
Python Tutorial
Release 3.2.3

Guido van Rossum
Fred L. Drake, Jr., editor

April 11, 2012

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Whetting Your Appetite 3

2 Using the Python Interpreter 5
2.1 Invoking the Interpreter . 5
2.2 The Interpreter and Its Environment . 6

3 An Informal Introduction to Python 9
3.1 Using Python as a Calculator . 9
3.2 First Steps Towards Programming . 16

4 More Control Flow Tools 19
4.1 if Statements . 19
4.2 for Statements . 19
4.3 The range() Function . 20
4.4 break and continue Statements, and else Clauses on Loops 21
4.5 pass Statements . 21
4.6 Defining Functions . 22
4.7 More on Defining Functions . 23
4.8 Intermezzo: Coding Style . 27

5 Data Structures 29
5.1 More on Lists . 29
5.2 The del statement . 33
5.3 Tuples and Sequences . 33
5.4 Sets . 34
5.5 Dictionaries . 34
5.6 Looping Techniques . 35
5.7 More on Conditions . 36
5.8 Comparing Sequences and Other Types . 37

6 Modules 39
6.1 More on Modules . 40
6.2 Standard Modules . 42
6.3 The dir() Function . 42
6.4 Packages . 43

7 Input and Output 47
7.1 Fancier Output Formatting . 47
7.2 Reading and Writing Files . 50

8 Errors and Exceptions 53
8.1 Syntax Errors . 53
8.2 Exceptions . 53
8.3 Handling Exceptions . 54

i

8.4 Raising Exceptions . 55
8.5 User-defined Exceptions . 56
8.6 Defining Clean-up Actions . 57
8.7 Predefined Clean-up Actions . 58

9 Classes 59
9.1 A Word About Names and Objects . 59
9.2 Python Scopes and Namespaces . 59
9.3 A First Look at Classes . 61
9.4 Random Remarks . 64
9.5 Inheritance . 65
9.6 Private Variables . 66
9.7 Odds and Ends . 67
9.8 Exceptions Are Classes Too . 67
9.9 Iterators . 68
9.10 Generators . 69
9.11 Generator Expressions . 69

10 Brief Tour of the Standard Library 71
10.1 Operating System Interface . 71
10.2 File Wildcards . 71
10.3 Command Line Arguments . 71
10.4 Error Output Redirection and Program Termination . 72
10.5 String Pattern Matching . 72
10.6 Mathematics . 72
10.7 Internet Access . 73
10.8 Dates and Times . 73
10.9 Data Compression . 73
10.10 Performance Measurement . 74
10.11 Quality Control . 74
10.12 Batteries Included . 75

11 Brief Tour of the Standard Library – Part II 77
11.1 Output Formatting . 77
11.2 Templating . 78
11.3 Working with Binary Data Record Layouts . 79
11.4 Multi-threading . 79
11.5 Logging . 80
11.6 Weak References . 80
11.7 Tools for Working with Lists . 81
11.8 Decimal Floating Point Arithmetic . 82

12 What Now? 83

13 Interactive Input Editing and History Substitution 85
13.1 Line Editing . 85
13.2 History Substitution . 85
13.3 Key Bindings . 85
13.4 Alternatives to the Interactive Interpreter . 87

14 Floating Point Arithmetic: Issues and Limitations 89
14.1 Representation Error . 91

A Glossary 93

B About these documents 101
B.1 Contributors to the Python Documentation . 101

C History and License 103
C.1 History of the software . 103

ii

C.2 Terms and conditions for accessing or otherwise using Python 104
C.3 Licenses and Acknowledgements for Incorporated Software . 106

D Copyright 117

Index 119

iii

iv

Python Tutorial, Release 3.2.3

Release 3.2

Date April 11, 2012

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together
with its interpreted nature, make it an ideal language for scripting and rapid application development in many
areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python Web site, http://www.python.org/, and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules, programs and tools, and additional
documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system.
It helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the
tutorial can be read off-line as well.

For a description of standard objects and modules, see library-index. reference-index gives a more formal def-
inition of the language. To write extensions in C or C++, read extending-index and c-api-index. There are also
several books covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs, and
you will be ready to learn more about the various Python library modules described in library-index.

The Glossary is also worth going through.

CONTENTS 1

http://www.python.org/

Python Tutorial, Release 3.2.3

2 CONTENTS

CHAPTER

ONE

WHETTING YOUR APPETITE

If you do much work on computers, eventually you find that there’s some task you’d like to automate. For example,
you may wish to perform a search-and-replace over a large number of text files, or rename and rearrange a bunch
of photo files in a complicated way. Perhaps you’d like to write a small custom database, or a specialized GUI
application, or a simple game.

If you’re a professional software developer, you may have to work with several C/C++/Java libraries but find the
usual write/compile/test/re-compile cycle is too slow. Perhaps you’re writing a test suite for such a library and find
writing the testing code a tedious task. Or maybe you’ve written a program that could use an extension language,
and you don’t want to design and implement a whole new language for your application.

Python is just the language for you.

You could write a Unix shell script or Windows batch files for some of these tasks, but shell scripts are best at
moving around files and changing text data, not well-suited for GUI applications or games. You could write a
C/C++/Java program, but it can take a lot of development time to get even a first-draft program. Python is simpler
to use, available on Windows, Mac OS X, and Unix operating systems, and will help you get the job done more
quickly.

Python is simple to use, but it is a real programming language, offering much more structure and support for
large programs than shell scripts or batch files can offer. On the other hand, Python also offers much more error
checking than C, and, being a very-high-level language, it has high-level data types built in, such as flexible arrays
and dictionaries. Because of its more general data types Python is applicable to a much larger problem domain
than Awk or even Perl, yet many things are at least as easy in Python as in those languages.

Python allows you to split your program into modules that can be reused in other Python programs. It comes with
a large collection of standard modules that you can use as the basis of your programs — or as examples to start
learning to program in Python. Some of these modules provide things like file I/O, system calls, sockets, and even
interfaces to graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, which makes it easy to experiment
with features of the language, to write throw-away programs, or to test functions during bottom-up program
development. It is also a handy desk calculator.

Python enables programs to be written compactly and readably. Programs written in Python are typically much
shorter than equivalent C, C++, or Java programs, for several reasons:

• the high-level data types allow you to express complex operations in a single statement;

• statement grouping is done by indentation instead of beginning and ending brackets;

• no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that
may only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you
can link the Python interpreter into an application written in C and use it as an extension or command language
for that application.

3

Python Tutorial, Release 3.2.3

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing to do
with reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

Now that you are all excited about Python, you’ll want to examine it in some more detail. Since the best way to
learn a language is to use it, the tutorial invites you to play with the Python interpreter as you read.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system through examples, beginning
with simple expressions, statements and data types, through functions and modules, and finally touching upon
advanced concepts like exceptions and user-defined classes.

4 Chapter 1. Whetting Your Appetite

CHAPTER

TWO

USING THE PYTHON INTERPRETER

2.1 Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python3.2 on those machines where it is
available; putting /usr/local/bin in your Unix shell’s search path makes it possible to start it by typing the
command

python3.2

to the shell. 1 Since the choice of the directory where the interpreter lives is an installation option, other places are
possible; check with your local Python guru or system administrator. (E.g., /usr/local/python is a popular
alternative location.)

On Windows machines, the Python installation is usually placed in C:\Python32, though you can change this
when you’re running the installer. To add this directory to your path, you can type the following command into
the command prompt in a DOS box:

set path=%path%;C:\python32

Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at the primary prompt causes
the interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the
following command: quit().

The interpreter’s line-editing features usually aren’t very sophisticated. On Unix, whoever installed the interpreter
may have enabled support for the GNU readline library, which adds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether command line editing is supported is typing Control-P to the
first Python prompt you get. If it beeps, you have command line editing; see Appendix Interactive Input Editing
and History Substitution for an introduction to the keys. If nothing appears to happen, or if ^P is echoed, command
line editing isn’t available; you’ll only be able to use backspace to remove characters from the current line.

The interpreter operates somewhat like the Unix shell: when called with standard input connected to a tty device,
it reads and executes commands interactively; when called with a file name argument or with a file as standard
input, it reads and executes a script from that file.

A second way of starting the interpreter is python -c command [arg] ..., which executes the state-
ment(s) in command, analogous to the shell’s -c option. Since Python statements often contain spaces or other
characters that are special to the shell, it is usually advised to quote command in its entirety with single quotes.

Some Python modules are also useful as scripts. These can be invoked using python -m module [arg]
..., which executes the source file for module as if you had spelled out its full name on the command line.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passing -i before the script.

1 On Unix, the Python 3.x interpreter is by default not installed with the executable named python, so that it does not conflict with a
simultaneously installed Python 2.x executable.

5

Python Tutorial, Release 3.2.3

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are turned into a list of strings
and assigned to the argv variable in the sys module. You can access this list by executing import sys.
The length of the list is at least one; when no script and no arguments are given, sys.argv[0] is an empty
string. When the script name is given as ’-’ (meaning standard input), sys.argv[0] is set to ’-’. When -c
command is used, sys.argv[0] is set to ’-c’. When -m module is used, sys.argv[0] is set to the full
name of the located module. Options found after -c command or -m module are not consumed by the Python
interpreter’s option processing but left in sys.argv for the command or module to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive mode. In this mode it prompts
for the next command with the primary prompt, usually three greater-than signs (>>>); for continuation lines it
prompts with the secondary prompt, by default three dots (...). The interpreter prints a welcome message stating
its version number and a copyright notice before printing the first prompt:

$ python3.2
Python 3.2 (py3k, Sep 12 2007, 12:21:02)
[GCC 3.4.6 20060404 (Red Hat 3.4.6-8)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look at this if state-
ment:

>>> the_world_is_flat = 1
>>> if the_world_is_flat:
... print("Be careful not to fall off!")
...
Be careful not to fall off!

2.2 The Interpreter and Its Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it then returns
to the primary prompt; when input came from a file, it exits with a nonzero exit status after printing the stack
trace. (Exceptions handled by an except clause in a try statement are not errors in this context.) Some errors
are unconditionally fatal and cause an exit with a nonzero exit; this applies to internal inconsistencies and some
cases of running out of memory. All error messages are written to the standard error stream; normal output from
executed commands is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels the
input and returns to the primary prompt. 2 Typing an interrupt while a command is executing raises the
KeyboardInterrupt exception, which may be handled by a try statement.

2.2.2 Executable Python Scripts

On BSD’ish Unix systems, Python scripts can be made directly executable, like shell scripts, by putting the line

#! /usr/bin/env python3.2

(assuming that the interpreter is on the user’s PATH) at the beginning of the script and giving the file an executable
mode. The #! must be the first two characters of the file. On some platforms, this first line must end with a

2 A problem with the GNU Readline package may prevent this.

6 Chapter 2. Using the Python Interpreter

Python Tutorial, Release 3.2.3

Unix-style line ending (’\n’), not a Windows (’\r\n’) line ending. Note that the hash, or pound, character,
’#’, is used to start a comment in Python.

The script can be given an executable mode, or permission, using the chmod command:

$ chmod +x myscript.py

On Windows systems, there is no notion of an “executable mode”. The Python installer automatically associates
.py files with python.exe so that a double-click on a Python file will run it as a script. The extension can also
be .pyw, in that case, the console window that normally appears is suppressed.

2.2.3 Source Code Encoding

By default, Python source files are treated as encoded in UTF-8. In that encoding, characters of most languages in
the world can be used simultaneously in string literals, identifiers and comments — although the standard library
only uses ASCII characters for identifiers, a convention that any portable code should follow. To display all these
characters properly, your editor must recognize that the file is UTF-8, and it must use a font that supports all the
characters in the file.

It is also possible to specify a different encoding for source files. In order to do this, put one more special comment
line right after the #! line to define the source file encoding:

-*- coding: encoding -*-

With that declaration, everything in the source file will be treated as having the encoding encoding instead of
UTF-8. The list of possible encodings can be found in the Python Library Reference, in the section on codecs.

For example, if your editor of choice does not support UTF-8 encoded files and insists on using some other
encoding, say Windows-1252, you can write:

-*- coding: cp-1252 -*-

and still use all characters in the Windows-1252 character set in the source files. The special encoding comment
must be in the first or second line within the file.

2.2.4 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed every time
the interpreter is started. You can do this by setting an environment variable named PYTHONSTARTUP to the
name of a file containing your start-up commands. This is similar to the .profile feature of the Unix shells.

This file is only read in interactive sessions, not when Python reads commands from a script, and not when
/dev/tty is given as the explicit source of commands (which otherwise behaves like an interactive session).
It is executed in the same namespace where interactive commands are executed, so that objects that it defines or
imports can be used without qualification in the interactive session. You can also change the prompts sys.ps1
and sys.ps2 in this file.

If you want to read an additional start-up file from the current directory, you can program
this in the global start-up file using code like if os.path.isfile(’.pythonrc.py’):
exec(open(’.pythonrc.py’).read()). If you want to use the startup file in a script, you must
do this explicitly in the script:

import os
filename = os.environ.get(’PYTHONSTARTUP’)
if filename and os.path.isfile(filename):

exec(open(filename).read())

2.2.5 The Customization Modules

Python provides two hooks to let you customize it: sitecustomize and usercustomize. To see how it
works, you need first to find the location of your user site-packages directory. Start Python and run this code:

2.2. The Interpreter and Its Environment 7

Python Tutorial, Release 3.2.3

>>> import site
>>> site.getusersitepackages()
’/home/user/.local/lib/python3.2/site-packages’

Now you can create a file named usercustomize.py in that directory and put anything you want in it. It will
affect every invocation of Python, unless it is started with the -s option to disable the automatic import.

sitecustomize works in the same way, but is typically created by an administrator of the computer in the
global site-packages directory, and is imported before usercustomize. See the documentation of the site
module for more details.

8 Chapter 2. Using the Python Interpreter

CHAPTER

THREE

AN INFORMAL INTRODUCTION TO
PYTHON

In the following examples, input and output are distinguished by the presence or absence of prompts (>>> and
...): to repeat the example, you must type everything after the prompt, when the prompt appears; lines that do
not begin with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an
example means you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments
in Python start with the hash character, #, and extend to the end of the physical line. A comment may appear at
the start of a line or following whitespace or code, but not within a string literal. A hash character within a string
literal is just a hash character. Since comments are to clarify code and are not interpreted by Python, they may be
omitted when typing in examples.

Some examples:

this is the first comment
SPAM = 1 # and this is the second comment

... and now a third!
STRING = "# This is not a comment."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt, >>>. (It shouldn’t
take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operators +, -, * and / work just like in most other languages (for example, Pascal
or C); parentheses can be used for grouping. For example:

>>> 2+2
4
>>> # This is a comment
... 2+2
4
>>> 2+2 # and a comment on the same line as code
4
>>> (50-5*6)/4
5.0
>>> 8/5 # Fractions aren’t lost when dividing integers
1.6

9

Python Tutorial, Release 3.2.3

Note: You might not see exactly the same result; floating point results can differ from one machine to another.
We will say more later about controlling the appearance of floating point output. See also Floating Point Arith-
metic: Issues and Limitations for a full discussion of some of the subtleties of floating point numbers and their
representations.

To do integer division and get an integer result, discarding any fractional result, there is another operator, //:

>>> # Integer division returns the floor:
... 7//3
2
>>> 7//-3
-3

The equal sign (’=’) is used to assign a value to a variable. Afterwards, no result is displayed before the next
interactive prompt:

>>> width = 20
>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>> x = y = z = 0 # Zero x, y and z
>>> x
0
>>> y
0
>>> z
0

Variables must be “defined” (assigned a value) before they can be used, or an error will occur:

>>> # try to access an undefined variable
... n
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name ’n’ is not defined

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 3 * 3.75 / 1.5
7.5
>>> 7.0 / 2
3.5

Complex numbers are also supported; imaginary numbers are written with a suffix of j or J. Complex numbers
with a nonzero real component are written as (real+imagj), or can be created with the complex(real,
imag) function.

>>> 1j * 1J
(-1+0j)
>>> 1j * complex(0, 1)
(-1+0j)
>>> 3+1j*3
(3+3j)
>>> (3+1j)*3
(9+3j)
>>> (1+2j)/(1+1j)
(1.5+0.5j)

Complex numbers are always represented as two floating point numbers, the real and imaginary part. To extract
these parts from a complex number z, use z.real and z.imag.

10 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 3.2.3

>>> a=1.5+0.5j
>>> a.real
1.5
>>> a.imag
0.5

The conversion functions to floating point and integer (float(), int()) don’t work for complex numbers —
there is not one correct way to convert a complex number to a real number. Use abs(z) to get its magnitude (as
a float) or z.real to get its real part:

>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: can’t convert complex to float; use abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0

In interactive mode, the last printed expression is assigned to the variable _. This means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create
an independent local variable with the same name masking the built-in variable with its magic behavior.

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be
enclosed in single quotes or double quotes:

>>> ’spam eggs’
’spam eggs’
>>> ’doesn\’t’
"doesn’t"
>>> "doesn’t"
"doesn’t"
>>> ’"Yes," he said.’
’"Yes," he said.’
>>> "\"Yes,\" he said."
’"Yes," he said.’
>>> ’"Isn\’t," she said.’
’"Isn\’t," she said.’

The interpreter prints the result of string operations in the same way as they are typed for input: inside quotes, and
with quotes and other funny characters escaped by backslashes, to show the precise value. The string is enclosed
in double quotes if the string contains a single quote and no double quotes, else it’s enclosed in single quotes. The
print() function produces a more readable output for such input strings.

3.1. Using Python as a Calculator 11

Python Tutorial, Release 3.2.3

String literals can span multiple lines in several ways. Continuation lines can be used, with a backslash as the last
character on the line indicating that the next line is a logical continuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\
significant."

print(hello)

Note that newlines still need to be embedded in the string using \n – the newline following the trailing backslash
is discarded. This example would print the following:

This is a rather long string containing
several lines of text just as you would do in C.

Note that whitespace at the beginning of the line is significant.

Or, strings can be surrounded in a pair of matching triple-quotes: """ or ”’. End of lines do not need to be
escaped when using triple-quotes, but they will be included in the string. So the following uses one escape to
avoid an unwanted initial blank line.

print("""\
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

""")

produces the following output:

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

If we make the string literal a “raw” string, \n sequences are not converted to newlines, but the backslash at the
end of the line, and the newline character in the source, are both included in the string as data. Thus, the example:

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

print(hello)

would print:

This is a rather long string containing\n\
several lines of text much as you would do in C.

Strings can be concatenated (glued together) with the + operator, and repeated with *:

>>> word = ’Help’ + ’A’
>>> word
’HelpA’
>>> ’<’ + word*5 + ’>’
’<HelpAHelpAHelpAHelpAHelpA>’

Two string literals next to each other are automatically concatenated; the first line above could also have been
written word = ’Help’ ’A’; this only works with two literals, not with arbitrary string expressions:

>>> ’str’ ’ing’ # <- This is ok
’string’
>>> ’str’.strip() + ’ing’ # <- This is ok
’string’
>>> ’str’.strip() ’ing’ # <- This is invalid

File "<stdin>", line 1, in ?
’str’.strip() ’ing’

^
SyntaxError: invalid syntax

12 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 3.2.3

Strings can be subscripted (indexed); like in C, the first character of a string has subscript (index) 0. There is no
separate character type; a character is simply a string of size one. As in the Icon programming language, substrings
can be specified with the slice notation: two indices separated by a colon.

>>> word[4]
’A’
>>> word[0:2]
’He’
>>> word[2:4]
’lp’

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the
size of the string being sliced.

>>> word[:2] # The first two characters
’He’
>>> word[2:] # Everything except the first two characters
’lpA’

Unlike a C string, Python strings cannot be changed. Assigning to an indexed position in the string results in an
error:

>>> word[0] = ’x’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: ’str’ object does not support item assignment
>>> word[:1] = ’Splat’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: ’str’ object does not support slice assignment

However, creating a new string with the combined content is easy and efficient:

>>> ’x’ + word[1:]
’xelpA’
>>> ’Splat’ + word[4]
’SplatA’

Here’s a useful invariant of slice operations: s[:i] + s[i:] equals s.

>>> word[:2] + word[2:]
’HelpA’
>>> word[:3] + word[3:]
’HelpA’

Degenerate slice indices are handled gracefully: an index that is too large is replaced by the string size, an upper
bound smaller than the lower bound returns an empty string.

>>> word[1:100]
’elpA’
>>> word[10:]
’’
>>> word[2:1]
’’

Indices may be negative numbers, to start counting from the right. For example:

>>> word[-1] # The last character
’A’
>>> word[-2] # The last-but-one character
’p’
>>> word[-2:] # The last two characters
’pA’
>>> word[:-2] # Everything except the last two characters
’Hel’

3.1. Using Python as a Calculator 13

Python Tutorial, Release 3.2.3

But note that -0 is really the same as 0, so it does not count from the right!

