
Python Frequently Asked Questions
Release 3.14.0rc1

Guido van Rossum and the Python development team

July 22, 2025

Python Software Foundation
Email: docs@python.org

CONTENTS

1 General Python FAQ 1
1.1 General Information . 1

1.1.1 What is Python? . 1
1.1.2 What is the Python Software Foundation? . 1
1.1.3 Are there copyright restrictions on the use of Python? 1
1.1.4 Why was Python created in the first place? . 1
1.1.5 What is Python good for? . 2
1.1.6 How does the Python version numbering scheme work? 2
1.1.7 How do I obtain a copy of the Python source? . 3
1.1.8 How do I get documentation on Python? . 3
1.1.9 I’ve never programmed before. Is there a Python tutorial? 3
1.1.10 Is there a newsgroup or mailing list devoted to Python? 3
1.1.11 How do I get a beta test version of Python? . 3
1.1.12 How do I submit bug reports and patches for Python? 3
1.1.13 Are there any published articles about Python that I can reference? 3
1.1.14 Are there any books on Python? . 4
1.1.15 Where in the world is www.python.org located? . 4
1.1.16 Why is it called Python? . 4
1.1.17 Do I have to like “Monty Python’s Flying Circus”? . 4

1.2 Python in the real world . 4
1.2.1 How stable is Python? . 4
1.2.2 How many people are using Python? . 4
1.2.3 Have any significant projects been done in Python? . 4
1.2.4 What new developments are expected for Python in the future? 4
1.2.5 Is it reasonable to propose incompatible changes to Python? 5
1.2.6 Is Python a good language for beginning programmers? 5

2 Programming FAQ 7
2.1 General Questions . 7

2.1.1 Is there a source code level debugger with breakpoints, single-stepping, etc.? 7
2.1.2 Are there tools to help find bugs or perform static analysis? 7
2.1.3 How can I create a stand-alone binary from a Python script? 7
2.1.4 Are there coding standards or a style guide for Python programs? 8

2.2 Core Language . 8
2.2.1 Why am I getting an UnboundLocalError when the variable has a value? 8
2.2.2 What are the rules for local and global variables in Python? 9
2.2.3 Why do lambdas defined in a loop with different values all return the same result? 9
2.2.4 How do I share global variables across modules? . 10
2.2.5 What are the “best practices” for using import in a module? 10
2.2.6 Why are default values shared between objects? . 11
2.2.7 How can I pass optional or keyword parameters from one function to another? 12
2.2.8 What is the difference between arguments and parameters? 12
2.2.9 Why did changing list ‘y’ also change list ‘x’? . 12
2.2.10 How do I write a function with output parameters (call by reference)? 13

i

2.2.11 How do you make a higher order function in Python? 14
2.2.12 How do I copy an object in Python? . 15
2.2.13 How can I find the methods or attributes of an object? 15
2.2.14 How can my code discover the name of an object? . 16
2.2.15 What’s up with the comma operator’s precedence? . 16
2.2.16 Is there an equivalent of C’s “?:” ternary operator? . 16
2.2.17 Is it possible to write obfuscated one-liners in Python? 17
2.2.18 What does the slash(/) in the parameter list of a function mean? 17

2.3 Numbers and strings . 18
2.3.1 How do I specify hexadecimal and octal integers? . 18
2.3.2 Why does -22 // 10 return -3? . 18
2.3.3 How do I get int literal attribute instead of SyntaxError? 18
2.3.4 How do I convert a string to a number? . 18
2.3.5 How do I convert a number to a string? . 19
2.3.6 How do I modify a string in place? . 19
2.3.7 How do I use strings to call functions/methods? . 19
2.3.8 Is there an equivalent to Perl’s chomp() for removing trailing newlines from strings? . . . 20
2.3.9 Is there a scanf() or sscanf() equivalent? . 20
2.3.10 What does UnicodeDecodeError or UnicodeEncodeError error mean? 21
2.3.11 Can I end a raw string with an odd number of backslashes? 21

2.4 Performance . 21
2.4.1 My program is too slow. How do I speed it up? . 21
2.4.2 What is the most efficient way to concatenate many strings together? 22

2.5 Sequences (Tuples/Lists) . 22
2.5.1 How do I convert between tuples and lists? . 22
2.5.2 What’s a negative index? . 23
2.5.3 How do I iterate over a sequence in reverse order? . 23
2.5.4 How do you remove duplicates from a list? . 23
2.5.5 How do you remove multiple items from a list . 23
2.5.6 How do you make an array in Python? . 23
2.5.7 How do I create a multidimensional list? . 24
2.5.8 How do I apply a method or function to a sequence of objects? 24
2.5.9 Why does a_tuple[i] += [‘item’] raise an exception when the addition works? 25
2.5.10 I want to do a complicated sort: can you do a Schwartzian Transform in Python? 26
2.5.11 How can I sort one list by values from another list? . 26

2.6 Objects . 26
2.6.1 What is a class? . 26
2.6.2 What is a method? . 27
2.6.3 What is self? . 27
2.6.4 How do I check if an object is an instance of a given class or of a subclass of it? 27
2.6.5 What is delegation? . 28
2.6.6 How do I call a method defined in a base class from a derived class that extends it? 29
2.6.7 How can I organize my code to make it easier to change the base class? 29
2.6.8 How do I create static class data and static class methods? 29
2.6.9 How can I overload constructors (or methods) in Python? 30
2.6.10 I try to use __spam and I get an error about _SomeClassName__spam. 30
2.6.11 My class defines __del__ but it is not called when I delete the object. 31
2.6.12 How do I get a list of all instances of a given class? . 31
2.6.13 Why does the result of id() appear to be not unique? 31
2.6.14 When can I rely on identity tests with the is operator? 32
2.6.15 How can a subclass control what data is stored in an immutable instance? 33
2.6.16 How do I cache method calls? . 34

2.7 Modules . 35
2.7.1 How do I create a .pyc file? . 35
2.7.2 How do I find the current module name? . 35
2.7.3 How can I have modules that mutually import each other? 36
2.7.4 __import__(‘x.y.z’) returns <module ‘x’>; how do I get z? 36

ii

2.7.5 When I edit an imported module and reimport it, the changes don’t show up. Why does
this happen? . 37

3 Design and History FAQ 39
3.1 Why does Python use indentation for grouping of statements? . 39
3.2 Why am I getting strange results with simple arithmetic operations? 39
3.3 Why are floating-point calculations so inaccurate? . 39
3.4 Why are Python strings immutable? . 40
3.5 Why must ‘self’ be used explicitly in method definitions and calls? 40
3.6 Why can’t I use an assignment in an expression? . 41
3.7 Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g.

len(list))? . 41
3.8 Why is join() a string method instead of a list or tuple method? 41
3.9 How fast are exceptions? . 42
3.10 Why isn’t there a switch or case statement in Python? . 42
3.11 Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implemen-

tation? . 43
3.12 Why can’t lambda expressions contain statements? . 43
3.13 Can Python be compiled to machine code, C or some other language? 43
3.14 How does Python manage memory? . 43
3.15 Why doesn’t CPython use a more traditional garbage collection scheme? 44
3.16 Why isn’t all memory freed when CPython exits? . 44
3.17 Why are there separate tuple and list data types? . 44
3.18 How are lists implemented in CPython? . 44
3.19 How are dictionaries implemented in CPython? . 44
3.20 Why must dictionary keys be immutable? . 45
3.21 Why doesn’t list.sort() return the sorted list? . 46
3.22 How do you specify and enforce an interface spec in Python? . 46
3.23 Why is there no goto? . 46
3.24 Why can’t raw strings (r-strings) end with a backslash? . 47
3.25 Why doesn’t Python have a “with” statement for attribute assignments? 47
3.26 Why don’t generators support the with statement? . 48
3.27 Why are colons required for the if/while/def/class statements? . 48
3.28 Why does Python allow commas at the end of lists and tuples? 49

4 Library and Extension FAQ 51
4.1 General Library Questions . 51

4.1.1 How do I find a module or application to perform task X? 51
4.1.2 Where is the math.py (socket.py, regex.py, etc.) source file? 51
4.1.3 How do I make a Python script executable on Unix? . 51
4.1.4 Is there a curses/termcap package for Python? . 52
4.1.5 Is there an equivalent to C’s onexit() in Python? . 52
4.1.6 Why don’t my signal handlers work? . 52

4.2 Common tasks . 52
4.2.1 How do I test a Python program or component? . 52
4.2.2 How do I create documentation from doc strings? . 53
4.2.3 How do I get a single keypress at a time? . 53

4.3 Threads . 53
4.3.1 How do I program using threads? . 53
4.3.2 None of my threads seem to run: why? . 53
4.3.3 How do I parcel out work among a bunch of worker threads? 54
4.3.4 What kinds of global value mutation are thread-safe? . 55
4.3.5 Can’t we get rid of the Global Interpreter Lock? . 55

4.4 Input and Output . 56
4.4.1 How do I delete a file? (And other file questions…) . 56
4.4.2 How do I copy a file? . 56
4.4.3 How do I read (or write) binary data? . 56
4.4.4 I can’t seem to use os.read() on a pipe created with os.popen(); why? 57

iii

4.4.5 How do I access the serial (RS232) port? . 57
4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it? 57

4.5 Network/Internet Programming . 57
4.5.1 What WWW tools are there for Python? . 57
4.5.2 What module should I use to help with generating HTML? 58
4.5.3 How do I send mail from a Python script? . 58
4.5.4 How do I avoid blocking in the connect() method of a socket? 58

4.6 Databases . 59
4.6.1 Are there any interfaces to database packages in Python? 59
4.6.2 How do you implement persistent objects in Python? . 59

4.7 Mathematics and Numerics . 59
4.7.1 How do I generate random numbers in Python? . 59

5 Extending/Embedding FAQ 61
5.1 Can I create my own functions in C? . 61
5.2 Can I create my own functions in C++? . 61
5.3 Writing C is hard; are there any alternatives? . 61
5.4 How can I execute arbitrary Python statements from C? . 61
5.5 How can I evaluate an arbitrary Python expression from C? . 61
5.6 How do I extract C values from a Python object? . 61
5.7 How do I use Py_BuildValue() to create a tuple of arbitrary length? 62
5.8 How do I call an object’s method from C? . 62
5.9 How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)? 62
5.10 How do I access a module written in Python from C? . 63
5.11 How do I interface to C++ objects from Python? . 63
5.12 I added a module using the Setup file and the make fails; why? 63
5.13 How do I debug an extension? . 63
5.14 I want to compile a Python module on my Linux system, but some files are missing. Why? 64
5.15 How do I tell “incomplete input” from “invalid input”? . 64
5.16 How do I find undefined g++ symbols __builtin_new or __pure_virtual? 64
5.17 Can I create an object class with somemethods implemented in C and others in Python (e.g. through

inheritance)? . 64

6 Python on Windows FAQ 65
6.1 How do I run a Python program under Windows? . 65
6.2 How do I make Python scripts executable? . 66
6.3 Why does Python sometimes take so long to start? . 66
6.4 How do I make an executable from a Python script? . 66
6.5 Is a *.pyd file the same as a DLL? . 66
6.6 How can I embed Python into a Windows application? . 67
6.7 How do I keep editors from inserting tabs into my Python source? 68
6.8 How do I check for a keypress without blocking? . 68
6.9 How do I solve the missing api-ms-win-crt-runtime-l1-1-0.dll error? 68

7 Graphic User Interface FAQ 69
7.1 General GUI Questions . 69
7.2 What GUI toolkits exist for Python? . 69
7.3 Tkinter questions . 69

7.3.1 How do I freeze Tkinter applications? . 69
7.3.2 Can I have Tk events handled while waiting for I/O? . 69
7.3.3 I can’t get key bindings to work in Tkinter: why? . 69

8 “Why is Python Installed on my Computer?” FAQ 71
8.1 What is Python? . 71
8.2 Why is Python installed on my machine? . 71
8.3 Can I delete Python? . 71

A Glossary 73

iv

B About this documentation 91
B.1 Contributors to the Python documentation . 91

C History and License 93
C.1 History of the software . 93
C.2 Terms and conditions for accessing or otherwise using Python . 94

C.2.1 PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2 94
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 95
C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1 95
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 96
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTATION . 97

C.3 Licenses and Acknowledgements for Incorporated Software . 97
C.3.1 Mersenne Twister . 97
C.3.2 Sockets . 98
C.3.3 Asynchronous socket services . 99
C.3.4 Cookie management . 99
C.3.5 Execution tracing . 99
C.3.6 UUencode and UUdecode functions . 100
C.3.7 XML Remote Procedure Calls . 101
C.3.8 test_epoll . 101
C.3.9 Select kqueue . 102
C.3.10 SipHash24 . 102
C.3.11 strtod and dtoa . 103
C.3.12 OpenSSL . 103
C.3.13 expat . 106
C.3.14 libffi . 107
C.3.15 zlib . 107
C.3.16 cfuhash . 108
C.3.17 libmpdec . 108
C.3.18 W3C C14N test suite . 109
C.3.19 mimalloc . 110
C.3.20 asyncio . 110
C.3.21 Global Unbounded Sequences (GUS) . 110
C.3.22 Zstandard bindings . 111

D Copyright 113

Index 115

v

vi

CHAPTER

ONE

GENERAL PYTHON FAQ

1.1 General Information

1.1.1 What is Python?

Python is an interpreted, interactive, object-oriented programming language. It incorporates modules, exceptions,
dynamic typing, very high level dynamic data types, and classes. It supports multiple programming paradigms beyond
object-oriented programming, such as procedural and functional programming. Python combines remarkable power
with very clear syntax. It has interfaces to many system calls and libraries, as well as to various window systems,
and is extensible in C or C++. It is also usable as an extension language for applications that need a programmable
interface. Finally, Python is portable: it runs on many Unix variants including Linux and macOS, and on Windows.

To find out more, start with tutorial-index. The Beginner’s Guide to Python links to other introductory tutorials and
resources for learning Python.

1.1.2 What is the Python Software Foundation?

The Python Software Foundation is an independent non-profit organization that holds the copyright on Python ver-
sions 2.1 and newer. The PSF’s mission is to advance open source technology related to the Python programming
language and to publicize the use of Python. The PSF’s home page is at https://www.python.org/psf/.

Donations to the PSF are tax-exempt in the US. If you use Python and find it helpful, please contribute via the PSF
donation page.

1.1.3 Are there copyright restrictions on the use of Python?

You can do anything you want with the source, as long as you leave the copyrights in and display those copyrights
in any documentation about Python that you produce. If you honor the copyright rules, it’s OK to use Python for
commercial use, to sell copies of Python in source or binary form (modified or unmodified), or to sell products that
incorporate Python in some form. We would still like to know about all commercial use of Python, of course.

See the license page to find further explanations and the full text of the PSF License.

The Python logo is trademarked, and in certain cases permission is required to use it. Consult the Trademark Usage
Policy for more information.

1.1.4 Why was Python created in the first place?

Here’s a very brief summary of what started it all, written by Guido van Rossum:

I had extensive experience with implementing an interpreted language in the ABC group at CWI, and
fromworking with this group I had learned a lot about language design. This is the origin of many Python
features, including the use of indentation for statement grouping and the inclusion of very-high-level data
types (although the details are all different in Python).

I had a number of gripes about the ABC language, but also liked many of its features. It was impossible
to extend the ABC language (or its implementation) to remedy my complaints – in fact its lack of
extensibility was one of its biggest problems. I had some experience with using Modula-2+ and talked

1

https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/donations/
https://www.python.org/psf/donations/
https://docs.python.org/3/license.html
https://www.python.org/psf/trademarks/
https://www.python.org/psf/trademarks/

Python Frequently Asked Questions, Release 3.14.0rc1

with the designers of Modula-3 and read the Modula-3 report. Modula-3 is the origin of the syntax and
semantics used for exceptions, and some other Python features.

I was working in the Amoeba distributed operating system group at CWI. We needed a better way to
do system administration than by writing either C programs or Bourne shell scripts, since Amoeba had
its own system call interface which wasn’t easily accessible from the Bourne shell. My experience with
error handling in Amoeba made me acutely aware of the importance of exceptions as a programming
language feature.

It occurred to me that a scripting language with a syntax like ABC but with access to the Amoeba system
calls would fill the need. I realized that it would be foolish to write an Amoeba-specific language, so I
decided that I needed a language that was generally extensible.

During the 1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try. During
the next year, while still mostly working on it in my own time, Python was used in the Amoeba project
with increasing success, and the feedback from colleagues made me add many early improvements.

In February 1991, after just over a year of development, I decided to post to USENET. The rest is in
the Misc/HISTORY file.

1.1.5 What is Python good for?

Python is a high-level general-purpose programming language that can be applied to many different classes of prob-
lems.

The language comes with a large standard library that covers areas such as string processing (regular expressions,
Unicode, calculating differences between files), internet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP),
software engineering (unit testing, logging, profiling, parsing Python code), and operating system interfaces (system
calls, filesystems, TCP/IP sockets). Look at the table of contents for library-index to get an idea of what’s available.
A wide variety of third-party extensions are also available. Consult the Python Package Index to find packages of
interest to you.

1.1.6 How does the Python version numbering scheme work?

Python versions are numbered “A.B.C” or “A.B”:

• A is the major version number – it is only incremented for really major changes in the language.

• B is the minor version number – it is incremented for less earth-shattering changes.

• C is the micro version number – it is incremented for each bugfix release.

Not all releases are bugfix releases. In the run-up to a new feature release, a series of development releases are made,
denoted as alpha, beta, or release candidate. Alphas are early releases in which interfaces aren’t yet finalized; it’s
not unexpected to see an interface change between two alpha releases. Betas are more stable, preserving existing
interfaces but possibly adding new modules, and release candidates are frozen, making no changes except as needed
to fix critical bugs.

Alpha, beta and release candidate versions have an additional suffix:

• The suffix for an alpha version is “aN” for some small number N.

• The suffix for a beta version is “bN” for some small number N.

• The suffix for a release candidate version is “rcN” for some small number N.

In other words, all versions labeled 2.0aN precede the versions labeled 2.0bN, which precede versions labeled 2.0rcN,
and those precede 2.0.

You may also find version numbers with a “+” suffix, e.g. “2.2+”. These are unreleased versions, built directly from
the CPython development repository. In practice, after a final minor release is made, the version is incremented to
the next minor version, which becomes the “a0” version, e.g. “2.4a0”.

See the Developer’s Guide for more information about the development cycle, and PEP 387 to learn more about
Python’s backward compatibility policy. See also the documentation for sys.version, sys.hexversion, and
sys.version_info.

2 Chapter 1. General Python FAQ

https://pypi.org
https://devguide.python.org/developer-workflow/development-cycle/
https://peps.python.org/pep-0387/

Python Frequently Asked Questions, Release 3.14.0rc1

1.1.7 How do I obtain a copy of the Python source?

The latest Python source distribution is always available from python.org, at https://www.python.org/downloads/.
The latest development sources can be obtained at https://github.com/python/cpython/.

The source distribution is a gzipped tar file containing the complete C source, Sphinx-formatted documentation,
Python library modules, example programs, and several useful pieces of freely distributable software. The source
will compile and run out of the box on most UNIX platforms.

Consult the Getting Started section of the Python Developer’s Guide for more information on getting the source code
and compiling it.

1.1.8 How do I get documentation on Python?

The standard documentation for the current stable version of Python is available at https://docs.python.org/3/. PDF,
plain text, and downloadable HTML versions are also available at https://docs.python.org/3/download.html.

The documentation is written in reStructuredText and processed by the Sphinx documentation tool. The reStruc-
turedText source for the documentation is part of the Python source distribution.

1.1.9 I’ve never programmed before. Is there a Python tutorial?

There are numerous tutorials and books available. The standard documentation includes tutorial-index.

Consult the Beginner’s Guide to find information for beginning Python programmers, including lists of tutorials.

1.1.10 Is there a newsgroup or mailing list devoted to Python?

There is a newsgroup, comp.lang.python, and a mailing list, python-list. The newsgroup and mailing list are
gatewayed into each other – if you can read news it’s unnecessary to subscribe to the mailing list. comp.lang.

python is high-traffic, receiving hundreds of postings every day, and Usenet readers are often more able to cope
with this volume.

Announcements of new software releases and events can be found in comp.lang.python.announce, a low-traffic mod-
erated list that receives about five postings per day. It’s available as the python-announce mailing list.

More info about other mailing lists and newsgroups can be found at https://www.python.org/community/lists/.

1.1.11 How do I get a beta test version of Python?

Alpha and beta releases are available from https://www.python.org/downloads/. All releases are announced on the
comp.lang.python and comp.lang.python.announce newsgroups and on the Python home page at https://www.python.
org/; an RSS feed of news is available.

You can also access the development version of Python through Git. See The Python Developer’s Guide for details.

1.1.12 How do I submit bug reports and patches for Python?

To report a bug or submit a patch, use the issue tracker at https://github.com/python/cpython/issues.

For more information on how Python is developed, consult the Python Developer’s Guide.

1.1.13 Are there any published articles about Python that I can reference?

It’s probably best to cite your favorite book about Python.

The very first article about Python was written in 1991 and is now quite outdated.

Guido van Rossum and Jelke de Boer, “Interactively Testing Remote Servers Using the Python Pro-
gramming Language”, CWI Quarterly, Volume 4, Issue 4 (December 1991), Amsterdam, pp 283–303.

1.1. General Information 3

https://www.python.org/downloads/
https://github.com/python/cpython/
https://devguide.python.org/setup/
https://docs.python.org/3/
https://docs.python.org/3/download.html
https://www.sphinx-doc.org/
https://wiki.python.org/moin/BeginnersGuide
https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman3/lists/python-announce-list.python.org/
https://www.python.org/community/lists/
https://www.python.org/downloads/
https://www.python.org/
https://www.python.org/
https://devguide.python.org/
https://github.com/python/cpython/issues
https://devguide.python.org/
https://ir.cwi.nl/pub/18204

Python Frequently Asked Questions, Release 3.14.0rc1

1.1.14 Are there any books on Python?

Yes, there are many, and more are being published. See the python.org wiki at https://wiki.python.org/moin/
PythonBooks for a list.

You can also search online bookstores for “Python” and filter out the Monty Python references; or perhaps search for
“Python” and “language”.

1.1.15 Where in the world is www.python.org located?

The Python project’s infrastructure is located all over the world and is managed by the Python Infrastructure Team.
Details here.

1.1.16 Why is it called Python?

When he began implementing Python, Guido van Rossum was also reading the published scripts from “Monty
Python’s Flying Circus”, a BBC comedy series from the 1970s. Van Rossum thought he needed a name that was
short, unique, and slightly mysterious, so he decided to call the language Python.

1.1.17 Do I have to like “Monty Python’s Flying Circus”?

No, but it helps. :)

1.2 Python in the real world

1.2.1 How stable is Python?

Very stable. New, stable releases have been coming out roughly every 6 to 18 months since 1991, and this seems
likely to continue. As of version 3.9, Python will have a new feature release every 12 months (PEP 602).

The developers issue bugfix releases of older versions, so the stability of existing releases gradually improves. Bugfix
releases, indicated by a third component of the version number (e.g. 3.5.3, 3.6.2), are managed for stability; only
fixes for known problems are included in a bugfix release, and it’s guaranteed that interfaces will remain the same
throughout a series of bugfix releases.

The latest stable releases can always be found on the Python download page. Python 3.x is the recommended version
and supported by most widely used libraries. Python 2.x is not maintained anymore.

1.2.2 How many people are using Python?

There are probably millions of users, though it’s difficult to obtain an exact count.

Python is available for free download, so there are no sales figures, and it’s available from many different sites and
packaged with many Linux distributions, so download statistics don’t tell the whole story either.

The comp.lang.python newsgroup is very active, but not all Python users post to the group or even read it.

1.2.3 Have any significant projects been done in Python?

See https://www.python.org/about/success for a list of projects that use Python. Consulting the proceedings for past
Python conferences will reveal contributions from many different companies and organizations.

High-profile Python projects include theMailmanmailing list manager and the Zope application server. Several Linux
distributions, most notably Red Hat, have written part or all of their installer and system administration software in
Python. Companies that use Python internally include Google, Yahoo, and Lucasfilm Ltd.

1.2.4 What new developments are expected for Python in the future?

See https://peps.python.org/ for the Python Enhancement Proposals (PEPs). PEPs are design documents describing
a suggested new feature for Python, providing a concise technical specification and a rationale. Look for a PEP titled
“Python X.Y Release Schedule”, where X.Y is a version that hasn’t been publicly released yet.

4 Chapter 1. General Python FAQ

https://wiki.python.org/moin/PythonBooks
https://wiki.python.org/moin/PythonBooks
https://infra.psf.io
https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Monty_Python
https://peps.python.org/pep-0602/
https://www.python.org/downloads/
https://peps.python.org/pep-0373/
https://www.python.org/about/success
https://www.python.org/community/workshops/
https://www.python.org/community/workshops/
https://www.list.org
https://www.zope.dev
https://www.redhat.com
https://peps.python.org/

Python Frequently Asked Questions, Release 3.14.0rc1

New development is discussed on the python-dev mailing list.

