL L. 625
16.14 plat form — Access to underlying platform’s identifying data 626
16.15 errno — Standard errno system symbols L. L 629
16.16 ctypes — A foreign function library for Python o000 635
17 Concurrent Execution 667
17.1 threading— Thread-based parallelism 667
17.2 multiprocessing — Process-based parallelism 679
17.3 The concurrent package 720
17.4 concurrent.futures — Launching parallel tasks 721
17.5 subprocess — Subprocess management v v e e e e e e e e e e e e e 726
17.6 sched—Eventscheduler 740
1777 queue — A synchronized queueclass L o 742
17.8 dummy_threading — Drop-in replacement for the threadingmodule 744
179 _thread — Low-level threading API 744
17.10 _dummy_thread — Drop-in replacement for the _threadmodule 746
18 Interprocess Communication and Networking 747
18.1 socket — Low-level networking interface L oo 747
18.2 ss1 — TLS/SSL wrapper for socket objects o o i i e 766
183 select — Waiting for /O completion e 789
184 selectors —High-level /O multiplexing e 796
18.5 asyncio — Asynchronous I/O, event loop, coroutines and tasks 799
18.6 asyncore — Asynchronous sockethandler Lo oL 857
18.7 asynchat — Asynchronous socket command/response handler 861
18.8 signal — Set handlers for asynchronousevents 864

18.9 mmap — Memory-mapped file support e e 869

19

20

21

Internet Data Handling 873
19.1 email — Anemail and MIME handling package 873
19.2 json—JSONencoderanddecoder 926
193 mailcap—Mailcapfilehandling Lo Lo 934
19.4 mailbox — Manipulate mailboxes in various formatso 935
19.5 mimetypes — Map filenames to MIME typeso 952
19.6 base64 — Basel6, Base32, Base64, Base85 Data Encodings 955
19.7 binhex — Encode and decode binhex4 files L oo, 958
19.8 binascii — Convert between binary and ASCIT, 958
19.9 quopri — Encode and decode MIME quoted-printabledata 960
19.10 uu — Encode and decode uuencode files Lo 961
Structured Markup Processing Tools 963
20.1 html — HyperText Markup Language support 963
20.2 html.parser — Simple HTML and XHTML parser 963
20.3 html.entities — Definitions of HTML general entities 968
20.4 XML Processing Modules e e e e e e e e e 969
20.5 xml.etree.ElementTree — The ElementTree XML API 970
20.6 xml.dom — The Document Object Model AP 985
20.7 xml.dom.minidom — Minimal DOM implementation 996
20.8 xml.dom.pulldom— Support for building partial DOM trees 1000
209 xml.sax—Support for SAX2 parsers. i e e e e e e e e e 1002
20.10 xml.sax.handler — Base classes for SAX handlers 1003
20.11 xml.sax.saxutils — SAXUtilities e 1008
20.12 xml.sax.xmlreader — Interface for XML parsers 1009
20.13 xml .parsers.expat — Fast XML parsing using Expat 1013
Internet Protocols and Support 1023
21.1 webbrowser — Convenient Web-browser controller 1023
21.2 cgi — Common Gateway Interface support e 1025
21.3 cgitb — Traceback manager for CGLscripts oo i i it 1032
21.4 wsgiref — WSGI Utilities and Reference Implementation 1033
21.5 urllib—URLhandlingmodules 1042
21.6 urllib.request — Extensible library foropening URLs 1042
21.7 urllib.response — Responseclassesusedbyurllib 1059
21.8 urllib.parse —Parse URLsintocomponentso v v v v v v v, 1059
219 urllib.error — Exception classes raised by urllibrequest, 1065
21.10 urllib.robotparser — Parser forrobots.txt L. 1066
2111 http—HTTPmodules e 1067
21.12 http.client — HTTPprotocol client i 1067
21.13 ftplib—FTPprotocolclient e 1074
21.14 poplib —POP3 protocol client e e e e 1079
21.15 imaplib —IMAP4 protocolclient L e 1082
21.16 nntplib —NNTP protocolclient 1087
21.17 smtplib — SMTP protocol client 1094
21.18 smtpd — SMTP Server e e e 1099
21.19 telnetlib—Telnetclient e e 1102
21.20 uuid — UUID objects according to RFC 4122 i, 1105
21.21 socketserver — A framework for network servers L L. 1107
21.22 http.server — HTTPservers 0 e e e e e e e e e e e 1115
21.23 http.cookies — HTTP state management v i v vt 1120
21.24 http.cookiejar — Cookie handling for HTTPclients 1123
21.25 xmlrpc — XMLRPC server and clientmodules 1132
21.26 xmlrpc.client — XML-RPCclientaccess oo i i vt it 1132

22

23

24

25

26

27

28

21.27 xmlrpc.server — Basic XML-RPC servers
21.28 ipaddress — IPv4/IPv6 manipulation library o

Multimedia Services

22.1 audioop — Manipulateraw audiodatao o
222 aifc—Readand write AIFFand AIFCfiles
22.3 sunau—Readand write Sun AU files Lo o oo
224 wave —Read and write WAV files L
22,5 chunk —ReadIFFchunkeddata
22.6 colorsys — Conversions between colorsystems o Lo
227 imghdr — Determine the type of animage
22.8 sndhdr — Determine type of sound file L L
229 ossaudiodev — Access to OSS-compatible audio deviceso,

Internationalization
23.1 gettext — Multilingual internationalization services
23.2 locale — Internationalization SEIVICES« v v v v v v v e e e e e e e e e e e e e e

Program Frameworks

241 turtle —Turtle graphics L
24.2 cmd — Support for line-oriented command interpreters 0oL L.
243 shlex — Simple lexical analysis L

Graphical User Interfaces with Tk

25.1 tkinter — Pythoninterfaceto Tcl/Tk
252 tkinter.ttk —Tkthemedwidgets
253 tkinter.tix—Extensionwidgetsfor Tk L. o,
254 tkinter.scrolledtext — Scrolled Text Widget
255 IDLE
25.6 Other Graphical User Interface Packages,

Development Tools

26.1 pydoc — Documentation generator and online helpsystem
26.2 doctest — Testinteractive Pythonexamples 000,
26.3 unittest — Unittesting framework L o
264 unittest.mock —mockobjectlibrary Lo
26.5 unittest.mock —gettingstarted o e e e
26.6 2to3 - Automated Python 2 to 3 code translation L oL,
26.7 test — Regression tests package forPython. oo o000 oL
26.8 test.support — Utilities for the Python testsuite

Debugging and Profiling

27.1 bdb —Debugger framework oL
27.2 faulthandler — Dump the Python traceback
273 pdb—The Python Debugger e
27.4 The Python Profilers e e e e e
27.5 timeit — Measure execution time of small code snippets
27.6 trace — Trace or track Python statementexecution, ..
2777 tracemalloc — Trace memory allocations

Software Packaging and Distribution

28.1 distutils — Building and installing Pythonmodules
28.2 ensurepip — Bootstrapping the pipinstaller oo Lo,
28.3 venv — Creation of virtual environments oL e e

29 Python Runtime Services
29.1 sys — System-specific parameters and functions oL 0oL
29.2 sysconfig— Provide access to Python’s configuration information.
293 builtins—Built-inobjects L e
294 _ _main___ — Top-level script environment
29.5 warnings—Warningcontrol e
29.6 contextlib — Utilities for with-statement CONtexts v v v v v v v v v v v v e e .
29.7 abc—Abstract Base Classes e e e
29.8 atexit —Exithandlers
29.9 traceback — Print orretrieve a stack traceback L L oL
29.10 __ future_ — Future statement definitions«
29.11 gc — Garbage Collectorinterface e
29.12 inspect — Inspectlive objects L e e e e e e
29.13 site — Site-specific configurationhook oL oo
29.14 fpectl — Floating point exceptioncontrol L. oL oL

30 Custom Python Interpreters
30.1 code —Interpreter base classes e
30.2 codeop — Compile Pythoncode L

31 Importing Modules
31.1 zipimport — Import modules from Ziparchives.
31.2 pkgutil — Package extension utility
31.3 modulefinder —Find modulesused by ascript
31.4 runpy — Locating and executing Pythonmodules
31.5 importlib - Theimplementation of import

32 Python Language Services
32.1 parser — Access Pythonparse trees i i i e e e e e
322 ast —Abstract Syntax Trees o i e e e e e e e e e e
32.3 symtable — Access to the compiler’s symbol tables 0.,
324 symbol — Constants used with Python parse trees
32.5 token — Constants used with Python parse trees
32.6 keyword— Testing for Pythonkeywords e
327 tokenize — Tokenizer for Pythonsource
32.8 tabnanny — Detection of ambiguous indentation oL
32.9 pyclbr — Pythonclass browser support Lo Lo
32.10 py_compile — Compile Python sourcefiles
32.11 compileall — Byte-compile Python libraries
32.12 dis — Disassembler for Python bytecode o o .
32.13 pickletools — Tools for pickle developers

33 Miscellaneous Services
33.1 formatter — Generic output formattingo e e

34 MS Windows Specific Services
34.1 msilib — Read and write Microsoft Installer files
342 msvcrt — Useful routines from the MS VC++runtime
343 winreg— Windows registry aCCeSS« « v v v v v v v bt e e e e e e e e
34.4 winsound — Sound-playing interface for Windows 0oL oo

35 Unix Specific Services
35.1 posix — The most common POSIX systemcalls
35.2 pwd—The password database L e e e
35.3 spwd — The shadow password database

vi

354 grp—Thegroupdatabase 1599

35.5 crypt — Function to check Unix passwords o e 1600
35,6 termios —POSIXstylettycontrol e 1602
357 tty —Terminal control functions L 1603
35.8 pty —Pseudo-terminal utilities L. 1603
359 fcntl —The fentland ioctl systemcalls oo oL Lo 1604
35.10 pipes — Interface to shell pipelines e 1606
35.11 resource — Resource usage informationo e 1607
35.12 nis — Interface to Sun’s NIS (Yellow Pages) 1611
35.13 syslog— Unix syslog library routines oL 1612
36 Superseded Modules 1615
36.1 optparse — Parser for command line options oL 1615
36.2 imp — Access the importinternals L 1642
37 Undocumented Modules 1647
37.1 Platform specificmodules L e 1647
A Glossary 1649
B About these documents 1659
B.1 Contributors to the Python Documentation e 1659
C History and License 1661
C.1 Historyof the software e 1661
C.2 Terms and conditions for accessing or otherwise using Python 1662
C.3 Licenses and Acknowledgements for Incorporated Software 1664
D Copyright 1677
Bibliography 1679
Python Module Index 1681
Index 1685

vii

viii

The Python Library Reference, Release 3.4.10rc1

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so
it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

https://pypi.python.org/pypi
https://pypi.python.org/pypi

The Python Library Reference, Release 3.4.10rc1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual), or
look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about random
subjects, you choose a random page number (see module random) and read a section or two. Regardless of the order
in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the remainder of the
manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 3.4.10rc1

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here

in alphabetical order.

Built-in Functions

abs () dict () help() min () setattr()
all() dir() hex () next () slice()
any () divmod () id() object () sorted()
ascii() enumerate () | input () oct () staticmethod ()
bin() eval () int () open () str()
bool () exec () isinstance () ord() sum ()
bytearray () filter() issubclass () pow () super ()
bytes () float () iter() print () tuple ()
callable () format () len () property () type ()
chr () frozenset () 1list () range () vars ()
classmethod () getattr () locals () repr () zip ()
compile () globals () map () reversed () | __import__ ()
complex () hasattr() max () round ()
delattr() hash () memoryview () set ()

abs (x)

Return the absolute value of a number. The argument may be an integer or a floating point number. If the

argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

The Python Library Reference, Release 3.4.10rc1

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII char-
acters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to that
returned by repr () in Python 2.

bin (x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python int
object, it has to define an __index___ () method that returns an integer.

class bool ([x])
Return a Boolean value, i.e. one of True or False. x is converted using the standard truth testing procedure.
If x is false or omitted, this returns False; otherwise it returns True. The bool class is a subclass of int
(see Numeric Types — int, float, complex). It cannot be subclassed further. Its only instances are False and
True (see Boolean Values).

class bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as
most methods that the bytes type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

 If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

« If it is an integer, the array will have that size and will be initialized with null bytes.

« Ifitis an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

 If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes ([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in therange 0 <= x < 256. bytes
is an immutable version of bytearray — it has the same non-mutating methods and the same indexing and
slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.
See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes, and Bytes and Bytearray Operations.

callable (object)
Return True if the object argument appears callable, F'a 1 se if not. If this returns true, it is still possible that a
call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class returns
a new instance); instances are callable if their classhasa__ _call__ () method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a'. This is the inverse of ord (). The valid range for the argument is from O through
1,114,111 (Ox10FFFF in base 16). ValueError will be raised if i is outside that range.

classmethod (function)
Return a class method for function.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.4.10rc1

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in function for
details.

It can be called either on the class (such as C.f ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in this
section.

For more information on class methods, consult the documentation on the standard type hierarchy in types.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source
can either be a normal string, a byte string, or an AST object. Refer to the ast module documentation for
information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the compi-
lation of source. If neither is present (or both are zero) the code is compiled with those future statements that
are in effect in the code that is calling compile (). If the flags argument is given and dont_inherit is not (or
is zero) then the future statements specified by the flags argument are used in addition to those that would be
used anyway. If dont_inherit is a non-zero integer then the flags argument is it — the future statements in effect
around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_flag attribute on the _Feature
instance inthe future module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the
optimization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___
is true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source contains
null bytes.

If you want to parse Python code into its AST representation, see ast . parse ().

Note: When compiling a string with multi-line code in ' single' or 'eval' mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in the
code module.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does not
have to end in a newline anymore. Added the optimize parameter.

https://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 3.4.10rc1

class complex ([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion
like int and f1oat. If both arguments are omitted, returns 0 J.

Note: When converting from a string, the string must not contain whitespace around the central + or — operator.
For example, complex ('1+273") is fine, but complex ('l + 27j') raises ValueError.

The complex type is described in Numeric Types — int, float, complex.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, 'foobar') isequivalenttodel x.foobar.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 711st, set, and tuple classes, as well as the col lect ions module.

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method named __dir___ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or__getattribute__ () function to cus-
tomize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

* If the object is a module object, the list contains the names of the module’s attributes.

« If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

» Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace

['__builtins__ ', '__name__', 'struct']

>>> dir (struct) # show the names in the struct module # doctest: +SKIP
['Struct', ' all ', ' builtins__ ', '_ cached_ ', '__doc_ ', '_ file_ ',
' initializing_ ', '__loader__', '__name__', '__package__ ',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',
'unpack', 'unpack_from']
>>> class Shape:

(continues on next page)

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

def _ dir__ (self):
. return ['area', 'perimeter', 'location']
>>> s = Shape ()
>>> dir (s)
["area', 'location', 'perimeter']

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when
the argument is a class.

divmod (a, b)

Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating point numbers the resultis (q,

a % Db),wheregisusuallymath.floor (a / b) butmay be 1 less than that. Inanycaseg b + a %
bis very close to a,if a % b is non-zero it has the same signas b,and 0 <= abs(a % b) < abs (b).

enumerate (iterable, start=0)

Return an enumerate object. iferable must be a sequence, an iferator, or some other object which supports
iteration. The __ next__ () method of the iterator returned by enumerate () returns a tuple containing a
count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list (enumerate (seasons))

[(O, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list (enumerate (seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression, globals=None, locals=None)

The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present
and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed. This means
that expression normally has full access to the standard builtins module and restricted environments are
propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are
omitted, the expression is executed in the environment where eval () is called. The return value is the result
of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In

The Python Library Reference, Release 3.4.10rc1

this case pass a code object instead of a string. If the code object has been compiled with 'exec' as the mode
argument, eval ()’s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and
locals () functions returns the current global and local dictionary, respectively, which may be useful to pass
around for use by eval () or exec ().

See ast.literal_eval () for a function that can safely evaluate strings with expressions containing only
literals.

exec (object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object. If
it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs).! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to
be valid as file input (see the section “File input” in the Reference Manual). Be aware that the return and
yield statements may not be used outside of function definitions even within the context of code passed to the
exec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary, which will be used for both the global and the local variables. If globals and
locals are given, they are used for the global and local variables, respectively. If provided, locals can be any
mapping object. Remember that at module level, globals and locals are the same dictionary. If exec gets two
separate objects as globals and locals, the code will be executed as if it were embedded in a class definition.

If the globals dictionary does not contain a value for the key ___builtins__, areference to the dictionary of
the built-in module bui 1t insisinserted under that key. That way you can control what builtins are available to
the executed code by inserting your own __builtins__ dictionary into globals before passing it to exec ().

Note: The built-in functions globals () and locals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function Z1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on
locals after function exec () returns.

filter (function, iterable)
Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function(item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

class float ([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional signmaybe '+' or '—";a '+"' sign has no effect on the value produced.
The argument may also be a string representing a NaN (not-a-number), or a positive or negative infinity. More

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.4.10rc1

precisely, the input must conform to the following grammar after leading and trailing whitespace characters are

removed:
Slgl’l = "+" I n_nmn
infinity = "Infinity" | "inf"
nan = "nan"
numeric_value = floatnumber | infinity | nan

numeric_string [sign] numeric_value

Here f1oatnumber is the form of a Python floating-point literal, described in floating. Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY"” and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value
(within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an
OverflowError will be raised.

For a general Python object x, f1oat (x) delegatesto x.___float__ ().
If no argument is given, 0. O is returned.

Examples:

>>> float ('+1.23")

1.23

>>> float (' -12345\n")
-12345.0

>>> float ('1le-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity'")
—-inf

The float type is described in Numeric Types — int, float, complex.

format (value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec
will depend on the type of the value argument, however there is a standard formatting syntax that is used by
most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st r (value).

A call to format (value, format_spec) is translated to type (value) ._ format__ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s ___format__ ()
method. A TypeError exception is raised if the method search reaches object and the format_spec is
non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec is
not an empty string.

class frozenset ([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one

11

The Python Library Reference, Release 3.4.10rc1

of the object’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar')
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError israised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether it
raises an At t ributeError or not.)

hash (object)

Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the
same hash value (even if they are of different types, as is the case for 1 and 1.0).

Note: For object’s with custom __hash___ () methods, note that hash () truncates the return value based on
the bit width of the host machine. See __hash__ () for details.

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are
now more comprehensive and consistent.

hex (x)
Convert an integer number to a lowercase hexadecimal string prefixed with “0x”, for example:

>>> hex (255)
'Oxff!

>>> hex (-42)
'-0x2a'’

If x is not a Python int object, it has to define an __index__ () method that returns an integer.

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.4.10rc1

reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = input('-—> ")
--> Monty Python's Flying Circus
>>> s

"Monty Python's Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

class int (x=0)

class int (x, base=10)
Return an integer object constructed from a number or string x, or return O if no arguments are given. If x is a
number, return x . __int__ (). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing
an integer literal in radix base. Optionally, the literal can be preceded by + or — (with no space in between)
and surrounded by whitespace. A base-n literal consists of the digits O to n-1, with a to z (or A to Z) having
values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 literals can be
optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base 0 means to interpret
exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int ('010"', 0) is not legal,
while int ('010") is,aswellas int ('010"', 8).

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index_
method, that method is called to obtain an integer for the base. Previous versions used base.__int__ instead
of base._ _index_ .

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virtual)
subclass thereof. If object is not an object of the given type, the function always returns false. If classinfo is a
tuple of type objects (or recursively, other such tuples), return true if object is an instance of any of the types. If
classinfo is not a type or tuple of types and such tuples, a TypeError exception is raised.

issubclass (class, classinfo)
Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any
other case, a TypeError exception is raised.

iter (object[, sentinel])

Return an iferator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ () method
with integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then object must be a callable object. The iterator created in this case
will call object with no arguments for each call to its___next__ () method; if the value returned is equal to
sentinel, St opIterat ion will be raised, otherwise the value will be returned.

See also Iterator Types.

One useful application of the second form of i tez () is to read lines of a file until a certain line is reached. The
following example reads a file until the readline () method returns an empty string:

with open('mydata.txt') as fp:
for line in iter (fp.readline, ''):
process_line (line)

13

The Python Library Reference, Release 3.4.10rc1

len (s)

Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

class list([iterable])

Rather than being a function, 11 st is actually a mutable sequence type, as documented in Lists and Sequence
Types — list, tuple, range.

locals ()

Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

map (function, iterable, ...)

Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables in
parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the
function inputs are already arranged into argument tuples, see 1 tertools.starmap ().

max (iterable, *[, key, default])
max (argl, arg2, *args[, key])

Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If
two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable is
empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0] and
heapg.nlargest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

memoryview (obj)

Return a “memory view” object created from the given argument. See Memory Views for more information.

min (iterable, *[, key, default])
min (argl, arg2, *args[, key])

Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iferable. The smallest item in the iterable is returned. If
two or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable is
empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted(iterable, key=keyfunc) [0] and heapqg.
nsmallest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.4.10rc1

next (iterator[, default])
Retrieve the next item from the iterator by calling its___next___ () method. If default is given, it is returned if
the iterator is exhausted, otherwise StopIterat ion is raised.

class object
Return a new featureless object. ob ject is a base for all classes. It has the methods that are common to all
instances of Python classes. This function does not accept any arguments.

Note: object does not have a ___dict
ob ject class.

