Remote debugging attachment
protocol

Release 3.14.0rc1
Guido van Rossum and the Python development team

July 22, 2025

Python Software Foundation
Email: docs@python.org

Contents

1 Locating the PyRuntime structure 2
2 Reading _Py_DebugOffsets 4
3 Locating the interpreter and thread state 6
4 Writing control information 7
5 Summary 8

This section describes the low-level protocol that enables external tools to inject and execute a Python script within
a running CPython process.

This mechanism forms the basis of the sys.remote_exec () function, which instructs a remote Python process
to execute a .py file. However, this section does not document the usage of that function. Instead, it provides a
detailed explanation of the underlying protocol, which takes as input the pid of a target Python process and the path
to a Python source file to be executed. This information supports independent reimplementation of the protocol,
regardless of programming language.

A\ Warning

The execution of the injected script depends on the interpreter reaching a safe evaluation point. As a result,
execution may be delayed depending on the runtime state of the target process.

Once injected, the script is executed by the interpreter within the target process the next time a safe evaluation point
is reached. This approach enables remote execution capabilities without modifying the behavior or structure of the
running Python application.

Subsequent sections provide a step-by-step description of the protocol, including techniques for locating interpreter
structures in memory, safely accessing internal fields, and triggering code execution. Platform-specific variations are
noted where applicable, and example implementations are included to clarify each operation.

1 Locating the PyRuntime structure

CPython places the PyRuntime structure in a dedicated binary section to help external tools find it at runtime.
The name and format of this section vary by platform. For example, .PyRuntime is used on ELF systems, and
__DATA,_ PyRuntime is used on macOS. Tools can find the offset of this structure by examining the binary on
disk.

The PyRuntime structure contains CPython’s global interpreter state and provides access to other internal data,
including the list of interpreters, thread states, and debugger support fields.

To work with a remote Python process, a debugger must first find the memory address of the PyRunt ime structure in
the target process. This address can’t be hardcoded or calculated from a symbol name, because it depends on where
the operating system loaded the binary.

The method for finding PyRunt ime depends on the platform, but the steps are the same in general:
1. Find the base address where the Python binary or shared library was loaded in the target process.
2. Use the on-disk binary to locate the offset of the .PyRunt ime section.
3. Add the section offset to the base address to compute the address in memory.

The sections below explain how to do this on each supported platform and include example code.

Linux (ELF)
To find the PyRunt ime structure on Linux:

1. Read the process’s memory map (for example, /proc/<pid>/maps) to find the address where the Python
executable or 1ibpython was loaded.

2. Parse the ELF section headers in the binary to get the offset of the . PyRunt ime section.
3. Add that offset to the base address from step 1 to get the memory address of PyRuntime.

The following is an example implementation:

def find_py_runtime_linux(pid: int) -> int:
Step 1: Try to find the Python executable in memory
binary_path, base_address = find_mapped_binary (
pid, name_contains="python"

Step 2: Fallback to shared library if executable is not found
if binary path is None:
binary_path, base_address = find_mapped_binary (
pid, name_contains="libpython"

Step 3: Parse ELF headers to get .PyRuntime section offset
section_offset = parse_elf section_offset (
binary _path, ".PyRuntime"

Step 4: Compute PyRuntime address in memory
return base_address + section_offset

On Linux systems, there are two main approaches to read memory from another process. The first is through the
/proc filesystem, specifically by reading from /proc/[pid]/mem which provides direct access to the process’s
memory. This requires appropriate permissions - either being the same user as the target process or having root
access. The second approach is using the process_vm_readv () system call which provides a more efficient way
to copy memory between processes. While ptrace’s PTRACE_PEEKTEXT operation can also be used to read memory,
it is significantly slower as it only reads one word at a time and requires multiple context switches between the tracer
and tracee processes.

For parsing ELF sections, the process involves reading and interpreting the ELF file format structures from the binary
file on disk. The ELF header contains a pointer to the section header table. Each section header contains metadata
about a section including its name (stored in a separate string table), offset, and size. To find a specific section like
.PyRuntime, you need to walk through these headers and match the section name. The section header then provides
the offset where that section exists in the file, which can be used to calculate its runtime address when the binary is
loaded into memory.

You can read more about the ELF file format in the ELF specification.

macOS (Mach-O)
To find the PyRunt ime structure on macOS:

1. Call task_for pid() to get the mach_port_t task port for the target process. This handle is needed to
read memory using APIs like mach_vm_read_overwrite and mach_vm_region.

2. Scan the memory regions to find the one containing the Python executable or 1ibpython.

3. Load the binary file from disk and parse the Mach-O headers to find the section named PyRunt ime in the
__DATA segment. On macOS, symbol names are automatically prefixed with an underscore, so the PyRunt ime
symbol appears as _PyRuntime in the symbol table, but the section name is not affected.