1.2.5 Is it reasonable to propose incompatible changes to Python?

In general, no. There are already millions of lines of Python code around the world, so any change in the language
that invalidates more than a very small fraction of existing programs has to be frowned upon. Even if you can provide
a conversion program, there’s still the problem of updating all documentation; many books have been written about
Python, and we don’t want to invalidate them all at a single stroke.

Providing a gradual upgrade path is necessary if a feature has to be changed. PEP 5 describes the procedure followed
for introducing backward-incompatible changes while minimizing disruption for users.

1.2.6 Is Python a good language for beginning programmers?

Yes.

It is still common to start students with a procedural and statically typed language such as Pascal, C, or a subset of
C++ or Java. Students may be better served by learning Python as their first language. Python has a very simple and
consistent syntax and a large standard library and, most importantly, using Python in a beginning programming course
lets students concentrate on important programming skills such as problem decomposition and data type design. With
Python, students can be quickly introduced to basic concepts such as loops and procedures. They can probably even
work with user-defined objects in their very first course.

For a student who has never programmed before, using a statically typed language seems unnatural. It presents
additional complexity that the student must master and slows the pace of the course. The students are trying to learn
to think like a computer, decompose problems, design consistent interfaces, and encapsulate data. While learning
to use a statically typed language is important in the long term, it is not necessarily the best topic to address in the
students’ first programming course.

Many other aspects of Python make it a good first language. Like Java, Python has a large standard library so
that students can be assigned programming projects very early in the course that do something. Assignments aren’t
restricted to the standard four-function calculator and check balancing programs. By using the standard library,
students can gain the satisfaction of working on realistic applications as they learn the fundamentals of programming.
Using the standard library also teaches students about code reuse. Third-party modules such as PyGame are also
helpful in extending the students’ reach.

Python’s interactive interpreter enables students to test language features while they’re programming. They can keep
a window with the interpreter running while they enter their program’s source in another window. If they can’t
remember the methods for a list, they can do something like this:

>>> L = []

>>> dir(L)

['__add__', '__class__', '__contains__', '__delattr__', '__delitem__',

'__dir__', '__doc__', '__eq__', '__format__', '__ge__',

'__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__',

'__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__',

'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',

'__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__',

'__sizeof__', '__str__', '__subclasshook__', 'append', 'clear',

'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',

'reverse', 'sort']

>>> [d for d in dir(L) if '__' not in d]

['append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',

↪→'reverse', 'sort']

>>> help(L.append)

Help on built-in function append:

append(...)

L.append(object) -> None -- append object to end

(continues on next page)

1.2. Python in the real world 5

https://mail.python.org/mailman3/lists/python-dev.python.org/
https://peps.python.org/pep-0005/

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

>>> L.append(1)

>>> L

[1]

With the interpreter, documentation is never far from the student as they are programming.

There are also good IDEs for Python. IDLE is a cross-platform IDE for Python that is written in Python using Tkinter.
Emacs users will be happy to know that there is a very good Python mode for Emacs. All of these programming
environments provide syntax highlighting, auto-indenting, and access to the interactive interpreter while coding.
Consult the Python wiki for a full list of Python editing environments.

If you want to discuss Python’s use in education, you may be interested in joining the edu-sig mailing list.

6 Chapter 1. General Python FAQ

https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig

CHAPTER

TWO

PROGRAMMING FAQ

2.1 General Questions

2.1.1 Is there a source code level debugger with breakpoints, single-stepping,
etc.?

Yes.

Several debuggers for Python are described below, and the built-in function breakpoint() allows you to drop into
any of them.

The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard Python library,
and is documented in the Library Reference Manual. You can also write your own debugger by using the
code for pdb as an example.

The IDLE interactive development environment, which is part of the standard Python distribution (normally available
as Tools/scripts/idle3), includes a graphical debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The PythonWin debugger colors breakpoints
and has quite a few cool features such as debugging non-PythonWin programs. PythonWin is available as part of
pywin32 project and as a part of the ActivePython distribution.

Eric is an IDE built on PyQt and the Scintilla editing component.

trepan3k is a gdb-like debugger.

Visual Studio Code is an IDE with debugging tools that integrates with version-control software.

There are a number of commercial Python IDEs that include graphical debuggers. They include:

• Wing IDE

• Komodo IDE

• PyCharm

2.1.2 Are there tools to help find bugs or perform static analysis?

Yes.

Pylint and Pyflakes do basic checking that will help you catch bugs sooner.

Static type checkers such as Mypy, Pyre, and Pytype can check type hints in Python source code.

2.1.3 How can I create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users can
download and run without having to install the Python distribution first. There are a number of tools that determine
the set of modules required by a program and bind these modules together with a Python binary to produce a single
executable.

7

https://github.com/python/cpython/blob/main/Tools/scripts/idle3
https://github.com/mhammond/pywin32
https://www.activestate.com/products/python/
https://eric-ide.python-projects.org/
https://github.com/rocky/python3-trepan/
https://code.visualstudio.com/
https://wingware.com/
https://www.activestate.com/products/komodo-ide/
https://www.jetbrains.com/pycharm/
https://pylint.pycqa.org/en/latest/index.html
https://github.com/PyCQA/pyflakes
https://mypy-lang.org/
https://pyre-check.org/
https://github.com/google/pytype

Python Frequently Asked Questions, Release 3.14.0rc1

One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts Python byte
code to C arrays; with a C compiler you can embed all your modules into a new program, which is then linked with
the standard Python modules.

It works by scanning your source recursively for import statements (in both forms) and looking for the modules in the
standard Python path as well as in the source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code objects using the marshal module) and
creates a custom-made config file that only contains those built-in modules which are actually used in the program.
It then compiles the generated C code and links it with the rest of the Python interpreter to form a self-contained
binary which acts exactly like your script.

The following packages can help with the creation of console and GUI executables:

• Nuitka (Cross-platform)

• PyInstaller (Cross-platform)

• PyOxidizer (Cross-platform)

• cx_Freeze (Cross-platform)

• py2app (macOS only)

• py2exe (Windows only)

2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.2 Core Language

2.2.1 Why am I getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding an
assignment statement somewhere in the body of a function.

This code:

>>> x = 10

>>> def bar():

... print(x)

...

>>> bar()

10

works, but this code:

>>> x = 10

>>> def foo():

... print(x)

... x += 1

results in an UnboundLocalError:

>>> foo()

Traceback (most recent call last):

...

UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope
and shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value
to x, the compiler recognizes it as a local variable. Consequently when the earlier print(x) attempts to print the
uninitialized local variable and an error results.

8 Chapter 2. Programming FAQ

https://github.com/python/cpython/tree/main/Tools/freeze
https://nuitka.net/
https://pyinstaller.org/
https://pyoxidizer.readthedocs.io/en/stable/
https://marcelotduarte.github.io/cx_Freeze/
https://github.com/ronaldoussoren/py2app
https://www.py2exe.org/
https://peps.python.org/pep-0008/

Python Frequently Asked Questions, Release 3.14.0rc1

In the example above you can access the outer scope variable by declaring it global:

>>> x = 10

>>> def foobar():

... global x

... print(x)

... x += 1

...

>>> foobar()

10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation with class
and instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print(x)

11

You can do a similar thing in a nested scope using the nonlocal keyword:

>>> def foo():

... x = 10

... def bar():

... nonlocal x

... print(x)

... x += 1

... bar()

... print(x)

...

>>> foo()

10

11

2.2.2 What are the rules for local and global variables in Python?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a value
anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.

Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for assigned
variables provides a bar against unintended side-effects. On the other hand, if global was required for all global
references, you’d be using global all the time. You’d have to declare as global every reference to a built-in function
or to a component of an imported module. This clutter would defeat the usefulness of the global declaration for
identifying side-effects.

2.2.3 Why do lambdas defined in a loop with different values all return the same
result?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []

>>> for x in range(5):

... squares.append(lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x**2. You might expect that, when called, they would
return, respectively, 0, 1, 4, 9, and 16. However, when you actually try you will see that they all return 16:

>>> squares[2]()

16

>>> squares[4]()

16

2.2. Core Language 9

Python Frequently Asked Questions, Release 3.14.0rc1

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when the
lambda is called — not when it is defined. At the end of the loop, the value of x is 4, so all the functions now return
4**2, i.e. 16. You can also verify this by changing the value of x and see how the results of the lambdas change:

>>> x = 8

>>> squares[2]()

64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely on the value
of the global x:

>>> squares = []

>>> for x in range(5):

... squares.append(lambda n=x: n**2)

Here, n=x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the
same value that x had at that point in the loop. This means that the value of n will be 0 in the first lambda, 1 in the
second, 2 in the third, and so on. Therefore each lambda will now return the correct result:

>>> squares[2]()

4

>>> squares[4]()

16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

2.2.4 How do I share global variables across modules?

The canonical way to share information across modules within a single program is to create a special module (often
called config or cfg). Just import the config module in all modules of your application; the module then becomes
available as a global name. Because there is only one instance of each module, any changes made to the module
object get reflected everywhere. For example:

config.py:

x = 0 # Default value of the 'x' configuration setting

mod.py:

import config

config.x = 1

main.py:

import config

import mod

print(config.x)

Note that using a module is also the basis for implementing the singleton design pattern, for the same reason.

2.2.5 What are the “best practices” for using import in a module?

In general, don’t use from modulename import *. Doing so clutters the importer’s namespace, and makes it
much harder for linters to detect undefined names.

Import modules at the top of a file. Doing so makes it clear what other modules your code requires and avoids
questions of whether the module name is in scope. Using one import per line makes it easy to add and delete module
imports, but using multiple imports per line uses less screen space.

It’s good practice if you import modules in the following order:

1. standard library modules – e.g. sys, os, argparse, re

10 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

2. third-party library modules (anything installed in Python’s site-packages directory) – e.g. dateutil, re-
quests, PIL.Image

3. locally developed modules

It is sometimes necessary to move imports to a function or class to avoid problems with circular imports. Gordon
McMillan says:

Circular imports are fine where both modules use the “import <module>” form of import. They fail
when the 2nd module wants to grab a name out of the first (“from module import name”) and the import
is at the top level. That’s because names in the 1st are not yet available, because the first module is busy
importing the 2nd.

In this case, if the second module is only used in one function, then the import can easily be moved into that function.
By the time the import is called, the first module will have finished initializing, and the second module can do its
import.

It may also be necessary to move imports out of the top level of code if some of the modules are platform-specific.
In that case, it may not even be possible to import all of the modules at the top of the file. In this case, importing the
correct modules in the corresponding platform-specific code is a good option.

Only move imports into a local scope, such as inside a function definition, if it’s necessary to solve a problem such
as avoiding a circular import or are trying to reduce the initialization time of a module. This technique is especially
helpful if many of the imports are unnecessary depending on how the program executes. You may also want to move
imports into a function if the modules are only ever used in that function. Note that loading a module the first time
may be expensive because of the one time initialization of the module, but loading a module multiple times is virtually
free, costing only a couple of dictionary lookups. Even if the module name has gone out of scope, the module is
probably available in sys.modules.

2.2.6 Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo(mydict={}): # Danger: shared reference to one dict for all calls

... compute something ...

mydict[key] = value

return mydict

The first time you call this function, mydict contains a single item. The second time, mydict contains two items
because when foo() begins executing, mydict starts out with an item already in it.

It is often expected that a function call creates new objects for default values. This is not what happens. Default values
are created exactly once, when the function is defined. If that object is changed, like the dictionary in this example,
subsequent calls to the function will refer to this changed object.

By definition, immutable objects such as numbers, strings, tuples, and None, are safe from change. Changes to
mutable objects such as dictionaries, lists, and class instances can lead to confusion.

Because of this feature, it is good programming practice to not usemutable objects as default values. Instead, use None
as the default value and inside the function, check if the parameter is None and create a new list/dictionary/whatever
if it is. For example, don’t write:

def foo(mydict={}):

...

but:

def foo(mydict=None):

if mydict is None:

mydict = {} # create a new dict for local namespace

2.2. Core Language 11

Python Frequently Asked Questions, Release 3.14.0rc1

This feature can be useful. When you have a function that’s time-consuming to compute, a common technique is to
cache the parameters and the resulting value of each call to the function, and return the cached value if the same
value is requested again. This is called “memoizing”, and can be implemented like this:

Callers can only provide two parameters and optionally pass _cache by keyword

def expensive(arg1, arg2, *, _cache={}):

if (arg1, arg2) in _cache:

return _cache[(arg1, arg2)]

Calculate the value

result = ... expensive computation ...

_cache[(arg1, arg2)] = result # Store result in the cache

return result

You could use a global variable containing a dictionary instead of the default value; it’s a matter of taste.

2.2.7 How can I pass optional or keyword parameters from one function to an-
other?

Collect the arguments using the * and ** specifiers in the function’s parameter list; this gives you the positional
arguments as a tuple and the keyword arguments as a dictionary. You can then pass these arguments when calling
another function by using * and **:

def f(x, *args, **kwargs):

...

kwargs['width'] = '14.3c'

...

g(x, *args, **kwargs)

2.2.8 What is the difference between arguments and parameters?

Parameters are defined by the names that appear in a function definition, whereas arguments are the values actually
passed to a function when calling it. Parameters define what kind of arguments a function can accept. For example,
given the function definition:

def func(foo, bar=None, **kwargs):

pass

foo, bar and kwargs are parameters of func. However, when calling func, for example:

func(42, bar=314, extra=somevar)

the values 42, 314, and somevar are arguments.

2.2.9 Why did changing list ‘y’ also change list ‘x’?

If you wrote code like:

>>> x = []

>>> y = x

>>> y.append(10)

>>> y

[10]

>>> x

[10]

you might be wondering why appending an element to y changed x too.

There are two factors that produce this result:

12 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

1) Variables are simply names that refer to objects. Doing y = x doesn’t create a copy of the list – it creates a
new variable y that refers to the same object x refers to. This means that there is only one object (the list), and
both x and y refer to it.

2) Lists are mutable, which means that you can change their content.

After the call to append(), the content of the mutable object has changed from [] to [10]. Since both the variables
refer to the same object, using either name accesses the modified value [10].

If we instead assign an immutable object to x:

>>> x = 5 # ints are immutable

>>> y = x

>>> x = x + 1 # 5 can't be mutated, we are creating a new object here

>>> x

6

>>> y

5

we can see that in this case x and y are not equal anymore. This is because integers are immutable, and when we do
x = x + 1 we are not mutating the int 5 by incrementing its value; instead, we are creating a new object (the int 6)
and assigning it to x (that is, changing which object x refers to). After this assignment we have two objects (the ints
6 and 5) and two variables that refer to them (x now refers to 6 but y still refers to 5).

Some operations (for example y.append(10) and y.sort()) mutate the object, whereas superficially similar
operations (for example y = y + [10] and sorted(y)) create a new object. In general in Python (and in all
cases in the standard library) a method that mutates an object will return None to help avoid getting the two types of
operations confused. So if you mistakenly write y.sort() thinking it will give you a sorted copy of y, you’ll instead
end up with None, which will likely cause your program to generate an easily diagnosed error.

However, there is one class of operations where the same operation sometimes has different behaviors with different
types: the augmented assignment operators. For example, += mutates lists but not tuples or ints (a_list += [1,

2, 3] is equivalent to a_list.extend([1, 2, 3]) and mutates a_list, whereas some_tuple += (1, 2,

3) and some_int += 1 create new objects).

In other words:

• If we have a mutable object (list, dict, set, etc.), we can use some specific operations to mutate it and all
the variables that refer to it will see the change.

• If we have an immutable object (str, int, tuple, etc.), all the variables that refer to it will always see the
same value, but operations that transform that value into a new value always return a new object.

If you want to know if two variables refer to the same object or not, you can use the is operator, or the built-in
function id().

2.2.10 How do I write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment just creates references to objects,
there’s no alias between an argument name in the caller and callee, and so no call-by-reference per se. You can achieve
the desired effect in a number of ways.

1) By returning a tuple of the results:

>>> def func1(a, b):

... a = 'new-value' # a and b are local names

... b = b + 1 # assigned to new objects

... return a, b # return new values

...

>>> x, y = 'old-value', 99

>>> func1(x, y)

('new-value', 100)

This is almost always the clearest solution.

2.2. Core Language 13

Python Frequently Asked Questions, Release 3.14.0rc1

2) By using global variables. This isn’t thread-safe, and is not recommended.

3) By passing a mutable (changeable in-place) object:

>>> def func2(a):

... a[0] = 'new-value' # 'a' references a mutable list

... a[1] = a[1] + 1 # changes a shared object

...

>>> args = ['old-value', 99]

>>> func2(args)

>>> args

['new-value', 100]

4) By passing in a dictionary that gets mutated:

>>> def func3(args):

... args['a'] = 'new-value' # args is a mutable dictionary

... args['b'] = args['b'] + 1 # change it in-place

...

>>> args = {'a': 'old-value', 'b': 99}

>>> func3(args)

>>> args

{'a': 'new-value', 'b': 100}

5) Or bundle up values in a class instance:

>>> class Namespace:

... def __init__(self, /, **args):

... for key, value in args.items():

... setattr(self, key, value)

...

>>> def func4(args):

... args.a = 'new-value' # args is a mutable Namespace

... args.b = args.b + 1 # change object in-place

...

>>> args = Namespace(a='old-value', b=99)

>>> func4(args)

>>> vars(args)

{'a': 'new-value', 'b': 100}

There’s almost never a good reason to get this complicated.

Your best choice is to return a tuple containing the multiple results.

2.2.11 How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects. For example, suppose you wanted
to define linear(a,b) which returns a function f(x) that computes the value a*x+b. Using nested scopes:

def linear(a, b):

def result(x):

return a * x + b

return result

Or using a callable object:

class linear:

def __init__(self, a, b):

(continues on next page)

14 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

self.a, self.b = a, b

def __call__(self, x):

return self.a * x + self.b

In both cases,

taxes = linear(0.3, 2)

gives a callable object where taxes(10e6) == 0.3 * 10e6 + 2.

The callable object approach has the disadvantage that it is a bit slower and results in slightly longer code. However,
note that a collection of callables can share their signature via inheritance:

class exponential(linear):

__init__ inherited

def __call__(self, x):

return self.a * (x ** self.b)

Object can encapsulate state for several methods:

class counter:

value = 0

def set(self, x):

self.value = x

def up(self):

self.value = self.value + 1

def down(self):

self.value = self.value - 1

count = counter()

inc, dec, reset = count.up, count.down, count.set

Here inc(), dec() and reset() act like functions which share the same counting variable.

2.2.12 How do I copy an object in Python?

In general, try copy.copy() or copy.deepcopy() for the general case. Not all objects can be copied, but most
can.

Some objects can be copied more easily. Dictionaries have a copy() method:

newdict = olddict.copy()

Sequences can be copied by slicing:

new_l = l[:]

2.2.13 How can I find the methods or attributes of an object?

For an instance x of a user-defined class, dir(x) returns an alphabetized list of the names containing the instance
attributes and methods and attributes defined by its class.

2.2. Core Language 15

Python Frequently Asked Questions, Release 3.14.0rc1

2.2.14 How can my code discover the name of an object?

Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds a name to
a value; the same is true of def and class statements, but in that case the value is a callable. Consider the following
code:

>>> class A:

... pass

...

>>> B = A

>>> a = B()

>>> b = a

>>> print(b)

<__main__.A object at 0x16D07CC>

>>> print(a)

<__main__.A object at 0x16D07CC>

Arguably the class has a name: even though it is bound to two names and invoked through the name B the created
instance is still reported as an instance of class A. However, it is impossible to say whether the instance’s name is a
or b, since both names are bound to the same value.

Generally speaking it should not be necessary for your code to “know the names” of particular values. Unless you are
deliberately writing introspective programs, this is usually an indication that a change of approach might be beneficial.

In comp.lang.python, Fredrik Lundh once gave an excellent analogy in answer to this question:

The same way as you get the name of that cat you found on your porch: the cat (object) itself cannot
tell you its name, and it doesn’t really care – so the only way to find out what it’s called is to ask all your
neighbours (namespaces) if it’s their cat (object)…

….and don’t be surprised if you’ll find that it’s known by many names, or no name at all!

2.2.15 What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> "a" in "b", "a"

(False, 'a')

Since the comma is not an operator, but a separator between expressions the above is evaluated as if you had entered:

("a" in "b"), "a"

not:

"a" in ("b", "a")

The same is true of the various assignment operators (=, += etc). They are not truly operators but syntactic delimiters
in assignment statements.

2.2.16 Is there an equivalent of C’s “?:” ternary operator?

Yes, there is. The syntax is as follows:

[on_true] if [expression] else [on_false]

x, y = 50, 25

small = x if x < y else y

Before this syntax was introduced in Python 2.5, a common idiom was to use logical operators:

16 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

[expression] and [on_true] or [on_false]

However, this idiom is unsafe, as it can give wrong results when on_true has a false boolean value. Therefore, it is
always better to use the ... if ... else ... form.

2.2.17 Is it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting lambda within lambda. See the following three examples, slightly adapted from
Ulf Bartelt:

from functools import reduce

Primes < 1000

print(list(filter(None,map(lambda y:y*reduce(lambda x,y:x*y!=0,

map(lambda x,y=y:y%x,range(2,int(pow(y,0.5)+1))),1),range(2,1000)))))

First 10 Fibonacci numbers

print(list(map(lambda x,f=lambda x,f:(f(x-1,f)+f(x-2,f)) if x>1 else 1:

f(x,f), range(10))))

Mandelbrot set

print((lambda Ru,Ro,Iu,Io,IM,Sx,Sy:reduce(lambda x,y:x+'\n'+y,map(lambda y,

Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc,Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,i=IM,

Sx=Sx,Sy=Sy:reduce(lambda x,y:x+y,map(lambda x,xc=Ru,yc=yc,Ru=Ru,Ro=Ro,

i=i,Sx=Sx,F=lambda xc,yc,x,y,k,f=lambda xc,yc,x,y,k,f:(k<=0)or (x*x+y*y

>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc,yc,x,y,k,f):chr(

64+F(Ru+x*(Ro-Ru)/Sx,yc,0,0,i)),range(Sx))):L(Iu+y*(Io-Iu)/Sy),range(Sy

))))(-2.1, 0.7, -1.2, 1.2, 30, 80, 24))

___ ___/ ___ ___/ | | |__ lines on screen

V V | |______ columns on screen

| | |__________ maximum of "iterations"

| |_________________ range on y axis

|____________________________ range on x axis

Don’t try this at home, kids!

2.2.18 What does the slash(/) in the parameter list of a function mean?

A slash in the argument list of a function denotes that the parameters prior to it are positional-only. Positional-
only parameters are the ones without an externally usable name. Upon calling a function that accepts positional-only
parameters, arguments aremapped to parameters based solely on their position. For example, divmod() is a function
that accepts positional-only parameters. Its documentation looks like this:

>>> help(divmod)

Help on built-in function divmod in module builtins:

divmod(x, y, /)

Return the tuple (x//y, x%y). Invariant: div*y + mod == x.

The slash at the end of the parameter list means that both parameters are positional-only. Thus, calling divmod()
with keyword arguments would lead to an error:

>>> divmod(x=3, y=4)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: divmod() takes no keyword arguments

2.2. Core Language 17

Python Frequently Asked Questions, Release 3.14.0rc1

2.3 Numbers and strings

2.3.1 How do I specify hexadecimal and octal integers?

To specify an octal digit, precede the octal value with a zero, and then a lower or uppercase “o”. For example, to set
the variable “a” to the octal value “10” (8 in decimal), type:

>>> a = 0o10

>>> a

8

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero, and then a lower or uppercase “x”.
Hexadecimal digits can be specified in lower or uppercase. For example, in the Python interpreter:

>>> a = 0xa5

>>> a

165

>>> b = 0XB2

>>> b

178

2.3.2 Why does -22 // 10 return -3?

It’s primarily driven by the desire that i % j have the same sign as j. If you want that, and also want:

i == (i // j) * j + (i % j)

then integer division has to return the floor. C also requires that identity to hold, and then compilers that truncate i
// j need to make i % j have the same sign as i.

There are few real use cases for i % j when j is negative. When j is positive, there are many, and in virtually all of
them it’s more useful for i % j to be >= 0. If the clock says 10 now, what did it say 200 hours ago? -190 % 12

== 2 is useful; -190 % 12 == -10 is a bug waiting to bite.

2.3.3 How do I get int literal attribute instead of SyntaxError?

Trying to lookup an int literal attribute in the normal manner gives a SyntaxError because the period is seen as
a decimal point:

>>> 1.__class__

File "<stdin>", line 1

1.__class__

^

SyntaxError: invalid decimal literal

The solution is to separate the literal from the period with either a space or parentheses.

>>> 1 .__class__

<class 'int'>

>>> (1).__class__

<class 'int'>

2.3.4 How do I convert a string to a number?

For integers, use the built-in int() type constructor, e.g. int('144') == 144. Similarly, float() converts to
a floating-point number, e.g. float('144') == 144.0.

