What’s New in Python

Release 3.2.1

A. M. Kuchling

July 09, 2011

Python Software Foundation
Email: docs@python.org

Contents
1 PEP 384: Defining a Stable ABI iii
2 PEP 389: Argparse Command Line Parsing Module iii
3 PEP 391: Dictionary Based Configuration for Logging A4
4 PEP 3148: The concurrent . futures module A
5 PEP 3147: PYC Repository Directories vi
6 PEP 3149: ABI Version Tagged .so Files vii
7 PEP 3333: Python Web Server Gateway Interface v1.0.1 vii
8 Other Language Changes viii
9 New, Improved, and Deprecated Modules xi
0.1 email e e e e e e e e xi
0.2 elementtree e e e e e e e e e e e Xii
0.3 functoolS e e e xii
0.4 Tertools L e e e e e e e e e xiv
0.5 COlleCtiOnNS o v o i e e e e e e e e e e e e e e e e e e Xiv
0.6 threading e XV
0.7 datetimeand time e e e e e e e e Xvi
0.8 math e Xvi
0.9 abc e Xvii
0.10 10 . o o e e e e e Xvii
O.11 reprlib o o e Xviii
0.12 108ING . . . o o o e e e e e e e e e e e xviii
0.13 SV L o v e e e e e e e e e Xix
0.14 contextlib e e e e e e e Xix
9.15 decimal and fractions e e e e e e e e XX
0.16 ftp . . o o o e e e e e e XX1
O.17 POPEN . . o v v i e e e e Xxi

9.18

9.19 gzipand zipfile L e e e e e e XxXi
0.20 tarfile e e e e e XXii
9.21 hashlib e e e e XXii
022 St . . . e e e e e e XXiii
0.23 08 . i e s Xxiii
0.24 shutil e Xxiii
0.25 sqlite3 e e e e e e e e e e e e e XXivV
0.26 html L e e e e e e e e e XXiv
0.27 SOCKEL e e e e e e e e XXV
0.28 SSl . . L e e e e e e XXV
0.20 NP L e e e e e XXV
0.30 certificates e e e e e e e e e e XXVi
9031 imaplib e e e e e e e e e XXVi
0.32 http.client oL e e e e e e e e e e e XXVi
0.33 UNILESt e e e e e XXVi
034 random L e XX Vil
0.35 poplib . . L e e e e e e e e e e XXViii
0.30 ASYNCOTE .+ & v v v v v e XXVviii
0.37 tempfile L e e e e e e e e Xxviii
038 INSPECL o o i e e e e e XXViii
0.39 pydoco XXIiX
040 diS L e XXiX
041 dbm e e e e XXX
042 CLYPES v v v v e e e e e e e e e e e e e e e e e e e XXX
B) | XXX
0.44 sysconfig L.l e e XXX1
045 pdb . . L XXXii
0.46 cONfIZPArser v i e e e e e e e e e e e e e e e e e e e XXXii
0.47 urllib.parse L e e e e e e e e e e e e XXxiii
9.48 mailboX e e e e e e e e XXXIV
0.49 turtledemo e XXX1V
10 Multi-threading XXXV
11 Optimizations XXXV
12 Unicode XXXVi
13 Codecs XXXVi
14 Documentation XXXVi
15 IDLE XXXVii
16 Code Repository XXXVii
17 Build and C API Changes xxxvii
18 Porting to Python 3.2 XXXViii
Indexxli

Author Raymond Hettinger

Release 3.2.1

Date July 09, 2011

This article explains the new features in Python 3.2 as compared to 3.1. It focuses on a few highlights and gives a few
examples. For full details, see the Misc/NEWS file.

See Also:
PEP 392 - Python 3.2 Release Schedule

1 PEP 384: Defining a Stable ABI

In the past, extension modules built for one Python version were often not usable with other Python versions. Partic-
ularly on Windows, every feature release of Python required rebuilding all extension modules that one wanted to use.
This requirement was the result of the free access to Python interpreter internals that extension modules could use.

With Python 3.2, an alternative approach becomes available: extension modules which restrict themselves to a limited
API (by defining Py_LIMITED_API) cannot use many of the internals, but are constrained to a set of API functions
that are promised to be stable for several releases. As a consequence, extension modules built for 3.2 in that mode will
also work with 3.3, 3.4, and so on. Extension modules that make use of details of memory structures can still be built,
but will need to be recompiled for every feature release.

See Also:
PEP 384 - Defining a Stable ABI PEP written by Martin von Lowis.

2 PEP 389: Argparse Command Line Parsing Module

A new module for command line parsing, argparse, was introduced to overcome the limitations of optparse
which did not provide support for positional arguments (not just options), subcommands, required options and other
common patterns of specifying and validating options.

This module has already had widespread success in the community as a third-party module. Being more fully featured
than its predecessor, the argparse module is now the preferred module for command-line processing. The older
module is still being kept available because of the substantial amount of legacy code that depends on it.

Here’s an annotated example parser showing features like limiting results to a set of choices, specifying a metavar in
the help screen, validating that one or more positional arguments is present, and making a required option:

import argparse
parser = argparse.ArgumentParser (

description = ’Manage servers’, # main description for help

epilog = ’'Tested on Solaris and Linux’) # displayed after help
parser.add_argument ("action’, # argument name

choices = [’deploy’, ’'start’, ’'stop’], # three allowed values

help = "action on each target’) # help msg
parser.add_argument (' targets’,

metavar = "HOSTNAME', # var name used in help msg

nargs = '+’, # require one or more targets

help = 'url for target machines’) # help msg explanation
parser.add_argument (' -u’, ’'--user’, # —u or —-user option

required = True, # make it a required argument

help = ’"login as user’)

Example of calling the parser on a command string:

http://hg.python.org/cpython/file/default/Misc/NEWS
http://www.python.org/dev/peps/pep-0392
http://www.python.org/dev/peps/pep-0384

>>> cmd = 'deploy sneezy.example.com sleepy.example.com —-u skycaptain’
>>> result = parser.parse_args (cmd.split ())

>>> result.action

"deploy’

>>> result.targets

[/ sneezy.example.com’, ’'sleepy.example.com’]

>>> result.user

"skycaptain’

Example of the parser’s automatically generated help:

>>> parser.parse_args (' —h’ .split ())

usage: manage_cloud.py [-h] —-u USER
{deploy, start,stop} HOSTNAME [HOSTNAME ...]