The following is an example implementation:

def find_py_runtime_macos (pid: int) -> int:
Step 1: Get access to the process's memory
handle = get_memory_access_handle (pid)

Step 2: Try to find the Python executable in memory
binary_path, base_address = find_mapped_binary (
handle, name_contains="python"

Step 3: Fallback to libpython if the executable is not found
if binary_path is None:
binary_path, base_address = find_mapped_binary (
handle, name_contains="libpython"

Step 4: Parse Mach-0O headers to get __ DATA,
section_offset = parse_macho_section_offset (

PyRuntime section offset

binary_path, "__DATA", "__ _PyRuntime"

Step 5: Compute the PyRuntime address in memory
return base_address + section_offset

On macOS, accessing another process’s memory requires using Mach-O specific APIs and file formats. The first
step is obtaining a task_port handle via task_for_pid (), which provides access to the target process’s memory
space. This handle enables memory operations through APIs like mach_vm_read_overwrite ().

The process memory can be examined using mach_vm_region () to scan through the virtual memory space, while
proc_regionfilename () helps identify which binary files are loaded at each memory region. When the Python
binary or library is found, its Mach-O headers need to be parsed to locate the PyRunt ime structure.

The Mach-O format organizes code and data into segments and sections. The PyRunt ime structure lives in a section
named __ PyRuntime within the _ DATA segment. The actual runtime address calculation involves finding the
__TEXT segment which serves as the binary’s base address, then locating the _ DATA segment containing our target
section. The final address is computed by combining the base address with the appropriate section offsets from the
Mach-O headers.

Note that accessing another process’s memory on macOS typically requires elevated privileges - either root access or
special security entitlements granted to the debugging process.

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Windows (PE)
To find the PyRunt ime structure on Windows:

1. Use the ToolHelp API to enumerate all modules loaded in the target process. This is done using functions such
as CreateToolhelp32Snapshot, Module32First, and Module32Next.

2. Identify the module corresponding to python.exe or pythonxy.d11, where x and Y are the major and
minor version numbers of the Python version, and record its base address.

3. Locate the PyRuntim section. Due to the PE format’s 8-character limit on section names (defined as TM-
AGE_SIZEOF_SHORT_ NAME), the original name PyRuntime is truncated. This section contains the PyRun—
time structure.

4. Retrieve the section’s relative virtual address (RVA) and add it to the base address of the module.

The following is an example implementation:

def find py_runtime_windows (pid: int) -> int:
Step 1: Try to find the Python executable in memory
binary_path, base_address = find_loaded_module (
pid, name_contains="python"

Step 2: Fallback to shared pythonXY.dll if the executable is not
found
if binary path is None:
binary_path, base_address = find_loaded_module (
pid, name_contains="python3"

Step 3: Parse PE section headers to get the RVA of the PyRuntime

section. The section name appears as "PyRuntim" due to the

8-character limit defined by the PE format (IMAGE_SIZEOF SHORT_ NAME) .
section_rva = parse_pe_section_offset (binary_path, "PyRuntim")

Step 4: Compute PyRuntime address in memory
return base_address + section_rva

On Windows, accessing another process’s memory requires using the Windows API functions like CreateTool-
help32Snapshot () and Module32First () /Module32Next () to enumerate loaded modules. The OpenPro-
cess () function provides a handle to access the target process’s memory space, enabling memory operations through
ReadProcessMemory ().

The process memory can be examined by enumerating loaded modules to find the Python binary or DLL. When
found, its PE headers need to be parsed to locate the PyRunt ime structure.

The PE format organizes code and data into sections. The PyRunt ime structure lives in a section named “PyRuntim”
(truncated from “PyRuntime” due to PE’s 8-character name limit). The actual runtime address calculation involves
finding the module’s base address from the module entry, then locating our target section in the PE headers. The final
address is computed by combining the base address with the section’s virtual address from the PE section headers.

Note that accessing another process’s memory on Windows typically requires appropriate privileges - either admin-
istrative access or the SeDebugPrivilege privilege granted to the debugging process.

2 Reading _Py_DebugOffsets

Once the address of the PyRunt ime structure has been determined, the next step is to read the _Py_DebugOffsets
structure located at the beginning of the PyRunt ime block.

This structure provides version-specific field offsets that are needed to safely read interpreter and thread state memory.
These offsets vary between CPython versions and must be checked before use to ensure they are compatible.

https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-createtoolhelp32snapshot
https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-module32first
https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-module32next

To read and check the debug offsets, follow these steps:

1. Read memory from the target process starting at the PyRunt ime address, covering the same number of bytes
as the _Py_DebugOffsets structure. This structure is located at the very start of the PyRunt ime memory
block. Its layout is defined in CPython’s internal headers and stays the same within a given minor version, but
may change in major versions.