By default, these interpret the number as decimal, so that int('0144') == 144 holds true, and int('0x144')
raises ValueError. int(string, base) takes the base to convert from as a second optional argument, so int(

18 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

'0x144', 16) == 324. If the base is specified as 0, the number is interpreted using Python’s rules: a leading ‘0o’
indicates octal, and ‘0x’ indicates a hex number.

Do not use the built-in function eval() if all you need is to convert strings to numbers. eval() will be significantly
slower and it presents a security risk: someone could pass you a Python expression that might have unwanted side
effects. For example, someone could pass __import__('os').system("rm -rf $HOME") which would erase
your home directory.

eval() also has the effect of interpreting numbers as Python expressions, so that e.g. eval('09') gives a syntax
error because Python does not allow leading ‘0’ in a decimal number (except ‘0’).

2.3.5 How do I convert a number to a string?

To convert, e.g., the number 144 to the string '144', use the built-in type constructor str(). If you want a
hexadecimal or octal representation, use the built-in functions hex() or oct(). For fancy formatting, see the f-
strings and formatstrings sections, e.g. "{:04d}".format(144) yields '0144' and "{:.3f}".format(1.0/
3.0) yields '0.333'.

2.3.6 How do I modify a string in place?

You can’t, because strings are immutable. In most situations, you should simply construct a new string from the
various parts you want to assemble it from. However, if you need an object with the ability to modify in-place
unicode data, try using an io.StringIO object or the array module:

>>> import io

>>> s = "Hello, world"

>>> sio = io.StringIO(s)

>>> sio.getvalue()

'Hello, world'

>>> sio.seek(7)

7

>>> sio.write("there!")

6

>>> sio.getvalue()

'Hello, there!'

>>> import array

>>> a = array.array('w', s)

>>> print(a)

array('w', 'Hello, world')

>>> a[0] = 'y'

>>> print(a)

array('w', 'yello, world')

>>> a.tounicode()

'yello, world'

2.3.7 How do I use strings to call functions/methods?

There are various techniques.

• The best is to use a dictionary that maps strings to functions. The primary advantage of this technique is that
the strings do not need to match the names of the functions. This is also the primary technique used to emulate
a case construct:

def a():

pass

def b():

pass

(continues on next page)

2.3. Numbers and strings 19

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch[get_input()]() # Note trailing parens to call function

• Use the built-in function getattr():

import foo

getattr(foo, 'bar')()

Note that getattr() works on any object, including classes, class instances, modules, and so on.

This is used in several places in the standard library, like this:

class Foo:

def do_foo(self):

...

def do_bar(self):

...

f = getattr(foo_instance, 'do_' + opname)

f()

• Use locals() to resolve the function name:

def myFunc():

print("hello")

fname = "myFunc"

f = locals()[fname]

f()

2.3.8 Is there an equivalent to Perl’s chomp() for removing trailing newlines from
strings?

You can use S.rstrip("\r\n") to remove all occurrences of any line terminator from the end of the string S
without removing other trailing whitespace. If the string S represents more than one line, with several empty lines at
the end, the line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"

... "\r\n"

... "\r\n")

>>> lines.rstrip("\n\r")

'line 1 '

Since this is typically only desired when reading text one line at a time, using S.rstrip() this way works well.

2.3.9 Is there a scanf() or sscanf() equivalent?

Not as such.

For simple input parsing, the easiest approach is usually to split the line into whitespace-delimited words using the
split() method of string objects and then convert decimal strings to numeric values using int() or float().
split() supports an optional “sep” parameter which is useful if the line uses something other than whitespace as a
separator.

20 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

For more complicated input parsing, regular expressions are more powerful than C’s sscanf and better suited for
the task.

2.3.10 What does UnicodeDecodeError or UnicodeEncodeError error mean?

See the unicode-howto.

2.3.11 Can I end a raw string with an odd number of backslashes?

A raw string ending with an odd number of backslashes will escape the string’s quote:

>>> r'C:\this\will\not\work\'

File "<stdin>", line 1

r'C:\this\will\not\work\'

^

SyntaxError: unterminated string literal (detected at line 1)

There are several workarounds for this. One is to use regular strings and double the backslashes:

>>> 'C:\\this\\will\\work\\'

'C:\\this\\will\\work\\'

Another is to concatenate a regular string containing an escaped backslash to the raw string:

>>> r'C:\this\will\work' '\\'

'C:\\this\\will\\work\\'

It is also possible to use os.path.join() to append a backslash on Windows:

>>> os.path.join(r'C:\this\will\work', '')

'C:\\this\\will\\work\\'

Note that while a backslash will “escape” a quote for the purposes of determining where the raw string ends, no
escaping occurs when interpreting the value of the raw string. That is, the backslash remains present in the value of
the raw string:

>>> r'backslash\'preserved'

"backslash\\'preserved"

Also see the specification in the language reference.

2.4 Performance

2.4.1 My program is too slow. How do I speed it up?

That’s a tough one, in general. First, here are a list of things to remember before diving further:

• Performance characteristics vary across Python implementations. This FAQ focuses on CPython.

• Behaviour can vary across operating systems, especially when talking about I/O or multi-threading.

• You should always find the hot spots in your program before attempting to optimize any code (see the profile
module).

• Writing benchmark scripts will allow you to iterate quickly when searching for improvements (see the timeit
module).

• It is highly recommended to have good code coverage (through unit testing or any other technique) before
potentially introducing regressions hidden in sophisticated optimizations.

That being said, there are many tricks to speed up Python code. Here are some general principles which go a long
way towards reaching acceptable performance levels:

2.4. Performance 21

Python Frequently Asked Questions, Release 3.14.0rc1

• Making your algorithms faster (or changing to faster ones) can yield much larger benefits than trying to sprinkle
micro-optimization tricks all over your code.

• Use the right data structures. Study documentation for the bltin-types and the collections module.

• When the standard library provides a primitive for doing something, it is likely (although not guaranteed) to
be faster than any alternative you may come up with. This is doubly true for primitives written in C, such as
builtins and some extension types. For example, be sure to use either the list.sort() built-in method or
the related sorted() function to do sorting (and see the sortinghowto for examples of moderately advanced
usage).

• Abstractions tend to create indirections and force the interpreter to work more. If the levels of indirection
outweigh the amount of useful work done, your programwill be slower. You should avoid excessive abstraction,
especially under the form of tiny functions or methods (which are also often detrimental to readability).

If you have reached the limit of what pure Python can allow, there are tools to take you further away. For example,
Cython can compile a slightly modified version of Python code into a C extension, and can be used on many different
platforms. Cython can take advantage of compilation (and optional type annotations) to make your code significantly
faster than when interpreted. If you are confident in your C programming skills, you can also write a C extension
module yourself.

See also

The wiki page devoted to performance tips.

2.4.2 What is the most efficient way to concatenate many strings together?

str and bytes objects are immutable, therefore concatenating many strings together is inefficient as each concate-
nation creates a new object. In the general case, the total runtime cost is quadratic in the total string length.

To accumulate many str objects, the recommended idiom is to place them into a list and call str.join() at the
end:

chunks = []

for s in my_strings:

chunks.append(s)

result = ''.join(chunks)

(another reasonably efficient idiom is to use io.StringIO)

To accumulate many bytes objects, the recommended idiom is to extend a bytearray object using in-place con-
catenation (the += operator):

result = bytearray()

for b in my_bytes_objects:

result += b

2.5 Sequences (Tuples/Lists)

2.5.1 How do I convert between tuples and lists?

The type constructor tuple(seq) converts any sequence (actually, any iterable) into a tuple with the same items in
the same order.

For example, tuple([1, 2, 3]) yields (1, 2, 3) and tuple('abc') yields ('a', 'b', 'c'). If the
argument is a tuple, it does not make a copy but returns the same object, so it is cheap to call tuple() when you
aren’t sure that an object is already a tuple.

The type constructor list(seq) converts any sequence or iterable into a list with the same items in the same order.
For example, list((1, 2, 3)) yields [1, 2, 3] and list('abc') yields ['a', 'b', 'c']. If the argument
is a list, it makes a copy just like seq[:] would.

22 Chapter 2. Programming FAQ

https://cython.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Python Frequently Asked Questions, Release 3.14.0rc1

2.5.2 What’s a negative index?

Python sequences are indexed with positive numbers and negative numbers. For positive numbers 0 is the first index
1 is the second index and so forth. For negative indices -1 is the last index and -2 is the penultimate (next to last)
index and so forth. Think of seq[-n] as the same as seq[len(seq)-n].

Using negative indices can be very convenient. For example S[:-1] is all of the string except for its last character,
which is useful for removing the trailing newline from a string.

2.5.3 How do I iterate over a sequence in reverse order?

Use the reversed() built-in function:

for x in reversed(sequence):

... # do something with x ...

This won’t touch your original sequence, but build a new copy with reversed order to iterate over.

2.5.4 How do you remove duplicates from a list?

See the Python Cookbook for a long discussion of many ways to do this:

https://code.activestate.com/recipes/52560/

If you don’t mind reordering the list, sort it and then scan from the end of the list, deleting duplicates as you go:

if mylist:

mylist.sort()

last = mylist[-1]

for i in range(len(mylist)-2, -1, -1):

if last == mylist[i]:

del mylist[i]

else:

last = mylist[i]

If all elements of the list may be used as set keys (i.e. they are all hashable) this is often faster

mylist = list(set(mylist))

This converts the list into a set, thereby removing duplicates, and then back into a list.

2.5.5 How do you remove multiple items from a list

As with removing duplicates, explicitly iterating in reverse with a delete condition is one possibility. However, it is
easier and faster to use slice replacement with an implicit or explicit forward iteration. Here are three variations.:

mylist[:] = filter(keep_function, mylist)

mylist[:] = (x for x in mylist if keep_condition)

mylist[:] = [x for x in mylist if keep_condition]

The list comprehension may be fastest.

2.5.6 How do you make an array in Python?

Use a list:

["this", 1, "is", "an", "array"]

Lists are equivalent to C or Pascal arrays in their time complexity; the primary difference is that a Python list can
contain objects of many different types.

2.5. Sequences (Tuples/Lists) 23

https://code.activestate.com/recipes/52560/

Python Frequently Asked Questions, Release 3.14.0rc1

The array module also provides methods for creating arrays of fixed types with compact representations, but they
are slower to index than lists. Also note that NumPy and other third party packages define array-like structures with
various characteristics as well.

To get Lisp-style linked lists, you can emulate cons cells using tuples:

lisp_list = ("like", ("this", ("example", None)))

If mutability is desired, you could use lists instead of tuples. Here the analogue of a Lisp car is lisp_list[0] and
the analogue of cdr is lisp_list[1]. Only do this if you’re sure you really need to, because it’s usually a lot slower
than using Python lists.

2.5.7 How do I create a multidimensional list?

You probably tried to make a multidimensional array like this:

>>> A = [[None] * 2] * 3

This looks correct if you print it:

>>> A

[[None, None], [None, None], [None, None]]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] = 5

>>> A

[[5, None], [5, None], [5, None]]

The reason is that replicating a list with * doesn’t create copies, it only creates references to the existing objects. The
*3 creates a list containing 3 references to the same list of length two. Changes to one row will show in all rows,
which is almost certainly not what you want.

The suggested approach is to create a list of the desired length first and then fill in each element with a newly created
list:

A = [None] * 3

for i in range(3):

A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also use a list comprehension:

w, h = 2, 3

A = [[None] * w for i in range(h)]

Or, you can use an extension that provides a matrix datatype; NumPy is the best known.

2.5.8 How do I apply a method or function to a sequence of objects?

To call a method or function and accumulate the return values is a list, a list comprehension is an elegant solution:

result = [obj.method() for obj in mylist]

result = [function(obj) for obj in mylist]

To just run the method or function without saving the return values, a plain for loop will suffice:

for obj in mylist:

obj.method()

(continues on next page)

24 Chapter 2. Programming FAQ

https://numpy.org/
https://numpy.org/

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

for obj in mylist:

function(obj)

2.5.9 Why does a_tuple[i] += [‘item’] raise an exception when the addition works?

This is because of a combination of the fact that augmented assignment operators are assignment operators, and the
difference between mutable and immutable objects in Python.

This discussion applies in general when augmented assignment operators are applied to elements of a tuple that point
to mutable objects, but we’ll use a list and += as our exemplar.

If you wrote:

>>> a_tuple = (1, 2)

>>> a_tuple[0] += 1

Traceback (most recent call last):

...

TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple[0] points to (1),
producing the result object, 2, but when we attempt to assign the result of the computation, 2, to element 0 of the
tuple, we get an error because we can’t change what an element of a tuple points to.

Under the covers, what this augmented assignment statement is doing is approximately this:

>>> result = a_tuple[0] + 1

>>> a_tuple[0] = result

Traceback (most recent call last):

...

TypeError: 'tuple' object does not support item assignment

It is the assignment part of the operation that produces the error, since a tuple is immutable.

When you write something like:

>>> a_tuple = (['foo'], 'bar')

>>> a_tuple[0] += ['item']

Traceback (most recent call last):

...

TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an error, the
append worked:

>>> a_tuple[0]

['foo', 'item']

To see why this happens, you need to know that (a) if an object implements an __iadd__() magic method, it
gets called when the += augmented assignment is executed, and its return value is what gets used in the assignment
statement; and (b) for lists, __iadd__() is equivalent to calling extend() on the list and returning the list. That’s
why we say that for lists, += is a “shorthand” for list.extend():

>>> a_list = []

>>> a_list += [1]

>>> a_list

[1]

This is equivalent to:

2.5. Sequences (Tuples/Lists) 25

Python Frequently Asked Questions, Release 3.14.0rc1

>>> result = a_list.__iadd__([1])

>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back to a_list.
The end result of the assignment is a no-op, since it is a pointer to the same object that a_list was previously
pointing to, but the assignment still happens.

Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__(['item'])

>>> a_tuple[0] = result

Traceback (most recent call last):

...

TypeError: 'tuple' object does not support item assignment

The __iadd__() succeeds, and thus the list is extended, but even though result points to the same object that
a_tuple[0] already points to, that final assignment still results in an error, because tuples are immutable.

2.5.10 I want to do a complicated sort: can you do a Schwartzian Transform in
Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which
maps each element to its “sort value”. In Python, use the key argument for the list.sort() method:

Isorted = L[:]

Isorted.sort(key=lambda s: int(s[10:15]))

2.5.11 How can I sort one list by values from another list?

Merge them into an iterator of tuples, sort the resulting list, and then pick out the element you want.

>>> list1 = ["what", "I'm", "sorting", "by"]

>>> list2 = ["something", "else", "to", "sort"]

>>> pairs = zip(list1, list2)

>>> pairs = sorted(pairs)

>>> pairs

[("I'm", 'else'), ('by', 'sort'), ('sorting', 'to'), ('what', 'something')]

>>> result = [x[1] for x in pairs]

>>> result

['else', 'sort', 'to', 'something']

2.6 Objects

2.6.1 What is a class?

A class is the particular object type created by executing a class statement. Class objects are used as templates to
create instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes and meth-
ods of its base classes. This allows an object model to be successively refined by inheritance. You might have a
generic Mailbox class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox,
MaildirMailbox, OutlookMailbox that handle various specific mailbox formats.

26 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

2.6.2 What is a method?

A method is a function on some object x that you normally call as x.name(arguments...). Methods are defined
as functions inside the class definition:

class C:

def meth(self, arg):

return arg * 2 + self.attribute

2.6.3 What is self?

Self is merely a conventional name for the first argument of a method. A method defined as meth(self, a, b,

c) should be called as x.meth(a, b, c) for some instance x of the class in which the definition occurs; the called
method will think it is called as meth(x, a, b, c).

See alsoWhy must ‘self’ be used explicitly in method definitions and calls?.

2.6.4 How do I check if an object is an instance of a given class or of a subclass
of it?

Use the built-in function isinstance(obj, cls). You can check if an object is an instance of any of a number of
classes by providing a tuple instead of a single class, e.g. isinstance(obj, (class1, class2, ...)), and can
also check whether an object is one of Python’s built-in types, e.g. isinstance(obj, str) or isinstance(obj,
(int, float, complex)).

Note that isinstance() also checks for virtual inheritance from an abstract base class. So, the test will return
True for a registered class even if hasn’t directly or indirectly inherited from it. To test for “true inheritance”, scan
the MRO of the class:

from collections.abc import Mapping

class P:

pass

class C(P):

pass

Mapping.register(P)

>>> c = C()

>>> isinstance(c, C) # direct

True

>>> isinstance(c, P) # indirect

True

>>> isinstance(c, Mapping) # virtual

True

Actual inheritance chain

>>> type(c).__mro__

(<class 'C'>, <class 'P'>, <class 'object'>)

Test for "true inheritance"

>>> Mapping in type(c).__mro__

False

Note that most programs do not use isinstance() on user-defined classes very often. If you are developing the
classes yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular
behaviour, instead of checking the object’s class and doing a different thing based on what class it is. For example, if
you have a function that does something:

2.6. Objects 27

Python Frequently Asked Questions, Release 3.14.0rc1

def search(obj):

if isinstance(obj, Mailbox):

... # code to search a mailbox

elif isinstance(obj, Document):

... # code to search a document

elif ...

A better approach is to define a search() method on all the classes and just call it:

class Mailbox:

def search(self):

... # code to search a mailbox

class Document:

def search(self):

... # code to search a document

obj.search()

2.6.5 What is delegation?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to
change the behaviour of just one of its methods. You can create a new class that provides a new implementation of
the method you’re interested in changing and delegates all other methods to the corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class that
behaves like a file but converts all written data to uppercase:

class UpperOut:

def __init__(self, outfile):

self._outfile = outfile

def write(self, s):

self._outfile.write(s.upper())

def __getattr__(self, name):

return getattr(self._outfile, name)

Here the UpperOut class redefines the write() method to convert the argument string to uppercase before call-
ing the underlying self._outfile.write() method. All other methods are delegated to the underlying self.
_outfile object. The delegation is accomplished via the __getattr__()method; consult the language reference
for more information about controlling attribute access.

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved, the
class must define a __setattr__() method too, and it must do so carefully. The basic implementation of __se-
tattr__() is roughly equivalent to the following:

class X:

...

def __setattr__(self, name, value):

self.__dict__[name] = value

...

Many __setattr__() implementations call object.__setattr__() to set an attribute on self without causing
infinite recursion:

28 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

class X:

def __setattr__(self, name, value):

Custom logic here...

object.__setattr__(self, name, value)

Alternatively, it is possible to set attributes by inserting entries into self.__dict__ directly.

2.6.6 How do I call a method defined in a base class from a derived class that
extends it?

Use the built-in super() function:

class Derived(Base):

def meth(self):

super().meth() # calls Base.meth

In the example, super() will automatically determine the instance from which it was called (the self value), look
up the method resolution order (MRO) with type(self).__mro__, and return the next in line after Derived in
the MRO: Base.

2.6.7 How can I organize my code to make it easier to change the base class?

You could assign the base class to an alias and derive from the alias. Then all you have to change is the value assigned
to the alias. Incidentally, this trick is also handy if you want to decide dynamically (e.g. depending on availability of
resources) which base class to use. Example:

class Base:

...

BaseAlias = Base

class Derived(BaseAlias):

...

2.6.8 How do I create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the
class name in the assignment:

class C:

count = 0 # number of times C.__init__ called

def __init__(self):

C.count = C.count + 1

def getcount(self):

return C.count # or return self.count

c.count also refers to C.count for any c such that isinstance(c, C) holds, unless overridden by c itself or by
some class on the base-class search path from c.__class__ back to C.

Caution: within a method of C, an assignment like self.count = 42 creates a new and unrelated instance named
“count” in self’s own dict. Rebinding of a class-static data name must always specify the class whether inside a
method or not:

C.count = 314

2.6. Objects 29

Python Frequently Asked Questions, Release 3.14.0rc1

Static methods are possible:

class C:

@staticmethod

def static(arg1, arg2, arg3):

No 'self' parameter!

...

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount():

return C.count

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the
desired encapsulation.

2.6.9 How can I overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of constructors.

In C++ you’d write

class C {

C() { cout << "No arguments\n"; }

C(int i) { cout << "Argument is " << i << "\n"; }

}

In Python you have to write a single constructor that catches all cases using default arguments. For example:

class C:

def __init__(self, i=None):

if i is None:

print("No arguments")

else:

print("Argument is", i)

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def __init__(self, *args):

...

The same approach works for all method definitions.

2.6.10 I try to use __spam and I get an error about _SomeClassName__spam.

Variable names with double leading underscores are “mangled” to provide a simple but effective way to define class
private variables. Any identifier of the form __spam (at least two leading underscores, at most one trailing under-
score) is textually replaced with _classname__spam, where classname is the current class name with any leading
underscores stripped.

The identifier can be used unchanged within the class, but to access it outside the class, the mangled name must be
used:

class A:

def __one(self):

return 1

def two(self):

return 2 * self.__one()

(continues on next page)

30 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

class B(A):

def three(self):

return 3 * self._A__one()

four = 4 * A()._A__one()

In particular, this does not guarantee privacy since an outside user can still deliberately access the private attribute;
many Python programmers never bother to use private variable names at all.

See also

The private name mangling specifications for details and special cases.

2.6.11 My class defines __del__ but it is not called when I delete the object.

There are several possible reasons for this.

The del statement does not necessarily call __del__() – it simply decrements the object’s reference count, and if
this reaches zero __del__() is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has
a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect
such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so
your __del__() method may be called at an inconvenient and random time. This is inconvenient if you’re trying
to reproduce a problem. Worse, the order in which object’s __del__() methods are executed is arbitrary. You can
run gc.collect() to force a collection, but there are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit close() method on objects to be called when-
ever you’re done with them. The close() method can then remove attributes that refer to subobjects. Don’t call
__del__() directly – __del__() should call close() and close() should make sure that it can be called more
than once for the same object.

Another way to avoid cyclical references is to use the weakrefmodule, which allows you to point to objects without
incrementing their reference count. Tree data structures, for instance, should use weak references for their parent and
sibling references (if they need them!).

Finally, if your __del__() method raises an exception, a warning message is printed to sys.stderr.

2.6.12 How do I get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s constructor
to keep track of all instances by keeping a list of weak references to each instance.

2.6.13 Why does the result of id() appear to be not unique?

The id() builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since in CPython,
this is the object’s memory address, it happens frequently that after an object is deleted frommemory, the next freshly
created object is allocated at the same position in memory. This is illustrated by this example:

>>> id(1000)

13901272

>>> id(2000)

13901272

The two ids belong to different integer objects that are created before, and deleted immediately after execution of the
id() call. To be sure that objects whose id you want to examine are still alive, create another reference to the object:

2.6. Objects 31

Python Frequently Asked Questions, Release 3.14.0rc1

>>> a = 1000; b = 2000

>>> id(a)

13901272

>>> id(b)

13891296

2.6.14 When can I rely on identity tests with the is operator?

The is operator tests for object identity. The test a is b is equivalent to id(a) == id(b).

The most important property of an identity test is that an object is always identical to itself, a is a always returns
True. Identity tests are usually faster than equality tests. And unlike equality tests, identity tests are guaranteed to
return a boolean True or False.

However, identity tests can only be substituted for equality tests when object identity is assured. Generally, there are
three circumstances where identity is guaranteed:

1) Assignments create new names but do not change object identity. After the assignment new = old, it is
guaranteed that new is old.

2) Putting an object in a container that stores object references does not change object identity. After the list
assignment s[0] = x, it is guaranteed that s[0] is x.

3) If an object is a singleton, it means that only one instance of that object can exist. After the assignments a =

None and b = None, it is guaranteed that a is b because None is a singleton.

In most other circumstances, identity tests are inadvisable and equality tests are preferred. In particular, identity tests
should not be used to check constants such as int and str which aren’t guaranteed to be singletons:

>>> a = 1000

>>> b = 500

>>> c = b + 500

>>> a is c

False

>>> a = 'Python'

>>> b = 'Py'

>>> c = b + 'thon'

>>> a is c

False

Likewise, new instances of mutable containers are never identical:

>>> a = []

>>> b = []

>>> a is b

False

In the standard library code, you will see several common patterns for correctly using identity tests:

1) As recommended by PEP 8, an identity test is the preferred way to check for None. This reads like plain
English in code and avoids confusion with other objects that may have boolean values that evaluate to false.

2) Detecting optional arguments can be tricky when None is a valid input value. In those situations, you can
create a singleton sentinel object guaranteed to be distinct from other objects. For example, here is how to
implement a method that behaves like dict.pop():

_sentinel = object()

def pop(self, key, default=_sentinel):

if key in self:

(continues on next page)

32 Chapter 2. Programming FAQ

https://peps.python.org/pep-0008/

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

value = self[key]

del self[key]

return value

if default is _sentinel:

raise KeyError(key)

return default

3) Container implementations sometimes need to augment equality tests with identity tests. This prevents the
code from being confused by objects such as float('NaN') that are not equal to themselves.

For example, here is the implementation of collections.abc.Sequence.__contains__():

def __contains__(self, value):

for v in self:

if v is value or v == value:

return True

return False

2.6.15 How can a subclass control what data is stored in an immutable instance?

When subclassing an immutable type, override the __new__() method instead of the __init__() method. The
latter only runs after an instance is created, which is too late to alter data in an immutable instance.