Manage servers

positional arguments:
{deploy, start, stop} action on each target
HOSTNAME url for target machines

optional arguments:
-h, —-help show this help message and exit
-u USER, —--user USER login as user

Tested on Solaris and Linux

An especially nice argparse feature is the ability to define subparsers, each with their own argument patterns and
help displays:

import argparse
parser = argparse.ArgumentParser (prog=’'HELM')
subparsers = parser.add_subparsers ()

parser_1 = subparsers.add_parser (' launch’, help=’Launch Control’) # first subgroup
parser_l.add_argument (' -m’, ’'—--missiles’, action=’store_true’)
parser_l.add_argument (' -t’, ’'—--torpedos’, action=’store_true’)

parser_m = subparsers.add_parser ("move’, help=’'Move Vessel’, # second subgroup
aliases=('steer’, ’'turn’)) # equivalent names

parser_m.add_argument (' —-c’, ’'--course’, type=int, required=True)

parser_m.add_argument (" -s’, ’'—--speed’, type=int, default=0)

$./helm.py —--help # top level help (launch and move)

$./helm.py launch --help # help for launch options

$./helm.py launch --missiles # set missiles=True and torpedos=False
$./helm.py steer —--course 180 —--speed 5 # set movement parameters

See Also:

PEP 389 - New Command Line Parsing Module PEP written by Steven Bethard.

upgrading-optparse-code for details on the differences from optparse.

http://www.python.org/dev/peps/pep-0389

3 PEP 391: Dictionary Based Configuration for Logging

The 1ogging module provided two kinds of configuration, one style with function calls for each option or another
style driven by an external file saved in a ConfigParser format. Those options did not provide the flexibility to
create configurations from JSON or YAML files, nor did they support incremental configuration, which is needed for
specifying logger options from a command line.

To support a more flexible style, the module now offers 1logging.config.dictConfig () for specifying log-
ging configuration with plain Python dictionaries. The configuration options include formatters, handlers, filters, and
loggers. Here’s a working example of a configuration dictionary:

{"version": 1,
"formatters": {"brief": {"format": "% (levelname)-8s: % (name)-15s: % (message)s"},
"full": {"format": "% (asctime)s % (name)-15s % (levelname)-8s % (message)s"}
}I
"handlers": {"console": {
"class": "logging.StreamHandler",
"formatter": "brief",
"level": "INFO",
"stream": "ext://sys.stdout"},
"console_priority": {
"class": "logging.StreamHandler",
"formatter": "full",
"level": "ERROR",
"stream": "ext://sys.stderr"}
}I
"root": {"level": "DEBUG", "handlers": ["console", "console_priority"]}}

If that dictionary is stored in a file called conf . json, it can be loaded and called with code like this:

>>> import Jjson, logging.config
>>> with open(’conf.json’) as f:
conf = json.load(f)
>>> logging.config.dictConfig(conf)
>>> logging.info ("Transaction completed normally™)
INFO : root : Transaction completed normally
>>> logging.critical ("Abnormal termination™)
2011-02-17 11:14:36,694 root CRITICAL Abnormal termination

See Also:
PEP 391 - Dictionary Based Configuration for Logging PEP written by Vinay Sajip.

4 PEP 3148: The concurrent . futures module

Code for creating and managing concurrency is being collected in a new top-level namespace, concurrent. Its first
member is a futures package which provides a uniform high-level interface for managing threads and processes.

The design for concurrent . futures was inspired by java.util.concurrent.package. In that model, a running call
and its result are represented by a Future object that abstracts features common to threads, processes, and remote
procedure calls. That object supports status checks (running or done), timeouts, cancellations, adding callbacks, and
access to results or exceptions.

The primary offering of the new module is a pair of executor classes for launching and managing calls. The goal of
the executors is to make it easier to use existing tools for making parallel calls. They save the effort needed to setup a

http://www.python.org/dev/peps/pep-0391

pool of resources, launch the calls, create a results queue, add time-out handling, and limit the total number of threads,
processes, or remote procedure calls.

Ideally, each application should share a single executor across multiple components so that process and thread limits
can be centrally managed. This solves the design challenge that arises when each component has its own competing
strategy for resource management.

Both classes share a common interface with three methods: submit () for scheduling a callable and returning a
Future object; map () for scheduling many asynchronous calls at a time, and shutdown () for freeing resources.
The class is a context manager and can be used in a with statement to assure that resources are automatically released
when currently pending futures are done executing.

A simple of example of ThreadPoolExecutor is a launch of four parallel threads for copying files:

import concurrent.futures, shutil

with concurrent.futures.ThreadPoolExecutor (max_workers=4) as e:
.submit (shutil.copy, ’srcl.txt’, ’'destl.txt’)

.submit (shutil.copy, ’'src2.txt’, ’'dest2.txt’)

.submit (shutil.copy, ’'src3.txt’, ’'dest3.txt’)

e.submit (shutil.copy, ’'srcd.txt’, ’'destd.txt’)

See Also:

® ® O

PEP 3148 - Futures — Execute Computations Asynchronously PEP written by Brian Quinlan.
Code for Threaded Parallel URL reads, an example using threads to fetch multiple web pages in parallel.

Code for computing prime numbers in parallel, an example demonstrating ProcessPoolExecutor.

5 PEP 3147: PYC Repository Directories

Python’s scheme for caching bytecode in .pyc files did not work well in environments with multiple Python interpreters.
If one interpreter encountered a cached file created by another interpreter, it would recompile the source and overwrite
the cached file, thus losing the benefits of caching.

The issue of “pyc fights” has become more pronounced as it has become commonplace for Linux distributions to ship
with multiple versions of Python. These conflicts also arise with CPython alternatives such as Unladen Swallow.

To solve this problem, Python’s import machinery has been extended to use distinct filenames for each interpreter.
Instead of Python 3.2 and Python 3.3 and Unladen Swallow each competing for a file called “mymodule.pyc”, they
will now look for “mymodule.cpython-32.pyc”, “mymodule.cpython-33.pyc”, and “mymodule.unladen10.pyc”. And
to prevent all of these new files from cluttering source directories, the pyc files are now collected in a “__pycache__”

directory stored under the package directory.
Aside from the filenames and target directories, the new scheme has a few aspects that are visible to the programmer:
* Imported modules now have a___cached___ attribute which stores the name of the actual file that was imported:

>>> import collections
>>> collections.__cached_
"c:/py32/1ib/__pycache__/collections.cpython-32.pyc’

 The tag that is unique to each interpreter is accessible from the imp module:

>>> import imp
>>> imp.get_tag()
"cpython-327

e Scripts that try to deduce source filename from the imported file now need to be smarter. It is no longer sufficient
to simply strip the “c” from a ”.pyc” filename. Instead, use the new functions in the imp module:

http://www.python.org/dev/peps/pep-3148

>>> imp.source_from_cache (' c:/py32/1ib/__pycache__/collections.cpython-32.pyc’)

"c:/py32/1lib/collections.py’
>>> imp.cache_from_source(’'c:/py32/1lib/collections.py’)
"c:/py32/1ib/__pycache__ /collections.cpython-32.pyc’

e The py_compile and compileall modules have been updated to reflect the new naming convention and
target directory. The command-line invocation of compileall has new options: —1i for specifying a list of files
and directories to compile and —b which causes bytecode files to be written to their legacy location rather than

__pycache__.

e The importlib.abc module has been updated with new abstract base classes for loading bytecode files. The
obsolete ABCs, PyLoader and PyPycLoader, have been deprecated (instructions on how to stay Python 3.1
compatible are included with the documentation).