, SO you can’t assign arbitrary attributes to an instance of the

oct (x)
Convert an integer number to an octal string. The result is a valid Python expression. If x is not a Python int
object, it has to define an ___index__ () method that returns an integer.

open (file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True,
opener=None)
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised.

file is either a string or bytes object giving the pathname (absolute or relative to the current working directory)
of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is
closed when the returned 1/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to 'r' which means
open for reading in text mode. Other common values are 'w' for writing (truncating the file if it already exists),
'x ' for exclusive creation and 'a' for appending (which on some Unix systems, means that all writes append
to the end of the file regardless of the current seek position). In text mode, if encoding is not specified the
encoding used is platform dependent: locale.getpreferredencoding (False) is called to get the
current locale encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.)
The available modes are:

Character | Meaning

'r! open for reading (default)

'w' open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
'a’ open for writing, appending to the end of the file if it exists
'b! binary mode

Tt text mode (default)

T4 open a disk file for updating (reading and writing)

'y universal newlines mode (deprecated)

The default mode is 'r' (open for reading text, synonym of 'rt'). For binary read-write access, the mode
'w+b ' opens and truncates the file to O bytes. ' r+b' opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b"' in the mode argument) return contents as by tes objects without any decoding. In text mode
(the default, or when 't ' is included in the mode argument), the contents of the file are returned as st r, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is
done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in
binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size in

15

The Python Library Reference, Release 3.4.10rc1

bytes of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as
follows:

» Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on i0.DEFAULT _BUFFER_SIZE.On
many systems, the buffer will typically be 4096 or 8192 bytes long.

* “Interactive” text files (files for which isatty () returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent (whatever locale.getpreferredencoding () returns), but
any fext encoding supported by Python can be used. See the code cs module for the list of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be used
in binary mode. A variety of standard error handlers are available (listed under Error Handlers), though any
error handling name that has been registered with codecs. register._error () is also valid. The standard
names include:

e 'strict' toraise a ValueError exception if there is an encoding error. The default value of None
has the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
* 'replace' causes a replacement marker (such as ' ? ') to be inserted where there is malformed data.

e 'surrogateescape' will represent any incorrect bytes as code points in the Unicode Private Use Area
ranging from U+DC80 to U+DCFF. These private code points will then be turned back into the same bytes
when the surrogateescape error handler is used when writing data. This is useful for processing files
in an unknown encoding.

e 'xmlcharrefreplace"' is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference & #nnn; .

* 'backslashreplace' (also only supported when writing) replaces unsupported characters with
Python’s backslashed escape sequences.

newline controls how universal newlines mode works (it only applies to text mode). It can be None, ' ', '\n"',
"\r',and '\r\n"'. It works as follows:

¢ When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in
the input canend in '\n', '\r',or '\r\n"', and these are translated into ' \n' before being returned
to the caller. If it is ' ', universal newlines mode is enabled, but line endings are returned to the caller
untranslated. If it has any of the other legal values, input lines are only terminated by the given string, and
the line ending is returned to the caller untranslated.

* When writing output to the stream, if newline is None, any '\n' characters written are translated to the
system default line separator, os.linesep. If newlineis '' or '\n"', no translation takes place. If
newline is any of the other legal values, any '\n' characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be
kept open when the file is closed. If a filename is given closefd has no effect and must be True (the default).

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os . open
as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os. open () function to open a file relative to a given
directory:

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.4.10rc1

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open(path, flags, dir_fd=dir_f£fd)

>>> with open('spamspam.txt', 'w', opener=opener) as f:
print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close (dir_fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used to open a
fileinatextmode ('w', 'r', 'wt ', 'rt',etc.), it returns a subclass of i 0. Text TOBase (specifically io.
Text IOWrapper). When used to open a file in a binary mode with buffering, the returned class is a subclass of
io.BufferedIOBase. The exactclass varies: in read binary mode, itreturns an i 0. BufferedReader;in
write binary and append binary modes, it returns an 1o . Buf ferediriter, and in read/write mode, it returns
an io.BufferedRandom. When buffering is disabled, the raw stream, a subclass of i0.RawIOBase, i0.
FileIO,is returned.

See also the file handling modules, such as, fileinput, 1o (where open () is declared), os, os.path,
temprfile,and shutil.

Changed in version 3.3: The opener parameter was added. The 'x' mode was added. TOError used to
be raised, it is now an alias of OSError. FileExistsError is now raised if the file opened in exclusive
creation mode ('x ') already exists.

Changed in version 3.4: The file is now non-inheritable.
Deprecated since version 3.4, will be removed in version 4.0: The 'U' mode.

ord (c)
Given a string representing one Unicode character, return an integer representing the Unicode code point of that
character. For example, ord ('a"') returns the integer 97 and ord ('\u2020") returns 8224. This is the
inverse of chr ().

pow (x.y[.z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than
pow (x, vy) % z). Thetwo-argument form pow (x, vy) isequivalent to using the power operator: x* *y.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, 10+«2 returns 100, but 10+*—2 returns 0.01. If the second argument is negative, the third
argument must be omitted. If z is present, x and y must be of integer types, and y must be non-negative.

print (*objects, sep="", end="\n’, file=sys.stdout, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end and file, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no objects are given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None, sys.
stdout will be used. Since printed arguments are converted to text strings, print () cannot be used with
binary mode file objects. For these, use file.write (.. .) instead.

Whether output is buffered is usually determined by file, but if the flush keyword argument is true, the stream is
forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

17

The Python Library Reference, Release 3.4.10rc1

class property (fget=None, fset=None, fdel=None, doc=None)

Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function
for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def _ init_ (self):
self._x = None

def getx(self):
return self._x

def setx(self, value):
self._x = value

def delx (self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If ¢ is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget’s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def _ init_ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the
same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

class C:
def @ init__ (self):
self._x = None

@property

def x(self):
""”I'm the YXY property. mmn
return self._x

@x.setter
def x(self, value):

self._x = value

@x.deleter

(continues on next page)

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property object also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.

range (stop)

range (start, stop[, step])
Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and
Sequence Types — list, tuple, range.

repr (object)
Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval (), otherwise
the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what this
function returns for its instances by defininga___repr__ () method.

reversed (seq)
Return a reverse iferator. seq must be an object which has a ___reversed__ () method or supports the
sequence protocol (the __len__ () method andthe __getitem__ () method with integer arguments starting
at 0).

round (number[, ndigits])
Return the floating point value number rounded to ndigits digits after the decimal point. If ndigits is omitted, it
defaults to zero. Delegates to number.___round__ (ndigits).

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power minus
ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example, both
round (0.5) and round (-0.5) are 0, and round (1.5) is 2). The return value is an integer if called with
one argument, otherwise of the same type as number.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives2.67
instead of the expected 2. 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be
represented exactly as a float. See tut-fp-issues for more information.

class set ([iterable])
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set and
Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the
collections module.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr (x, 'foobar', 123) isequivalentto x.foobar = 123.

class slice (stop)

class slice (start, stop[, step])
Return a slice object representing the set of indices specified by range (start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality; however

19

The Python Library Reference, Release 3.4.10rc1

they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop, i]. See
itertools.islice () for an alternate version that returns an iterator.

sorted (iterable/[, key][, reverse])

Return a new sorted list from the items in iterable.
Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () toconvert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

staticmethod (function)

Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f (argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in function for
details.

It can be called either on the class (such as C. f ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. Also see classmethod () for a variant
that is useful for creating alternate class constructors.

For more information on static methods, consult the documentation on the standard type hierarchy in types.

class str (object=")
class str (object=b", encoding="utf-8’, errors="strict’)

Return a st r version of object. See st r () for details.

str is the built-in string c/ass. For general information about strings, see Text Sequence Type — str.

sum (iterable[, start])

Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The iterable’s
items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence
of strings is by calling ''. join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using i tertools.chain ().

super ([type[, object-or-type]])

Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for accessing
inherited methods that have been overridden in a class. The search order is same as that used by getattr ()
except that the fype itself is skipped.

The ___mro___ attribute of the type lists the method resolution search order used by both getattr () and

super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

20

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.4.10rc1

If the second argument is omitted, the super object returned is unbound. If the second argument is an ob-
ject, isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single
inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement
the same method. Good design dictates that this method have the same calling signature in every case (because
the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy, and
because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arg) # This does the same thing as:
super (C, self).method(arg)

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such as
super () .__getitem__ (name). It does so by implementing its own __getattribute__ () method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly,
super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class
being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

tuple ([iterable])
Rather than being a function, tuple is actually an immutable sequence type, as documented in 7uples and
Sequence Types — list, tuple, range.

class type (object)

class type (name, bases, dict)
With one argument, return the type of an object. The return value is a type object and generally the same object
as returned by object._ class .

The isinstance () built-in function is recommended for testing the type of an object, because it takes sub-
classes into account.

With three arguments, return a new type object. This is essentially a dynamic form of the c1lass statement. The
name string is the class name and becomes the ___name___ attribute; the bases tuple itemizes the base classes
and becomes the ___bases___ attribute; and the dict dictionary is the namespace containing definitions for class
body and becomes the dict__ attribute. For example, the following two statements create identical t ype
objects:

>>> class X:
a =1

>>> X = type('X', (object,), dict(a=1l))

See also Type Objects.

21

http://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.4.10rc1

vars ([object])

Return the ___dict___ attribute for a module, class, instance, or any other object with a __dict___ attribute.

Objects such as modules and instances have an updateable __dict___ attribute; however, other objects may
have write restrictions on their ___dict__ attributes (for example, classes use a dictproxy to prevent direct
dictionary updates).

Without an argument, vars () acts like 1ocals (). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

zip (*iterables)

Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences
or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable argument, it
returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(xiterables):
zip('ABCD', 'xy') —--> AxX By
sentinel = object ()
iterators = [iter(it) for it in iterables]
while iterators:
result = []
for it in iterators:

elem = next (it, sentinel)
if elem is sentinel:
return

result.append (elem)
yield tuple (result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups using zip (* [iter (s)]*n).

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched values
from the longer iterables. If those values are important, use i tertools.zip longest () instead.

zip () in conjunction with the » operator can be used to unzip a list:

>> x = [1, 2, 3]

>>> vy = [4, 5, 6]

>>> zipped = zip(x, V)

>>> list (zipped)

[(1, 4), (2, 5), (3, 6)]

>>> x2, y2 = zip(*zip(x, Vy))

>>> x == list(x2) and y == list (y2)
True

__import__ (name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike importlib.
import_module ().

This function is invoked by the import statement. It can be replaced (by importing the builtins module
and assigningtobuiltins.__import__)in order to change semantics of the import statement, but doing
so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same goals
and does not cause issues with code which assumes the default import implementation is in use. Direct use of
___import__ () is also discouraged in favor of importiib. import_module ().

22

Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.4.10rc1

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at all,
and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. O (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the module
calling__import__ () (see PEP 328 for the details).

When the name variable is of the form package .module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __import__ ('spam', globals(), locals(), [1, 0)

The statement import spam.ham results in this call:

spam = __import__ ('spam.ham', globals (), locals(), [], 0)

Note how ___import___ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from ___import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value
to 0).

23

https://www.python.org/dev/peps/pep-0328

The Python Library Reference, Release 3.4.10rc1

24 Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the boo I type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the boo1 type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of the type NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which should be returned by the binary special methods (e.g. __eqa (), 1t (),
__add__ (),__rsub__ (), etc.) to indicate that the operation is not implemented with respect to the other

type; may be returned by the in-place binary special methods (e.g. ___imul__ (),__iand__ (), etc.) for the
same purpose. Its truth value is true.

Note: When Not Implemented is returned, the interpreter will then try the reflected operation on the other type, or
some other fallback, depending on the operator. If all attempted operations return Not Implemented, the interpreter
will raise an appropriate exception.

See Implementing the arithmetic operations for more details.

Ellipsis
The same as Special value used mostly in conjunction with extended slicing syntax for user-defined
container data types.

__debug___
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and ___debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not be
used in programs.

25

The Python Library Reference, Release 3.4.10rc1

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemEx1it with the specified exit code.

copyright

license

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

26 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested for
truth value, and converted to a string (with the repr () function or the slightly different st~ () function). The latter
function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or while condition or as operand of the Boolean operations
below. The following values are considered false:

¢ None

* False

* zero of any numeric type, for example, 0, 0.0, 0.
 any empty sequence, for example, ' ', (), [].

* any empty mapping, for example, { }.

¢ instances of user-defined classes, if the class defines a __ _bool__ () or __len__ () method, when that
method returns the integer zero or bool value False.'

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

! Additional information on these special methods may be found in the Python Reference Manual (customization).

27

The Python Library Reference, Release 3.4.10rc1

Operation | Result Notes
X Or y if x is false, then y, else x (1)
x and y | if xis false, then x, else y 2)
not x if x is false, then True, else False | (3)

Notes:
(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is False.
(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

(3) not has a lower priority than non-Boolean operators, so not a == b isinterpreted asnot (a == b),and
a == not b is asyntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x < y
and y <= z,except that y is evaluated only once (but in both cases z is not evaluated at all when x < vy is found
to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types (for example,
function objects) support only a degenerate notion of comparison where any two objects of that type are unequal. The
<, <=, > and >= operators will raise a TypeError exception when comparing a complex number with another built-
in numeric type, when the objects are of different types that cannot be compared, or in other cases where there is no
defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (), __le_ (), __gt__ (),and __ge__ () (in general,
1t () and__eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects and
never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported only by sequence types (below).

28 Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using
double in C; information about the precision and internal representation of floating point numbers for the machine
on which your program is running is available in sys. fl1oat_info. Complex numbers have a real and imaginary
part, which are each a floating point number. To extract these parts from a complex number z, use z . real and z.
imag. (The standard library includes additional numeric types, fractions that hold rationals, and decimal that
hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appending ' 5' or ' J"' to a numeric literal yields an imaginary number (a complex
number with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary
parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,
which is narrower than complex. Comparisons between numbers of mixed type use the same rule.” The constructors
int (), float (),and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (all numeric oper-
ations have a higher priority than comparison operations):

Operation Result Notes| Full documen-
tation
X +y sum of x and y
X -y difference of x and y
X *x Y product of x and y
x /y quotient of x and y
x //y floored quotient of x and y)
X %y remainderof x / y 2)
-X x negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)©6) | int ()
float (x) x converted to floating point @A) (6) | float ()
complex (re, a complex number with real part re, imaginary part im. im de- | (6) complex ()
im) faults to zero.
c. conjugate of the complex number ¢
conjugate ()
divmod (x, y) the pair (x // y, x % V) 2) divmod ()
pow (x, V) X to the power y @) pow ()
X xk Y X to the power y 5)
Notes:

(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//2is 0, (-1) //2is-1,1//(=2) is
-1,and (-1)//(-2) is 0.

(2) Not for complex numbers. Instead convert to floats using abs () if appropriate.

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 29

The Python Library Reference, Release 3.4.10rc1

(3) Conversion from floating point to integer may round or truncate as in C; see functions math. fl1oor () and
math.ceil () for well-defined conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

(5) Python defines pow (0, 0) and 0 =+ O tobe 1, as is common for programming languages.
(6) The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with the Nd
property).

See http://www.unicode.org/Public/6.3.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

All numbers.Real types (int and f1oat) also include the following operations:

Operation Result Notes
math.trunc (x) | xtruncated to Integral

round (x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor (x) | the greatest integral float <= x

math.ceil (x) the least integral float >=x

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types
Bitwise operations only make sense for integers. Negative numbers are treated as their 2’s complement value (this
assumes a sufficiently large number of bits that no overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bitwise operations sorted in ascending priority:

Operation | Result Notes
x y bitwise or of x and y

x Ny bitwise exclusive or of x and y

X &y bitwise and of x and y

x << n x shifted left by n bits (DH(2)
X >> n x shifted right by » bits (H(3)
~X the bits of x inverted

Notes:
(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow (2, n) without overflow check.

(3) A right shift by n bits is equivalent to division by pow (2, n) without overflow check.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers. Integral abstract base class. In addition, it provides a few more methods:

30 Chapter 4. Built-in Types

http://www.unicode.org/Public/6.3.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.4.10rc1

int.bit_length ()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin (n)
'-0b100101"

>>> n.bit_length()
6

More precisely, if x is nonzero, then x.bit_length () is the unique positive integer k such that 2« (k-1)
<= abs (x) < 2xxk. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm,
thenk = 1 + int (log(abs(x), 2)).Ifxiszero,then x.bit_length () returns 0.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) —--> '-0b100101"'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101') —--> 6

New in version 3.1.

int.to_bytes (length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"'

>>> (1024) .to_bytes (10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)

P \XfA\XFE\XEE\XEA\XEE\XEE\XEL\xEf\xfc\x00"'

>>> x = 1000

>>> x.to_bytes ((x.bit_length() // 8) + 1, byteorder='little")
b'\xe8\x03"'

The integer is represented using length bytes. An OverflowError is raised if the integer is not representable
with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "1ittle™", the most significant byte is at
the end of the byte array. To request the native byte order of the host system, use sys.byteorder as the byte
order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed is False
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

New in version 3.2.

classmethod int.from_ bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes (b'\x00\x10', byteorder='big'")

16

>>> int.from_bytes (b'\x00\x10', byteorder='little")

4096

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=False)
64512

(continues on next page)

4.4. Numeric Types — int, float, complex 31

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

>>> int.from_bytes ([255, 0, 0], byteorder='big'")
16711680

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most significant byte is at
the end of the byte array. To request the native byte order of the host system, use sys.byteorder as the byte
order value.

The signed argument indicates whether two’s complement is used to represent the integer.

New in version 3.2.

4.4.3 Additional Methods on Float

The float type implements the numbers. Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError oninfinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0) .is_integer()
True

>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

float .hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.

classmethod float.fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing
whitespace.

Note that f1oat.hex () is an instance method, while f1oat . fromhex () is a class method.

A hexadecimal string takes the form:

[sign] ['Ox'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of float.hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by f1oat. fromhex ().

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number (3
+ 10./16 + 7./16%%2) % 2.0%x10,0r 3740.0:

>>> float.fromhex ('0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex(3740.0)
'0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x ==
v (see the __hash__ () method documentation for more details). For ease of implementation and efficiency across
a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction) Python’s
hash for numeric types is based on a single mathematical function that’s defined for any rational number, and hence
applies to all instances of int and fractions.Fraction, and all finite instances of float and decimal.
Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P is made
available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedis P = 2xx31 - 1 on machines with 32-bit C longs
andP = 2+x61 — 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n is a nonnegative rational number and n is not divisible by P, define hash (x) as m =*
invmod(n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

e If x = m / n is a nonnegative rational number and n is divisible by P (but m is not) then n has no in-
verse modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value sys.
hash_info.inf.

e If x = m / nis anegative rational number define hash (x) as ~hash (-x). If the resulting hash is -1,
replace it with —2.

e The particular values sys.hash_info.inf, -sys.hash_info.inf and sys.hash_info.nan are
used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have the
same hash value.)

e For a complex number z, the hash values of the real and imaginary parts are combined by com-
puting hash(z.real) + sys.hash_info.imag % hash(z.imag), reduced modulo 2x*sys.
hash_info.width so that it lies in range (-2x* (sys.hash_info.width - 1), 2x=*(sys.
hash_info.width — 1)). Again, if the resultis —1, it’s replaced with —2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash
of a rational number, r1oat, or complex:

import sys, math

def hash_fraction(m, n):
"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

(continues on next page)

4.4. Numeric Types — int, float, complex 33

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

mon

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)

whilem $ P == n $ P ==
m, n=m// P, n//P

ifn %P ==0:
hash_ = sys.hash_info.inf

else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_ = (abs(m) % P) x pow(n, P - 2, P) % P
if m < O:

hash_ = -hash_
if hash_ == -1:

hash_ = -2

return hash_

def hash_float (x):
"""Compute the hash of a float x."""

if math.isnan(x) :

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):
"""Compute the hash of a complex number z."""

hash_ = hash_float(z.real) + sys.hash_info.imag % hash_float (z.imag)
do a signed reduction modulo 2++sys.hash _info.width
M = 2xx(sys.hash_info.width - 1)
hash_ = (hash_ &« (M - 1)) - (hash & M)
if hash == -1:
hash_ == -2
return hash_

4.5 lterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration support:

container._ iter ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method corresponds to the t p_iter slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

protocol:

iterator.__iter_ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APL

iterator._ _next_ ()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s ___next__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__ ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter_ () and __next__ () methods. More information about generators can be found in the
documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for processing
of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on
custom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the same
type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and *
(repetition) operations have the same priority as the corresponding numeric operations.

4.6. Sequence Types — list, tuple, range 35

The Python Library Reference, Release 3.4.10rc1

Operation Result Notes
x in s True if an item of s is equal to x, else False @))]

X not in s False if an item of s is equal to x, else True €))

s + t the concatenation of s and ¢ 6)(7)
S * norn * S equivalent to adding s to itself n times Q)7
s[i] ith item of s, origin 0 3)
s[i:7] slice of s from i to j 3)@)
s[i:7:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index(x[, 1il, index of the first occurrence of x in s (at or after index i and before index | (8)
jll) J)

s.count (x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically
by comparing corresponding elements. This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Notes:

)

)

3)

4)

While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> llgg" in "ngS"
True

Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that items in
the sequence s are not copied; they are referenced multiple times. This often haunts new Python programmers;
consider:

>>> lists = [[]] » 3
>>> lists

(e, 1, (11

>>> lists[0].append(3)
>>> lists

(31, 31, [31]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
x 3 are references to this single empty list. Modifying any of the elements of 11ists modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for 1 in range(3)]
>>> lists[0].append(3)

>>> lists[1l].append(5)

>>> lists[2].append(7)

>>> lists

(31, s1, [71]

Further explanation is available in the FAQ entry fag-multidimensional-list.

If i or j is negative, the index is relative to the end of the string: len (s) + iorlen(s) + Jis substituted.
But note that —0 is still O.

The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. Ifiorjis

36

Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

(&)

(6)

)

®)

greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If i
is greater than or equal to j, the slice is empty.

The slice of s from i to j with step & is defined as the sequence of items with index x = i + n«k such that
0 <= n < (j-1i)/k. In other words, the indices are i, i +k, 1+2+xk, 1+3+k and so on, stopping when j is
reached (but never including j). If i or j is greater than len (s), use len (s). If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is
treated like 1.

Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime
cost, you must switch to one of the alternatives below:

* if concatenating st r objects, you can build a list and use str. join () at the end or else write to an
io.StringIO instance and retrieve its value when complete

* if concatenating byt es objects, you can similarly use bytes. join () or io.BytesIO,or youcan do
in-place concatenation with a byt earray object. bytearray objects are mutable and have an efficient
overallocation mechanism

* if concatenating t uple objects, extend a 11 st instead
« for other types, investigate the relevant class documentation

Some sequence types (such as range) only support item sequences that follow specific patterns, and hence
don’t support sequence concatenation or repetition.

index raises ValueError when x is not found in s. When supported, the additional arguments to the index
method allow efficient searching of subsections of the sequence. Passing the extra arguments is roughly equiv-
alent to using s [1: j] .index (x), only without copying any data and with the returned index being relative
to the start of the sequence rather than the start of the slice.

4.6.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by mutable
sequence types is support for the hash () built-in.

This support allows immutable sequences, such as t up e instances, to be used as dict keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.
MutableSequence ABC is provided to make it easier to correctly implement these operations on custom sequence

types.
In the

table s is an instance of a mutable sequence type, ¢ is any iterable object and x is an arbitrary object that meets

any type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the value
restriction 0 <= x <= 255).

4.6. Sequence Types — list, tuple, range 37

The Python Library Reference, Release 3.4.10rc1

Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:3] = t slice of s from i to j is replaced by the contents of the iterable ¢
del s[i:7] sameas s[i:3] = []
s[i:j:k] =t the elements of s [1: j:k] are replaced by those of ¢ (D
del s[i:j:k] removes the elements of s [1: j:k] from the list
s.append (x) appends x to the end of the sequence (same as s[len(s):len(s)] =

[x])
s.clear () removes all items from s (same as del s[:]) ®))
s.copy () creates a shallow copy of s (sameas s[:]) ®))
s.extend (t) or extends s with the contents of ¢ (for the most part the same as
+= t s[len(s):len(s)] = t)
S *= n updates s with its contents repeated n times 6)
s.insert (i, x) inserts x into s at the index given by i (same as s [1:1] = [x])
s.pop ([1]) retrieves the item at i and also removes it from s 2)
s.remove (X) remove the first item from s where s [1] == x 3)
s.reverse () reverses the items of s in place @

Notes:

(1) 7 must have the same length as the slice it is replacing.

(2) The optional argument i defaults to -1, so that by default the last item is removed and returned.

(3) remove raises ValueError when x is not found in s.

(4) The reverse () method modifies the sequence in place for economy of space when reversing a large sequence.
To remind users that it operates by side effect, it does not return the reversed sequence.

(5) clear () and copy () are included for consistency with the interfaces of mutable containers that don’t support
slicing operations (such as dict and set)

New in version 3.3: clear () and copy () methods.

(6) The value n is an integer, or an object implementing ___index__ (). Zero and negative values of n clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n
under Common Sequence Operations.

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of
similarity will vary by application).

class list([iterable])

Lists may be constructed in several ways:

» Using a pair of square brackets to denote the empty list: []

» Using square brackets, separating items with commas: [a], [a, b, c]

e Using a list comprehension: [x for x in iterable]

» Using the type constructor: 1ist () or list (iterable)

The constructor builds a list whose items are the same and in the same order as iferable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a
copy is made and returned, similar to iterable[:]. For example, 1ist ('abc') returns ['a', 'b',

38

Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

'c']and list ((1, 2, 3)) returns [1, 2, 3]. If no argument is given, the constructor creates a
new empty list, [].

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (*, key=None, reverse=None)
This method sorts the list in place, using only < comparisons between items. Exceptions are not suppressed
- if any comparison operations fail, the entire sort operation will fail (and the list will likely be left in a
partially modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element
(for example, key=str.lower). The key corresponding to each item in the list is calculated once and
then used for the entire sorting process. The default value of None means that list items are sorted directly
without calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key func-
tion.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted () to
explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration,
and raises ValueError if it can detect that the list has been mutated during a sort.

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples pro-
duced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous
data is needed (such as allowing storage in a set or dict instance).

class tuple ([iterable])

Tuples may be constructed in a number of ways:
» Using a pair of parentheses to denote the empty tuple: ()
» Using a trailing comma for a singleton tuple: a, or (a,)
* Separating items with commas: a, b, cor (a, b, c)
e Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iferable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it
is returned unchanged. For example, tuple ('abc') returns ('a', 'b', 'c') and tuple([1, 2,
3]) returns (1, 2, 3).Ifnoargument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional,
except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, £ (a, b,

4.6. Sequence Types — list, tuple, range 39

The Python Library Reference, Release 3.4.10rc1

c) is a function call with three arguments, while £ ((a, b, c¢)) is a function call with a 3-tuple as the sole
argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number
of times in for loops.

class range (stop)

class range (start, stop[, step])
The arguments to the range constructor must be integers (either built-in int or any object that implements the
__index___ special method). If the step argument is omitted, it defaults to 1. If the start argument is omitted,
it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r [1] = start + stepxi
where i >= Oandr[i] < stop.

For a negative step, the contents of the range are still determined by the formular [1] = start + step=*i,
but the constraintsare i >= Oandr[i] > stop.

A range object will be empty if r [0] does not meet the value constraint. Ranges do support negative indices,
but these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sy s . maxs i ze are permitted but some features (such as 1en ())
may raise OverflowError.

Range examples:

>>> list (range (10))

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range(l, 11))

[, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[o, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

(o, -1, -2, -3, -4, -5, -0, -7, -8, -9]
>>> list (range (0))

>>> list (range(l, 0))

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact
that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will
usually violate that pattern).

The advantage of the range type over a regular 1ist or tuple is that a range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step
values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

40 Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[—-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare equal might
have different start, stop and step attributes, for example range (0) == range (2, 1, 3) orrange (0,
3, 2) == range (0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘==" and ‘!=" to compare range objects based on the sequence of values they define
(instead of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.

4.7 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code
points. String literals are written in a variety of ways:

» Single quotes: 'allows embedded "double" quotes'
* Double quotes: "allows embedded 'single' quotes™".
e Triple quoted: ' ' 'Three single quotes''',"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted
to a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”)
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty
string s, s[0] == s[0:1].

There is also no mutable string type, but str. join () or io.StringIO can be used to efficiently construct strings
from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted on
string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str (object="")

4.7. Text Sequence Type — str 41

The Python Library Reference, Release 3.4.10rc1

class str (object=b", encoding="utf-8’, errors="strict’)
Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior of
str () depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str (object) returns object.__str__ (), whichis the “informal”
or nicely printable string representation of object. For string objects, this is the string itself. If object does not
havea ___str__ () method, then st () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytes or bytearray).
In this case, if object is a bytes (or bytearray) object, then str (bytes, encoding, errors) is
equivalent to bytes.decode (encoding, errors). Otherwise, the bytes object underlying the buffer
object is obtained before calling bytes.decode (). See Binary Sequence Types — bytes, bytearray, memo-
ryview and bufferobjects for information on buffer objects.

Passing a bytes objectto st r () without the encoding or errors arguments falls under the first case of return-
ing the informal string representation (see also the ~b command-line option to Python). For example:

>>> str(b'Zoot!")
"b'Zoot!""

For more information on the str class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the String Formatting section. In addition, see the 7ext Processing
Services section.

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see
str.format (), Format String Syntax and String Formatting) and the other based on C printf style formatting
that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can
handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various
text related utilities (including regular expression support in the re module).

str.capitalize()
Return a copy of the string with its first character capitalized and the rest lowercased.

str.casefold ()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions
in a string. For example, the German lowercase letter '3 ' is equivalent to "ss". Since it is already lowercase,
lower () would do nothing to 'B"'; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.
New in version 3.3.

str.center (width[,ﬁllchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII
space). The original string is returned if width is less than or equal to len (s).

str.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

str.encode (encoding="utf-8", errors="strict")
Return an encoded version of the string as a bytes object. Default encoding is 'ut £-8"'. errors may be given

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

to set a different error handling scheme. The default for errors is 'strict ', meaning that encoding errors
raise a UnicodeError. Other possible values are 'ignore', 'replace’', 'xmlcharrefreplace’,
'backslashreplace' and any other name registered via codecs.register_error (), see section
Error Handlers. For a list of possible encodings, see section Standard Encodings.

Changed in version 3.1: Support for keyword arguments added.

str.endswith (suﬁ‘ix[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

str.expandtabs (fabsize=8)

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current
column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab positions at
columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string is examined
character by character. If the character is a tab (\t), one or more space characters are inserted in the result until
the current column is equal to the next tab position. (The tab character itself is not copied.) If the character is a
newline (\n) or return (\r), it is copied and the current column is reset to zero. Any other character is copied
unchanged and the current column is incremented by one regardless of how the character is represented when
printed.

>>> "01\t012\t0123\t01234"' .expandtabs ()

'01 012 0123 01234"
>>> '01\t012\t0123\t01234"' . expandtabs (4)
'01 012 0123 01234"

str.find (sub[, smrt[, end]])
Return the lowest index in the string where substring sub is found within the slice s [start :end]. Optional
arguments start and end are interpreted as in slice notation. Return —1 if sub is not found.

Note: The find () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> 'Py' in 'Python'
True

str.format (*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a posi-
tional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field
is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is " format (1+2)
'The sum of 1 + 2 is 3'

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

str.format_map (mapping)
Similar to str.format (x+*mapping), except that mapping is used directly and not copied to a dict.
This is useful if for example mapping is a dict subclass:

>>> class Default (dict) :
def _ missing__ (self, key):

(continues on next page)

4.7. Text Sequence Type — str 43

The Python Library Reference, Release 3.4.10rc1

str.

str.

str.

str.

str

str.

str.

str.

str.

str.

(continued from previous page)

return key

>>> ! was born in '.format_map (Default (name="'Guido"))
'Guido was born in country'

New in version 3.2.

index (sub[, start[, end]])
Like find (), butraise ValueError when the substring is not found.

isalnum/()

Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha (), c.isdecimal (),
c.isdigit (),orc.isnumeric().

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those with
general category property being one of “Lm”, “Lt”, “Lu”, “LI”, or “Lo”. Note that this is different from the
“Alphabetic” property defined in the Unicode Standard.

isdecimal ()

Return true if all characters in the string are decimal characters and there is at least one character, false otherwise.
Decimal characters are those from general category “Nd”. This category includes digit characters, and all
characters that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC DIGIT ZERO.

.isdigit ()

Return true if all characters in the string are digits and there is at least one character, false otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

isidentifier ()
Return true if the string is a valid identifier according to the language definition, section identifiers.

Use keyword. iskeyword () to test for reserved identifiers such as def and class.

islower ()
Return true if all cased characters* in the string are lowercase and there is at least one cased character, false
otherwise.

isnumeric ()

Return true if all characters in the string are numeric characters, and there is at least one character, false oth-
erwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

isprintable()

Return true if all characters in the string are printable or the string is empty, false otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repr () is invoked on a string. It has no bearing on the handling of strings
written to sys. stdout or sys.stderr.)

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase), or “Lt” (Letter,
titlecase).

44

Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

str.

str.

str.

str

str.

str

Whitespace characters are those characters defined in the Unicode character database as “Other” or “Separator”
and those with bidirectional property being one of “WS”, “B”, or “S”.

istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

isupper ()
Return true if all cased characters* in the string are uppercase and there is at least one cased character, false
otherwise.

join (iterable)

Return a string which is the concatenation of the strings in the iterable iterable. A TypeError will be raised
if there are any non-string values in iterable, including byt es objects. The separator between elements is the
string providing this method.

.13just (width|, fillchar |)

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is
an ASCII space). The original string is returned if width is less than or equal to 1en (s).

lower ()
Return a copy of the string with all the cased characters* converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

.1strip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious " 1lstrip()
'spacious !
>>> 'www.example.com'.lstrip('cmowz.")

'example.com'

static str.maketrans (x[, y[, Z]])

This static method returns a translation table usable for st r. translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted to
ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

str.partition (sep)

str

str.

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

.replace (old, new[, count])

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

rfind (sub[, start[, end]])

Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on fail-
ure.

4.7. Text Sequence Type — str 45

The

Python Library Reference, Release 3.4.10rc1

str

str

str

str

str

str

.rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the substring sub is not found.

.rjust (width|, fillchar |)
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1en (s).

.rpartition (sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

.rsplit (sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaves like split () which is described in detail below.

.rstrip([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious

.rstrip()
spacious'

>>> 'mississippi'.rstrip('ipz')
'mississ'

.split (sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1, then
there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, '1,,2'.split (', ") returns ['1', '', '2']). The sep argument may consist of multiple
characters (for example, '1<>2<>3"'.split ('<>"') returns ['1', '2"', '3']). Splitting an empty
string with a specified separator returns [''].

For example:

>>> '1,2,3".split (', ")

['1" '2" V3']

>>> '1,2,3".split (', "', maxsplit=1)
['1', '2’3|:|

>>> '1,2,,3,".split (', ")

['1|, '2', ll, |3|’ 'l]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

For example:

>>> 'l 2 3'.split ()

[lll, 12l, '3']

>>> 'l 2 3'.split (maxsplit=1)
['1', '2 3'}

>>> ! 1 2 3 '.split ()
['l" '2" V3']

46

Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

str.splitlines ([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal
newlines.

Representation | Description

\n Line Feed

\r Carriage Return

\r\n Carriage Return + Line Feed
\vor \x0b Line Tabulation

\f or \x0c Form Feed

\x1lc File Separator

\x1d Group Separator

\xle Record Separator

\x85 Next Line (C1 Control Code)
\u2028 Line Separator

\u2029 Paragraph Separator

Changed in version 3.2: \v and \ £ added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines/()

['ab c¢', "', 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> "" splitlines()

[]

>>> "One line\n".splitlines/()
['One line']

For comparison, split ('\n') gives:

>>> "' split('\n")

['']

>>> 'Two lines\n'.split('\n")
['"Two lines', '']

str.startswith (preﬁx[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string at
that position.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.strip()
'spacious’

(continues on next page)

4.7. Text Sequence Type — str 47

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

>>> 'www.example.com'.strip('cmowz.")
'example'

str.swapcase ()

Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not
necessarily true that s. swapcase () . swapcase () == s.

str.title()

Return a titlecased version of the string where words start with an uppercase character and the remaining char-
acters are lowercase.

For example:

>>> 'Hello world'.title()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r" [A-Za-z]+ (' [A-Za-z]+
lambda mo: mo.group (0)
mo.group (0)

)
[
[

2",
0] .upper () +
1:]1.lower(),
s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (table)

Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via ___getitem__ (), typically a mapping or sequence.
When indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode
ordinal or a string, to map the character to one or more other characters; return None, to delete the character
from the return string; or raise a LookupError exception, to map the character to itself.

Youcanuse str.maketrans () to create a translation map from character-to-character mappings in different
formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper ()

Return a copy of the string with all the cased characters* converted to uppercase. Note that st r.upper () .
isupper () might be False if s contains uncased characters or if the Unicode category of the resulting
character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.z£ill (width)

Return a copy of the string left filled with ASCII '0' digits to make a string of length width. A leading sign
prefix ('+'/'~") is handled by inserting the padding after the sign character rather than before. The original
string is returned if width is less than or equal to len (s) .

48

Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

For example:

>>> "42" z£i11(5)
'00042"

>>> "—42" z£i11 (5)
'-0042"

4.7.2 print£-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). Using the newer str. format () interface helps avoid
these errors, and also provides a generally more powerful, flexible and extensible approach to formatting text.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting

[)

or interpolation operator. Given format % values (where format is a string), $ conversion specifications in
format are replaced with zero or more elements of values. The effect is similar to using the sprintf () in the C
language.

If format requires a single argument, values may be a single non-tuple object.” Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '$' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ' + ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' « ' (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a paren-
thesised mapping key into that dictionary inserted immediately after the ' $' character. The mapping key selects the
value to be formatted from the mapping. For example:

o

>>> print (' has quote types.' %
ce {'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.7. Text Sequence Type — str 49

The Python Library Reference, Release 3.4.10rc1

Flag | Meaning

"#' | The value conversion will use the “alternate form” (where defined below).

'0"' | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0' conversion if both are given).

' ' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conversion.
'+' | Asigncharacter ('+' or '-") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical

to %d.

The conversion types are:

Con- Meaning Noteg

version

'd! Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. €))

'u' Obsolete type — it is identical to 'd'. @)

'x! Signed hexadecimal (lowercase). 2)

X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E’ Floating point exponential format (uppercase). 3)

'f£! Floating point decimal format. 3)

B! Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G! Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

‘¢! Single character (accepts integer or single character string).

'r! String (converts any Python object using repr ()). o)

's' String (converts any Python object using str ()). 5)

'a' String (converts any Python object using ascii ()). o)

'y No argument is converted, results in a ' $ ' character in the result.

Notes:

(1) The alternate form causes a leading zero (' 0 ') to be inserted between left-hand padding and the formatting of

the

number if the leading character of the result is not already a zero.

(2) The alternate form causes a leading '0x' or '0X' (depending on whether the 'x ' or 'X"' format was used)
to be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.

(7) See PEP 237.

50

Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.4.10rc1

Since Python strings have an explicit length, $s conversions do not assume that ' \0' is the end of the string.

Changed in version 3.1: $ £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g
conversions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by
memoryview which uses the buffer protocol to access the memory of other binary objects without needing to make

a copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.8.1 Bytes

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII
text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and
are closely related to string objects in a variety of other ways.

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:
» Single quotes: b'still allows embedded "double" quotes'
* Double quotes: b"still allows embedded 'single' quotes".
e Triple quoted: b' ' '3 single quotes''',b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any binary
values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See strings for
more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable se-
quences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate this
restriction will trigger ValueError. This is done deliberately to emphasise that while many binary formats include
ASCII based elements and can be usefully manipulated with some text-oriented algorithms, this is not generally the
case for arbitrary binary data (blindly applying text processing algorithms to binary data formats that are not ASCII
compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
* A zero-filled bytes object of a specified length: bytes (10)
e From an iterable of integers: bytes (range (20))
» Copying existing binary data via the buffer protocol: bytes (ob7)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format
for describing binary data. Accordingly, the bytes type has an additional class method to read data in that format:

classmethod bytes.fromhex (string)
This bytes class method returns a bytes object, decoding the given string object. The string must contain two
hexadecimal digits per byte, with ASCII spaces being ignored.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 51

The Python Library Reference, Release 3.4.10rc1

>>> pytes.fromhex ('2Ef0 F1£f2 ")
b' \xfO\xfl\xf2'

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, while
b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytes objects uses the literal format (b'..."') since it is often more useful than e.g.
bytes ([46, 46, 46]). You can always convert a bytes object into a list of integers using 1ist (b).

Note: For Python 2.x users: In the Python 2.x series, a variety of implicit conversions between 8-bit strings (the
closest thing 2.x offers to a built-in binary data type) and Unicode strings were permitted. This was a backwards
compatibility workaround to account for the fact that Python originally only supported 8-bit text, and Unicode text
was a later addition. In Python 3.x, those implicit conversions are gone - conversions between 8-bit binary data and
Unicode text must be explicit, and bytes and string objects will always compare unequal.

4.8.2 Bytearray Objects
bytearray objects are a mutable counterpart to bytes objects. There is no dedicated literal syntax for bytearray
objects, instead they are always created by calling the constructor:

 Creating an empty instance: bytearray ()

* Creating a zero-filled instance with a given length: bytearray (10)

* From an iterable of integers: bytearray (range (20))

» Copying existing binary data via the buffer protocol: bytearray (b'Hi!")

As bytearray objects are mutable, they support the murable sequence operations in addition to the common bytes and
bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format
for describing binary data. Accordingly, the bytearray type has an additional class method to read data in that format:

classmethod bytearray.fromhex (string)
This bytearray class method returns bytearray object, decoding the given string object. The string must
contain two hexadecimal digits per byte, with ASCII spaces being ignored.

>>> bytearray.fromhex ('2Ef0 F1£f2 ")
bytearray (b' . \xf0\xfl1\xf2")

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b [0] will be an integer,
while b [0: 1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and slicing
will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (bytearray (b'... ")) since it is often more
useful than e.g. bytearray ([46, 46, 46]). You can always convert a bytearray object into a list of integers
using 1ist (b).

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands
of the same type, but with any byres-like object. Due to this flexibility, they can be freely mixed in operations without

52 Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

causing errors. However, the return type of the result may depend on the order of operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write:

a = "abc"
b = a.replace("a", "f")

a = b"abc"
b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be avoided
when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may
lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.

bytes.count (sub[, start[, end]])

bytearray.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

The subsequence to search for may be any byzes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.decode (encoding="utf-8", errors="strict")

bytearray.decode (encoding="utf-8", errors="strict")
Return a string decoded from the given bytes. Default encoding is 'utf£—-8"'. errors may be given to set
a different error handling scheme. The default for errors is 'strict', meaning that encoding errors raise
a UnicodeError. Other possible values are 'ignore', 'replace' and any other name registered via
codecs.register_error (), see section Error Handlers. For a list of possible encodings, see section
Standard Encodings.

Note: Passing the encoding argument to st r allows decoding any bytes-like object directly, without needing
to make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

bytes.endswith (suﬁ‘ix[, start[, end]])

bytearray.endswith (suﬁix[, start[, end]])
Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional szart, test beginning at that position. With optional end, stop comparing at
that position.