All of these immutable classes have a different signature than their parent class:

from datetime import date

class FirstOfMonthDate(date):

"Always choose the first day of the month"

def __new__(cls, year, month, day):

return super().__new__(cls, year, month, 1)

class NamedInt(int):

"Allow text names for some numbers"

xlat = {'zero': 0, 'one': 1, 'ten': 10}

def __new__(cls, value):

value = cls.xlat.get(value, value)

return super().__new__(cls, value)

class TitleStr(str):

"Convert str to name suitable for a URL path"

def __new__(cls, s):

s = s.lower().replace(' ', '-')

s = ''.join([c for c in s if c.isalnum() or c == '-'])

return super().__new__(cls, s)

The classes can be used like this:

>>> FirstOfMonthDate(2012, 2, 14)

FirstOfMonthDate(2012, 2, 1)

>>> NamedInt('ten')

10

>>> NamedInt(20)

20

>>> TitleStr('Blog: Why Python Rocks')

'blog-why-python-rocks'

2.6. Objects 33

Python Frequently Asked Questions, Release 3.14.0rc1

2.6.16 How do I cache method calls?

The two principal tools for caching methods are functools.cached_property() and functools.

lru_cache(). The former stores results at the instance level and the latter at the class level.

The cached_property approach only works with methods that do not take any arguments. It does not create a reference
to the instance. The cached method result will be kept only as long as the instance is alive.

The advantage is that when an instance is no longer used, the cached method result will be released right away. The
disadvantage is that if instances accumulate, so too will the accumulated method results. They can grow without
bound.

The lru_cache approach works with methods that have hashable arguments. It creates a reference to the instance
unless special efforts are made to pass in weak references.

The advantage of the least recently used algorithm is that the cache is bounded by the specified maxsize. The disad-
vantage is that instances are kept alive until they age out of the cache or until the cache is cleared.

This example shows the various techniques:

class Weather:

"Lookup weather information on a government website"

def __init__(self, station_id):

self._station_id = station_id

The _station_id is private and immutable

def current_temperature(self):

"Latest hourly observation"

Do not cache this because old results

can be out of date.

@cached_property

def location(self):

"Return the longitude/latitude coordinates of the station"

Result only depends on the station_id

@lru_cache(maxsize=20)

def historic_rainfall(self, date, units='mm'):

"Rainfall on a given date"

Depends on the station_id, date, and units.

The above example assumes that the station_id never changes. If the relevant instance attributes are mutable, the
cached_property approach can’t be made to work because it cannot detect changes to the attributes.

To make the lru_cache approach work when the station_id is mutable, the class needs to define the __eq__() and
__hash__() methods so that the cache can detect relevant attribute updates:

class Weather:

"Example with a mutable station identifier"

def __init__(self, station_id):

self.station_id = station_id

def change_station(self, station_id):

self.station_id = station_id

def __eq__(self, other):

return self.station_id == other.station_id

def __hash__(self):

(continues on next page)

34 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

return hash(self.station_id)

@lru_cache(maxsize=20)

def historic_rainfall(self, date, units='cm'):

'Rainfall on a given date'

Depends on the station_id, date, and units.

2.7 Modules

2.7.1 How do I create a .pyc file?

When a module is imported for the first time (or when the source file has changed since the current compiled file was
created) a .pyc file containing the compiled code should be created in a __pycache__ subdirectory of the directory
containing the .py file. The .pyc file will have a filename that starts with the same name as the .py file, and ends
with .pyc, with a middle component that depends on the particular python binary that created it. (See PEP 3147
for details.)

One reason that a .pyc file may not be created is a permissions problem with the directory containing the source
file, meaning that the __pycache__ subdirectory cannot be created. This can happen, for example, if you develop
as one user but run as another, such as if you are testing with a web server.

Unless the PYTHONDONTWRITEBYTECODE environment variable is set, creation of a .pyc file is automatic if you’re
importing amodule and Python has the ability (permissions, free space, etc…) to create a __pycache__ subdirectory
and write the compiled module to that subdirectory.

Running Python on a top level script is not considered an import and no .pyc will be created. For example, if you
have a top-level module foo.py that imports another module xyz.py, when you run foo (by typing python foo.

py as a shell command), a .pyc will be created for xyz because xyz is imported, but no .pyc file will be created
for foo since foo.py isn’t being imported.

If you need to create a .pyc file for foo – that is, to create a .pyc file for a module that is not imported – you can,
using the py_compile and compileall modules.

The py_compile module can manually compile any module. One way is to use the compile() function in that
module interactively:

>>> import py_compile

>>> py_compile.compile('foo.py')

This will write the .pyc to a __pycache__ subdirectory in the same location as foo.py (or you can override that
with the optional parameter cfile).

You can also automatically compile all files in a directory or directories using the compileallmodule. You can do
it from the shell prompt by running compileall.py and providing the path of a directory containing Python files
to compile:

python -m compileall .

2.7.2 How do I find the current module name?

A module can find out its own module name by looking at the predefined global variable __name__. If this has the
value '__main__', the program is running as a script. Many modules that are usually used by importing them also
provide a command-line interface or a self-test, and only execute this code after checking __name__:

def main():

print('Running test...')

...

(continues on next page)

2.7. Modules 35

https://peps.python.org/pep-3147/

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

if __name__ == '__main__':

main()

2.7.3 How can I have modules that mutually import each other?

Suppose you have the following modules:

foo.py:

from bar import bar_var

foo_var = 1

bar.py:

from foo import foo_var

bar_var = 2

The problem is that the interpreter will perform the following steps:

• main imports foo

• Empty globals for foo are created

• foo is compiled and starts executing

• foo imports bar

• Empty globals for bar are created

• bar is compiled and starts executing

• bar imports foo (which is a no-op since there already is a module named foo)

• The import mechanism tries to read foo_var from foo globals, to set bar.foo_var = foo.foo_var

The last step fails, because Python isn’t done with interpreting foo yet and the global symbol dictionary for foo is
still empty.

The same thing happens when you use import foo, and then try to access foo.foo_var in global code.

There are (at least) three possible workarounds for this problem.

Guido van Rossum recommends avoiding all uses of from <module> import ..., and placing all code inside
functions. Initializations of global variables and class variables should use constants or built-in functions only. This
means everything from an imported module is referenced as <module>.<name>.

Jim Roskind suggests performing steps in the following order in each module:

• exports (globals, functions, and classes that don’t need imported base classes)

• import statements

• active code (including globals that are initialized from imported values).

Van Rossum doesn’t like this approach much because the imports appear in a strange place, but it does work.

Matthias Urlichs recommends restructuring your code so that the recursive import is not necessary in the first place.

These solutions are not mutually exclusive.

2.7.4 __import__(‘x.y.z’) returns <module ‘x’>; how do I get z?

Consider using the convenience function import_module() from importlib instead:

z = importlib.import_module('x.y.z')

36 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

2.7.5 When I edit an imported module and reimport it, the changes don’t show
up. Why does this happen?

For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module is
imported. If it didn’t, in a program consisting of many modules where each one imports the same basic module, the
basic module would be parsed and re-parsed many times. To force re-reading of a changed module, do this:

import importlib

import modname

importlib.reload(modname)

Warning: this technique is not 100% fool-proof. In particular, modules containing statements like

from modname import some_objects

will continue to work with the old version of the imported objects. If the module contains class definitions, existing
class instances will not be updated to use the new class definition. This can result in the following paradoxical
behaviour:

>>> import importlib

>>> import cls

>>> c = cls.C() # Create an instance of C

>>> importlib.reload(cls)

<module 'cls' from 'cls.py'>

>>> isinstance(c, cls.C) # isinstance is false?!?

False

The nature of the problem is made clear if you print out the “identity” of the class objects:

>>> hex(id(c.__class__))

'0x7352a0'

>>> hex(id(cls.C))

'0x4198d0'

2.7. Modules 37

Python Frequently Asked Questions, Release 3.14.0rc1

38 Chapter 2. Programming FAQ

CHAPTER

THREE

DESIGN AND HISTORY FAQ

3.1 Why does Python use indentation for grouping of statements?

Guido van Rossum believes that using indentation for grouping is extremely elegant and contributes a lot to the clarity
of the average Python program. Most people learn to love this feature after a while.

Since there are no begin/end brackets there cannot be a disagreement between grouping perceived by the parser and
the human reader. Occasionally C programmers will encounter a fragment of code like this:

if (x <= y)

x++;

y--;

z++;

Only the x++ statement is executed if the condition is true, but the indentation leads many to believe otherwise. Even
experienced C programmers will sometimes stare at it a long time wondering as to why y is being decremented even
for x > y.

Because there are no begin/end brackets, Python is much less prone to coding-style conflicts. In C there are many
different ways to place the braces. After becoming used to reading and writing code using a particular style, it is
normal to feel somewhat uneasy when reading (or being required to write) in a different one.

Many coding styles place begin/end brackets on a line by themselves. This makes programs considerably longer and
wastes valuable screen space, making it harder to get a good overview of a program. Ideally, a function should fit on
one screen (say, 20–30 lines). 20 lines of Python can do a lot more work than 20 lines of C. This is not solely due to
the lack of begin/end brackets – the lack of declarations and the high-level data types are also responsible – but the
indentation-based syntax certainly helps.

3.2 Why am I getting strange results with simple arithmetic opera-
tions?

See the next question.

3.3 Why are floating-point calculations so inaccurate?

Users are often surprised by results like this:

>>> 1.2 - 1.0

0.19999999999999996

and think it is a bug in Python. It’s not. This has little to do with Python, and much more to do with how the
underlying platform handles floating-point numbers.

The float type in CPython uses a C double for storage. A float object’s value is stored in binary floating-point
with a fixed precision (typically 53 bits) and Python uses C operations, which in turn rely on the hardware imple-

39

Python Frequently Asked Questions, Release 3.14.0rc1

mentation in the processor, to perform floating-point operations. This means that as far as floating-point operations
are concerned, Python behaves like many popular languages including C and Java.

Many numbers that can be written easily in decimal notation cannot be expressed exactly in binary floating point.
For example, after:

>>> x = 1.2

the value stored for x is a (very good) approximation to the decimal value 1.2, but is not exactly equal to it. On a
typical machine, the actual stored value is:

1.0011001100110011001100110011001100110011001100110011 (binary)

which is exactly:

1.1999999999999999555910790149937383830547332763671875 (decimal)

The typical precision of 53 bits provides Python floats with 15–16 decimal digits of accuracy.

For a fuller explanation, please see the floating-point arithmetic chapter in the Python tutorial.

3.4 Why are Python strings immutable?

There are several advantages.

One is performance: knowing that a string is immutable means we can allocate space for it at creation time, and the
storage requirements are fixed and unchanging. This is also one of the reasons for the distinction between tuples and
lists.

Another advantage is that strings in Python are considered as “elemental” as numbers. No amount of activity will
change the value 8 to anything else, and in Python, no amount of activity will change the string “eight” to anything
else.

3.5 Why must ‘self’ be used explicitly in method definitions and
calls?

The idea was borrowed from Modula-3. It turns out to be very useful, for a variety of reasons.

First, it’s more obvious that you are using a method or instance attribute instead of a local variable. Reading self.x
or self.meth() makes it absolutely clear that an instance variable or method is used even if you don’t know the
class definition by heart. In C++, you can sort of tell by the lack of a local variable declaration (assuming globals
are rare or easily recognizable) – but in Python, there are no local variable declarations, so you’d have to look up the
class definition to be sure. Some C++ and Java coding standards call for instance attributes to have an m_ prefix, so
this explicitness is still useful in those languages, too.

Second, it means that no special syntax is necessary if you want to explicitly reference or call the method from a
particular class. In C++, if you want to use a method from a base class which is overridden in a derived class, you
have to use the :: operator – in Python you can write baseclass.methodname(self, <argument list>).
This is particularly useful for __init__() methods, and in general in cases where a derived class method wants to
extend the base class method of the same name and thus has to call the base class method somehow.

Finally, for instance variables it solves a syntactic problem with assignment: since local variables in Python are (by
definition!) those variables to which a value is assigned in a function body (and that aren’t explicitly declared global),
there has to be some way to tell the interpreter that an assignment was meant to assign to an instance variable instead
of to a local variable, and it should preferably be syntactic (for efficiency reasons). C++ does this through declarations,
but Python doesn’t have declarations and it would be a pity having to introduce them just for this purpose. Using the
explicit self.var solves this nicely. Similarly, for using instance variables, having to write self.var means that
references to unqualified names inside a method don’t have to search the instance’s directories. To put it another way,
local variables and instance variables live in two different namespaces, and you need to tell Python which namespace
to use.

40 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

3.6 Why can’t I use an assignment in an expression?

Starting in Python 3.8, you can!

Assignment expressions using the walrus operator := assign a variable in an expression:

while chunk := fp.read(200):

print(chunk)

See PEP 572 for more information.

3.7 Why does Python use methods for some functionality (e.g.
list.index()) but functions for other (e.g. len(list))?

As Guido said:

(a) For some operations, prefix notation just reads better than postfix – prefix (and infix!) operations
have a long tradition in mathematics which likes notations where the visuals help the mathematician
thinking about a problem. Compare the easy with which we rewrite a formula like x*(a+b) into x*a +
x*b to the clumsiness of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something. This tells
me two things: the result is an integer, and the argument is some kind of container. To the contrary,
when I read x.len(), I have to already know that x is some kind of container implementing an interface
or inheriting from a class that has a standard len(). Witness the confusion we occasionally have when a
class that is not implementing a mapping has a get() or keys() method, or something that isn’t a file has
a write() method.

---https://mail.python.org/pipermail/python-3000/2006-November/004643.html

3.8 Why is join() a string method instead of a list or tuple method?

Strings became much more like other standard types starting in Python 1.6, when methods were added which give
the same functionality that has always been available using the functions of the string module. Most of these new
methods have been widely accepted, but the one which appears to make some programmers feel uncomfortable is:

", ".join(['1', '2', '4', '8', '16'])

which gives the result:

"1, 2, 4, 8, 16"

There are two common arguments against this usage.

The first runs along the lines of: “It looks really ugly using a method of a string literal (string constant)”, to which the
answer is that it might, but a string literal is just a fixed value. If the methods are to be allowed on names bound to
strings there is no logical reason to make them unavailable on literals.

The second objection is typically cast as: “I am really telling a sequence to join its members together with a string
constant”. Sadly, you aren’t. For some reason there seems to be much less difficulty with having split() as a string
method, since in that case it is easy to see that

"1, 2, 4, 8, 16".split(", ")

is an instruction to a string literal to return the substrings delimited by the given separator (or, by default, arbitrary
runs of white space).

join() is a string method because in using it you are telling the separator string to iterate over a sequence of strings
and insert itself between adjacent elements. This method can be used with any argument which obeys the rules for
sequence objects, including any new classes you might define yourself. Similar methods exist for bytes and bytearray
objects.

3.6. Why can’t I use an assignment in an expression? 41

https://peps.python.org/pep-0572/
https://mail.python.org/pipermail/python-3000/2006-November/004643.html

Python Frequently Asked Questions, Release 3.14.0rc1

3.9 How fast are exceptions?

A try/except block is extremely efficient if no exceptions are raised. Actually catching an exception is expensive.
In versions of Python prior to 2.0 it was common to use this idiom:

try:

value = mydict[key]

except KeyError:

mydict[key] = getvalue(key)

value = mydict[key]

This only made sense when you expected the dict to have the key almost all the time. If that wasn’t the case, you
coded it like this:

if key in mydict:

value = mydict[key]

else:

value = mydict[key] = getvalue(key)

For this specific case, you could also use value = dict.setdefault(key, getvalue(key)), but only if the
getvalue() call is cheap enough because it is evaluated in all cases.

3.10 Why isn’t there a switch or case statement in Python?

In general, structured switch statements execute one block of code when an expression has a particular value or set of
values. Since Python 3.10 one can easily match literal values, or constants within a namespace, with a match ...

case statement. An older alternative is a sequence of if... elif... elif... else.

For cases where you need to choose from a very large number of possibilities, you can create a dictionary mapping
case values to functions to call. For example:

functions = {'a': function_1,

'b': function_2,

'c': self.method_1}

func = functions[value]

func()

For calling methods on objects, you can simplify yet further by using the getattr() built-in to retrieve methods
with a particular name:

class MyVisitor:

def visit_a(self):

...

def dispatch(self, value):

method_name = 'visit_' + str(value)

method = getattr(self, method_name)

method()

It’s suggested that you use a prefix for the method names, such as visit_ in this example. Without such a prefix, if
values are coming from an untrusted source, an attacker would be able to call any method on your object.

Imitating switch with fallthrough, as with C’s switch-case-default, is possible, much harder, and less needed.

42 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

3.11 Can’t you emulate threads in the interpreter instead of relying
on an OS-specific thread implementation?

Answer 1: Unfortunately, the interpreter pushes at least one C stack frame for each Python stack frame. Also,
extensions can call back into Python at almost random moments. Therefore, a complete threads implementation
requires thread support for C.

Answer 2: Fortunately, there is Stackless Python, which has a completely redesigned interpreter loop that avoids the
C stack.

3.12 Why can’t lambda expressions contain statements?

Python lambda expressions cannot contain statements because Python’s syntactic framework can’t handle statements
nested inside expressions. However, in Python, this is not a serious problem. Unlike lambda forms in other languages,
where they add functionality, Python lambdas are only a shorthand notation if you’re too lazy to define a function.

Functions are already first class objects in Python, and can be declared in a local scope. Therefore the only advantage
of using a lambda instead of a locally defined function is that you don’t need to invent a name for the function –
but that’s just a local variable to which the function object (which is exactly the same type of object that a lambda
expression yields) is assigned!

3.13 Can Python be compiled to machine code, C or some other
language?

Cython compiles a modified version of Python with optional annotations into C extensions. Nuitka is an up-and-
coming compiler of Python into C++ code, aiming to support the full Python language.

3.14 How does Python manage memory?

The details of Python memory management depend on the implementation. The standard implementation of Python,
CPython, uses reference counting to detect inaccessible objects, and another mechanism to collect reference cycles,
periodically executing a cycle detection algorithmwhich looks for inaccessible cycles and deletes the objects involved.
The gcmodule provides functions to perform a garbage collection, obtain debugging statistics, and tune the collector’s
parameters.

Other implementations (such as Jython or PyPy), however, can rely on a different mechanism such as a full-blown
garbage collector. This difference can cause some subtle porting problems if your Python code depends on the
behavior of the reference counting implementation.

In some Python implementations, the following code (which is fine in CPython) will probably run out of file descrip-
tors:

for file in very_long_list_of_files:

f = open(file)

c = f.read(1)

Indeed, using CPython’s reference counting and destructor scheme, each new assignment to f closes the previous file.
With a traditional GC, however, those file objects will only get collected (and closed) at varying and possibly long
intervals.

If you want to write code that will work with any Python implementation, you should explicitly close the file or use
the with statement; this will work regardless of memory management scheme:

for file in very_long_list_of_files:

with open(file) as f:

c = f.read(1)

3.11. Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread
implementation?

43

https://github.com/stackless-dev/stackless/wiki
https://cython.org/
https://nuitka.net/
https://www.jython.org
https://pypy.org

Python Frequently Asked Questions, Release 3.14.0rc1

3.15 Why doesn’t CPython use a more traditional garbage collec-
tion scheme?

For one thing, this is not a C standard feature and hence it’s not portable. (Yes, we know about the BoehmGC library.
It has bits of assembler code for most common platforms, not for all of them, and although it is mostly transparent,
it isn’t completely transparent; patches are required to get Python to work with it.)

Traditional GC also becomes a problem when Python is embedded into other applications. While in a standalone
Python it’s fine to replace the standard malloc() and free() with versions provided by the GC library, an applica-
tion embedding Python may want to have its own substitute for malloc() and free(), and may not want Python’s.
Right now, CPython works with anything that implements malloc() and free() properly.

3.16 Why isn’t all memory freed when CPython exits?

Objects referenced from the global namespaces of Python modules are not always deallocated when Python exits.
This may happen if there are circular references. There are also certain bits of memory that are allocated by the C
library that are impossible to free (e.g. a tool like Purify will complain about these). Python is, however, aggressive
about cleaning up memory on exit and does try to destroy every single object.

If you want to force Python to delete certain things on deallocation use the atexit module to run a function that
will force those deletions.

3.17 Why are there separate tuple and list data types?

Lists and tuples, while similar in many respects, are generally used in fundamentally different ways. Tuples can be
thought of as being similar to Pascal records or C structs; they’re small collections of related data which may be
of different types which are operated on as a group. For example, a Cartesian coordinate is appropriately represented
as a tuple of two or three numbers.

Lists, on the other hand, are more like arrays in other languages. They tend to hold a varying number of objects all
of which have the same type and which are operated on one-by-one. For example, os.listdir('.') returns a list
of strings representing the files in the current directory. Functions which operate on this output would generally not
break if you added another file or two to the directory.

Tuples are immutable, meaning that once a tuple has been created, you can’t replace any of its elements with a new
value. Lists are mutable, meaning that you can always change a list’s elements. Only immutable elements can be used
as dictionary keys, and hence only tuples and not lists can be used as keys.

3.18 How are lists implemented in CPython?

CPython’s lists are really variable-length arrays, not Lisp-style linked lists. The implementation uses a contiguous
array of references to other objects, and keeps a pointer to this array and the array’s length in a list head structure.

This makes indexing a list a[i] an operation whose cost is independent of the size of the list or the value of the
index.

When items are appended or inserted, the array of references is resized. Some cleverness is applied to improve the
performance of appending items repeatedly; when the array must be grown, some extra space is allocated so the next
few times don’t require an actual resize.

3.19 How are dictionaries implemented in CPython?

CPython’s dictionaries are implemented as resizable hash tables. Compared to B-trees, this gives better performance
for lookup (the most common operation by far) under most circumstances, and the implementation is simpler.

Dictionaries work by computing a hash code for each key stored in the dictionary using the hash() built-in function.
The hash code varies widely depending on the key and a per-process seed; for example, 'Python' could hash to
-539294296 while 'python', a string that differs by a single bit, could hash to 1142331976. The hash code is

44 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

then used to calculate a location in an internal array where the value will be stored. Assuming that you’re storing
keys that all have different hash values, this means that dictionaries take constant time – O(1), in Big-O notation – to
retrieve a key.

3.20 Why must dictionary keys be immutable?

The hash table implementation of dictionaries uses a hash value calculated from the key value to find the key. If the
key were a mutable object, its value could change, and thus its hash could also change. But since whoever changes
the key object can’t tell that it was being used as a dictionary key, it can’t move the entry around in the dictionary.
Then, when you try to look up the same object in the dictionary it won’t be found because its hash value is different.
If you tried to look up the old value it wouldn’t be found either, because the value of the object found in that hash bin
would be different.

If you want a dictionary indexed with a list, simply convert the list to a tuple first; the function tuple(L) creates a
tuple with the same entries as the list L. Tuples are immutable and can therefore be used as dictionary keys.

Some unacceptable solutions that have been proposed:

• Hash lists by their address (object ID). This doesn’t work because if you construct a new list with the same
value it won’t be found; e.g.:

mydict = {[1, 2]: '12'}

print(mydict[[1, 2]])

would raise a KeyError exception because the id of the [1, 2] used in the second line differs from that in
the first line. In other words, dictionary keys should be compared using ==, not using is.

• Make a copy when using a list as a key. This doesn’t work because the list, being a mutable object, could
contain a reference to itself, and then the copying code would run into an infinite loop.

• Allow lists as keys but tell the user not to modify them. This would allow a class of hard-to-track bugs in pro-
grams when you forgot or modified a list by accident. It also invalidates an important invariant of dictionaries:
every value in d.keys() is usable as a key of the dictionary.

• Mark lists as read-only once they are used as a dictionary key. The problem is that it’s not just the top-level
object that could change its value; you could use a tuple containing a list as a key. Entering anything as a key into
a dictionary would require marking all objects reachable from there as read-only – and again, self-referential
objects could cause an infinite loop.

There is a trick to get around this if you need to, but use it at your own risk: You can wrap a mutable structure inside
a class instance which has both a __eq__() and a __hash__() method. You must then make sure that the hash
value for all such wrapper objects that reside in a dictionary (or other hash based structure), remain fixed while the
object is in the dictionary (or other structure).

class ListWrapper:

def __init__(self, the_list):

self.the_list = the_list

def __eq__(self, other):

return self.the_list == other.the_list

def __hash__(self):

l = self.the_list

result = 98767 - len(l)*555

for i, el in enumerate(l):

try:

result = result + (hash(el) % 9999999) * 1001 + i

except Exception:

result = (result % 7777777) + i * 333

return result

3.20. Why must dictionary keys be immutable? 45

Python Frequently Asked Questions, Release 3.14.0rc1

Note that the hash computation is complicated by the possibility that some members of the list may be unhashable
and also by the possibility of arithmetic overflow.