See Also:
PEP 3147 - PYC Repository Directories PEP written by Barry Warsaw.

6 PEP 3149: ABI Version Tagged .so Files

The PYC repository directory allows multiple bytecode cache files to be co-located. This PEP implements a similar
mechanism for shared object files by giving them a common directory and distinct names for each version.

The common directory is “pyshared” and the file names are made distinct by identifying the Python implementation
(such as CPython, PyPy, Jython, etc.), the major and minor version numbers, and optional build flags (such as “d” for
debug, “m” for pymalloc, “u” for wide-unicode). For an arbitrary package “foo”, you may see these files when the
distribution package is installed:

/usr/share/pyshared/foo.cpython-32m. so
/usr/share/pyshared/foo.cpython-33md.so

In Python itself, the tags are accessible from functions in the sysconfig module:

>>> import sysconfig

>>> sysconfig.get_config_var (' SOABI') # find the version tag
"cpython-32mu’

>>> gysconfig.get_config_var (' S0O’) # find the full filename extension
" .cpython-32mu.so’

See Also:

PEP 3149 - ABI Version Tagged .so Files PEP written by Barry Warsaw.

7 PEP 3333: Python Web Server Gateway Interface v1.0.1

This informational PEP clarifies how bytes/text issues are to be handled by the WSGI protocol. The challenge is that
string handling in Python 3 is most conveniently handled with the st r type even though the HTTP protocol is itself
bytes oriented.

The PEP differentiates so-called native strings that are used for request/response headers and metadata versus byte
strings which are used for the bodies of requests and responses.

The native strings are always of type st r but are restricted to code points between U+0000 through U+00FF which
are translatable to bytes using Latin-1 encoding. These strings are used for the keys and values in the environment
dictionary and for response headers and statuses in the start_response () function. They must follow RFC 2616
with respect to encoding. That is, they must either be ISO-8859-1 characters or use

http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-3149
http://tools.ietf.org/html/rfc2616.html

RFC 2047 MIME encoding.
For developers porting WSGI applications from Python 2, here are the salient points:
* If the app already used strings for headers in Python 2, no change is needed.

« If instead, the app encoded output headers or decoded input headers, then the headers will need to be re-encoded
to Latin-1. For example, an output header encoded in utf-8 was using h.encode (' ut£-8’) now needs to
convert from bytes to native strings using h.encode (' utf-8’) .decode (' latin-1").

* Values yielded by an application or sent using the write () method must be byte strings. The
start_response () function and environ must use native strings. The two cannot be mixed.

For server implementers writing CGI-to-WSGI pathways or other CGI-style protocols, the users must to be able access
the environment using native strings even though the underlying platform may have a different convention. To bridge
this gap, the wsgiref module has a new function, wsgiref.handlers.read_environ () for transcoding
CGI variables from os . environ into native strings and returning a new dictionary.

See Also:
PEP 3333 - Python Web Server Gateway Interface v1.0.1 PEP written by Phillip Eby.

8 Other Language Changes

Some smaller changes made to the core Python language are:

¢ String formatting for format () and str.format () gained new capabilities for the format character #.
Previously, for integers in binary, octal, or hexadecimal, it caused the output to be prefixed with ‘Ob’, ‘0o’, or
‘0x’ respectively. Now it can also handle floats, complex, and Decimal, causing the output to always have a
decimal point even when no digits follow it.

>>> format (20, ’"#0’")
"0o24’

>>> format (12.34, "#5.0f")
roo12.7

(Suggested by Mark Dickinson and implemented by Eric Smith in issue 7094.)

e There is also a new str.format_map () method that extends the capabilities of the existing
str.format () method by accepting arbitrary mapping objects. This new method makes it possible to
use string formatting with any of Python’s many dictionary-like objects such as defaultdict, Shelf,
ConfigParser, or dbm. It is also useful with custom dict subclasses that normalize keys before look-
up or that supply a __missing__ () method for unknown keys:

>>> import shelve

>>> d = shelve.open(’'tmp.shl’”)

>>> ’'The {project_name} status is {status} as of {date}’.format_map (d)
"The testing project status is green as of February 15, 2011’

>>> class LowerCasedDict (dict) :
def _ _getitem__ (self, key):
return dict._ _getitem_ (self, key.lower())
>>> lcd = LowerCasedDict (part='widgets’, quantity=10)
>>> 'There are {QUANTITY} {Part} in stock’.format_map (lcd)
"There are 10 widgets in stock’

>>> class PlaceholderDict (dict) :
def _ missing__ (self, key):

http://tools.ietf.org/html/rfc2047.html
http://www.python.org/dev/peps/pep-3333
http://bugs.python.org/issue7094

return '<{}>’.format (key)
>>> 'Hello {name}, welcome to {location}’.format_map (PlaceholderDict())
"Hello <name>, welcome to <location>’

(Suggested by Raymond Hettinger and implemented by Eric Smith in issue 6081.)

The interpreter can now be started with a quiet option, —q, to prevent the copyright and version information
from being displayed in the interactive mode. The option can be introspected using the sys . f1ags attribute:

$ python -g

>>> sys.flags

sys.flags (debug=0, division_warning=0, inspect=0, interactive=0,
optimize=0, dont_write_bytecode=0, no_user_site=0, no_site=0,
ignore_environment=0, verbose=0, bytes_warning=0, quiet=1)

(Contributed by Marcin Wojdyr in issue 1772833).

The hasattr () function works by calling getattr () and detecting whether an exception is raised. This
technique allows it to detect methods created dynamically by ___getattr__ () or__getattribute__ ()
which would otherwise be absent from the class dictionary. Formerly, hasattr would catch any exception,
possibly masking genuine errors. Now, hasattr has been tightened to only catch AttributeError and let
other exceptions pass through:

>>> class A:
@property
def f(self):
return 1 // 0

>>> a = A()
>>> hasattr(a, "f’)
Traceback (most recent call last):

ZeroDivisionError: integer division or modulo by zero
(Discovered by Yury Selivanov and fixed by Benjamin Peterson; issue 9666.)

The str () of a float or complex number is now the same as its repr (). Previously, the str () form was
shorter but that just caused confusion and is no longer needed now that the shortest possible repr () is displayed
by default:

>>> import math
>>> repr (math.pi)
73.141592653589793"
>>> str(math.pi)
73.141592653589793"

(Proposed and implemented by Mark Dickinson; issue 9337.)

memoryview objects now have a release () method and they also now support the context manager proto-
col. This allows timely release of any resources that were acquired when requesting a buffer from the original
object.