>>> word[-0] # (since -0 equals 0)
’H’

Out-of-range negative slice indices are truncated, but don’t try this for single-element (non-slice) indices:

>>> word[-100:]
’HelpA’
>>> word[-10] # error
Traceback (most recent call last):

File "<stdin>", line 1, in ?
IndexError: string index out of range

One way to remember how slices work is to think of the indices as pointing between characters, with the left edge
of the first character numbered 0. Then the right edge of the last character of a string of n characters has index n,
for example:

+---+---+---+---+---+
| H | e | l | p | A |
+---+---+---+---+---+
0 1 2 3 4 5

-5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the second row gives the corresponding
negative indices. The slice from i to j consists of all characters between the edges labeled i and j, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For
example, the length of word[1:3] is 2.

The built-in function len() returns the length of a string:

>>> s = ’supercalifragilisticexpialidocious’
>>> len(s)
34

See Also:

typesseq Strings are examples of sequence types, and support the common operations supported by such types.

string-methods Strings support a large number of methods for basic transformations and searching.

string-formatting Information about string formatting with str.format() is described here.

old-string-formatting The old formatting operations invoked when strings and Unicode strings are the left
operand of the % operator are described in more detail here.

3.1.3 About Unicode

Starting with Python 3.0 all strings support Unicode (see http://www.unicode.org/).

Unicode has the advantage of providing one ordinal for every character in every script used in modern and ancient
texts. Previously, there were only 256 possible ordinals for script characters. Texts were typically bound to a code
page which mapped the ordinals to script characters. This lead to very much confusion especially with respect to
internationalization (usually written as i18n — ’i’ + 18 characters + ’n’) of software. Unicode solves these
problems by defining one code page for all scripts.

If you want to include special characters in a string, you can do so by using the Python Unicode-Escape encoding.
The following example shows how:

>>> ’Hello\u0020World !’
’Hello World !’

The escape sequence \u0020 indicates to insert the Unicode character with the ordinal value 0x0020 (the space
character) at the given position.

14 Chapter 3. An Informal Introduction to Python

http://www.unicode.org/

Python Tutorial, Release 3.2.3

Other characters are interpreted by using their respective ordinal values directly as Unicode ordinals. If you have
literal strings in the standard Latin-1 encoding that is used in many Western countries, you will find it convenient
that the lower 256 characters of Unicode are the same as the 256 characters of Latin-1.

Apart from these standard encodings, Python provides a whole set of other ways of creating Unicode strings on
the basis of a known encoding.

To convert a string into a sequence of bytes using a specific encoding, string objects provide an encode()
method that takes one argument, the name of the encoding. Lowercase names for encodings are preferred.

>>> "Äpfel".encode(’utf-8’)
b’\xc3\x84pfel’

3.1.4 Lists

Python knows a number of compound data types, used to group together other values. The most versatile is the
list, which can be written as a list of comma-separated values (items) between square brackets. List items need
not all have the same type.

>>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

>>> a[0]
’spam’
>>> a[3]
1234
>>> a[-2]
100
>>> a[1:-1]
[’eggs’, 100]
>>> a[:2] + [’bacon’, 2*2]
[’spam’, ’eggs’, ’bacon’, 4]
>>> 3*a[:3] + [’Boo!’]
[’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’Boo!’]

All slice operations return a new list containing the requested elements. This means that the following slice returns
a shallow copy of the list a:

>>> a[:]
[’spam’, ’eggs’, 100, 1234]

Unlike strings, which are immutable, it is possible to change individual elements of a list:

>>> a
[’spam’, ’eggs’, 100, 1234]
>>> a[2] = a[2] + 23
>>> a
[’spam’, ’eggs’, 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list or clear it entirely:

>>> # Replace some items:
... a[0:2] = [1, 12]
>>> a
[1, 12, 123, 1234]
>>> # Remove some:
... a[0:2] = []
>>> a
[123, 1234]
>>> # Insert some:

3.1. Using Python as a Calculator 15

Python Tutorial, Release 3.2.3

... a[1:1] = [’bletch’, ’xyzzy’]
>>> a
[123, ’bletch’, ’xyzzy’, 1234]
>>> # Insert (a copy of) itself at the beginning
>>> a[:0] = a
>>> a
[123, ’bletch’, ’xyzzy’, 1234, 123, ’bletch’, ’xyzzy’, 1234]
>>> # Clear the list: replace all items with an empty list
>>> a[:] = []
>>> a
[]

The built-in function len() also applies to lists:

>>> a = [’a’, ’b’, ’c’, ’d’]
>>> len(a)
4

It is possible to nest lists (create lists containing other lists), for example:

>>> q = [2, 3]
>>> p = [1, q, 4]
>>> len(p)
3
>>> p[1]
[2, 3]
>>> p[1][0]
2

You can add something to the end of the list:

>>> p[1].append(’xtra’)
>>> p
[1, [2, 3, ’xtra’], 4]
>>> q
[2, 3, ’xtra’]

Note that in the last example, p[1] and q really refer to the same object! We’ll come back to object semantics
later.

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of the Fibonacci series as follows:

>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
... print(b)
... a, b = b, a+b
...
1
1
2
3
5
8

This example introduces several new features.

16 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 3.2.3

• The first line contains a multiple assignment: the variables a and b simultaneously get the new values 0
and 1. On the last line this is used again, demonstrating that the expressions on the right-hand side are all
evaluated first before any of the assignments take place. The right-hand side expressions are evaluated from
the left to the right.

• The while loop executes as long as the condition (here: b < 10) remains true. In Python, like in C, any
non-zero integer value is true; zero is false. The condition may also be a string or list value, in fact any
sequence; anything with a non-zero length is true, empty sequences are false. The test used in the example
is a simple comparison. The standard comparison operators are written the same as in C: < (less than), >
(greater than), == (equal to), <= (less than or equal to), >= (greater than or equal to) and != (not equal to).

• The body of the loop is indented: indentation is Python’s way of grouping statements. At the interactive
prompt, you have to type a tab or space(s) for each indented line. In practice you will prepare more com-
plicated input for Python with a text editor; all decent text editors have an auto-indent facility. When a
compound statement is entered interactively, it must be followed by a blank line to indicate completion
(since the parser cannot guess when you have typed the last line). Note that each line within a basic block
must be indented by the same amount.

• The print() function writes the value of the expression(s) it is given. It differs from just writing the
expression you want to write (as we did earlier in the calculator examples) in the way it handles multiple
expressions, floating point quantities, and strings. Strings are printed without quotes, and a space is inserted
between items, so you can format things nicely, like this:

>>> i = 256*256
>>> print(’The value of i is’, i)
The value of i is 65536

The keyword end can be used to avoid the newline after the output, or end the output with a different string:

>>> a, b = 0, 1
>>> while b < 1000:
... print(b, end=’,’)
... a, b = b, a+b
...
1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,

3.2. First Steps Towards Programming 17

Python Tutorial, Release 3.2.3

18 Chapter 3. An Informal Introduction to Python

CHAPTER

FOUR

MORE CONTROL FLOW TOOLS

Besides the while statement just introduced, Python knows the usual control flow statements known from other
languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is the if statement. For example:

>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... x = 0
... print(’Negative changed to zero’)
... elif x == 0:
... print(’Zero’)
... elif x == 1:
... print(’Single’)
... else:
... print(’More’)
...
More

There can be zero or more elif parts, and the else part is optional. The keyword ‘elif‘ is short for ‘else if’,
and is useful to avoid excessive indentation. An if ... elif ... elif ... sequence is a substitute for the switch
or case statements found in other languages.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always
iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both
the iteration step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a
list or a string), in the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
... a = [’cat’, ’window’, ’defenestrate’]
>>> for x in a:
... print(x, len(x))
...
cat 3
window 6
defenestrate 12

19

Python Tutorial, Release 3.2.3

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence
types, such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items)
you must iterate over a copy. The slice notation makes this particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire list
... if len(x) > 6: a.insert(0, x)
...
>>> a
[’defenestrate’, ’cat’, ’window’, ’defenestrate’]

4.3 The range() Function

If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It generates
arithmetic progressions:

>>> for i in range(5):
... print(i)
...
0
1
2
3
4

The given end point is never part of the generated sequence; range(10) generates 10 values, the legal indices
for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the ‘step’):

range(5, 10)
5 through 9

range(0, 10, 3)
0, 3, 6, 9

range(-10, -100, -30)
-10, -40, -70

To iterate over the indices of a sequence, you can combine range() and len() as follows:

>>> a = [’Mary’, ’had’, ’a’, ’little’, ’lamb’]
>>> for i in range(len(a)):
... print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb

In most such cases, however, it is convenient to use the enumerate() function, see Looping Techniques.

A strange thing happens if you just print a range:

>>> print(range(10))
range(0, 10)

In many ways the object returned by range() behaves as if it is a list, but in fact it isn’t. It is an object which
returns the successive items of the desired sequence when you iterate over it, but it doesn’t really make the list,
thus saving space.

We say such an object is iterable, that is, suitable as a target for functions and constructs that expect something
from which they can obtain successive items until the supply is exhausted. We have seen that the for statement

20 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.2.3

is such an iterator. The function list() is another; it creates lists from iterables:

>>> list(range(5))
[0, 1, 2, 3, 4]

Later we will see more functions that return iterables and take iterables as argument.

4.4 break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the smallest enclosing for or while loop.

The continue statement, also borrowed from C, continues with the next iteration of the loop.

Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of the list
(with for) or when the condition becomes false (with while), but not when the loop is terminated by a break
statement. This is exemplified by the following loop, which searches for prime numbers:

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print(n, ’equals’, x, ’*’, n//x)
... break
... else:
... # loop fell through without finding a factor
... print(n, ’is a prime number’)
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

(Yes, this is the correct code. Look closely: the else clause belongs to the for loop, not the if statement.)

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program
requires no action. For example:

>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)
...

This is commonly used for creating minimal classes:

>>> class MyEmptyClass:
... pass
...

Another place pass can be used is as a place-holder for a function or conditional body when you are working on
new code, allowing you to keep thinking at a more abstract level. The pass is silently ignored:

>>> def initlog(*args):
... pass # Remember to implement this!
...

4.4. break and continue Statements, and else Clauses on Loops 21

Python Tutorial, Release 3.2.3

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while a < n:
... print(a, end=’ ’)
... a, b = b, a+b
... print()
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by the function name and the parenthesized
list of formal parameters. The statements that form the body of the function start at the next line, and must be
indented.

The first statement of the function body can optionally be a string literal; this string literal is the function’s docu-
mentation string, or docstring. (More about docstrings can be found in the section Documentation Strings.) There
are tools which use docstrings to automatically produce online or printed documentation, or to let the user inter-
actively browse through code; it’s good practice to include docstrings in code that you write, so make a habit of
it.

The execution of a function introduces a new symbol table used for the local variables of the function. More
precisely, all variable assignments in a function store the value in the local symbol table; whereas variable refer-
ences first look in the local symbol table, then in the local symbol tables of enclosing functions, then in the global
symbol table, and finally in the table of built-in names. Thus, global variables cannot be directly assigned a value
within a function (unless named in a global statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed using call by value (where the value is always an object reference,
not the value of the object). 1 When a function calls another function, a new local symbol table is created for that
call.

A function definition introduces the function name in the current symbol table. The value of the function name
has a type that is recognized by the interpreter as a user-defined function. This value can be assigned to another
name which can then also be used as a function. This serves as a general renaming mechanism:

>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89

Coming from other languages, you might object that fib is not a function but a procedure since it doesn’t return
a value. In fact, even functions without a return statement do return a value, albeit a rather boring one. This
value is called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it
would be the only value written. You can see it if you really want to using print():

>>> fib(0)
>>> print(fib(0))
None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []

1 Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the
callee makes to it (items inserted into a list).

22 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.2.3

... a, b = 0, 1

... while a < n:

... result.append(a) # see below

... a, b = b, a+b

... return result

...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

• The return statement returns with a value from a function. return without an expression argument
returns None. Falling off the end of a function also returns None.

• The statement result.append(a) calls a method of the list object result. A method is a function
that ‘belongs’ to an object and is named obj.methodname, where obj is some object (this may be an
expression), and methodname is the name of a method that is defined by the object’s type. Different types
define different methods. Methods of different types may have the same name without causing ambiguity. (It
is possible to define your own object types and methods, using classes, see Classes) The method append()
shown in the example is defined for list objects; it adds a new element at the end of the list. In this example
it is equivalent to result = result + [a], but more efficient.

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be
called with fewer arguments than it is defined to allow. For example:

def ask_ok(prompt, retries=4, complaint=’Yes or no, please!’):
while True:

ok = input(prompt)
if ok in (’y’, ’ye’, ’yes’):

return True
if ok in (’n’, ’no’, ’nop’, ’nope’):

return False
retries = retries - 1
if retries < 0:

raise IOError(’refusenik user’)
print(complaint)

This function can be called in several ways:

• giving only the mandatory argument: ask_ok(’Do you really want to quit?’)

• giving one of the optional arguments: ask_ok(’OK to overwrite the file?’, 2)

• or even giving all arguments: ask_ok(’OK to overwrite the file?’, 2, ’Come on,
only yes or no!’)

This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.

The default values are evaluated at the point of function definition in the defining scope, so that

i = 5

def f(arg=i):

4.7. More on Defining Functions 23

Python Tutorial, Release 3.2.3

print(arg)

i = 6
f()

will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the default is
a mutable object such as a list, dictionary, or instances of most classes. For example, the following function
accumulates the arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print(f(1))
print(f(2))
print(f(3))

This will print

[1]
[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f(a, L=None):
if L is None:

L = []
L.append(a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form kwarg=value. For instance, the following
function:

def parrot(voltage, state=’a stiff’, action=’voom’, type=’Norwegian Blue’):
print("-- This parrot wouldn’t", action, end=’ ’)
print("if you put", voltage, "volts through it.")
print("-- Lovely plumage, the", type)
print("-- It’s", state, "!")

accepts one required argument (voltage) and three optional arguments (state, action, and type). This
function can be called in any of the following ways:

parrot(1000) # 1 positional argument
parrot(voltage=1000) # 1 keyword argument
parrot(voltage=1000000, action=’VOOOOOM’) # 2 keyword arguments
parrot(action=’VOOOOOM’, voltage=1000000) # 2 keyword arguments
parrot(’a million’, ’bereft of life’, ’jump’) # 3 positional arguments
parrot(’a thousand’, state=’pushing up the daisies’) # 1 positional, 1 keyword

but all the following calls would be invalid:

parrot() # required argument missing
parrot(voltage=5.0, ’dead’) # non-keyword argument after a keyword argument
parrot(110, voltage=220) # duplicate value for the same argument
parrot(actor=’John Cleese’) # unknown keyword argument

In a function call, keyword arguments must follow positional arguments. All the keyword arguments passed
must match one of the arguments accepted by the function (e.g. actor is not a valid argument for
the parrot function), and their order is not important. This also includes non-optional arguments (e.g.

24 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.2.3

parrot(voltage=1000) is valid too). No argument may receive a value more than once. Here’s an ex-
ample that fails due to this restriction:

>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument ’a’

When a final formal parameter of the form **name is present, it receives a dictionary (see typesmapping) con-
taining all keyword arguments except for those corresponding to a formal parameter. This may be combined with
a formal parameter of the form *name (described in the next subsection) which receives a tuple containing the
positional arguments beyond the formal parameter list. (*name must occur before **name.) For example, if we
define a function like this:

def cheeseshop(kind, *arguments, **keywords):
print("-- Do you have any", kind, "?")
print("-- I’m sorry, we’re all out of", kind)
for arg in arguments:

print(arg)
print("-" * 40)
keys = sorted(keywords.keys())
for kw in keys:

print(kw, ":", keywords[kw])

It could be called like this:

cheeseshop("Limburger", "It’s very runny, sir.",
"It’s really very, VERY runny, sir.",
shopkeeper="Michael Palin",
client="John Cleese",
sketch="Cheese Shop Sketch")

and of course it would print:

-- Do you have any Limburger ?
-- I’m sorry, we’re all out of Limburger
It’s very runny, sir.
It’s really very, VERY runny, sir.
--
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that the list of keyword argument names is created by sorting the result of the keywords dictionary’s keys()
method before printing its contents; if this is not done, the order in which the arguments are printed is undefined.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of
arguments. These arguments will be wrapped up in a tuple (see Tuples and Sequences). Before the variable
number of arguments, zero or more normal arguments may occur.

def write_multiple_items(file, separator, *args):
file.write(separator.join(args))

Normally, these variadic arguments will be last in the list of formal parameters, because they scoop up all
remaining input arguments that are passed to the function. Any formal parameters which occur after the *args
parameter are ‘keyword-only’ arguments, meaning that they can only be used as keywords rather than positional
arguments.

4.7. More on Defining Functions 25

Python Tutorial, Release 3.2.3

>>> def concat(*args, sep="/"):
... return sep.join(args)
...
>>> concat("earth", "mars", "venus")
’earth/mars/venus’
>>> concat("earth", "mars", "venus", sep=".")
’earth.mars.venus’

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the built-in range() function expects separate start
and stop arguments. If they are not available separately, write the function call with the *-operator to unpack the
arguments out of a list or tuple:

>>> list(range(3, 6)) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> list(range(*args)) # call with arguments unpacked from a list
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the **-operator:

>>> def parrot(voltage, state=’a stiff’, action=’voom’):
... print("-- This parrot wouldn’t", action, end=’ ’)
... print("if you put", voltage, "volts through it.", end=’ ’)
... print("E’s", state, "!")
...
>>> d = {"voltage": "four million", "state": "bleedin’ demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn’t VOOM if you put four million volts through it. E’s bleedin’ demised !

4.7.5 Lambda Forms

By popular demand, a few features commonly found in functional programming languages like Lisp have been
added to Python. With the lambda keyword, small anonymous functions can be created. Here’s a function that
returns the sum of its two arguments: lambda a, b: a+b. Lambda forms can be used wherever function
objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic
sugar for a normal function definition. Like nested function definitions, lambda forms can reference variables
from the containing scope:

>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

4.7.6 Documentation Strings

Here are some conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not
explicitly state the object’s name or type, since these are available by other means (except if the name happens to
be a verb describing a function’s operation). This line should begin with a capital letter and end with a period.

26 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.2.3

If there are more lines in the documentation string, the second line should be blank, visually separating the sum-
mary from the rest of the description. The following lines should be one or more paragraphs describing the object’s
calling conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process docu-
mentation have to strip indentation if desired. This is done using the following convention. The first non-blank
line after the first line of the string determines the amount of indentation for the entire documentation string. (We
can’t use the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent
in the string literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of
the string. Lines that are indented less should not occur, but if they occur all their leading whitespace should be
stripped. Equivalence of whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn’t do anything.
... """
... pass
...
>>> print(my_function.__doc__)
Do nothing, but document it.

No, really, it doesn’t do anything.

4.8 Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding
style. Most languages can be written (or more concise, formatted) in different styles; some are more readable than
others. Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps
tremendously for that.

For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and
eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points
extracted for you:

• Use 4-space indentation, and no tabs.

4 spaces are a good compromise between small indentation (allows greater nesting depth) and large inden-
tation (easier to read). Tabs introduce confusion, and are best left out.

• Wrap lines so that they don’t exceed 79 characters.

This helps users with small displays and makes it possible to have several code files side-by-side on larger
displays.

• Use blank lines to separate functions and classes, and larger blocks of code inside functions.

• When possible, put comments on a line of their own.

• Use docstrings.

• Use spaces around operators and after commas, but not directly inside bracketing constructs: a = f(1,
2) + g(3, 4).

• Name your classes and functions consistently; the convention is to use CamelCase for classes and
lower_case_with_underscores for functions and methods. Always use self as the name for
the first method argument (see A First Look at Classes for more on classes and methods).

• Don’t use fancy encodings if your code is meant to be used in international environments. Python’s default,
UTF-8, or even plain ASCII work best in any case.

4.8. Intermezzo: Coding Style 27

http://www.python.org/dev/peps/pep-0008

Python Tutorial, Release 3.2.3

• Likewise, don’t use non-ASCII characters in identifiers if there is only the slightest chance people speaking
a different language will read or maintain the code.

28 Chapter 4. More Control Flow Tools

CHAPTER

FIVE

DATA STRUCTURES

This chapter describes some things you’ve learned about already in more detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

list.append(x)
Add an item to the end of the list; equivalent to a[len(a):] = [x].

list.extend(L)
Extend the list by appending all the items in the given list; equivalent to a[len(a):] = L.

list.insert(i, x)
Insert an item at a given position. The first argument is the index of the element before which to insert,
so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is equivalent to
a.append(x).

list.remove(x)
Remove the first item from the list whose value is x. It is an error if there is no such item.

list.pop([i])
Remove the item at the given position in the list, and return it. If no index is specified, a.pop() removes
and returns the last item in the list. (The square brackets around the i in the method signature denote that the
parameter is optional, not that you should type square brackets at that position. You will see this notation
frequently in the Python Library Reference.)

list.index(x)
Return the index in the list of the first item whose value is x. It is an error if there is no such item.

list.count(x)
Return the number of times x appears in the list.

list.sort()
Sort the items of the list, in place.

list.reverse()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print(a.count(333), a.count(66.25), a.count(’x’))
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)

29

Python Tutorial, Release 3.2.3

1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stack, use append(). To retrieve an item from the top of
the stack, use pop() without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

5.1.2 Using Lists as Queues

It is also possible to use a list as a queue, where the first element added is the first element retrieved (“first-in,
first-out”); however, lists are not efficient for this purpose. While appends and pops from the end of list are fast,
doing inserts or pops from the beginning of a list is slow (because all of the other elements have to be shifted by
one).