The suffix(es) to search for may be any bytes-like object.

bytes.find (sub[, start[, end])
bytearray.find (sub[, start|, end]])
Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice

4.8. Binary Sequence Types — bytes, bytearray, memoryview 53

The Python Library Reference, Release 3.4.10rc1

s[start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Note: The £ind () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> pb'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.index (sub[, start[, end]])
bytearray.index (sub[, start[, end]])
Like find (), butraise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes. join (iterable)

bytearray. join (iterable)
Return a bytes or bytearray object which is the concatenation of the binary data sequences in the iterable iterable.
A TypeError will be raised if there are any values in iterable that are not bytes-like objects, including st r
objects. The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes.maketrans (from, to)

static bytearray.maketrans (from, to)
This static method returns a translation table usable for bytes. translate () that will map each character
in from into the character at the same position in fo; from and to must both be bytes-like objects and have the
same length.

New in version 3.1.

bytes.partition (sep)

bytearray.partition (sep)
Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator, and the part after the separator. If the separator is not found, return a 3-tuple containing a copy of the
original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.replace (0ld, new[, count])

bytearray.replace (old, new[, count |)
Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rfind (sub[, start[, end]])

bytearray.rfind (sub[, start[, end]])
Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return —1 on failure.

54 Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

The subsequence to search for may be any byzes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rindex (sub[, start[, end]])
bytearray.rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the subsequence sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.rpartition (sep)

bytearray.rpartition (sep)
Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator, and the part after the separator. If the separator is not found, return a 3-tuple containing a copy of the
original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.startswith (preﬁx[, start[, end]])

bytearray.startswith (preﬁx[, start[, end]])
Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be a tuple
of prefixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

The prefix(es) to search for may be any byres-like object.

bytes.translate (table[, delete])

bytearray.translate (table[, delete])
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes
object of length 256.

You can use the bytes.maketrans () method to create a translation table.

Set the table argument to None for translations that only delete characters:

>>> b'read this short text'.translate (None, b'aeiou')
b'rd ths shrt txt'

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII compat-
ible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that all of
the bytearray methods in this section do not operate in place, and instead produce new objects.

bytes.center (width[,ﬁllbyte])

bytearray.center (width[,ﬁllbyte])
Return a copy of the object centered in a sequence of length widrh. Padding is done using the specified fillbyte
(default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or equal
to len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.1ljust (widih|, fillbyte |)

bytearray.ljust (width[,ﬁllbyte])
Return a copy of the object left justified in a sequence of length widrh. Padding is done using the specified
fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or
equal to len (s).

4.8. Binary Sequence Types — bytes, bytearray, memoryview 55

The Python Library Reference, Release 3.4.10rc1

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.lstrip ([chars])
bytearray.lstrip ([chars])

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> b' spacious " lstrip()
b'spacious !

>>> b'www.example.com'.lstrip(b'cmowz.")
b'example.com'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rjust (width[,ﬁllbyte])
bytearray.rjust (width[,ﬁllbyte])

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For byt es objects, the original sequence is returned if width is less than or
equal to len (s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rsplit (sep=None, maxsplit=-1)
bytearray.rsplit (sep=None, maxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is
given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or None, any subsequence
consisting solely of ASCII whitespace is a separator. Except for splitting from the right, rsplit () behaves
like split () which is described in detail below.

bytes.rstrip ([chars])
bytearray.rstrip ([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.rstrip()

b' spacious'

>>> b'mississippi'.rstrip(b'ipz')
b'mississ'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if

56

Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

no changes were made.

bytes.split (sep=None, maxsplit=-1)

bytearray.split (sep=None, maxsplit=-1)
Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit
is given and non-negative, at most maxsplit splits are done (thus, the list will have at most maxsplit+1
elements). If maxsplit is not specified or is —1, then there is no limit on the number of splits (all possible splits
are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences
(for example, b'1,,2"'.split(b', ') returns [b'1', b'', b'2']). The sep argument may consist
of a multibyte sequence (for example, b'1<>2<>3"' .split (b'<>") returns [b'1l', b'2', b'3']).
Splitting an empty sequence with a specified separator returns [b' '] or [bytearray (b'"')] depending on
the type of object being split. The sep argument may be any bytes-like object.

For example:

>>> pb'l,2,3".split(b',")

[b'1l', b'2', b'3"']

>>> b'l,2,3".split(b',"', maxsplit=1)
[b'1l', b'2,3"']

>>> pb'l,2,,3,".split(b', ")

[b’lV, blzl’ b’l’ bY3V, b"]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the sequence
has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consisting solely
of ASCII whitespace without a specified separator returns [].

For example:

>>> b'l 2 3'.split ()

[b'1l', b'2', b'3"]

>>> p'l 2 3'.split (maxsplit=1)
[b'1l', b'2 3']

>>> b 1 2 3 '.split ()
[blll, bl2|, bl3l]

bytes.strip ([chars])

bytearray.strip([chars])
Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a binary
sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used
with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The
chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.strip()
b'spacious'

>>> b'www.example.com'.strip(b'cmowz.")
b'example'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 57

The Python Library Reference, Release 3.4.10rc1

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should
not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place,
and instead produce new objects.

bytes.capitalize ()

bytearray.capitalize ()
Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized
and the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.expandtabs (tabsize=8)

bytearray.expandtabs (fabsize=38)
Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces,
depending on the current column and the given tab size. Tab positions occur every tabsize bytes (default is 8,
giving tab positions at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to zero
and the sequence is examined byte by byte. If the byte is an ASCII tab character (b '\t '), one or more space
characters are inserted in the result until the current column is equal to the next tab position. (The tab character
itself is not copied.) If the current byte is an ASCII newline (b ' \n") or carriage return (b ' \r "), it is copied
and the current column is reset to zero. Any other byte value is copied unchanged and the current column is
incremented by one regardless of how the byte value is represented when printed:

>>> b'01\t012\t0123\t01234"'.expandtabs ()

b'01 012 0123 01234"
>>> b'01\t012\t0123\t01234"' .expandtabs (4)
b'01l 012 0123 01234"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.isalnum ()

bytearray.isalnum/()
Return true if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and
the sequence is not empty, false otherwise. Alphabetic ASCII characters are those byte values in the se-
quence b 'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ '. ASCII decimal dig-
its are those byte values in the sequence b'0123456789"'.

For example:

>>> b'ABCabcl'.isalnum()
True
>>> b'ABC abcl'.isalnum/()
False

bytes.isalpha ()

bytearray.isalpha ()
Return true if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, false otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.

For example:

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

>>> pb'ABCabc'.isalpha()
True
>>> p'ABCabcl'.isalpha ()
False

bytes.isdigit ()

bytearray.isdigit ()
Return true if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, false otherwise.
ASCII decimal digits are those byte values in the sequence b'0123456789"'.

For example:

>>> pb'1234" .isdigit ()
True

>>> p'1.23".isdigit ()
False

bytes.islower ()

bytearray.islower ()
Return true if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII characters,
false otherwise.

For example:

>>> b'hello world'.islower ()
True

>>> b'Hello world'.islower ()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghi jklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.isspace ()

bytearray.isspace ()
Return true if all bytes in the sequence are ASCII whitespace and the sequence is not empty, false otherwise.
ASCII whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f' (space, tab, newline,
carriage return, vertical tab, form feed).

bytes.istitle()

bytearray.istitle()
Return true if the sequence is ASCII titlecase and the sequence is not empty, false otherwise. See bytes.
title () for more details on the definition of “titlecase”.

For example:

>>> p'Hello World'.istitle()
True

>>> pb'Hello world'.istitle()
False

bytes.isupper ()

bytearray.isupper ()
Return true if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase ASCII
characters, false otherwise.

For example:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 59

The Python Library Reference, Release 3.4.10rc1

>>> Db'HELLO WORLD'.isupper ()
True
>>> pb'Hello world'.isupper ()
False

Lowercase ASCII characters are those byte values in the sequence b 'abcdefghi jklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.lower ()
bytearray.lower ()

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding lower-
case counterpart.

For example:

>>> b'Hello World'.lower ()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence b 'abcdefghi jklmnopgrstuvwxyz"'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.splitlines (keepends=False)
bytearray.splitlines (keepends=False)

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the
universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends
is given and true.

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines/()

[b'ab c¢', b''", b'de fg', b'kl']

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> b"".split(b'\n'), b"Two lines\n".split(b'\n")
([b''"], [b'Two lines', b''])

>>> b"" . splitlines (), b"One line\n".splitlines ()
([]1, [b'One line'])

bytes.swapcase ()
bytearray.swapcase ()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding upper-
case counterpart and vice-versa.

For example:

>>> pb'Hello World'.swapcase ()
b'"hELLO wORLD'

Lowercase ASCII characters are those byte values in the sequence b 'abcdefghi jklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

60

Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

Unlike str.swapcase (), it is always the case that bin.swapcase () . swapcase () == bin for the
binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary
Unicode code points.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.title()

bytearray.title()
Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and the
remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCII characters are those byte values in the sequence b ' abcdefghi jklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> pb"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(rb" [A-Za-z]+ (' [A-Za-z]+)?2",
lambda mo: mo.group(0) [0:1] .upper () +
mo.group (0) [1:].lower (),
s)

>>> titlecase (b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.upper ()

bytearray.upper ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding upper-
case counterpart.

For example:

>>> b'Hello World'.upper ()
b'HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghi jklmnopgrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61

The Python Library Reference, Release 3.4.10rc1

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.z£ill (width)
bytearray.z£ill (width)

Return a copy of the sequence left filled with ASCII b ' 0 ' digits to make a sequence of length widrth. A leading
sign prefix (b'+"'/b'~" is handled by inserting the padding after the sign character rather than before. For
bytes objects, the original sequence is returned if width is less than or equal to 1en (seq) .

For example:

>>> p"42" . z£1i11 (5)
b'oo042"
>>> pb"-42" . zf1i11 (5)
b'-0042"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

4.8.4 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying.

class memoryview (0bj)

Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that support
the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object obj. For many simple types such as bytes and bytearray, an element is a single byte, but other types
such as array.array may have bigger elements.

len (view) is equal to the length of tolist. If view.ndim = 0, thelengthis 1. If view.ndim = 1,
the length is equal to the number of elements in the view. For higher dimensions, the length is equal to the
length of the nested list representation of the view. The i temsi ze attribute will give you the number of bytes
in a single element.

A memoryview supports slicing to expose its data. If format is one of the native format specifiers from
the st ruct module, indexing will return a single element with the correct type. Full slicing will result in a
subview:

>>> v = memoryview (b'abcefg')
>>> v[1l]

98

>>> v[-1]

103

>>> v[l:4]

<memory at 0x7£3ddc9£4350>
>>> bytes(v[1l:4])

b'bce’

Other native formats:

62

Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

>>> import array

>>> a = array.array('l', [-11111111, 22222222, -33333333, 44444444])
>>> al0]

-11111111

>>> a[-1]

44444444

>>> g[2:3].tolist ()

[-33333333]

>>> af::2].tolist ()

[-11111111, -33333333]

>>> al[::-1].tolist ()

[44444444, -33333333, 22222222, -11111111]

New in version 3.3.

If the underlying object is writable, the memoryview supports slice assignment. Resizing is not allowed:

>>> data = bytearray(b'abcefg')

>>> v = memoryview (data)

>>> v.readonly

False

>>> v[0] = ord(b'z")

>>> data

bytearray (b'zbcefg')

>>> v[1l:4] = b'123"

>>> data

bytearray(b'z123fg"'")

>>> v[2:3] = b'spamn'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: memoryview assignment: lvalue and rvalue have different structures

>>> v[2:6] = b'spam'

>>> data

bytearray(b'zlspam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The

hash is defined as hash (m) == hash (m.tobytes ()):
>>> v = memoryview (b'abcefg')

>>> hash(v) == hash(b'abcefg'")

True

>>> hash(v[2:4]) == hash(b'ce')

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews with formats ‘B’, ‘b’ or ‘c’ are now hashable.
Changed in version 3.4: memoryview is now registered automatically with collections.abc.Sequence
memoryview has several methods:

__eq (exporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using st ruct syntax.

For the subset of struct format strings currently supported by tolist (), v and w are equal if v.
tolist () == w.tolist():

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63

https://www.python.org/dev/peps/pep-3118

The Python Library Reference, Release 3.4.10rc1

>>> import array

>>> a = array.array('1', [1, 2, 3, 4, 5])

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])
>>> ¢ = array.array('b', [5, 3, 1]

>>> x = memoryview(a)

>>> y = memoryview (b)

>>> x == a == y ==

True

>>> x.tolist () == a.tolist () == y.tolist () == b.tolist ()
True

>>> z = y[::-2]

>>> z == C

True

>>> z.tolist () == c.tolist ()

True

If either format string is not supported by the st ruct module, then the objects will always compare as
unequal (even if the format strings and buffer contents are identical):

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint (BigEndianStructure) :
fields = [("x", c_long), ("y", c_long)]

>>> point = BEPoint (100, 200)

>>> a = memoryview (point)

>>> b = memoryview (point)

>>> a == point

False

>>> a == b

False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and the
logical array structure.

tobytes ()
Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor on the
memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

b'abc'

>>> bytes (m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted
to bytes. tobytes () supports all format strings, including those that are not in st ruct module syntax.

tolist ()
Return the data in the buffer as a list of elements.

>>> memoryview(b'abc') .tolist ()

[97, 98, 99]

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.31])
>>> m = memoryview(a)

(continues on next page)

64 Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

>>> m.tolist ()
(1.1, 2.2, 3.3]

Changed in version 3.3: tolist () now supports all single character native formats in st ruct module
syntax as well as multi-dimensional representations.

release ()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions when
a view is held on them (for example, a byt earray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release () itself which can be called multiple times):

>>> m = memoryview(b'abc')
>>> m.release()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview (b'abc') as m:
m[0]

97

>>> m[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast (format[, shape])
Cast a memoryview to a new format or shape. shape defaults to [byte_length//new_itemsizel],
which means that the result view will be one-dimensional. The return value is a new memoryview, but the
buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.

Both formats are restricted to single element native formats in st ruct syntax. One of the formats must
be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the original length.

Cast 1D/long to 1D/unsigned bytes:

>>> import array

>>> a = array.array('l', [1,2,31])
>>> x = memoryview(a)

>>> x.format

lll

>>> x.itemsize

8

>>> len (x)

>>> x.nbytes

24

>>> y = x.cast ('B")
>>> y.format

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

'Bl
>>> y.itemsize

>>> len(y)
24

>>> y.nbytes
24

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz")
>>> x = memoryview (b)
>>> x[0] = b'a'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview: invalid value for format "B"

>>> y = x.cast('c")
>>> y[0] = Db'a'
>>> b

bytearray(b'ayz"')

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct

>>> buf = struct.pack("i"x12, xlist (range(12)))
>>> x = memoryview (buf)

>>> y = x.cast('i', shape=[2,2,3])

>>> y.tolist ()

rrro, 1, 21, 113, 4, 511, I[le, 7, 81, [9, 10, 11111
>>> y.format

[

i
>>> y.itemsize

4

>>> len(y)

2

>>> y.nbytes
48

>>> z = y.cast('b")
>>> z.format
lbl

>>> z.itemsize
1

>>> len(z)

48

>>> z.nbytes
48

Cast 1D/unsigned char to 2D/unsigned long:

>>> buf = struct.pack ("L"x6, xlist (range(6)))
>>> x = memoryview (buf)

>>> y = x.cast('L', shape=[2,3])

>>> len(y)

2

>>> y.nbytes

48

(continues on next page)

66

Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

>>> y.tolist ()
(o, 1, 21, (3, 4, 5]]

New in version 3.3.

There are also several readonly attributes available:

obj

The underlying object of the memoryview:

>>> b = bytearray(b'xyz')
>>> m = memoryview (b)

>>> m.obj is b

True

New in version 3.3.

nbytes

nbytes == product (shape) * itemsize == len (m.tobytes ()). This is the amount of
space in bytes that the array would use in a contiguous representation. It is not necessarily equal to len(m):

>>> import array

>>> a = array.array('i', [1,2,3,4,5])
>>> m = memoryview(a)

>>> len (m)

5

>>> m.nbytes

20

>>> y = m[::2]

>>> len(y)

3

>>> y.nbytes

12

>>> len(y.tobytes())
12

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack ("d"x12, x[1.5+«x for x in range(1l2)])

>>> x = memoryview (buf)

>>> y = x.cast('d', shape=[3,4])

>>> y.tolist ()

([ro.o0, 1.5, 3.0, 4.5, [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
>>> len(y)

3

>>> y.nbytes

96

New in version 3.3.

readonly

A bool indicating whether the memory is read only.

format

A string containing the format (in st ruct module style) for each element in the view. A memoryview can
be created from exporters with arbitrary format strings, but some methods (e.g. tolist ()) are restricted
to native single element formats.

4.8.

Binary Sequence Types — bytes, bytearray, memoryview 67

The Python Library Reference, Release 3.4.10rc1

Changed in version 3.3: format 'B"' is now handled according to the struct module syntax. This means
that memoryview (b'abc') [0] == b'abc'[0] == 97.

itemsize
The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m memoryview (array.array ('H', [32000, 32001, 3200271))
>>> m.itemsize

2

>>> m[0]

32000

>>> struct.calcsize('H') == m.itemsize

True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension
of the array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets
Used internally for PIL-style arrays. The value is informational only.

c_contiguous
A bool indicating whether the memory is C-contiguous.

New in version 3.3.

f_contiguous
A bool indicating whether the memory is Fortran contiguous.

New in version 3.3.

contiguous
A bool indicating whether the memory is contiguous.

New in version 3.3.

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, remov-
ing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and
symmetric difference. (For other containers see the built-in dict, 1ist,and tuple classes,andthe collections
module.)

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used

68 Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {'jack', 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

class set ([iterable])

class frozenset ([iterable])
Return a new set or frozenset object whose elements are taken from iferable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s)
Return the cardinality of set s.

x in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a proper superset of other, thatis, set >= other and set != other.

union (other, ...)
set | other |
Return a new set with elements from the set and all others.

intersection (other,...)
set & other &
Return a new set with elements common to the set and all others.

difference (other,...)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set * other
Return a new set with elements in either the set or other but not both.

copy ()
Return a new set with a shallow copy of s.

4.9. Set Types — set, frozenset 69

The Python Library Reference, Release 3.4.10rc1

Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any iterable
as an argument. In contrast, their operator based counterparts require their arguments to be sets. This precludes
error-prone constructions like set ('abc') & 'cbs' in favor of the more readable set ('abc') .
intersection('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the
first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and
only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For
example, set ('abc') == frozenset ('abc') returns True and so does set ('abc') in
set ([frozenset ('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any two
nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return False:
a<b, a==b, or a>b.

Since sets only define partial ordering (subset relationships), the output of the 1ist . sort () method is unde-
fined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ('ab') | set ('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (other, ...)
set |= other |
Update the set, adding elements from all others.

intersection_update (other, ...)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (other,...)
set —-= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set “= other
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

70

Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

Note, the non-operator versions of the update (), intersection_update (),
difference_update (), and symmetric _difference _update () methods will accept any
iterable as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a set. To
support searching for an equivalent frozenset, the elem set is temporarily mutated during the search and then
restored. During the search, the elem set should not be read or mutated since it does not have a meaningful
value.

4.10 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the built-in 11ist, set, and tuple classes, and
the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictionaries
or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (suchas 1 and 1. 0)
then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store
floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example:
{'jack': 4098, 'sjoerd': 4127} or {4098: 'jack', 4127: 'sjoerd'}, or by the dict
constructor.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise,
the positional argument must be an iterable object. Each item in the iterable must itself be an iterable with
exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object
the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding
value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created
from the positional argument. If a key being added is already present, the value from the keyword argument
replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2,
"three": 3}:

>>> a = dict (one=1, two=2, three=3)

>>> b = {'one': 1, 'two': 2, 'three': 3}

>>> ¢ = dict(zip(['one', 'two', 'three'l, [1, 2, 31))

>>> d = dict([('two', 2), ('one', 1), ('three', 3)1])

>>> e = dict({'three': 3, 'one': 1, 'two': 2})

>>> g == b == ¢ == d ==

True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers.
Otherwise, any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

4.10. Mapping Types —dict 71

The Python Library Reference, Release 3.4.10rc1

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__ () and key is not present, the d [key] operation
calls that method with the key key as argument. The d[key] operation then returns or raises what-
ever is returned or raised by the __missing__ (key) call. No other operations or methods invoke
__missing__ (). If __missing__ () isnotdefined, KeyErrorisraised. _ missing__ () must
be a method; it cannot be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):

.. return 0
>>> ¢ = Counter ()
>>> c['red']

0

>>> c['red'] += 1
>>> c['red']

The example above shows part of the implementation of collections.Counter. A different
_ _missing__ methodisused by collections.defaultdict.

d[key] = value

Set d [key] to value.
del d[key]

Remove d [key] from d. Raises a KeyError if key is not in the map.
key in d

Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter (d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (seq[, value])
Create a new dictionary with keys from seq and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

items ()
Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view
objects.

keys ()
Return a new view of the dictionary’s keys. See the documentation of view objects.

72

Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

pop (key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and key
is not in the dictionary, a KeyError is raised.

popitem /()
Remove and return an arbitrary (key, wvalue) pair from the dictionary.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See the documentation of view objects.

Dictionaries compare equal if and only if they have the same (key, value) pairs. Order comparisons (‘<’,
‘<=’, ‘>=’, *>") raise TypeError.
See also:

types.MappingProxyType can be used to create a read-only view of a dict.

4.10.1 Dictionary view objects

The objects returned by dict.keys (), dict.values () and dict.items () are view objects. They provide
a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these
changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len (dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, wvalue)) in the dictionary.

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python implementa-
tions, and depends on the dictionary’s history of insertions and deletions. If keys, values and items views are
iterated over with no intervening modifications to the dictionary, the order of items will directly correspond. This
allows the creation of (value, key) pairsusing zip (): pairs = zip(d.values (), d.keys()).
Another way to create the same listis pairs = [(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to iterate
over all entries.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value)
pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since

4.10. Mapping Types —dict 73

The Python Library Reference, Release 3.4.10rc1

the entries are generally not unique.) For set-like views, all of the operations defined for the abstract base class
collections.abc. Set are available (for example, ==, <, or *).