>>> with memoryview (b’ abcdefgh’) as v:
print (v.tolist ())
[97, 98, 99, 100, 101, 102, 103, 104]

(Added by Antoine Pitrou; issue 9757.)

Previously it was illegal to delete a name from the local namespace if it occurs as a free variable in a nested
block:

http://bugs.python.org/issue6081
http://bugs.python.org/issue1772833
http://bugs.python.org/issue9666
http://bugs.python.org/issue9337
http://bugs.python.org/issue9757

def outer (x):
def inner():
return x
inner ()
del x

This is now allowed. Remember that the target of an except clause is cleared, so this code which used to work
with Python 2.6, raised a SyntaxError with Python 3.1 and now works again:

def f£():

def print_error():
print (e)

try:
something

except Exception as e:
print_error ()
implicit "del e" here

(See issue 4617.)

The internal st ruct sequence tool now creates subclasses of tuple. This means that C structures like those
returned by os.stat (), time.gmtime (), and sys.version_info now work like a named tuple and
now work with functions and methods that expect a tuple as an argument. This is a big step forward in making
the C structures as flexible as their pure Python counterparts:

>>> isinstance (sys.version_info, tuple)

True

>>> ’'Version %d.%d.%d %s(%d)’ % sys.version_info
"Version 3.2.0 final(0)’

(Suggested by Arfrever Frehtes Taifersar Arahesis and implemented by Benjamin Peterson in issue 8413.)

Warnings are now easier to control using the PYTHONWARNINGS environment variable as an alternative to
using —W at the command line:

S export PYTHONWARNINGS=’ignore::RuntimeWarning::,once::UnicodeWarning::’
(Suggested by Barry Warsaw and implemented by Philip Jenvey in issue 7301.)

A new warning category, ResourceWarning, has been added. It is emitted when potential issues with
resource consumption or cleanup are detected. It is silenced by default in normal release builds but can be
enabled through the means provided by the warnings module, or on the command line.

A ResourceWarning is issued at interpreter shutdown if the gc.garbage list isn’t empty, and if
gc.DEBUG_UNCOLLECTARBLE is set, all uncollectable objects are printed. This is meant to make the pro-
grammer aware that their code contains object finalization issues.

A ResourceWarning is also issued when a file object is destroyed without having been explicitly closed.
While the deallocator for such object ensures it closes the underlying operating system resource (usually, a file
descriptor), the delay in deallocating the object could produce various issues, especially under Windows. Here
is an example of enabling the warning from the command line:

$ python —-g -Wdefault

>>> £ = open("foo", "wb")

>>> del f

__main__:1: ResourceWarning: unclosed file <_io.BufferedWriter name=’foo’>

(Added by Antoine Pitrou and Georg Brandl in issue 10093 and issue 477863.)

range objects now support index and count methods. This is part of an effort to make more objects fully
implement the collections.Sequence abstract base class. As a result, the language will have a more

http://bugs.python.org/issue4617
http://bugs.python.org/issue8413
http://bugs.python.org/issue7301
http://bugs.python.org/issue10093
http://bugs.python.org/issue477863

uniform API. In addition, range objects now support slicing and negative indices, even with values larger than
sys.maxsize. This makes range more interoperable with lists:

>>> range (0, 100, 2).count (10)

1

>>> range (0, 100, 2).index(10)
5

>>> range (0, 100, 2)[5]

10

>>> range (0, 100, 2)[0:5]
range (0, 10, 2)

(Contributed by Daniel Stutzbach in issue 9213, by Alexander Belopolsky in issue 2690, and by Nick Coghlan
in issue 10889.)

e The callable () builtin function from Py2.x was resurrected. It provides a concise, readable alternative to
using an abstract base class in an expression like isinstance (x, collections.Callable):

>>> callable (max)
True

>>> callable (20)
False

(See issue 10518.)

 Python’s import mechanism can now load modules installed in directories with non-ASCII characters in the path
name. This solved an aggravating problem with home directories for users with non-ASCII characters in their
usernames.

(Required extensive work by Victor Stinner in issue 9425.)

9 New, Improved, and Deprecated Modules

Python’s standard library has undergone significant maintenance efforts and quality improvements.

The biggest news for Python 3.2 is that the email package, mailbox module, and nntplib modules now work
correctly with the bytes/text model in Python 3. For the first time, there is correct handling of messages with mixed
encodings.

Throughout the standard library, there has been more careful attention to encodings and text versus bytes issues. In
particular, interactions with the operating system are now better able to exchange non-ASCII data using the Windows
MBCS encoding, locale-aware encodings, or UTF-8.

Another significant win is the addition of substantially better support for SSL connections and security certificates.

In addition, more classes now implement a context manager to support convenient and reliable resource clean-up using
a with statement.

9.1 email

The usability of the email package in Python 3 has been mostly fixed by the extensive efforts of R. David Murray.
The problem was that emails are typically read and stored in the form of bytes rather than str text, and they may
contain multiple encodings within a single email. So, the email package had to be extended to parse and generate
email messages in bytes format.

e New functions message_from_bytes () and message_from_binary_file (), and new classes
BytesFeedParser and BytesParser allow binary message data to be parsed into model objects.

http://bugs.python.org/issue9213
http://bugs.python.org/issue2690
http://bugs.python.org/issue10889
http://bugs.python.org/issue10518
http://bugs.python.org/issue9425

Given bytes input to the model, get_payload () will by default decode a message body that has a
Content-Transfer—Encoding of 8bit using the charset specified in the MIME headers and return the
resulting string.

Given bytes input to the model, Generator will convert message bodies that have a
Content-Transfer—-Encoding of 8bit to instead have a 7bit Content-Transfer—-Encoding.

Headers with unencoded non-ASCII bytes are deemed to be RFC 2047-encoded using the unknown-8bit char-
acter set.

A new class BytesGenerator produces bytes as output, preserving any unchanged non-ASCII
data that was present in the input used to build the model, including message bodies with a
Content-Transfer—-Encoding of 8bit.

The smtplib SMTP class now accepts a byte string for the msg argument to the sendmail () method, and
a new method, send_message () accepts a Message object and can optionally obtain the from_addr and
to_addrs addresses directly from the object.

(Proposed and implemented by R. David Murray, issue 4661 and issue 10321.)

9.2 elementtree

The xml.etree.ElementTree package and its xml.etree.cElementTree counterpart have been updated
to version 1.3.

Several new and useful functions and methods have been added:

xml.etree.ElementTree. fromstringlist () which builds an XML document from a sequence of
fragments

xml.etree.ElementTree.register_namespace () for registering a global namespace prefix
xml.etree.ElementTree.tostringlist () for string representation including all sublists
xml.etree.ElementTree.Element.extend () for appending a sequence of zero or more elements
xml.etree.ElementTree.Element.iterfind () searches an element and subelements

xml.etree.ElementTree.Element.itertext () creates a text iterator over an element and its
subelements

xml.etree.ElementTree.TreeBuilder.end () closes the current element

xml.etree.ElementTree.TreeBuilder.doctype () handles a doctype declaration

Two methods have been deprecated:

xml.etree.ElementTree.getchildren () use list (elem) instead.

xml.etree.ElementTree.getiterator () use Element.iter instead.