Furthermore it must always be the case that if o1 == o2 (ie o1.__eq__(o2) is True) then hash(o1) ==

hash(o2) (ie, o1.__hash__() == o2.__hash__()), regardless of whether the object is in a dictionary or not.
If you fail to meet these restrictions dictionaries and other hash based structures will misbehave.

In the case of ListWrapper, whenever the wrapper object is in a dictionary the wrapped list must not change to
avoid anomalies. Don’t do this unless you are prepared to think hard about the requirements and the consequences
of not meeting them correctly. Consider yourself warned.

3.21 Why doesn’t list.sort() return the sorted list?

In situations where performance matters, making a copy of the list just to sort it would be wasteful. Therefore, list.
sort() sorts the list in place. In order to remind you of that fact, it does not return the sorted list. This way, you
won’t be fooled into accidentally overwriting a list when you need a sorted copy but also need to keep the unsorted
version around.

If you want to return a new list, use the built-in sorted() function instead. This function creates a new list from
a provided iterable, sorts it and returns it. For example, here’s how to iterate over the keys of a dictionary in sorted
order:

for key in sorted(mydict):

... # do whatever with mydict[key]...

3.22 How do you specify and enforce an interface spec in Python?

An interface specification for a module as provided by languages such as C++ and Java describes the prototypes for
the methods and functions of the module. Many feel that compile-time enforcement of interface specifications helps
in the construction of large programs.

Python 2.6 adds an abcmodule that lets you define Abstract Base Classes (ABCs). You can then use isinstance()
and issubclass() to check whether an instance or a class implements a particular ABC. The collections.abc
module defines a set of useful ABCs such as Iterable, Container, and MutableMapping.

For Python, many of the advantages of interface specifications can be obtained by an appropriate test discipline for
components.

A good test suite for a module can both provide a regression test and serve as a module interface specification and a
set of examples. Many Python modules can be run as a script to provide a simple “self test.” Even modules which use
complex external interfaces can often be tested in isolation using trivial “stub” emulations of the external interface.
The doctest and unittest modules or third-party test frameworks can be used to construct exhaustive test suites
that exercise every line of code in a module.

An appropriate testing discipline can help build large complex applications in Python as well as having interface
specifications would. In fact, it can be better because an interface specification cannot test certain properties of a
program. For example, the list.append() method is expected to add new elements to the end of some internal
list; an interface specification cannot test that your list.append() implementation will actually do this correctly,
but it’s trivial to check this property in a test suite.

Writing test suites is very helpful, and you might want to design your code to make it easily tested. One increasingly
popular technique, test-driven development, calls for writing parts of the test suite first, before you write any of the
actual code. Of course Python allows you to be sloppy and not write test cases at all.

3.23 Why is there no goto?

In the 1970s people realized that unrestricted goto could lead to messy “spaghetti” code that was hard to understand
and revise. In a high-level language, it is also unneeded as long as there are ways to branch (in Python, with if

statements and or, and, and if/else expressions) and loop (with while and for statements, possibly containing
continue and break).

46 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

One can also use exceptions to provide a “structured goto” that works even across function calls. Many feel that ex-
ceptions can conveniently emulate all reasonable uses of the go or goto constructs of C, Fortran, and other languages.
For example:

class label(Exception): pass # declare a label

try:

...

if condition: raise label() # goto label

...

except label: # where to goto

pass

...

This doesn’t allow you to jump into the middle of a loop, but that’s usually considered an abuse of goto anyway. Use
sparingly.

3.24 Why can’t raw strings (r-strings) end with a backslash?

More precisely, they can’t end with an odd number of backslashes: the unpaired backslash at the end escapes the
closing quote character, leaving an unterminated string.

Raw strings were designed to ease creating input for processors (chiefly regular expression engines) that want to do
their own backslash escape processing. Such processors consider an unmatched trailing backslash to be an error
anyway, so raw strings disallow that. In return, they allow you to pass on the string quote character by escaping it
with a backslash. These rules work well when r-strings are used for their intended purpose.

If you’re trying to build Windows pathnames, note that all Windows system calls accept forward slashes too:

f = open("/mydir/file.txt") # works fine!

If you’re trying to build a pathname for a DOS command, try e.g. one of

dir = r"\this\is\my\dos\dir" "\\"

dir = r"\this\is\my\dos\dir\ "[:-1]

dir = "\\this\\is\\my\\dos\\dir\\"

3.25 Why doesn’t Python have a “with” statement for attribute as-
signments?

Python has a with statement that wraps the execution of a block, calling code on the entrance and exit from the
block. Some languages have a construct that looks like this:

with obj:

a = 1 # equivalent to obj.a = 1

total = total + 1 # obj.total = obj.total + 1

In Python, such a construct would be ambiguous.

Other languages, such as Object Pascal, Delphi, and C++, use static types, so it’s possible to know, in an unambiguous
way, what member is being assigned to. This is the main point of static typing – the compiler always knows the scope
of every variable at compile time.

Python uses dynamic types. It is impossible to know in advancewhich attribute will be referenced at runtime. Member
attributes may be added or removed from objects on the fly. This makes it impossible to know, from a simple reading,
what attribute is being referenced: a local one, a global one, or a member attribute?

For instance, take the following incomplete snippet:

3.24. Why can’t raw strings (r-strings) end with a backslash? 47

Python Frequently Asked Questions, Release 3.14.0rc1

def foo(a):

with a:

print(x)

The snippet assumes that amust have a member attribute called x. However, there is nothing in Python that tells the
interpreter this. What should happen if a is, let us say, an integer? If there is a global variable named x, will it be
used inside the with block? As you see, the dynamic nature of Python makes such choices much harder.

The primary benefit of with and similar language features (reduction of code volume) can, however, easily be
achieved in Python by assignment. Instead of:

function(args).mydict[index][index].a = 21

function(args).mydict[index][index].b = 42

function(args).mydict[index][index].c = 63

write this:

ref = function(args).mydict[index][index]

ref.a = 21

ref.b = 42

ref.c = 63

This also has the side-effect of increasing execution speed because name bindings are resolved at run-time in Python,
and the second version only needs to perform the resolution once.

Similar proposals that would introduce syntax to further reduce code volume, such as using a ‘leading dot’, have been
rejected in favour of explicitness (see https://mail.python.org/pipermail/python-ideas/2016-May/040070.html).

3.26 Why don’t generators support the with statement?

For technical reasons, a generator used directly as a context manager would not work correctly. When, as is most com-
mon, a generator is used as an iterator run to completion, no closing is needed. When it is, wrap it as contextlib.
closing(generator) in the with statement.

3.27 Why are colons required for the if/while/def/class statements?

The colon is required primarily to enhance readability (one of the results of the experimental ABC language). Con-
sider this:

if a == b

print(a)

versus

if a == b:

print(a)

Notice how the second one is slightly easier to read. Notice further how a colon sets off the example in this FAQ
answer; it’s a standard usage in English.

Another minor reason is that the colon makes it easier for editors with syntax highlighting; they can look for colons
to decide when indentation needs to be increased instead of having to do a more elaborate parsing of the program
text.

48 Chapter 3. Design and History FAQ

https://mail.python.org/pipermail/python-ideas/2016-May/040070.html

Python Frequently Asked Questions, Release 3.14.0rc1

3.28 Why does Python allow commas at the end of lists and tuples?

Python lets you add a trailing comma at the end of lists, tuples, and dictionaries:

[1, 2, 3,]

('a', 'b', 'c',)

d = {

"A": [1, 5],

"B": [6, 7], # last trailing comma is optional but good style

}

There are several reasons to allow this.

When you have a literal value for a list, tuple, or dictionary spread across multiple lines, it’s easier to add more
elements because you don’t have to remember to add a comma to the previous line. The lines can also be reordered
without creating a syntax error.

Accidentally omitting the comma can lead to errors that are hard to diagnose. For example:

x = [

"fee",

"fie"

"foo",

"fum"

]

This list looks like it has four elements, but it actually contains three: “fee”, “fiefoo” and “fum”. Always adding the
comma avoids this source of error.

Allowing the trailing comma may also make programmatic code generation easier.

3.28. Why does Python allow commas at the end of lists and tuples? 49

Python Frequently Asked Questions, Release 3.14.0rc1

50 Chapter 3. Design and History FAQ

CHAPTER

FOUR

LIBRARY AND EXTENSION FAQ

4.1 General Library Questions

4.1.1 How do I find a module or application to perform task X?

Check the Library Reference to see if there’s a relevant standard library module. (Eventually you’ll learn what’s in
the standard library and will be able to skip this step.)

For third-party packages, search the Python Package Index or try Google or another web search engine. Searching
for “Python” plus a keyword or two for your topic of interest will usually find something helpful.

4.1.2 Where is the math.py (socket.py, regex.py, etc.) source file?

If you can’t find a source file for a module it may be a built-in or dynamically loaded module implemented in C, C++
or other compiled language. In this case youmay not have the source file or it may be something like mathmodule.c,
somewhere in a C source directory (not on the Python Path).

There are (at least) three kinds of modules in Python:

1) modules written in Python (.py);

2) modules written in C and dynamically loaded (.dll, .pyd, .so, .sl, etc);

3) modules written in C and linked with the interpreter; to get a list of these, type:

import sys

print(sys.builtin_module_names)

4.1.3 How do I make a Python script executable on Unix?

You need to do two things: the script file’s mode must be executable and the first line must begin with #! followed
by the path of the Python interpreter.

The first is done by executing chmod +x scriptfile or perhaps chmod 755 scriptfile.

The second can be done in a number of ways. The most straightforward way is to write

#!/usr/local/bin/python

as the very first line of your file, using the pathname for where the Python interpreter is installed on your platform.

If you would like the script to be independent of where the Python interpreter lives, you can use the env program.
Almost all Unix variants support the following, assuming the Python interpreter is in a directory on the user’s PATH:

#!/usr/bin/env python

Don’t do this for CGI scripts. The PATH variable for CGI scripts is often very minimal, so you need to use the actual
absolute pathname of the interpreter.

Occasionally, a user’s environment is so full that the /usr/bin/env program fails; or there’s no env program at all.
In that case, you can try the following hack (due to Alex Rezinsky):

51

https://pypi.org
https://www.google.com

Python Frequently Asked Questions, Release 3.14.0rc1

#! /bin/sh

""":"

exec python $0 ${1+"$@"}

"""

The minor disadvantage is that this defines the script’s __doc__ string. However, you can fix that by adding

__doc__ = """...Whatever..."""

4.1.4 Is there a curses/termcap package for Python?

For Unix variants: The standard Python source distribution comes with a curses module in the Modules subdirectory,
though it’s not compiled by default. (Note that this is not available in the Windows distribution – there is no curses
module for Windows.)

The cursesmodule supports basic curses features as well asmany additional functions from ncurses and SYSV curses
such as colour, alternative character set support, pads, and mouse support. This means the module isn’t compatible
with operating systems that only have BSD curses, but there don’t seem to be any currently maintained OSes that fall
into this category.

4.1.5 Is there an equivalent to C’s onexit() in Python?

The atexit module provides a register function that is similar to C’s onexit().

4.1.6 Why don’t my signal handlers work?

The most common problem is that the signal handler is declared with the wrong argument list. It is called as

handler(signum, frame)

so it should be declared with two parameters:

def handler(signum, frame):

...

4.2 Common tasks

4.2.1 How do I test a Python program or component?

Python comes with two testing frameworks. The doctestmodule finds examples in the docstrings for a module and
runs them, comparing the output with the expected output given in the docstring.

The unittest module is a fancier testing framework modelled on Java and Smalltalk testing frameworks.

To make testing easier, you should use good modular design in your program. Your program should have almost all
functionality encapsulated in either functions or class methods – and this sometimes has the surprising and delightful
effect of making the program run faster (because local variable accesses are faster than global accesses). Furthermore
the program should avoid depending on mutating global variables, since this makes testing much more difficult to do.

The “global main logic” of your program may be as simple as

if __name__ == "__main__":

main_logic()

at the bottom of the main module of your program.

Once your program is organized as a tractable collection of function and class behaviours, you should write test
functions that exercise the behaviours. A test suite that automates a sequence of tests can be associated with each
module. This sounds like a lot of work, but since Python is so terse and flexible it’s surprisingly easy. You can make

52 Chapter 4. Library and Extension FAQ

https://github.com/python/cpython/tree/3.14/Modules

Python Frequently Asked Questions, Release 3.14.0rc1

coding much more pleasant and fun by writing your test functions in parallel with the “production code”, since this
makes it easy to find bugs and even design flaws earlier.

“Support modules” that are not intended to be the main module of a program may include a self-test of the module.

if __name__ == "__main__":

self_test()

Even programs that interact with complex external interfaces may be tested when the external interfaces are unavail-
able by using “fake” interfaces implemented in Python.

4.2.2 How do I create documentation from doc strings?

The pydoc module can create HTML from the doc strings in your Python source code. An alternative for creating
API documentation purely from docstrings is epydoc. Sphinx can also include docstring content.

4.2.3 How do I get a single keypress at a time?

For Unix variants there are several solutions. It’s straightforward to do this using curses, but curses is a fairly large
module to learn.

4.3 Threads

4.3.1 How do I program using threads?

Be sure to use the threading module and not the _thread module. The threading module builds convenient
abstractions on top of the low-level primitives provided by the _thread module.

4.3.2 None of my threads seem to run: why?

As soon as the main thread exits, all threads are killed. Your main thread is running too quickly, giving the threads
no time to do any work.

A simple fix is to add a sleep to the end of the program that’s long enough for all the threads to finish:

import threading, time

def thread_task(name, n):

for i in range(n):

print(name, i)

for i in range(10):

T = threading.Thread(target=thread_task, args=(str(i), i))

T.start()

time.sleep(10) # <---------------------------!

But now (on many platforms) the threads don’t run in parallel, but appear to run sequentially, one at a time! The
reason is that the OS thread scheduler doesn’t start a new thread until the previous thread is blocked.

A simple fix is to add a tiny sleep to the start of the run function:

def thread_task(name, n):

time.sleep(0.001) # <--------------------!

for i in range(n):

print(name, i)

for i in range(10):

T = threading.Thread(target=thread_task, args=(str(i), i))

(continues on next page)

4.3. Threads 53

https://epydoc.sourceforge.net/
https://www.sphinx-doc.org

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

T.start()

time.sleep(10)

Instead of trying to guess a good delay value for time.sleep(), it’s better to use some kind of semaphore mech-
anism. One idea is to use the queue module to create a queue object, let each thread append a token to the queue
when it finishes, and let the main thread read as many tokens from the queue as there are threads.

4.3.3 How do I parcel out work among a bunch of worker threads?

The easiest way is to use the concurrent.futures module, especially the ThreadPoolExecutor class.

Or, if you want fine control over the dispatching algorithm, you can write your own logic manually. Use the queue
module to create a queue containing a list of jobs. The Queue class maintains a list of objects and has a .put(obj)
method that adds items to the queue and a .get() method to return them. The class will take care of the locking
necessary to ensure that each job is handed out exactly once.

Here’s a trivial example:

import threading, queue, time

The worker thread gets jobs off the queue. When the queue is empty, it

assumes there will be no more work and exits.

(Realistically workers will run until terminated.)

def worker():

print('Running worker')

time.sleep(0.1)

while True:

try:

arg = q.get(block=False)

except queue.Empty:

print('Worker', threading.current_thread(), end=' ')

print('queue empty')

break

else:

print('Worker', threading.current_thread(), end=' ')

print('running with argument', arg)

time.sleep(0.5)

Create queue

q = queue.Queue()

Start a pool of 5 workers

for i in range(5):

t = threading.Thread(target=worker, name='worker %i' % (i+1))

t.start()

Begin adding work to the queue

for i in range(50):

q.put(i)

Give threads time to run

print('Main thread sleeping')

time.sleep(5)

When run, this will produce the following output:

54 Chapter 4. Library and Extension FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

Running worker

Running worker

Running worker

Running worker

Running worker

Main thread sleeping

Worker <Thread(worker 1, started 130283832797456)> running with argument 0

Worker <Thread(worker 2, started 130283824404752)> running with argument 1

Worker <Thread(worker 3, started 130283816012048)> running with argument 2

Worker <Thread(worker 4, started 130283807619344)> running with argument 3

Worker <Thread(worker 5, started 130283799226640)> running with argument 4

Worker <Thread(worker 1, started 130283832797456)> running with argument 5

...

Consult the module’s documentation for more details; the Queue class provides a featureful interface.

4.3.4 What kinds of global value mutation are thread-safe?

A global interpreter lock (GIL) is used internally to ensure that only one thread runs in the Python VM at a time. In
general, Python offers to switch among threads only between bytecode instructions; how frequently it switches can
be set via sys.setswitchinterval(). Each bytecode instruction and therefore all the C implementation code
reached from each instruction is therefore atomic from the point of view of a Python program.

In theory, this means an exact accounting requires an exact understanding of the PVM bytecode implementation. In
practice, it means that operations on shared variables of built-in data types (ints, lists, dicts, etc) that “look atomic”
really are.

For example, the following operations are all atomic (L, L1, L2 are lists, D, D1, D2 are dicts, x, y are objects, i, j are
ints):

L.append(x)

L1.extend(L2)

x = L[i]

x = L.pop()

L1[i:j] = L2

L.sort()

x = y

x.field = y

D[x] = y

D1.update(D2)

D.keys()

These aren’t:

i = i+1

L.append(L[-1])

L[i] = L[j]

D[x] = D[x] + 1

Operations that replace other objects may invoke those other objects’ __del__()method when their reference count
reaches zero, and that can affect things. This is especially true for the mass updates to dictionaries and lists. When in
doubt, use a mutex!

4.3.5 Can’t we get rid of the Global Interpreter Lock?

The global interpreter lock (GIL) is often seen as a hindrance to Python’s deployment on high-end multiprocessor
server machines, because a multi-threaded Python program effectively only uses one CPU, due to the insistence that
(almost) all Python code can only run while the GIL is held.

4.3. Threads 55

Python Frequently Asked Questions, Release 3.14.0rc1

With the approval of PEP 703 work is now underway to remove the GIL from the CPython implementation of
Python. Initially it will be implemented as an optional compiler flag when building the interpreter, and so separate
builds will be available with and without the GIL. Long-term, the hope is to settle on a single build, once the perfor-
mance implications of removing the GIL are fully understood. Python 3.13 is likely to be the first release containing
this work, although it may not be completely functional in this release.

The current work to remove the GIL is based on a fork of Python 3.9 with the GIL removed by Sam Gross. Prior
to that, in the days of Python 1.5, Greg Stein actually implemented a comprehensive patch set (the “free threading”
patches) that removed the GIL and replaced it with fine-grained locking. Adam Olsen did a similar experiment in his
python-safethread project. Unfortunately, both of these earlier experiments exhibited a sharp drop in single-thread
performance (at least 30% slower), due to the amount of fine-grained locking necessary to compensate for the removal
of the GIL. The Python 3.9 fork is the first attempt at removing the GIL with an acceptable performance impact.

The presence of the GIL in current Python releases doesn’t mean that you can’t make good use of Python on multi-
CPU machines! You just have to be creative with dividing the work up between multiple processes rather than
multiple threads. The ProcessPoolExecutor class in the new concurrent.futures module provides an easy
way of doing so; the multiprocessing module provides a lower-level API in case you want more control over
dispatching of tasks.

Judicious use of C extensions will also help; if you use a C extension to perform a time-consuming task, the extension
can release the GIL while the thread of execution is in the C code and allow other threads to get some work done.
Some standard library modules such as zlib and hashlib already do this.

An alternative approach to reducing the impact of the GIL is to make the GIL a per-interpreter-state lock rather than
truly global. This was first implemented in Python 3.12 and is available in the C API. A Python interface to it is
expected in Python 3.13. The main limitation to it at the moment is likely to be 3rd party extension modules, since
these must be written with multiple interpreters in mind in order to be usable, so many older extension modules will
not be usable.

4.4 Input and Output

4.4.1 How do I delete a file? (And other file questions…)

Use os.remove(filename) or os.unlink(filename); for documentation, see the os module. The two func-
tions are identical; unlink() is simply the name of the Unix system call for this function.

To remove a directory, use os.rmdir(); use os.mkdir() to create one. os.makedirs(path) will create any
intermediate directories in path that don’t exist. os.removedirs(path) will remove intermediate directories as
long as they’re empty; if you want to delete an entire directory tree and its contents, use shutil.rmtree().

To rename a file, use os.rename(old_path, new_path).

To truncate a file, open it using f = open(filename, "rb+"), and use f.truncate(offset); offset defaults
to the current seek position. There’s also os.ftruncate(fd, offset) for files opened with os.open(), where
fd is the file descriptor (a small integer).

The shutil module also contains a number of functions to work on files including copyfile(), copytree(),
and rmtree().

4.4.2 How do I copy a file?

The shutil module contains a copyfile() function. Note that on Windows NTFS volumes, it does not copy
alternate data streams nor resource forks on macOS HFS+ volumes, though both are now rarely used. It also doesn’t
copy file permissions and metadata, though using shutil.copy2() instead will preserve most (though not all) of
it.

4.4.3 How do I read (or write) binary data?

To read or write complex binary data formats, it’s best to use the struct module. It allows you to take a string
containing binary data (usually numbers) and convert it to Python objects; and vice versa.

For example, the following code reads two 2-byte integers and one 4-byte integer in big-endian format from a file:

56 Chapter 4. Library and Extension FAQ

https://peps.python.org/pep-0703/
https://github.com/colesbury/nogil
https://code.google.com/archive/p/python-safethread
https://en.wikipedia.org/wiki/NTFS#Alternate_data_stream_(ADS)
https://en.wikipedia.org/wiki/Resource_fork

Python Frequently Asked Questions, Release 3.14.0rc1

import struct

with open(filename, "rb") as f:

s = f.read(8)

x, y, z = struct.unpack(">hhl", s)

The ‘>’ in the format string forces big-endian data; the letter ‘h’ reads one “short integer” (2 bytes), and ‘l’ reads one
“long integer” (4 bytes) from the string.

For data that is more regular (e.g. a homogeneous list of ints or floats), you can also use the array module.

Note

To read and write binary data, it is mandatory to open the file in binary mode (here, passing "rb" to open()).
If you use "r" instead (the default), the file will be open in text mode and f.read() will return str objects
rather than bytes objects.

4.4.4 I can’t seem to use os.read() on a pipe created with os.popen(); why?

os.read() is a low-level function which takes a file descriptor, a small integer representing the opened file. os.
popen() creates a high-level file object, the same type returned by the built-in open() function. Thus, to read n
bytes from a pipe p created with os.popen(), you need to use p.read(n).

4.4.5 How do I access the serial (RS232) port?

For Win32, OSX, Linux, BSD, Jython, IronPython:

pyserial

For Unix, see a Usenet post by Mitch Chapman:

https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com

4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it?

Python file objects are a high-level layer of abstraction on low-level C file descriptors.

For most file objects you create in Python via the built-in open() function, f.close()marks the Python file object
as being closed from Python’s point of view, and also arranges to close the underlying C file descriptor. This also
happens automatically in f’s destructor, when f becomes garbage.

But stdin, stdout and stderr are treated specially by Python, because of the special status also given to them by C.
Running sys.stdout.close()marks the Python-level file object as being closed, but does not close the associated
C file descriptor.

To close the underlying C file descriptor for one of these three, you should first be sure that’s what you really want to
do (e.g., you may confuse extension modules trying to do I/O). If it is, use os.close():

os.close(stdin.fileno())

os.close(stdout.fileno())

os.close(stderr.fileno())

Or you can use the numeric constants 0, 1 and 2, respectively.

4.5 Network/Internet Programming

4.5.1 What WWW tools are there for Python?

See the chapters titled internet and netdata in the Library Reference Manual. Python has many modules that will
help you build server-side and client-side web systems.

4.5. Network/Internet Programming 57

https://pypi.org/project/pyserial/
https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com

Python Frequently Asked Questions, Release 3.14.0rc1

A summary of available frameworks is maintained by Paul Boddie at https://wiki.python.org/moin/
WebProgramming.

4.5.2 What module should I use to help with generating HTML?

You can find a collection of useful links on the Web Programming wiki page.

4.5.3 How do I send mail from a Python script?

Use the standard library module smtplib.

Here’s a very simple interactive mail sender that uses it. This method will work on any host that supports an SMTP
listener.

import sys, smtplib

fromaddr = input("From: ")

toaddrs = input("To: ").split(',')

print("Enter message, end with ^D:")

msg = ''

while True:

line = sys.stdin.readline()

if not line:

break

msg += line

The actual mail send

server = smtplib.SMTP('localhost')

server.sendmail(fromaddr, toaddrs, msg)

server.quit()

A Unix-only alternative uses sendmail. The location of the sendmail program varies between systems; sometimes it
is /usr/lib/sendmail, sometimes /usr/sbin/sendmail. The sendmail manual page will help you out. Here’s
some sample code:

import os

SENDMAIL = "/usr/sbin/sendmail" # sendmail location

p = os.popen("%s -t -i" % SENDMAIL, "w")

p.write("To: receiver@example.com\n")

p.write("Subject: test\n")

p.write("\n") # blank line separating headers from body

p.write("Some text\n")

p.write("some more text\n")

sts = p.close()

if sts != 0:

print("Sendmail exit status", sts)

4.5.4 How do I avoid blocking in the connect() method of a socket?

The select module is commonly used to help with asynchronous I/O on sockets.