To implement a queue, use collections.deque which was designed to have fast appends and pops from both
ends. For example:

>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
’Eric’
>>> queue.popleft() # The second to arrive now leaves
’John’
>>> queue # Remaining queue in order of arrival
deque([’Michael’, ’Terry’, ’Graham’])

30 Chapter 5. Data Structures

Python Tutorial, Release 3.2.3

5.1.3 List Comprehensions

List comprehensions provide a concise way to create lists. Common applications are to make new lists where each
element is the result of some operations applied to each member of another sequence or iterable, or to create a
subsequence of those elements that satisfy a certain condition.

For example, assume we want to create a list of squares, like:

>>> squares = []
>>> for x in range(10):
... squares.append(x**2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

We can obtain the same result with:

squares = [x**2 for x in range(10)]

This is also equivalent to squares = map(lambda x: x**2, range(10)), but it’s more concise and
readable.

A list comprehension consists of brackets containing an expression followed by a for clause, then zero or more
for or if clauses. The result will be a new list resulting from evaluating the expression in the context of the
for and if clauses which follow it. For example, this listcomp combines the elements of two lists if they are not
equal:

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

and it’s equivalent to:

>>> combs = []
>>> for x in [1,2,3]:
... for y in [3,1,4]:
... if x != y:
... combs.append((x, y))
...
>>> combs
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

Note how the order of the for and if statements is the same in both these snippets.

If the expression is a tuple (e.g. the (x, y) in the previous example), it must be parenthesized.

>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
[4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = [’ banana’, ’ loganberry ’, ’passion fruit ’]
>>> [weapon.strip() for weapon in freshfruit]
[’banana’, ’loganberry’, ’passion fruit’]
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range(6)]
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error is raised
>>> [x, x**2 for x in range(6)]

5.1. More on Lists 31

Python Tutorial, Release 3.2.3

File "<stdin>", line 1, in ?
[x, x**2 for x in range(6)]

^
SyntaxError: invalid syntax
>>> # flatten a list using a listcomp with two ’for’
>>> vec = [[1,2,3], [4,5,6], [7,8,9]]
>>> [num for elem in vec for num in elem]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

List comprehensions can contain complex expressions and nested functions:

>>> from math import pi
>>> [str(round(pi, i)) for i in range(1, 6)]
[’3.1’, ’3.14’, ’3.142’, ’3.1416’, ’3.14159’]

5.1.4 Nested List Comprehensions

The initial expression in a list comprehension can be any arbitrary expression, including another list comprehen-
sion.

Consider the following example of a 3x4 matrix implemented as a list of 3 lists of length 4:

>>> matrix = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
...]

The following list comprehension will transpose rows and columns:

>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

As we saw in the previous section, the nested listcomp is evaluated in the context of the for that follows it, so
this example is equivalent to:

>>> transposed = []
>>> for i in range(4):
... transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

which, in turn, is the same as:

>>> transposed = []
>>> for i in range(4):
... # the following 3 lines implement the nested listcomp
... transposed_row = []
... for row in matrix:
... transposed_row.append(row[i])
... transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

In the real world, you should prefer built-in functions to complex flow statements. The zip() function would do
a great job for this use case:

>>> zip(*matrix)
[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

See Unpacking Argument Lists for details on the asterisk in this line.

32 Chapter 5. Data Structures

Python Tutorial, Release 3.2.3

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value: the del statement. This differs
from the pop() method which returns a value. The del statement can also be used to remove slices from a list
or clear the entire list (which we did earlier by assignment of an empty list to the slice). For example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

del can also be used to delete entire variables:

>>> del a

Referencing the name a hereafter is an error (at least until another value is assigned to it). We’ll find other uses
for del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are
two examples of sequence data types (see typesseq). Since Python is an evolving language, other sequence data
types may be added. There is also another standard sequence data type: the tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, ’hello!’
>>> t[0]
12345
>>> t
(12345, 54321, ’hello!’)
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, ’hello!’), (1, 2, 3, 4, 5))

As you see, on output tuples are always enclosed in parentheses, so that nested tuples are interpreted correctly;
they may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if
the tuple is part of a larger expression).

Tuples have many uses. For example: (x, y) coordinate pairs, employee records from a database, etc. Tuples, like
strings, are immutable: it is not possible to assign to the individual items of a tuple (you can simulate much of
the same effect with slicing and concatenation, though). It is also possible to create tuples which contain mutable
objects, such as lists.

A special problem is the construction of tuples containing 0 or 1 items: the syntax has some extra quirks to
accommodate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is
constructed by following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly,
but effective. For example:

>>> empty = ()
>>> singleton = ’hello’, # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)

5.2. The del statement 33

Python Tutorial, Release 3.2.3

1
>>> singleton
(’hello’,)

The statement t = 12345, 54321, ’hello!’ is an example of tuple packing: the values 12345, 54321
and ’hello!’ are packed together in a tuple. The reverse operation is also possible:

>>> x, y, z = t

This is called, appropriately enough, sequence unpacking and works for any sequence on the right-hand side.
Sequence unpacking requires that there are as many variables on the left side of the equals sign as there are
elements in the sequence. Note that multiple assignment is really just a combination of tuple packing and sequence
unpacking.

5.4 Sets

Python also includes a data type for sets. A set is an unordered collection with no duplicate elements. Basic uses
include membership testing and eliminating duplicate entries. Set objects also support mathematical operations
like union, intersection, difference, and symmetric difference.

Curly braces or the set() function can be used to create sets. Note: To create an empty set you have to use
set(), not {}; the latter creates an empty dictionary, a data structure that we discuss in the next section.

Here is a brief demonstration:

>>> basket = {’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’}
>>> print(basket) # show that duplicates have been removed
{’orange’, ’banana’, ’pear’, ’apple’}
>>> ’orange’ in basket # fast membership testing
True
>>> ’crabgrass’ in basket
False

>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set(’abracadabra’)
>>> b = set(’alacazam’)
>>> a # unique letters in a
{’a’, ’r’, ’b’, ’c’, ’d’}
>>> a - b # letters in a but not in b
{’r’, ’d’, ’b’}
>>> a | b # letters in either a or b
{’a’, ’c’, ’r’, ’d’, ’b’, ’m’, ’z’, ’l’}
>>> a & b # letters in both a and b
{’a’, ’c’}
>>> a ^ b # letters in a or b but not both
{’r’, ’d’, ’b’, ’m’, ’z’, ’l’}

Like for lists, there is a set comprehension syntax:

>>> a = {x for x in ’abracadabra’ if x not in ’abc’}
>>> a
{’r’, ’d’}

5.5 Dictionaries

Another useful data type built into Python is the dictionary (see typesmapping). Dictionaries are sometimes found
in other languages as “associative memories” or “associative arrays”. Unlike sequences, which are indexed by a
range of numbers, dictionaries are indexed by keys, which can be any immutable type; strings and numbers can

34 Chapter 5. Data Structures

Python Tutorial, Release 3.2.3

always be keys. Tuples can be used as keys if they contain only strings, numbers, or tuples; if a tuple contains any
mutable object either directly or indirectly, it cannot be used as a key. You can’t use lists as keys, since lists can
be modified in place using index assignments, slice assignments, or methods like append() and extend().

It is best to think of a dictionary as an unordered set of key: value pairs, with the requirement that the keys are
unique (within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a comma-separated list
of key:value pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries
are written on output.

The main operations on a dictionary are storing a value with some key and extracting the value given the key. It
is also possible to delete a key:value pair with del. If you store using a key that is already in use, the old value
associated with that key is forgotten. It is an error to extract a value using a non-existent key.

Performing list(d.keys()) on a dictionary returns a list of all the keys used in the dictionary, in arbitrary
order (if you want it sorted, just use sorted(d.keys()) instead). 1 To check whether a single key is in the
dictionary, use the in keyword.

Here is a small example using a dictionary:

>>> tel = {’jack’: 4098, ’sape’: 4139}
>>> tel[’guido’] = 4127
>>> tel
{’sape’: 4139, ’guido’: 4127, ’jack’: 4098}
>>> tel[’jack’]
4098
>>> del tel[’sape’]
>>> tel[’irv’] = 4127
>>> tel
{’guido’: 4127, ’irv’: 4127, ’jack’: 4098}
>>> list(tel.keys())
[’irv’, ’guido’, ’jack’]
>>> sorted(tel.keys())
[’guido’, ’irv’, ’jack’]
>>> ’guido’ in tel
True
>>> ’jack’ not in tel
False

The dict() constructor builds dictionaries directly from sequences of key-value pairs:

>>> dict([(’sape’, 4139), (’guido’, 4127), (’jack’, 4098)])
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}

In addition, dict comprehensions can be used to create dictionaries from arbitrary key and value expressions:

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

When the keys are simple strings, it is sometimes easier to specify pairs using keyword arguments:

>>> dict(sape=4139, guido=4127, jack=4098)
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}

5.6 Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the
items() method.

>>> knights = {’gallahad’: ’the pure’, ’robin’: ’the brave’}
>>> for k, v in knights.items():

1 Calling d.keys() will return a dictionary view object. It supports operations like membership test and iteration, but its contents are not
independent of the original dictionary – it is only a view.

5.6. Looping Techniques 35

Python Tutorial, Release 3.2.3

... print(k, v)

...
gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved at the same time
using the enumerate() function.

>>> for i, v in enumerate([’tic’, ’tac’, ’toe’]):
... print(i, v)
...
0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the entries can be paired with the zip() function.

>>> questions = [’name’, ’quest’, ’favorite color’]
>>> answers = [’lancelot’, ’the holy grail’, ’blue’]
>>> for q, a in zip(questions, answers):
... print(’What is your {0}? It is {1}.’.format(q, a))
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward direction and then call the reversed()
function.

>>> for i in reversed(range(1, 10, 2)):
... print(i)
...
9
7
5
3
1

To loop over a sequence in sorted order, use the sorted() function which returns a new sorted list while leaving
the source unaltered.

>>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> for f in sorted(set(basket)):
... print(f)
...
apple
banana
orange
pear

5.7 More on Conditions

The conditions used in while and if statements can contain any operators, not just comparisons.

The comparison operators in and not in check whether a value occurs (does not occur) in a sequence. The
operators is and is not compare whether two objects are really the same object; this only matters for mutable
objects like lists. All comparison operators have the same priority, which is lower than that of all numerical
operators.

Comparisons can be chained. For example, a < b == c tests whether a is less than b and moreover b equals
c.

36 Chapter 5. Data Structures

Python Tutorial, Release 3.2.3

Comparisons may be combined using the Boolean operators and and or, and the outcome of a comparison (or of
any other Boolean expression) may be negated with not. These have lower priorities than comparison operators;
between them, not has the highest priority and or the lowest, so that A and not B or C is equivalent to (A
and (not B)) or C. As always, parentheses can be used to express the desired composition.

The Boolean operators and and or are so-called short-circuit operators: their arguments are evaluated from left
to right, and evaluation stops as soon as the outcome is determined. For example, if A and C are true but B is false,
A and B and C does not evaluate the expression C. When used as a general value and not as a Boolean, the
return value of a short-circuit operator is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> string1, string2, string3 = ’’, ’Trondheim’, ’Hammer Dance’
>>> non_null = string1 or string2 or string3
>>> non_null
’Trondheim’

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble about
this, but it avoids a common class of problems encountered in C programs: typing = in an expression when ==
was intended.

5.8 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type. The comparison uses lexico-
graphical ordering: first the first two items are compared, and if they differ this determines the outcome of the
comparison; if they are equal, the next two items are compared, and so on, until either sequence is exhausted. If
two items to be compared are themselves sequences of the same type, the lexicographical comparison is carried
out recursively. If all items of two sequences compare equal, the sequences are considered equal. If one sequence
is an initial sub-sequence of the other, the shorter sequence is the smaller (lesser) one. Lexicographical ordering
for strings uses the Unicode codepoint number to order individual characters. Some examples of comparisons
between sequences of the same type:

(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
’ABC’ < ’C’ < ’Pascal’ < ’Python’
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, (’aa’, ’ab’)) < (1, 2, (’abc’, ’a’), 4)

Note that comparing objects of different types with < or > is legal provided that the objects have appropriate
comparison methods. For example, mixed numeric types are compared according to their numeric value, so 0
equals 0.0, etc. Otherwise, rather than providing an arbitrary ordering, the interpreter will raise a TypeError
exception.

5.8. Comparing Sequences and Other Types 37

Python Tutorial, Release 3.2.3

38 Chapter 5. Data Structures

CHAPTER

SIX

MODULES

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables)
are lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to
prepare the input for the interpreter and running it with that file as input instead. This is known as creating a
script. As your program gets longer, you may want to split it into several files for easier maintenance. You may
also want to use a handy function that you’ve written in several programs without copying its definition into each
program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance
of the interpreter. Such a file is called a module; definitions from a module can be imported into other modules or
into the main module (the collection of variables that you have access to in a script executed at the top level and
in calculator mode).

A module is a file containing Python definitions and statements. The file name is the module name with the suffix
.py appended. Within a module, the module’s name (as a string) is available as the value of the global variable
__name__. For instance, use your favorite text editor to create a file called fibo.py in the current directory
with the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:

print(b, end=’ ’)
a, b = b, a+b

print()

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

This does not enter the names of the functions defined in fibo directly in the current symbol table; it only enters
the module name fibo there. Using the module name you can access the functions:

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
’fibo’

39

Python Tutorial, Release 3.2.3

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions. These statements are intended to
initialize the module. They are executed only the first time the module is imported somewhere. 1

Each module has its own private symbol table, which is used as the global symbol table by all functions defined
in the module. Thus, the author of a module can use global variables in the module without worrying about
accidental clashes with a user’s global variables. On the other hand, if you know what you are doing you can
touch a module’s global variables with the same notation used to refer to its functions, modname.itemname.

Modules can import other modules. It is customary but not required to place all import statements at the
beginning of a module (or script, for that matter). The imported module names are placed in the importing
module’s global symbol table.

There is a variant of the import statement that imports names from a module directly into the importing module’s
symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the
example, fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_). In most cases Python programmers do not
use this facility since it introduces an unknown set of names into the interpreter, possibly hiding some things you
have already defined.

Note that in general the practice of importing * from a module or package is frowned upon, since it often causes
poorly readable code. However, it is okay to use it to save typing in interactive sessions.

Note: For efficiency reasons, each module is only imported once per interpreter session. Therefore, if you
change your modules, you must restart the interpreter – or, if it’s just one module you want to test interactively,
use imp.reload(), e.g. import imp; imp.reload(modulename).

6.1.1 Executing modules as scripts

When you run a Python module with

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with the __name__ set to "__main__".
That means that by adding this code at the end of your module:

if __name__ == "__main__":
import sys
fib(int(sys.argv[1]))

1 In fact function definitions are also ‘statements’ that are ‘executed’; the execution of a module-level function enters the function name in
the module’s global symbol table.

40 Chapter 6. Modules

Python Tutorial, Release 3.2.3

you can make the file usable as a script as well as an importable module, because the code that parses the command
line only runs if the module is executed as the “main” file:

$ python fibo.py 50
1 1 2 3 5 8 13 21 34

If the module is imported, the code is not run:

>>> import fibo
>>>

This is often used either to provide a convenient user interface to a module, or for testing purposes (running the
module as a script executes a test suite).

6.1.2 The Module Search Path

When a module named spam is imported, the interpreter first searches for a built-in module with that name. If
not found, it then searches for a file named spam.py in a list of directories given by the variable sys.path.
sys.path is initialized from these locations:

• the directory containing the input script (or the current directory).

• PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).

• the installation-dependent default.

After initialization, Python programs can modify sys.path. The directory containing the script being run is
placed at the beginning of the search path, ahead of the standard library path. This means that scripts in that
directory will be loaded instead of modules of the same name in the library directory. This is an error unless the
replacement is intended. See section Standard Modules for more information.

6.1.3 “Compiled” Python files

As an important speed-up of the start-up time for short programs that use a lot of standard modules, if a file
called spam.pyc exists in the directory where spam.py is found, this is assumed to contain an already-
“byte-compiled” version of the module spam. The modification time of the version of spam.py used to create
spam.pyc is recorded in spam.pyc, and the .pyc file is ignored if these don’t match.

Normally, you don’t need to do anything to create the spam.pyc file. Whenever spam.py is successfully
compiled, an attempt is made to write the compiled version to spam.pyc. It is not an error if this attempt fails;
if for any reason the file is not written completely, the resulting spam.pyc file will be recognized as invalid and
thus ignored later. The contents of the spam.pyc file are platform independent, so a Python module directory
can be shared by machines of different architectures.

Some tips for experts:

• When the Python interpreter is invoked with the -O flag, optimized code is generated and stored in .pyo
files. The optimizer currently doesn’t help much; it only removes assert statements. When -O is used,
all bytecode is optimized; .pyc files are ignored and .py files are compiled to optimized bytecode.

• Passing two -O flags to the Python interpreter (-OO) will cause the bytecode compiler to perform optimiza-
tions that could in some rare cases result in malfunctioning programs. Currently only __doc__ strings
are removed from the bytecode, resulting in more compact .pyo files. Since some programs may rely on
having these available, you should only use this option if you know what you’re doing.

• A program doesn’t run any faster when it is read from a .pyc or .pyo file than when it is read from a .py
file; the only thing that’s faster about .pyc or .pyo files is the speed with which they are loaded.

• When a script is run by giving its name on the command line, the bytecode for the script is never written
to a .pyc or .pyo file. Thus, the startup time of a script may be reduced by moving most of its code to a
module and having a small bootstrap script that imports that module. It is also possible to name a .pyc or
.pyo file directly on the command line.

6.1. More on Modules 41

Python Tutorial, Release 3.2.3

• It is possible to have a file called spam.pyc (or spam.pyo when -O is used) without a file spam.py for
the same module. This can be used to distribute a library of Python code in a form that is moderately hard
to reverse engineer.

• The module compileall can create .pyc files (or .pyo files when -O is used) for all modules in a
directory.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate document, the Python Library Reference
(“Library Reference” hereafter). Some modules are built into the interpreter; these provide access to operations
that are not part of the core of the language but are nevertheless built in, either for efficiency or to provide access
to operating system primitives such as system calls. The set of such modules is a configuration option which also
depends on the underlying platform For example, the winreg module is only provided on Windows systems.
One particular module deserves some attention: sys, which is built into every Python interpreter. The variables
sys.ps1 and sys.ps2 define the strings used as primary and secondary prompts:

>>> import sys
>>> sys.ps1
’>>> ’
>>> sys.ps2
’... ’
>>> sys.ps1 = ’C> ’
C> print(’Yuck!’)
Yuck!
C>

These two variables are only defined if the interpreter is in interactive mode.