For details of the update, see Introducing ElementTree on Fredrik Lundh’s website.

(Contributed by Florent Xicluna and Fredrik Lundh, issue 6472.)

9.3 functools

The functools module includes a new decorator for caching function calls. functools.lru_cache ()
can save repeated queries to an external resource whenever the results are expected to be the same.

For example, adding a caching decorator to a database query function can save database accesses for popular
searches:

http://tools.ietf.org/html/rfc2047.html
http://bugs.python.org/issue4661
http://bugs.python.org/issue10321
http://effbot.org/zone/elementtree-13-intro.htm
http://bugs.python.org/issue6472

>>> import functools
>>> @functools.lru_cache (maxsize=300)
>>> def get_phone_number (name) :

c = conn.cursor()
c.execute (' SELECT phonenumber FROM phonelist WHERE name=?’, (name,))
return c.fetchone() [0]

>>> for name in user_requests:
get_phone_number (name) # cached lookup

To help with choosing an effective cache size, the wrapped function is instrumented for tracking cache statistics:

>>> get_phone_number.cache_info ()
CacheInfo (hits=4805, misses=980, maxsize=300, currsize=300)

If the phonelist table gets updated, the outdated contents of the cache can be cleared with:
>>> get_phone_number.cache_clear ()

(Contributed by Raymond Hettinger and incorporating design ideas from Jim Baker, Miki Tebeka, and Nick
Coghlan; see recipe 498245, recipe 577479, issue 10586, and issue 10593.)

The functools.wraps () decorator now adds a ___wrapped___ attribute pointing to the original callable
function. This allows wrapped functions to be introspected. It also copies __annotations__ if defined.
And now it also gracefully skips over missing attributes such as __doc___ which might not be defined for the
wrapped callable.

In the above example, the cache can be removed by recovering the original function:
>>> get_phone_number = get_phone_number._ wrapped_ # uncached function
(By Nick Coghlan and Terrence Cole; issue 9567, issue 3445, and issue 8814.)

To help write classes with rich comparison methods, a new decorator functools.total_ordering ()
will use a existing equality and inequality methods to fill in the remaining methods.

For example, supplying __eq__and __ It _ will enable total_ordering() to fill-in _ le_ , gt and
__ge_:
@total_ordering
class Student:
def _ _eq_ (self, other):
return ((self.lastname.lower (), self.firstname.lower()) ==
(other.lastname.lower (), other.firstname.lower()))
def _ 1t (self, other):
return ((self.lastname.lower (), self.firstname.lower()) <
(other.lastname.lower (), other.firstname.lower()))

With the total_ordering decorator, the remaining comparison methods are filled in automatically.
(Contributed by Raymond Hettinger.)

To aid in porting programs from Python 2, the functools.cmp_to_key () function converts an old-style
comparison function to modern key function:

>>> # locale—aware sort order
>>> sorted(iterable, key=cmp_to_key (locale.strcoll))

For sorting examples and a brief sorting tutorial, see the Sorting HowTo tutorial.

(Contributed by Raymond Hettinger.)

http://code.activestate.com/recipes/498245
http://code.activestate.com/recipes/577479
http://bugs.python.org/issue10586
http://bugs.python.org/issue10593
http://bugs.python.org/issue9567
http://bugs.python.org/issue3445
http://bugs.python.org/issue8814
http://wiki.python.org/moin/HowTo/Sorting/

9.4 itertools
* The itertools module has anew accumulate () function modeled on APL’s scan operator and Numpy’s
accumulate function:

>>> from itertools import accumulate
>>> list (accumulate([8, 2, 50]))

[8, 10, 60]
>>> prob_dist = [0.1, 0.4, 0.2, 0.3]
>>> list (accumulate (prob_dist)) # cumulative probability distribution

(
(6.1, 0.5, 0.7, 1.0]
For an example using accumulate (), see the examples for the random module.

(Contributed by Raymond Hettinger and incorporating design suggestions from Mark Dickinson.)

9.5 collections

e The collections.Counter class now has two forms of in-place subtraction, the existing -= operator for
saturating subtraction and the new subtract () method for regular subtraction. The former is suitable for
multisets which only have positive counts, and the latter is more suitable for use cases that allow negative
counts:

>>> tally = Counter (dogs=5, cat=3)

>>> tally —-= Counter (dogs=2, cats=8) # saturating subtraction
>>> tally

Counter ({"dogs’: 3})

>>> tally = Counter (dogs=5, cats=3)

>>> tally.subtract (dogs=2, cats=8) # reqular subtraction
>>> tally

Counter ({’dogs’: 3, ’'cats’: -5})

(Contributed by Raymond Hettinger.)

e The collections.OrderedDict class has a new method move_to_end () which takes an existing key
and moves it to either the first or last position in the ordered sequence.

The default is to move an item to the last position. This is equivalent of renewing an entry with od[k] =
od.pop (k).

A fast move-to-end operation is useful for resequencing entries. For example, an ordered dictionary can be used
to track order of access by aging entries from the oldest to the most recently accessed.

>>> d = OrderedDict.fromkeys([’a’, 'b’, 'X', 'd’", "e’])
>>> list (d)

[IaI, Ibl, IXI, Idl, Iel]

>>> d.move_to_end(’X")

>>> list (d)

[IaI, Ibl, Idl, IeI, IXI]

(Contributed by Raymond Hettinger.)

e The collections.deque class grew two new methods count () and reverse () that make them more
substitutable for 1ist objects:

>>> d = deque(’simsalabim’)
>>> d.count ("s’)
2

http://en.wikipedia.org/wiki/Saturation_arithmetic
http://en.wikipedia.org/wiki/Multiset

>>> d.reverse ()
>>> d
deque([lml, Iil, Ibl, IaI, Ill, laI, ISI, lmI, Iil, ISI])

(Contributed by Raymond Hettinger.)

9.6 threading

The threading module has a new Barrier synchronization class for making multiple threads wait until all of
them have reached a common barrier point. Barriers are useful for making sure that a task with multiple preconditions
does not run until all of the predecessor tasks are complete.

Barriers can work with an arbitrary number of threads. This is a generalization of a Rendezvous which is defined for
only two threads.

Implemented as a two-phase cyclic barrier, Barrier objects are suitable for use in loops. The separate filling and
draining phases assure that all threads get released (drained) before any one of them can loop back and re-enter the
barrier. The barrier fully resets after each cycle.