2. Check that the structure contains valid data:
o The cookie field must match the expected debug marker.
e The version field must match the version of the Python interpreter used by the debugger.

« If either the debugger or the target process is using a pre-release version (for example, an alpha, beta, or
release candidate), the versions must match exactly.

e The free_threaded field must have the same value in both the debugger and the target process.

3. If the structure is valid, the offsets it contains can be used to locate fields in memory. If any check fails, the
debugger should stop the operation to avoid reading memory in the wrong format.

The following is an example implementation that reads and checks _Py_DebugOffsets:

def read_debug_offsets(pid: int, py_runtime_addr: int) -> DebugOffsets:
Step 1: Read memory from the target process at the PyRuntime address
data = read_process_memory (
pid, address=py_runtime_addr, size=DEBUG_OFFSETS_SIZE

Step 2: Deserialize the raw bytes into a _Py_DebugOffsets structure
debug_offsets = parse_debug_offsets (data)

Step 3: Validate the contents of the structure

if debug_offsets.cookie != EXPECTED_COOKIE:
raise RuntimeError ("Invalid or missing debug cookie")
if debug_offsets.version != LOCAL_PYTHON_VERSION:

raise RuntimeError (
"Mismatch between caller and target Python versions"
)
if debug_offsets.free_threaded != LOCAL_FREE_THREADED:
raise RuntimeError ("Mismatch in free-threaded configuration")

return debug_offsets

A\ Warning

Process suspension recommended

To avoid race conditions and ensure memory consistency, it is strongly recommended that the target process be
suspended before performing any operations that read or write internal interpreter state. The Python runtime
may concurrently mutate interpreter data structures—such as creating or destroying threads—during normal ex-
ecution. This can result in invalid memory reads or writes.

A debugger may suspend execution by attaching to the process with pt race or by sending a SIGSTOP signal.
Execution should only be resumed after debugger-side memory operations are complete.

© Note

Some tools, such as profilers or sampling-based debuggers, may operate on a running process without sus-
pension. In such cases, tools must be explicitly designed to handle partially updated or inconsistent memory.
For most debugger implementations, suspending the process remains the safest and most robust approach.

3 Locating the interpreter and thread state

Before code can be injected and executed in a remote Python process, the debugger must choose a thread in which
to schedule execution. This is necessary because the control fields used to perform remote code injection are located
in the _PyRemoteDebuggerSupport structure, which is embedded in a PyThreadState object. These fields are
modified by the debugger to request execution of injected scripts.

The PyThreadState structure represents a thread running inside a Python interpreter. It maintains the thread’s
evaluation context and contains the fields required for debugger coordination. Locating a valid PyThreadState is
therefore a key prerequisite for triggering execution remotely.

A thread is typically selected based on its role or ID. In most cases, the main thread is used, but some tools may
target a specific thread by its native thread ID. Once the target thread is chosen, the debugger must locate both the
interpreter and the associated thread state structures in memory.

The relevant internal structures are defined as follows:

e PyInterpreterState represents an isolated Python interpreter instance. Each interpreter maintains its own
set of imported modules, built-in state, and thread state list. Although most Python applications use a single
interpreter, CPython supports multiple interpreters in the same process.

e PyThreadState represents a thread running within an interpreter. It contains execution state and the control
fields used by the debugger.

To locate a thread:

1. Use the offset runtime_state.interpreters_head to obtain the address of the first interpreter in the
PyRunt ime structure. This is the entry point to the linked list of active interpreters.

2. Use the offset interpreter_state.threads_main to access the main thread state associated with the
selected interpreter. This is typically the most reliable thread to target.

3. Optionally, use the offset interpreter_state.threads_head to iterate through the linked list of all thread
states. Each PyThreadState structure contains a native_thread_id field, which may be compared to a target
thread ID to find a specific thread.

1. Once a valid PyThreadState has been found, its address can be used in later steps of the protocol, such as
writing debugger control fields and scheduling execution.