The variable sys.path is a list of strings that determines the interpreter’s search path for modules. It is initialized
to a default path taken from the environment variable PYTHONPATH, or from a built-in default if

PYTHONPATH is not set. You can modify it using standard list operations:

>>> import sys
>>> sys.path.append(’/ufs/guido/lib/python’)

6.3 The dir() Function

The built-in function dir() is used to find out which names a module defines. It returns a sorted list of strings:

>>> import fibo, sys
>>> dir(fibo)
[’__name__’, ’fib’, ’fib2’]
>>> dir(sys)
[’__displayhook__’, ’__doc__’, ’__excepthook__’, ’__name__’, ’__stderr__’,
’__stdin__’, ’__stdout__’, ’_getframe’, ’api_version’, ’argv’,
’builtin_module_names’, ’byteorder’, ’callstats’, ’copyright’,
’displayhook’, ’exc_info’, ’excepthook’,
’exec_prefix’, ’executable’, ’exit’, ’getdefaultencoding’, ’getdlopenflags’,
’getrecursionlimit’, ’getrefcount’, ’hexversion’, ’maxint’, ’maxunicode’,
’meta_path’, ’modules’, ’path’, ’path_hooks’, ’path_importer_cache’,
’platform’, ’prefix’, ’ps1’, ’ps2’, ’setcheckinterval’, ’setdlopenflags’,
’setprofile’, ’setrecursionlimit’, ’settrace’, ’stderr’, ’stdin’, ’stdout’,
’version’, ’version_info’, ’warnoptions’]

Without arguments, dir() lists the names you have defined currently:

42 Chapter 6. Modules

Python Tutorial, Release 3.2.3

>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir()
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’a’, ’fib’, ’fibo’, ’sys’]

Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you want a list of those, they are defined in
the standard module builtins:

>>> import builtins
>>> dir(builtins)

[’ArithmeticError’, ’AssertionError’, ’AttributeError’, ’BaseException’, ’Buffer
Error’, ’BytesWarning’, ’DeprecationWarning’, ’EOFError’, ’Ellipsis’, ’Environme
ntError’, ’Exception’, ’False’, ’FloatingPointError’, ’FutureWarning’, ’Generato
rExit’, ’IOError’, ’ImportError’, ’ImportWarning’, ’IndentationError’, ’IndexErr
or’, ’KeyError’, ’KeyboardInterrupt’, ’LookupError’, ’MemoryError’, ’NameError’,
’None’, ’NotImplemented’, ’NotImplementedError’, ’OSError’, ’OverflowError’, ’P

endingDeprecationWarning’, ’ReferenceError’, ’RuntimeError’, ’RuntimeWarning’, ’
StopIteration’, ’SyntaxError’, ’SyntaxWarning’, ’SystemError’, ’SystemExit’, ’Ta
bError’, ’True’, ’TypeError’, ’UnboundLocalError’, ’UnicodeDecodeError’, ’Unicod
eEncodeError’, ’UnicodeError’, ’UnicodeTranslateError’, ’UnicodeWarning’, ’UserW
arning’, ’ValueError’, ’Warning’, ’ZeroDivisionError’, ’__build_class__’, ’__deb
ug__’, ’__doc__’, ’__import__’, ’__name__’, ’__package__’, ’abs’, ’all’, ’any’,
’ascii’, ’bin’, ’bool’, ’bytearray’, ’bytes’, ’chr’, ’classmethod’, ’compile’, ’
complex’, ’copyright’, ’credits’, ’delattr’, ’dict’, ’dir’, ’divmod’, ’enumerate
’, ’eval’, ’exec’, ’exit’, ’filter’, ’float’, ’format’, ’frozenset’, ’getattr’,
’globals’, ’hasattr’, ’hash’, ’help’, ’hex’, ’id’, ’input’, ’int’, ’isinstance’,
’issubclass’, ’iter’, ’len’, ’license’, ’list’, ’locals’, ’map’, ’max’, ’memory

view’, ’min’, ’next’, ’object’, ’oct’, ’open’, ’ord’, ’pow’, ’print’, ’property’
, ’quit’, ’range’, ’repr’, ’reversed’, ’round’, ’set’, ’setattr’, ’slice’, ’sort
ed’, ’staticmethod’, ’str’, ’sum’, ’super’, ’tuple’, ’type’, ’vars’, ’zip’]

6.4 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example,
the module name A.B designates a submodule named B in a package named A. Just like the use of modules
saves the authors of different modules from having to worry about each other’s global variable names, the use
of dotted module names saves the authors of multi-module packages like NumPy or the Python Imaging Library
from having to worry about each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and
sound data. There are many different sound file formats (usually recognized by their extension, for example:
.wav, .aiff, .au), so you may need to create and maintain a growing collection of modules for the conversion
between the various file formats. There are also many different operations you might want to perform on sound
data (such as mixing, adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition
you will be writing a never-ending stream of modules to perform these operations. Here’s a possible structure for
your package (expressed in terms of a hierarchical filesystem):

sound/ Top-level package
__init__.py Initialize the sound package
formats/ Subpackage for file format conversions

__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py

6.4. Packages 43

Python Tutorial, Release 3.2.3

auread.py
auwrite.py
...

effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...

filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...

When importing the package, Python searches through the directories on sys.path looking for the package
subdirectory.

The __init__.py files are required to make Python treat the directories as containing packages; this is done to
prevent directories with a common name, such as string, from unintentionally hiding valid modules that occur
later on the module search path. In the simplest case, __init__.py can just be an empty file, but it can also
execute initialization code for the package or set the __all__ variable, described later.

Users of the package can import individual modules from the package, for example:

import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.

sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used as
follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or subpackage) of
the package, or some other name defined in the package, like a function, class or variable. The import statement
first tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it
fails to find it, an ImportError exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must
be a package; the last item can be a module or a package but can’t be a class or function or variable defined in the
previous item.

6.4.1 Importing * From a Package

Now what happens when the user writes from sound.effects import *? Ideally, one would hope that
this somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all.
This could take a long time and importing sub-modules might have unwanted side-effects that should only happen
when the sub-module is explicitly imported.

44 Chapter 6. Modules

Python Tutorial, Release 3.2.3

The only solution is for the package author to provide an explicit index of the package. The import statement
uses the following convention: if a package’s __init__.py code defines a list named __all__, it is taken to
be the list of module names that should be imported when from package import * is encountered. It is up
to the package author to keep this list up-to-date when a new version of the package is released. Package authors
may also decide not to support it, if they don’t see a use for importing * from their package. For example, the file
sounds/effects/__init__.py could contain the following code:

__all__ = ["echo", "surround", "reverse"]

This would mean that from sound.effects import * would import the three named submodules of the
sound package.

If __all__ is not defined, the statement from sound.effects import * does not import all sub-
modules from the package sound.effects into the current namespace; it only ensures that the package
sound.effects has been imported (possibly running any initialization code in __init__.py) and then
imports whatever names are defined in the package. This includes any names defined (and submodules explic-
itly loaded) by __init__.py. It also includes any submodules of the package that were explicitly loaded by
previous import statements. Consider this code:

import sound.effects.echo
import sound.effects.surround
from sound.effects import *

In this example, the echo and surround modules are imported in the current namespace because they are
defined in the sound.effects package when the from...import statement is executed. (This also works
when __all__ is defined.)

Although certain modules are designed to export only names that follow certain patterns when you use import
*, it is still considered bad practise in production code.

Remember, there is nothing wrong with using from Package import specific_submodule! In fact,
this is the recommended notation unless the importing module needs to use submodules with the same name from
different packages.

6.4.2 Intra-package References

When packages are structured into subpackages (as with the sound package in the example), you can use absolute
imports to refer to submodules of siblings packages. For example, if the module sound.filters.vocoder
needs to use the echomodule in the sound.effects package, it can use from sound.effects import
echo.

You can also write relative imports, with the from module import name form of import statement. These
imports use leading dots to indicate the current and parent packages involved in the relative import. From the
surround module for example, you might use:

from . import echo
from .. import formats
from ..filters import equalizer

Note that relative imports are based on the name of the current module. Since the name of the main module is
always "__main__", modules intended for use as the main module of a Python application must always use
absolute imports.

6.4.3 Packages in Multiple Directories

Packages support one more special attribute, __path__. This is initialized to be a list containing the name of
the directory holding the package’s __init__.py before the code in that file is executed. This variable can be
modified; doing so affects future searches for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules found in a package.

6.4. Packages 45

Python Tutorial, Release 3.2.3

46 Chapter 6. Modules

CHAPTER

SEVEN

INPUT AND OUTPUT

There are several ways to present the output of a program; data can be printed in a human-readable form, or written
to a file for future use. This chapter will discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we’ve encountered two ways of writing values: expression statements and the print() function. (A third
way is using the write() method of file objects; the standard output file can be referenced as sys.stdout.
See the Library Reference for more information on this.)

Often you’ll want more control over the formatting of your output than simply printing space-separated values.
There are two ways to format your output; the first way is to do all the string handling yourself; using string slicing
and concatenation operations you can create any layout you can imagine. The string type has some methods that
perform useful operations for padding strings to a given column width; these will be discussed shortly. The second
way is to use the str.format() method.

The string module contains a Template class which offers yet another way to substitute values into strings.

One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any
value to a string: pass it to the repr() or str() functions.

The str() function is meant to return representations of values which are fairly human-readable, while repr()
is meant to generate representations which can be read by the interpreter (or will force a SyntaxError if there is
not equivalent syntax). For objects which don’t have a particular representation for human consumption, str()
will return the same value as repr(). Many values, such as numbers or structures like lists and dictionaries,
have the same representation using either function. Strings, in particular, have two distinct representations.

Some examples:

>>> s = ’Hello, world.’
>>> str(s)
’Hello, world.’
>>> repr(s)
"’Hello, world.’"
>>> str(1/7)
’0.14285714285714285’
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = ’The value of x is ’ + repr(x) + ’, and y is ’ + repr(y) + ’...’
>>> print(s)
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = ’hello, world\n’
>>> hellos = repr(hello)
>>> print(hellos)
’hello, world\n’

47

Python Tutorial, Release 3.2.3

>>> # The argument to repr() may be any Python object:
... repr((x, y, (’spam’, ’eggs’)))
"(32.5, 40000, (’spam’, ’eggs’))"

Here are two ways to write a table of squares and cubes:

>>> for x in range(1, 11):
... print(repr(x).rjust(2), repr(x*x).rjust(3), end=’ ’)
... # Note use of ’end’ on previous line
... print(repr(x*x*x).rjust(4))
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

>>> for x in range(1, 11):
... print(’{0:2d} {1:3d} {2:4d}’.format(x, x*x, x*x*x))
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

(Note that in the first example, one space between each column was added by the way print() works: it always
adds spaces between its arguments.)

This example demonstrates the str.rjust() method of string objects, which right-justifies a string in a
field of a given width by padding it with spaces on the left. There are similar methods str.ljust() and
str.center(). These methods do not write anything, they just return a new string. If the input string is too
long, they don’t truncate it, but return it unchanged; this will mess up your column lay-out but that’s usually better
than the alternative, which would be lying about a value. (If you really want truncation you can always add a slice
operation, as in x.ljust(n)[:n].)

There is another method, str.zfill(), which pads a numeric string on the left with zeros. It understands
about plus and minus signs:

>>> ’12’.zfill(5)
’00012’
>>> ’-3.14’.zfill(7)
’-003.14’
>>> ’3.14159265359’.zfill(5)
’3.14159265359’

Basic usage of the str.format() method looks like this:

>>> print(’We are the {} who say "{}!"’.format(’knights’, ’Ni’))
We are the knights who say "Ni!"

The brackets and characters within them (called format fields) are replaced with the objects passed into the
str.format() method. A number in the brackets can be used to refer to the position of the object passed

48 Chapter 7. Input and Output

Python Tutorial, Release 3.2.3

into the str.format() method.

>>> print(’{0} and {1}’.format(’spam’, ’eggs’))
spam and eggs
>>> print(’{1} and {0}’.format(’spam’, ’eggs’))
eggs and spam

If keyword arguments are used in the str.format() method, their values are referred to by using the name of
the argument.

>>> print(’This {food} is {adjective}.’.format(
... food=’spam’, adjective=’absolutely horrible’))
This spam is absolutely horrible.

Positional and keyword arguments can be arbitrarily combined:

>>> print(’The story of {0}, {1}, and {other}.’.format(’Bill’, ’Manfred’,
other=’Georg’))

The story of Bill, Manfred, and Georg.

’!a’ (apply ascii()), ’!s’ (apply str()) and ’!r’ (apply repr()) can be used to convert the value
before it is formatted:

>>> import math
>>> print(’The value of PI is approximately {}.’.format(math.pi))
The value of PI is approximately 3.14159265359.
>>> print(’The value of PI is approximately {!r}.’.format(math.pi))
The value of PI is approximately 3.141592653589793.

An optional ’:’ and format specifier can follow the field name. This allows greater control over how the value is
formatted. The following example rounds Pi to three places after the decimal.

>>> import math
>>> print(’The value of PI is approximately {0:.3f}.’.format(math.pi))
The value of PI is approximately 3.142.

Passing an integer after the ’:’ will cause that field to be a minimum number of characters wide. This is useful
for making tables pretty.

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 7678}
>>> for name, phone in table.items():
... print(’{0:10} ==> {1:10d}’.format(name, phone))
...
Jack ==> 4098
Dcab ==> 7678
Sjoerd ==> 4127

If you have a really long format string that you don’t want to split up, it would be nice if you could reference the
variables to be formatted by name instead of by position. This can be done by simply passing the dict and using
square brackets ’[]’ to access the keys

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 8637678}
>>> print(’Jack: {0[Jack]:d}; Sjoerd: {0[Sjoerd]:d}; ’

’Dcab: {0[Dcab]:d}’.format(table))
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This could also be done by passing the table as keyword arguments with the ‘**’ notation.

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 8637678}
>>> print(’Jack: {Jack:d}; Sjoerd: {Sjoerd:d}; Dcab: {Dcab:d}’.format(**table))
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the built-in function vars(), which returns a dictionary containing
all local variables.

For a complete overview of string formatting with str.format(), see formatstrings.

7.1. Fancier Output Formatting 49

Python Tutorial, Release 3.2.3

7.1.1 Old string formatting

The % operator can also be used for string formatting. It interprets the left argument much like a sprintf()-style
format string to be applied to the right argument, and returns the string resulting from this formatting operation.
For example:

>>> import math
>>> print(’The value of PI is approximately %5.3f.’ % math.pi)
The value of PI is approximately 3.142.

Since str.format() is quite new, a lot of Python code still uses the % operator. However, because this old
style of formatting will eventually be removed from the language, str.format() should generally be used.

More information can be found in the old-string-formatting section.

7.2 Reading and Writing Files

open() returns a file object, and is most commonly used with two arguments: open(filename, mode).

>>> f = open(’/tmp/workfile’, ’w’)

The first argument is a string containing the filename. The second argument is another string containing a few
characters describing the way in which the file will be used. mode can be ’r’ when the file will only be read,
’w’ for only writing (an existing file with the same name will be erased), and ’a’ opens the file for appending;
any data written to the file is automatically added to the end. ’r+’ opens the file for both reading and writing.
The mode argument is optional; ’r’ will be assumed if it’s omitted.

Normally, files are opened in text mode, that means, you read and write strings from and to the file, which are
encoded in a specific encoding (the default being UTF-8). ’b’ appended to the mode opens the file in binary
mode: now the data is read and written in the form of bytes objects. This mode should be used for all files that
don’t contain text.

In text mode, the default is to convert platform-specific line endings (\n on Unix, \r\n on Windows) to just \n
on reading and \n back to platform-specific line endings on writing. This behind-the-scenes modification to file
data is fine for text files, but will corrupt binary data like that in JPEG or EXE files. Be very careful to use binary
mode when reading and writing such files.

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object called f has already been created.

To read a file’s contents, call f.read(size), which reads some quantity of data and returns it as a string or
bytes object. size is an optional numeric argument. When size is omitted or negative, the entire contents of the
file will be read and returned; it’s your problem if the file is twice as large as your machine’s memory. Otherwise,
at most size bytes are read and returned. If the end of the file has been reached, f.read() will return an empty
string (”).

>>> f.read()
’This is the entire file.\n’
>>> f.read()
’’

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string, and
is only omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unam-
biguous; if f.readline() returns an empty string, the end of the file has been reached, while a blank line is
represented by ’\n’, a string containing only a single newline.

>>> f.readline()
’This is the first line of the file.\n’
>>> f.readline()
’Second line of the file\n’

50 Chapter 7. Input and Output

Python Tutorial, Release 3.2.3

>>> f.readline()
’’

f.readlines() returns a list containing all the lines of data in the file. If given an optional parameter sizehint,
it reads that many bytes from the file and enough more to complete a line, and returns the lines from that. This is
often used to allow efficient reading of a large file by lines, but without having to load the entire file in memory.
Only complete lines will be returned.

>>> f.readlines()
[’This is the first line of the file.\n’, ’Second line of the file\n’]

An alternative approach to reading lines is to loop over the file object. This is memory efficient, fast, and leads to
simpler code:

>>> for line in f:
... print(line, end=’’)
...
This is the first line of the file.
Second line of the file

The alternative approach is simpler but does not provide as fine-grained control. Since the two approaches manage
line buffering differently, they should not be mixed.

f.write(string) writes the contents of string to the file, returning the number of characters written.

>>> f.write(’This is a test\n’)
15

To write something other than a string, it needs to be converted to a string first:

>>> value = (’the answer’, 42)
>>> s = str(value)
>>> f.write(s)
18

f.tell() returns an integer giving the file object’s current position in the file, measured in bytes from the
beginning of the file. To change the file object’s position, use f.seek(offset, from_what). The position
is computed from adding offset to a reference point; the reference point is selected by the from_what argument. A
from_what value of 0 measures from the beginning of the file, 1 uses the current file position, and 2 uses the end
of the file as the reference point. from_what can be omitted and defaults to 0, using the beginning of the file as the
reference point.

>>> f = open(’/tmp/workfile’, ’rb+’)
>>> f.write(b’0123456789abcdef’)
16
>>> f.seek(5) # Go to the 6th byte in the file
5
>>> f.read(1)
b’5’
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
13
>>> f.read(1)
b’d’

In text files (those opened without a b in the mode string), only seeks relative to the beginning of the file are
allowed (the exception being seeking to the very file end with seek(0, 2)).

When you’re done with a file, call f.close() to close it and free up any system resources taken up by the open
file. After calling f.close(), attempts to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: I/O operation on closed file

7.2. Reading and Writing Files 51

Python Tutorial, Release 3.2.3

It is good practice to use the with keyword when dealing with file objects. This has the advantage that the file
is properly closed after its suite finishes, even if an exception is raised on the way. It is also much shorter than
writing equivalent try-finally blocks:

>>> with open(’/tmp/workfile’, ’r’) as f:
... read_data = f.read()
>>> f.closed
True

File objects have some additional methods, such as isatty() and truncate() which are less frequently
used; consult the Library Reference for a complete guide to file objects.

7.2.2 The pickle Module

Strings can easily be written to and read from a file. Numbers take a bit more effort, since the read() method
only returns strings, which will have to be passed to a function like int(), which takes a string like ’123’ and
returns its numeric value 123. However, when you want to save more complex data types like lists, dictionaries,
or class instances, things get a lot more complicated.

Rather than have users be constantly writing and debugging code to save complicated data types, Python provides
a standard module called pickle. This is an amazing module that can take almost any Python object (even some
forms of Python code!), and convert it to a string representation; this process is called pickling. Reconstructing the
object from the string representation is called unpickling. Between pickling and unpickling, the string representing
the object may have been stored in a file or data, or sent over a network connection to some distant machine.

If you have an object x, and a file object f that’s been opened for writing, the simplest way to pickle the object
takes only one line of code:

pickle.dump(x, f)

To unpickle the object again, if f is a file object which has been opened for reading:

x = pickle.load(f)

(There are other variants of this, used when pickling many objects or when you don’t want to write the pickled
data to a file; consult the complete documentation for pickle in the Python Library Reference.)

pickle is the standard way to make Python objects which can be stored and reused by other programs or by a
future invocation of the same program; the technical term for this is a persistent object. Because pickle is so
widely used, many authors who write Python extensions take care to ensure that new data types such as matrices
can be properly pickled and unpickled.

52 Chapter 7. Input and Output

CHAPTER

EIGHT

ERRORS AND EXCEPTIONS

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have
probably seen some. There are (at least) two distinguishable kinds of errors: syntax errors and exceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you
are still learning Python:

>>> while True print(’Hello world’)
File "<stdin>", line 1, in ?

while True print(’Hello world’)
^

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point in the line where the
error was detected. The error is caused by (or at least detected at) the token preceding the arrow: in the example,
the error is detected at the function print(), since a colon (’:’) is missing before it. File name and line number
are printed so you know where to look in case the input came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute
it. Errors detected during execution are called exceptions and are not unconditionally fatal: you will soon learn
how to handle them in Python programs. Most exceptions are not handled by programs, however, and result in
error messages as shown here:

>>> 10 * (1/0)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ZeroDivisionError: int division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name ’spam’ is not defined
>>> ’2’ + 2
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: Can’t convert ’int’ object to str implicitly

The last line of the error message indicates what happened. Exceptions come in different types, and the type
is printed as part of the message: the types in the example are ZeroDivisionError, NameError and
TypeError. The string printed as the exception type is the name of the built-in exception that occurred. This is

53

Python Tutorial, Release 3.2.3

true for all built-in exceptions, but need not be true for user-defined exceptions (although it is a useful convention).
Standard exception names are built-in identifiers (not reserved keywords).

The rest of the line provides detail based on the type of exception and what caused it.

The preceding part of the error message shows the context where the exception happened, in the form of a stack
traceback. In general it contains a stack traceback listing source lines; however, it will not display lines read from
standard input.

bltin-exceptions lists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user
for input until a valid integer has been entered, but allows the user to interrupt the program (using Control-C
or whatever the operating system supports); note that a user-generated interruption is signalled by raising the
KeyboardInterrupt exception.

>>> while True:
... try:
... x = int(input("Please enter a number: "))
... break
... except ValueError:
... print("Oops! That was no valid number. Try again...")
...

The try statement works as follows.

• First, the try clause (the statement(s) between the try and except keywords) is executed.

• If no exception occurs, the except clause is skipped and execution of the try statement is finished.