Example of using barriers:

from threading import Barrier, Thread

def get_votes(site):

ballots = conduct_election(site)
all_polls_closed.wait () # do not count until all polls are closed
totals = summarize (ballots)

publish(site, totals)

all polls_closed = Barrier(len(sites))
for site in sites:
Thread (target=get_votes, args=(site,)) .start ()

In this example, the barrier enforces a rule that votes cannot be counted at any polling site until all polls are closed.
Notice how a solution with a barrier is similar to one with threading. Thread. join (), but the threads stay alive
and continue to do work (summarizing ballots) after the barrier point is crossed.

If any of the predecessor tasks can hang or be delayed, a barrier can be created with an optional timeout parameter.
Then if the timeout period elapses before all the predecessor tasks reach the barrier point, all waiting threads are
released and a BrokenBarrierError exception is raised:

def get_votes(site):
ballots = conduct_election(site)
try:
all polls_closed.wait (timeout = midnight - time.now())
except BrokenBarrierError:
lockbox = seal_ballots(ballots)
queue.put (lockbox)
else:
totals = summarize (ballots)
publish(site, totals)

In this example, the barrier enforces a more robust rule. If some election sites do not finish before midnight, the barrier
times-out and the ballots are sealed and deposited in a queue for later handling.

See Barrier Synchronization Patterns for more examples of how barriers can be used in parallel computing. Also, there
is a simple but thorough explanation of barriers in The Little Book of Semaphores, section 3.6.

(Contributed by Kristjan Valur Jénsson with an API review by Jeffrey Yasskin in issue 8777.)

http://en.wikipedia.org/wiki/Synchronous_rendezvous
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/paraplop_g1_3.pdf
http://greenteapress.com/semaphores/downey08semaphores.pdf
http://bugs.python.org/issue8777

9.7 datetime and time

* The datetime module has a new type t imezone that implements the t zinfo interface by returning a fixed
UTC offset and timezone name. This makes it easier to create timezone-aware datetime objects:

>>> from datetime import datetime, timezone

>>> datetime.now (timezone.utc)

datetime.datetime (2010, 12, 8, 21, 4, 2, 923754, tzinfo=datetime.timezone.utc)

>>> datetime.strptime ("01/01/2000 12:00 +0000", "%m/%d/%Y SH:%M %z")
datetime.datetime (2000, 1, 1, 12, 0, tzinfo=datetime.timezone.utc)

* Also, timedelta objects can now be multiplied by f1loat and divided by f1loat and int objects. And
timedelta objects can now divide one another.

* The datetime.date.strftime () method is no longer restricted to years after 1900. The new supported
year range is from 1000 to 9999 inclusive.

* Whenever a two-digit year is used in a time tuple, the interpretation has been governed by
time.accept2dyear. The default is True which means that for a two-digit year, the century is guessed
according to the POSIX rules governing the %y strptime format.

Starting with Py3.2, use of the century guessing heuristic will emit a DeprecationWarning. Instead, it
is recommended that t ime.accept2dyear be set to False so that large date ranges can be used without
guesswork:

>>> import time, warnings
>>> warnings.resetwarnings () # remove the default warning filters

>>> time.accept2dyear = True # guess whether 11 means 11 or 2011
>>> time.asctime((11, 1, 1, 12, 34, 56, 4, 1, 0))
Warning (from warnings module) :

DeprecationWarning: Century info guessed for a 2-digit year.
"Fri Jan 1 12:34:56 2011’

>>> time.accept2dyear = False # use the full range of allowable dates
>>> time.asctime((11, 1, 1, 12, 34, 56, 4, 1, 0))
"Fri Jan 1 12:34:56 11’

Several functions now have significantly expanded date ranges. When time.accept2dyear is false, the
time.asctime () function will accept any year that fits in a C int, while the time.mktime () and
time.strftime () functions will accept the full range supported by the corresponding operating system
functions.

(Contributed by Alexander Belopolsky and Victor Stinner in issue 1289118, issue 5094, issue 6641, issue 2706, issue
1777412, issue 8013, and issue 10827.)

9.8 math

The math module has been updated with six new functions inspired by the C99 standard.

The isfinite () function provides a reliable and fast way to detect special values. It returns True for regular
numbers and False for Nan or Infinity:

>>> [isfinite(x) for x in (123, 4.56, float ('Nan’), float ('Inf’))]
[True, True, False, False]

http://bugs.python.org/issue1289118
http://bugs.python.org/issue5094
http://bugs.python.org/issue6641
http://bugs.python.org/issue2706
http://bugs.python.org/issue1777412
http://bugs.python.org/issue1777412
http://bugs.python.org/issue8013
http://bugs.python.org/issue10827

The expml () function computes ex+x—1 for small values of x without incurring the loss of precision that usually
accompanies the subtraction of nearly equal quantities:

>>> expml (0.013671875) # more accurate way to compute ex+x—1 for a small x
0.013765762467652909

The erf () function computes a probability integral or Gaussian error function. The complementary error function,
erfc(),isl - erf (x):

>>> erf(1.0/sqrt(2.0)) # portion of normal distribution within 1 standard deviation
0.682689492137086
>>> erfc(1.0/sqrt(2.0)) # portion of normal distribution outside 1 standard deviation

0.31731050786291404
>>> erf(1.0/sqrt(2.0)) + erfc(l1.0/sqgrt(2.0))
1.0

The gamma () function is a continuous extension of the factorial function. See
http://en.wikipedia.org/wiki/Gamma_function for details. Because the function is related to factorials, it grows
large even for small values of x, so there is also a 1gamma () function for computing the natural logarithm of the
gamma function:

>>> gamma (7.0) # six factorial
720.0
>>> lgamma (801.0) # log (800 factorial)

4551.950730698041
(Contributed by Mark Dickinson.)

9.9 abc

The abc module now supports abstractclassmethod () and abstractstaticmethod ().

These tools make it possible to define an abstract base class that requires a particular classmethod () or
staticmethod () to be implemented:

class Temperature (metaclass=abc.ABCMeta) :
@abc.abstractclassmethod
def from_ fahrenheit (cls, t):

@abc.abstractclassmethod
def from celsius(cls, t):

(Patch submitted by Daniel Urban; issue 5867.)

9.10 io

The io.BytesIO hasanew method, getbuffer (), which provides functionality similar to memoryview (). It
creates an editable view of the data without making a copy. The buffer’s random access and support for slice notation
are well-suited to in-place editing:

>>> REC_LEN, LOC_START, LOC_LEN = 34, 7, 11
>>> def change_location (buffer, record_number, location):

start = record_number * REC_LEN + LOC_START
buffer[start: start+LOC_LEN] = location

http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Gamma_function
http://bugs.python.org/issue5867

>>> import io

>>> byte_stream = io.BytesIO(
b’ G3805 storeroom Main chassis !
b’X7899 shipping Reserve cog !
b’1L6988 receiving Primary sprocket’
)
>>> buffer = byte_stream.getbuffer()
>>> change_location (buffer, 1, b’warehouse ')
>>> change_location (buffer, 0, b’showroom ")
>>> print (byte_stream.getvalue())
b’ G3805 showroom Main chassis
b’"X7899 warehouse Reserve cog !
b’1L6988 receiving Primary sprocket’

4

(Contributed by Antoine Pitrou in issue 5506.)