The following is an example implementation that locates the main thread state:

def find main_thread_state(
pid: int, py_runtime_addr: int, debug_offsets: DebugOffsets,
) —> int:
Step 1: Read interpreters_head from PyRuntime
interp_head_ptr = (
py_runtime_addr + debug_offsets.runtime_state.interpreters_head
)
interp_addr = read_pointer (pid, interp_head_ptr)
if interp_addr ==
raise RuntimeError ("No interpreter found in the target process")

Step 2: Read the threads_main pointer from the interpreter
threads_main_ptr = (

interp_addr + debug_offsets.interpreter_state.threads_main
)
thread_state_addr = read_pointer (pid, threads_main_ptr)
if thread_state_addr ==

raise RuntimeError ("Main thread state is not available™)

return thread_state_addr

The following example demonstrates how to locate a thread by its native thread ID:

def find_ thread by_id(
pid: int,
interp_addr: int,
debug_offsets: DebugOffsets,
target_tid: int,
) —> int:
Start at threads_head and walk the linked 1ist
thread_ptr = read_pointer (
pid,
interp_addr + debug_offsets.interpreter_state.threads_head

while thread_ptr:
native_tid_ptr = (
thread_ptr + debug_offsets.thread_state.native_thread_ id
)
native_tid = read_int (pid, native_tid_ptr)
if native_tid == target_tid:
return thread_ptr
thread_ptr = read_pointer(
pid,
thread_ptr + debug_offsets.thread_state.next

raise RuntimeError ("Thread with the given ID was not found")

Once a valid thread state has been located, the debugger can proceed with modifying its control fields and scheduling
execution, as described in the next section.

4 Writing control information

Once a valid PyThreadState structure has been identified, the debugger may modify control fields within it to
schedule the execution of a specified Python script. These control fields are checked periodically by the interpreter,
and when set correctly, they trigger the execution of remote code at a safe point in the evaluation loop.

Each PyThreadState contains a _PyRemoteDebuggerSupport structure used for communication between the
debugger and the interpreter. The locations of its fields are defined by the Py _DebugOf fset s structure and include
the following:

e debugger_script_path: A fixed-size buffer that holds the full path to a
Python source file (. py). This file must be accessible and readable by the target process when execution
is triggered.

¢ debugger_pending_call: An integer flag. Setting this to 1 tells the
interpreter that a script is ready to be executed.

e eval_breaker: A field checked by the interpreter during execution.
Setting bit 5 (_PY _EVAL_PLEASE_STOP_BIT, value 1U << 5) in this field causes the interpreter to
pause and check for debugger activity.

To complete the injection, the debugger must perform the following steps:
1. Write the full script path into the debugger_script_path buffer.
2. Set debugger_pending_call to 1.

3. Read the current value of eval breaker,setbit5 (_PY EVAL PLEASE_STOP_BIT), and write the updated
value back. This signals the interpreter to check for debugger activity.

The following is an example implementation:

def inject_script (
pid: int,
thread_state_addr: int,
debug_offsets: DebugOffsets,
script_path: str
) —> None:
Compute the base offset of _PyRemoteDebuggerSupport
support_base = (
thread_state_addr +
debug_offsets.debugger_support.remote_debugger_support

Step 1: Write the script path into debugger_script_path
script_path_ptr = (
support_base +
debug_offsets.debugger_support.debugger_script_path

)
write_string(pid, script_path_ptr, script_path)

Step 2: Set debugger pending call to 1

pending_ptr = (
support_base +
debug_offsets.debugger_support.debugger_pending_call

)
write_int (pid, pending_ptr, 1)

Step 3: Set _PY EVAL_PLEASE_STOP_BIT (bit 5, value 1 << 5) in

eval_breaker

eval_breaker_ptr = (
thread_state_addr +
debug_offsets.debugger_support.eval_breaker

)

breaker = read_int (pid, eval_breaker_ptr)

breaker [= (1 << 5)

write_int (pid, eval_breaker_ptr, breaker)

J

Once these fields are set, the debugger may resume the process (if it was suspended). The interpreter will process
the request at the next safe evaluation point, load the script from disk, and execute it.

It is the responsibility of the debugger to ensure that the script file remains present and accessible to the target process
during execution.

© Note

Script execution is asynchronous. The script file cannot be deleted immediately after injection. The debugger
should wait until the injected script has produced an observable effect before removing the file. This effect depends
on what the script is designed to do. For example, a debugger might wait until the remote process connects back
to a socket before removing the script. Once such an effect is observed, it is safe to assume the file is no longer
needed.

5 Summary

To inject and execute a Python script in a remote process:
1. Locate the PyRunt ime structure in the target process’s memory.

2. Read and validate the _Py_DebugOffsets structure at the beginning of PyRunt ime.

N o AW

Use the offsets to locate a valid PyThreadState.

Write the path to a Python script into debugger_script_path.
Set the debugger_pending call flagto 1.

Set _PY_EVAL_PLEASE_STOP_BIT in the eval_breaker field.

Resume the process (if suspended). The script will execute at the next safe evaluation point.

	Locating the PyRuntime structure
	Reading _Py_DebugOffsets
	Locating the interpreter and thread state
	Writing control information
	Summary