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys ()
>>> values = dishes.values|()

>>> # iteration

>>>n = 0

>>> for val in values:
. n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order
>>> list (keys)

['eggs', 'bacon', 'sausage', 'spam']

>>> list (values)

[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes|['eggs']

>>> del dishes|['sausage']

>>> list (keys)

['spam', 'bacon']

>>> # set operations

>>> keys & {'eggs', 'bacon', 'salad'}
{'"bacon'}

>>> keys ~ {'sausage', 'Jjuice'}
{'"juice', 'sausage', 'bacon', 'spam'}

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is implemented
using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement
body is executed and exited when the statement ends:

contextmanager.__enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext (). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body of the with
statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed.
If an exception occurred while executing the body of the with statement, the arguments contain the exception
type, value and traceback information. Otherwise, all three arguments are None.

74 Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value to
indicate that the method completed successfully and does not want to suppress the raised exception. This allows
context management code to easily detect whether ornotan ___exit___ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially
beyond their implementation of the context management protocol. See the context 11ib module for some examples.

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will
return a context manager implementing the necessary __enter__ () and __exit__ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C APL
Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared
to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.

4.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.12.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather
it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the ___dict_
attribute is not possible (you can write m.__dict__['a'] = 1, which defines m.a to be 1, but you can’t write
m.__dict__ = {}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file,
they are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

4.12.2 Classes and Class Instances

See objects and class for these.

4.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.12. Other Built-in Types 75

The Python Library Reference, Release 3.4.10rc1

4.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a bound
method (also called instance method) object. When called, it will add the self argument to the argument list. Bound
methods have two special read-only attributes: m.___self__ is the object on which the method operates, and m.
__func___is the function implementing the method. Calling m (arg-1, arg-2, ..., arg-n) iscompletely
equivalent to callingm.__func__ (m.__self , arg-1l, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.___func__), setting method attributes on bound methods is
disallowed. Attempting to set an attribute on a method results in an At t ributeError being raised. In order to set
a method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
def method(self):
pass
>>> ¢ = C()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'
>>> c.method._ func_ .whoami = 'my name is method'
>>> c.method.whoami
'my name is method'

See types for more information.

4.12.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the built-in compile () function and can be extracted from function objects
through their ___code___ attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval ()
built-in functions.

See types for more information.

4.12.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function t ype (). There
are no special operations on types. The standard module t ypes defines names for all standard built-in types.

Types are written like this: <class 'int'>.

4.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name). type (None) () produces the same singleton.

It is written as None.

76 Chapter 4. Built-in Types

The Python Library Reference, Release 3.4.10rc1

4.12.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named £111ipsis (abuilt-in name). type (E11lipsis) () producesthe E111ipsis singleton.

Itis writtenas E1llipsisor....

4.12.9 The Notimplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types
they don’t support. See comparisons for more information. There is exactly one Not Implemented object.
type (NotImplemented) () produces the singleton instance.

It is written as Not Implemented.

4.12.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function bool () can be used to
convert any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).

They are written as False and True, respectively.

4.12.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir () built-in function.

object.__dict_
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance._ _class_
The class to which a class instance belongs.

class._ _bases_
The tuple of base classes of a class object.

class._ name

The name of the class or type.

class.__qualname_
The qualified name of the class or type.

New in version 3.3.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

4.13. Special Attributes 77

The Python Library Reference, Release 3.4.10rc1

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored in ___mro

class._ _subclasses_ ()
Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. Example:

>>> int._ subclasses__ ()
[<class 'bool'>]

78 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that
class (but not exception classes from which it is derived). Two exception classes that are not related via subclassing
are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of several
items of information (e.g., an error code and a string explaining the code). The associated value is usually passed as
arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to derive new
exceptions from the Except ion class or one of its subclasses, and not from BaseExcept i on. More information
on defining exceptions is available in the Python Tutorial under tut-userexceptions.

When raising (or re-raising) an exception in an except or finally clause __ _context__ is automatically set to
the last exception caught; if the new exception is not handled the traceback that is eventually displayed will include
the originating exception(s) and the final exception.

When raising a new exception (rather than using a bare raise to re-raise the exception currently being handled), the
implicit exception context can be supplemented with an explicit cause by using from with raise:

raise new_exc from original_exc

The expression following £ rom must be an exception or None. It will be set as ___cause___ on the raised exception.
Setting ___cause___ also implicitly sets the ___suppress_context___ attribute to True, so that using raise
new_exc from None effectively replaces the old exception with the new one for display purposes (e.g. converting
KeyError to AttributeError, while leaving the old exception available in ___context___ for introspection
when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the exception itself.
An explicitly chained exception in ___cause___ is always shown when present. An implicitly chained exception in
__context___isshownonlyif __cause__is Noneand __suppress_context___is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the traceback
always shows the last exception that was raised.

5.1 Base classes

The following exceptions are used mostly as base classes for other exceptions.

79

The Python Library Reference, Release 3.4.10rc1

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for that,
use Exception). If str () is called on an instance of this class, the representation of the argument(s) to the
instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like OSError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_traceback (1)
This method sets b as the new traceback for the exception and returns the exception object. It is usually
used in exception handling code like this:

try:

except SomeException:
tb = sys.exc_info () [2]
raise OtherException(...).with_traceback (tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexFError, KeyError. This can be raised directly by codecs. lookup ().

5.2 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when the input () function hits an end-of-file condition (EOF) without reading any data. (N.B.: the
io.IOBase.read() and io.I0OBase.readline () methods return an empty string when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the ——with-fpectl option, or the WANT_SIGFPE_HANDLER symbol is defined
in the pyconfig.h file.

exception GeneratorExit
Raised when a generator’s close () method is called. It directly inherits from BaseException instead of
Exception since it is technically not an error.

80 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.4.10rc1

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import fails to
find a name that is to be imported.

The name and path attributes can be set using keyword-only arguments to the constructor. When set they
represent the name of the module that was attempted to be imported and the path to any file which triggered the
exception, respectively.

Changed in version 3.3: Added the name and path attributes.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control—-C or Delete). During execution, a check for
interrupts is made regularly. The exception inherits from BaseExcept ion so as to not be accidentally caught
by code that catches Except ion and thus prevent the interpreter from exiting.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’s malloc () function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exception NotImplementedError
This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method.

exception OSError ([arg])

exception OSError (errno, strerror[,ﬁlename[, winerror[,ﬁlenameZ]]])
This exception is raised when a system function returns a system-related error, including I/O failures such as
“file not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes default to
None if not specified. For backwards compatibility, if three arguments are passed, the a rgs attribute contains
only a 2-tuple of the first two constructor arguments.

The constructor often actually returns a subclass of OSError, as described in OS exceptions below. The
particular subclass depends on the final e rrno value. This behaviour only occurs when constructing OSError
directly or via an alias, and is not inherited when subclassing.

errno
A numeric error code from the C variable errno.

winerror
Under Windows, this gives you the native Windows error code. The errno attribute is then an approxi-
mate translation, in POSIX terms, of that native error code.

Under Windows, if the winerror constructor argument is an integer, the e r rno attribute is determined from
the Windows error code, and the errno argument is ignored. On other platforms, the winerror argument is
ignored, and the winerror attribute does not exist.

5.2. Concrete exceptions 81

The Python Library Reference, Release 3.4.10rc1

strerror
The corresponding error message, as provided by the operating system. It is formatted by the C functions
perror () under POSIX, and FormatMessage () under Windows.

filename

filename2
For exceptions that involve a file system path (such as open () or os.unlink ()), filenameis the file
name passed to the function. For functions that involve two file system paths (such as os. rename ()),
filenameZ2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, VMSError, socket.
error, select.error and mmap.error have been merged into OSError, and the constructor may
return a subclass.

Changed in version 3.4: The fi lename attribute is now the original file name passed to the function, instead
of the name encoded to or decoded from the filesystem encoding. Also, the filename2 constructor argument and
attribute was added.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). However, for historical reasons, OverflowError is
sometimes raised for integers that are outside a required range. Because of the lack of standardization of floating
point exception handling in C, most floating point operations are not checked.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref.proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weak re f module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a string
indicating what precisely went wrong.

exception StopIteration
Raised by built-in function next () and an iterator’s __next___ () method to signal that there are no further
items produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing the excep-
tion, and defaults to None.

When a generator function returns, a new StopIteration instance is raised, and the value returned by the
function is used as the value parameter to the constructor of the exception.

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return a value.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the
built-in functions exec () or eval (), or when reading the initial script or standard input (also interactively).

Instances of this class have attributes £ilename, 1ineno, of fset and text for easier access to the details.
str () of the exception instance returns only the message.

exception IndentationError
Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError
Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to

82 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.4.10rc1

abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of
the Python interpreter (sys . version; itis also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exception SystemExit
This exception is raised by the sys.exit () function. It inherits from BaseException instead of
Exception so that it is not accidentally caught by code that catches Except ion. This allows the exception
to properly propagate up and cause the interpreter to exit. When it is not handled, the Python interpreter exits;
no stack traceback is printed. The constructor accepts the same optional argument passed to sys.exit (). If
the value is an integer, it specifies the system exit status (passed to C’s exit () function); if it is None, the exit
status is zero; if it has another type (such as a string), the object’s value is printed and the exit status is one.

A call to sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a call to os. fork ()).

code
The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

UnicodeError has attributes that describe the encoding or decoding error. For example, err.
object[err.start:err.end] gives the particular invalid input that the codec failed on.

encoding
The name of the encoding that raised the error.

reason
A string describing the specific codec error.

object
The object the codec was attempting to encode or decode.

start
The first index of invalid data in ob ject.

end
The index after the last invalid data in ob ject.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

5.2. Concrete exceptions 83

The Python Library Reference, Release 3.4.10rc1

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as TndexError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are aliases
of OSError.

exception EnvironmentError
exception IOError

exception WindowsError
Only available on Windows.

5.2.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corresponds
to errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This attribute is
available when using the buffered I/O classes from the i o module.

exception ChildProcessError
Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError
A base class for connection-related issues.

Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError and
ConnectionResetError

exception BrokenPipeError
A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been
closed, or trying to write on a socket which has been shutdown for writing. Corresponds to errno EPIPE
and ESHUTDOWN.

exception ConnectionAbortedError
A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds to
errno ECONNABORTED.

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds to
errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError
Raised when trying to create a file or directory which already exists. Corresponds to errno EEXIST.

84 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.4.10rc1

exception FileNotFoundError
Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

exception InterruptedError
Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

exception IsADirectoryError
Raised when a file operation (such as os. remove ()) is requested on a directory. Corresponds to errno
EISDIR.

exception NotADirectoryError
Raised when a directory operation (such as os. 1istdir ())is requested on something which is not a direc-
tory. Corresponds to errno ENOTDIR.

exception PermissionError
Raised when trying to run an operation without the adequate access rights - for example filesystem permissions.
Corresponds to errno EACCES and EPERM.

exception ProcessLookupError
Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

exception TimeoutError
Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.

New in version 3.3: All the above OSError subclasses were added.
See also:

PEP 3151 - Reworking the OS and IO exception hierarchy

5.3 Warnings

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax.

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

exception UnicodeWarning
Base class for warnings related to Unicode.

5.3. Warnings 85

https://www.python.org/dev/peps/pep-3151

The Python Library Reference, Release 3.4.10rc1

exception BytesWarning

Base class for warnings related to bytes and bytearray.

exception ResourceWarning

Base class for warnings related to resource usage.

New in version 3.2.

5.4 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-— SystemExit
+—— KeyboardInterrupt

+-— GeneratorExit

+-— Exception
+-— StopIteration
+-— ArithmeticError

+-— FloatingPointError
+—-— OverflowError

| +—— ZeroDivisionError
+-— AssertionError

+-— AttributeError

+-— BufferError

+—— EOFError

+—— ImportError

+—— LookupError

| +—— IndexError

| +-—— KeyError

+—— MemoryError

+—— NameError

| +—-— UnboundLocalError
+-—— OSError

| +-- BlockingIOError

| +—— ChildProcessError

| +—— ConnectionError

| | +-— BrokenPipeError
\ \ +—-— ConnectionAbortedError
| | +—— ConnectionRefusedError
| | +—— ConnectionResetError
| +-— FileExistsError

| +—— FileNotFoundError

| +—— InterruptedError

| +-—— IsADirectoryError

| +-— NotADirectoryError

| +-— PermissionError

| +—— ProcessLookupError

| +—— TimeoutError

+—-— ReferenceError

+-— RuntimeError

| +—— NotImplementedError
+-— SyntaxError

| +-— IndentationError

| +—-— TabError

+-— SystemError

(continues on next page)

86

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

+—— TypeError
+—— ValueError

\ +-— UnicodeError

\ +-— UnicodeDecodeError

\ +-— UnicodeEncodeError

\ +—— UnicodeTranslateError

+-— Warning
+-— DeprecationWarning

+—-— PendingDeprecationWarning
+-— RuntimeWarning

+-— SyntaxWarning

+—— UserWarning

+-— FutureWarning

+-— ImportWarning

+—— UnicodeWarning

+-— BytesWarning

+-— ResourceWarning

5.4. Exception hierarchy 87

The Python Library Reference, Release 3.4.10rc1

88 Chapter 5. Built-in Exceptions

CHAPTER
SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text processing
services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In addition, see
the documentation for Python’s built-in string type in Text Sequence Type — str.

6.1 string — Common string operations

Source code: Lib/string.py

See also:
Text Sequence Type — str

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

string.ascii_lowercase
The lowercase letters ' abcdefghi jklmnopgrstuvwxyz'. This value is not locale-dependent and will not
change.

string.ascii_uppercase
The uppercase letters ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. This value is not locale-dependent and will not
change.

string.digits
The string '0123456789".

string.hexdigits
The string '0123456789%abcdefABCDEF .

string.octdigits
The string ' 01234567

89

https://github.com/python/cpython/tree/3.4/Lib/string.py

The Python Library Reference, Release 3.4.10rc1

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

string.printable
String of ASCII characters which are considered printable. This is a combination of digits,
ascii_letters, punctuation,and whitespace.

string.whitespace
A string containing all ASCII characters that are considered whitespace. This includes the characters space, tab,
linefeed, return, formfeed, and vertical tab.

6.1.2 String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the
format () method described in PEP 3101. The Formatter class in the st ring module allows you to cre-
ate and customize your own string formatting behaviors using the same implementation as the built-in format ()
method.

class string.Formatter
The Formatter class has the following public methods:

format (format_string, *args, **kwargs)
format () is the primary API method. It takes a format string and an arbitrary set of positional and
keyword arguments. format () is just a wrapper that calls vformat ().

vformat (format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary as
individual arguments using the xargs and x+kwargs syntax. vformat () does the work of breaking
up the format string into character data and replacement fields. It calls the various methods described
below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

pacrse (format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, conver-
sion). This is used by vformat () to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively), then literal_text
will be a zero-length string. If there is no replacement field, then the values of field_name, format_spec
and conversion will be None.

get_field (field_name, args, kwargs)
Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as
“O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key
has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer, it
represents the index of the positional argument in args; if it is a string, then it represents a named argument
in kwargs.

The args parameter is set to the list of positional arguments to viformat (), and the kwargs parameter is
set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

920 Chapter 6. Text Processing Services

https://www.python.org/dev/peps/pep-3101
https://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.4.10rc1

So for example, the field expression ‘O.name’ would cause get_value () to be called with a key ar-
gument of 0. The name attribute will be looked up after get_value () returns by calling the built-in
getattr () function.

If the index or keyword refers to an item that does not exist, then an TndexError or KeyError should
be raised.

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The set
of unused args can be calculated from these parameters. check_unused_args () is assumed to raise
an exception if the check fails.

format_field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that sub-
classes can override it.

convert_field (value, conversion)
Converts the value (returned by get__field()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘s’ (str), ‘t’ (repr) and ‘a’ (ascii) conversion types.

6.1.3 Format String Syntax
The str. format () method and the Formatter class share the same syntax for format strings (although in the
case of Format ter, subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces is
considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal
text, it can be escaped by doubling: { { and } }.

The grammar for a replacement field is as follows:

replacement_field = "{" [field name] ["!" conversion] [":" format_spec] "}"
field_name = arg_name ("." attribute_name | "[" element_index "]")
arg_name = [identifier | integer]

attribute_name = identifier

element_index = integer | index_string

index_string = <any source character except "]"> +

conversion = "r" | "s" | "a"

format_spec = <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point ' ! ', and a format_spec, which is preceded by a colon
' : '. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to
a positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names
in a format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, ...
will be automatically inserted in that order. Because arg_name is not quote-delimited, it is not possible to specify
arbitrary dictionary keys (e.g., the strings '10' or ' : =] ") within a format string. The arg_name can be followed by
any number of index or attribute expressions. An expression of the form ' .name' selects the named attribute using
getattr (), while an expression of the form ' [index] ' does an index lookup using __getitem__ ().

6.1. string — Common string operations 91

The Python Library Reference, Release 3.4.10rc1

Changed in version 3.1: The positional argument specifiers can be omitted,so ' {} {}'isequivalentto ' {0} {1}"'.

Some simple format string examples:

"First, thou shalt count to "

References first positional argument
"Bring me a Implicitly references the first positional argument
Same as "From {0} to {1}"

References keyword argument 'name'

"From to "

"My quest is "

"Weight in tons "
"Units destroyed: "

'weight' attribute of first positional arg
First element of keyword argument 'players'.

HO¥E Y ¥ W W

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done by the
__format__ () method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before calling __format__ (),
the normal formatting logic is bypassed.

Three conversion flags are currently supported: ' !s' which calls str () on the value, ' ! r' which calls repr ()
and ' !'a"' whichcalls ascii ().

Some examples:

"Harold's a clever " # Calls str() on the argument first
"Bring out the holy " # Calls repr() on the argument first
"More " # Calls ascii () on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-
language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields can contain
only a field name; conversion flags and format specifications are not allowed. The replacement fields within the
format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a value to be
dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individual
values are presented (see Format String Syntax). They can also be passed directly to the built-in format () function.
Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format string (" ") produces the same result as if you had called st = () on the
value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

format_spec [[filllalign] [sign] [#]1[0] [width][,][.precision] [type]

fill = <any character>

allgl"l := Il<l| | ">|l ‘ n_mn I nAmn
Sign — ll+l| | n_mn ‘ n n

width = integer

precision = integer

92 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

type ::: llb“ | "c" ‘ lld" I "e" | IIE" I "fll | "F" ‘ "g" | "G" ‘ "n" |
If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a
space if omitted. Note that it is not possible to use { and } as fill char while using the st r. format () method; this

limitation however doesn’t affect the format () function.

The meaning of the various alignment options is as follows:

Op- | Meaning
tion
'<' | Forces the field to be left-aligned within the available space (this is the default for most objects).
'>" | Forces the field to be right-aligned within the available space (this is the default for numbers).

="' | Forces the padding to be placed after the sign (if any) but before the digits. This is used for
printing fields in the form ‘+000000120°. This alignment option is only valid for numeric

types.
'~ | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning
tion
T4 indicates that a sign should be used for both positive as well as negative numbers.

- indicates that a sign should be used only for negative numbers (this is the default behavior).
space | indicates that a leading space should be used on positive numbers, and a minus sign on
negative numbers.

The '#' option causes the “alternate form” to be used for the conversion. The alternate form is defined differently for
different types. This option is only valid for integer, float, complex and Decimal types. For integers, when binary, octal,
or hexadecimal output is used, this option adds the prefix respective 'Ob"', '0o', or '0Ox' to the output value. For
floats, complex and Decimal the alternate form causes the result of the conversion to always contain a decimal-point
character, even if no digits follow it. Normally, a decimal-point character appears in the result of these conversions
only if a digit follows it. In addition, for 'g' and 'G' conversions, trailing zeros are not removed from the result.

The ', ' option signals the use of a comma for a thousands separator. For a locale aware separator, use the 'n'
integer presentation type instead.

Changed in version 3.1: Added the ', ' option (see also PEP 378).

width is a decimal integer defining the minimum field width. If not specified, then the field width will be determined
by the content.

Preceding the width field by a zero (' 0') character enables sign-aware zero-padding for numeric types. This is
equivalent to a fill character of ' 0' with an alignment type of '=".

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a floating
point value formatted with ' £' and 'F ', or before and after the decimal point for a floating point value formatted with
'g' or 'G'. For non-number types the field indicates the maximum field size - in other words, how many characters
will be used from the field content. The precision is not allowed for integer values.

Finally, the fype determines how the data should be presented.

The available string presentation types are:

6.1. string — Common string operations 93

https://www.python.org/dev/peps/pep-0378

The Python Library Reference, Release 3.4.10rc1

Type | Meaning
's! String format. This is the default type for strings and may be omitted.
None | The same as 's"'.

The available integer presentation types are:

Type| Meaning

'b' | Binary format. Outputs the number in base 2.

'c' | Character. Converts the integer to the corresponding unicode character before printing.

'd' | Decimal Integer. Outputs the number in base 10.

'o' | Octal format. Outputs the number in base 8.

! Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.
'X" | Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.
'n' | Number. This is the same as 'd', except that it uses the current locale setting to insert the
appropriate number separator characters.

None| The same as 'd"'.

Xl

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed
below (except 'n' and None). When doing so, f1oat () is used to convert the integer to a floating point number
before formatting.

The available presentation types for floating point and decimal values are:

Type| Meaning

'e' | Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the
exponent. The default precision is 6.

'E"' | Exponent notation. Same as 'e' except it uses an upper case ‘E’ as the separator character.
'£' | Fixed point. Displays the number as a fixed-point number. The default precision is 6.

'F' | Fixed point. Same as ' £ ', but converts nan to NAN and inf to INF.