9.11 reprlib

When writing a __repr__ () method for a custom container, it is easy to forget to handle the case where a member
refers back to the container itself. Python’s builtin objects such as 1ist and set handle self-reference by displaying

ELEE)

...” in the recursive part of the representation string.

To help write such __repr__ () methods, the repr1ib module has a new decorator, recursive_repr (), for
detecting recursive calls to___repr__ () and substituting a placeholder string instead:

>>> class MyList (list):
@recursive_repr ()
def _ _repr_ (self):
return <’ + ' |’ .join(map (repr, self)) + ’>’

>>> m = MyList (’abc’)
>>> m.append (
>>> m.append (
>>> print (m)

<ra'|'b’"|’'c .o x>

m)
!XI)

(Contributed by Raymond Hettinger in issue 9826 and issue 9840.)

9.12 logging

In addition to dictionary-based configuration described above, the 10gging package has many other improvements.

The logging documentation has been augmented by a basic tutorial, an advanced tutorial, and a cookbook of logging
recipes. These documents are the fastest way to learn about logging.

The logging.basicConfig () set-up function gained a style argument to support three different types of string
formatting. It defaults to “%” for traditional %-formatting, can be set to “{” for the new str.format () style, or
can be set to “$” for the shell-style formatting provided by st ring. Template. The following three configurations
are equivalent:

>>> from logging import basicConfig

>>> basicConfig(style=’%’, format="%(name)s -> $(levelname)s: % (message)s")
>>> basicConfig(style=’{’, format="{name} -> {levelname} {message}")

>>> basicConfig(style=’'5$’, format="S$name -> $levelname: Smessage")

http://bugs.python.org/issue5506
http://bugs.python.org/issue9826
http://bugs.python.org/issue9840

If no configuration is set-up before a logging event occurs, there is now a default configuration using a
StreamHandler directed to sys.stderr for events of WARNING level or higher. Formerly, an event occur-
ring before a configuration was set-up would either raise an exception or silently drop the event depending on the
value of logging.raiseExceptions. The new default handler is stored in logging.lastResort.

The use of filters has been simplified. Instead of creating a Filter object, the predicate can be any Python callable
that returns True or False.

There were a number of other improvements that add flexibility and simplify configuration. See the module documen-
tation for a full listing of changes in Python 3.2.

9.13 csv

The csv module now supports a new dialect, unix_dialect, which applies quoting for all fields and a traditional
Unix style with “ \n’ as the line terminator. The registered dialect name is unix.

The csv.DictWriter has a new method, writeheader () for writing-out an initial row to document the field
names:

>>> import csv, sys
>>> w = csv.DictWriter (sys.stdout, ['name’, ’'dept’], dialect="unix’)
>>> w.writeheader ()
"name", "dept"
>>> w.writerows ([
{’"name’: 'tom’, ’'dept’: "accounting’},
{"name’ : ’"susan’, ’'dept’: ’'Salesl’}])
"tom", "accounting"
"susan", "sales"

(New dialect suggested by Jay Talbot in issue 5975, and the new method suggested by Ed Abraham in issue 1537721.)

9.14 contextlib

There is a new and slightly mind-blowing tool ContextDecorator that is helpful for creating a context manager
that does double duty as a function decorator.

As a convenience, this new functionality is used by contextmanager () so that no extra effort is needed to support
both roles.

The basic idea is that both context managers and function decorators can be used for pre-action and post-action
wrappers. Context managers wrap a group of statements using a with statement, and function decorators wrap a
group of statements enclosed in a function. So, occasionally there is a need to write a pre-action or post-action
wrapper that can be used in either role.

For example, it is sometimes useful to wrap functions or groups of statements with a logger that can track the time
of entry and time of exit. Rather than writing both a function decorator and a context manager for the task, the
contextmanager () provides both capabilities in a single definition:

from contextlib import contextmanager
import logging

logging.basicConfig(level=1logging.INFO)

@contextmanager
def track_entry_and_exit (name) :
logging.info ('Entering: {}’.format (name))

http://bugs.python.org/issue5975
http://bugs.python.org/issue1537721

yield
logging.info ('Exiting: {}’.format (name))

Formerly, this would have only been usable as a context manager:

with track_entry_and_exit ('widget loader’):
print (' Some time consuming activity goes here’)
load_widget ()

Now, it can be used as a decorator as well:

@track_entry and_exit (' widget loader’)

def activity():
print (' Some time consuming activity goes here’)
load_widget ()

Trying to fulfill two roles at once places some limitations on the technique. Context managers normally have the
flexibility to return an argument usable by a with statement, but there is no parallel for function decorators.

In the above example, there is not a clean way for the track_entry_and_exit context manager to return a logging
instance for use in the body of enclosed statements.

(Contributed by Michael Foord in issue 9110.)

9.15 decimal and fractions

Mark Dickinson crafted an elegant and efficient scheme for assuring that different numeric datatypes will have the
same hash value whenever their actual values are equal (issue 8188):

assert hash (Fraction(3, 2)) == hash(l1.5) ==
hash (Decimal ("1.5")) == hash(complex (1.5, 0))

Some of the hashing details are exposed through a new attribute, sys.hash_info, which describes the bit width of
the hash value, the prime modulus, the hash values for infinity and nan, and the multiplier used for the imaginary part
of a number:

>>> sys.hash_info
sys.hash_info(width=64, modulus=2305843009213693951, inf=314159, nan=0, imag=1000003)

An early decision to limit the inter-operability of various numeric types has been relaxed. It is still unsupported
(and ill-advised) to have implicit mixing in arithmetic expressions such as Decimal (*1.1") + float(’'1.1")
because the latter loses information in the process of constructing the binary float. However, since existing floating
point value can be converted losslessly to either a decimal or rational representation, it makes sense to add them to the
constructor and to support mixed-type comparisons.

e The decimal .Decimal constructor now accepts £loat objects directly so there in no longer a need to use
the from_float () method (issue 8257).

* Mixed type comparisons are now fully supported so that Decimal objects can be directly compared with
float and fractions.Fraction (issue 2531 and issue 8188).

Similar changes were made to fractions.Fraction so that the from_float () and from_decimal ()
methods are no longer needed (issue 8294):

>>> Decimal (1.1)

Decimal (1.100000000000000088817841970012523233890533447265625")
>>> Fraction(1l.1)

Fraction (2476979795053773, 2251799813685248)

Another useful change for the decimal module is that the Context . clamp attribute is now public. This is useful
in creating contexts that correspond to the decimal interchange formats specified in IEEE 754 (see issue 8540).

http://bugs.python.org/issue9110
http://bugs.python.org/issue8188
http://bugs.python.org/issue8257
http://bugs.python.org/issue2531
http://bugs.python.org/issue8188
http://bugs.python.org/issue8294
http://bugs.python.org/issue8540

(Contributed by Mark Dickinson and Raymond Hettinger.)

9.16 ftp

The ftplib.FTP class now supports the context manager protocol to unconditionally consume socket .error
exceptions and to close the FTP connection when done:

>>> from ftplib import FTP

>>> with FTP ("ftpl.at.proftpd.org") as ftp:
ftp.login ()
ftp.dir ()

230 Anonymous login ok, restrictions apply.’

dr-xr-xr-x 9 ftp ftp 154 May 6 10:43
dr-xr-xr-x 9 ftp ftp 154 May 6 10:43
dr—-xr—-xr-x 5 ftp ftp 4096 May 6 10:43 CentOS
dr—-xr-xr-x 3 ftp ftp 18 Jul 10 2008 Fedora

Other file-like objects such as mmap .mmap and fileinput.input () also grew auto-closing context managers:

with fileinput.input (files=(’"logl.txt’, ’"log2.txt’)) as f:
for line in f:
process (line)

(Contributed by Tarek Ziadé and Giampaolo Rodola in issue 4972, and by Georg Brandl in issue 8046 and issue 1286.)

The FTP_TLS class now accepts a context parameter, which is a ss1.SSLContext object allowing bundling SSL
configuration options, certificates and private keys into a single (potentially long-lived) structure.

(Contributed by Giampaolo Rodola; issue 8806.)

9.17 popen
The os.popen () and subprocess.Popen () functions now support with statements for auto-closing of the
file descriptors.

(Contributed by Antoine Pitrou and Brian Curtin in issue 7461 and issue 10554.)

9.18 select
The select module now exposes a new, constant attribute, PTPE_BUF, which gives the minimum number of bytes
which are guaranteed not to block when select.select () says a pipe is ready for writing.

>>> import select
>>> select.PIPE_BUF
512

(Available on Unix systems. Patch by Sébastien Sablé in issue 9862)

9.19 gzip and zipfile
gzip.GzipFile now implements the io.BufferedIOBase abstract base class (except for truncate ()). It
also has a peek () method and supports unseekable as well as zero-padded file objects.

The gzip module also gains the compress () and decompress () functions for easier in-memory compression
and decompression. Keep in mind that text needs to be encoded as bytes before compressing and decompressing:

http://bugs.python.org/issue4972
http://bugs.python.org/issue8046
http://bugs.python.org/issue1286
http://bugs.python.org/issue8806
http://bugs.python.org/issue7461
http://bugs.python.org/issue10554
http://bugs.python.org/issue9862

>>> 5 = 'Three shall be the number thou shalt count, '
>>> s += ’and the number of the counting shall be three’

>>> b = s.encode () # convert to utf-8

>>> len (b)

89

>>> c = gzip.compress (b)

>>> len (c)

77

>>> gzip.decompress (c) .decode () [:42] # decompress and convert to text

"Three shall be the number thou shalt count,’

(Contributed by Anand B. Pillai in issue 3488; and by Antoine Pitrou, Nir Aides and Brian Curtin in issue 9962, issue
1675951, issue 7471 and issue 2846.)

Also, the zipfile.ZipExtFile class was reworked internally to represent files stored inside an archive. The new
implementation is significantly faster and can be wrapped in a 10.BufferedReader object for more speedups. It
also solves an issue where interleaved calls to read and readline gave the wrong results.

(Patch submitted by Nir Aides in issue 7610.)

9.20 tarfile

The TarFile class can now be used as a context manager. In addition, its add () method has a new option, filter,
that controls which files are added to the archive and allows the file metadata to be edited.

The new filter option replaces the older, less flexible exclude parameter which is now deprecated. If specified, the
optional filter parameter needs to be a keyword argument. The user-supplied filter function accepts a Tar Info object
and returns an updated TarInfo object, or if it wants the file to be excluded, the function can return None:

>>> import tarfile, glob

>>> def myfilter (tarinfo):
if tarinfo.isfile(): # only save real files
tarinfo.uname = ‘monty’ # redact the user name

return tarinfo

>>> with tarfile.open (name='myarchive.tar.gz’, mode="w:gz’) as tf:
for filename in glob.glob (’x.txt’):
tf.add(filename, filter=myfilter)

tf.list ()
-rw-r——r—— monty/501 902 2011-01-26 17:59:11 annotations.txt
-rw-r——r—— monty/501 123 2011-01-26 17:59:11 general_questions.txt
-rw-r——r—— monty/501 3514 2011-01-26 17:59:11 prion.txt
-rw-r——r—— monty/501 124 2011-01-26 17:59:11 py_todo.txt
—rw-r—-—-r—— monty/501 1399 2011-01-26 17:59:11 semaphore_notes.txt

(Proposed by Tarek Ziadé and implemented by Lars Gustibel in issue 6856.)

9.21 hashlib

The hashlib module has two new constant attributes listing the hashing algorithms guaranteed to be present in all
implementations and those available on the current implementation:

>>> import hashlib

>>> hashlib.algorithms_guaranteed

http://bugs.python.org/issue3488
http://bugs.python.org/issue9962
http://bugs.python.org/issue1675951
http://bugs.python.org/issue1675951
http://bugs.python.org/issue7471
http://bugs.python.org/issue2846
http://bugs.python.org/issue7610
http://bugs.python.org/issue6856

{"shal’”, ’sha224’, ’"sha384’, ’'sha256’, ’'shabl12’, ’'md5’}

>>> hashlib.algorithms_available

{'md2’, ’'SHA256’, ’'SHA512’, ’'dsaWithSHA’, ’'mdc2’, ’'SHA224’, ’'MD4’, ’'shaz256’,
"sha512’, ’ripemdl60’, ’SHAl’, 'MDC2’, ’'SHA’, ’SHA384’, ’'MD2’,
"ecdsa-with—-SHA1l’,’md4’, ’'md5’, ’"shal’, ’'DSA-SHA’, ’'sha224’,
"dsaEncryption’, ‘DSA’, 'RIPEMD160’, ’'sha’, ’'MD5’, ’'sha384’}

(Suggested by Carl Chenet in issue 7418.)

9.22 ast

The ast module has a wonderful a general-purpose tool for safely evaluating expression strings using the Python
literal syntax. The ast.literal_eval () function serves as a secure alternative to the builtin eval () function
which is easily abused. Python 3.2 adds bytes and set literals to the list of supported types: strings, bytes, numbers,
tuples, lists, dicts, sets,