• If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then if its type
matches the exception named after the except keyword, the except clause is executed, and then execution
continues after the try statement.

• If an exception occurs which does not match the exception named in the except clause, it is passed on
to outer try statements; if no handler is found, it is an unhandled exception and execution stops with a
message as shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one
handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other
handlers of the same try statement. An except clause may name multiple exceptions as a parenthesized tuple, for
example:

... except (RuntimeError, TypeError, NameError):

... pass

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme caution,
since it is easy to mask a real programming error in this way! It can also be used to print an error message and
then re-raise the exception (allowing a caller to handle the exception as well):

import sys

try:
f = open(’myfile.txt’)
s = f.readline()
i = int(s.strip())

except IOError as err:
print("I/O error: {0}".format(err))

except ValueError:
print("Could not convert data to an integer.")

except:

54 Chapter 8. Errors and Exceptions

Python Tutorial, Release 3.2.3

print("Unexpected error:", sys.exc_info()[0])
raise

The try ... except statement has an optional else clause, which, when present, must follow all except clauses.
It is useful for code that must be executed if the try clause does not raise an exception. For example:

for arg in sys.argv[1:]:
try:

f = open(arg, ’r’)
except IOError:

print(’cannot open’, arg)
else:

print(arg, ’has’, len(f.readlines()), ’lines’)
f.close()

The use of the else clause is better than adding additional code to the try clause because it avoids accidentally
catching an exception that wasn’t raised by the code being protected by the try ... except statement.

When an exception occurs, it may have an associated value, also known as the exception’s argument. The presence
and type of the argument depend on the exception type.

The except clause may specify a variable after the exception name. The variable is bound to an exception instance
with the arguments stored in instance.args. For convenience, the exception instance defines __str__() so
the arguments can be printed directly without having to reference .args. One may also instantiate an exception
first before raising it and add any attributes to it as desired.

>>> try:
... raise Exception(’spam’, ’eggs’)
... except Exception as inst:
... print(type(inst)) # the exception instance
... print(inst.args) # arguments stored in .args
... print(inst) # __str__ allows args to be printed directly,
... # but may be overridden in exception subclasses
... x, y = inst.args # unpack args
... print(’x =’, x)
... print(’y =’, y)
...
<class ’Exception’>
(’spam’, ’eggs’)
(’spam’, ’eggs’)
x = spam
y = eggs

If an exception has arguments, they are printed as the last part (‘detail’) of the message for unhandled exceptions.

Exception handlers don’t just handle exceptions if they occur immediately in the try clause, but also if they occur
inside functions that are called (even indirectly) in the try clause. For example:

>>> def this_fails():
... x = 1/0
...
>>> try:
... this_fails()
... except ZeroDivisionError as err:
... print(’Handling run-time error:’, err)
...
Handling run-time error: int division or modulo by zero

8.4 Raising Exceptions

The raise statement allows the programmer to force a specified exception to occur. For example:

8.4. Raising Exceptions 55

Python Tutorial, Release 3.2.3

>>> raise NameError(’HiThere’)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: HiThere

The sole argument to raise indicates the exception to be raised. This must be either an exception instance or an
exception class (a class that derives from Exception).

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form of the
raise statement allows you to re-raise the exception:

>>> try:
... raise NameError(’HiThere’)
... except NameError:
... print(’An exception flew by!’)
... raise
...
An exception flew by!
Traceback (most recent call last):

File "<stdin>", line 2, in ?
NameError: HiThere

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class (see Classes for more about Python
classes). Exceptions should typically be derived from the Exception class, either directly or indirectly. For
example:

>>> class MyError(Exception):
... def __init__(self, value):
... self.value = value
... def __str__(self):
... return repr(self.value)
...
>>> try:
... raise MyError(2*2)
... except MyError as e:
... print(’My exception occurred, value:’, e.value)
...
My exception occurred, value: 4
>>> raise MyError(’oops!’)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
__main__.MyError: ’oops!’

In this example, the default __init__() of Exception has been overridden. The new behavior simply creates
the value attribute. This replaces the default behavior of creating the args attribute.

Exception classes can be defined which do anything any other class can do, but are usually kept simple, often
only offering a number of attributes that allow information about the error to be extracted by handlers for the
exception. When creating a module that can raise several distinct errors, a common practice is to create a base
class for exceptions defined by that module, and subclass that to create specific exception classes for different
error conditions:

class Error(Exception):
"""Base class for exceptions in this module."""
pass

class InputError(Error):
"""Exception raised for errors in the input.

56 Chapter 8. Errors and Exceptions

Python Tutorial, Release 3.2.3

Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error

"""

def __init__(self, expression, message):
self.expression = expression
self.message = message

class TransitionError(Error):
"""Raised when an operation attempts a state transition that’s not
allowed.

Attributes:
previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not allowed

"""

def __init__(self, previous, next, message):
self.previous = previous
self.next = next
self.message = message

Most exceptions are defined with names that end in “Error,” similar to the naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may occur in functions they define. More
information on classes is presented in chapter Classes.

8.6 Defining Clean-up Actions

The try statement has another optional clause which is intended to define clean-up actions that must be executed
under all circumstances. For example:

>>> try:
... raise KeyboardInterrupt
... finally:
... print(’Goodbye, world!’)
...
Goodbye, world!
KeyboardInterrupt

A finally clause is always executed before leaving the try statement, whether an exception has occurred or
not. When an exception has occurred in the try clause and has not been handled by an except clause (or it
has occurred in a except or else clause), it is re-raised after the finally clause has been executed. The
finally clause is also executed “on the way out” when any other clause of the try statement is left via a
break, continue or return statement. A more complicated example:

>>> def divide(x, y):
... try:
... result = x / y
... except ZeroDivisionError:
... print("division by zero!")
... else:
... print("result is", result)
... finally:
... print("executing finally clause")
...

8.6. Defining Clean-up Actions 57

Python Tutorial, Release 3.2.3

>>> divide(2, 1)
result is 2.0
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: ’str’ and ’str’

As you can see, the finally clause is executed in any event. The TypeError raised by dividing two strings is
not handled by the except clause and therefore re-raised after the finally clause has been executed.

In real world applications, the finally clause is useful for releasing external resources (such as files or network
connections), regardless of whether the use of the resource was successful.

8.7 Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object is no longer needed, regardless of
whether or not the operation using the object succeeded or failed. Look at the following example, which tries to
open a file and print its contents to the screen.

for line in open("myfile.txt"):
print(line)

The problem with this code is that it leaves the file open for an indeterminate amount of time after this part of the
code has finished executing. This is not an issue in simple scripts, but can be a problem for larger applications.
The with statement allows objects like files to be used in a way that ensures they are always cleaned up promptly
and correctly.

with open("myfile.txt") as f:
for line in f:

print(line)

After the statement is executed, the file f is always closed, even if a problem was encountered while processing
the lines. Objects which, like files, provide predefined clean-up actions will indicate this in their documentation.

58 Chapter 8. Errors and Exceptions

CHAPTER

NINE

CLASSES

Compared with other programming languages, Python’s class mechanism adds classes with a minimum of new
syntax and semantics. It is a mixture of the class mechanisms found in C++ and Modula-3. Python classes provide
all the standard features of Object Oriented Programming: the class inheritance mechanism allows multiple base
classes, a derived class can override any methods of its base class or classes, and a method can call the method of
a base class with the same name. Objects can contain arbitrary amounts and kinds of data. As is true for modules,
classes partake of the dynamic nature of Python: they are created at runtime, and can be modified further after
creation.

In C++ terminology, normally class members (including the data members) are public (except see below Private
Variables), and all member functions are virtual. As in Modula-3, there are no shorthands for referencing the
object’s members from its methods: the method function is declared with an explicit first argument representing
the object, which is provided implicitly by the call. As in Smalltalk, classes themselves are objects. This provides
semantics for importing and renaming. Unlike C++ and Modula-3, built-in types can be used as base classes
for extension by the user. Also, like in C++, most built-in operators with special syntax (arithmetic operators,
subscripting etc.) can be redefined for class instances.

(Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++
terms. I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++,
but I expect that few readers have heard of it.)

9.1 A Word About Names and Objects

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is
known as aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be safely
ignored when dealing with immutable basic types (numbers, strings, tuples). However, aliasing has a possibly
surprising effect on the semantics of Python code involving mutable objects such as lists, dictionaries, and most
other types. This is usually used to the benefit of the program, since aliases behave like pointers in some respects.
For example, passing an object is cheap since only a pointer is passed by the implementation; and if a function
modifies an object passed as an argument, the caller will see the change — this eliminates the need for two different
argument passing mechanisms as in Pascal.

9.2 Python Scopes and Namespaces

Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions play
some neat tricks with namespaces, and you need to know how scopes and namespaces work to fully understand
what’s going on. Incidentally, knowledge about this subject is useful for any advanced Python programmer.

Let’s begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python dictio-
naries, but that’s normally not noticeable in any way (except for performance), and it may change in the future.
Examples of namespaces are: the set of built-in names (containing functions such as abs(), and built-in ex-
ception names); the global names in a module; and the local names in a function invocation. In a sense the set

59

Python Tutorial, Release 3.2.3

of attributes of an object also form a namespace. The important thing to know about namespaces is that there
is absolutely no relation between names in different namespaces; for instance, two different modules may both
define a function maximize without confusion — users of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot — for example, in the expression z.real,
real is an attribute of the object z. Strictly speaking, references to names in modules are attribute references: in
the expression modname.funcname, modname is a module object and funcname is an attribute of it. In this
case there happens to be a straightforward mapping between the module’s attributes and the global names defined
in the module: they share the same namespace! 1

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes
are writable: you can write modname.the_answer = 42. Writable attributes may also be deleted with the
del statement. For example, del modname.the_answer will remove the attribute the_answer from the
object named by modname.

Namespaces are created at different moments and have different lifetimes. The namespace containing the built-in
names is created when the Python interpreter starts up, and is never deleted. The global namespace for a module
is created when the module definition is read in; normally, module namespaces also last until the interpreter quits.
The statements executed by the top-level invocation of the interpreter, either read from a script file or interactively,
are considered part of a module called __main__, so they have their own global namespace. (The built-in names
actually also live in a module; this is called builtins.)

The local namespace for a function is created when the function is called, and deleted when the function returns or
raises an exception that is not handled within the function. (Actually, forgetting would be a better way to describe
what actually happens.) Of course, recursive invocations each have their own local namespace.

A scope is a textual region of a Python program where a namespace is directly accessible. “Directly accessible”
here means that an unqualified reference to a name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any time during execution, there are at
least three nested scopes whose namespaces are directly accessible:

• the innermost scope, which is searched first, contains the local names

• the scopes of any enclosing functions, which are searched starting with the nearest enclosing scope, contains
non-local, but also non-global names

• the next-to-last scope contains the current module’s global names

• the outermost scope (searched last) is the namespace containing built-in names

If a name is declared global, then all references and assignments go directly to the middle scope containing the
module’s global names. To rebind variables found outside of the innermost scope, the nonlocal statement can
be used; if not declared nonlocal, those variable are read-only (an attempt to write to such a variable will simply
create a new local variable in the innermost scope, leaving the identically named outer variable unchanged).

Usually, the local scope references the local names of the (textually) current function. Outside functions, the local
scope references the same namespace as the global scope: the module’s namespace. Class definitions place yet
another namespace in the local scope.

It is important to realize that scopes are determined textually: the global scope of a function defined in a module
is that module’s namespace, no matter from where or by what alias the function is called. On the other hand, the
actual search for names is done dynamically, at run time — however, the language definition is evolving towards
static name resolution, at “compile” time, so don’t rely on dynamic name resolution! (In fact, local variables are
already determined statically.)

A special quirk of Python is that – if no global statement is in effect – assignments to names always go into
the innermost scope. Assignments do not copy data — they just bind names to objects. The same is true for
deletions: the statement del x removes the binding of x from the namespace referenced by the local scope. In
fact, all operations that introduce new names use the local scope: in particular, import statements and function
definitions bind the module or function name in the local scope.

1 Except for one thing. Module objects have a secret read-only attribute called __dict__ which returns the dictionary used to implement
the module’s namespace; the name __dict__ is an attribute but not a global name. Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like post-mortem debuggers.

60 Chapter 9. Classes

Python Tutorial, Release 3.2.3

The global statement can be used to indicate that particular variables live in the global scope and should be
rebound there; the nonlocal statement indicates that particular variables live in an enclosing scope and should
be rebound there.

9.2.1 Scopes and Namespaces Example

This is an example demonstrating how to reference the different scopes and namespaces, and how global and
nonlocal affect variable binding:

def scope_test():
def do_local():

spam = "local spam"
def do_nonlocal():

nonlocal spam
spam = "nonlocal spam"

def do_global():
global spam
spam = "global spam"

spam = "test spam"
do_local()
print("After local assignment:", spam)
do_nonlocal()
print("After nonlocal assignment:", spam)
do_global()
print("After global assignment:", spam)

scope_test()
print("In global scope:", spam)

The output of the example code is:

After local assignment: test spam
After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
In global scope: global spam

Note how the local assignment (which is default) didn’t change scope_test‘s binding of spam. The nonlocal
assignment changed scope_test‘s binding of spam, and the global assignment changed the module-level bind-
ing.

You can also see that there was no previous binding for spam before the global assignment.

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>
.
.
.
<statement-N>

9.3. A First Look at Classes 61

Python Tutorial, Release 3.2.3

Class definitions, like function definitions (def statements) must be executed before they have any effect. (You
could conceivably place a class definition in a branch of an if statement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other statements are
allowed, and sometimes useful — we’ll come back to this later. The function definitions inside a class normally
have a peculiar form of argument list, dictated by the calling conventions for methods — again, this is explained
later.

When a class definition is entered, a new namespace is created, and used as the local scope — thus, all assignments
to local variables go into this new namespace. In particular, function definitions bind the name of the new function
here.

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around
the contents of the namespace created by the class definition; we’ll learn more about class objects in the next
section. The original local scope (the one in effect just before the class definition was entered) is reinstated, and
the class object is bound here to the class name given in the class definition header (ClassName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for all attribute references in Python: obj.name. Valid attribute
names are all the names that were in the class’s namespace when the class object was created. So, if the class
definition looked like this:

class MyClass:
"""A simple example class"""
i = 12345
def f(self):

return ’hello world’

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a function object,
respectively. Class attributes can also be assigned to, so you can change the value of MyClass.i by assign-
ment. __doc__ is also a valid attribute, returning the docstring belonging to the class: "A simple example
class".

Class instantiation uses function notation. Just pretend that the class object is a parameterless function that returns
a new instance of the class. For example (assuming the above class):

x = MyClass()

creates a new instance of the class and assigns this object to the local variable x.

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create ob-
jects with instances customized to a specific initial state. Therefore a class may define a special method named
__init__(), like this:

def __init__(self):
self.data = []

When a class defines an __init__() method, class instantiation automatically invokes __init__() for the
newly-created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass()

Of course, the __init__() method may have arguments for greater flexibility. In that case, arguments given to
the class instantiation operator are passed on to __init__(). For example,

>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0, -4.5)

62 Chapter 9. Classes

Python Tutorial, Release 3.2.3

>>> x.r, x.i
(3.0, -4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are attribute
references. There are two kinds of valid attribute names, data attributes and methods.

data attributes correspond to “instance variables” in Smalltalk, and to “data members” in C++. Data attributes
need not be declared; like local variables, they spring into existence when they are first assigned to. For example,
if x is the instance of MyClass created above, the following piece of code will print the value 16, without leaving
a trace:

x.counter = 1
while x.counter < 10:

x.counter = x.counter * 2
print(x.counter)
del x.counter

The other kind of instance attribute reference is a method. A method is a function that “belongs to” an object.
(In Python, the term method is not unique to class instances: other object types can have methods as well. For
example, list objects have methods called append, insert, remove, sort, and so on. However, in the following
discussion, we’ll use the term method exclusively to mean methods of class instance objects, unless explicitly
stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all attributes of a class that are func-
tion objects define corresponding methods of its instances. So in our example, x.f is a valid method reference,
since MyClass.f is a function, but x.i is not, since MyClass.i is not. But x.f is not the same thing as
MyClass.f — it is a method object, not a function object.

9.3.4 Method Objects

Usually, a method is called right after it is bound:

x.f()

In the MyClass example, this will return the string ’hello world’. However, it is not necessary to call a
method right away: x.f is a method object, and can be stored away and called at a later time. For example:

xf = x.f
while True:

print(xf())

will continue to print hello world until the end of time.

What exactly happens when a method is called? You may have noticed that x.f()was called without an argument
above, even though the function definition for f() specified an argument. What happened to the argument? Surely
Python raises an exception when a function that requires an argument is called without any — even if the argument
isn’t actually used...

Actually, you may have guessed the answer: the special thing about methods is that the object is passed as the first
argument of the function. In our example, the call x.f() is exactly equivalent to MyClass.f(x). In general,
calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument
list that is created by inserting the method’s object before the first argument.

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When
an instance attribute is referenced that isn’t a data attribute, its class is searched. If the name denotes a valid class
attribute that is a function object, a method object is created by packing (pointers to) the instance object and the
function object just found together in an abstract object: this is the method object. When the method object is
called with an argument list, a new argument list is constructed from the instance object and the argument list, and
the function object is called with this new argument list.

9.3. A First Look at Classes 63

Python Tutorial, Release 3.2.3

9.4 Random Remarks

Data attributes override method attributes with the same name; to avoid accidental name conflicts, which may
cause hard-to-find bugs in large programs, it is wise to use some kind of convention that minimizes the chance
of conflicts. Possible conventions include capitalizing method names, prefixing data attribute names with a small
unique string (perhaps just an underscore), or using verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object. In other words,
classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce
data hiding — it is all based upon convention. (On the other hand, the Python implementation, written in C, can
completely hide implementation details and control access to an object if necessary; this can be used by extensions
to Python written in C.)

Clients should use data attributes with care — clients may mess up invariants maintained by the methods by
stamping on their data attributes. Note that clients may add data attributes of their own to an instance object
without affecting the validity of the methods, as long as name conflicts are avoided — again, a naming convention
can save a lot of headaches here.

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this
actually increases the readability of methods: there is no chance of confusing local variables and instance variables
when glancing through a method.

Often, the first argument of a method is called self. This is nothing more than a convention: the name self
has absolutely no special meaning to Python. Note, however, that by not following the convention your code may
be less readable to other Python programmers, and it is also conceivable that a class browser program might be
written that relies upon such a convention.

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the
function definition is textually enclosed in the class definition: assigning a function object to a local variable in
the class is also ok. For example:

Function defined outside the class
def f1(self, x, y):

return min(x, x+y)

class C:
f = f1
def g(self):

return ’hello world’
h = g

Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all methods of
instances of C — h being exactly equivalent to g. Note that this practice usually only serves to confuse the reader
of a program.

Methods may call other methods by using method attributes of the self argument:

class Bag:
def __init__(self):

self.data = []
def add(self, x):

self.data.append(x)
def addtwice(self, x):

self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope associated with
a method is the module containing its definition. (A class is never used as a global scope.) While one rarely
encounters a good reason for using global data in a method, there are many legitimate uses of the global scope:
for one thing, functions and modules imported into the global scope can be used by methods, as well as functions
and classes defined in it. Usually, the class containing the method is itself defined in this global scope, and in the
next section we’ll find some good reasons why a method would want to reference its own class.

64 Chapter 9. Classes

Python Tutorial, Release 3.2.3

Each value is an object, and therefore has a class (also called its type). It is stored as object.__class__.

9.5 Inheritance

Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The syntax
for a derived class definition looks like this:

class DerivedClassName(BaseClassName):
<statement-1>
.
.
.
<statement-N>

The name BaseClassName must be defined in a scope containing the derived class definition. In place of a base
class name, other arbitrary expressions are also allowed. This can be useful, for example, when the base class is
defined in another module:

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed,
the base class is remembered. This is used for resolving attribute references: if a requested attribute is not found
in the class, the search proceeds to look in the base class. This rule is applied recursively if the base class itself is
derived from some other class.

There’s nothing special about instantiation of derived classes: DerivedClassName() creates a new instance
of the class. Method references are resolved as follows: the corresponding class attribute is searched, descending
down the chain of base classes if necessary, and the method reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges when
calling other methods of the same object, a method of a base class that calls another method defined in the same
base class may end up calling a method of a derived class that overrides it. (For C++ programmers: all methods
in Python are effectively virtual.)

An overriding method in a derived class may in fact want to extend rather than simply replace the base
class method of the same name. There is a simple way to call the base class method directly: just call
BaseClassName.methodname(self, arguments). This is occasionally useful to clients as well. (Note
that this only works if the base class is accessible as BaseClassName in the global scope.)

Python has two built-in functions that work with inheritance:

• Use isinstance() to check an instance’s type: isinstance(obj, int) will be True only if
obj.__class__ is int or some class derived from int.