'g"' | General format. For a given precision p >= 1, this rounds the number to p significant digits
and then formats the result in either fixed-point format or in scientific notation, depending on
its magnitude.

The precise rules are as follows: suppose that the result formatted with presentation type 'e'
and precision p—1 would have exponent exp. Then if -4 <= exp < p, the number is for-
matted with presentation type ' £' and precision p—1-exp. Otherwise, the number is format-
ted with presentation type 'e' and precision p—1. In both cases insignificant trailing zeros are
removed from the significand, and the decimal point is also removed if there are no remaining
digits following it.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf, —inf,
0, —0 and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1. The default precision is 6.

'G' | General format. Same as 'g' except switches to 'E "' if the number gets too large. The repre-
sentations of infinity and NaN are uppercased, too.

n' | Number. This is the same as 'g', except that it uses the current locale setting to insert the
appropriate number separator characters.

'%"' | Percentage. Multiplies the number by 100 and displays in fixed (' £') format, followed by a
percent sign.

Nong Similar to 'g', except that fixed-point notation, when used, has at least one digit past the
decimal point. The default precision is as high as needed to represent the particular value. The
overall effect is to match the output of st r () as altered by the other format modifiers.

94 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

Format examples

This section contains examples of the new format syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %$-formatting, with the addition of the { } and with : used instead
of %. For example, '$03.2f "' can be translatedto ' { : 03.2f}".

The new format syntax also supports new and different options, shown in the follow examples.

Accessing arguments by position:

>>> ! , , '.format ('a', 'b', 'c")

'a, b, c'

>>> ! , , ".format ('a', 'b', 'c") # 3.1+ only

'a, b, c'

>>> ! , , '.format ('a', 'b', 'c")

'e, b, a'

>>> ! , , '.format (x'abc") # unpacking argument sequence

'c, b, a'

>>> ! '.format ('abra', 'cad') # arguments' indices can be repeated
'abracadabra'

Accessing arguments by name:

>>> 'Coordinates: , '.format (latitude="'37.24N"', longitude='-115.
—81W")

'Coordinates: 37.24N, -115.81W'

>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}

>>> 'Coordinates: , '.format (**coord)

'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> ¢ = 3-5]
>>> ('The complex number is formed from the real part !
'and the imaginary part . ') .format (c)

'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.
‘HO-'
>>> class Point:
def _ init_ (self, x, y):
self.x, self.y = x, y
def _ str_ (self):
return 'Point (,)'.format (self=self)

>>> str(Point (4, 2))
'Point (4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: ; Y: '.format (coord)
'X: 3; Y: 5!

Replacing $s and %$r:

>>> "repr () shows quotes: ; str() doesn't: ".format ('testl', 'test2'")
"repr () shows quotes: 'testl'; str() doesn't: test2"

Aligning the text and specifying a width:

6.1. string — Common string operations 95

The Python Library Reference, Release 3.4.10rc1

>>> ' {:<30)"' . format ('left aligned')

'left aligned !

>>> ' /:>30)"' . format ('right aligned"')

! right aligned'

>>> ' [:730}" . format ('centered")

! centered !

>>> ' [:x"30)}" . format ('centered') # use '"#' as a fill char

"SxdkrxhkrxkrxrkCenteredrrxkrxxkxkxx '

Replacing $+£, $—f,and % f and specifying a sign:

>>> "[:4F); {:+f}" . format (3.14, -3.14) # show it always

'+3.140000; -3.140000"

>>> " [: f); {(: £} . format(3.14, -3.14) # show a space for positive numbers

' 3.140000; -3.140000"

>>> " [:-f); {:-f)" . format (3.14, -3.14) # show only the minus -- same as '{:f}; {:f}"'
'3.140000; -3.140000"

Replacing $x and %o and converting the value to different bases:

>>> # format also supports binary numbers

>>> "int: {(0:d}; hex: {0:x}; oct: {0:0}; bin: {0:b}".format (42)
'int: 42; hex: 2a; oct: 52; bin: 101010°

>>> # with 0x, 0o, or 0b as prefix:

>>> "int: {0:d}; hex: {(0:#x}; oct: {0:#0}; bin: {0:#b}".format (42)
'int: 42; hex: 0x2a; oct: 0052; bin: 0b101010"

Using the comma as a thousands separator:

>>> '/,)" . format (1234567890)
'1,234,567,890"

Expressing a percentage:

>>> points = 19
>>> total = 22
>>> 'Correct answers: {:.2%}'.format (points/total)

'Correct answers: 86.36%"

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> '"{:%Y-%Sm-%d SH:%M:%S}'.format (d)

'2010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip('<">', ['left', 'center', 'right']):

4

"{0:/fill}{align}l6}"'.format (text, fill=align, align=align)
'left<<<<<<<<<<<<!
'AAnAfcentert AN
'>>>>>>>>>>>right’
>>>
>>> octets = [192, 168, 0, 1]
>>> " [02X) {:02X){:02X){:02X])".format (xoctets)

(continues on next page)

96 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

'COAB80001"

>>> int (_, 16)
3232235521
>>>

>>> width = 5

>>> for num in range(5,12):
for base in 'dXob':

print ('{0:
print ()
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

}'.format (num, base=base, width=width), end=' ")

6.1.4 Template strings

Templates provide simpler string substitutions as described in PEP 292. Instead of the normal %-based substitutions,
Templates support $-based substitutions, using the following rules:

* $$ is an escape; it is replaced with a single $.

* Sidentifier names a substitution placeholder matching a mapping key of "identifier™. By default,
"identifier" is restricted to any case-insensitive ASCII alphanumeric string (including underscores) that
starts with an underscore or ASCII letter. The first non-identifier character after the $ character terminates this

placeholder specification.

* ${identifier} is equivalent to Sidentifier. Itis required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "$ {noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.

The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (femplate)

The constructor takes a single argument which is the template string.

substitute (mapping, **kwds)

Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kwds are given and there are duplicates, the
placeholders from kwds take precedence.

safe_substitute (mapping, **kwds)
Like substitute (), exceptthatif placeholders are missing from mapping and kwds, instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute (), any other appearances of the $ will simply return $ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always tries to
return a usable string instead of raising an exception. In another sense, safe_ substitute () may be
anything other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

6.1. string — Common string operations 97

https://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 3.4.10rc1

template
This is the object passed to the constructor’s template argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template ('Swho likes Swhat')

>>> s.substitute (who='tim', what='kung pao')
'tim likes kung pao'

>>> d = dict (who="tim')

>>> Template ('Give $who $100') .substitute (d)
Traceback (most recent call last):

ValueError: Invalid placeholder in string: line 1, col 11
>>> Template ('Swho likes Swhat') .substitute (d)
Traceback (most recent call last):

KeyError: 'what'
>>> Template ('Swho likes Swhat') .safe_substitute (d)
'tim likes S$what'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

e delimiter — This is the literal string describing a placeholder introducing delimiter. The default value is $. Note
that this should not be a regular expression, as the implementation will call re.escape () on this string as
needed.

* idpattern — This is the regular expression describing the pattern for non-braced placeholders (the braces will be
added automatically as appropriate). The default value is the regular expression [_a-z] [_a-z0-9] *.

* flags — The regular expression flags that will be applied when compiling the regular expression used for recog-
nizing substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be added to
the flags, so custom idpatterns must follow conventions for verbose regular expressions.

New in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

* escaped — This group matches the escape sequence, e.g. $$, in the default pattern.

* named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

* braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

* invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

6.1.5 Helper functions

string.capwords (s, sep=None)
Split the argument into words using str.split (), capitalize each word using str.capitalize (), and
join the capitalized words using str. join (). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sep is used to split and join the words.

98 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

6.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings as well as 8-bit strings. However, Unicode strings and
8-bit strings cannot be mixed: that is, you cannot match an Unicode string with a byte pattern or vice-versa; similarly,
when asking for a substitution, the replacement string must be of the same type as both the pattern and the search
string.

Regular expressions use the backslash character (' \ ') to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write '\\\\"' as the pattern
string, because the regular expression must be \ \, and each backslash must be expressed as \ \ inside a regular Python
string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing '\ ' and 'n', while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

It is important to note that most regular expression operations are available as module-level functions and methods on
compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string
pq will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 'A', 'a', or
'0 ', are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so
last matches the string ' last '. (In the rest of this section, we’ll write RE’sin this special style, usually
without quotes, and strings to be matched 'in single quotes'.)

Some characters, like ' | ' or ' (', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted. Regular expression pattern strings may not contain
null bytes, but can specify the null byte using a \number notation such as '\x00".

The special characters are:

'. ' (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been specified,
this matches any character including a newline.

'~ (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each newline.

'$' Matches the end of the string or just before the newline at the end of the string, and in MULTILINE mode also
matches before a newline. foo matches both ‘foo’ and ‘foobar’, while the regular expression foo$ matches

6.2. re — Regular expression operations 99

The Python Library Reference, Release 3.4.10rc1

only ‘foo’. More interestingly, searching for foo.$ in 'fool\nfoo2\n' matches ‘foo2’ normally, but
‘fool’ in MULTILINE mode; searching for a single $ in 'foo\n"' will find two (empty) matches: one just
before the newline, and one at the end of the string.

"% ' Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab+ will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

'+' Causes the resulting RE to match 1 or more repetitions of the preceding RE. alb+ will match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

'?"' Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

*?,+?,?2? The "+', '+',and '?' qualifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. «> is matched against '<H1>title</H1>"', it will match the entire
string, and not just '<H1>"'. Adding '?' after the qualifier makes it perform the match in non-greedy or
minimal fashion; as few characters as possible will be matched. Using .+ ? in the previous expression will
match only '<H1>"'.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not to
match. For example, a { 6} will match exactly six 'a' characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a{3, 5} will match from 3 to 5 'a' characters. Omitting m specifies
a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4, }b will match
aaaab or a thousand 'a' characters followed by a b, but not aaab. The comma may not be omitted or the
modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string 'aaaaaa',a{3,5} will match 5 'a"' characters, while a {3, 5} ? will only match 3 characters.

"\ ' Either escapes special characters (permitting you to match characters like '« ', ' 2 ', and so forth), or signals a
special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. In a set:
 Characters can be listed individually, e.g. [amk] will match 'a', 'm',or 'k"'.

» Ranges of characters can be indicated by giving two characters and separating them by a ' - ', for example
[a—z] will match any lowercase ASCII letter, [0—-5] [0-9] will match all the two-digits numbers from
00to 59, and [0-9A-Fa-£f] will match any hexadecimal digit. If - is escaped (e.g. [a\-z]) orifit’s
placed as the first or last character (e.g. [a—]), it will match a literal ' -"'.

» Special characters lose their special meaning inside sets. For example, [(++)] will match any of the
literal characters ' (', "+', "«',or ') '.

¢ Character classes such as \w or \'S (defined below) are also accepted inside a set, although the characters
they match depends on whether ASCIT or LOCALE mode is in force.

* Characters that are not within a range can be matched by complementing the set. If the first character of
the set is '~ ', all the characters that are not in the set will be matched. For example, [~5] will match
any character except '5', and [~"] will match any character except ' ~'. ~ has no special meaning if
it’s not the first character in the set.

» To match a literal '] ' inside a set, precede it with a backslash, or place it at the beginning of the set. For
example, both [() [\]1{}] and [] () [{}] will both match a parenthesis.

100 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

'| ' A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by the ' | ' in this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separated by ' | ' are tried from left to right. When one pattern completely
matches, that branch is accepted. This means that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the ' | ' operator is never greedy. To match a literal ' | ', use
\ |, or enclose it inside a character class, asin [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the \number special sequence, described below. To match the literals ' (' or ') ', use \ (or \), or
enclose them inside a character class: [(1 [) 1.

(?...) This is an extension notation (a '?"' following a ' (' is not meaningful otherwise). The first character
after the ' ?' determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group; (?P<name>. . .) is the only exception to this rule. Following are the currently supported
extensions.

(?ailmsux) (One or more letters from the set 'a', 'i', 'L', 'm', 's', 'u', 'x'.) The group matches the
empty string; the letters set the corresponding flags: re.A (ASCII-only matching), re. I (ignore case), re.
L (locale dependent), re.M (multi-line), re. S (dot matches all), and re. X (verbose), for the entire regular
expression. (The flags are described in Module Contents.) This is useful if you wish to include the flags as part
of the regular expression, instead of passing a flag argument to the re. compile () function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in the expression string, or
after one or more whitespace characters. If there are non-whitespace characters before the flag, the results are
undefined.

(?:...) A non-capturing version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the group cannot be retrieved after performing a match or referenced later
in the pattern.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-
bolic group name name. Group names must be valid Python identifiers, and each group name must be defined
only once within a regular expression. A symbolic group is also a numbered group, just as if the group were not
named.

Named groups can be referenced in three contexts. If the pattern is (?P<quote>['"]) .x? (?P=quote)
(i.e. matching a string quoted with either single or double quotes):

Context of reference to group “quote” Ways to reference it
in the same pattern itself

e (?P=quote) (as shown)
. \1

when processing match object m
* m.group ('quote')

* m.end ('quote") (etc.)

in a string passed to the repl argument of re.

sub () * \g<quote>

e \g<1>
. \1

(?P=name) A backreference to a named group; it matches whatever text was matched by the earlier group named
name.

(?#...) A comment; the contents of the parentheses are simply ignored.

6.2. re — Regular expression operations 101

The Python Library Reference, Release 3.4.10rc1

(?=...) Matchesif ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example, Isaac (?=Asimov) will match 'Isaac ' only ifit’s followed by 'Asimov’'.

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac (?!
Asimov) will match 'Isaac ' only if it’s not followed by 'Asimov'.

(?<=...) Matches if the current position in the string is preceded by a match for ... that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc) def will find a match in abcdef, since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must
only match strings of some fixed length, meaning that abc or a | b are allowed, but ax and a{3, 4} are not.
Group references are not supported even if they match strings of some fixed length. Note that patterns which
start with positive lookbehind assertions will not match at the beginning of the string being searched; you will
most likely want to use the search () function rather than the match () function:

>>> import re

>>> m = re.search (' (?<=abc)def', 'abcdef')
>>> m.group (0)
'def'

This example looks for a word following a hyphen:

>>> m = re.search (' (?<=-)\w+', 'spam-egg')
>>> m.group (0)
] egq A}
(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative

lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length and shouldn’t contain group references. Patterns which start with negative lookbehind
assertions may match at the beginning of the string being searched.

(? (id/name) yes—pattern|no-pattern) Will try to match with yes—-pattern if the group with given
id or name exists, and with no-pattern if it doesn’t. no-pattern is optional and can be omitted.
For example, (<)? (\w+@\w+ (?:\.\w+)+) (?(1)>|$) is a poor email matching pattern, which will
match with '<user@host.com>" as well as "user@host.com', but not with '<user@host.com'
nor 'user@host.com>".

The special sequences consist of '\ ' and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example, \ $ matches the character '$'.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1 matches '"the the' or '55 55", but not 'thethe' (note the space after the group). This
special sequence can only be used to match one of the first 99 groups. If the first digit of number is 0, or number
is 3 octal digits long, it will not be interpreted as a group match, but as the character with octal value number.
Inside the ' [' and '] ' of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of Unicode
alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore Unicode character. Note that formally, \b is defined as the boundary between a \w and a \W
character (or vice versa), or between \w and the beginning/end of the string. This means that r ' \bfoo\b'
matches 'foo', 'foo."', ' (foo) "', 'bar foo baz' butnot 'foobar' or 'foo3"'.

By default Unicode alphanumerics are the ones used, but this can be changed by using the ASCIT flag. Inside
a character range, \b represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is nor at the beginning or end of a word. This means that r 'py\B'
matches 'python', 'py3', 'py2',butnot 'py', 'py."',or 'py!'. \Bis just the opposite of \b, so word
characters are Unicode alphanumerics or the underscore, although this can be changed by using the ASCIT flag.

102 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode character
category [Nd]). This includes [0-9], and also many other digit characters. If the ASCIT flag is used
only [0-9] is matched (but the flag affects the entire regular expression, so in such cases using an explicit
[0-9] may be a better choice).

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a Unicode decimal digit. This is the opposite of \d. If the ASCT T flag is used
this becomes the equivalent of [~0-9] (but the flag affects the entire regular expression, so in such cases using
an explicit [~0-9] may be a better choice).

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v], and
also many other characters, for example the non-breaking spaces mandated by typography rules in many
languages). If the ASCTT flag is used, only [\t\n\r\£f\v] is matched (but the flag affects the entire
regular expression, so in such cases using an explicit [\t\n\r\£f\v] may be a better choice).

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is equiv-
alentto [\t\n\r\f\v].

\S Matches any character which is not a Unicode whitespace character. This is the opposite of \'s. If the ASCIT flag
is used this becomes the equivalent of [~ \t\n\r\£f\v] (but the flag affects the entire regular expression, so
in such cases using an explicit [~ \t\n\r\£f\v] may be a better choice).

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes most characters that can be part
of a word in any language, as well as numbers and the underscore. If the ASCIT flag is used, only
[a—zA-Z0-9_] is matched (but the flag affects the entire regular expression, so in such cases using an
explicit [a—zA-2Z0-9_] may be a better choice).

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is
equivalentto [a—zA-Z0-9_].

\W Matches any character which is not a Unicode word character. This is the opposite of \w. If the ASCIT flag is
used this becomes the equivalent of [~a-zA-Z0-9_] (but the flag affects the entire regular expression, so in
such cases using an explicit [*a-zA-Z0-9_] may be a better choice).

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \u \U
\v \x ARY

(Note that \Db is used to represent word boundaries, and means “backspace” only inside character classes.)

"\u' and '"\U"' escape sequences are only recognized in Unicode patterns. In bytes patterns they are not treated
specially.

Octal escapes are included in a limited form. If the first digit is a 0, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length.

Changed in version 3.3: The '\u' and ' \U' escape sequences have been added.

See also:

6.2. re — Regular expression operations 103

The Python Library Reference, Release 3.4.10rc1

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The second

edition of the book no longer covers Python at all, but the first edition covered writing good regular expression
patterns in great detail.

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

re

re
re

re

re.

re

re.

re

re.

.compile (pattern, flags=0)

Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match () and search () methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to

result = re.match(pattern, string)

but using re. compile () and saving the resulting regular expression object for reuse is more efficient when
the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.compile () and the module-level
matching functions are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

A

ASCII
Make \w, \W, \b, \B, \d, \D, \'s and \S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode patterns, and is ignored for byte patterns.

Note that for backward compatibility, the re . U flag still exists (as well as its synonym re . UNICODE and its
embedded counterpart (?u)), but these are redundant in Python 3 since matches are Unicode by default for
strings (and Unicode matching isn’t allowed for bytes).

DEBUG
Display debug information about compiled expression.

I

IGNORECASE
Perform case-insensitive matching; expressions like [A-Z] will match lowercase letters, too. This is not af-
fected by the current locale and works for Unicode characters as expected.

L

LOCALE
Make \w, \W, \b, \B, \'s and \S dependent on the current locale. The use of this flag is discouraged as the
locale mechanism is very unreliable, and it only handles one “culture” at a time anyway; you should use Unicode
matching instead, which is the default in Python 3 for Unicode (str) patterns.

M

104

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

re .MULTILINE

When specified, the pattern character ' ~ ' matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ' $' matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, ' ~' matches only at the beginning
of the string, and ' $ ' only at the end of the string and immediately before the newline (if any) at the end of the
string.

re.S
re .DOTALL

Make the '. ' special character match any character at all, including a newline; without this flag, '. "' will
match anything except a newline.

re.X
re .VERBOSE

This flag allows you to write regular expressions that look nicer and are more readable by allowing you to
visually separate logical sections of the pattern and add comments. Whitespace within the pattern is ignored,
except when in a character class or when preceded by an unescaped backslash. When a line contains a # that is
not in a character class and is not preceded by an unescaped backslash, all characters from the leftmost such #
through the end of the line are ignored.

This means that the two following regular expression objects that match a decimal number are functionally
equal:

a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d = # some fractional digits""", re.X)

b = re.compile (r"\d+\.\d+")

re.search (pattern, string, flags=0)

Scan through string looking for the first location where the regular expression pattern produces a match, and
return a corresponding match object. Return None if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

re .match (pattern, string, flags=0)

If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding
match object. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

Note that even in MULTILINE mode, re.match () will only match at the beginning of the string and not at
the beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

re.fullmatch (pattern, string, flags=0)

If the whole string matches the regular expression pattern, return a corresponding match object. Return None
if the string does not match the pattern; note that this is different from a zero-length match.

New in version 3.4.

re.split (pattern, string, maxsplit=0, flags=0)

Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all groups
in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits occur,
and the remainder of the string is returned as the final element of the list.

>>> re.split ('"\W+', 'Words, words, words.')
['"Words', 'words', 'words', '']

>>> re.split (' (\W+)', 'Words, words, words.')
['Words', ', ', 'words', ', ', 'words', '.', '']
>>> re.split ('"\W+', 'Words, words, words.',6 1)

(continues on next page)

6.2.

re — Regular expression operations 105

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

['"Words', 'words, words.']
>>> re.split('[a-f]+"', '0a3B9', flags=re.IGNORECASE)
['Ol, '3|, '9']

If there are capturing groups in the separator and it matches at the start of the string, the result will start with an
empty string. The same holds for the end of the string:

>>> re.split (' (\W+)', '...words, words...')
[vv, '...", 'words', ', ', 'words', '...', '']

That way, separator components are always found at the same relative indices within the result list.