To prevent the TCP connect from blocking, you can set the socket to non-blocking mode. Then when you do the
connect(), you will either connect immediately (unlikely) or get an exception that contains the error number as
.errno. errno.EINPROGRESS indicates that the connection is in progress, but hasn’t finished yet. Different OSes
will return different values, so you’re going to have to check what’s returned on your system.

You can use the connect_ex() method to avoid creating an exception. It will just return the errno value. To poll,
you can call connect_ex() again later – 0 or errno.EISCONN indicate that you’re connected – or you can pass
this socket to select.select() to check if it’s writable.

58 Chapter 4. Library and Extension FAQ

https://wiki.python.org/moin/WebProgramming
https://wiki.python.org/moin/WebProgramming
https://wiki.python.org/moin/WebProgramming

Python Frequently Asked Questions, Release 3.14.0rc1

Note

The asyncio module provides a general purpose single-threaded and concurrent asynchronous library, which
can be used for writing non-blocking network code. The third-party Twisted library is a popular and feature-rich
alternative.

4.6 Databases

4.6.1 Are there any interfaces to database packages in Python?

Yes.

Interfaces to disk-based hashes such as DBM and GDBM are also included with standard Python. There is also the
sqlite3 module, which provides a lightweight disk-based relational database.

Support for most relational databases is available. See the DatabaseProgramming wiki page for details.

4.6.2 How do you implement persistent objects in Python?

The pickle library module solves this in a very general way (though you still can’t store things like open files,
sockets or windows), and the shelve library module uses pickle and (g)dbm to create persistent mappings containing
arbitrary Python objects.

4.7 Mathematics and Numerics

4.7.1 How do I generate random numbers in Python?

The standard module random implements a random number generator. Usage is simple:

import random

random.random()

This returns a random floating-point number in the range [0, 1).

There are also many other specialized generators in this module, such as:

• randrange(a, b) chooses an integer in the range [a, b).

• uniform(a, b) chooses a floating-point number in the range [a, b).

• normalvariate(mean, sdev) samples the normal (Gaussian) distribution.

Some higher-level functions operate on sequences directly, such as:

• choice(S) chooses a random element from a given sequence.

• shuffle(L) shuffles a list in-place, i.e. permutes it randomly.

There’s also a Random class you can instantiate to create independent multiple random number generators.

4.6. Databases 59

https://twisted.org/
https://wiki.python.org/moin/DatabaseProgramming

Python Frequently Asked Questions, Release 3.14.0rc1

60 Chapter 4. Library and Extension FAQ

CHAPTER

FIVE

EXTENDING/EMBEDDING FAQ

5.1 Can I create my own functions in C?

Yes, you can create built-in modules containing functions, variables, exceptions and even new types in C. This is
explained in the document extending-index.

Most intermediate or advanced Python books will also cover this topic.

5.2 Can I create my own functions in C++?

Yes, using the C compatibility features found in C++. Place extern "C" { ... } around the Python include files
and put extern "C" before each function that is going to be called by the Python interpreter. Global or static C++
objects with constructors are probably not a good idea.

5.3 Writing C is hard; are there any alternatives?

There are a number of alternatives to writing your own C extensions, depending on what you’re trying to do. Rec-
ommended third party tools offer both simpler and more sophisticated approaches to creating C and C++ extensions
for Python.

5.4 How can I execute arbitrary Python statements from C?

The highest-level function to do this is PyRun_SimpleString()which takes a single string argument to be executed
in the context of the module __main__ and returns 0 for success and -1 when an exception occurred (including
SyntaxError). If you want more control, use PyRun_String(); see the source for PyRun_SimpleString()
in Python/pythonrun.c.

5.5 How can I evaluate an arbitrary Python expression from C?

Call the function PyRun_String() from the previous question with the start symbol Py_eval_input; it parses
an expression, evaluates it and returns its value.

5.6 How do I extract C values from a Python object?

That depends on the object’s type. If it’s a tuple, PyTuple_Size() returns its length and PyTuple_GetItem()
returns the item at a specified index. Lists have similar functions, PyList_Size() and PyList_GetItem().

For bytes, PyBytes_Size() returns its length and PyBytes_AsStringAndSize() provides a pointer to its value
and its length. Note that Python bytes objects may contain null bytes so C’s strlen() should not be used.

To test the type of an object, first make sure it isn’t NULL, and then use PyBytes_Check(), PyTuple_Check(),
PyList_Check(), etc.

61

Python Frequently Asked Questions, Release 3.14.0rc1

There is also a high-level API to Python objects which is provided by the so-called ‘abstract’ interface – read
Include/abstract.h for further details. It allows interfacing with any kind of Python sequence using calls like
PySequence_Length(), PySequence_GetItem(), etc. as well as many other useful protocols such as numbers
(PyNumber_Index() et al.) and mappings in the PyMapping APIs.

5.7 How do I use Py_BuildValue() to create a tuple of arbitrary
length?

You can’t. Use PyTuple_Pack() instead.

5.8 How do I call an object’s method from C?

The PyObject_CallMethod() function can be used to call an arbitrary method of an object. The parameters are
the object, the name of the method to call, a format string like that used with Py_BuildValue(), and the argument
values:

PyObject *

PyObject_CallMethod(PyObject *object, const char *method_name,

const char *arg_format, ...);

This works for any object that has methods – whether built-in or user-defined. You are responsible for eventually
Py_DECREF()‘ing the return value.

To call, e.g., a file object’s “seek” method with arguments 10, 0 (assuming the file object pointer is “f”):

res = PyObject_CallMethod(f, "seek", "(ii)", 10, 0);

if (res == NULL) {

... an exception occurred ...

}

else {

Py_DECREF(res);

}

Note that since PyObject_CallObject() always wants a tuple for the argument list, to call a function without
arguments, pass “()” for the format, and to call a function with one argument, surround the argument in parentheses,
e.g. “(i)”.

5.9 How do I catch the output from PyErr_Print() (or anything that
prints to stdout/stderr)?

In Python code, define an object that supports the write() method. Assign this object to sys.stdout and sys.
stderr. Call print_error, or just allow the standard tracebackmechanism to work. Then, the output will go wherever
your write() method sends it.

The easiest way to do this is to use the io.StringIO class:

>>> import io, sys

>>> sys.stdout = io.StringIO()

>>> print('foo')

>>> print('hello world!')

>>> sys.stderr.write(sys.stdout.getvalue())

foo

hello world!

A custom object to do the same would look like this:

62 Chapter 5. Extending/Embedding FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

>>> import io, sys

>>> class StdoutCatcher(io.TextIOBase):

... def __init__(self):

... self.data = []

... def write(self, stuff):

... self.data.append(stuff)

...

>>> import sys

>>> sys.stdout = StdoutCatcher()

>>> print('foo')

>>> print('hello world!')

>>> sys.stderr.write(''.join(sys.stdout.data))

foo

hello world!

5.10 How do I access a module written in Python from C?

You can get a pointer to the module object as follows:

module = PyImport_ImportModule("<modulename>");

If the module hasn’t been imported yet (i.e. it is not yet present in sys.modules), this initializes the module;
otherwise it simply returns the value of sys.modules["<modulename>"]. Note that it doesn’t enter the module
into any namespace – it only ensures it has been initialized and is stored in sys.modules.

You can then access the module’s attributes (i.e. any name defined in the module) as follows:

attr = PyObject_GetAttrString(module, "<attrname>");

Calling PyObject_SetAttrString() to assign to variables in the module also works.

5.11 How do I interface to C++ objects from Python?

Depending on your requirements, there are many approaches. To do this manually, begin by reading the “Extending
and Embedding” document. Realize that for the Python run-time system, there isn’t a whole lot of difference between
C and C++ – so the strategy of building a new Python type around a C structure (pointer) type will also work for
C++ objects.

For C++ libraries, seeWriting C is hard; are there any alternatives?.

5.12 I added a module using the Setup file and the make fails; why?

Setup must end in a newline, if there is no newline there, the build process fails. (Fixing this requires some ugly shell
script hackery, and this bug is so minor that it doesn’t seem worth the effort.)

5.13 How do I debug an extension?

When usingGDBwith dynamically loaded extensions, you can’t set a breakpoint in your extension until your extension
is loaded.

In your .gdbinit file (or interactively), add the command:

br _PyImport_LoadDynamicModule

Then, when you run GDB:

5.10. How do I access a module written in Python from C? 63

Python Frequently Asked Questions, Release 3.14.0rc1

$ gdb /local/bin/python

gdb) run myscript.py

gdb) continue # repeat until your extension is loaded

gdb) finish # so that your extension is loaded

gdb) br myfunction.c:50

gdb) continue

5.14 I want to compile a Python module on my Linux system, but
some files are missing. Why?

Most packaged versions of Python omit some files required for compiling Python extensions.

For Red Hat, install the python3-devel RPM to get the necessary files.

For Debian, run apt-get install python3-dev.

5.15 How do I tell “incomplete input” from “invalid input”?

Sometimes you want to emulate the Python interactive interpreter’s behavior, where it gives you a continuation prompt
when the input is incomplete (e.g. you typed the start of an “if” statement or you didn’t close your parentheses or
triple string quotes), but it gives you a syntax error message immediately when the input is invalid.

In Python you can use the codeop module, which approximates the parser’s behavior sufficiently. IDLE uses this,
for example.

The easiest way to do it in C is to call PyRun_InteractiveLoop() (perhaps in a separate thread) and let the
Python interpreter handle the input for you. You can also set the PyOS_ReadlineFunctionPointer() to point
at your custom input function. See Modules/readline.c and Parser/myreadline.c for more hints.

5.16 How do I find undefined g++ symbols __builtin_new or
__pure_virtual?

To dynamically load g++ extension modules, you must recompile Python, relink it using g++ (change LINKCC in
the Python Modules Makefile), and link your extension module using g++ (e.g., g++ -shared -o mymodule.so

mymodule.o).

5.17 Can I create an object class with some methods implemented
in C and others in Python (e.g. through inheritance)?

Yes, you can inherit from built-in classes such as int, list, dict, etc.

The Boost Python Library (BPL, https://www.boost.org/libs/python/doc/index.html) provides a way of doing this
from C++ (i.e. you can inherit from an extension class written in C++ using the BPL).

64 Chapter 5. Extending/Embedding FAQ

https://www.boost.org/libs/python/doc/index.html

CHAPTER

SIX

PYTHON ON WINDOWS FAQ

6.1 How do I run a Python program under Windows?

This is not necessarily a straightforward question. If you are already familiar with running programs from the Win-
dows command line then everything will seem obvious; otherwise, you might need a little more guidance.

Unless you use some sort of integrated development environment, you will end up typing Windows commands into
what is referred to as a “Command prompt window”. Usually you can create such a window from your search bar
by searching for cmd. You should be able to recognize when you have started such a window because you will see a
Windows “command prompt”, which usually looks like this:

C:\>

The letter may be different, and there might be other things after it, so you might just as easily see something like:

D:\YourName\Projects\Python>

depending on how your computer has been set up and what else you have recently done with it. Once you have started
such a window, you are well on the way to running Python programs.

You need to realize that your Python scripts have to be processed by another program called the Python interpreter.
The interpreter reads your script, compiles it into bytecodes, and then executes the bytecodes to run your program.
So, how do you arrange for the interpreter to handle your Python?

First, you need to make sure that your command window recognises the word “py” as an instruction to start the
interpreter. If you have opened a command window, you should try entering the command py and hitting return:

C:\Users\YourName> py

You should then see something like:

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)]␣

↪→on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

You have started the interpreter in “interactive mode”. That means you can enter Python statements or expressions
interactively and have them executed or evaluated while you wait. This is one of Python’s strongest features. Check
it by entering a few expressions of your choice and seeing the results:

>>> print("Hello")

Hello

>>> "Hello" * 3

'HelloHelloHello'

Many people use the interactive mode as a convenient yet highly programmable calculator. When you want to end
your interactive Python session, call the exit() function or hold the Ctrl key down while you enter a Z, then hit
the “Enter” key to get back to your Windows command prompt.

65

Python Frequently Asked Questions, Release 3.14.0rc1

You may also find that you have a Start-menu entry such as Start ‣ Programs ‣ Python 3.x ‣ Python (command line)
that results in you seeing the >>> prompt in a new window. If so, the window will disappear after you call the exit()
function or enter the Ctrl-Z character; Windows is running a single “python” command in the window, and closes
it when you terminate the interpreter.

Now that we know the py command is recognized, you can give your Python script to it. You’ll have to give either an
absolute or a relative path to the Python script. Let’s say your Python script is located in your desktop and is named
hello.py, and your command prompt is nicely opened in your home directory so you’re seeing something similar
to:

C:\Users\YourName>

So now you’ll ask the py command to give your script to Python by typing py followed by your script path:

C:\Users\YourName> py Desktop\hello.py

hello

6.2 How do I make Python scripts executable?

OnWindows, the standard Python installer already associates the .py extension with a file type (Python.File) and gives
that file type an open command that runs the interpreter (D:\Program Files\Python\python.exe "%1" %*).
This is enough to make scripts executable from the command prompt as ‘foo.py’. If you’d rather be able to execute
the script by simple typing ‘foo’ with no extension you need to add .py to the PATHEXT environment variable.

6.3 Why does Python sometimes take so long to start?

Usually Python starts very quickly on Windows, but occasionally there are bug reports that Python suddenly begins
to take a long time to start up. This is made even more puzzling because Python will work fine on other Windows
systems which appear to be configured identically.

The problem may be caused by a misconfiguration of virus checking software on the problem machine. Some virus
scanners have been known to introduce startup overhead of two orders of magnitude when the scanner is configured
to monitor all reads from the filesystem. Try checking the configuration of virus scanning software on your systems
to ensure that they are indeed configured identically. McAfee, when configured to scan all file system read activity,
is a particular offender.

6.4 How do I make an executable from a Python script?

SeeHow can I create a stand-alone binary from a Python script? for a list of tools that can be used tomake executables.

6.5 Is a *.pyd file the same as a DLL?

Yes, .pyd files are dll’s, but there are a few differences. If you have a DLL named foo.pyd, then it must have a
function PyInit_foo(). You can then write Python “import foo”, and Python will search for foo.pyd (as well as
foo.py, foo.pyc) and if it finds it, will attempt to call PyInit_foo() to initialize it. You do not link your .exe with
foo.lib, as that would cause Windows to require the DLL to be present.

Note that the search path for foo.pyd is PYTHONPATH, not the same as the path that Windows uses to search for
foo.dll. Also, foo.pyd need not be present to run your program, whereas if you linked your program with a dll, the
dll is required. Of course, foo.pyd is required if you want to say import foo. In a DLL, linkage is declared in the
source code with __declspec(dllexport). In a .pyd, linkage is defined in a list of available functions.

66 Chapter 6. Python on Windows FAQ

Python Frequently Asked Questions, Release 3.14.0rc1

6.6 How can I embed Python into a Windows application?

Embedding the Python interpreter in a Windows app can be summarized as follows:

1. Do not build Python into your .exe file directly. On Windows, Python must be a DLL to handle importing
modules that are themselves DLL’s. (This is the first key undocumented fact.) Instead, link to pythonNN.dll;
it is typically installed in C:\Windows\System. NN is the Python version, a number such as “33” for Python
3.3.

You can link to Python in two different ways. Load-time linking means linking against pythonNN.lib, while
run-time linking means linking against pythonNN.dll. (General note: pythonNN.lib is the so-called
“import lib” corresponding to pythonNN.dll. It merely defines symbols for the linker.)

Run-time linking greatly simplifies link options; everything happens at run time. Your code must load
pythonNN.dll using the Windows LoadLibraryEx() routine. The code must also use access routines
and data in pythonNN.dll (that is, Python’s C API’s) using pointers obtained by the Windows GetPro-
cAddress() routine. Macros can make using these pointers transparent to any C code that calls routines in
Python’s C API.

2. If you use SWIG, it is easy to create a Python “extension module” that will make the app’s data and methods
available to Python. SWIG will handle just about all the grungy details for you. The result is C code that you
link into your .exe file (!) You do not have to create a DLL file, and this also simplifies linking.

3. SWIG will create an init function (a C function) whose name depends on the name of the extension module.
For example, if the name of the module is leo, the init function will be called initleo(). If you use SWIG
shadow classes, as you should, the init function will be called initleoc(). This initializes a mostly hidden helper
class used by the shadow class.

The reason you can link the C code in step 2 into your .exe file is that calling the initialization function is
equivalent to importing the module into Python! (This is the second key undocumented fact.)

4. In short, you can use the following code to initialize the Python interpreter with your extension module.

#include <Python.h>

...

Py_Initialize(); // Initialize Python.

initmyAppc(); // Initialize (import) the helper class.

PyRun_SimpleString("import myApp"); // Import the shadow class.

5. There are two problems with Python’s C API which will become apparent if you use a compiler other than
MSVC, the compiler used to build pythonNN.dll.

Problem 1: The so-called “Very High Level” functions that take FILE * arguments will not work in a multi-
compiler environment because each compiler’s notion of a struct FILE will be different. From an imple-
mentation standpoint these are very low level functions.

Problem 2: SWIG generates the following code when generating wrappers to void functions:

Py_INCREF(Py_None);

_resultobj = Py_None;

return _resultobj;

Alas, Py_None is a macro that expands to a reference to a complex data structure called _Py_NoneStruct inside
pythonNN.dll. Again, this code will fail in a mult-compiler environment. Replace such code by:

return Py_BuildValue("");

It may be possible to use SWIG’s %typemap command to make the change automatically, though I have not
been able to get this to work (I’m a complete SWIG newbie).

6. Using a Python shell script to put up a Python interpreter window from inside your Windows app is not a
good idea; the resulting window will be independent of your app’s windowing system. Rather, you (or the
wxPythonWindow class) should create a “native” interpreter window. It is easy to connect that window to the

6.6. How can I embed Python into a Windows application? 67

Python Frequently Asked Questions, Release 3.14.0rc1

Python interpreter. You can redirect Python’s i/o to _any_ object that supports read and write, so all you need
is a Python object (defined in your extension module) that contains read() and write() methods.

6.7 How do I keep editors from inserting tabs into my Python
source?

The FAQ does not recommend using tabs, and the Python style guide, PEP 8, recommends 4 spaces for distributed
Python code; this is also the Emacs python-mode default.

Under any editor, mixing tabs and spaces is a bad idea. MSVC is no different in this respect, and is easily configured
to use spaces: Take Tools ‣ Options ‣ Tabs, and for file type “Default” set “Tab size” and “Indent size” to 4, and select
the “Insert spaces” radio button.

Python raises IndentationError or TabError if mixed tabs and spaces are causing problems in leading whites-
pace. You may also run the tabnanny module to check a directory tree in batch mode.

6.8 How do I check for a keypress without blocking?

Use the msvcrt module. This is a standard Windows-specific extension module. It defines a function kbhit()
which checks whether a keyboard hit is present, and getch() which gets one character without echoing it.

6.9 How do I solve the missing api-ms-win-crt-runtime-l1-1-0.dll er-
ror?

This can occur on Python 3.5 and later when using Windows 8.1 or earlier without all updates having been installed.
First ensure your operating system is supported and is up to date, and if that does not resolve the issue, visit the
Microsoft support page for guidance on manually installing the C Runtime update.

68 Chapter 6. Python on Windows FAQ

https://peps.python.org/pep-0008/
https://support.microsoft.com/en-us/help/3118401/

CHAPTER

SEVEN

GRAPHIC USER INTERFACE FAQ

7.1 General GUI Questions

7.2 What GUI toolkits exist for Python?

Standard builds of Python include an object-oriented interface to the Tcl/Tkwidget set, called tkinter. This is probably
the easiest to install (since it comes included with most binary distributions of Python) and use. For more info about
Tk, including pointers to the source, see the Tcl/Tk home page. Tcl/Tk is fully portable to the macOS, Windows,
and Unix platforms.

Depending on what platform(s) you are aiming at, there are also several alternatives. A list of cross-platform and
platform-specific GUI frameworks can be found on the python wiki.

7.3 Tkinter questions

7.3.1 How do I freeze Tkinter applications?

Freeze is a tool to create stand-alone applications. When freezing Tkinter applications, the applications will not be
truly stand-alone, as the application will still need the Tcl and Tk libraries.

One solution is to ship the application with the Tcl and Tk libraries, and point to them at run-time using the
TCL_LIBRARY and TK_LIBRARY environment variables.

Various third-party freeze libraries such as py2exe and cx_Freeze have handling for Tkinter applications built-in.

7.3.2 Can I have Tk events handled while waiting for I/O?

On platforms other than Windows, yes, and you don’t even need threads! But you’ll have to restructure your I/O code
a bit. Tk has the equivalent of Xt’s XtAddInput() call, which allows you to register a callback function which will
be called from the Tk mainloop when I/O is possible on a file descriptor. See tkinter-file-handlers.

7.3.3 I can’t get key bindings to work in Tkinter: why?

An often-heard complaint is that event handlers bound to events with the bind() method don’t get handled even
when the appropriate key is pressed.

The most common cause is that the widget to which the binding applies doesn’t have “keyboard focus”. Check out
the Tk documentation for the focus command. Usually a widget is given the keyboard focus by clicking in it (but not
for labels; see the takefocus option).

69

https://www.python.org/downloads/
https://www.tcl.tk
https://wiki.python.org/moin/GuiProgramming#Cross-Platform_Frameworks
https://wiki.python.org/moin/GuiProgramming#Platform-specific_Frameworks

Python Frequently Asked Questions, Release 3.14.0rc1

70 Chapter 7. Graphic User Interface FAQ

CHAPTER

EIGHT

“WHY IS PYTHON INSTALLED ON MY COMPUTER?” FAQ

8.1 What is Python?

Python is a programming language. It’s used for many different applications. It’s used in some high schools and
colleges as an introductory programming language because Python is easy to learn, but it’s also used by professional
software developers at places such as Google, NASA, and Lucasfilm Ltd.

If you wish to learn more about Python, start with the Beginner’s Guide to Python.

8.2 Why is Python installed on my machine?

If you find Python installed on your system but don’t remember installing it, there are several possible ways it could
have gotten there.

• Perhaps another user on the computer wanted to learn programming and installed it; you’ll have to figure out
who’s been using the machine and might have installed it.

• A third-party application installed on the machine might have been written in Python and included a Python
installation. There are many such applications, from GUI programs to network servers and administrative
scripts.

• Some Windows machines also have Python installed. At this writing we’re aware of computers from Hewlett-
Packard and Compaq that include Python. Apparently some of HP/Compaq’s administrative tools are written
in Python.

• Many Unix-compatible operating systems, such as macOS and some Linux distributions, have Python installed
by default; it’s included in the base installation.

8.3 Can I delete Python?

That depends on where Python came from.

If someone installed it deliberately, you can remove it without hurting anything. On Windows, use the Add/Remove
Programs icon in the Control Panel.

If Python was installed by a third-party application, you can also remove it, but that application will no longer work.
You should use that application’s uninstaller rather than removing Python directly.

If Python came with your operating system, removing it is not recommended. If you remove it, whatever tools were
written in Python will no longer run, and some of them might be important to you. Reinstalling the whole system
would then be required to fix things again.

71

https://wiki.python.org/moin/BeginnersGuide

Python Frequently Asked Questions, Release 3.14.0rc1

72 Chapter 8. “Why is Python Installed on my Computer?” FAQ

APPENDIX

A

GLOSSARY

>>>

The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

...

Can refer to:

• The default Python prompt of the interactive shell when entering the code for an indented code block,
when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

• The Ellipsis built-in constant.

abstract base class
Abstract base classes complement duck-typing by providing a way to define interfaces when other techniques
like hasattr() would be clumsy or subtly wrong (for example with magic methods). ABCs introduce virtual
subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abc module documentation. Python comes with many built-in ABCs for data struc-
tures (in the collections.abc module), numbers (in the numbers module), streams (in the io module),
import finders and loaders (in the importlib.abc module). You can create your own ABCs with the abc
module.

annotate function
A function that can be called to retrieve the annotations of an object. This function is accessible as the __an-
notate__ attribute of functions, classes, and modules. Annotate functions are a subset of evaluate functions.

annotation
A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class at-
tributes, and functions can be retrieved by calling annotationlib.get_annotations() on modules,
classes, and functions, respectively.

See variable annotation, function annotation, PEP 484, PEP 526, and PEP 649, which describe this func-
tionality. Also see annotations-howto for best practices on working with annotations.

argument
A value passed to a function (or method) when calling the function. There are two kinds of argument:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following
calls to complex():

complex(real=3, imag=5)

complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

73

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0649/

Python Frequently Asked Questions, Release 3.14.0rc1

complex(3, 5)

complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asynchronous context manager
An object which controls the environment seen in an async with statement by defining __aenter__() and
__aexit__() methods. Introduced by PEP 492.

asynchronous generator
A function which returns an asynchronous generator iterator. It looks like a coroutine function defined with
async def except that it contains yield expressions for producing a series of values usable in an async
for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for, and async with

statements.

asynchronous generator iterator
An object created by a asynchronous generator function.