• Use issubclass() to check class inheritance: issubclass(bool, int) is True since bool is
a subclass of int. However, issubclass(float, int) is False since float is not a subclass of
int.

9.5.1 Multiple Inheritance

Python supports a form of multiple inheritance as well. A class definition with multiple base classes looks like
this:

class DerivedClassName(Base1, Base2, Base3):
<statement-1>
.
.
.
<statement-N>

9.5. Inheritance 65

Python Tutorial, Release 3.2.3

For most purposes, in the simplest cases, you can think of the search for attributes inherited from a parent class
as depth-first, left-to-right, not searching twice in the same class where there is an overlap in the hierarchy. Thus,
if an attribute is not found in DerivedClassName, it is searched for in Base1, then (recursively) in the base
classes of Base1, and if it was not found there, it was searched for in Base2, and so on.

In fact, it is slightly more complex than that; the method resolution order changes dynamically to support coopera-
tive calls to super(). This approach is known in some other multiple-inheritance languages as call-next-method
and is more powerful than the super call found in single-inheritance languages.

Dynamic ordering is necessary because all cases of multiple inheritance exhibit one or more diamond relationships
(where at least one of the parent classes can be accessed through multiple paths from the bottommost class). For
example, all classes inherit from object, so any case of multiple inheritance provides more than one path to
reach object. To keep the base classes from being accessed more than once, the dynamic algorithm linearizes
the search order in a way that preserves the left-to-right ordering specified in each class, that calls each parent only
once, and that is monotonic (meaning that a class can be subclassed without affecting the precedence order of its
parents). Taken together, these properties make it possible to design reliable and extensible classes with multiple
inheritance. For more detail, see http://www.python.org/download/releases/2.3/mro/.

9.6 Private Variables

“Private” instance variables that cannot be accessed except from inside an object don’t exist in Python. However,
there is a convention that is followed by most Python code: a name prefixed with an underscore (e.g. _spam)
should be treated as a non-public part of the API (whether it is a function, a method or a data member). It should
be considered an implementation detail and subject to change without notice.

Since there is a valid use-case for class-private members (namely to avoid name clashes of names with names
defined by subclasses), there is limited support for such a mechanism, called name mangling. Any identifier of
the form __spam (at least two leading underscores, at most one trailing underscore) is textually replaced with
_classname__spam, where classname is the current class name with leading underscore(s) stripped. This
mangling is done without regard to the syntactic position of the identifier, as long as it occurs within the definition
of a class.

Name mangling is helpful for letting subclasses override methods without breaking intraclass method calls. For
example:

class Mapping:
def __init__(self, iterable):

self.items_list = []
self.__update(iterable)

def update(self, iterable):
for item in iterable:

self.items_list.append(item)

__update = update # private copy of original update() method

class MappingSubclass(Mapping):

def update(self, keys, values):
provides new signature for update()
but does not break __init__()
for item in zip(keys, values):

self.items_list.append(item)

Note that the mangling rules are designed mostly to avoid accidents; it still is possible to access or modify a
variable that is considered private. This can even be useful in special circumstances, such as in the debugger.

Notice that code passed to exec() or eval() does not consider the classname of the invoking class to be the
current class; this is similar to the effect of the global statement, the effect of which is likewise restricted to code

66 Chapter 9. Classes

http://www.python.org/download/releases/2.3/mro/

Python Tutorial, Release 3.2.3

that is byte-compiled together. The same restriction applies to getattr(), setattr() and delattr(), as
well as when referencing __dict__ directly.

9.7 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C “struct”, bundling together a few
named data items. An empty class definition will do nicely:

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = ’John Doe’
john.dept = ’computer lab’
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the
methods of that data type instead. For instance, if you have a function that formats some data from a file object,
you can define a class with methods read() and readline() that get the data from a string buffer instead,
and pass it as an argument.

Instance method objects have attributes, too: m.__self__ is the instance object with the method m(), and
m.__func__ is the function object corresponding to the method.

9.8 Exceptions Are Classes Too

User-defined exceptions are identified by classes as well. Using this mechanism it is possible to create extensible
hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

raise Class

raise Instance

In the first form, Class must be an instance of type or of a class derived from it. The first form is a shorthand
for:

raise Class()

A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not
the other way around — an except clause listing a derived class is not compatible with a base class). For example,
the following code will print B, C, D in that order:

class B(Exception):
pass

class C(B):
pass

class D(C):
pass

for c in [B, C, D]:
try:

raise c()
except D:

print("D")
except C:

9.7. Odds and Ends 67

Python Tutorial, Release 3.2.3

print("C")
except B:

print("B")

Note that if the except clauses were reversed (with except B first), it would have printed B, B, B — the first
matching except clause is triggered.

When an error message is printed for an unhandled exception, the exception’s class name is printed, then a colon
and a space, and finally the instance converted to a string using the built-in function str().

9.9 Iterators

By now you have probably noticed that most container objects can be looped over using a for statement:

for element in [1, 2, 3]:
print(element)

for element in (1, 2, 3):
print(element)

for key in {’one’:1, ’two’:2}:
print(key)

for char in "123":
print(char)

for line in open("myfile.txt"):
print(line)

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind
the scenes, the for statement calls iter() on the container object. The function returns an iterator object that
defines the method __next__() which accesses elements in the container one at a time. When there are no
more elements, __next__() raises a StopIteration exception which tells the for loop to terminate. You
can call the __next__() method using the next() built-in function; this example shows how it all works:

>>> s = ’abc’
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> next(it)
’a’
>>> next(it)
’b’
>>> next(it)
’c’
>>> next(it)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
next(it)

StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define an
__iter__() method which returns an object with a __next__() method. If the class defines __next__(),
then __iter__() can just return self:

class Reverse:
"""Iterator for looping over a sequence backwards."""
def __init__(self, data):

self.data = data
self.index = len(data)

def __iter__(self):
return self

def __next__(self):
if self.index == 0:

68 Chapter 9. Classes

Python Tutorial, Release 3.2.3

raise StopIteration
self.index = self.index - 1
return self.data[self.index]

>>> rev = Reverse(’spam’)
>>> iter(rev)
<__main__.Reverse object at 0x00A1DB50>
>>> for char in rev:
... print(char)
...
m
a
p
s

9.10 Generators

Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use
the yield statement whenever they want to return data. Each time next() is called on it, the generator resumes
where it left-off (it remembers all the data values and which statement was last executed). An example shows that
generators can be trivially easy to create:

def reverse(data):
for index in range(len(data)-1, -1, -1):

yield data[index]

>>> for char in reverse(’golf’):
... print(char)
...
f
l
o
g

Anything that can be done with generators can also be done with class based iterators as described in the previous
section. What makes generators so compact is that the __iter__() and __next__() methods are created
automatically.

Another key feature is that the local variables and execution state are automatically saved between calls. This made
the function easier to write and much more clear than an approach using instance variables like self.index
and self.data.

In addition to automatic method creation and saving program state, when generators terminate, they automatically
raise StopIteration. In combination, these features make it easy to create iterators with no more effort than
writing a regular function.

9.11 Generator Expressions

Some simple generators can be coded succinctly as expressions using a syntax similar to list comprehensions but
with parentheses instead of brackets. These expressions are designed for situations where the generator is used
right away by an enclosing function. Generator expressions are more compact but less versatile than full generator
definitions and tend to be more memory friendly than equivalent list comprehensions.

Examples:

>>> sum(i*i for i in range(10)) # sum of squares
285

>>> xvec = [10, 20, 30]

9.10. Generators 69

Python Tutorial, Release 3.2.3

>>> yvec = [7, 5, 3]
>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = {x: sin(x*pi/180) for x in range(0, 91)}

>>> unique_words = set(word for line in page for word in line.split())

>>> valedictorian = max((student.gpa, student.name) for student in graduates)

>>> data = ’golf’
>>> list(data[i] for i in range(len(data)-1, -1, -1))
[’f’, ’l’, ’o’, ’g’]

70 Chapter 9. Classes

CHAPTER

TEN

BRIEF TOUR OF THE STANDARD
LIBRARY

10.1 Operating System Interface

The os module provides dozens of functions for interacting with the operating system:

>>> import os
>>> os.getcwd() # Return the current working directory
’C:\\Python31’
>>> os.chdir(’/server/accesslogs’) # Change current working directory
>>> os.system(’mkdir today’) # Run the command mkdir in the system shell
0

Be sure to use the import os style instead of from os import *. This will keep os.open() from
shadowing the built-in open() function which operates much differently.

The built-in dir() and help() functions are useful as interactive aids for working with large modules like os:

>>> import os
>>> dir(os)
<returns a list of all module functions>
>>> help(os)
<returns an extensive manual page created from the module’s docstrings>

For daily file and directory management tasks, the shutil module provides a higher level interface that is easier
to use:

>>> import shutil
>>> shutil.copyfile(’data.db’, ’archive.db’)
>>> shutil.move(’/build/executables’, ’installdir’)

10.2 File Wildcards

The glob module provides a function for making file lists from directory wildcard searches:

>>> import glob
>>> glob.glob(’*.py’)
[’primes.py’, ’random.py’, ’quote.py’]

10.3 Command Line Arguments

Common utility scripts often need to process command line arguments. These arguments are stored in the sys
module’s argv attribute as a list. For instance the following output results from running python demo.py one

71

Python Tutorial, Release 3.2.3

two three at the command line:

>>> import sys
>>> print(sys.argv)
[’demo.py’, ’one’, ’two’, ’three’]

The getopt module processes sys.argv using the conventions of the Unix getopt() function. More powerful
and flexible command line processing is provided by the argparse module.

10.4 Error Output Redirection and Program Termination

The sys module also has attributes for stdin, stdout, and stderr. The latter is useful for emitting warnings and
error messages to make them visible even when stdout has been redirected:

>>> sys.stderr.write(’Warning, log file not found starting a new one\n’)
Warning, log file not found starting a new one

The most direct way to terminate a script is to use sys.exit().

10.5 String Pattern Matching

The re module provides regular expression tools for advanced string processing. For complex matching and
manipulation, regular expressions offer succinct, optimized solutions:

>>> import re
>>> re.findall(r’\bf[a-z]*’, ’which foot or hand fell fastest’)
[’foot’, ’fell’, ’fastest’]
>>> re.sub(r’(\b[a-z]+) \1’, r’\1’, ’cat in the the hat’)
’cat in the hat’

When only simple capabilities are needed, string methods are preferred because they are easier to read and debug:

>>> ’tea for too’.replace(’too’, ’two’)
’tea for two’

10.6 Mathematics

The math module gives access to the underlying C library functions for floating point math:

>>> import math
>>> math.cos(math.pi / 4)
0.70710678118654757
>>> math.log(1024, 2)
10.0

The random module provides tools for making random selections:

>>> import random
>>> random.choice([’apple’, ’pear’, ’banana’])
’apple’
>>> random.sample(range(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
>>> random.random() # random float
0.17970987693706186
>>> random.randrange(6) # random integer chosen from range(6)
4

The SciPy project <http://scipy.org> has many other modules for numerical computations.

72 Chapter 10. Brief Tour of the Standard Library

http://scipy.org

Python Tutorial, Release 3.2.3

10.7 Internet Access

There are a number of modules for accessing the internet and processing internet protocols. Two of the simplest
are urllib.request for retrieving data from urls and smtplib for sending mail:

>>> from urllib.request import urlopen
>>> for line in urlopen(’http://tycho.usno.navy.mil/cgi-bin/timer.pl’):
... line = line.decode(’utf-8’) # Decoding the binary data to text.
... if ’EST’ in line or ’EDT’ in line: # look for Eastern Time
... print(line)

Nov. 25, 09:43:32 PM EST

>>> import smtplib
>>> server = smtplib.SMTP(’localhost’)
>>> server.sendmail(’soothsayer@example.org’, ’jcaesar@example.org’,
... """To: jcaesar@example.org
... From: soothsayer@example.org
...
... Beware the Ides of March.
... """)
>>> server.quit()

(Note that the second example needs a mailserver running on localhost.)

10.8 Dates and Times

The datetime module supplies classes for manipulating dates and times in both simple and complex ways.
While date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for
output formatting and manipulation. The module also supports objects that are timezone aware.

>>> # dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today()
>>> now
datetime.date(2003, 12, 2)
>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
’12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.’

>>> # dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday
>>> age.days
14368

10.9 Data Compression

Common data archiving and compression formats are directly supported by modules including: zlib, gzip,
bz2, zipfile and tarfile.

>>> import zlib
>>> s = b’witch which has which witches wrist watch’
>>> len(s)
41
>>> t = zlib.compress(s)
>>> len(t)

10.7. Internet Access 73

Python Tutorial, Release 3.2.3

37
>>> zlib.decompress(t)
b’witch which has which witches wrist watch’
>>> zlib.crc32(s)
226805979

10.10 Performance Measurement

Some Python users develop a deep interest in knowing the relative performance of different approaches to the
same problem. Python provides a measurement tool that answers those questions immediately.

For example, it may be tempting to use the tuple packing and unpacking feature instead of the traditional approach
to swapping arguments. The timeit module quickly demonstrates a modest performance advantage:

>>> from timeit import Timer
>>> Timer(’t=a; a=b; b=t’, ’a=1; b=2’).timeit()
0.57535828626024577
>>> Timer(’a,b = b,a’, ’a=1; b=2’).timeit()
0.54962537085770791

In contrast to timeit‘s fine level of granularity, the profile and pstats modules provide tools for identify-
ing time critical sections in larger blocks of code.

10.11 Quality Control

One approach for developing high quality software is to write tests for each function as it is developed and to run
those tests frequently during the development process.

The doctest module provides a tool for scanning a module and validating tests embedded in a program’s
docstrings. Test construction is as simple as cutting-and-pasting a typical call along with its results into the
docstring. This improves the documentation by providing the user with an example and it allows the doctest
module to make sure the code remains true to the documentation:

def average(values):
"""Computes the arithmetic mean of a list of numbers.

>>> print(average([20, 30, 70]))
40.0
"""
return sum(values) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module, but it allows a more comprehensive set of
tests to be maintained in a separate file:

import unittest

class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):
self.assertEqual(average([20, 30, 70]), 40.0)
self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
self.assertRaises(ZeroDivisionError, average, [])
self.assertRaises(TypeError, average, 20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

74 Chapter 10. Brief Tour of the Standard Library

Python Tutorial, Release 3.2.3

10.12 Batteries Included

Python has a “batteries included” philosophy. This is best seen through the sophisticated and robust capabilities
of its larger packages. For example:

• The xmlrpc.client and xmlrpc.server modules make implementing remote procedure calls into
an almost trivial task. Despite the modules names, no direct knowledge or handling of XML is needed.

• The email package is a library for managing email messages, including MIME and other RFC 2822-based
message documents. Unlike smtplib and poplib which actually send and receive messages, the email
package has a complete toolset for building or decoding complex message structures (including attachments)
and for implementing internet encoding and header protocols.

• The xml.dom and xml.sax packages provide robust support for parsing this popular data interchange
format. Likewise, the csv module supports direct reads and writes in a common database format. Together,
these modules and packages greatly simplify data interchange between Python applications and other tools.

• Internationalization is supported by a number of modules including gettext, locale, and the codecs
package.

10.12. Batteries Included 75

Python Tutorial, Release 3.2.3

76 Chapter 10. Brief Tour of the Standard Library

CHAPTER

ELEVEN

BRIEF TOUR OF THE STANDARD
LIBRARY – PART II

This second tour covers more advanced modules that support professional programming needs. These modules
rarely occur in small scripts.

11.1 Output Formatting

The reprlib module provides a version of repr() customized for abbreviated displays of large or deeply
nested containers:

>>> import reprlib
>>> reprlib.repr(set(’supercalifragilisticexpialidocious’))
"set([’a’, ’c’, ’d’, ’e’, ’f’, ’g’, ...])"

The pprint module offers more sophisticated control over printing both built-in and user defined objects in a
way that is readable by the interpreter. When the result is longer than one line, the “pretty printer” adds line breaks
and indentation to more clearly reveal data structure:

>>> import pprint
>>> t = [[[[’black’, ’cyan’], ’white’, [’green’, ’red’]], [[’magenta’,
... ’yellow’], ’blue’]]]
...
>>> pprint.pprint(t, width=30)
[[[[’black’, ’cyan’],

’white’,
[’green’, ’red’]],

[[’magenta’, ’yellow’],
’blue’]]]

The textwrap module formats paragraphs of text to fit a given screen width:

>>> import textwrap
>>> doc = """The wrap() method is just like fill() except that it returns
... a list of strings instead of one big string with newlines to separate
... the wrapped lines."""
...
>>> print(textwrap.fill(doc, width=40))
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

The locale module accesses a database of culture specific data formats. The grouping attribute of locale’s
format function provides a direct way of formatting numbers with group separators:

77

Python Tutorial, Release 3.2.3

>>> import locale
>>> locale.setlocale(locale.LC_ALL, ’English_United States.1252’)
’English_United States.1252’
>>> conv = locale.localeconv() # get a mapping of conventions
>>> x = 1234567.8
>>> locale.format("%d", x, grouping=True)
’1,234,567’
>>> locale.format_string("%s%.*f", (conv[’currency_symbol’],
... conv[’frac_digits’], x), grouping=True)
’$1,234,567.80’

11.2 Templating

The string module includes a versatile Template class with a simplified syntax suitable for editing by end-
users. This allows users to customize their applications without having to alter the application.

The format uses placeholder names formed by $ with valid Python identifiers (alphanumeric characters and un-
derscores). Surrounding the placeholder with braces allows it to be followed by more alphanumeric letters with
no intervening spaces. Writing $$ creates a single escaped $:

>>> from string import Template
>>> t = Template(’${village}folk send $$10 to $cause.’)
>>> t.substitute(village=’Nottingham’, cause=’the ditch fund’)
’Nottinghamfolk send $10 to the ditch fund.’

The substitute() method raises a KeyError when a placeholder is not supplied in a dictionary or
a keyword argument. For mail-merge style applications, user supplied data may be incomplete and the
safe_substitute() method may be more appropriate — it will leave placeholders unchanged if data is
missing:

>>> t = Template(’Return the $item to $owner.’)
>>> d = dict(item=’unladen swallow’)
>>> t.substitute(d)
Traceback (most recent call last):

. . .
KeyError: ’owner’
>>> t.safe_substitute(d)
’Return the unladen swallow to $owner.’

Template subclasses can specify a custom delimiter. For example, a batch renaming utility for a photo browser
may elect to use percent signs for placeholders such as the current date, image sequence number, or file format:

>>> import time, os.path
>>> photofiles = [’img_1074.jpg’, ’img_1076.jpg’, ’img_1077.jpg’]
>>> class BatchRename(Template):
... delimiter = ’%’
>>> fmt = input(’Enter rename style (%d-date %n-seqnum %f-format): ’)
Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f

>>> t = BatchRename(fmt)
>>> date = time.strftime(’%d%b%y’)
>>> for i, filename in enumerate(photofiles):
... base, ext = os.path.splitext(filename)
... newname = t.substitute(d=date, n=i, f=ext)
... print(’{0} --> {1}’.format(filename, newname))

img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

78 Chapter 11. Brief Tour of the Standard Library – Part II

Python Tutorial, Release 3.2.3

Another application for templating is separating program logic from the details of multiple output formats. This
makes it possible to substitute custom templates for XML files, plain text reports, and HTML web reports.

11.3 Working with Binary Data Record Layouts

The struct module provides pack() and unpack() functions for working with variable length binary record
formats. The following example shows how to loop through header information in a ZIP file without using the
zipfile module. Pack codes "H" and "I" represent two and four byte unsigned numbers respectively. The
"<" indicates that they are standard size and in little-endian byte order:

import struct

data = open(’myfile.zip’, ’rb’).read()
start = 0
for i in range(3): # show the first 3 file headers

start += 14
fields = struct.unpack(’<IIIHH’, data[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

start += 16
filename = data[start:start+filenamesize]
start += filenamesize
extra = data[start:start+extra_size]
print(filename, hex(crc32), comp_size, uncomp_size)

start += extra_size + comp_size # skip to the next header

11.4 Multi-threading

Threading is a technique for decoupling tasks which are not sequentially dependent. Threads can be used to
improve the responsiveness of applications that accept user input while other tasks run in the background. A
related use case is running I/O in parallel with computations in another thread.

The following code shows how the high level threading module can run tasks in background while the main
program continues to run:

import threading, zipfile

class AsyncZip(threading.Thread):
def __init__(self, infile, outfile):

threading.Thread.__init__(self)
self.infile = infile
self.outfile = outfile

def run(self):
f = zipfile.ZipFile(self.outfile, ’w’, zipfile.ZIP_DEFLATED)
f.write(self.infile)
f.close()
print(’Finished background zip of:’, self.infile)

background = AsyncZip(’mydata.txt’, ’myarchive.zip’)
background.start()
print(’The main program continues to run in foreground.’)

background.join() # Wait for the background task to finish
print(’Main program waited until background was done.’)