Note that split will never split a string on an empty pattern match. For example:

>>> re.split('xx"', 'foo')

["foo']

>>> re.split (" (?m)"s$", "foo\n\nbar\n")
["foo\n\nbar\n']

Changed in version 3.1: Added the optional flags argument.

re.findall (pattern, string, flags=0)

Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-right,
and matches are returned in the order found. If one or more groups are present in the pattern, return a list of
groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the
result unless they touch the beginning of another match.

re.finditer (pattern, string, flags=0)

Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The
string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the
result unless they touch the beginning of another match.

re . sub (pattern, repl, string, count=0, flags=0)

Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the
replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character,
\ r is converted to a carriage return, and so forth. Unknown escapes such as \ j are left alone. Backreferences,
such as \ 6, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(r'def\s+ ([a-zA-Z_][a—-zA-Z_0-91*)\sx\ (\s*\):"',
r'static PyObject*\npy_\1 (void)\n{"',

R 'def myfunc():")

'static PyObject*\npy_myfunc (void) \n{'

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == '-': return ' '
. else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro-————-gram-files')

'pro-—gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or an RE object.

106

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be a
non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are
replaced only when not adjacent to a previous match, so sub ('x+"', '-', 'abc') returns '-a-b-c-"'.

In string-type repl arguments, in addition to the character escapes and backreferences described above,
\g<name> will use the substring matched by the group named name, as defined by the (?P<name>. ..
) syntax. \g<number> uses the corresponding group number; \g<2> is therefore equivalent to \ 2, but isn’t
ambiguous in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20, not a
reference to group 2 followed by the literal character ' 0'. The backreference \ g<0> substitutes in the entire
substring matched by the RE.

Changed in version 3.1: Added the optional flags argument.

re . subn (pattern, repl, string, count=0, flags=0)
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).

Changed in version 3.1: Added the optional flags argument.

re.escape (string)
Escape all the characters in pattern except ASCII letters, numbers and '__'. This is useful if you want to match
an arbitrary literal string that may have regular expression metacharacters in it.

Changed in version 3.3: The '__' character is no longer escaped.

re.purge ()
Clear the regular expression cache.

exception re.error
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It is
never an error if a string contains no match for a pattern.

6.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

regex.search (string[, pos[, endpos]])
Scan through string looking for a location where this regular expression produces a match, and return a corre-
sponding match object. Return None if no position in the string matches the pattern; note that this is different
from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0. This
is not completely equivalent to slicing the string; the ' ~ ' pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos char-
acters long, so only the characters from pos to endpos - 1 will be searched for a match. If endpos is less than
pos, no match will be found; otherwise, if rx is a compiled regular expression object, rx . search (string,
0, 50) isequivalentto rx.search(string[:50], 0).

>>> pattern = re.compile("d")

>>> pattern.search ("dog") # Match at index 0

<_sre.SRE_Match object; span=(0, 1), match='d'>

>>> pattern.search ("dog", 1) # No match; search doesn't include the "d"

regex.match (string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding match
object. Return None if the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

6.2. re — Regular expression operations 107

The Python Library Reference, Release 3.4.10rc1

>>> pattern = re.compile("o")
>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".

<_sre.SRE_Match object; span=(1l, 2), match='o'>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

regex.fullmatch (string[, pos[, endpos]])
If the whole string matches this regular expression, return a corresponding match object. Return None if the
string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o[gh]")

>>> pattern.fullmatch ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.fullmatch("ogre") # No match as not the full string matches.

>>> pattern.fullmatch ("doggie", 1, 3) # Matches within given limits.
<_sre.SRE_Match object; span=(1, 3), match='og'>

New in version 3.4.

regex.split (string, maxsplit=0)
Identical to the sp1it () function, using the compiled pattern.

regex.findall (string[,pos[, endpos]])
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match ().

regex.finditer (string[, pos[, endpos]])
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match ().

regex.sub (repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

regex.subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

regex.flags
The regex matching flags. This is a combination of the flags given to compile (), any (?...) inline flags in
the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

regex.groups
The number of capturing groups in the pattern.

regex.groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

regex.pattern
The pattern string from which the RE object was compiled.

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match () and search () return None when there is no
match, you can test whether there was a match with a simple i f statement:

108 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

match = re.search(pattern, string)
if match:
process (match)

Match objects support the following methods and attributes:

match.expand (femplate)
Return the string obtained by doing backslash substitution on the template string template, as done by the sub ()
method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences (\1, \2)
and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding group.

match.group ([group],])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, groupl
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an TndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

>>> m = re.match (r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group (0) # The entire match

'Isaac Newton'

>>> m.group (1) # The first parenthesized subgroup.
'Isaac’

>>> m.group (2) # The second parenthesized subgroup.
'Newton'

>>> m.group(l, 2) # Multiple arguments give us a tuple.

("Isaac', 'Newton')

If the regular expression uses the (?P<name>. . .) syntax, the groupN arguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattern, an TndexError
exception is raised.

A moderately complicated example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group ('first_name')

'Malcolm'

>>> m.group ('last_name')

'Reynolds’

Named groups can also be referred to by their index:

>>> m.group (1)
'Malcolm'
>>> m.group (2)
'Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
|C3l

match.groups (default=None)
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.

6.2. re — Regular expression operations 109

The Python Library Reference, Release 3.4.10rc1

The default argument is used for groups that did not participate in the match; it defaults to None.

For example:

>>> m = re.match (r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()
('24', '1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match (r" (\d+)\.?2 (\d+)2", "24")

>>> m.groups () # Second group defaults to None.

('24', None)

>>> m.groups('0") # Now, the second group defaults to '0'.
('24', '0")

match.groupdict (default=None)
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{'"first_name': 'Malcolm', 'last_name': 'Reynolds'}

match.start ([group])

match.end ([group])
Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return —1 if group exists but did not contribute to the match. For a match object m,
and a group g that did contribute to the match, the substring matched by group g (equivalent to m. group (g))
is

m.string[m.start (g) :m.end(g)]

Note thatm. start (group) willequal m.end (group) if group matched a null string. For example, after m
= re.search('b(c?)', 'cba'),m.start(0)isl,m.end(0) is2,m.start (1) andm.end (1)
are both 2, and m. start (2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]

'tony@tiger.net'

match.span ([group])
For a match m, return the 2-tuple (m.start (group), m.end(group)). Note that if group did not
contribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

match.pos
The value of pos which was passed to the search () or match () method of a regex object. This is the index
into the string at which the RE engine started looking for a match.

match.endpos
The value of endpos which was passed to the search () or match () method of a regex object. This is the
index into the string beyond which the RE engine will not go.

match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example,

110 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

the expressions (a)b, ((a) (b)), and ((ab)) will have lastindex == 1 if applied to the string 'ab"’,
while the expression (a) (b) will have lastindex == 2, if applied to the same string.

match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

match.re
The regular expression object whose match () or search () method produced this match instance.

match.string
The string passed to match () or search ().

6.2.5 Regular Expression Examples
Checking for a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return '<Match: , groups=c¢r>"' % (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each

character representing a card, “a” for ace, “k” for king, “q” for queen, “j” for jack, “t” for 10, and “2” through *“9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r""[a2-9tjgk] Sy

>>> displaymatch (valid.match ("akt5q")) # Valid.
"<Match: 'aktb5qg', groups=()>"

>>> displaymatch (valid.match ("aktbe")) # Invalid.
>>> displaymatch (valid.match ("akt")) # Invalid.
>>> displaymatch(valid.match ("727ak")) # Valid.
"<Match: '727ak', groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> pair = re.compile(r".x(.).x\1")
>>> displaymatch (pair.match ("717ak")) # Pair of 7s.
"<Match: '717', groups=('7"',)>"

’

>>> displaymatch (pair.match ("718ak")) # No pairs.
>>> displaymatch (pair.match ("354aa"))

"<Match: '354aa', groups=('a',)>"

Pair of aces.

To find out what card the pair consists of, one could use the group () method of the match object in the following
manner:

>>> pair.match("717ak") .group (1)
|7|

Error because re.match() returns None, which doesn't have a group() method:
>>> pair.match("718ak") .group(l)
Traceback (most recent call last):

(continues on next page)

6.2. re — Regular expression operations 111

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

File "<pyshell#23>", line 1, in <module>
re.match(r".«(.).»\1", "718ak") .group (1)
AttributeError: 'NoneType' object has no attribute 'group'
>>> pair.match("354aa") .group (1)

ra!

Simulating scanf()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful, though
also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings

between scanf () format tokens and regular expressions.

scanf () Token

Regular Expression

)
sC

%5c

- A

%d

?\d+

%e, 3k, £, %g

2 (\d+ (\.\d*) 2 |\.\d+)

[eE] [+

12\d+) ?

0[xX] [\dA-Fa- f]+|0[

7] %[\d+)

5}
[-+]
[—+]
[—+]172(
[-+12[0-7]+

\S+

\d+
[—+]

?(0[xX])?[\dA-Fa-f]+

To extract the filename and numbers from a string like

’/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf () format like

$s — %d errors, %d warnings ‘

The equivalent regular expression would be

’(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers two different primitive operations based on regular expressions: re.match () checks for a match only
at the beginning of the string, while re. search () checks for a match anywhere in the string (this is what Perl does

by default).

For example:

>>> re.match("c", "abcdef") # No match
>>> re.search("c", "abcdef") # Match
<_sre.SRE_Match object; span=(2, 3), match='c'>

Regular expressions beginning with '~ ' can be used with search () to restrict the match at the beginning of the

string:

112 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

>>> re.match("c", "abcdef™) # No match

>>> re.search(""c", "abcdef") # No match

>>> re.search(""a", "abcdef") # Match
<_sre.SRE_Match object; span=(0, 1), match='a'>

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with ' ~ ' will match at the beginning of each line.

>>> re.match('X', 'A\nB\nX', re.MULTILINE) # No match
>>> re.search('”X', 'A\nB\nX', re.MULTILINE) # Match
<_sre.SRE_Match object; span=(4, 5), match='X"'>

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example that
creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split ("\n+", text)

>>> entries

['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['"Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['"Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584"', '919 Park Place']]

The : ? pattern matches the colon after the last name, so that it does not occur in the result list. With amaxsplit of
4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[['"Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['"Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

6.2. re — Regular expression operations 113

The Python Library Reference, Release 3.4.10rc1

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub () with a function to “munge” text, or randomize the order of all the characters in each word of a sentence
except for the first and last characters:

>>> def repl (m):

inner_word = list (m.group(2))
random.shuffle (inner_word)
return m.group(l) + "".join(inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."

>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if one was
a writer and wanted to find all of the adverbs in some text, he or she might use findall () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly", text)
['carefully', 'quickly']

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it
provides match objects instead of strings. Continuing with the previous example, if one was a writer who wanted to
find all of the adverbs and their positions in some text, he or she would use finditer () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\w+ly", text):
print (' — : ' % (m.start(), m.end(), m.group(0)))

07-16: carefully
40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash ("\ ') in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code are
functionally identical:

>>> re.match (r"\wW(.)\1\w", " £f ")

<_sre.SRE_Match object; span=(0, 4), match=' ff '>
>>> re.match ("\\W (.)\\I\\w", " ££ ™)
<_sre.SRE_Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string notation, this
means r"\\". Without raw string notation, one must use "\\\\ ", making the following lines of code functionally
identical:

114 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

u\\u r"\\u)

>>> re.match (

<_sre.SRE_Match object; span=(0, 1), match="\\'>
>>> re.match ("\\\\", r"\\")
<_sre.SRE_Match object; span=(0, 1), match="\\'>

Writing a Tokenizer
A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a
compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master
regular expression and to loop over successive matches:

import collections
import re

Token = collections.namedtuple ('Token' ["typ' 'value', 'line', 'column'])
def tokenize (code) :
keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
token_specification = [
("NUMBER', r'\d+(\.\d*)?"'), # Integer or decimal number
("ASSIGN', r':="), # Assignment operator
('"END', r';"), # Statement terminator
("ID"', r'[A-Za-z]+"), # Identifiers
('op', r'[+\-x/1"), # Arithmetic operators
("NEWLINE', r'\n'"), # Line endings
('SKIP', r'[\tl+"), # Skip over spaces and tabs
('MISMATCH',r'."), # Any other character
]
tok_regex = '|'.join (' (?P<%s5>%s)' % palir for pair in token_specification)
line_num = 1
line_start = 0
for mo in re.finditer (tok_regex, code):
kind = mo.lastgroup
value = mo.group (kind)
if kind == 'NEWLINE':
line_start = mo.end()
line_num += 1
elif kind == 'SKIP':
pass
elif kind == 'MISMATCH':
raise RuntimeError ('?%r unexpected on line 2d' % (value, line_num))
else:
if kind == 'ID' and value in keywords:
kind = value
column = mo.start () - line_start
yield Token (kind, wvalue, line_num, column)
statements = "'’
IF quantity THEN
total := total + price x quantity;
tax := price % 0.05;
ENDIF;

(continues on next page)

6.2. re — Regular expression operations

115

http://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

for token in tokenize (statements):
print (token)

The tokenizer produces the following output:

Token (typ='"IF', value='IF', line=2, column=4)
Token (typ='1ID', value='quantity', line=2, column=7)
Token (typ='THEN', value='THEN', line=2, column=16)

Token (typ="'ID', value='total', line=3, column=38)
Token (typ="ASSIGN', value=':=', line=3, column=14)
Token (typ='ID', value='total', line=3, column=17)
Token (typ='OP', value='+', line=3, column=23)

line=3, column=25)
column=31)

(

(

(

(

(

(

(

Token (typ="'ID', value='price',

Token (typ='OP', value='x', line=3,

Token (typ='ID', value='quantity',
(
(
(
(
(
(
(
(
(

line=3, column=33)
Token (typ="END', value=';"', line=3, column=41)
Token (typ='ID', value='tax', line=4, column=8)
Token (typ="ASSIGN', wvalue=':=', line=4, column=12)

Token (typ='1ID', value='price', line=4, column=15)
Token (typ='OP', value='x', line=4, column=21)

Token (typ="'NUMBER', wvalue='0.05"', line=4, column=23)
Token (typ="END', value=';"', line=4, column=27)

Token (typ="ENDIF', value='ENDIF', line=5, column=4)
Token (typ="END', value=';', line=5, column=9)

6.3 difflib — Helpers for computing deltas

This module provides classes and functions for comparing sequences. It can be used for example, for comparing
files, and can produce difference information in various formats, including HTML and context and unified diffs. For

comparing directories and files, see also, the 71 I ecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest con-
tiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp algorithm doesn’t
address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that

“look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain se-
quence items as junk. The heuristic counts how many times each individual item appears in the sequence.
If an item’s duplicates (after the first one) account for more than 1% of the sequence and the sequence is
at least 200 items long, this item is marked as “popular” and is treated as junk for the purpose of sequence
matching. This heuristic can be turned off by setting the autojunk argument to False when creating the

SequenceMatcher.
New in version 3.2: The autojunk parameter.

class difflib.Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.

116

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

Differ uses SequenceMat cher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

Code | Meaning
'— ' | line unique to sequence 1

'+ ' | line unique to sequence 2
v line common to both sequences
'? ' | line not present in either input sequence

Lines beginning with ‘2’ attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

__init__ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of HtmIDiff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped, de-
faults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff () (used by HtmI1Diff to
generate the side by side HTML differences). See ndi 1 () documentation for argument default values
and descriptions.

The following methods are public:

make_file (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual differ-
ences are to be shown, else the default is False to show the full files. numlines defaults to 5. When
context is True numlines controls the number of context lines which surround the difference highlights.
When context is False numlines controls the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

make_table (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its
use.

difflib.context_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

6.3. difflib — Helpers for computing deltas 117

The Python Library Reference, Release 3.4.10rc1

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by # which defaults to three.

By default, the diff control lines (those with *x* or ——-) are created with a trailing newline. This is helpful
so that inputs created from io0.I0OBase.readlines () result in diffs that are suitable for use with io.
IOBase.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> sl = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> 32 ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> for line in context_diff (sl, s2, fromfile='before.py', tofile='after.py'):
. sys.stdout.write (line) # doctest: +NORMALIZE WHITESPACE

**x*x before.py

- after.py

KAk k ok Kk ok kkkkkhkkk

*kx 1,4 *xk*
! bacon

! eggs

! ham

! eggy
! hamster
guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)

Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; » must be greater than 0.

Optional argument cutoff (default 0. 6) is a float in the range [0, 1]. Possibilities that don’t score at least that
similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

>>> get_close_matches ('appel', ['ape', 'apple', 'peach', 'puppy'l])
['apple', 'ape'l

>>> import keyword

>>> get_close_matches ('wheel', keyword.kwlist)

['while']

>>> get_close_matches ('apple', keyword.kwlist)

[]

>>> get_close_matches ('accept', keyword.kwlist)

["except']

difflib.ndiff (a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)

Compare a and b (lists of strings); return a D1 f fer-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are for filter functions (or None):

118

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if not. The
default is None. There is also a module-level function 7S LINE_ JUNK (), which filters out lines without vis-
ible characters, except for at most one pound character (' # ') — however the underlying SequenceMatcher
class does a dynamic analysis of which lines are so frequent as to constitute noise, and this usually works better
than using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level function 7.S_CHARACTER_JUNK (), which filters out whitespace characters
(a blank or tab; note: bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> print (''.join(diff), end="")

- one

? A

+ ore

- two
- three

+ tree
+ emu

difflib.restore (sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
. 'ore\ntree\nemu\n'.splitlines (keepends=True))

>>> diff = list(diff) # materialize the generated delta into a list

>>> print (''.join (restore(diff, 1)), end="")

one

two

three

>>> print (''.Jjoin (restore(diff, 2)), end="")

ore

tree

emu

difflib.unified_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in an inline style (instead of separate before/after blocks). The number of context lines is set
by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @@) are created with a trailing newline. This is
helpful so that inputs created from io. IOBase. readlines () result in diffs that are suitable for use with
io.I0OBase.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may

6.3. difflib — Helpers for computing deltas 119

The Python Library Reference, Release 3.4.10rc1

be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> sl = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> for line in unified_diff (sl, s2, fromfile='before.py', tofile='after.py'):
sys.stdout.write (line) # doctest: +NORMALIZE WHITESPACE

-—— before.py

+++ after.py

@@ -1,4 +1,4 Q@
-bacon

-eggs

—ham

+python

+teggy

+hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.IS_LINE_JUNK (l/ine)
Return true for ignorable lines. The line line is ignorable if /ine is blank or contains a single ' # ', otherwise it
is not ignorable. Used as a default for parameter linejunk in ndi £ () in older versions.

difflib.IS_CHARACTER_JUNK (ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published in Dr. Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects

The SequenceMat cher class has this constructor:

class difflib.SequenceMatcher (isjunk=None,a=", b=", autojunk=True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: 0;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk heuristic.
New in version 3.2: The autojunk parameter.

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is True;
bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled); b2j is a dict
mapping the remaining elements of b to a list of positions where they occur. All three are reset whenever b is
reset with set_seqgs () or set_seqg2 ().

New in version 3.2: The bjunk and bpopular attributes.

120 Chapter 6. Text Processing Services

http://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
http://www.drdobbs.com/

The Python Library Reference, Release 3.4.10rc1

SequenceMatcher objects have the following methods:

set_seqgs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_segZ () to set the commonly used sequence once
and call set_seqgl () repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bhi)
Find longest matching block in a [alo:ahi] and b [blo:bhi].

If isjunk was omitted or None, find_longest_match () returns (i, 7j, k) suchthata[i:i+k]
isequaltob[j: j+k],wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi. For
all (1i', j', k') meeting those conditions, the additional conditions k >= k', i <= i',andif i
== 1', j <= 7J' are also met. In other words, of all maximal matching blocks, return one that starts
earliest in a, and of all those maximal matching blocks that start earliest in a, return the one that starts
earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd' from
matching the ' abcd' at the tail end of the second sequence directly. Instead only the 'abcd' can
match, and matches the leftmost 'abcd!' in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match (a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).
This method returns a named tuple Match (a, b, size).

get_matching_blocks ()
Return list of triples describing matching subsequences. Each triple is of the form (i, j, n), and
means thata[1i:i+n] == b[j:Jj+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). Itis the only triple with n
== 0. If (i, j, n) and (1i', j', n') are adjacent triples in the list, and the second is not the
last triple in the list, then i+n != i' or j+n != 3j'; in other words, adjacent triples always describe
non-adjacent equal blocks.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

6.3. difflib — Helpers for computing deltas 121

The Python Library Reference, Release 3.4.10rc1

get_opcodes ()
Return list of S5-tuples describing how to turn a into . Each tuple is of the form (tag, i1, i2,
31, Jj2). The first tuple has i1 == j1 == 0, and remaining tuples have i/ equal to the i2 from the
preceding tuple, and, likewise, jI equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning

'replace' | a[il:12] should be replacedby b[jl:32].

'delete' a[il:12] should be deleted. Note that 31 == 72 in this case.

'insert' b[j1:732] shouldbeinsertedata[il:11]. Notethat i1 == 12 in this case.
'equal' alil:12] == b[jl:j2] (the sub-sequences are equal).

For example:

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)
>>> for tag, i1, i2, jl, j2 in s.get_opcodes():
print ('{:7} al{}t:{}] ——> b[{}:{}] {'r:>8} ——> {!r}'.format (
tag, 11, i2, 31, j2, alil:12], b[jl:321))

delete a[0:1] —> b[0:0] ‘q" —> ©* equal a[1:3] —> b[0:2] ‘ab’ —> ‘ab’ replace a[3:4] —> b[2:3] ‘X’
—> ‘y’ equal a[4:6] —> b[3:5] ‘cd’ —> ‘cd’ insert a[6:6] —> b[5:6] ©* — ‘f’

get_grouped_opcodes (n=3)
Return a generator of groups with up to z lines of context.

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes ().

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M
/'T. Note that this is 1. 0 if the sequences are identical, and 0. 0 if they have nothing in common.

This is expensive to compute if get_matching blocks () or get_opcodes () hasn’t already been
called, in which case you may want to try quick_ratio () or real quick_ratio () firstto getan
upper bound.

quick_ratio()
Return an upper bound on ratio () relatively quickly.

real quick_ratio ()
Return an upper bound on ratio () very quickly.