This is an asynchronous iteratorwhich when called using the __anext__()method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the execution state (including local variables and
pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__() method. Introduced by PEP 492.

asynchronous iterator
An object that implements the __aiter__() and __anext__() methods. __anext__() must return an
awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s __anext__()
method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attached thread state
A thread state that is active for the current OS thread.

When a thread state is attached, the OS thread has access to the full Python C API and can safely invoke the
bytecode interpreter.

Unless a function explicitly notes otherwise, attempting to call the C API without an attached thread state will
result in a fatal error or undefined behavior. A thread state can be attached and detached explicitly by the
user through the C API, or implicitly by the runtime, including during blocking C calls and by the bytecode
interpreter in between calls.

On most builds of Python, having an attached thread state implies that the caller holds the GIL for the current
interpreter, so only one OS thread can have an attached thread state at a given moment. In free-threaded builds
of Python, threads can concurrently hold an attached thread state, allowing for true parallelism of the bytecode
interpreter.

attribute
A value associated with an object which is usually referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

74 Appendix A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

Python Frequently Asked Questions, Release 3.14.0rc1

It is possible to give an object an attribute whose name is not an identifier as defined by identifiers, for example
using setattr(), if the object allows it. Such an attribute will not be accessible using a dotted expression,
and would instead need to be retrieved with getattr().

awaitable
An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL
Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO and
gzip.GzipFile.

See also text file for a file object able to read and write str objects.

borrowed reference
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

Calling Py_INCREF() on the borrowed reference is recommended to convert it to a strong reference in-place,
except when the object cannot be destroyed before the last usage of the borrowed reference. The Py_NewRef()
function can be used to create a new strong reference.

bytes-like object
An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all bytes,
bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like objects
can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as “read-write
bytes-like objects”. Example mutable buffer objects include bytearray and a memoryview of a bytearray.
Other operations require the binary data to be stored in immutable objects (“read-only bytes-like objects”);
examples of these include bytes and a memoryview of a bytes object.

bytecode
Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are
not expected to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

callable
A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:

callable(argument1, argument2, argumentN)

A function, and by extension a method, is a callable. An instance of a class that implements the __call__()
method is also a callable.

callback
A subroutine function which is passed as an argument to be executed at some point in the future.

class
A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

class variable
A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the class).

75

https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

Python Frequently Asked Questions, Release 3.14.0rc1

closure variable
A free variable referenced from a nested scope that is defined in an outer scope rather than being resolved at
runtime from the globals or builtin namespaces. May be explicitly defined with the nonlocal keyword to
allow write access, or implicitly defined if the variable is only being read.

For example, in the inner function in the following code, both x and print are free variables, but only x is
a closure variable:

def outer():

x = 0

def inner():

nonlocal x

x += 1

print(x)

return inner

Due to the codeobject.co_freevars attribute (which, despite its name, only includes the names of closure
variables rather than listing all referenced free variables), the more general free variable term is sometimes used
even when the intended meaning is to refer specifically to closure variables.

complex number
An extension of the familiar real number system in which all numbers are expressed as a sum of a real part and
an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1), often
written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to com-
plex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical
feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context
This term has different meanings depending on where and how it is used. Some common meanings:

• The temporary state or environment established by a context manager via a with statement.

• The collection of keyvalue bindings associated with a particular contextvars.Context object and
accessed via ContextVar objects. Also see context variable.

• A contextvars.Context object. Also see current context.

context management protocol
The __enter__() and __exit__() methods called by the with statement. See PEP 343.

context manager
An object which implements the context management protocol and controls the environment seen in a with
statement. See PEP 343.

context variable
A variable whose value depends on which context is the current context. Values are accessed via
contextvars.ContextVar objects. Context variables are primarily used to isolate state between concur-
rent asynchronous tasks.

contiguous
A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next
to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the
last index varies the fastest when visiting items in order of memory address. However, in Fortran contiguous
arrays, the first index varies the fastest.

coroutine
Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be imple-
mented with the async def statement. See also PEP 492.

coroutine function
A function which returns a coroutine object. A coroutine function may be defined with the async def

76 Appendix A. Glossary

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/

Python Frequently Asked Questions, Release 3.14.0rc1

statement, and may contain await, async for, and async with keywords. These were introduced by PEP
492.

CPython
The canonical implementation of the Python programming language, as distributed on python.org. The term
“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

current context
The context (contextvars.Context object) that is currently used by ContextVar objects to access (get
or set) the values of context variables. Each thread has its own current context. Frameworks for executing
asynchronous tasks (see asyncio) associate each task with a context which becomes the current context
whenever the task starts or resumes execution.

cyclic isolate
A subgroup of one or more objects that reference each other in a reference cycle, but are not referenced by
objects outside the group. The goal of the cyclic garbage collector is to identify these groups and break the
reference cycles so that the memory can be reclaimed.

decorator
A function returning another function, usually applied as a function transformation using the @wrapper syntax.
Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiv-
alent:

def f(arg):

...

f = staticmethod(f)

@staticmethod

def f(arg):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor
Any object which defines the methods __get__(), __set__(), or __delete__(). When a class attribute
is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get,
set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors or the Descriptor How To Guide.

dictionary
An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__()
and __eq__() methods. Called a hash in Perl.

dictionary comprehension
A compact way to process all or part of the elements in an iterable and return a dictionary with the results.
results = {n: n ** 2 for n in range(10)} generates a dictionary containing key n mapped to
value n ** 2. See comprehensions.

dictionary view
The objects returned from dict.keys(), dict.values(), and dict.items() are called dictionary views.
They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the
view reflects these changes. To force the dictionary view to become a full list use list(dictview). See
dict-views.

docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,

77

https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

Python Frequently Asked Questions, Release 3.14.0rc1

function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing
A programming style which does not look at an object’s type to determine if it has the right interface; instead,
the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must be
a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility
by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note,
however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of
valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

evaluate function
A function that can be called to evaluate a lazily evaluated attribute of an object, such as the value of type
aliases created with the type statement.

expression
A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of
expression elements like literals, names, attribute access, operators or function calls which all return a value. In
contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module
A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string
String literals prefixed with f or F are commonly called “f-strings” which is short for formatted string literals.
See also PEP 498.

file object
An object exposing a file-oriented API (with methods such as read() or write()) to an underlying resource.
Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of
storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.).
File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()
function.

file-like object
A synonym for file object.

filesystem encoding and error handler
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to
the operating system.

The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.

The sys.getfilesystemencoding() and sys.getfilesystemencodeerrors() functions can be
used to get the filesystem encoding and error handler.

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read() func-
tion: see filesystem_encoding and filesystem_errors members of PyConfig.

See also the locale encoding.

finder
An object that tries to find the loader for a module that is being imported.

78 Appendix A. Glossary

https://peps.python.org/pep-0498/

Python Frequently Asked Questions, Release 3.14.0rc1

There are two types of finder: meta path finders for use with sys.meta_path, and path entry finders for use
with sys.path_hooks.

See finders-and-loaders and importlib for much more detail.

floor division
Mathematical division that rounds down to nearest integer. The floor division operator is //. For example, the
expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

free threading
A threadingmodel wheremultiple threads can run Python bytecode simultaneously within the same interpreter.
This is in contrast to the global interpreter lock which allows only one thread to execute Python bytecode at a
time. See PEP 703.

free variable
Formally, as defined in the language execution model, a free variable is any variable used in a namespace
which is not a local variable in that namespace. See closure variable for an example. Pragmatically, due to the
name of the codeobject.co_freevars attribute, the term is also sometimes used as a synonym for closure
variable.

function
A series of statements which returns some value to a caller. It can also be passed zero or more argumentswhich
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation
An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:

return a + b

Function annotation syntax is explained in section function.

See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

__future__
A future statement, from __future__ import <feature>, directs the compiler to compile the current
module using syntax or semantics that will become standard in a future release of Python. The __future__
module documents the possible values of feature. By importing this module and evaluating its variables, you
can see when a new feature was first added to the language and when it will (or did) become the default:

>>> import __future__

>>> __future__.division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection
The process of freeing memory when it is not used anymore. Python performs garbage collection via reference
counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage collector
can be controlled using the gc module.

generator
A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator
An object created by a generator function.

79

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0484/

Python Frequently Asked Questions, Release 3.14.0rc1

Each yield temporarily suspends processing, remembering the execution state (including local variables and
pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression
An expression that returns an iterator. It looks like a normal expression followed by a for clause defining a
loop variable, range, and an optional if clause. The combined expression generates values for an enclosing
function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81

285

generic function
A function composed of multiple functions implementing the same operation for different types. Which im-
plementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP 443.

generic type
A type that can be parameterized; typically a container class such as list or dict. Used for type hints and
annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the typing module.

GIL
See global interpreter lock.

global interpreter lock
The mechanism used by the CPython interpreter to assure that only one thread executes Python bytecode at
a time. This simplifies the CPython implementation by making the object model (including critical built-in
types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.

As of Python 3.13, the GIL can be disabled using the --disable-gil build configuration. After building
Python with this option, code must be run with -X gil=0 or after setting the PYTHON_GIL=0 environment
variable. This feature enables improved performance for multi-threaded applications and makes it easier to
use multi-core CPUs efficiently. For more details, see PEP 703.

In prior versions of Python’s C API, a function might declare that it requires the GIL to be held in order to use
it. This refers to having an attached thread state.

hash-based pyc
A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source file to
determine its validity. See pyc-invalidation.

hashable
An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() method). Hashable objects which
compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their id().

IDLE

80 Appendix A. Glossary

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0703/

Python Frequently Asked Questions, Release 3.14.0rc1

An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter envi-
ronment which ships with the standard distribution of Python.

immortal
Immortal objects are a CPython implementation detail introduced in PEP 683.

If an object is immortal, its reference count is never modified, and therefore it is never deallocated while the
interpreter is running. For example, True and None are immortal in CPython.

Immortal objects can be identified via sys._is_immortal(), or via PyUnstable_IsImmortal() in the
C API.

immutable
An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path
A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the
parent package’s __path__ attribute.

importing
The process by which Python code in one module is made available to Python code in another module.

importer
An object that both finds and loads a module; both a finder and loader object.

interactive
Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly
by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect
modules and packages (remember help(x)). For more on interactive mode, see tut-interac.

interpreted
Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown
When asked to shut down, the Python interpreter enters a special phase where it gradually releases all allocated
resources, such as modules and various critical internal structures. It also makes several calls to the garbage
collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code exe-
cuted during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable
An object capable of returning its members one at a time. Examples of iterables include all sequence types
(such as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any
classes you define with an __iter__()method or with a __getitem__()method that implements sequence
semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(),
…). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter() or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator
An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing

81

https://peps.python.org/pep-0683/

Python Frequently Asked Questions, Release 3.14.0rc1

it to the built-in function next()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
to its __next__() method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places
where other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A
container object (such as a list) produces a fresh new iterator each time you pass it to the iter() function
or use it in a for loop. Attempting this with an iterator will just return the same exhausted iterator object used
in the previous iteration pass, making it appear like an empty container.

More information can be found in typeiter.

CPython implementation detail: CPython does not consistently apply the requirement that an iterator define
__iter__(). And also please note that the free-threading CPython does not guarantee the thread-safety of
iterator operations.

key function
A key function or collation function is a callable that returns a value used for sorting or ordering. For example,
locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They
include min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().

There are several ways to create a key function. For example. the str.lower() method can serve as a
key function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression
such as lambda r: (r[0], r[2]). Also, operator.attrgetter(), operator.itemgetter(), and
operator.methodcaller() are three key function constructors. See the Sorting HOW TO for examples
of how to create and use key functions.

keyword argument
See argument.

lambda
An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is lambda [parameters]: expression

LBYL
Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the
looking” and “the leaping”. For example, the code, if key in mapping: return mapping[key] can
fail if another thread removes key from mapping after the test, but before the lookup. This issue can be solved
with locks or by using the EAFP approach.

lexical analyzer
Formal name for the tokenizer; see token.

list
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension
A compact way to process all or part of the elements in a sequence and return a list with the results. result =

['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list of strings containing
even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all elements in
range(256) are processed.

loader
An object that loads a module. It must define the exec_module() and create_module() methods to
implement the Loader interface. A loader is typically returned by a finder. See also:

• finders-and-loaders

• importlib.abc.Loader

82 Appendix A. Glossary

Python Frequently Asked Questions, Release 3.14.0rc1

• PEP 302

locale encoding
On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.setlocale(locale.

LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: "cp1252").

On Android and VxWorks, Python uses "utf-8" as the locale encoding.

locale.getencoding() can be used to get the locale encoding.

See also the filesystem encoding and error handler.

magic method
An informal synonym for special method.

mapping
A container object that supports arbitrary key lookups and implements the methods specified in the
collections.abc.Mapping or collections.abc.MutableMapping abstract base classes. Exam-
ples include dict, collections.defaultdict, collections.OrderedDict and collections.

Counter.

meta path finder
A finder returned by a search of sys.meta_path. Meta path finders are related to, but different from path
entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass
The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented pro-
gramming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method
A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order
Method Resolution Order is the order in which base classes are searched for a member during lookup. See
python_2.3_mro for details of the algorithm used by the Python interpreter since the 2.3 release.

module
An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec
A namespace containing the import-related information used to load a module. An instance of importlib.
machinery.ModuleSpec.

See also module-specs.

MRO
See method resolution order.

mutable
Mutable objects can change their value but keep their id(). See also immutable.

named tuple
The term “named tuple” applies to any type or class that inherits from tuple and whose indexable elements are
also accessible using named attributes. The type or class may have other features as well.

83

https://peps.python.org/pep-0302/

Python Frequently Asked Questions, Release 3.14.0rc1

Several built-in types are named tuples, including the values returned by time.localtime() and os.

stat(). Another example is sys.float_info:

>>> sys.float_info[1] # indexed access

1024

>>> sys.float_info.max_exp # named field access

1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be
created from a regular class definition that inherits from tuple and that defines named fields. Such a class
can be written by hand, or it can be created by inheriting typing.NamedTuple, or with the factory function
collections.namedtuple(). The latter techniques also add some extra methods that may not be found
in hand-written or built-in named tuples.

namespace
The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions builtins.open and os.open() are
distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed() or itertools.islice()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

namespace package
A package which serves only as a container for subpackages. Namespace packages may have no physical
representation, and specifically are not like a regular package because they have no __init__.py file.

Namespace packages allow several individually installable packages to have a common parent package. Oth-
erwise, it is recommended to use a regular package.

For more information, see PEP 420 and reference-namespace-package.

See also module.

nested scope
The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference
and not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables
read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only new-
style classes could use Python’s newer, versatile features like __slots__, descriptors, properties, __getat-
tribute__(), class methods, and static methods.

object
Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

optimized scope
A scope where target local variable names are reliably known to the compiler when the code is compiled,
allowing optimization of read and write access to these names. The local namespaces for functions, generators,
coroutines, comprehensions, and generator expressions are optimized in this fashion. Note: most interpreter
optimizations are applied to all scopes, only those relying on a known set of local and nonlocal variable names
are restricted to optimized scopes.

package
A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with a __path__ attribute.

See also regular package and namespace package.

84 Appendix A. Glossary

https://peps.python.org/pep-0420/

Python Frequently Asked Questions, Release 3.14.0rc1

parameter
A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Positional-only parameters
can be defined by including a / character in the parameter list of the function definition after them, for
example posonly1 and posonly2 in the following:

def func(posonly1, posonly2, /, positional_or_keyword): ...

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters
can be defined by including a single var-positional parameter or bare * in the parameter list of the function
definition before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional
arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect.Parameter class, the function section, and PEP 362.

path entry
A single location on the import path which the path based finder consults to find modules for importing.

path entry finder
A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to locate
modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules on
a specific path entry.

path based finder
One of the default meta path finders which searches an import path for modules.

path-like object
An object representing a file system path. A path-like object is either a str or bytes object representing
a path, or an object implementing the os.PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os.fspath() function; os.
fsdecode() and os.fsencode() can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP
Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

85

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/

Python Frequently Asked Questions, Release 3.14.0rc1

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community
input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is
responsible for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion
A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as
defined in PEP 420.

positional argument
See argument.

provisional API
A provisional API is one which has been deliberately excluded from the standard library’s backwards com-
patibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if
deemed necessary by core developers. Such changes will not be made gratuitously – they will occur only if
serious fundamental flaws are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every
attempt will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package
See provisional API.

Python 3000
Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in the
distant future.) This is also abbreviated “Py3k”.

Pythonic
An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is
to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):

print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:

print(piece)

qualified name
A dotted name showing the “path” from a module’s global scope to a class, function or method defined in that
module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:

... class D:

... def meth(self):

... pass

...

>>> C.__qualname__

'C'

>>> C.D.__qualname__

'C.D'

>>> C.D.meth.__qualname__

'C.D.meth'

86 Appendix A. Glossary

https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/
https://peps.python.org/pep-3155/

Python Frequently Asked Questions, Release 3.14.0rc1

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g. email.mime.text:

>>> import email.mime.text

>>> email.mime.text.__name__

'email.mime.text'

reference count
The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Some objects are immortal and have reference counts that are never modified, and therefore the objects are
never deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. Programmers can call the sys.getrefcount() function to return the reference
count for a particular object.

In CPython, reference counts are not considered to be stable or well-defined values; the number of references
to an object, and how that number is affected by Python code, may be different between versions.

regular package
A traditional package, such as a directory containing an __init__.py file.

See also namespace package.

REPL
An acronym for the “read–eval–print loop”, another name for the interactive interpreter shell.

__slots__
A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for
rare cases where there are large numbers of instances in a memory-critical application.

sequence
An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a __len__() method that returns the length of the sequence. Some built-in sequence
types are list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(),
but is considered a mapping rather than a sequence because the lookups use arbitrary hashable keys rather
than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes beyond just
__getitem__() and __len__(), adding count(), index(), __contains__(), and __reversed__().
Types that implement this expanded interface can be registered explicitly using register(). For more
documentation on sequence methods generally, see Common Sequence Operations.

set comprehension
A compact way to process all or part of the elements in an iterable and return a set with the results. results
= {c for c in 'abracadabra' if c not in 'abc'} generates the set of strings {'r', 'd'}. See
comprehensions.

single dispatch
A form of generic function dispatch where the implementation is chosen based on the type of a single argument.

slice
An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (sub-
script) notation uses slice objects internally.

soft deprecated
A soft deprecated API should not be used in new code, but it is safe for already existing code to use it. The
API remains documented and tested, but will not be enhanced further.

Soft deprecation, unlike normal deprecation, does not plan on removing the API and will not emit warnings.

See PEP 387: Soft Deprecation.

special method
A method that is called implicitly by Python to execute a certain operation on a type, such as addition. Such

87

https://peps.python.org/pep-0387/#soft-deprecation

Python Frequently Asked Questions, Release 3.14.0rc1

methods have names starting and ending with double underscores. Special methods are documented in spe-
cialnames.

standard library
The collection of packages,modules and extensionmodules distributed as a part of the official Python interpreter
package. The exact membership of the collection may vary based on platform, available system libraries, or
other criteria. Documentation can be found at library-index.

See also sys.stdlib_module_names for a list of all possible standard library module names.

statement
A statement is part of a suite (a “block” of code). A statement is either an expression or one of several constructs
with a keyword, such as if, while or for.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the typing module.

stdlib
An abbreviation of standard library.

strong reference
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py_INCREF() when the reference is created and released
with Py_DECREF() when the reference is deleted.

The Py_NewRef() function can be used to create a strong reference to an object. Usually, the Py_DECREF()
function must be called on the strong reference before exiting the scope of the strong reference, to avoid leaking
one reference.

See also borrowed reference.

t-string
String literals prefixed with t or T are commonly called “t-strings” which is short for template string literals.

text encoding
A string in Python is a sequence of Unicode code points (in range U+0000–U+10FFFF). To store or transfer
a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as “encoding”, and recreating the string from the sequence
of bytes is known as “decoding”.

There are a variety of different text serialization codecs, which are collectively referred to as “text encodings”.

text file
A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream
and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

thread state
The information used by the CPython runtime to run in an OS thread. For example, this includes the current
exception, if any, and the state of the bytecode interpreter.

Each thread state is bound to a single OS thread, but threads may have many thread states available. At most,
one of them may be attached at once.

An attached thread state is required to call most of Python’s C API, unless a function explicitly documents
otherwise. The bytecode interpreter only runs under an attached thread state.

Each thread state belongs to a single interpreter, but each interpreter may have many thread states, including
multiple for the same OS thread. Thread states from multiple interpreters may be bound to the same thread,
but only one can be attached in that thread at any given moment.

See Thread State and the Global Interpreter Lock for more information.

88 Appendix A. Glossary

Python Frequently Asked Questions, Release 3.14.0rc1

token
A small unit of source code, generated by the lexical analyzer (also called the tokenizer). Names, numbers,
strings, operators, newlines and similar are represented by tokens.

The tokenize module exposes Python’s lexical analyzer. The token module contains information on the
various types of tokens.

triple-quoted string
A string which is bound by three instances of either a quotation mark (”) or an apostrophe (‘). While they don’t
provide any functionality not available with single-quoted strings, they are useful for a number of reasons.
They allow you to include unescaped single and double quotes within a string and they can span multiple lines
without the use of the continuation character, making them especially useful when writing docstrings.

type
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias
A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying type hints. For example:

def remove_gray_shades(

colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:

pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:

pass

See typing and PEP 484, which describe this functionality.

type hint
An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().

See typing and PEP 484, which describe this functionality.

universal newlines
A manner of interpreting text streams in which all of the following are recognized as ending a line: the Unix
end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention '\r'. See
PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

variable annotation
An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:

field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

89

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/

Python Frequently Asked Questions, Release 3.14.0rc1

Variable annotation syntax is explained in section annassign.

See function annotation, PEP 484 andPEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

virtual environment
A cooperatively isolated runtime environment that allows Python users and applications to install and upgrade
Python distribution packages without interfering with the behaviour of other Python applications running on
the same system.

See also venv.

virtual machine
A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by the byte-
code compiler.

Zen of Python
Listing of Python design principles and philosophies that are helpful in understanding and using the language.
The listing can be found by typing “import this” at the interactive prompt.

90 Appendix A. Glossary

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

APPENDIX

B

ABOUT THIS DOCUMENTATION

Python’s documentation is generated from reStructuredText sources using Sphinx, a documentation generator origi-
nally created for Python and now maintained as an independent project.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you
want to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers
are always welcome!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and author of much of the content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation.
See Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation
– Thank You!

91

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.14/Misc/ACKS

Python Frequently Asked Questions, Release 3.14.0rc1

92 Appendix B. About this documentation

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
//www.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations, which became Zope Corpo-
ration. In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-profit
organization created specifically to own Python-related Intellectual Property. Zope Corporation was a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL-compatible? (1)

0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI yes (2)
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note

(1) GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-
compatible licenses make it possible to combine Python with other software that is released under the
GPL; the others don’t.

(2) According to Richard Stallman, 1.6.1 is not GPL-compatible, because its license has a choice of law clause.
According to CNRI, however, Stallman’s lawyer has told CNRI’s lawyer that 1.6.1 is “not incompatible”
with the GPL.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

93

https://www.cwi.nl
https://www.cwi.nl
https://www.cnri.reston.va.us
https://www.cnri.reston.va.us
https://www.python.org/psf/
https://opensource.org

Python Frequently Asked Questions, Release 3.14.0rc1

C.2 Terms and conditions for accessing or otherwise using Python

Python software and documentation are licensed under the Python Software Foundation License Version 2.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Version 2 and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under
that license. See Licenses and Acknowledgements for Incorporated Software for an incomplete list of these licenses.

C.2.1 PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise using this

software ("Python") in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,

analyze, test, perform and/or display publicly, prepare derivative works,

distribute, and otherwise use Python alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's notice of

copyright, i.e., "Copyright © 2001 Python Software Foundation; All Rights

Reserved" are retained in Python alone or in any derivative version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or

incorporates Python or any part thereof, and wants to make the

derivative work available to others as provided herein, then Licensee hereby

agrees to include in any such work a brief summary of the changes made to␣

↪→Python.

4. PSF is making Python available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE

USE OF PYTHON WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON, OR ANY DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship

of agency, partnership, or joint venture between PSF and Licensee. This License

Agreement does not grant permission to use PSF trademarks or trade name in a

trademark sense to endorse or promote products or services of Licensee, or any

third party.

8. By copying, installing or otherwise using Python, Licensee agrees

to be bound by the terms and conditions of this License Agreement.

94 Appendix C. History and License

Python Frequently Asked Questions, Release 3.14.0rc1

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at

160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization

("Licensee") accessing and otherwise using this software in source or binary

form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,

BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license

to reproduce, analyze, test, perform and/or display publicly, prepare derivative

works, distribute, and otherwise use the Software alone or in any derivative

version, provided, however, that the BeOpen Python License is retained in the

Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.

BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE

USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR

ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,

MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF

ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of

its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects

by the law of the State of California, excluding conflict of law provisions.

Nothing in this License Agreement shall be deemed to create any relationship of

agency, partnership, or joint venture between BeOpen and Licensee. This License

Agreement does not grant permission to use BeOpen trademarks or trade names in a

trademark sense to endorse or promote products or services of Licensee, or any

third party. As an exception, the "BeOpen Python" logos available at

http://www.pythonlabs.com/logos.html may be used according to the permissions

granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be

bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research

Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191

("CNRI"), and the Individual or Organization ("Licensee") accessing and

otherwise using Python 1.6.1 software in source or binary form and its

associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,

analyze, test, perform and/or display publicly, prepare derivative works,

distribute, and otherwise use Python 1.6.1 alone or in any derivative version,

provided, however, that CNRI's License Agreement and CNRI's notice of copyright,

i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 95

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version

prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,

Licensee may substitute the following text (omitting the quotes): "Python 1.6.1

is made available subject to the terms and conditions in CNRI's License

Agreement. This Agreement together with Python 1.6.1 may be located on the

internet using the following unique, persistent identifier (known as a handle):

1895.22/1013. This Agreement may also be obtained from a proxy server on the

internet using the following URL: http://hdl.handle.net/1895.22/1013".

3. In the event Licensee prepares a derivative work that is based on or

incorporates Python 1.6.1 or any part thereof, and wants to make the derivative

work available to others as provided herein, then Licensee hereby agrees to

include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI

MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,

BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY

OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF

PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR

ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of

its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property

law of the United States, including without limitation the federal copyright

law, and, to the extent such U.S. federal law does not apply, by the law of the

Commonwealth of Virginia, excluding Virginia's conflict of law provisions.

Notwithstanding the foregoing, with regard to derivative works based on Python

1.6.1 that incorporate non-separable material that was previously distributed

under the GNU General Public License (GPL), the law of the Commonwealth of

Virginia shall govern this License Agreement only as to issues arising under or

with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in

this License Agreement shall be deemed to create any relationship of agency,

partnership, or joint venture between CNRI and Licensee. This License Agreement

does not grant permission to use CNRI trademarks or trade name in a trademark

sense to endorse or promote products or services of Licensee, or any third

party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing

or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and

conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The

Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted, provided that

the above copyright notice appear in all copies and that both that copyright

(continues on next page)

96 Appendix C. History and License

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

notice and this permission notice appear in supporting documentation, and that

the name of Stichting Mathematisch Centrum or CWI not be used in advertising or

publicity pertaining to distribution of the software without specific, written

prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO

EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT

OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,

DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTA-
TION

Permission to use, copy, modify, and/or distribute this software for any

purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH

REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,

INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM

LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _randomC extension underlying the randommodule includes code based on a download from http://www.math.
sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the
original code:

A C-program for MT19937, with initialization improved 2002/1/26.

Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)

or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 97

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote

products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socketmodule uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate source
files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

98 Appendix C. History and License

https://www.wide.ad.jp/

Python Frequently Asked Questions, Release 3.14.0rc1

C.3.3 Asynchronous socket services

The test.support.asynchat and test.support.asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam

Rushing not be used in advertising or publicity pertaining to

distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,

INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR

CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS

OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of

Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written

prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THIS SOFTWARE.

C.3.5 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...

err... reserved and offered to the public under the terms of the

Python 2.2 license.
(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 99

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.

Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.

Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.

Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and

its associated documentation for any purpose without fee is hereby

granted, provided that the above copyright notice appears in all copies,

and that both that copyright notice and this permission notice appear in

supporting documentation, and that the name of neither Automatrix,

Bioreason or Mojam Media be used in advertising or publicity pertaining to

distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

The uu codec contains the following notice:

Copyright 1994 by Lance Ellinghouse

Cathedral City, California Republic, United States of America.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that

both that copyright notice and this permission notice appear in

supporting documentation, and that the name of Lance Ellinghouse

not be used in advertising or publicity pertaining to distribution

of the software without specific, written prior permission.

LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT

OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

version is still 5 times faster, though.

- Arguments more compliant with Python standard

100 Appendix C. History and License

Python Frequently Asked Questions, Release 3.14.0rc1

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB

Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its

associated documentation, you agree that you have read, understood,

and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is

hereby granted, provided that the above copyright notice appears in

all copies, and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of

Secret Labs AB or the author not be used in advertising or publicity

pertaining to distribution of the software without specific, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD

TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-

ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR

BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE

OF THIS SOFTWARE.

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 101

Python Frequently Asked Questions, Release 3.14.0rc1

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash.c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algorithm.
It contains the following note:

<MIT License>

Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

</MIT License>

Original location:

https://github.com/majek/csiphash/

Solution inspired by code from:

Samuel Neves (supercop/crypto_auth/siphash24/little)

djb (supercop/crypto_auth/siphash24/little2)

Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

102 Appendix C. History and License

Python Frequently Asked Questions, Release 3.14.0rc1

C.3.11 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/web/
20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains the
following copyright and licensing notice:

/**

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice

* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C.3.12 OpenSSL

The modules hashlib, posix and ssl use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License

Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,

and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by

the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all

other entities that control, are controlled by, or are under common

control with that entity. For the purposes of this definition,

"control" means (i) the power, direct or indirect, to cause the

direction or management of such entity, whether by contract or

otherwise, or (ii) ownership of fifty percent (50%) or more of the

outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity

exercising permissions granted by this License.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 103

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

"Source" form shall mean the preferred form for making modifications,

including but not limited to software source code, documentation

source, and configuration files.

"Object" form shall mean any form resulting from mechanical

transformation or translation of a Source form, including but

not limited to compiled object code, generated documentation,

and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or

Object form, made available under the License, as indicated by a

copyright notice that is included in or attached to the work

(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object

form, that is based on (or derived from) the Work and for which the

editorial revisions, annotations, elaborations, or other modifications

represent, as a whole, an original work of authorship. For the purposes

of this License, Derivative Works shall not include works that remain

separable from, or merely link (or bind by name) to the interfaces of,

the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally

submitted to Licensor for inclusion in the Work by the copyright owner

or by an individual or Legal Entity authorized to submit on behalf of

the copyright owner. For the purposes of this definition, "submitted"

means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to

communication on electronic mailing lists, source code control systems,

and issue tracking systems that are managed by, or on behalf of, the

Licensor for the purpose of discussing and improving the Work, but

excluding communication that is conspicuously marked or otherwise

designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity

on behalf of whom a Contribution has been received by Licensor and

subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual,

worldwide, non-exclusive, no-charge, royalty-free, irrevocable

copyright license to reproduce, prepare Derivative Works of,

publicly display, publicly perform, sublicense, and distribute the

Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual,

worldwide, non-exclusive, no-charge, royalty-free, irrevocable

(except as stated in this section) patent license to make, have made,

use, offer to sell, sell, import, and otherwise transfer the Work,

where such license applies only to those patent claims licensable

by such Contributor that are necessarily infringed by their

Contribution(s) alone or by combination of their Contribution(s)

with the Work to which such Contribution(s) was submitted. If You

(continues on next page)

104 Appendix C. History and License

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

institute patent litigation against any entity (including a

cross-claim or counterclaim in a lawsuit) alleging that the Work

or a Contribution incorporated within the Work constitutes direct

or contributory patent infringement, then any patent licenses

granted to You under this License for that Work shall terminate

as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the

Work or Derivative Works thereof in any medium, with or without

modifications, and in Source or Object form, provided that You

meet the following conditions:

(a) You must give any other recipients of the Work or

Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices

stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works

that You distribute, all copyright, patent, trademark, and

attribution notices from the Source form of the Work,

excluding those notices that do not pertain to any part of

the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its

distribution, then any Derivative Works that You distribute must

include a readable copy of the attribution notices contained

within such NOTICE file, excluding those notices that do not

pertain to any part of the Derivative Works, in at least one

of the following places: within a NOTICE text file distributed

as part of the Derivative Works; within the Source form or

documentation, if provided along with the Derivative Works; or,

within a display generated by the Derivative Works, if and

wherever such third-party notices normally appear. The contents

of the NOTICE file are for informational purposes only and

do not modify the License. You may add Your own attribution

notices within Derivative Works that You distribute, alongside

or as an addendum to the NOTICE text from the Work, provided

that such additional attribution notices cannot be construed

as modifying the License.

You may add Your own copyright statement to Your modifications and

may provide additional or different license terms and conditions

for use, reproduction, or distribution of Your modifications, or

for any such Derivative Works as a whole, provided Your use,

reproduction, and distribution of the Work otherwise complies with

the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,

any Contribution intentionally submitted for inclusion in the Work

by You to the Licensor shall be under the terms and conditions of

this License, without any additional terms or conditions.

Notwithstanding the above, nothing herein shall supersede or modify

the terms of any separate license agreement you may have executed

with Licensor regarding such Contributions.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 105

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

6. Trademarks. This License does not grant permission to use the trade

names, trademarks, service marks, or product names of the Licensor,

except as required for reasonable and customary use in describing the

origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or

agreed to in writing, Licensor provides the Work (and each

Contributor provides its Contributions) on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied, including, without limitation, any warranties or conditions

of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A

PARTICULAR PURPOSE. You are solely responsible for determining the

appropriateness of using or redistributing the Work and assume any

risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,

whether in tort (including negligence), contract, or otherwise,

unless required by applicable law (such as deliberate and grossly

negligent acts) or agreed to in writing, shall any Contributor be

liable to You for damages, including any direct, indirect, special,

incidental, or consequential damages of any character arising as a

result of this License or out of the use or inability to use the

Work (including but not limited to damages for loss of goodwill,

work stoppage, computer failure or malfunction, or any and all

other commercial damages or losses), even if such Contributor

has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing

the Work or Derivative Works thereof, You may choose to offer,

and charge a fee for, acceptance of support, warranty, indemnity,

or other liability obligations and/or rights consistent with this

License. However, in accepting such obligations, You may act only

on Your own behalf and on Your sole responsibility, not on behalf

of any other Contributor, and only if You agree to indemnify,

defend, and hold each Contributor harmless for any liability

incurred by, or claims asserted against, such Contributor by reason

of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

(continues on next page)

106 Appendix C. History and License

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes C extension underlying the ctypes module is built using an included copy of the libffi sources unless
the build is configured --with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied

warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,

including commercial applications, and to alter it and redistribute it

freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not

claim that you wrote the original software. If you use this software

in a product, an acknowledgment in the product documentation would be

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 107

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be

misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler

jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens

All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided

with the distribution.

* Neither the name of the author nor the names of its

contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal C extension underlying the decimal module is built using an included copy of the libmpdec library
unless the build is configured --with-system-libmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without

(continues on next page)

108 Appendix C. History and License

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from the W3C
website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),

All Rights Reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of works must retain the original copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be

used to endorse or promote products derived from this work without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 109

https://www.w3.org/TR/xml-c14n2-testcases/

Python Frequently Asked Questions, Release 3.14.0rc1

C.3.19 mimalloc

MIT License:

Copyright (c) 2018-2021 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.21 Global Unbounded Sequences (GUS)

The file Python/qsbr.c is adapted from FreeBSD’s “Global Unbounded Sequences” safe memory reclamation
scheme in subr_smr.c. The file is distributed under the 2-Clause BSD License:

Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions
(continues on next page)

110 Appendix C. History and License

https://github.com/MagicStack/uvloop/tree/v0.16.0
https://github.com/freebsd/freebsd-src/blob/main/sys/kern/subr_smr.c

Python Frequently Asked Questions, Release 3.14.0rc1

(continued from previous page)

are met:

1. Redistributions of source code must retain the above copyright

notice unmodified, this list of conditions, and the following

disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.22 Zstandard bindings

Zstandard bindings in Modules/_zstd and Lib/compression/zstd are based on code from the pyzstd library,
copyright Ma Lin and contributors. The pyzstd code is distributed under the 3-Clause BSD License:

Copyright (c) 2020-present, Ma Lin and contributors.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 111

https://github.com/Rogdham/pyzstd/

Python Frequently Asked Questions, Release 3.14.0rc1

112 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

113

Python Frequently Asked Questions, Release 3.14.0rc1

114 Appendix D. Copyright

INDEX

Non-alphabetical
..., 73
>>>, 73
__future__, 79
__slots__, 87

A
abstract base class, 73
annotate function, 73
annotation, 73
argument, 73

difference from parameter, 12
asynchronous context manager, 74
asynchronous generator, 74
asynchronous generator iterator, 74
asynchronous iterable, 74
asynchronous iterator, 74
attached thread state, 74
attribute, 74
awaitable, 75

B
BDFL, 75
binary file, 75
borrowed reference, 75
bytecode, 75
bytes-like object, 75

C
callable, 75
callback, 75
C-contiguous, 76
class, 75
class variable, 75
closure variable, 76
complex number, 76
context, 76
context management protocol, 76
context manager, 76
context variable, 76
contiguous, 76
coroutine, 76
coroutine function, 76
CPython, 77
current context, 77
cyclic isolate, 77

D
decorator, 77
descriptor, 77
dictionary, 77
dictionary comprehension, 77
dictionary view, 77
docstring, 77
duck-typing, 78

E
EAFP, 78
environment variable

PATH, 51
PYTHON_GIL, 80
PYTHONDONTWRITEBYTECODE, 35

evaluate function, 78
expression, 78
extension module, 78

F
f-string, 78
file object, 78
file-like object, 78
filesystem encoding and error handler, 78
finder, 78
floor division, 79
Fortran contiguous, 76
free threading, 79
free variable, 79
function, 79
function annotation, 79

G
garbage collection, 79
generator, 79
generator expression, 80
generator iterator, 79
generic function, 80
generic type, 80
GIL, 80
global interpreter lock, 80

H
hash-based pyc, 80
hashable, 80

115

Python Frequently Asked Questions, Release 3.14.0rc1

I
IDLE, 80
immortal, 81
immutable, 81
import path, 81
importer, 81
importing, 81
interactive, 81
interpreted, 81
interpreter shutdown, 81
iterable, 81
iterator, 81

K
key function, 82
keyword argument, 82

L
lambda, 82
LBYL, 82
lexical analyzer, 82
list, 82
list comprehension, 82
loader, 82
locale encoding, 83

M
magic

method, 83
magic method, 83
mapping, 83
meta path finder, 83
metaclass, 83
method, 83

magic, 83
special, 87

method resolution order, 83
module, 83
module spec, 83
MRO, 83
mutable, 83

N
named tuple, 83
namespace, 84
namespace package, 84
nested scope, 84
new-style class, 84

O
object, 84
optimized scope, 84

P
package, 84
parameter, 85

difference from argument, 12

PATH, 51
path based finder, 85
path entry, 85
path entry finder, 85
path entry hook, 85
path-like object, 85
PEP, 85
portion, 86
positional argument, 86
provisional API, 86
provisional package, 86
Python 3000, 86
Python Enhancement Proposals

PEP 1, 86
PEP 5, 5
PEP 8, 8, 32, 68
PEP 238, 79
PEP 278, 89
PEP 302, 83
PEP 343, 76
PEP 362, 74, 85
PEP 373, 4
PEP 387, 2
PEP 411, 86
PEP 420, 84, 86
PEP 443, 80
PEP 483, 80
PEP 484, 73, 79, 80, 89, 90
PEP 492, 7477
PEP 498, 78
PEP 519, 85
PEP 525, 74
PEP 526, 73, 90
PEP 572, 41
PEP 585, 80
PEP 602, 4
PEP 649, 73
PEP 683, 81
PEP 703, 56, 79, 80
PEP 3116, 89
PEP 3147, 35
PEP 3155, 86

PYTHON_GIL, 80
PYTHONDONTWRITEBYTECODE, 35
Pythonic, 86

Q
qualified name, 86

R
reference count, 87
regular package, 87
REPL, 87

S
sequence, 87
set comprehension, 87
single dispatch, 87

116 Index

Python Frequently Asked Questions, Release 3.14.0rc1

slice, 87
soft deprecated, 87
special

method, 87
special method, 87
standard library, 88
statement, 88
static type checker, 88
stdlib, 88
strong reference, 88

T
t-string, 88
text encoding, 88
text file, 88
thread state, 88
token, 89
triple-quoted string, 89
type, 89
type alias, 89
type hint, 89

U
universal newlines, 89

V
variable annotation, 89
virtual environment, 90
virtual machine, 90

Z
Zen of Python, 90

Index 117

	General Python FAQ
	General Information
	What is Python?
	What is the Python Software Foundation?
	Are there copyright restrictions on the use of Python?
	Why was Python created in the first place?
	What is Python good for?
	How does the Python version numbering scheme work?
	How do I obtain a copy of the Python source?
	How do I get documentation on Python?
	I’ve never programmed before. Is there a Python tutorial?
	Is there a newsgroup or mailing list devoted to Python?
	How do I get a beta test version of Python?
	How do I submit bug reports and patches for Python?
	Are there any published articles about Python that I can reference?
	Are there any books on Python?
	Where in the world is www.python.org located?
	Why is it called Python?
	Do I have to like “Monty Python’s Flying Circus”?

	Python in the real world
	How stable is Python?
	How many people are using Python?
	Have any significant projects been done in Python?
	What new developments are expected for Python in the future?
	Is it reasonable to propose incompatible changes to Python?
	Is Python a good language for beginning programmers?

	Programming FAQ
	General Questions
	Is there a source code level debugger with breakpoints, single-stepping, etc.?
	Are there tools to help find bugs or perform static analysis?
	How can I create a stand-alone binary from a Python script?
	Are there coding standards or a style guide for Python programs?

	Core Language
	Why am I getting an UnboundLocalError when the variable has a value?
	What are the rules for local and global variables in Python?
	Why do lambdas defined in a loop with different values all return the same result?
	How do I share global variables across modules?
	What are the “best practices” for using import in a module?
	Why are default values shared between objects?
	How can I pass optional or keyword parameters from one function to another?
	What is the difference between arguments and parameters?
	Why did changing list ‘y’ also change list ‘x’?
	How do I write a function with output parameters (call by reference)?
	How do you make a higher order function in Python?
	How do I copy an object in Python?
	How can I find the methods or attributes of an object?
	How can my code discover the name of an object?
	What’s up with the comma operator’s precedence?
	Is there an equivalent of C’s “?:” ternary operator?
	Is it possible to write obfuscated one-liners in Python?
	What does the slash(/) in the parameter list of a function mean?

	Numbers and strings
	How do I specify hexadecimal and octal integers?
	Why does -22 // 10 return -3?
	How do I get int literal attribute instead of SyntaxError?
	How do I convert a string to a number?
	How do I convert a number to a string?
	How do I modify a string in place?
	How do I use strings to call functions/methods?
	Is there an equivalent to Perl’s chomp() for removing trailing newlines from strings?
	Is there a scanf() or sscanf() equivalent?
	What does UnicodeDecodeError or UnicodeEncodeError error mean?
	Can I end a raw string with an odd number of backslashes?

	Performance
	My program is too slow. How do I speed it up?
	What is the most efficient way to concatenate many strings together?

	Sequences (Tuples/Lists)
	How do I convert between tuples and lists?
	What’s a negative index?
	How do I iterate over a sequence in reverse order?
	How do you remove duplicates from a list?
	How do you remove multiple items from a list
	How do you make an array in Python?
	How do I create a multidimensional list?
	How do I apply a method or function to a sequence of objects?
	Why does a_tuple[i] += [‘item’] raise an exception when the addition works?
	I want to do a complicated sort: can you do a Schwartzian Transform in Python?
	How can I sort one list by values from another list?

	Objects
	What is a class?
	What is a method?
	What is self?
	How do I check if an object is an instance of a given class or of a subclass of it?
	What is delegation?
	How do I call a method defined in a base class from a derived class that extends it?
	How can I organize my code to make it easier to change the base class?
	How do I create static class data and static class methods?
	How can I overload constructors (or methods) in Python?
	I try to use __spam and I get an error about _SomeClassName__spam.
	My class defines __del__ but it is not called when I delete the object.
	How do I get a list of all instances of a given class?
	Why does the result of id() appear to be not unique?
	When can I rely on identity tests with the is operator?
	How can a subclass control what data is stored in an immutable instance?
	How do I cache method calls?

	Modules
	How do I create a .pyc file?
	How do I find the current module name?
	How can I have modules that mutually import each other?
	__import__(‘x.y.z’) returns <module ‘x’>; how do I get z?
	When I edit an imported module and reimport it, the changes don’t show up. Why does this happen?

	Design and History FAQ
	Why does Python use indentation for grouping of statements?
	Why am I getting strange results with simple arithmetic operations?
	Why are floating-point calculations so inaccurate?
	Why are Python strings immutable?
	Why must ‘self’ be used explicitly in method definitions and calls?
	Why can’t I use an assignment in an expression?
	Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g. len(list))?
	Why is join() a string method instead of a list or tuple method?
	How fast are exceptions?
	Why isn’t there a switch or case statement in Python?
	Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?
	Why can’t lambda expressions contain statements?
	Can Python be compiled to machine code, C or some other language?
	How does Python manage memory?
	Why doesn’t CPython use a more traditional garbage collection scheme?
	Why isn’t all memory freed when CPython exits?
	Why are there separate tuple and list data types?
	How are lists implemented in CPython?
	How are dictionaries implemented in CPython?
	Why must dictionary keys be immutable?
	Why doesn’t list.sort() return the sorted list?
	How do you specify and enforce an interface spec in Python?
	Why is there no goto?
	Why can’t raw strings (r-strings) end with a backslash?
	Why doesn’t Python have a “with” statement for attribute assignments?
	Why don’t generators support the with statement?
	Why are colons required for the if/while/def/class statements?
	Why does Python allow commas at the end of lists and tuples?

	Library and Extension FAQ
	General Library Questions
	How do I find a module or application to perform task X?
	Where is the math.py (socket.py, regex.py, etc.) source file?
	How do I make a Python script executable on Unix?
	Is there a curses/termcap package for Python?
	Is there an equivalent to C’s onexit() in Python?
	Why don’t my signal handlers work?

	Common tasks
	How do I test a Python program or component?
	How do I create documentation from doc strings?
	How do I get a single keypress at a time?

	Threads
	How do I program using threads?
	None of my threads seem to run: why?
	How do I parcel out work among a bunch of worker threads?
	What kinds of global value mutation are thread-safe?
	Can’t we get rid of the Global Interpreter Lock?

	Input and Output
	How do I delete a file? (And other file questions…)
	How do I copy a file?
	How do I read (or write) binary data?
	I can’t seem to use os.read() on a pipe created with os.popen(); why?
	How do I access the serial (RS232) port?
	Why doesn’t closing sys.stdout (stdin, stderr) really close it?

	Network/Internet Programming
	What WWW tools are there for Python?
	What module should I use to help with generating HTML?
	How do I send mail from a Python script?
	How do I avoid blocking in the connect() method of a socket?

	Databases
	Are there any interfaces to database packages in Python?
	How do you implement persistent objects in Python?

	Mathematics and Numerics
	How do I generate random numbers in Python?

	Extending/Embedding FAQ
	Can I create my own functions in C?
	Can I create my own functions in C++?
	Writing C is hard; are there any alternatives?
	How can I execute arbitrary Python statements from C?
	How can I evaluate an arbitrary Python expression from C?
	How do I extract C values from a Python object?
	How do I use Py_BuildValue() to create a tuple of arbitrary length?
	How do I call an object’s method from C?
	How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)?
	How do I access a module written in Python from C?
	How do I interface to C++ objects from Python?
	I added a module using the Setup file and the make fails; why?
	How do I debug an extension?
	I want to compile a Python module on my Linux system, but some files are missing. Why?
	How do I tell “incomplete input” from “invalid input”?
	How do I find undefined g++ symbols __builtin_new or __pure_virtual?
	Can I create an object class with some methods implemented in C and others in Python (e.g. through inheritance)?

	Python on Windows FAQ
	How do I run a Python program under Windows?
	How do I make Python scripts executable?
	Why does Python sometimes take so long to start?
	How do I make an executable from a Python script?
	Is a *.pyd file the same as a DLL?
	How can I embed Python into a Windows application?
	How do I keep editors from inserting tabs into my Python source?
	How do I check for a keypress without blocking?
	How do I solve the missing api-ms-win-crt-runtime-l1-1-0.dll error?

	Graphic User Interface FAQ
	General GUI Questions
	What GUI toolkits exist for Python?
	Tkinter questions
	How do I freeze Tkinter applications?
	Can I have Tk events handled while waiting for I/O?
	I can’t get key bindings to work in Tkinter: why?

	“Why is Python Installed on my Computer?” FAQ
	What is Python?
	Why is Python installed on my machine?
	Can I delete Python?

	Glossary
	About this documentation
	Contributors to the Python documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTATION

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister
	Sockets
	Asynchronous socket services
	Cookie management
	Execution tracing
	UUencode and UUdecode functions
	XML Remote Procedure Calls
	test_epoll
	Select kqueue
	SipHash24
	strtod and dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite
	mimalloc
	asyncio
	Global Unbounded Sequences (GUS)
	Zstandard bindings

	Copyright
	Index