11.3. Working with Binary Data Record Layouts 79

Python Tutorial, Release 3.2.3

The principal challenge of multi-threaded applications is coordinating threads that share data or other resources. To
that end, the threading module provides a number of synchronization primitives including locks, events, condition
variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the
preferred approach to task coordination is to concentrate all access to a resource in a single thread and then use
the queue module to feed that thread with requests from other threads. Applications using Queue objects for
inter-thread communication and coordination are easier to design, more readable, and more reliable.

11.5 Logging

The logging module offers a full featured and flexible logging system. At its simplest, log messages are sent to
a file or to sys.stderr:

import logging
logging.debug(’Debugging information’)
logging.info(’Informational message’)
logging.warning(’Warning:config file %s not found’, ’server.conf’)
logging.error(’Error occurred’)
logging.critical(’Critical error -- shutting down’)

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output is sent to standard error. Other
output options include routing messages through email, datagrams, sockets, or to an HTTP Server. New filters can
select different routing based on message priority: DEBUG, INFO, WARNING, ERROR, and CRITICAL.

The logging system can be configured directly from Python or can be loaded from a user editable configuration
file for customized logging without altering the application.

11.6 Weak References

Python does automatic memory management (reference counting for most objects and garbage collection to elim-
inate cycles). The memory is freed shortly after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need to track objects only as long as
they are being used by something else. Unfortunately, just tracking them creates a reference that makes them
permanent. The weakref module provides tools for tracking objects without creating a reference. When the
object is no longer needed, it is automatically removed from a weakref table and a callback is triggered for
weakref objects. Typical applications include caching objects that are expensive to create:

>>> import weakref, gc
>>> class A:
... def __init__(self, value):
... self.value = value
... def __repr__(self):
... return str(self.value)
...
>>> a = A(10) # create a reference
>>> d = weakref.WeakValueDictionary()
>>> d[’primary’] = a # does not create a reference
>>> d[’primary’] # fetch the object if it is still alive
10
>>> del a # remove the one reference
>>> gc.collect() # run garbage collection right away

80 Chapter 11. Brief Tour of the Standard Library – Part II

Python Tutorial, Release 3.2.3

0
>>> d[’primary’] # entry was automatically removed
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
d[’primary’] # entry was automatically removed

File "C:/python31/lib/weakref.py", line 46, in __getitem__
o = self.data[key]()

KeyError: ’primary’

11.7 Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However, sometimes there is a need for alternative
implementations with different performance trade-offs.

The array module provides an array() object that is like a list that stores only homogeneous data and stores it
more compactly. The following example shows an array of numbers stored as two byte unsigned binary numbers
(typecode "H") rather than the usual 16 bytes per entry for regular lists of Python int objects:

>>> from array import array
>>> a = array(’H’, [4000, 10, 700, 22222])
>>> sum(a)
26932
>>> a[1:3]
array(’H’, [10, 700])

The collections module provides a deque() object that is like a list with faster appends and pops from the
left side but slower lookups in the middle. These objects are well suited for implementing queues and breadth first
tree searches:

>>> from collections import deque
>>> d = deque(["task1", "task2", "task3"])
>>> d.append("task4")
>>> print("Handling", d.popleft())
Handling task1

unsearched = deque([starting_node])
def breadth_first_search(unsearched):

node = unsearched.popleft()
for m in gen_moves(node):

if is_goal(m):
return m

unsearched.append(m)

In addition to alternative list implementations, the library also offers other tools such as the bisect module with
functions for manipulating sorted lists:

>>> import bisect
>>> scores = [(100, ’perl’), (200, ’tcl’), (400, ’lua’), (500, ’python’)]
>>> bisect.insort(scores, (300, ’ruby’))
>>> scores
[(100, ’perl’), (200, ’tcl’), (300, ’ruby’), (400, ’lua’), (500, ’python’)]

The heapq module provides functions for implementing heaps based on regular lists. The lowest valued entry is
always kept at position zero. This is useful for applications which repeatedly access the smallest element but do
not want to run a full list sort:

>>> from heapq import heapify, heappop, heappush
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> heapify(data) # rearrange the list into heap order
>>> heappush(data, -5) # add a new entry

11.7. Tools for Working with Lists 81

Python Tutorial, Release 3.2.3

>>> [heappop(data) for i in range(3)] # fetch the three smallest entries
[-5, 0, 1]

11.8 Decimal Floating Point Arithmetic

The decimal module offers a Decimal datatype for decimal floating point arithmetic. Compared to the built-in
float implementation of binary floating point, the class is especially helpful for

• financial applications and other uses which require exact decimal representation,

• control over precision,

• control over rounding to meet legal or regulatory requirements,

• tracking of significant decimal places, or

• applications where the user expects the results to match calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal floating point and
binary floating point. The difference becomes significant if the results are rounded to the nearest cent:

>>> from decimal import *
>>> round(Decimal(’0.70’) * Decimal(’1.05’), 2)
Decimal(’0.74’)
>>> round(.70 * 1.05, 2)
0.73

The Decimal result keeps a trailing zero, automatically inferring four place significance from multiplicands with
two place significance. Decimal reproduces mathematics as done by hand and avoids issues that can arise when
binary floating point cannot exactly represent decimal quantities.

Exact representation enables the Decimal class to perform modulo calculations and equality tests that are un-
suitable for binary floating point:

>>> Decimal(’1.00’) % Decimal(’.10’)
Decimal(’0.00’)
>>> 1.00 % 0.10
0.09999999999999995

>>> sum([Decimal(’0.1’)]*10) == Decimal(’1.0’)
True
>>> sum([0.1]*10) == 1.0
False

The decimal module provides arithmetic with as much precision as needed:

>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal(’0.142857142857142857142857142857142857’)

82 Chapter 11. Brief Tour of the Standard Library – Part II

CHAPTER

TWELVE

WHAT NOW?

Reading this tutorial has probably reinforced your interest in using Python — you should be eager to apply Python
to solving your real-world problems. Where should you go to learn more?

This tutorial is part of Python’s documentation set. Some other documents in the set are:

• library-index:

You should browse through this manual, which gives complete (though terse) reference material about
types, functions, and the modules in the standard library. The standard Python distribution includes a lot
of additional code. There are modules to read Unix mailboxes, retrieve documents via HTTP, generate
random numbers, parse command-line options, write CGI programs, compress data, and many other tasks.
Skimming through the Library Reference will give you an idea of what’s available.

• install-index explains how to install external modules written by other Python users.

• reference-index: A detailed explanation of Python’s syntax and semantics. It’s heavy reading, but is useful
as a complete guide to the language itself.

More Python resources:

• http://www.python.org: The major Python Web site. It contains code, documentation, and pointers to
Python-related pages around the Web. This Web site is mirrored in various places around the world, such
as Europe, Japan, and Australia; a mirror may be faster than the main site, depending on your geographical
location.

• http://docs.python.org: Fast access to Python’s documentation.

• http://pypi.python.org: The Python Package Index, previously also nicknamed the Cheese Shop, is an index
of user-created Python modules that are available for download. Once you begin releasing code, you can
register it here so that others can find it.

• http://aspn.activestate.com/ASPN/Python/Cookbook/: The Python Cookbook is a sizable collection of code
examples, larger modules, and useful scripts. Particularly notable contributions are collected in a book also
titled Python Cookbook (O’Reilly & Associates, ISBN 0-596-00797-3.)

• http://scipy.org: The Scientific Python project includes modules for fast array computations and manipu-
lations plus a host of packages for such things as linear algebra, Fourier transforms, non-linear solvers,
random number distributions, statistical analysis and the like.

For Python-related questions and problem reports, you can post to the newsgroup comp.lang.python, or
send them to the mailing list at python-list@python.org. The newsgroup and mailing list are gatewayed, so
messages posted to one will automatically be forwarded to the other. There are around 120 postings a day
(with peaks up to several hundred), asking (and answering) questions, suggesting new features, and announc-
ing new modules. Before posting, be sure to check the list of Frequently Asked Questions (also called the FAQ),
or look for it in the Misc/ directory of the Python source distribution. Mailing list archives are available at
http://mail.python.org/pipermail/. The FAQ answers many of the questions that come up again and again, and
may already contain the solution for your problem.

83

http://www.python.org
http://docs.python.org
http://pypi.python.org
http://aspn.activestate.com/ASPN/Python/Cookbook/
http://scipy.org
mailto:python-list@python.org
http://www.python.org/doc/faq/
http://mail.python.org/pipermail/

Python Tutorial, Release 3.2.3

84 Chapter 12. What Now?

CHAPTER

THIRTEEN

INTERACTIVE INPUT EDITING AND
HISTORY SUBSTITUTION

Some versions of the Python interpreter support editing of the current input line and history substitution, similar
to facilities found in the Korn shell and the GNU Bash shell. This is implemented using the GNU Readline library,
which supports Emacs-style and vi-style editing. This library has its own documentation which I won’t duplicate
here; however, the basics are easily explained. The interactive editing and history described here are optionally
available in the Unix and Cygwin versions of the interpreter.

This chapter does not document the editing facilities of Mark Hammond’s PythonWin package or the Tk-based
environment, IDLE, distributed with Python. The command line history recall which operates within DOS boxes
on NT and some other DOS and Windows flavors is yet another beast.

13.1 Line Editing

If supported, input line editing is active whenever the interpreter prints a primary or secondary prompt. The
current line can be edited using the conventional Emacs control characters. The most important of these are: C-A
(Control-A) moves the cursor to the beginning of the line, C-E to the end, C-B moves it one position to the left,
C-F to the right. Backspace erases the character to the left of the cursor, C-D the character to its right. C-K kills
(erases) the rest of the line to the right of the cursor, C-Y yanks back the last killed string. C-underscore
undoes the last change you made; it can be repeated for cumulative effect.

13.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved in a history buffer, and when a
new prompt is given you are positioned on a new line at the bottom of this buffer. C-P moves one line up (back)
in the history buffer, C-N moves one down. Any line in the history buffer can be edited; an asterisk appears in
front of the prompt to mark a line as modified. Pressing the Return key passes the current line to the interpreter.
C-R starts an incremental reverse search; C-S starts a forward search.

13.3 Key Bindings

The key bindings and some other parameters of the Readline library can be customized by placing commands in
an initialization file called ~/.inputrc. Key bindings have the form

key-name: function-name

or

"string": function-name

and options can be set with

85

http://tiswww.case.edu/php/chet/readline/rltop.html

Python Tutorial, Release 3.2.3

set option-name value

For example:

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:
Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for Tab in Python is to insert a Tab character instead of Readline’s default filename
completion function. If you insist, you can override this by putting

Tab: complete

in your ~/.inputrc. (Of course, this makes it harder to type indented continuation lines if you’re accustomed
to using Tab for that purpose.)

Automatic completion of variable and module names is optionally available. To enable it in the interpreter’s
interactive mode, add the following to your startup file: 1

import rlcompleter, readline
readline.parse_and_bind(’tab: complete’)

This binds the Tab key to the completion function, so hitting the Tab key twice suggests completions; it looks at
Python statement names, the current local variables, and the available module names. For dotted expressions such
as string.a, it will evaluate the expression up to the final ’.’ and then suggest completions from the attributes
of the resulting object. Note that this may execute application-defined code if an object with a __getattr__()
method is part of the expression.

A more capable startup file might look like this example. Note that this deletes the names it creates once they are
no longer needed; this is done since the startup file is executed in the same namespace as the interactive commands,
and removing the names avoids creating side effects in the interactive environment. You may find it convenient to
keep some of the imported modules, such as os, which turn out to be needed in most sessions with the interpreter.

Add auto-completion and a stored history file of commands to your Python
interactive interpreter. Requires Python 2.0+, readline. Autocomplete is
bound to the Esc key by default (you can change it - see readline docs).
#
Store the file in ~/.pystartup, and set an environment variable to point
to it: "export PYTHONSTARTUP=~/.pystartup" in bash.

import atexit
import os
import readline
import rlcompleter

historyPath = os.path.expanduser("~/.pyhistory")

def save_history(historyPath=historyPath):
import readline
readline.write_history_file(historyPath)

if os.path.exists(historyPath):
readline.read_history_file(historyPath)

1 Python will execute the contents of a file identified by the
PYTHONSTARTUP environment variable when you start an interactive interpreter. To customize Python even for non-interactive mode, see

The Customization Modules.

86 Chapter 13. Interactive Input Editing and History Substitution

Python Tutorial, Release 3.2.3

atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath

13.4 Alternatives to the Interactive Interpreter

This facility is an enormous step forward compared to earlier versions of the interpreter; however, some wishes
are left: It would be nice if the proper indentation were suggested on continuation lines (the parser knows if an
indent token is required next). The completion mechanism might use the interpreter’s symbol table. A command
to check (or even suggest) matching parentheses, quotes, etc., would also be useful.

One alternative enhanced interactive interpreter that has been around for quite some time is IPython, which features
tab completion, object exploration and advanced history management. It can also be thoroughly customized and
embedded into other applications. Another similar enhanced interactive environment is bpython.

13.4. Alternatives to the Interactive Interpreter 87

http://ipython.scipy.org/
http://www.bpython-interpreter.org/

Python Tutorial, Release 3.2.3

88 Chapter 13. Interactive Input Editing and History Substitution

CHAPTER

FOURTEEN

FLOATING POINT ARITHMETIC:
ISSUES AND LIMITATIONS

Floating-point numbers are represented in computer hardware as base 2 (binary) fractions. For example, the
decimal fraction

0.125

has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction

0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only real difference being that the first is
written in base 10 fractional notation, and the second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as binary fractions. A consequence is that, in
general, the decimal floating-point numbers you enter are only approximated by the binary floating-point numbers
actually stored in the machine.

The problem is easier to understand at first in base 10. Consider the fraction 1/3. You can approximate that as a
base 10 fraction:

0.3

or, better,

0.33

or, better,

0.333

and so on. No matter how many digits you’re willing to write down, the result will never be exactly 1/3, but will
be an increasingly better approximation of 1/3.

In the same way, no matter how many base 2 digits you’re willing to use, the decimal value 0.1 cannot be repre-
sented exactly as a base 2 fraction. In base 2, 1/10 is the infinitely repeating fraction

0.0001100110011001100110011001100110011001100110011...

Stop at any finite number of bits, and you get an approximation. On most machines today, floats are approximated
using a binary fraction with the numerator using the first 53 bits starting with the most significant bit and with the
denominator as a power of two. In the case of 1/10, the binary fraction is 3602879701896397 / 2 ** 55
which is close to but not exactly equal to the true value of 1/10.

Many users are not aware of the approximation because of the way values are displayed. Python only prints a
decimal approximation to the true decimal value of the binary approximation stored by the machine. On most
machines, if Python were to print the true decimal value of the binary approximation stored for 0.1, it would have
to display

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

89

Python Tutorial, Release 3.2.3

That is more digits than most people find useful, so Python keeps the number of digits manageable by displaying
a rounded value instead

>>> 1 / 10
0.1

Just remember, even though the printed result looks like the exact value of 1/10, the actual stored value is the
nearest representable binary fraction.

Interestingly, there are many different decimal numbers that share the same nearest approx-
imate binary fraction. For example, the numbers 0.1 and 0.10000000000000001 and
0.1000000000000000055511151231257827021181583404541015625 are all approximated
by 3602879701896397 / 2 ** 55. Since all of these decimal values share the same approximation, any
one of them could be displayed while still preserving the invariant eval(repr(x)) == x.

Historically, the Python prompt and built-in repr() function would choose the one with 17 significant digits,
0.10000000000000001. Starting with Python 3.1, Python (on most systems) is now able to choose the
shortest of these and simply display 0.1.

Note that this is in the very nature of binary floating-point: this is not a bug in Python, and it is not a bug in
your code either. You’ll see the same kind of thing in all languages that support your hardware’s floating-point
arithmetic (although some languages may not display the difference by default, or in all output modes).

For more pleasant output, you may wish to use string formatting to produce a limited number of significant digits:

>>> format(math.pi, ’.12g’) # give 12 significant digits
’3.14159265359’

>>> format(math.pi, ’.2f’) # give 2 digits after the point
’3.14’

>>> repr(math.pi)
’3.141592653589793’

It’s important to realize that this is, in a real sense, an illusion: you’re simply rounding the display of the true
machine value.

One illusion may beget another. For example, since 0.1 is not exactly 1/10, summing three values of 0.1 may not
yield exactly 0.3, either:

>>> .1 + .1 + .1 == .3
False

Also, since the 0.1 cannot get any closer to the exact value of 1/10 and 0.3 cannot get any closer to the exact value
of 3/10, then pre-rounding with round() function cannot help:

>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)
False

Though the numbers cannot be made closer to their intended exact values, the round() function can be useful
for post-rounding so that results with inexact values become comparable to one another:

>>> round(.1 + .1 + .1, 10) == round(.3, 10)
True

Binary floating-point arithmetic holds many surprises like this. The problem with “0.1” is explained in precise
detail below, in the “Representation Error” section. See The Perils of Floating Point for a more complete account
of other common surprises.

As that says near the end, “there are no easy answers.” Still, don’t be unduly wary of floating-point! The errors in
Python float operations are inherited from the floating-point hardware, and on most machines are on the order of
no more than 1 part in 2**53 per operation. That’s more than adequate for most tasks, but you do need to keep in
mind that it’s not decimal arithmetic and that every float operation can suffer a new rounding error.

While pathological cases do exist, for most casual use of floating-point arithmetic you’ll see the result you expect
in the end if you simply round the display of your final results to the number of decimal digits you expect. str()
usually suffices, and for finer control see the str.format() method’s format specifiers in formatstrings.

90 Chapter 14. Floating Point Arithmetic: Issues and Limitations

http://www.lahey.com/float.htm

Python Tutorial, Release 3.2.3

For use cases which require exact decimal representation, try using the decimal module which implements
decimal arithmetic suitable for accounting applications and high-precision applications.

Another form of exact arithmetic is supported by the fractions module which implements arithmetic based on
rational numbers (so the numbers like 1/3 can be represented exactly).

If you are a heavy user of floating point operations you should take a look at the Numerical Python pack-
age and many other packages for mathematical and statistical operations supplied by the SciPy project. See
<http://scipy.org>.

Python provides tools that may help on those rare occasions when you really do want to know the exact value of
a float. The float.as_integer_ratio() method expresses the value of a float as a fraction:

>>> x = 3.14159
>>> x.as_integer_ratio()
(3537115888337719, 1125899906842624)

Since the ratio is exact, it can be used to losslessly recreate the original value:

>>> x == 3537115888337719 / 1125899906842624
True

The float.hex() method expresses a float in hexadecimal (base 16), again giving the exact value stored by
your computer:

>>> x.hex()
’0x1.921f9f01b866ep+1’

This precise hexadecimal representation can be used to reconstruct the float value exactly:

>>> x == float.fromhex(’0x1.921f9f01b866ep+1’)
True

Since the representation is exact, it is useful for reliably porting values across different versions of Python (plat-
form independence) and exchanging data with other languages that support the same format (such as Java and
C99).

Another helpful tool is the math.fsum() function which helps mitigate loss-of-precision during summation. It
tracks “lost digits” as values are added onto a running total. That can make a difference in overall accuracy so that
the errors do not accumulate to the point where they affect the final total:

>>> sum([0.1] * 10) == 1.0
False
>>> math.fsum([0.1] * 10) == 1.0
True

14.1 Representation Error

This section explains the “0.1” example in detail, and shows how you can perform an exact analysis of cases like
this yourself. Basic familiarity with binary floating-point representation is assumed.

Representation error refers to the fact that some (most, actually) decimal fractions cannot be represented exactly
as binary (base 2) fractions. This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many others)
often won’t display the exact decimal number you expect.

Why is that? 1/10 is not exactly representable as a binary fraction. Almost all machines today (November 2000)
use IEEE-754 floating point arithmetic, and almost all platforms map Python floats to IEEE-754 “double preci-
sion”. 754 doubles contain 53 bits of precision, so on input the computer strives to convert 0.1 to the closest
fraction it can of the form J/2**N where J is an integer containing exactly 53 bits. Rewriting

1 / 10 ~= J / (2**N)

as

J ~= 2**N / 10

14.1. Representation Error 91

http://scipy.org

Python Tutorial, Release 3.2.3

and recalling that J has exactly 53 bits (is >= 2**52 but < 2**53), the best value for N is 56:

>>> 2**52 <= 2**56 // 10 < 2**53
True

That is, 56 is the only value for N that leaves J with exactly 53 bits. The best possible value for J is then that
quotient rounded:

>>> q, r = divmod(2**56, 10)
>>> r
6

Since the remainder is more than half of 10, the best approximation is obtained by rounding up:

>>> q+1
7205759403792794

Therefore the best possible approximation to 1/10 in 754 double precision is:

7205759403792794 / 2 ** 56

Dividing both the numerator and denominator by two reduces the fraction to:

3602879701896397 / 2 ** 55

Note that since we rounded up, this is actually a little bit larger than 1/10; if we had not rounded up, the quotient
would have been a little bit smaller than 1/10. But in no case can it be exactly 1/10!

So the computer never “sees” 1/10: what it sees is the exact fraction given above, the best 754 double approxima-
tion it can get:

>>> 0.1 * 2 ** 55
3602879701896397.0

If we multiply that fraction by 10**55, we can see the value out to 55 decimal digits:

>>> 3602879701896397 * 10 ** 55 // 2 ** 55
1000000000000000055511151231257827021181583404541015625

meaning that the exact number stored in the computer is equal to the decimal value
0.1000000000000000055511151231257827021181583404541015625. Instead of displaying the full deci-
mal value, many languages (including older versions of Python), round the result to 17 significant digits:

>>> format(0.1, ’.17f’)
’0.10000000000000001’

The fractions and decimal modules make these calculations easy:

>>> from decimal import Decimal
>>> from fractions import Fraction

>>> Fraction.from_float(0.1)
Fraction(3602879701896397, 36028797018963968)

>>> (0.1).as_integer_ratio()
(3602879701896397, 36028797018963968)

>>> Decimal.from_float(0.1)
Decimal(’0.1000000000000000055511151231257827021181583404541015625’)

>>> format(Decimal.from_float(0.1), ’.17’)
’0.10000000000000001’

92 Chapter 14. Floating Point Arithmetic: Issues and Limitations

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within
a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when
other techniques like hasattr() would be clumsy or subtly wrong (for example with magic methods).
ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance() and issubclass(); see the abc module documentation. Python comes with many
built-in ABCs for data structures (in the collections module), numbers (in the numbers module),
streams (in the io module), import finders and loaders (in the importlib.abc module). You can create
your own ABCs with the abc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A
function or method may have both positional arguments and keyword arguments in its definition. Positional
and keyword arguments may be variable-length: * accepts or passes (if in the function definition or call)
several positional arguments in a list, while ** does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in
the CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same
file is faster the second time (recompilation from source to bytecode can be avoided). This “intermediate
language” is said to run on a virtual machine that executes the machine code corresponding to each bytecode.
Do note that bytecodes are not expected to work between different Python virtual machines, nor to be stable
between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3,
but in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the
same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5
rather than just 3+4.5.

93

http://www.python.org/~guido/

Python Tutorial, Release 3.2.3

complex number An extension of the familiar real number system in which all numbers are expressed as a sum
of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square
root of -1), often written i in mathematics or j in engineering. Python has built-in support for complex
numbers, which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j.
To get access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly
advanced mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely
ignore them.

context manager An object which controls the environment seen in a with statement by defining
__enter__() and __exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The
term “CPython” is used when necessary to distinguish this implementation from others such as Jython or
IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a
class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally,
using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but
if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a
deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() function and __eq__() methods. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored
when the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the
enclosing class, function or module. Since it is available via introspection, it is the canonical place for
documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right in-
terface; instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like
a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code im-
proves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type() or
isinstance(). (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employs hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of many try and except statements. The technique contrasts with the
LBYL style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an ac-
cumulation of expression elements like literals, names, attribute access, operators or function calls which
all return a value. In contrast to many other languages, not all language constructs are expressions. There

94 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343
http://python.org

Python Tutorial, Release 3.2.3

are also statements which cannot be used as expressions, such as if. Assignments are also statements, not
expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user
code.

file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or
to another other type of storage or communication device (for example standard input/output, in-memory
buffers, sockets, pipes, etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()
function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module. It must implement a method named
find_module(). See PEP 302 for details and importlib.abc.Finder for an abstract base class.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division.
Note that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also argument and method.

__future__ A pseudo-module which programmers can use to enable new language features which are not com-
patible with the current interpreter.

By importing the __future__ module and evaluating its variables, you can see when a new feature was
first added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference
cycles.

generator A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series a values usable in a for-loop or that can be retrieved one at a time with
the next() function. Each yield temporarily suspends processing, remembering the location execution
state (including local variables and pending try-statements). When the generator resumes, it picks-up where
it left-off (in contrast to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optional if expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes
Python bytecode at a time. This simplifies the CPython implementation by making the object model (in-
cluding critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire
interpreter makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism
afforded by multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released
when doing I/O.

95

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0238

Python Tutorial, Release 3.2.3

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granular-
ity) have not been successful because performance suffered in the common single-processor case. It is
believed that overcoming this performance issue would make the implementation much more complicated
and therefore costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an __eq__() method). Hash-
able objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use
the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dic-
tionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare
unequal, and their hash value is their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the
interpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas
or inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See
also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict and file and objects
of any classes you define with an __iter__() or __getitem__() method. Iterables can be used in
a for loop and in many other places where a sequence is needed (zip(), map(), ...). When an iterable
object is passed as an argument to the built-in function iter(), it returns an iterator for the object. This
iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to call
iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence,
and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or
passing it to the built-in function next()) return successive items in the stream. When no more data are
available a StopIteration exception is raised instead. At this point, the iterator object is exhausted and
any further calls to its __next__() method just raise StopIteration again. Iterators are required to
have an __iter__() method that returns the iterator object itself so every iterator is also iterable and may
be used in most places where other iterables are accepted. One notable exception is code which attempts
multiple iteration passes. A container object (such as a list) produces a fresh new iterator each time you
pass it to the iter() function or use it in a for loop. Attempting this with an iterator will just return the
same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.

More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering.
For example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort
conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.nsmallest(), heapq.nlargest(),
and itertools.groupby().

96 Appendix A. Glossary

Python Tutorial, Release 3.2.3

There are several ways to create a key function. For example. the str.lower() method can serve
as a key function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a
lambda expression such as lambda r: (r[0], r[2]). Also, the operator module provides
three key function constuctors: attrgetter(), itemgetter(), and methodcaller(). See the
Sorting HOW TO for examples of how to create and use key functions.

keyword argument Arguments which are preceded with a variable_name= in the call. The variable name
designates the local name in the function to which the value is assigned. ** is used to accept or pass a
dictionary of keyword arguments. See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is lambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition be-
tween “the looking” and “the leaping”. For example, the code, if key in mapping: return
mapping[key] can fail if another thread removes key from mapping after the test, but before the lookup.
This issue can be solved with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list
with the results. result = [’{:#04x}’.format(x) for x in range(256) if x % 2
== 0] generates a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The
if clause is optional. If omitted, all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

mapping A container object that supports arbitrary key lookups and implements the methods spec-
ified in the Mapping or MutableMapping abstract base classes. Examples include dict,
collections.defaultdict, collections.OrderedDict and collections.Counter.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and
nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order.

MRO See method resolution order.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time.localtime() returns a tuple-like object where the year is accessible either with an
index such as t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple(). The latter approach automatically provides extra features such as a
self-documenting representation like Employee(name=’jones’, title=’programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces

97

http://www.python.org/dev/peps/pep-0302
http://www.python.org/download/releases/2.3/mro/

Python Tutorial, Release 3.2.3

support modularity by preventing naming conflicts. For instance, the functions builtins.open() and
os.open() are distinguished by their namespaces. Namespaces also aid readability and maintainabil-
ity by making it clear which module implements a function. For instance, writing random.seed()
or itertools.islice() makes it clear that those functions are implemented by the random and
itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes by default work only
for reference and not for assignment. Local variables both read and write in the innermost scope. Likewise,
global variables read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of
any new-style class.

positional argument The arguments assigned to local names inside a function or method, determined by the
order in which they were given in the call. * is used to either accept multiple positional arguments (when
in the definition), or pass several arguments as a list to a function. See argument.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common idiom
in Python is to loop over all elements of an iterable using a for statement. Many other languages don’t
have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. The sys module defines a getrefcount() function that programmers can
call to return the reference count for a particular object.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__()
special method and defines a len() method that returns the length of the sequence. Some built-in se-
quence types are list, str, tuple, and bytes. Note that dict also supports __getitem__()
and __len__(), but is considered a mapping rather than a sequence because the lookups use arbitrary
immutable keys rather than integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, []
with colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket
(subscript) notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as
addition. Such methods have names starting and ending with double underscores. Special methods are
documented in specialnames.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or a one of
several constructs with a keyword, such as if, while or for.

triple-quoted string A string which is bound by three instances of either a quotation mark (”) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a

98 Appendix A. Glossary

Python Tutorial, Release 3.2.3

number of reasons. They allow you to include unescaped single and double quotes within a string and they
can span multiple lines without the use of the continuation character, making them especially useful when
writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type
is accessible as its __class__ attribute or can be retrieved with type(obj).

view The objects returned from dict.keys(), dict.values(), and dict.items() are called dictio-
nary views. They are lazy sequences that will see changes in the underlying dictionary. To force the
dictionary view to become a full list use list(dictview). See dict-views.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emit-
ted by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typing “import this” at the interactive prompt.

99

Python Tutorial, Release 3.2.3

100 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically writ-
ten for the Python documentation.

Development of the documentation and its toolchain takes place on the docs@python.org mailing list. We’re
always looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

See reporting-bugs for information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably
not complete – if you feel that you or anyone else should be on this list, please let us know (send email to
docs@python.org), and we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesús Cea Avión, Manuel Balsera, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter,
Alexander Belopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg
Brandl, Keith Briggs, Ian Bruntlett, Lee Busby, Arnaud Calmettes, Lorenzo M. Catucci, Carl Cerecke, Mauro
Cicognini, Gilles Civario, Mike Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew
Dalke, Ben Darnell, L. Peter Deutsch, Robert Donohue, Fred L. Drake, Jr., Jacques Ducasse, Josip Dzolonga, Jeff
Epler, Michael Ernst, Blame Andy Eskilsson, Carey Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Hernán
Martínez Foffani, Michael Foord, Stefan Franke, Jim Fulton, Peter Funk, Lele Gaifax, Matthew Gallagher, Gabriel
Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan Giddy, Matt Giuca, Shelley Gooch, Nathaniel Gray, Grant
Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond, Harald Hanche-Olsen, Manus Hand, Gerhard
Häring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Ben Hayden, Thomas Heller, Bernhard Herzog, Mag-
nus L. Hetland, Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hoffleit, Steve Holden, Thomas
Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson, Eric Huss, Jeremy Hyl-
ton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas de Jonge, Andreas
Jung, Robert Kern, Jim Kerr, Jan Kim, Kamil Kisiel, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel
Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno Kuusela, Ross Lagerwall, Thomas Lamb, Detlef Lannert,
Piers Lauder, Glyph Lefkowitz, Robert Lehmann, Marc-André Lemburg, Ross Light, Gediminas Liktaras, Ulf A.
Lindgren, Everett Lipman, Mirko Liss, Martin von Löwis, Fredrik Lundh, Jeff MacDonald, John Machin, Andrew
MacIntyre, Vladimir Marangozov, Vincent Marchetti, Westley Martínez, Laura Matson, Daniel May, Rebecca
McCreary, Doug Mennella, Paolo Milani, Skip Montanaro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale
Nagata, Trent Nelson, Michal Nowikowski, Steffen Daode Nurpmeso, Ng Pheng Siong, Koray Oner, Tomas Op-
pelstrup, Denis S. Otkidach, Zooko O’Whielacronx, Shriphani Palakodety, William Park, Joonas Paalasmaa, Harri
Pasanen, Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin D. Pettit, Chris Phoenix, François

101

http://docutils.sf.net/rst.html
http://sphinx.pocoo.org/
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

Python Tutorial, Release 3.2.3

Pinard, Paul Prescod, Eric S. Raymond, Edward K. Ream, Terry J. Reedy, Sean Reifschneider, Bernhard Reiter,
Armin Rigo, Wes Rishel, Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse II, Mark
Russell, Nick Russo, Chris Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Schemenauer,
Barry Scott, Joakim Sernbrant, Justin Sheehy, Charlie Shepherd, Yue Shuaijie, SilentGhost, Michael Simcich,
Ionel Simionescu, Michael Sloan, Gregory P. Smith, Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo,
Frank Stajano, Anthony Starks, Greg Stein, Peter Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson,
Jim Tittsler, David Turner, Sandro Tosi, Ville Vainio, Martijn Vries, Charles G. Waldman, Greg Ward, Barry War-
saw, Corran Webster, Glyn Webster, Bob Weiner, Eddy Welbourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener,
Timothy Wild, Paul Winkler, Collin Winter, Blake Winton, Dan Wolfe, Adam Woodbeck, Steven Work, Thomas
Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

It is only with the input and contributions of the Python community that Python has such wonderful documentation
– Thank You!

102 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see http://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes
2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes

Continued on next page

103

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

Python Tutorial, Release 3.2.3

Table C.1 – continued from previous page
2.4.4 2.4.3 2006 PSF yes
2.5 2.4 2006 PSF yes
2.5.1 2.5 2007 PSF yes
2.6 2.5 2008 PSF yes
2.6.1 2.6 2008 PSF yes
2.6.2 2.6.1 2009 PSF yes
2.6.3 2.6.2 2009 PSF yes
2.6.4 2.6.3 2009 PSF yes
3.0 2.6 2008 PSF yes
3.0.1 3.0 2009 PSF yes
3.1 3.0.1 2009 PSF yes
3.1.1 3.1 2009 PSF yes
3.1.2 3.1.1 2010 PSF yes
3.1.3 3.1.2 2010 PSF yes
3.1.4 3.1.3 2011 PSF yes
3.2 3.1 2011 PSF yes
3.2.1 3.2 2011 PSF yes
3.2.2 3.2.1 2011 PSF yes
3.2.3 3.2.2 2012 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 3.2.3

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 3.2.3 software in source or binary form
and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 3.2.3 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2012 Python Software
Foundation; All Rights Reserved” are retained in Python 3.2.3 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 3.2.3 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 3.2.3.

4. PSF is making Python 3.2.3 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
3.2.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.2.3 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.2.3, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

104 Appendix C. History and License

Python Tutorial, Release 3.2.3

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 3.2.3, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013.”

C.2. Terms and conditions for accessing or otherwise using Python 105

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

Python Tutorial, Release 3.2.3

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

106 Appendix C. History and License

http://www.math.keio.ac.jp/

Python Tutorial, Release 3.2.3

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

The socketmodule uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors

C.3. Licenses and Acknowledgements for Incorporated Software 107

http://www.wide.ad.jp/

Python Tutorial, Release 3.2.3

may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

108 Appendix C. History and License

Python Tutorial, Release 3.2.3

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.6 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

C.3. Licenses and Acknowledgements for Incorporated Software 109

Python Tutorial, Release 3.2.3

Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.7 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.8 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

110 Appendix C. History and License

Python Tutorial, Release 3.2.3

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.10 Select kqueue

The select and contains the following notice for the kqueue interface:

C.3. Licenses and Acknowledgements for Incorporated Software 111

Python Tutorial, Release 3.2.3

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to
and from strings, is derived from the file of the same name by David M. Gay, currently available from
http://www.netlib.org/fp/. The original file, as retrieved on March 16, 2009, contains the following copyright
and licensing notice:

/**
*
* The author of this software is David M. Gay.

*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice

* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*
***/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows installers for Python include a copy of the OpenSSL libraries,
so we include a copy of the OpenSSL license here:

112 Appendix C. History and License

http://www.netlib.org/fp/

Python Tutorial, Release 3.2.3

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*
* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*
* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*
* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact

* openssl-core@openssl.org.

*
* 5. Products derived from this software may not be called "OpenSSL"

* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*
* 6. Redistributions of any form whatsoever must retain the following

* acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 113

Python Tutorial, Release 3.2.3

* ==

*
* This product includes cryptographic software written by Eric Young

* (eay@cryptsoft.com). This product includes software written by Tim

* Hudson (tjh@cryptsoft.com).

*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*
* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

*
* This library is free for commercial and non-commercial use as long as

* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation

* included with this distribution is covered by the same copyright terms

* except that the holder is Tim Hudson (tjh@cryptsoft.com).

*
* Copyright remains Eric Young’s, and as such any Copyright notices in

* the code are not to be removed.

* If this package is used in a product, Eric Young should be given attribution

* as the author of the parts of the library used.

* This can be in the form of a textual message at program startup or

* in documentation (online or textual) provided with the package.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word ’cryptographic’ can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4. If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:

* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

114 Appendix C. History and License

Python Tutorial, Release 3.2.3

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*
* The licence and distribution terms for any publically available version or

* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘‘Software’’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

C.3. Licenses and Acknowledgements for Incorporated Software 115

Python Tutorial, Release 3.2.3

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is
too old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

116 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2012 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

117

Python Tutorial, Release 3.2.3

118 Appendix D. Copyright

INDEX

Symbols
*

statement, 25
**

statement, 26
..., 93
__all__, 44
__future__, 95
__slots__, 98
>>>, 93
2to3, 93

A
abstract base class, 93
argument, 93
attribute, 93

B
BDFL, 93
built-in function

help, 71
open, 50

builtins
module, 43

bytecode, 93

C
class, 93
coding

style, 27
coercion, 93
compileall

module, 42
complex number, 93
context manager, 94
CPython, 94

D
decorator, 94
descriptor, 94
dictionary, 94
docstring, 94
docstrings, 22, 26
documentation strings, 22, 26
duck-typing, 94

E
EAFP, 94
environment variable

PATH, 6, 41
PYTHONPATH, 41, 42
PYTHONSTARTUP, 7, 86

expression, 94
extension module, 95

F
file

object, 50
file object, 95
file-like object, 95
finder, 95
floor division, 95
for

statement, 19
function, 95

G
garbage collection, 95
generator, 95
generator expression, 95
GIL, 95
global interpreter lock, 95

H
hashable, 96
help

built-in function, 71

I
IDLE, 96
immutable, 96
importer, 96
interactive, 96
interpreted, 96
iterable, 96
iterator, 96

K
key function, 96
keyword argument, 97

119

Python Tutorial, Release 3.2.3

L
lambda, 97
LBYL, 97
list, 97
list comprehension, 97
loader, 97

M
mapping, 97
metaclass, 97
method, 97

object, 63
method resolution order, 97
module

builtins, 43
compileall, 42
pickle, 52
readline, 86
rlcompleter, 86
search path, 41
sys, 42

MRO, 97
mutable, 97

N
named tuple, 97
namespace, 97
nested scope, 98
new-style class, 98

O
object, 98

file, 50
method, 63

open
built-in function, 50

P
PATH, 6, 41
path

module search, 41
pickle

module, 52
positional argument, 98
Python 3000, 98
Python Enhancement Proposals

PEP 238, 95
PEP 302, 95, 97
PEP 343, 94
PEP 8, 27

Pythonic, 98
PYTHONPATH, 41, 42
PYTHONSTARTUP, 7, 86

R
readline

module, 86
reference count, 98

rlcompleter
module, 86

S
search

path, module, 41
sequence, 98
slice, 98
special method, 98
statement, 98

*, 25
**, 26
for, 19

strings, documentation, 22, 26
style

coding, 27
sys

module, 42

T
triple-quoted string, 98
type, 99

V
view, 99
virtual machine, 99

Z
Zen of Python, 99

120 Index

	Whetting Your Appetite
	Using the Python Interpreter
	Invoking the Interpreter
	The Interpreter and Its Environment

	An Informal Introduction to Python
	Using Python as a Calculator
	First Steps Towards Programming

	More Control Flow Tools
	if Statements
	for Statements
	The range() Function
	break and continue Statements, and else Clauses on Loops
	pass Statements
	Defining Functions
	More on Defining Functions
	Intermezzo: Coding Style

	Data Structures
	More on Lists
	The del statement
	Tuples and Sequences
	Sets
	Dictionaries
	Looping Techniques
	More on Conditions
	Comparing Sequences and Other Types

	Modules
	More on Modules
	Standard Modules
	The dir() Function
	Packages

	Input and Output
	Fancier Output Formatting
	Reading and Writing Files

	Errors and Exceptions
	Syntax Errors
	Exceptions
	Handling Exceptions
	Raising Exceptions
	User-defined Exceptions
	Defining Clean-up Actions
	Predefined Clean-up Actions

	Classes
	A Word About Names and Objects
	Python Scopes and Namespaces
	A First Look at Classes
	Random Remarks
	Inheritance
	Private Variables
	Odds and Ends
	Exceptions Are Classes Too
	Iterators
	Generators
	Generator Expressions

	Brief Tour of the Standard Library
	Operating System Interface
	File Wildcards
	Command Line Arguments
	Error Output Redirection and Program Termination
	String Pattern Matching
	Mathematics
	Internet Access
	Dates and Times
	Data Compression
	Performance Measurement
	Quality Control
	Batteries Included

	Brief Tour of the Standard Library – Part II
	Output Formatting
	Templating
	Working with Binary Data Record Layouts
	Multi-threading
	Logging
	Weak References
	Tools for Working with Lists
	Decimal Floating Point Arithmetic

	What Now?
	Interactive Input Editing and History Substitution
	Line Editing
	History Substitution
	Key Bindings
	Alternatives to the Interactive Interpreter

	Floating Point Arithmetic: Issues and Limitations
	Representation Error

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