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, although quick_ratio () and real_quick_ratio () are always at least as large as ratio ():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_qguick_ratio()

1.0

122 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio () value
over 0.6 means the sequences are close matches:

>>> print (round(s.ratio(), 3))
0.866

If you’re only interested in where the sequences match, get_matching_blocks () is handy:

>>> for block in s.get_matching_blocks():

.. print ("al] and b] match for elements" % block)
al[0] and b[0] match for 8 elements
al[8] and b[1l7] match for 21 elements

al29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len(a), len(b), 0),
and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes() :
.. print (" alsd:sd] b[sd:sd]" % opcode)
equal af[0:8] b[0:8]

insert af[8:8] b[8:17]

equal af[8:29] b[17:38]

See also:

e The get_close_matches () function in this module which shows how simple code building on
SequenceMatcher can be used to do useful work.

 Simple version control recipe for a small application built with SequenceMatcher.

6.3.3 Differ Objects

Note that Di f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

The Di ffer class has this constructor:

class difflib.Differ (linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

6.3. difflib — Helpers for computing deltas 123

http://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.4.10rc1

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines () method of file-like objects. The delta generated also consists of
newline-terminated strings, ready to be printed as-is via the writelines () method of a file-like object.

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl = "'' 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
. """ .splitlines (keepends=True)
>>> len (textl)
4
>>> textl[0][-1]
l\n'
>>> text2 = ''' 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.
""" .splitlines (keepends=True)

Next we instantiate a Differ object:

>>> d = Differ ()

Note that when instantiating a Di £ fer object we may pass functions to filter out line and character “junk.” See the
Differ () constructor for details.

Finally, we compare the two:

>>> result = list (d.compare (textl, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint

>>> pprint (result)

[1. Beautiful is better than ugly.\n',

! 2. Explicit is better than implicit.\n',

' 3. Simple is better than complex.\n',
3

'+ Simple is better than complex.\n',

' ++\n"',

' - 4. Complex is better than complicated.\n',
V? A PR A\nl,

'+ 4. Complicated is better than complex.\n',
1o +H++ A “\n',

'+ 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

>>> import sys
>>> gys.stdout.writelines (result)

(continues on next page)

124 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

1. Beautiful is better than ugly.
- 2. Explicit is better than implicit.
3. Simple is better than complex.
+ 3. Simple is better than complex.
? ++
- 4. Complex is better than complicated.
5 ~ A
+ 4. Complicated is better than complex.
? ++++ N n
+ 5. Flat is better than nested.

6.3.5 A command-line interface to difflib

This example shows how to use difflib to create a di f £-like utility. It is also contained in the Python source distribu-
tion, as Tools/scripts/diff.py.

"mm Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

mwn

import sys, os, time, difflib, optparse

def main() :
Configure the option parser

usage = "usage: %prog [options] fromfile tofile"

parser = optparse.OptionParser (usage)

parser.add_option("-c", action="store_true", default=False,
help='Produce a context format diff (default)"')

parser.add_option("-u", action="store_true", default=False,
help='Produce a unified format diff')

hlp = 'Produce HTML side by side diff (can use -c and -1 in conjunction)'

parser.add_option("-m", action="store_true", default=False, help=hlp)

parser.add_option("-n", action="store_true", default=False,
help='Produce a ndiff format diff')

parser.add_option("-1", "--lines", type="int", default=3,
help='Set number of context lines (default 3)"')

(options, args) = parser.parse_args ()

if len(args) == 0:

parser.print_help ()
sys.exit (1)
if len(args) != 2:
parser.error("need to specify both a fromfile and tofile")

n = options.lines
fromfile, tofile = args # as specified in the usage string

we're passing these as arguments to the diff function
fromdate = time.ctime (os.stat (fromfile) .st_mtime)
todate = time.ctime (os.stat (tofile) .st_mtime)

(continues on next page)

6.3. difflib — Helpers for computing deltas 125

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

with open (fromfile) as fromf, open(tofile) as tof:
fromlines, tolines = list (fromf), list (tof)

if options.u:
diff = difflib.unified_diff (fromlines, tolines, fromfile, tofile,
fromdate, todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file(fromlines, tolines, fromfile,
tofile, context=options.c,
numlines=n)
else:
diff = difflib.context_diff (fromlines, tolines, fromfile, tofile,
fromdate, todate, n=n)

we're using writelines because diff is a generator
sys.stdout.writelines (diff)

6.4 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The textwrap module provides some convenience functions, as well as TextWrapper, the class that does all the
work. If you’re just wrapping or filling one or two text strings, the convenience functions should be good enough;
otherwise, you should use an instance of TextWrapper for efficiency.

textwrap .wrap (fext, width=70, **kwargs)
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below. width
defaults to 70.

See the TextWrapper.wrap () method for additional details on how wrap () behaves.

textwrap.£ill (fext, width=70, **kwargs)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. £i11 () is
shorthand for

"\n".join (wrap (text, ...))

In particular, £111 () accepts exactly the same keyword arguments as wrap ().

textwrap.shorten (fext, width, **kwargs)
Collapse and truncate the given text to fit in the given width.

First the whitespace in text is collapsed (all whitespace is replaced by single spaces). If the result fits in the
width, it is returned. Otherwise, enough words are dropped from the end so that the remaining words plus the
placeholder fit within width:

126 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.4/Lib/textwrap.py

The Python Library Reference, Release 3.4.10rc1

>>> textwrap.shorten("Hello world!", width=12)

'Hello world!'

>>> textwrap.shorten("Hello world!", width=11)

'Hello [...]"

>>> textwrap.shorten("Hello world", width=10, placeholder="...")
'Hello...'

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below. Note
that the whitespace is collapsed before the text is passed to the TextWrapper £i11 () function, so changing
the value of tabsize, expand tabs, drop_whitespace, and replace whitespace will have no
effect.

New in version 3.4.

textwrap.dedent (fext)
Remove any common leading whitespace from every line in fext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello™" are considered to have no common leading whitespace.

For example:

def test():
end first line with \ to avoid the empty line!
s = lvv\
hello
world
LI B |
print (repr(s)) # prints ' hello\n world\n !
print (repr (dedent (s))) # prints 'hello\n world\n'

textwrap.indent (text, prefix, predicate=None)
Add prefix to the beginning of selected lines in fext.

Lines are separated by calling text .splitlines (True).
By default, prefix is added to all lines that do not consist solely of whitespace (including any line endings).

For example:

>>> s = 'hello\n\n \nworld'
>>> indent (s, ' ")
' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is easy to add
prefix to even empty and whitespace-only lines:

>>> print (indent (s, '+ ', lambda line: True))
+ hello

+
+
+ world

New in version 3.3.

wrap (), £i11 () and shorten () work by creating a TextWrapper instance and calling a single method on it.
That instance is not reused, so for applications that process many text strings using wrap () and/or £111 (), it may

6.4. textwrap — Text wrapping and filling 127

The Python Library Reference, Release 3.4.10rc1

be more efficient to create your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words
be broken if necessary, unless TextWrapper.break long_words is set to false.

class textwrap.TextWrapper (**kwargs)
The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument
corresponds to an instance attribute, so for example

wrapper = TextWrapper (initial_indent="x ")

is the same as

wrapper = TextWrapper ()
wrapper.initial_indent = "«

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer than width, TextWrapper guarantees that no output line will be longer than width
characters.

expand_tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the
expandtabs () method of text.

tabsize
(default: 8) If expand tabs is true, then all tab characters in text will be expanded to zero or more
spaces, depending on the current column and the given tab size.

New in version 3.3.

replace_whitespace
(default: True) If true, after tab expansion but before wrapping, the wrap () method will replace each
whitespace character with a single space. The whitespace characters replaced are as follows: tab, newline,
vertical tab, formfeed, and carriage return (' \t\n\v\£f\r").

Note: If expand tabs is false and replace_whitespace is true, each tab character will be re-
placed by a single space, which is not the same as tab expansion.

Note: If replace whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines () or
similar) which are wrapped separately.

drop_whitespace
(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but before
indenting) is dropped. Whitespace at the beginning of the paragraph, however, is not dropped if non-
whitespace follows it. If whitespace being dropped takes up an entire line, the whole line is dropped.

initial_ indent
(default: ' ') String that will be prepended to the first line of wrapped output. Counts towards the length
of the first line. The empty string is not indented.

128 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

subsequent_indent
(default: ' ") String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences
are always separated by exactly two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a
lowercase letter followed by oneof ' . ', ' ! ', or ' 2", possibly followed by oneof '" ' or "' ", followed
by a space. One problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

’ [...] Dr. Frankenstein's monster [...]

and “Spot.” in

’[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_long words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer than
width. (Long words will be put on a line by themselves, in order to minimize the amount by which
width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be considered as potentially
good places for line breaks, but you need to set break_long_words to false if you want truly insecable
words. Default behaviour in previous versions was to always allow breaking hyphenated words.

max_lines
(default: None) If not None, then the output will contain at most max_lines lines, with placeholder
appearing at the end of the output.

New in version 3.4.

placeholder
(default: * [...]") String that will appear at the end of the output text if it has been truncated.

New in version 3.4.
TextWrapper also provides some public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in fext (a string) so every line is at most width characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines. If the wrapped output has no content, the returned list is empty.

£ill (rext)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

6.4. textwrap — Text wrapping and filling 129

The Python Library Reference, Release 3.4.10rc1

6.5 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all
Unicode characters. The data contained in this database is compiled from the UCD version 6.3.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character
Database”. It defines the following functions:

unicodedata.lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding character. If
not found, KeyError is raised.

Changed in version 3.3: Support for name aliases' and named sequences” has been added.

unicodedata.name (chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if not
given, ValueError is raised.

unicodedata.decimal (chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.digit (chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.numeric (chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.category (chr)
Returns the general category assigned to the character chr as string.

unicodedata.bidirectional (chr)
Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an empty
string is returned.

unicodedata.combining (chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining class
is defined.

unicodedata.east _asian_ width (chr)
Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored (chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been
identified as a “mirrored” character in bidirectional text, 0 otherwise.

unicodedata.decomposition (chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string is returned
in case no such mapping is defined.

unicodedata.normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’,
and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canon-
ical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way.

! http://www.unicode.org/Public/6.3.0/ucd/NameAliases. txt
2 http://www.unicode.org/Public/6.3.0/ucd/NamedSequences.txt

130 Chapter 6. Text Processing Services

http://www.unicode.org/Public/6.3.0/ucd
http://www.unicode.org/reports/tr44/tr44-6.html
http://www.unicode.org/reports/tr44/tr44-6.html
http://www.unicode.org/Public/6.3.0/ucd/NameAliases.txt
http://www.unicode.org/Public/6.3.0/ucd/NamedSequences.txt

The Python Library Reference, Release 3.4.10rc1

For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as
the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility charac-
ters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed
by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining characters
and the other doesn’t, they may not compare equal.

In addition, the module exposes the following constant:

unicodedata.unidata_version
The version of the Unicode database used in this module.

unicodedata.ued 3 2 0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>> import unicodedata

>>> unicodedata.lookup ('LEFT CURLY BRACKET')

I{l

>>> unicodedata.name('/")

'SOLIDUS'

>>> unicodedata.decimal ('9")

9

>>> unicodedata.decimal ('a')

Traceback (most recent call last):
File "<stdin>", line 1, in ?

ValueError: not a decimal

>>> unicodedata.category ('A") # 'L'etter, 'u'ppercase

lLu'

>>> unicodedata.bidirectional ('\u0660') # 'A'rabic, 'N'umber
IAN'

6.6 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of the st ringprep procedure are part of the profile. One example of a st ringprep profile is
nameprep, which is used for internationalized domain names.

6.6. stringprep — Internet String Preparation 131

https://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 3.4.10rc1

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns true if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

stringprep.in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_ b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).

stringprep.in_table_cl1l (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_cl2 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_cll_cl2 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9 (code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1l (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

132 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

stringprep.in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline — GNU readline interface

The readline module defines a number of functions to facilitate completion and reading/writing of history files
from the Python interpreter. This module can be used directly or via the r1completer module. Settings made using
this module affect the behaviour of both the interpreter’s interactive prompt and the prompts offered by the built-in
input () function.

Note: On MacOS X the readline module can be implemented using the 1ibedit library instead of GNU
readline.

The configuration file for 1ibedit is different from that of GNU readline. If you programmatically load configura-
tion strings you can check for the text “libedit” in readline.__doc___to differentiate between GNU readline and
libedit.

The readline module defines the following functions:

readline.parse_and_bind (string)
Parse and execute single line of a readline init file.

readline.get_line_buffer ()
Return the current contents of the line buffer.

readline.insert_text (string)
Insert text into the command line.

readline.read _init_file([ﬁlename])
Parse a readline initialization file. The default filename is the last filename used.

readline.read_history file([ﬁlename])
Load a readline history file. The default filename is ~/ .history.

readline.write_history_ file([ﬁlename])
Save a readline history file. The default filename is ~/ . history.

readline.clear_history ()
Clear the current history. (Note: this function is not available if the installed version of GNU readline doesn’t
support it.)

readline.get_history_length ()
Return the desired length of the history file. Negative values imply unlimited history file size.

readline.set_history length (length)
Set the number of lines to save in the history file. write history_ file () uses this value to truncate the
history file when saving. Negative values imply unlimited history file size.

readline.get_current_history length()
Return the number of lines currently in the history. (This is different from get_history_ length (), which
returns the maximum number of lines that will be written to a history file.)

readline.get_history_item (index)
Return the current contents of history item at index.

readline.remove_history_ item (pos)
Remove history item specified by its position from the history.

6.7. readline — GNU readline interface 133

The Python Library Reference, Release 3.4.10rc1

readline.replace_history_ item (pos, line)
Replace history item specified by its position with the given line.

readline.redisplay ()
Change what’s displayed on the screen to reflect the current contents of the line buffer.

readline.set_startup_hook ([function])
Set or remove the startup_hook function. If function is specified, it will be used as the new startup_hook
function; if omitted or None, any hook function already installed is removed. The startup_hook function is
called with no arguments just before readline prints the first prompt.

readline.set_pre_ input_hook ([function])
Set or remove the pre_input_hook function. If function is specified, it will be used as the new pre_input_hook
function; if omitted or None, any hook function already installed is removed. The pre_input_hook function
is called with no arguments after the first prompt has been printed and just before readline starts reading input
characters.

readline.set_completer ([function])
Set or remove the completer function. If function is specified, it will be used as the new completer function;
if omitted or None, any completer function already installed is removed. The completer function is called as
function (text, state), for statein 0, 1, 2, ..., until it returns a non-string value. It should return the
next possible completion starting with fext.

readline.get_completer ()
Get the completer function, or None if no completer function has been set.

readline.get_completion_type ()
Get the type of completion being attempted.

readline.get_begidx ()
Get the beginning index of the readline tab-completion scope.

readline.get_endidx ()
Get the ending index of the readline tab-completion scope.

readline.set_completer_delims (string)
Set the readline word delimiters for tab-completion.

readline.get_completer_delims ()
Get the readline word delimiters for tab-completion.

readline.set_completion_display matches_hook ([function])
Set or remove the completion display function. If function is specified, it will be used as the new completion dis-
play function; if omitted or None, any completion display function already installed is removed. The completion
display function is called as function (substitution, [matches], longest_match_length)
once each time matches need to be displayed.

readline.add_history (line)
Append a line to the history buffer, as if it was the last line typed.

See also:

Module r1completer Completion of Python identifiers at the interactive prompt.

6.7.1 Example

The following example demonstrates how to use the readline module’s history reading and writing functions to
automatically load and save a history file named .python_history from the user’s home directory. The code
below would normally be executed automatically during interactive sessions from the user’s PYTHONSTARTUP file.

134 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.4.10rc1

import atexit
import os
import readline

histfile = os.path.join(os.path.expanduser ("~"), ".python_history")
try:

readline.read_history_file(histfile)
except FileNotFoundError:

pass

atexit.register (readline.write_history_file, histfile)

This code is actually automatically run when Python is run in interactive mode (see Readline configuration).

The following example extends the code. InteractiveConsole class to support history save/restore.

import
import
import
import

atexit
code

os
readline

class HistoryConsole (code.InteractiveConsole):

def _ init_ (self, locals=None, filename="<console>",
histfile=os.path.expanduser ("~/.console-history")):
code.InteractiveConsole._ _init_ (self, locals, filename)

def

def

self.init_history(histfile)

init_history(self, histfile):
readline.parse_and_bind("tab: complete™)
if hasattr(readline, "read_ history_file"):
try:
readline.read_history_file(histfile)
except FileNotFoundError:
pass
atexit.register(self.save_history, histfile)

save_history(self, histfile):
readline.write_history_file(histfile)

6.8 rlcompleter — Completion function for GNU readline

Source code: Lib/rlcompleter.py

The r1completer module defines a completion function suitable for the readl ine module by completing valid
Python identifiers and keywords.

When this module is imported on a Unix platform with the readline module available, an instance of the
Completer class is automatically created and its complete () method is set as the readl ine completer.

Example:
>>> import rlcompleter
>>> import readline
>>> readline.parse_and_bind("tab: complete™)
(continues on next page)
6.8. rlcompleter — Completion function for GNU readline 135

https://github.com/python/cpython/tree/3.4/Lib/rlcompleter.py

The Python Library Reference, Release 3.4.10rc1

(continued from previous page)

>>> readline. <TAB PRESSED>

readline._ _doc_ readline.get_line_buffer(readline.read_init_file(
readline._ file_ readline.insert_text (readline.set_completer (
readline.___name___ readline.parse_and_bind(

>>> readline.

The rlcompleter module is designed for use with Python’s interactive mode. Unless Python is run with the -S
option, the module is automatically imported and configured (see Readline configuration).

On platforms without readline, the Completer class defined by this module can still be used for custom purposes.

6.8.1 Completer Objects

Completer objects have the following method:

Completer.complete (fext, state)
Return the stateth completion for fext.

If called for text that doesn’t include a period character (' . "), it will complete from names currently defined in
__main__, builtins and keywords (as defined by the ke yword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will not be
evaluated, but it can generate calls to __getattr__ ()) up to the last part, and find matches for the rest via
the dir () function. Any exception raised during the evaluation of the expression is caught, silenced and None
is returned.

136 Chapter 6. Text Processing Services

CHAPTER
SEVEN

BINARY DATA SERVICES

The modules described in this chapter provide some basic services operations for manipulation of binary data. Other
operations on binary data, specifically in relation to file formats and network protocols, are described in the relevant
sections.

Some libraries described under 7ext Processing Services also work with either ASCII-compatible binary formats (for
example, re) or all binary data (for example, di ff11ib).

In addition, see the documentation for Python’s built-in binary data types in Binary Sequence Types — bytes, bytearray,
memoryview.

7.1 struct — Interpret bytes as packed binary data

This module performs conversions between Python values and C structs represented as Python bytes objects. This
can be used in handling binary data stored in files or from network connections, among other sources. It uses Format
Strings as compact descriptions of the layout of the C structs and the intended conversion to/from Python values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper alignment
for the C types involved; similarly, alignment is taken into account when unpacking. This behavior is chosen so that
the bytes of a packed struct correspond exactly to the layout in memory of the corresponding C struct. To handle
platform-independent data formats or omit implicit pad bytes, use standard size and alignment instead of native
size and alignment: see Byte Order, Size, and Alignment for details.

Several st ruct functions (and methods of St ruct) take a buffer argument. This refers to objects that implement
the bufferobjects and provide either a readable or read-writable buffer. The most common types used for that purpose
are bytes and bytearray, but many other types that can be viewed as an array of bytes implement the buffer
protocol, so that they can be read/filled without additional copying from a byt es object.

7.1.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct.error
Exception raised on various occasions; argument is a string describing what is wrong.

struct.pack (fmt, vi, v2,...)
Return a bytes object containing the values v/, v2, ... packed according to the format string fint. The arguments
must match the values required by the format exactly.

137

The Python Library Reference, Release 3.4.10rc1

struct .pack_into (fint, buffer, offset, vi, v2, ...)
Pack the values v1, v2, ... according to the format string fint and write the packed bytes into the writable buffer
buffer starting at position offset. Note that offset is a required argument.

struct .unpack (fimt, buffer)
Unpack from the buffer buffer (presumably packed by pack (fmt, ...)) according to the format string fint.
The result is a tuple even if it contains exactly one item. The buffer must contain exactly the amount of data
required by the format (1en (bytes) mustequal calcsize (fmt)).

struct .unpack_£from (fint, buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string fint. The result is a tuple
even if it contains exactly one item. buffer must contain at least the amount of data required by the format
(len (buffer[offset:]) mustbe atleast calcsize (fmt)).

struct .iter_unpack (fint, buffer)
Iteratively unpack from the buffer buffer according to the format string fmt. This function returns an iterator
which will read equally-sized chunks from the buffer until all its contents have been consumed. The buffer’s
size in bytes must be a multiple of the amount of data required by the format, as reflected by calcsize ().

Each iteration yields a tuple as specified by the format string.
New in version 3.4.

struct.calcsize (fmt)
Return the size of the struct (and hence of the bytes object produced by pack (fmt, ...)) corresponding to
the format string fint.

7.1.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data. They are
built up from Format Characters, which specify the type of data being packed/unpacked. In addition, there are special
characters for controlling the Byte Order; Size, and Alignment.

Byte Order, Size, and Alighment
By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size Alignment
@ native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, '@ "' is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and AMD64
(x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium feature switchable
endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

138 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.4.10rc1

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between '@' and '="': both use native byte order, but the size and alignment of the latter is
standardized.
The form ' ! "' is available for those poor souls who claim they can’t remember whether network byte order is big-

endian or little-endian.
There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice