What's New in Python

Release 3.12.11
A. M. Kuchling

June 03, 2025

Python Software Foundation
Email: docs@python.org

Contents
1 Summary - Release highlights 3
2 New Features 4
2.1 PEP 695: Type Parameter Syntax e 4
2.2 PEP 701: Syntactic formalization of f-strings o 5
2.3 PEP 684: A Per-Interpreter GIL e 7
2.4 PEP 669: Low impact monitoring for CPython 7
2.5 PEP 688: Making the buffer protocol accessible in Python, 7
2.6 PEP 709: Comprehension inlining L e 7
2.7 Improved Error Messages e 8
3 New Features Related to Type Hints 8
3.1 PEP 692: Using TypedDict for more precise **kwargs typing 9
3.2 PEP 698: Override Decorator for Static Typing 9
4 Other Language Changes 9
5 New Modules 10
6 Improved Modules 10
6.1 aITay e e e e 10
6.2 ASYNCIO .« v v o e 10
6.3 calendar L e e e 11
6.4 CSV . . L e 11
6.5 diS . .. 11
6.6 fractions e e e 11
6.7 IMPOrthib.reSOUICES v v o ot e 11
6.8 INSPECL . . . v e e e e e e e e e e e e e e e e e 11
6.9 Htertools e e e e 12
6.10 math e e 12
6.11 0S . . o o e e e e e 12
6.12 os.path L e e e 12
6.13 pathlib o e e e e 12
6.14 platform L e e e e e e e e 13
6.15 pdb . . 13
6.16 random L L. L e e e e e e e 13
6.17 shutil o e e e 13
6.18 sqlited e e e e e e e e e e e e 13

6.19 StatiStiCS . .+ v v v v e e e e e e e e e e 13

0.20 SYS . it e e e e e e e e e e e e e e e 14
6.21 tempfile L e e e e e e e 14
6.22 threading e e e 14
6.23 KINMET L e e e e e e e e e e e e e e e e 14
6.24 tOKENIZE o e e e e 14
0.25 LYPES « v o o e 14
6.26 LYPINZ .« o v o e 15
6.27 unicodedata L. L e e e e e e 15
6.28 UNILIESE o o o i e 15
6.29 uuid e e e 16
7 Optimizations 16
8 CPython bytecode changes 16
9 Demos and Tools 17
10 Deprecated 17
10.1 Pending Removalin Python 3.13 L 19
10.2 Pending Removal in Python 3.14 20
10.3 Pending Removal in Python 3.15 e 21
10.4 Pending Removal in Python3.16 L 22
10.5 Pending Removal in Future Versions oo 23
11 Removed 25
I1.1 asynchatand asyncore i i e e e e e 25
11.2 configparser e e e 25
1.3 distutils e e e e 25
114 ensurepip v vt i e e e e e e e e e e e 25
T1.5 enum. e e e e 25
1.6 ftplib e e e e 25
T17 gZIp . o o o o e e e e e e e e e 26
11.8 hashlib L e 26
11.9 importlib o o e e e 26
TLIOIMDP . . o o e e e e e e e e e e e e e e e e 26
TLILHO o e e e e 27
I1.12locale o o e e e e 27
T1.I3smtpd o e e e e e e 27
T1.14sqlited o o e e 27
TLASSSL .o e e e e 28
T1I6UNITEESt o o o e e e e e e e e e e e e e e e 28
LT1.17webbrowser e e e e e e e 28
11.18xml.etree.ElementTree e e e 29
11.19zipimport oL e e e 29
I1.200thers o o e e 29
12 Porting to Python 3.12 29
12.1 Changesinthe Python APT 29
13 Build Changes 30
14 C API Changes 31
14.1 New Features e e e e 31
14.2 Porting to Python 3.12 e 33
14.3 Deprecated e e 35
144 Removed L L e e 38
15 Notable changes in 3.12.4 38
I5.1 dpaddress. 38

16 Notable changes in 3.12.5 38

16.1 email o o e e e e 38
17 Notable changes in 3.12.6 38
I7.1 email e e e e e e e e e e e e 38
18 Notable changes in 3.12.8 39
0 S 39
19 Notable changes in 3.12.10 39
19.1 ospath L oo 39
19.2 tarfile e e e e e e e 39
Index 40
Editor

Adam Turner

This article explains the new features in Python 3.12, compared to 3.11. Python 3.12 was released on October 2,
2023. For full details, see the changelog.

> See also

PEP 693 - Python 3.12 Release Schedule

1 Summary - Release highlights

Python 3.12 is a stable release of the Python programming language, with a mix of changes to the language and the
standard library. The library changes focus on cleaning up deprecated APIs, usability, and correctness. Of note, the
distutils package has been removed from the standard library. Filesystem support in os and pathlib has seen
a number of improvements, and several modules have better performance.

The language changes focus on usability, as f-strings have had many limitations removed and ‘Did you mean ...’
suggestions continue to improve. The new rype parameter syntax and type statement improve ergonomics for using
generic types and type aliases with static type checkers.

This article doesn’t attempt to provide a complete specification of all new features, but instead gives a convenient
overview. For full details, you should refer to the documentation, such as the Library Reference and Language
Reference. If you want to understand the complete implementation and design rationale for a change, refer to the
PEP for a particular new feature; but note that PEPs usually are not kept up-to-date once a feature has been fully
implemented.

New syntax features:
o PEP 695, type parameter syntax and the type statement
New grammar features:
e PEP 701, f-strings in the grammar
Interpreter improvements:
e PEP 684, a unique per-interpreter GIL
e PEP 669, low impact monitoring
o Improved ‘Did you mean ... suggestions for NameError, ImportError, and SyntaxError exceptions

Python data model improvements:

https://peps.python.org/pep-0693/

PEP 688, using the buffer protocol from Python

Significant improvements in the standard library:

The pathlib.Path class now supports subclassing
The os module received several improvements for Windows support
A command-line interface has been added to the sqlite3 module

isinstance () checks against runtime-checkable protocols enjoy aspeed up of between two and 20
times

The asyncio package has had a number of performance improvements, with some benchmarks showing a
75% speed up.

A command-line interface has been added to the uuid module

Due to the changes in PEP 701, producing tokens via the tokenize module is up to 64% faster.

Security improvements:

Replace the builtin hash1ib implementations of SHA1, SHA3, SHA2-384, SHA2-512, and MDS5 with for-
mally verified code from the HACL* project. These builtin implementations remain as fallbacks that are only
used when OpenSSL does not provide them.

C API improvements:

PEP 697, unstable C API tier
PEP 683, immortal objects

CPython implementation improvements:

PEP 709, comprehension inlining
CPython support for the Linux perf profiler

Implement stack overflow protection on supported platforms

New typing features:

PEP 692, using TypedDict to annotate **kwargs

PEP 698, typing.override () decorator

Important deprecations, removals or restrictions:

PEP 623: Remove wstr from Unicode objects in Python’s C API, reducing the size of every st r object by
at least 8 bytes.

PEP 632: Remove the distutils package. See the migration guide for advice replacing the APIs it
provided. The third-party Setuptools package continues to provide distutils, if you still require it in Python
3.12 and beyond.

¢h-95299: Do not pre-install setuptools in virtual environments created with venv. This means that dis-
tutils, setuptools, pkg_resources, and easy_install will no longer available by default; to access
these run pip install setuptools in the activated virtual environment.

The asynchat, asyncore, and imp modules have been removed, along with several unittest.TestCase
method aliases.

2 New Features

2.1 PEP 695: Type Parameter Syntax

Generic classes and functions under PEP 484 were declared using a verbose syntax that left the scope of type pa-
rameters unclear and required explicit declarations of variance.

PEP 695 introduces a new, more compact and explicit way to create generic classes and functions:

https://github.com/hacl-star/hacl-star/
https://peps.python.org/pep-0623/
https://peps.python.org/pep-0632/
https://peps.python.org/pep-0632/#migration-advice
https://setuptools.pypa.io/en/latest/deprecated/distutils-legacy.html
https://github.com/python/cpython/issues/95299
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0695/

def max[T] (args: Iterable[T]) -> T:

class 1list|[T]:
def _ getitem__ (self, index: int, /) -> T:

def append(self, element: T) —-> None:

In addition, the PEP introduces a new way to declare type aliases using the t ype statement, which creates an instance
of TypeAliasType:

[type Point = tuple[float, float] }

Type aliases can also be generic:

[type Point [T] = tuple[T, T] }

The new syntax allows declaring TypeVarTuple and ParamSpec parameters, as well as TypeVar parameters with
bounds or constraints:

type IntFunc[**P] = Callable[P, int] # ParamSpec

type LabeledTuple[*Ts] = tuple[str, *Ts] # TypeVarTuple

type HashableSequence[T: Hashable] = Sequencel[T] # TypeVar with bound

type IntOrStrSequence[T: (int, str)] = Sequence[T] # TypeVar with constraints

The value of type aliases and the bound and constraints of type variables created through this syntax are evaluated
only on demand (see lazy evaluation). This means type aliases are able to refer to other types defined later in the file.

Type parameters declared through a type parameter list are visible within the scope of the declaration and any nested
scopes, but not in the outer scope. For example, they can be used in the type annotations for the methods of a
generic class or in the class body. However, they cannot be used in the module scope after the class is defined. See
type-params for a detailed description of the runtime semantics of type parameters.

In order to support these scoping semantics, a new kind of scope is introduced, the annotation scope. Annotation
scopes behave for the most part like function scopes, but interact differently with enclosing class scopes. In Python
3.13, annotations will also be evaluated in annotation scopes.

See PEP 695 for more details.
(PEP written by Eric Traut. Implementation by Jelle Zijlstra, Eric Traut, and others in gh-103764.)

2.2 PEP 701: Syntactic formalization of f-strings

PEP 701 lifts some restrictions on the usage of f-strings. Expression components inside f-strings can now be any
valid Python expression, including strings reusing the same quote as the containing f-string, multi-line expressions,
comments, backslashes, and unicode escape sequences. Let’s cover these in detail:

» Quote reuse: in Python 3.11, reusing the same quotes as the enclosing f-string raises a SyntaxError, forcing
the user to either use other available quotes (like using double quotes or triple quotes if the f-string uses single
quotes). In Python 3.12, you can now do things like this:

>>> songs = ['Take me back to Eden', 'Alkaline', 'Ascensionism']
>>> f"This is the playlist: {", ".Jjoin(songs) }"
'This is the playlist: Take me back to Eden, Alkaline, Ascensionism'

Note that before this change there was no explicit limit in how f-strings can be nested, but the fact that string
quotes cannot be reused inside the expression component of f-strings made it impossible to nest f-strings
arbitrarily. In fact, this is the most nested f-string that could be written:

https://peps.python.org/pep-0695/
https://github.com/python/cpython/issues/103764
https://peps.python.org/pep-0701/

S>> FUNN LV ST S EN LMY LT vy e
o

As now f-strings can contain any valid Python expression inside expression components, it is now possible to
nest f-strings arbitrarily:

>>> FW/FEWSEWSEN SEW SEW 44 AN AN N 0w i gn
o

o Multi-line expressions and comments: In Python 3.11, f-string expressions must be defined in a single line,
even if the expression within the f-string could normally span multiple lines (like literal lists being defined over
multiple lines), making them harder to read. In Python 3.12 you can now define f-strings spanning multiple
lines, and add inline comments:

s R

>>> f"This is the playlist: {", ".join ([
'Take me back to Eden', # My, my, those eyes like fire
'Alkaline’', # Not acid nor alkaline
'Ascensionism’ # Take to the broken skies at last
1)

'This is the playlist: Take me back to Eden, Alkaline, Ascensionism'

« Backslashes and unicode characters: before Python 3.12 f-string expressions couldn’t contain any \ charac-
ter. This also affected unicode escape sequences (such as \N{snowman}) as these contain the \N part that
previously could not be part of expression components of f-strings. Now, you can define expressions like this:

(>>> print (f"This is the playlist: {"\n".join(songs) }"))
This is the playlist: Take me back to Eden

Alkaline

Ascensionism

>>> print (f"This is the playlist: "\N{BLACK HEART SUIT}".join(songs) }")

This is the playlist: Take me back to Eden¥YAlkaline¥YAscensionism

. J

See PEP 701 for more details.

As a positive side-effect of how this feature has been implemented (by parsing f-strings with the PEG parser), now
error messages for f-strings are more precise and include the exact location of the error. For example, in Python
3.11, the following f-string raises a SyntaxError:

>>> my_string = f"{x z y}" + £"{1 + 1}"
File "<stdin>", line 1
(x z vy)

AANA

SyntaxError: f-string: invalid syntax. Perhaps you forgot a comma?

but the error message doesn’t include the exact location of the error within the line and also has the expression
artificially surrounded by parentheses. In Python 3.12, as f-strings are parsed with the PEG parser, error messages
can be more precise and show the entire line:

>>> my_string = f"{x z y}" + £"{1 + 1}"
File "<stdin>", line 1
my_string = f"{x z y}" + £"{1 + 1}"

AAN

SyntaxError: invalid syntax. Perhaps you forgot a comma?

(Contributed by Pablo Galindo, Batuhan Taskaya, Lysandros Nikolaou, Cristidn Maureira-Fredes and Marta Gémez
in gh-102856. PEP written by Pablo Galindo, Batuhan Taskaya, Lysandros Nikolaou and Marta Gémez).

https://peps.python.org/pep-0701/
https://peps.python.org/pep-0617/
https://github.com/python/cpython/issues/102856

2.3 PEP 684: A Per-Interpreter GIL

PEP 684 introduces a per-interpreter GIL, so that sub-interpreters may now be created with a unique GIL per
interpreter. This allows Python programs to take full advantage of multiple CPU cores. This is currently only available
through the C-API, though a Python API is anticipated for 3.13.

Use the new Py_NewInterpreterFromConfig () function to create an interpreter with its own GIL:

PyInterpreterConfig config = {
.check_multi_interp_extensions = 1,
.gil = PyInterpreterConfig_OWN_GIL,
bi
PyThreadState *tstate = NULL;
PyStatus status = Py _NewlInterpreterFromConfig(&tstate, &config);
if (PyStatus_Exception(status)) {
return -1;
}

/* The new interpreter is now active in the current thread. */

J

For further examples how to use the C-API for sub-interpreters with a per-interpreter GIL, see Mod-
ules/_xxsubinterpretersmodule.c.

(Contributed by Eric Snow in gh-104210, etc.)

2.4 PEP 669: Low impact monitoring for CPython

PEP 669 defines a new APT for profilers, debuggers, and other tools to monitor events in CPython. It covers a wide
range of events, including calls, returns, lines, exceptions, jumps, and more. This means that you only pay for what
you use, providing support for near-zero overhead debuggers and coverage tools. See sys.monitoring for details.

(Contributed by Mark Shannon in gh-103082.)

2.5 PEP 688: Making the buffer protocol accessible in Python

PEP 688 introduces a way to use the buffer protocol from Python code. Classes that implement the __buffer__ ()
method are now usable as buffer types.

The new collections.abc.Buffer ABC provides a standard way to represent buffer objects, for example in
type annotations. The new inspect.BufferFlags enum represents the flags that can be used to customize bufter
creation. (Contributed by Jelle Zijlstra in gh-102500.)

2.6 PEP 709: Comprehension inlining

Dictionary, list, and set comprehensions are now inlined, rather than creating a new single-use function object for
each execution of the comprehension. This speeds up execution of a comprehension by up to two times. See PEP
709 for further details.

Comprehension iteration variables remain isolated and don’t overwrite a variable of the same name in the outer scope,
nor are they visible after the comprehension. Inlining does result in a few visible behavior changes:

 There is no longer a separate frame for the comprehension in tracebacks, and tracing/profiling no longer shows
the comprehension as a function call.

e The symtable module will no longer produce child symbol tables for each comprehension; instead, the com-
prehension’s locals will be included in the parent function’s symbol table.

o Calling locals () inside a comprehension now includes variables from outside the comprehension, and no
longer includes the synthetic . 0 variable for the comprehension “argument”.

« A comprehension iterating directly over locals () (e.g. [k for k in locals ()])may see “RuntimeError:
dictionary changed size during iteration” when run under tracing (e.g. code coverage measurement). This is
the same behavior already seen ine.g. for k in locals () :. To avoid the error, first create a list of keys
to iterate over: keys = list (locals()); [k for k in keys].

https://peps.python.org/pep-0684/
https://peps.python.org/pep-0554/
https://github.com/python/cpython/tree/3.12/Modules/_xxsubinterpretersmodule.c
https://github.com/python/cpython/tree/3.12/Modules/_xxsubinterpretersmodule.c
https://github.com/python/cpython/issues/104210
https://peps.python.org/pep-0669/
https://github.com/python/cpython/issues/103082
https://peps.python.org/pep-0688/
https://github.com/python/cpython/issues/102500
https://peps.python.org/pep-0709/
https://peps.python.org/pep-0709/

(Contributed by Carl Meyer and Vladimir Matveev in PEP 709.)

2.7 Improved Error Messages

o Modules from the standard library are now potentially suggested as part of the error messages displayed by the
interpreter when a NameError is raised to the top level. (Contributed by Pablo Galindo in gh-98254.)

>>> sys.version_info
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'sys' is not defined. Did you forget to import 'sys'?

« Improve the error suggestion for NameError exceptions for instances. Now if a NameError is raised in a
method and the instance has an attribute that’s exactly equal to the name in the exception, the suggestion will
include self.<NAME> instead of the closest match in the method scope. (Contributed by Pablo Galindo in
gh-99139.)

p
>>> class A:

def _ init_ (self):
self.blech = 1

def foo(self):
somethin = blech

>>> A () .foo ()
Traceback (most recent call last):
File "<stdin>", line 1
somethin = blech

AAAAA

NameError: name 'blech' is not defined. Did you mean: 'self.blech'?

o Improve the SyntaxError error message when the user types import x from yinsteadof from y import
x. (Contributed by Pablo Galindo in gh-98931.)

>>> import a.y.z from b.y.z
Traceback (most recent call last):
File "<stdin>", line 1
import a.y.z from b.y.z

AAAAAAAAAAAAAAAAAAAAAAAN

SyntaxError: Did you mean to use 'from ... import ...' instead?

e ImportError exceptions raised from failed from <module> import <name> statements now include
suggestions for the value of <name> based on the available names in <module>. (Contributed by Pablo
Galindo in gh-91058.)

>>> from collections import chainmap
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: cannot import name 'chainmap' from 'collections'. Did you mean:
— 'ChainMap'?

3 New Features Related to Type Hints

This section covers major changes affecting type hints and the t yping module.

https://peps.python.org/pep-0709/
https://github.com/python/cpython/issues/98254
https://github.com/python/cpython/issues/99139
https://github.com/python/cpython/issues/98931
https://github.com/python/cpython/issues/91058
https://peps.python.org/pep-0484/

3.1 PEP 692: Using TypedDict for more precise **kwargs typing

Typing * *kwargs in a function signature as introduced by PEP 484 allowed for valid annotations only in cases where
all of the **kwargs were of the same type.

PEP 692 specifies a more precise way of typing **kwargs by relying on typed dictionaries:

from typing import TypedDict, Unpack
class Movie (TypedDict) :
name: str

year: int

def foo (**kwargs: Unpack[Movie]) :

See PEP 692 for more details.
(Contributed by Franek Magiera in gh-103629.)

3.2 PEP 698: Override Decorator for Static Typing

A new decorator typing.override () has been added to the t yping module. It indicates to type checkers that
the method is intended to override a method in a superclass. This allows type checkers to catch mistakes where a
method that is intended to override something in a base class does not in fact do so.

Example:

from typing import override

class Base:
def get_color(self) -> str:
return "blue"

class GoodChild (Base) :
Qoverride # ok: overrides Base.get_color
def get_color(self) —-> str:
return "yellow"

class BadChild (Base) :
Qoverride # type checker error: does not override Base.get_color
def get_colour(self) —-> str:
return "red"

See PEP 698 for more details.
(Contributed by Steven Troxler in gh-101561.)

4 Other Language Changes

o The parser now raises SyntaxError when parsing source code containing null bytes. (Contributed by Pablo
Galindo in gh-96670.)

o A backslash-character pair that is not a valid escape sequence now generates a SyntaxWarning, instead of
DeprecationWarning. For example, re.compile ("\d+\.\d+") now emits a SyntaxiWarning ("\d"
is an invalid escape sequence, use raw strings for regular expression: re.compile (r"\d+\.\d+")). Ina
future Python version, SyntaxError will eventually be raised, instead of SyntaxWarning. (Contributed by
Victor Stinner in gh-98401.)

o Octal escapes with value larger than 00377 (ex: "\477"), deprecated in Python 3.11, now produce a Syn-
taxWarning, instead of DeprecationWarning. In a future Python version they will be eventually a Syn—
taxError. (Contributed by Victor Stinner in gh-98401.)

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0692/
https://peps.python.org/pep-0692/
https://github.com/python/cpython/issues/103629
https://peps.python.org/pep-0698/
https://github.com/python/cpython/issues/101561
https://github.com/python/cpython/issues/96670
https://github.com/python/cpython/issues/98401
https://github.com/python/cpython/issues/98401

6

Variables used in the target part of comprehensions that are not stored to can now be used in assignment
expressions (:=). For example, in [(b := 1) for a, b.prop in some_iter], the assignment to b
is now allowed. Note that assigning to variables stored to in the target part of comprehensions (like a) is still
disallowed, as per PEP 572. (Contributed by Nikita Sobolev in gh-100581.)

Exceptions raised in a class or type’s __set_name__ method are no longer wrapped by a RuntimeError.
Context information is added to the exception as a PEP 678 note. (Contributed by Irit Katriel in gh-77757.)

When a try—-except* construct handles the entire ExceptionGroup and raises one other exception, that
exception is no longer wrapped in an ExceptionGroup. Also changed in version 3.11.4. (Contributed by Irit
Katriel in gh-103590.)

The Garbage Collector now runs only on the eval breaker mechanism of the Python bytecode evaluation loop
instead of object allocations. The GC can also run when PyErr_CheckSignals () is called so C extensions
that need to run for a long time without executing any Python code also have a chance to execute the GC
periodically. (Contributed by Pablo Galindo in gh-97922.)

All builtin and extension callables expecting boolean parameters now accept arguments of any type instead of
just bool and int. (Contributed by Serhiy Storchaka in gh-60203.)

memoryview now supports the half-float type (the “e” format code). (Contributed by Donghee Na and Antoine
Pitrou in gh-90751.)

slice objects are now hashable, allowing them to be used as dict keys and set items. (Contributed by Will
Bradshaw, Furkan Onder, and Raymond Hettinger in gh-101264.)

sum () now uses Neumaier summation to improve accuracy and commutativity when summing floats or mixed
ints and floats. (Contributed by Raymond Hettinger in gh-100425.)

ast.parse () now raises SyntaxError instead of ValueError when parsing source code containing null
bytes. (Contributed by Pablo Galindo in gh-96670.)

The extraction methods in tarfile, and shutil.unpack_archive (), have a new a filter argument that
allows limiting tar features than may be surprising or dangerous, such as creating files outside the destina-
tion directory. See tarfile extraction filters for details. In Python 3.14, the default will switch to 'data’.
(Contributed by Petr Viktorin in PEP 706.)

types.MappingProxyType instances are now hashable if the underlying mapping is hashable. (Contributed
by Serhiy Storchaka in gh-87995.)

Add support for the perf profiler through the new environment variable PYTHONPERFSUPPORT and
command-line option -X perf, as well as the new sys.activate_stack_trampoline (), sys.
deactivate_stack_trampoline (), and sys.is_stack_trampoline_active () functions. (Design
by Pablo Galindo. Contributed by Pablo Galindo and Christian Heimes with contributions from Gregory P.
Smith [Google] and Mark Shannon in gh-96123.)

New Modules

e None.

Improved Modules

6.1 array

e The array.array class now supports subscripting, making it a generic type. (Contributed by Jelle Zijlstra

in gh-98658.)

6.2 asyncio

o The performance of writing to sockets in asyncio has been significantly improved. asyncio now avoids

unnecessary copying when writing to sockets and uses sendmsg () if the platform supports it. (Contributed
by Kumar Aditya in gh-91166.)

10

https://peps.python.org/pep-0572/
https://github.com/python/cpython/issues/100581
https://peps.python.org/pep-0678/
https://github.com/python/cpython/issues/77757
https://github.com/python/cpython/issues/103590
https://github.com/python/cpython/issues/97922
https://github.com/python/cpython/issues/60203
https://github.com/python/cpython/issues/90751
https://github.com/python/cpython/issues/101264
https://github.com/python/cpython/issues/100425
https://github.com/python/cpython/issues/96670
https://peps.python.org/pep-0706/
https://github.com/python/cpython/issues/87995
https://github.com/python/cpython/issues/96123
https://github.com/python/cpython/issues/98658
https://github.com/python/cpython/issues/91166

e Add asyncio.eager_task_factory() and asyncio.create_eager_task_factory () functions to
allow opting an event loop in to eager task execution, making some use-cases 2x to 5x faster. (Contributed by
Jacob Bower & Itamar Oren in gh-102853, gh-104140, and gh-104138)

¢ OnLinux, asynciouses asyncio.PidfdChildWatcher bydefaultif os.pidfd_open () is available and
functional instead of asyncio.ThreadedChildWatcher. (Contributed by Kumar Aditya in gh-98024.)

o The event loop now uses the best available child watcher for each platform (asyncio.PidfdChildWatcher
if supported and asyncio.ThreadedChildWatcher otherwise), so manually configuring a child watcher
is not recommended. (Contributed by Kumar Aditya in gh-94597.)

o Add loop_factory parameter to asyncio. run () toallow specifying a custom event loop factory. (Contributed
by Kumar Aditya in gh-99388.)

o Add C implementation of asyncio.current_task () for 4x-6x speedup. (Contributed by Itamar Oren and
Pranav Thulasiram Bhat in gh-100344.)

e asyncio.iscoroutine () now returns False for generators as asyncio does not support legacy generator-
based coroutines. (Contributed by Kumar Aditya in gh-102748.)

e asyncio.wait () and asyncio.as_completed () now accepts generators yielding tasks. (Contributed by
Kumar Aditya in gh-78530.)

6.3 calendar

¢ Add enums calendar.Month and calendar.Day defining months of the year and days of the week. (Con-
tributed by Prince Roshan in gh-103636.)

6.4 csv

e Add csv.QUOTE_NOTNULL and csv.QUOTE_STRINGS flags to provide finer grained control of None and
empty strings by csv.writer objects.

6.5 dis

« Pseudo instruction opcodes (which are used by the compiler but do not appear in executable bytecode) are now
exposed in the dis module. HAVE_ARGUMENT is still relevant to real opcodes, but it is not useful for pseudo
instructions. Use the new dis.hasarg collection instead. (Contributed by Irit Katriel in gh-94216.)

o Add the dis.hasexc collection to signify instructions that set an exception handler. (Contributed by Irit
Katriel in gh-94216.)

6.6 fractions

Objects of type fractions.Fraction now support float-style formatting. (Contributed by Mark Dickinson
in gh-100161.)
6.7 importlib.resources

importlib.resources.as_£file () now supports resource directories. (Contributed by Jason R. Coombs
in gh-97930.)

Rename first parameter of importlib.resources.files () to anchor. (Contributed by Jason R. Coombs
in gh-100598.)

6.8 inspect

Add inspect.markcoroutinefunction () to mark sync functions that return a coroutine for use with
inspect.iscoroutinefunction (). (Contributed by Carlton Gibson in gh-99247.)

Add inspect.getasyncgenstate () and inspect .getasyncgenlocals () for determining the current
state of asynchronous generators. (Contributed by Thomas Krennwallner in gh-79940.)

11

https://github.com/python/cpython/issues/102853
https://github.com/python/cpython/issues/104140
https://github.com/python/cpython/issues/104138
https://github.com/python/cpython/issues/98024
https://github.com/python/cpython/issues/94597
https://github.com/python/cpython/issues/99388
https://github.com/python/cpython/issues/100344
https://github.com/python/cpython/issues/102748
https://github.com/python/cpython/issues/78530
https://github.com/python/cpython/issues/103636
https://github.com/python/cpython/issues/94216
https://github.com/python/cpython/issues/94216
https://github.com/python/cpython/issues/100161
https://github.com/python/cpython/issues/97930
https://github.com/python/cpython/issues/100598
https://github.com/python/cpython/issues/99247
https://github.com/python/cpython/issues/79940

The performance of inspect.getattr_static () has been considerably improved. Most calls to the func-
tion should be at least 2x faster than they were in Python 3.11. (Contributed by Alex Waygood in gh-103193.)

6.9 itertools

Add itertools.batched () for collecting into even-sized tuples where the last batch may be shorter than
the rest. (Contributed by Raymond Hettinger in gh-98363.)

6.10 math

Addmath. sumprod () for computing a sum of products. (Contributed by Raymond Hettinger in gh-100485.)

Extend math.nextafter () to include a steps argument for moving up or down multiple steps at a time.
(Contributed by Matthias Goergens, Mark Dickinson, and Raymond Hettinger in gh-94906.)

6.11 os

Add os.PIDFD_NONBLOCK to open a file descriptor for a process with os.pidfd_open () in non-blocking
mode. (Contributed by Kumar Aditya in gh-93312.)

os.DirEntry now includes an os.DirEntry.is_junction () method to check if the entry is a junction.
(Contributed by Charles Machalow in gh-99547.)

Add os.listdrives (), os.listvolumes () and os.listmounts () functions on Windows for enumer-
ating drives, volumes and mount points. (Contributed by Steve Dower in gh-102519.)

os.stat () and os.1lstat () are now more accurate on Windows. The st_birthtime field will now be
filled with the creation time of the file, and st_ctime is deprecated but still contains the creation time (but
in the future will return the last metadata change, for consistency with other platforms). st_dev may be up
to 64 bits and st_ino up to 128 bits depending on your file system, and st_rdev is always set to zero rather
than incorrect values. Both functions may be significantly faster on newer releases of Windows. (Contributed
by Steve Dower in gh-99726.)

Asof 3.12.4, os.mkdir () and os.makedirs () on Windows now support passing a mode value of 00700 to
apply access control to the new directory. This implicitly affects tempfile.mkdtemp () and is a mitigation for
CVE 2024-4030. Other values for mode continue to be ignored. (Contributed by Steve Dower in gh-118486.)

6.12 os.path

Add os.path.isjunction () to check if a given path is a junction. (Contributed by Charles Machalow in
¢h-99547.)

Add os.path.splitroot () tosplita path into a triad (drive, root, tail). (Contributed by Barney
Gale in gh-101000.)

6.13 pathlib

Add support for subclassing pathlib.PurePath and pathlib.Path, plus their Posix- and Windows-
specific variants. Subclasses may override the pathlib.PurePath.with_segments () method to pass
information between path instances.

Addpathlib.Path.walk () for walking the directory trees and generating all file or directory names within
them, similar to os.walk (). (Contributed by Stanislav Zmiev in gh-90385.)

Add walk_up optional parameter to pathlib.PurePath.relative_to () to allow the insertion of . . en-
tries in the result; this behavior is more consistent with os.path.relpath (). (Contributed by Domenico
Ragusa in gh-84538.)

Add pathlib.Path.is_junction () as a proxy to os.path.isjunction (). (Contributed by Charles
Machalow in gh-99547.)

Add case_sensitive optional parameter to pathlib.Path.glob(), pathlib.Path.rglob() and
pathlib.PurePath.match () for matching the path’s case sensitivity, allowing for more precise control
over the matching process.

12

https://github.com/python/cpython/issues/103193
https://github.com/python/cpython/issues/98363
https://github.com/python/cpython/issues/100485
https://github.com/python/cpython/issues/94906
https://github.com/python/cpython/issues/93312
https://github.com/python/cpython/issues/99547
https://github.com/python/cpython/issues/102519
https://github.com/python/cpython/issues/99726
https://www.cve.org/CVERecord?id=CVE-2024-4030
https://github.com/python/cpython/issues/118486
https://github.com/python/cpython/issues/99547
https://github.com/python/cpython/issues/101000
https://github.com/python/cpython/issues/90385
https://github.com/python/cpython/issues/84538
https://github.com/python/cpython/issues/99547

6.14 platform

o Add support for detecting Windows 11 and Windows Server releases past 2012. Previously, lookups on Win-
dows Server platforms newer than Windows Server 2012 and on Windows 11 would return Windows—10.
(Contributed by Steve Dower in gh-89545.)

6.15 pdb

« Add convenience variables to hold values temporarily for debug session and provide quick access to values like
the current frame or the return value. (Contributed by Tian Gao in gh-103693.)

6.16 random
e Add random.binomialvariate (). (Contributed by Raymond Hettinger in gh-81620.)

e Add a default of 1ambd=1.0 to random.expovariate (). (Contributed by Raymond Hettinger in gh-
100234.)

6.17 shutil

e shutil.make_archive () now passes the root_dir argument to custom archivers which support it. In this
case it no longer temporarily changes the current working directory of the process to root_dir to perform
archiving. (Contributed by Serhiy Storchaka in gh-74696.)

e shutil.rmtree () Nnow accepts a new argument onexc which is an error handler like onerror but which
expects an exception instance rather than a (typ, val, tb) triplet. onerror is deprecated. (Contributed by Irit
Katriel in gh-102828.)

e shutil.which () now consults the PATHEXT environment variable to find matches within PATH on Win-
dows even when the given cmd includes a directory component. (Contributed by Charles Machalow in gh-
103179.)

shutil.which () will call NeedCurrentDirectoryForExePathW when querying for executables on
Windows to determine if the current working directory should be prepended to the search path. (Contributed
by Charles Machalow in gh-103179.)

shutil.which () will return a path matching the cmd with a component from PATHEXT prior to a direct
match elsewhere in the search path on Windows. (Contributed by Charles Machalow in gh-103179.)

6.18 sqlite3
o Add a command-line interface. (Contributed by Erlend E. Aasland in gh-77617.)

e Addthe sglite3.Connection.autocommit attribute to sglite3.Connection and the autocommit pa-
rameter to sqlite3.connect () to control PEP 249-compliant transaction handling. (Contributed by Er-
lend E. Aasland in gh-83638.)

o Add entrypoint keyword-only parameter to sglite3.Connection.load_extension (), for overriding the
SQLite extension entry point. (Contributed by Erlend E. Aasland in gh-103015.)

e Add sglite3.Connection.getconfig() and sqglite3.Connection.setconfig() to sqlite3.
Connection to make configuration changes to a database connection. (Contributed by Erlend E. Aasland
in gh-103489.)

6.19 statistics

o Extend statistics.correlation () toinclude as a ranked method for computing the Spearman corre-
lation of ranked data. (Contributed by Raymond Hettinger in gh-95861.)

13

https://github.com/python/cpython/issues/89545
https://github.com/python/cpython/issues/103693
https://github.com/python/cpython/issues/81620
https://github.com/python/cpython/issues/100234
https://github.com/python/cpython/issues/100234
https://github.com/python/cpython/issues/74696
https://github.com/python/cpython/issues/102828
https://github.com/python/cpython/issues/103179
https://github.com/python/cpython/issues/103179
https://github.com/python/cpython/issues/103179
https://github.com/python/cpython/issues/103179
https://github.com/python/cpython/issues/77617
https://peps.python.org/pep-0249/
https://github.com/python/cpython/issues/83638
https://github.com/python/cpython/issues/103015
https://github.com/python/cpython/issues/103489
https://github.com/python/cpython/issues/95861

6.20 sys

e Add the sys.monitoring namespace to expose the new PEP 669 monitoring API. (Contributed by Mark
Shannon in gh-103082.)

e Add sys.activate_stack_trampoline () and sys.deactivate_stack_trampoline () for activat-
ing and deactivating stack profiler trampolines, and sys.is_stack_trampoline_active () for querying
if stack profiler trampolines are active. (Contributed by Pablo Galindo and Christian Heimes with contribu-
tions from Gregory P. Smith [Google] and Mark Shannon in gh-96123.)

e Add sys.last_exc which holds the last unhandled exception that was raised (for post-mortem debugging
use cases). Deprecate the three fields that have the same information in its legacy form: sys.last_type,
sys.last_value and sys.last_traceback. (Contributed by Irit Katriel in gh-102778.)

e sys._current_exceptions () now returns a mapping from thread-id to an exception instance, rather than
toa (typ, exc, tb) tuple. (Contributed by Irit Katriel in gh-103176.)

e sys.setrecursionlimit () and sys.getrecursionlimit (). The recursion limit now applies only to
Python code. Builtin functions do not use the recursion limit, but are protected by a different mechanism that
prevents recursion from causing a virtual machine crash.

6.21 tempfile

e The tempfile.NamedTemporaryFile function has a new optional parameter delete_on_close (Contributed
by Evgeny Zorin in gh-58451.)

e tempfile.mkdtemp () now always returns an absolute path, even if the argument provided to the dir param-
eter is a relative path.

e Asof 3.12.4 on Windows, the default mode 00700 used by tempfile.mkdtemp () now limits access to the
new directory due to changes to os.mkdir (). This is a mitigation for CVE 2024-4030. (Contributed by
Steve Dower in gh-118486.)

6.22 threading

e Add threading.settrace_all_threads () and threading.setprofile_all_threads () that al-
low to set tracing and profiling functions in all running threads in addition to the calling one. (Contributed by
Pablo Galindo in gh-93503.)

6.23 tkinter

e tkinter.Canvas.coords () now flattens its arguments. It now accepts not only coordinates as separate
arguments (x1, y1, x2, y2, ...)andasequence of coordinates ([x1, y1, x2, y2, ...]),butalso
coordinates grouped in pairs ((x1, y1), (x2, y2), ...and [(x1, yl), (x2, y2), ...1),like
create_x* () methods. (Contributed by Serhiy Storchaka in gh-94473.)

6.24 tokenize
o The tokenize module includes the changes introduced in PEP 701. (Contributed by Marta Gémez Macias
and Pablo Galindo in gh-102856.) See Porting to Python 3.12 for more information on the changes to the
tokenize module.

6.25 types

e Add types.get_original_bases () to allow for further introspection of user-defined-generics when sub-
classed. (Contributed by James Hilton-Balfe and Alex Waygood in gh-101827.)

14

https://github.com/python/cpython/issues/103082
https://github.com/python/cpython/issues/96123
https://github.com/python/cpython/issues/102778
https://github.com/python/cpython/issues/103176
https://github.com/python/cpython/issues/58451
https://www.cve.org/CVERecord?id=CVE-2024-4030
https://github.com/python/cpython/issues/118486
https://github.com/python/cpython/issues/93503
https://github.com/python/cpython/issues/94473
https://peps.python.org/pep-0701/
https://github.com/python/cpython/issues/102856
https://github.com/python/cpython/issues/101827

6.26 typing

e isinstance() checks against runtime-checkable protocols NOW USe inspect.
getattr_static() rather than hasattr() to lookup whether attributes exist. This means that
descriptors and __getattr__ () methods are no longer unexpectedly evaluated during isinstance ()

checks against runtime-checkable protocols. However, it may also mean that some objects which used to be
considered instances of a runtime-checkable protocol may no longer be considered instances of that protocol
on Python 3.12+, and vice versa. Most users are unlikely to be affected by this change. (Contributed by Alex
Waygood in gh-102433.)

o The members of a runtime-checkable protocol are now considered “frozen” at runtime as soon as the class has
been created. Monkey-patching attributes onto a runtime-checkable protocol will still work, but will have no
impact on isinstance () checks comparing objects to the protocol. For example:

>>> from typing import Protocol, runtime_checkable
>>> @runtime_checkable
class HasX (Protocol) :

x = 1

>>> class Foo:

>>> f = Foo()

>>> isinstance (f, HasX)

False

>> f.x =1

>>> isinstance (f, HasX)

True

>>> HasX.y = 2

>>> isinstance (f, HasX) # unchanged, even though HasX now also has a

"

y”k_.
—attribute

True

This change was made in order to speed up isinstance () checks against runtime-checkable protocols.

 The performance profile of isinstance () checks against runtime-checkable protocols has changed
significantly. Most isinstance () checks against protocols with only a few members should be at least 2x
faster than in 3.11, and some may be 20x faster or more. However, isinstance () checks against protocols
with many members may be slower than in Python 3.11. (Contributed by Alex Waygood in gh-74690 and
g¢h-103193.)

e All typing.TypedDict and typing.NamedTuple classes now have the _ orig_bases__ attribute.
(Contributed by Adrian Garcia Badaracco in gh-103699.)

e Add frozen_default parameter to typing.dataclass_transform(). (Contributed by Erik De Bonte
in gh-99957.)

6.27 unicodedata
o The Unicode database has been updated to version 15.0.0. (Contributed by Benjamin Peterson in gh-96734).

6.28 unittest

Add a ——durations command line option, showing the N slowest test cases:

python3 -m unittest —-—-durations=3 lib.tests.test_threading

1.210s test_timeout (Lib.test.test_threading.BarrierTests)
1.003s test_default_timeout (Lib.test.test_threading.BarrierTests)
(continues on next page)

15

https://github.com/python/cpython/issues/102433
https://github.com/python/cpython/issues/74690
https://github.com/python/cpython/issues/103193
https://github.com/python/cpython/issues/103699
https://github.com/python/cpython/issues/99957
https://github.com/python/cpython/issues/96734

(continued from previous page)
0.518s test_timeout (Lib.test.test_threading.EventTests)
(0.000 durations hidden. Use -v to show these durations.)

Ran 158 tests in 9.8609s

OK (skipped=3)

(Contributed by Giampaolo Rodola in gh-48330)

6.29 uuid
o Add a command-line interface. (Contributed by Adam Chhina in gh-88597.)

7 Optimizations
e Remove wstr and wstr_length members from Unicode objects. It reduces object size by 8 or 16 bytes on
64bit platform. (PEP 623) (Contributed by Inada Naoki in gh-92536.)

¢ Add experimental support for using the BOLT binary optimizer in the build process, which improves perfor-
mance by 1-5%. (Contributed by Kevin Modzelewski in gh-90536 and tuned by Donghee Na in gh-101525)

o Speed up the regular expression substitution (functions re.sub () and re.subn () and corresponding re.
Pattern methods) for replacement strings containing group references by 2-3 times. (Contributed by Serhiy
Storchaka in gh-91524.)

o Speed up asyncio.Task creation by deferring expensive string formatting. (Contributed by Itamar Oren in
gh-103793.)

e The tokenize.tokenize () and tokenize.generate_tokens () functions are up to 64% faster as a side
effect of the changes required to cover PEP 701 in the tokenize module. (Contributed by Marta Gémez
Macias and Pablo Galindo in gh-102856.)

« Speed up super () method calls and attribute loads via the new LOAD_SUPER_ATTR instruction. (Contributed
by Carl Meyer and Vladimir Matveev in gh-103497.)

8 CPython bytecode changes
« Remove the LoAD_METHOD instruction. It has been merged into LOAD_ATTR. LOAD_ATTR will now behave
like the old L.OAD_METHOD instruction if the low bit of its oparg is set. (Contributed by Ken Jin in gh-93429.)

» Remove the JuMP_IF_FALSE_OR_POP and JUMP_IF_TRUE_OR_POP instructions. (Contributed by Irit Ka-
triel in gh-102859.)

« Remove the PRECALL instruction. (Contributed by Mark Shannon in gh-92925.)

e Add the BINARY_SLICE and STORE_SLICE instructions. (Contributed by Mark Shannon in gh-94163.)
o Add the CALL_INTRINSIC_1 instructions. (Contributed by Mark Shannon in gh-99005.)

e Add the CALL_INTRINSIC_2 instruction. (Contributed by Irit Katriel in gh-101799.)

¢ Add the CLEANUP_THROW instruction. (Contributed by Brandt Bucher in gh-90997.)

o Add the END_SEND instruction. (Contributed by Mark Shannon in gh-103082.)

e Add the LOAD_FAST_AND_CLEAR instruction as part of the implementation of PEP 709. (Contributed by
Carl Meyer in gh-101441.)

e Add the LOAD_FAST_CHECK instruction. (Contributed by Dennis Sweeney in gh-93143.)

16

https://github.com/python/cpython/issues/48330
https://github.com/python/cpython/issues/88597
https://peps.python.org/pep-0623/
https://github.com/python/cpython/issues/92536
https://github.com/python/cpython/issues/90536
https://github.com/python/cpython/issues/101525
https://github.com/python/cpython/issues/91524
https://github.com/python/cpython/issues/103793
https://peps.python.org/pep-0701/
https://github.com/python/cpython/issues/102856
https://github.com/python/cpython/issues/103497
https://github.com/python/cpython/issues/93429
https://github.com/python/cpython/issues/102859
https://github.com/python/cpython/issues/92925
https://github.com/python/cpython/issues/94163
https://github.com/python/cpython/issues/99005
https://github.com/python/cpython/issues/101799
https://github.com/python/cpython/issues/90997
https://github.com/python/cpython/issues/103082
https://peps.python.org/pep-0709/
https://github.com/python/cpython/issues/101441
https://github.com/python/cpython/issues/93143

e Add the LOAD_FROM_DICT_OR_DEREF, LOAD_FROM DICT_OR_GLOBALS, and LOAD_LOCALS opcodes as
part of the implementation of PEP 695. Remove the LOAD_CLASSDEREF opcode, which can be replaced with
LOAD_LOCALS plus LOAD_FROM_DICT_OR_DEREF. (Contributed by Jelle Zijlstra in gh-103764.)

o Add the LOAD_SUPER_ATTR instruction. (Contributed by Carl Meyer and Vladimir Matveev in gh-103497.)

o Add the RETURN_CONST instruction. (Contributed by Wenyang Wang in gh-101632.)

9 Demos and Tools

» Remove the Tools/demo/ directory which contained old demo scripts. A copy can be found in the old-demos
project. (Contributed by Victor Stinner in gh-97681.)

« Remove outdated example scripts of the Tools/scripts/ directory. A copy can be found in the old-demos
project. (Contributed by Victor Stinner in gh-97669.)

10 Deprecated

e argparse: The type, choices, and metavar parameters of argparse.BooleanOptionalAction are dep-
recated and will be removed in 3.14. (Contributed by Nikita Sobolev in gh-92248.)

e ast:

The following ast features have been deprecated in documentation since Python 3.8, now cause a Dep—

recationWarning to be emitted at runtime when they are accessed or used, and will be removed in Python

3.14:

ast.Num

ast.Str
ast.Bytes
ast.NameConstant

ast.Ellipsis

Use ast .Constant instead. (Contributed by Serhiy Storchaka in gh-90953.)

e asyncio:

The child watcher classes asyncio.MultiLoopChildWatcher, asyncio.FastChildWatcher,
asyncio.AbstractChildWatcher and asyncio.SafeChildWatcher are deprecated and will be
removed in Python 3.14. (Contributed by Kumar Aditya in gh-94597.)

asyncio.set_child watcher (), asyncio.get_child_watcher (),
asyncio.AbstractEventLoopPolicy.set_child_watcher () and asyncio.
AbstractEventLoopPolicy.get_child watcher () are deprecated and will be removed in
Python 3.14. (Contributed by Kumar Aditya in gh-94597.)

The get_event_loop () method of the default event loop policy now emits a DeprecationWarning
if there is no current event loop set and it decides to create one. (Contributed by Serhiy Storchaka and
Guido van Rossum in gh-100160.)

e calendar: calendar.January and calendar.February constants are deprecated and replaced by
calendar.JANUARY and calendar.FEBRUARY. (Contributed by Prince Roshan in gh-103636.)

e collections.abc: Deprecated collections.abc.ByteString. Prefer Sequence or collections.

abc.

Buffer. For use in typing, prefer a union, like bytes | bytearray,orcollections.abc.Buffer.

(Contributed by Shantanu Jain in gh-91896.)

e datetime: datetime.datetime’s utcnow() and utcfromtimestamp () are deprecated and will be
removed in a future version. Instead, use timezone-aware objects to represent datetimes in UTC: respec-
tively, call now () and fromtimestamp () with the 7z parameter set to datetime.UTC. (Contributed by
Paul Ganssle in gh-103857.)

e email: Deprecate the isdst parameter in email.utils.localtime (). (Contributed by Alan Williams in
gh-72346.)

17

https://peps.python.org/pep-0695/
https://github.com/python/cpython/issues/103764
https://github.com/python/cpython/issues/103497
https://github.com/python/cpython/issues/101632
https://github.com/gvanrossum/old-demos
https://github.com/gvanrossum/old-demos
https://github.com/python/cpython/issues/97681
https://github.com/gvanrossum/old-demos
https://github.com/gvanrossum/old-demos
https://github.com/python/cpython/issues/97669
https://github.com/python/cpython/issues/92248
https://github.com/python/cpython/issues/90953
https://github.com/python/cpython/issues/94597
https://github.com/python/cpython/issues/94597
https://github.com/python/cpython/issues/100160
https://github.com/python/cpython/issues/103636
https://github.com/python/cpython/issues/91896
https://github.com/python/cpython/issues/103857
https://github.com/python/cpython/issues/72346

importlib.abc: Deprecated the following classes, scheduled for removal in Python 3.14:
— importlib.abc.ResourceReader
— importlib.abc.Traversable
— importlib.abc.TraversableResources
Use importlib.resources.abc classes instead:
— importlib.resources.abc.Traversable
— importlib.resources.abc.TraversableResources
(Contributed by Jason R. Coombs and Hugo van Kemenade in gh-93963.)

itertools: Deprecate the support for copy, deepcopy, and pickle operations, which is undocumented, inef-
ficient, historically buggy, and inconsistent. This will be removed in 3.14 for a significant reduction in code
volume and maintenance burden. (Contributed by Raymond Hettinger in gh-101588.)

multiprocessing: In Python 3.14, the default multiprocessing start method will change to a safer one
on Linux, BSDs, and other non-macOS POSIX platforms where ' fork' is currently the default (gh-84559).
Adding a runtime warning about this was deemed too disruptive as the majority of code is not expected to
care. Use the get_context () or set_start_method () APIs to explicitly specify when your code requires
'fork'. See contexts and start methods.

pkgutil: pkgutil.find_loader () and pkgutil.get_loader () are deprecated and will be removed
in Python 3.14; use import1lib.util.find_spec () instead. (Contributed by Nikita Sobolev in gh-97850.)

pty: The module has two undocumented master_open () and slave_open () functions that have been
deprecated since Python 2 but only gained a proper DeprecationWarning in 3.12. Remove them in 3.14.
(Contributed by Soumendra Ganguly and Gregory P. Smith in gh-85984.)

os:

- The st_ctime fields return by os.stat () and os.1lstat () on Windows are deprecated. In a future
release, they will contain the last metadata change time, consistent with other platforms. For now, they
still contain the creation time, which is also available in the new st_birthtime field. (Contributed by
Steve Dower in gh-99726.)

- On POSIX platforms, os.fork () can now raise a DeprecationWarning when it can detect being
called from a multithreaded process. There has always been a fundamental incompatibility with the
POSIX platform when doing so. Even if such code appeared to work. We added the warning to raise
awareness as issues encountered by code doing this are becoming more frequent. See the os. fork ()
documentation for more details along with this discussion on fork being incompatible with threads for
why we're now surfacing this longstanding platform compatibility problem to developers.

When this warning appears due to usage of multiprocessing or concurrent. futures the fix is to use
a different mult iprocessing start method such as "spawn" or "forkserver".

shutil: The onerror argument of shutil.rmtree () is deprecated; use onexc instead. (Contributed by Irit
Katriel in gh-102828.)

sglite3:

- default adapters and converters are now deprecated. Instead, use the sqlite3-adapter-converter-recipes
and tailor them to your needs. (Contributed by Erlend E. Aasland in gh-90016.)

- In execute (), DeprecationWarning is now emitted when named placeholders are used together
with parameters supplied as a sequence instead of as a dict. Starting from Python 3.14, using named
placeholders with parameters supplied as a sequence will raise a ProgrammingError. (Contributed by
Erlend E. Aasland in gh-101698.)

sys: The sys.last_type, sys.last_value and sys.last_traceback fields are deprecated. Use
sys.last_exc instead. (Contributed by Irit Katriel in gh-102778.)

tarfile: Extracting tar archives without specifying filter is deprecated until Python 3.14, when 'data’ filter
will become the default. See tarfile-extraction-filter for details.

18

https://github.com/python/cpython/issues/93963
https://github.com/python/cpython/issues/101588
https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/97850
https://github.com/python/cpython/issues/85984
https://github.com/python/cpython/issues/99726
https://discuss.python.org/t/concerns-regarding-deprecation-of-fork-with-alive-threads/33555
https://github.com/python/cpython/issues/102828
https://github.com/python/cpython/issues/90016
https://github.com/python/cpython/issues/101698
https://github.com/python/cpython/issues/102778

e typing

- typing.Hashable and typing.Sized, aliases for collections.abc.Hashable and
collections.abc.Sized respectively, are deprecated. (gh-94309.)

- typing.ByteString, deprecated since Python 3.9, now causes a DeprecationWarning to be emit-
ted when it is used. (Contributed by Alex Waygood in gh-91896.)

e xml.etree.ElementTree: The module now emits DeprecationWarning when testing the truth value
of an xml.etree.ElementTree.Element. Before, the Python implementation emitted FutureWarning,
and the C implementation emitted nothing. (Contributed by Jacob Walls in gh-83122.)

o The 3-arg signatures (type, value, traceback) of coroutine throw(), generator throw() and async
generator throw () are deprecated and may be removed in a future version of Python. Use the single-arg
versions of these functions instead. (Contributed by Ofey Chan in gh-89874.)

e DeprecationWarning is now raised when __package__ on a module differs from __spec__.parent
(previously it was ImportWarning). (Contributed by Brett Cannon in gh-65961.)

o Setting _ package__ or __cached__ on a module is deprecated, and will cease to be set or taken into
consideration by the import system in Python 3.14. (Contributed by Brett Cannon in gh-65961.)

» The bitwise inversion operator (~) on bool is deprecated. It will throw an error in Python 3.16. Use not for
logical negation of bools instead. In the rare case that you really need the bitwise inversion of the underlying
int, convert to int explicitly: ~int (x). (Contributed by Tim Hoffmann in gh-103487.)

» Accessing co_lnotab on code objects was deprecated in Python 3.10 via PEP 626, but it only got a proper
DeprecationWarning in 3.12. May be removed in 3.15. (Contributed by Nikita Sobolev in gh-101866.)

10.1 Pending Removal in Python 3.13
Modules (see PEP 594):

e aifc

e audioop

e cgi

e cgitb

e chunk

e crypt

e imghdr

e mailcap

e msilib

e nis

e nntplib

e ossaudiodev

e pipes

e sndhdr

e spwd

e sunau

e telnetlib

e uu

e xdrlib

Other modules:

19

https://github.com/python/cpython/issues/94309
https://github.com/python/cpython/issues/91896
https://github.com/python/cpython/issues/83122
https://github.com/python/cpython/issues/89874
https://github.com/python/cpython/issues/65961
https://github.com/python/cpython/issues/65961
https://github.com/python/cpython/issues/103487
https://peps.python.org/pep-0626/
https://github.com/python/cpython/issues/101866
https://peps.python.org/pep-0594/

APIs:

1ib2to3, and the 2to3 program (gh-84540)

configparser.LegacyInterpolation (gh-90765)
locale.resetlocale () (gh-90817)
turtle.RawTurtle.settiltangle () (gh-50096)
unittest.findTestCases () (gh-50096)
unittest.getTestCaseNames () (gh-50096)
unittest.makeSuite () (gh-50096)
unittest.TestProgram.usageExit () (gh-67048)
webbrowser.MacOSX (gh-86421)
classmethod descriptor chaining (gh-89519)
importlib.resources deprecated methods:

— contents ()

- is_resource ()

— open_binary ()

- open_text ()

- path ()

- read_binary ()

— read_text ()

Use importlib.resources.files () instead. Refer to importlib-resources: Migrating from Legacy (gh-

106531)

10.2 Pending Removal in Python 3.14

e argparse: The type, choices, and metavar parameters of argparse.BooleanOptionalAction are dep-
recated and will be removed in 3.14. (Contributed by Nikita Sobolev in gh-92248.)

o ast: The following features have been deprecated in documentation since Python 3.8, now cause a Depre-
cationWarning to be emitted at runtime when they are accessed or used, and will be removed in Python

3.14:
— ast.Num
- ast.Str
— ast.Bytes
— ast.NameConstant

- ast.Ellipsis

Use ast.Constant instead. (Contributed by Serhiy Storchaka in gh-90953.)

asyncio:

— The child watcher classes MultiLoopChildWatcher, FastChildWatcher, AbstractChild-
Watcher and SafeChildwatcher are deprecated and will be removed in Python 3.14. (Contributed

by Kumar Aditya in gh-94597.)

— asyncio.set_child_watcher (),

asyncio.get_child_watcher (),

asyncio.AbstractEventLoopPolicy.set_child_watcher () and asyncio.
AbstractEventLoopPolicy.get_child_watcher () are deprecated and will be removed in

Python 3.14. (Contributed by Kumar Aditya in gh-94597.)

20

https://github.com/python/cpython/issues/84540
https://github.com/python/cpython/issues/90765
https://github.com/python/cpython/issues/90817
https://github.com/python/cpython/issues/50096
https://github.com/python/cpython/issues/50096
https://github.com/python/cpython/issues/50096
https://github.com/python/cpython/issues/50096
https://github.com/python/cpython/issues/67048
https://github.com/python/cpython/issues/86421
https://github.com/python/cpython/issues/89519
https://importlib-resources.readthedocs.io/en/latest/using.html#migrating-from-legacy
https://github.com/python/cpython/issues/106531
https://github.com/python/cpython/issues/106531
https://github.com/python/cpython/issues/92248
https://github.com/python/cpython/issues/90953
https://github.com/python/cpython/issues/94597
https://github.com/python/cpython/issues/94597

— The get_event_loop () method of the default event loop policy now emits a DeprecationWarning
if there is no current event loop set and it decides to create one. (Contributed by Serhiy Storchaka and
Guido van Rossum in gh-100160.)

e collections.abc: Deprecated ByteString. Prefer Sequence or Buffer. For use in typing, prefer
a union, like bytes | bytearray, or collections.abc.Buffer. (Contributed by Shantanu Jain in
¢h-91896.)

e email: Deprecated the isdst parameter in email.utils.localtime (). (Contributed by Alan Williams in
gh-72346.)

e importlib: _ package__and _ cached__ will cease to be set or taken into consideration by the import
system (gh-97879).

e importlib.abc deprecated classes:
— importlib.abc.ResourceReader
— importlib.abc.Traversable
— importlib.abc.TraversableResources
Use importlib.resources.abc classes instead:
— importlib.resources.abc.Traversable
— importlib.resources.abc.TraversableResources
(Contributed by Jason R. Coombs and Hugo van Kemenade in gh-93963.)

e itertools had undocumented, inefficient, historically buggy, and inconsistent support for copy, deepcopy,
and pickle operations. This will be removed in 3.14 for a significant reduction in code volume and maintenance
burden. (Contributed by Raymond Hettinger in gh-101588.)

e multiprocessing: The default start method will change to a safer one on Linux, BSDs, and other non-
macOS POSIX platforms where ' fork' is currently the default (gh-84559). Adding a runtime warning about
this was deemed too disruptive as the majority of code is not expected to care. Use the get_context () or
set_start_method () APIs to explicitly specify when your code requires ' fork'. See multiprocessing-
start-methods.

e pathlib: is_relative_to() and relative_to (): passing additional arguments is deprecated.

e pkgutil: find_loader () and get_loader () now raise DeprecationWarning; use importlib.
util.find_spec () instead. (Contributed by Nikita Sobolev in gh-97850.)

e pty:
— master_open(): Use pty.openpty ().
— slave_open(): use pty.openpty ().
e sglite3:
— version and version_info.

- execute () and executemany () if named placeholders are used and parameters is a sequence instead
of adict.

e typing: ByteString, deprecated since Python 3.9, now causes a DeprecationWarning to be emitted
when it is used.

e urllib: urllib.parse.Quoter is deprecated: it was not intended to be a public API. (Contributed by
Gregory P. Smith in gh-88168.)
10.3 Pending Removal in Python 3.15

e http.server.CGIHTTPRequestHandler will be removed along with its related ——cgi flag to python
-m http.server. It was obsolete and rarely used. No direct replacement exists. Anything is better than CGI
to interface a web server with a request handler.

21

https://github.com/python/cpython/issues/100160
https://github.com/python/cpython/issues/91896
https://github.com/python/cpython/issues/72346
https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/93963
https://github.com/python/cpython/issues/101588
https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/97850
https://github.com/python/cpython/issues/88168

e importlib:
— load_module () method: use exec_module () instead.

e locale: locale.getdefaultlocale () wasdeprecated in Python 3.11 and originally planned for removal
in Python 3.13 (gh-90817), but removal has been postponed to Python 3.15. Use locale.setlocale(),
locale.getencoding () and locale.getlocale () instead. (Contributed by Hugo van Kemenade in
¢h-111187.)

e pathlib: pathlib.PurePath.is_reserved () is deprecated and scheduled for removal in Python 3.15.
From Python 3.13 onwards, use os.path.isreserved to detect reserved paths on Windows.

e platform: java_ver () is deprecated and will be removed in 3.15. It was largely untested, had a confusing
API, and was only useful for Jython support. (Contributed by Nikita Sobolev in gh-116349.)

e sysconfig:

— The check_home argument of sysconfig.is_python_build() has been deprecated since Python
3.12.

e threading: Passing any arguments to threading.RLock () is now deprecated. C version allows any num-
bers of args and kwargs, but they are just ignored. Python version does not allow any arguments. All arguments
will be removed from threading.RLock () in Python 3.15. (Contributed by Nikita Sobolev in gh-102029.)

e typing.NamedTuple:

- The undocumented keyword argument syntax for creating NamedTuple classes (NT =
NamedTuple ("NT", x=int)) is deprecated, and will be disallowed in 3.15. Use the class-based
syntax or the functional syntax instead.

e types:

- types.CodeType: Accessing co_lnotab was deprecated in PEP 626 since 3.10 and was planned to
be removed in 3.12, but it only got a proper DeprecationWarning in 3.12. May be removed in 3.15.
(Contributed by Nikita Sobolev in gh-101866.)

e typing:

- When using the functional syntax to create a NamedTuple class, failing to pass a value to the fields
parameter (NT = NamedTuple ("NT")) is deprecated. Passing None to the fields parameter (NT =
NamedTuple ("NT", None)) is also deprecated. Both will be disallowed in Python 3.15. To create a
NamedTuple class with O fields, use class NT (NamedTuple) : pass OrNT = NamedTuple ("NT",
.

e typing.TypedDict: When using the functional syntax to create a TypedDict class, failing to pass a value
to the fields parameter (ID = TypedDict ("TD")) is deprecated. Passing None to the fields parameter (TD
= TypedDict ("ID", None)) is also deprecated. Both will be disallowed in Python 3.15. To create a
TypedDict class with O fields, use class TD (TypedDict): passor TD = TypedDict ("TD", {}).

o wave: Deprecate the getmark (), setmark () and getmarkers () methods of the wave.Wave_read and
wave.Wave_write classes. They will be removed in Python 3.15. (Contributed by Victor Stinner in gh-
105096.)

10.4 Pending Removal in Python 3.16

» The import system:

- Setting _loader__ on a module while failing to set __spec__.loader is deprecated. In Python
3.16, _ loader__ will cease to be set or taken into consideration by the import system or the standard
library.

e array: array.array 'u' type (wchar_t): use the 'w' type instead (Py_UCS4).
e builtins: ~bool, bitwise inversion on bool.

e symtable: Deprecate symtable.Class.get_methods () due to the lack of interest. (Contributed by
Bénédikt Tran in gh-119698.)

22

https://github.com/python/cpython/issues/90817
https://github.com/python/cpython/issues/111187
https://github.com/python/cpython/issues/116349
https://github.com/python/cpython/issues/102029
https://peps.python.org/pep-0626/
https://github.com/python/cpython/issues/101866
https://github.com/python/cpython/issues/105096
https://github.com/python/cpython/issues/105096
https://github.com/python/cpython/issues/119698

10.5 Pending Removal in Future Versions
The following APIs will be removed in the future, although there is currently no date scheduled for their removal.
e argparse: Nesting argument groups and nesting mutually exclusive groups are deprecated.
e array’s 'u' format code (gh-57281)
e builtins:
- bool (NotImplemented).

- Generators: throw (type, exc, tb) and athrow (type, exc, tb) signature is deprecated: use
throw (exc) and athrow (exc) instead, the single argument signature.

- Currently Python accepts numeric literals immediately followed by keywords, for example 0in x, 1or
x, 0if lelse 2. Itallows confusing and ambiguous expressions like [0x1for x in y] (which can
be interpreted as [0x1 for x in y] or [0x1f or x in y]). A syntax warning is raised if the
numeric literal is immediately followed by one of keywords and, else, for, if, in, is and or. Ina
future release it will be changed to a syntax error. (gh-87999)

— Support for __index__ () and __int__ () method returning non-int type: these methods will be re-
quired to return an instance of a strict subclass of int.

- Support for ___float__ () method returning a strict subclass of £1loat: these methods will be required
to return an instance of float.

— Support for __complex__ () method returning a strict subclass of complex: these methods will be
required to return an instance of complex.

- Delegation of int () to __trunc__ () method.

- Passing a complex number as the real or imag argument in the complex () constructor is now deprecated;
it should only be passed as a single positional argument. (Contributed by Serhiy Storchaka in gh-109218.)

e calendar: calendar.January and calendar.February constants are deprecated and replaced by
calendar.JANUARY and calendar.FEBRUARY. (Contributed by Prince Roshan in gh-103636.)

e codeobject.co_lnotab: use the codeobject.co_lines () method instead.
e datetime:
— utcnow (): use datetime.datetime.now (tz=datetime.UTC).

- utcfromtimestamp (): use datetime.datetime.fromtimestamp (timestamp,
tz=datetime.UTC).

e gettext: Plural value must be an integer.
e importlib:

- cache_from_source () debug_override parameter is deprecated: use the optimization parameter in-
stead.

e importlib.metadata:
- EntryPoints tuple interface.
- Implicit None on return values.
e mailbox: Use of StringlO input and text mode is deprecated, use BytesIO and binary mode instead.
e os: Calling os.register_at_fork () in multi-threaded process.
e pydoc.ErrorDuringImport: A tuple value for exc_info parameter is deprecated, use an exception instance.

e re: More strict rules are now applied for numerical group references and group names in regular expressions.
Only sequence of ASCII digits is now accepted as a numerical reference. The group name in bytes patterns
and replacement strings can now only contain ASCII letters and digits and underscore. (Contributed by Serhiy
Storchaka in gh-91760.)

e sre_compile, sre_constants and sre_parse modules.

23

https://github.com/python/cpython/issues/57281
https://github.com/python/cpython/issues/87999
https://github.com/python/cpython/issues/109218
https://github.com/python/cpython/issues/103636
https://github.com/python/cpython/issues/91760

e shutil: rmtree ()’s onerror parameter is deprecated in Python 3.12; use the onexc parameter instead.

e ssl options and protocols:

ssl.SSLContext without protocol argument is deprecated.

ssl.SSLContext:set_npn_protocols()andselected_npn_protocol()aﬁ:dqﬂeaﬂed:use
ALPN instead.

ssl.0P_NO_SSL* options
ss1.0P_NO_TLS* options
ss1.PROTOCOL_SSLv3
ss1.PROTOCOL_TLS
ss1.PROTOCOL_TLSv1
ssl.PROTOCOL_TLSv1_ 1
ss1.PROTOCOL_TLSv1_2
ssl.TLSVersion.SSLv3
ssl.TLSVersion.TLSv1

ssl.TLSVersion.TLSv1 1

e threading methods:

threading.Condition.notifyAll ():use notify_all().
threading.Event.isSet (): use is_set ().

threading.Thread.isDaemon (), threading.Thread.setDaemon(): use threading.
Thread.daemon attribute.

threading.Thread.getName (), threading.Thread.setName (): use threading.Thread.
name attribute.

threading.currentThread(): use threading.current_thread().

threading.activeCount (): use threading.active_count ().

e typing.Text (gh-92332).

e unittest.IsolatedAsyncioTestCase: it is deprecated to return a value that is not None from a test

case.

e urllib.parse deprecated functions: urlparse () instead

splitattr()
splithost ()
splitnport ()
splitpasswd ()
splitport ()
splitquery ()
splittag()
splittype ()
splituser ()
splitvalue ()

to_bytes ()

e urllib.request: URLopener and FancyURLopener style of invoking requests is deprecated. Use newer
urlopen () functions and methods.

24

https://github.com/python/cpython/issues/92332

e wsgiref: SimpleHandler.stdout.write () should not do partial writes.

e xml.etree.ElementTree: Testing the truth value of an Element is deprecated. In a future release it will
always return True. Prefer explicit 1en (elem) or elem is not None tests instead.

e zipimport.zipimporter.load_module () is deprecated: use exec_module () instead.

11 Removed

11.1 asynchat and asyncore

o These two modules have been removed according to the schedule in PEP 594, having been deprecated in
Python 3.6. Use asyncio instead. (Contributed by Nikita Sobolev in gh-96580.)

11.2 configparser
o Several names deprecated in the configparser way back in 3.2 have been removed per gh-89336:

- configparser.ParsingError no longer has a filename attribute or argument. Use the source
attribute and argument instead.

- configparser no longer has a SafeConfigParser class. Use the shorter ConfigParser name
instead.

- configparser.ConfigParser no longer has a readfp method. Use read_file () instead.

11.3 distutils

« Remove the distutils package. It was deprecated in Python 3.10 by PEP 632 “Deprecate distutils module”.
For projects still using distutils and cannot be updated to something else, the setuptools project can be
installed: it still provides distutils. (Contributed by Victor Stinner in gh-92584.)

11.4 ensurepip

« Remove the bundled setuptools wheel from ensurepip, and stop installing setuptools in environments created
by venv.

pip (>= 22.1) does not require setuptools to be installed in the environment. setuptools-based (and
distutils-based) packages can still be used with pip install, since pip will provide setuptools in the
build environment it uses for building a package.

easy_install, pkg_resources, setuptools and distutils are no longer provided by default in en-
vironments created with venv or bootstrapped with ensurepip, since they are part of the setuptools
package. For projects relying on these at runtime, the setuptools project should be declared as a depen-
dency and installed separately (typically, using pip).

(Contributed by Pradyun Gedam in gh-95299.)

11.5 enum

¢ Remove enum’s EnumMeta.__getattr
by Ethan Furman in gh-95083.)

, which is no longer needed for enum attribute access. (Contributed

11.6 ftplib

e Remove ftplib’s FTP_TLS.ssl_version class attribute: use the confext parameter instead. (Contributed
by Victor Stinner in gh-94172.)

25

https://peps.python.org/pep-0594/
https://github.com/python/cpython/issues/96580
https://github.com/python/cpython/issues/89336
https://peps.python.org/pep-0632/
https://github.com/python/cpython/issues/92584
https://github.com/python/cpython/issues/95299
https://github.com/python/cpython/issues/95083
https://github.com/python/cpython/issues/94172

11.7 gzip

e Remove the filename attribute of gzip’s gzip.GzipFile, deprecated since Python 2.6, use the name
attribute instead. In write mode, the f£ilename attribute added '.gz' file extension if it was not present.
(Contributed by Victor Stinner in gh-94196.)

11.8 hashlib

« Remove the pure Python implementation of hashlib’s hashlib.pbkdf2_hmac (), deprecated in Python
3.10. Python 3.10 and newer requires OpenSSL 1.1.1 (PEP 644): this OpenSSL version provides a C imple-
mentation of pbkdf2_hmac () which is faster. (Contributed by Victor Stinner in gh-94199.)

11.9 importlib

» Many previously deprecated cleanups in import1ib have now been completed:

- References to, and support for module_repr () has been removed. (Contributed by Barry Warsaw in
gh-97850.)

- importlib.util.set_package, importlib.util.set_loader and importlib.util.
module_for_loader have all been removed. (Contributed by Brett Cannon and Nikita Sobolev in
¢h-65961 and gh-97850.)

— Support for £ind_loader () and £ind_module () APIs have been removed. (Contributed by Barry
Warsaw in gh-98040.)

- importlib.abc.Finder,pkgutil.ImpImporter,and pkgutil.ImpLoader have been removed.
(Contributed by Barry Warsaw in gh-98040.)

11.10 imp
o The imp module has been removed. (Contributed by Barry Warsaw in gh-98040.)

To migrate, consult the following correspondence table:

imp importlib

imp. Insert None into sys.path_importer_cache

NullImporter

imp. importlib.util.cache_from_source ()

cache_from_s

imp. importlib.util.find spec|()

find_module (

imp. importlib.util .MAGIC_NUMBER

get_magic ()

imp. importlib.machinery.SOURCE_SUFFIXES, importlib.

get_suffixes machinery.EXTENSION_SUFFIXES, and importlib.machinery.
BYTECODE_SUFFIXES

imp. sys.implementation.cache_tag
get_tag()

imp. importlib.import_module ()
load_module (

imp. types.ModuleType (name)
new_module (n

imp. importlib.reload()

reload ()

imp. importlib.util.source_from_cache ()

source_from_
imp. See below
load_source (

26

https://github.com/python/cpython/issues/94196
https://peps.python.org/pep-0644/
https://github.com/python/cpython/issues/94199
https://github.com/python/cpython/issues/97850
https://github.com/python/cpython/issues/65961
https://github.com/python/cpython/issues/97850
https://github.com/python/cpython/issues/98040
https://github.com/python/cpython/issues/98040
https://github.com/python/cpython/issues/98040

Replace imp.load_source () with:

import importlib.util
import importlib.machinery

def load_source (modname, filename) :

loader = importlib.machinery.SourceFilelLoader (modname, filename)

spec = importlib.util.spec_from file_location (modname, filename, ..
—loader=loader)

module = importlib.util.module_from_ spec (spec)

The module is always executed and not cached in sys.modules.

Uncomment the following line to cache the module.

sys.modules[module.__name__] = module

loader.exec_module (module)

return module

L

« Remove imp functions and attributes with no replacements:
- Undocumented functions:
* imp.init_builtin()
* imp.load_compiled()
* imp.load_dynamic ()
* imp.load_package ()

— imp.lock_held(), imp.acquire_lock(), imp.release_lock(): the kwkhg scheme has
changed in Python 3.3 to per-module locks.

— imp.find_module () constants: SEARCH_ERROR, PY_SOURCE, PY_COMPILED, C_EXTENSION,
PY_RESOURCE, PKG_DIRECTORY, C_BUILTIN, PY_FROZEN, PY _CODERESOURCE, IMP_HOOK

11.11 io

e Remove io’s io.OpenWrapper and _pyio.OpenWrapper, deprecated in Python 3.10: just use open ()
instead. The open () (1io.open ()) function is a built-in function. Since Python 3.10, _pyio.open () isalso
a static method. (Contributed by Victor Stinner in gh-94169.)

11.12 locale

» Remove locale’slocale. format () function, deprecated in Python 3.7: use locale. format_string ()
instead. (Contributed by Victor Stinner in gh-94226.)

11.13 smtpd

o The smtpd module has been removed according to the schedule in PEP 594, having been deprecated in Python
3.4.7 and 3.5.4. Use the aiosmtpd PyPI module or any other asyncio-based server instead. (Contributed by
Oleg Iarygin in gh-93243.)

11.14 sqlite3

« The following undocumented sqlite3 features, deprecated in Python 3.10, are now removed:
— sglite3.enable_shared_cache()
- sglite3.0ptimizedUnicode
If a shared cache must be used, open the database in URI mode using the cache=shared query parameter.

The sqlite3.0OptimizedUnicode text factory has been an alias for st r since Python 3.3. Code that pre-
viously set the text factory to OptimizedUnicode can either use str explicitly, or rely on the default value
which is also str.

27

https://github.com/python/cpython/issues/94169
https://github.com/python/cpython/issues/94226
https://peps.python.org/pep-0594/
https://pypi.org/project/aiosmtpd/
https://github.com/python/cpython/issues/93243

(Contributed by Erlend E. Aasland in gh-92548.)

11.15 ssl

e Remove ss1’s ss1.RAND_pseudo_bytes () function, deprecated in Python 3.6: use os.urandom() or
ss1.RAND_bytes () instead. (Contributed by Victor Stinner in gh-94199.)

« Remove the ss1.match_hostname () function. It was deprecated in Python 3.7. OpenSSL performs host-
name matching since Python 3.7, Python no longer uses the ss1.match_hostname () function. (Contributed
by Victor Stinner in gh-94199.)

o Remove the ss1.wrap_socket () function, deprecated in Python 3.7: instead, create a ss1.SSLContext
object and call its ssl.SSLContext.wrap_socket method. Any package that still uses ssl.
wrap_socket () is broken and insecure. The function neither sends a SNI TLS extension nor validates the
server hostname. Code is subject to CWE 295 (Improper Certificate Validation). (Contributed by Victor
Stinner in gh-94199.)

11.16 unittest

» Remove many long-deprecated unittest features:

— A number of TestCase method aliases:

Deprecated alias

Method Name

Deprecated in

failUnless assertTrue () 3.1
failIf assertFalse () 3.1
failUnlessEqual assertEqual () 3.1
failIfEqual assertNotEqual () 3.1
failUnlessAlmostEqual assertAlmostEqual () 3.1
failIfAlmostEqual assertNotAlmostEqual () 3.1
failUnlessRaises assertRaises () 3.1
assert_ assertTrue () 3.2
assertEquals assertEqual () 3.2
assertNotEquals assertNotEqual () 3.2
assertAlmostEquals assertAlmostEqual () 3.2
assertNotAlmostEquals assertNotAlmostEqual () 3.2
assertRegexpMatches assertRegex () 3.2
assertRaisesRegexp assertRaisesRegex () 3.2
assertNotRegexpMatches assertNotRegex () 3.5

You can use https://github.com/isidentical/teyit to automatically modernise your unit tests.

- Undocumented and broken TestCase method assertDictContainsSubset (deprecated in Python

3.2).

- Undocumented TestLoader.loadTestsFromModule parameter use_load_tests (deprecated and ig-

nored since Python 3.5).

- An alias of the TextTestResult class: _TextTestResult (deprecated in Python 3.2).

(Contributed by Serhiy Storchaka in gh-89325.)

11.17 webbrowser

» Remove support for obsolete browsers from webbrowser. The removed browsers include: Grail, Mosaic,

Netscape, Galeon, Skipstone, Iceape, Firebird, and Firefox versions 35 and below (gh-102871).

28

https://github.com/python/cpython/issues/92548
https://github.com/python/cpython/issues/94199
https://github.com/python/cpython/issues/94199
https://cwe.mitre.org/data/definitions/295.html
https://github.com/python/cpython/issues/94199
https://github.com/isidentical/teyit
https://github.com/python/cpython/issues/89325
https://github.com/python/cpython/issues/102871

11.18 xml.etree.ElementTree

Remove the ElementTree.Element.copy () method of the pure Python implementation, deprecated in
Python 3.10, use the copy . copy () function instead. The C implementation of xml.etree.ElementTree
has no copy () method, onlya ___copy__ () method. (Contributed by Victor Stinner in gh-94383.)

11.19 zipimport

Remove zipimport’s find_loader () and find_module () methods, deprecated in Python 3.10: use the
find_spec () method instead. See PEP 451 for the rationale. (Contributed by Victor Stinner in gh-94379.)

11.20 Others

Remove the suspicious rule from the documentation Makefile and Doc/tools/rstlint.py, both in
favor of sphinx-lint. (Contributed by Julien Palard in gh-98179.)

Remove the keyfile and certfile parameters from the ftplib, imaplib, poplib and smtplib modules, and
the key_file, cert_file and check_hostname parameters from the http.client module, all deprecated since
Python 3.6. Use the context parameter (ssl_context in imaplib) instead. (Contributed by Victor Stinner in
gh-94172.)

Remove Jython compatibility hacks from several stdlib modules and tests. (Contributed by Nikita Sobolev
in gh-99482.)

Remove _use_broken_old_ctypes_structure_semantics_ flag from ctypes module. (Contributed
by Nikita Sobolev in gh-99285.)

12 Porting to Python 3.12

This section lists previously described changes and other bugfixes that may require changes to your code.

12.1 Changes in the Python API

More strict rules are now applied for numerical group references and group names in regular expressions. Only
sequence of ASCII digits is now accepted as a numerical reference. The group name in bytes patterns and
replacement strings can now only contain ASCII letters and digits and underscore. (Contributed by Serhiy
Storchaka in gh-91760.)

Remove randrange () functionality deprecated since Python 3.10. Formerly, randrange (10.0) losslessly
converted to randrange (10). Now, it raises a TypeError. Also, the exception raised for non-integer
values such as randrange (10.5) or randrange ('10"') has been changed from ValueError to Type-
Error. This also prevents bugs where randrange (1e25) would silently select from a larger range than
randrange (10**25) . (Originally suggested by Serhiy Storchaka gh-86388.)

argparse.ArgumentParser changed encoding and error handler for reading arguments from
file (e.g fromfile prefix chars option) from default text encoding (e.g. locale.
getpreferredencoding (False)) to filesystem encoding and error handler. Argument files should
be encoded in UTF-8 instead of ANSI Codepage on Windows.

Remove the asyncore-based smt pd module deprecated in Python 3.4.7 and 3.5.4. A recommended replace-
ment is the asyncio-based aiosmtpd PyPI module.

shlex.split (): Passing None for s argument now raises an exception, rather than reading sys.stdin.
The feature was deprecated in Python 3.9. (Contributed by Victor Stinner in gh-94352.)

The os module no longer accepts bytes-like paths, like bytearray and memoryview types: only the exact
bytes type is accepted for bytes strings. (Contributed by Victor Stinner in gh-98393.)

syslog.openlog () and syslog.closelog () now fail if used in subinterpreters. syslog.syslog ()
may still be used in subinterpreters, but now only if syslog.openlog () has already been called in the main
interpreter. These new restrictions do not apply to the main interpreter, so only a very small set of users
might be affected. This change helps with interpreter isolation. Furthermore, syslog is a wrapper around

29

https://github.com/python/cpython/issues/94383
https://peps.python.org/pep-0451/
https://github.com/python/cpython/issues/94379
https://github.com/sphinx-contrib/sphinx-lint
https://github.com/python/cpython/issues/98179
https://github.com/python/cpython/issues/94172
https://github.com/python/cpython/issues/99482
https://github.com/python/cpython/issues/99285
https://github.com/python/cpython/issues/91760
https://github.com/python/cpython/issues/86388
https://pypi.org/project/aiosmtpd/
https://github.com/python/cpython/issues/94352
https://github.com/python/cpython/issues/98393

process-global resources, which are best managed from the main interpreter. (Contributed by Donghee Na in
¢h-99127.)

o The undocumented locking behavior of cached_property () is removed, because it locked across all in-
stances of the class, leading to high lock contention. This means that a cached property getter function could
now run more than once for a single instance, if two threads race. For most simple cached properties (e.g.
those that are idempotent and simply calculate a value based on other attributes of the instance) this will be
fine. If synchronization is needed, implement locking within the cached property getter function or around
multi-threaded access points.

e sys._current_exceptions () now returns a mapping from thread-id to an exception instance, rather than
toa (typ, exc, tb) tuple. (Contributed by Irit Katriel in gh-103176.)

o When extracting tar files using tarfile or shutil.unpack_archive (), pass the filter argument to limit
features that may be surprising or dangerous. See tarfile-extraction-filter for details.

o The output of the tokenize.tokenize () and tokenize.generate_tokens () functions is now changed
due to the changes introduced in PEP 701. This means that STRING tokens are not emitted any more for f-
strings and the tokens described in PEP 701 are now produced instead: FSTRING_START, FSTRING_MIDDLE
and FSTRING_END are now emitted for f-string “string” parts in addition to the appropriate tokens for the
tokenization in the expression components. For example for the f-string £"start {1+1} end" the old
version of the tokenizer emitted:

[1,0*1,18: STRING 'f"start {1+1} end"' J

while the new version emits:

(1,0—1,2. FSTRING_START 'f"']
1,2-1,8: FSTRING_MIDDLE 'start '

1,8-1,9 OP vy

1,9-1,10: NUMBER 1

1,10-1,11: OP Ty

1,11-1,12: NUMBER Tt

1,12-1,13: OP 1)

1,13-1,17: FSTRING_MIDDLE ' end'

1,17-1,18: FSTRING_END Tn

Additionally, there may be some minor behavioral changes as a consequence of the changes required to support
PEP 701. Some of these changes include:

- The type attribute of the tokens emitted when tokenizing some invalid Python characters such as ! has
changed from ERRORTOKEN to OP.

- Incomplete single-line strings now also raise tokenize.TokenError as incomplete multiline strings
do.

- Some incomplete or invalid Python code now raises tokenize.TokenError instead of returning ar-
bitrary ERRORTOKEN tokens when tokenizing it.

- Mixing tabs and spaces as indentation in the same file is not supported anymore and will raise a TabEr-
ror.

e The threading module now expects the _thread module to have an _is_main_interpreter attribute.
It is a function with no arguments that returns True if the current interpreter is the main interpreter.

Any library or application that provides a custom _thread module should provide
_is_main_interpreter (). (See gh-112826.)

13 Build Changes

o Python no longer uses setup.py to build shared C extension modules. Build parameters like headers
and libraries are detected in configure script. Extensions are built by Makefile. Most extensions use
pkg-config and fall back to manual detection. (Contributed by Christian Heimes in gh-93939.)

30

https://github.com/python/cpython/issues/99127
https://github.com/python/cpython/issues/103176
https://peps.python.org/pep-0701/
https://peps.python.org/pep-0701/
https://peps.python.org/pep-0701/
https://github.com/python/cpython/issues/112826
https://github.com/python/cpython/issues/93939

e va_start () with two parameters, like va_start (args, format), is now required to build Python.
va_start () is no longer called with a single parameter. (Contributed by Kumar Aditya in gh-93207.)

» CPython now uses the ThinLTO option as the default link time optimization policy if the Clang compiler
accepts the flag. (Contributed by Donghee Na in gh-89536.)

e Add COMPILEALL_OPTS variable in Makefile to override compileall options (default: -50) in make
install. Also merged the 3 compileall commands into a single command to build .pyc files for all opti-
mization levels (0, 1, 2) at once. (Contributed by Victor Stinner in gh-99289.)

» Add platform triplets for 64-bit LoongArch:
- loongarch64-linux-gnusf
- loongarch64-linux-gnuf32
- loongarch64-linux-gnu
(Contributed by Zhang Na in gh-90656.)
e PYTHON_FOR_REGEN now require Python 3.10 or newer.

o Autoconf 2.71 and aclocal 1.16.4 is now required to regenerate !configure. (Contributed by Christian
Heimes in gh-89886.)

« Windows builds and macOS installers from python.org now use OpenSSL 3.0.

14 C API Changes

14.1 New Features

« PEP 697: Introduce the Unstable C API tier, intended for low-level tools like debuggers and JIT compilers.
This API may change in each minor release of CPython without deprecation warnings. Its contents are marked
by the PyUnstable_ prefix in names.

Code object constructors:

- PyUnstable_Code_New () (renamed from PyCode_New)

- PyUnstable_Code_NewWithPosOnlyArgs () (renamed from PyCode_NewWithPosOnlyArgs)
Extra storage for code objects (PEP 523):

- PyUnstable_Eval_RequestCodeExtralndex () (renamed from _PyE-
val_RequestCodeExtralndex)

- PyUnstable_Code_GetExtra () (renamed from _PyCode_GetExtra)
- PyUnstable_Code_SetExtra () (renamed from _PyCode_SetExtra)
The original names will continue to be available until the respective API changes.
(Contributed by Petr Viktorin in gh-101101.)
« PEP 697: Add an API for extending types whose instance memory layout is opaque:

- PyType_Spec.basicsize can be zero or negative to specify inheriting or extending the base class
size.

- PyObject_GetTypeData () and PyType_GetTypeDataSize () added to allow access to subclass-
specific instance data.

- Py_TPFLAGS_ITEMS_AT_END and PyObject_GetItemData () added to allow safely extending cer-
tain variable-sized types, including PyType_Type.

- Py_RELATIVE_OFFSET added to allow defining members in terms of a subclass-specific struct.

(Contributed by Petr Viktorin in gh-103509.)

31

https://github.com/python/cpython/issues/93207
https://github.com/python/cpython/issues/89536
https://github.com/python/cpython/issues/99289
https://github.com/python/cpython/issues/90656
https://github.com/python/cpython/issues/89886
https://peps.python.org/pep-0697/
https://peps.python.org/pep-0523/
https://github.com/python/cpython/issues/101101
https://peps.python.org/pep-0697/
https://github.com/python/cpython/issues/103509

Add the new limited C API function PyType FromMetaclass (), which generalizes the existing Py-
Type_FromModuleAndSpec () using an additional metaclass argument. (Contributed by Wenzel Jakob in
¢h-93012.)

API for creating objects that can be called using the vectorcall protocol was added to the Limited API:

Py_TPFLAGS_HAVE_VECTORCALL

PyVectorcall_ NARGS ()

PyVectorcall Call()
— vectorcallfunc

The pPy_TPFLAGS_HAVE_VECTORCALL flag is now removed from a class when the class’s __call_ ()
method is reassigned. This makes vectorcall safe to use with mutable types (i.e. heap types without the
immutable flag, Py TPFLAGS_IMMUTABLETYPE). Mutable types that do not override tp_call now inherit
the Py_TPFLAGS_HAVE_VECTORCALL flag. (Contributed by Petr Viktorin in gh-93274.)

The Py_TPFLAGS_MANAGED_DICT and Py_TPFLAGS_MANAGED_WEAKREF flags have been added. This al-
lows extensions classes to support object __dict__ and weakrefs with less bookkeeping, using less memory
and with faster access.

API for performing calls using the vectorcall protocol was added to the Limited API:
— PyObject_Vectorcall ()
— PyObject_VectorcallMethod ()
- PY_VECTORCALL_ARGUMENTS_OFFSET

This means that both the incoming and outgoing ends of the vector call protocol are now available in the
Limited API. (Contributed by Wenzel Jakob in gh-98586.)

Add two new public functions, PyEval_SetProfileAllThreads () and PyE-
val_SetTraceAllThreads (), that allow to set tracing and profiling functions in all running threads
in addition to the calling one. (Contributed by Pablo Galindo in gh-93503.)

Add new function PyFunction_SetVectorcall () to the C API which sets the vectorcall field of a given
PyFunctionObject. (Contributed by Andrew Frost in gh-92257.)

The C API now permits registering callbacks via PyDict_AddWatcher (), PyDict_Watch () and related
APIs to be called whenever a dictionary is modified. This is intended for use by optimizing interpreters, JIT
compilers, or debuggers. (Contributed by Carl Meyer in gh-91052.)

Add pyType_AddWatcher () and PyType_Watch () API to register callbacks to receive notification on
changes to a type. (Contributed by Carl Meyer in gh-91051.)

Add PyCode_Addwatcher () and PyCode_ClearWatcher () APIs to register callbacks to receive notifi-
cation on creation and destruction of code objects. (Contributed by Itamar Oren in gh-91054.)

Add pyFrame_GetVar () and PyFrame_GetVarString () functions to get a frame variable by its name.
(Contributed by Victor Stinner in gh-91248.)

Add PyErr_GetRaisedException () and PyErr_SetRaisedException () for saving and restoring the
current exception. These functions return and accept a single exception object, rather than the triple arguments
of the now-deprecated PyErr Fetch() and PyErr_Restore (). This is less error prone and a bit more
efficient. (Contributed by Mark Shannon in gh-101578.)

Add _pPyErr_ChainExceptionsl, which takes an exception instance, to replace the legacy-API _py-
Err_ChainExceptions, which is now deprecated. (Contributed by Mark Shannon in gh-101578.)

Add PyException_GetArgs () and PyException_SetArgs () as convenience functions for retrieving
and modifying the args passed to the exception’s constructor. (Contributed by Mark Shannon in gh-101578.)

Add PyErr_DisplayException (), which takes an exception instance, to replace the legacy-api Py-
Err_Display (). (Contributed by Irit Katriel in gh-102755).

PEP 683: Introduce Immortal Objects, which allows objects to bypass reference counts, and related changes
to the C-API:

32

https://github.com/python/cpython/issues/93012
https://github.com/python/cpython/issues/93274
https://github.com/python/cpython/issues/98586
https://github.com/python/cpython/issues/93503
https://github.com/python/cpython/issues/92257
https://github.com/python/cpython/issues/91052
https://github.com/python/cpython/issues/91051
https://github.com/python/cpython/issues/91054
https://github.com/python/cpython/issues/91248
https://github.com/python/cpython/issues/101578
https://github.com/python/cpython/issues/101578
https://github.com/python/cpython/issues/101578
https://github.com/python/cpython/issues/102755
https://peps.python.org/pep-0683/

_Py_IMMORTAL_REFCNT: The reference count that defines an object
as immortal.

- _Py_IsImmortal Checks if an object has the immortal reference count.

- PyObject_HEAD_INIT This will now initialize reference count to
_Py_IMMORTAL_REFCNT when used with Py_BUILD_CORE.

SSTATE_INTERNED_IMMORTAL An identifier for interned unicode objects
that are immortal.

SSTATE_INTERNED IMMORTAL_STATIC An identifier for interned unicode
objects that are immortal and static

- sys.getunicodeinternedsize This returns the total number of unicode
objects that have been interned. This is now needed for refleak.py to correctly track reference
counts and allocated blocks

(Contributed by Eddie Elizondo in gh-84436.)

PEP 684: Add the new Py_NewInterpreterFromConfig () function and PyInterpreterConfig,
which may be used to create sub-interpreters with their own GILs. (See PEP 684: A Per-Interpreter GIL
for more info.) (Contributed by Eric Snow in gh-104110.)

In the limited C API version 3.12, Py_INCREF () and Py_DECREF () functions are now implemented as
opaque function calls to hide implementation details. (Contributed by Victor Stinner in gh-105387.)

14.2 Porting to Python 3.12

Legacy Unicode APIs based on Py_UNICODE* representation has been removed. Please migrate to APIs
based on UTF-8 or wchar_t*.

Argument parsing functions like PyArg_ParseTuple () doesn’t support Py _UNICODE* based format (e.g.
u, z) anymore. Please migrate to other formats for Unicode like s, z, es, and U.

tp_weaklist for all static builtin types is always NULL. This is an internal-only field on PyTypeObiject
but we’re pointing out the change in case someone happens to be accessing the field directly anyway. To
avoid breakage, consider using the existing public C-API instead, or, if necessary, the (internal-only) _PyOb-
ject_GET_WEAKREFS_LISTPTR () macro.

This internal-only PyTypeObject.tp_subclasses may now not be a valid object pointer. Its type was
changed to void* to reflect this. We mention this in case someone happens to be accessing the internal-only
field directly.

To get a list of subclasses, call the Python method __subclasses_ () (using PyObject_CallMethod (),
for example).

Add support of more formatting options (left aligning, octals, uppercase hexadecimals, intmax_t,
ptrdiff t, wchar_t C strings, variable width and precision) in PyUnicode_FromFormat () and PyU-—
nicode_FromFormatV (). (Contributed by Serhiy Storchaka in gh-98836.)

An unrecognized format character in PyUnicode_FromFormat () and PyUnicode_FromFormatV () Now
sets a SystemError. In previous versions it caused all the rest of the format string to be copied as-is to the
result string, and any extra arguments discarded. (Contributed by Serhiy Storchaka in gh-95781.)

Fix wrong sign placement in PyUnicode_FromFormat () and PyUnicode FromFormatV (). (Contributed
by Philip Georgi in gh-95504.)

Extension classes wanting to add a _ dict_ or weak reference slot should use
Py_TPFLAGS_MANAGED_DICT and Py_TPFLAGS_MANAGED_WEAKREF instead of tp_dictoffset
and tp_weaklistoffset, respectively. The use of tp_dictoffset and tp_weaklistoffset is still
supported, but does not fully support multiple inheritance (gh-95589), and performance may be worse.
Classes declaring Py TPFLAGS_MANAGED_DICT should call _PyObject VisitManagedDict () and
_PyObject_ClearManagedDict () to traverse and clear their instance’s dictionaries. To clear weakrefs,
call PyObject_ClearWeakRefs (), as before.

33

https://github.com/python/cpython/issues/84436
https://peps.python.org/pep-0684/
https://github.com/python/cpython/issues/104110
https://github.com/python/cpython/issues/105387
https://github.com/python/cpython/issues/98836
https://github.com/python/cpython/issues/95781
https://github.com/python/cpython/issues/95504
https://github.com/python/cpython/issues/95589

The PyUnicode_FSDecoder () function no longer accepts bytes-like paths, like bytearray and memo-
ryview types: only the exact bytes type is accepted for bytes strings. (Contributed by Victor Stinner in
¢h-98393.)

The Py_CLEAR, Py_SETREF and Py_XSETREF macros now only evaluate their arguments once. If an argu-
ment has side effects, these side effects are no longer duplicated. (Contributed by Victor Stinner in gh-98724.)

The interpreter’s error indicator is now always normalized. This means that PyErr_SetObject (), Py—
Err_SetString () and the other functions that set the error indicator now normalize the exception before
storing it. (Contributed by Mark Shannon in gh-101578.)

_Py RefTotal is no longer authoritative and only kept around for ABI compatibility. Note that it is an
internal global and only available on debug builds. If you happen to be using it then you’ll need to start using
_Py_GetGlobalRefTotal().

The following functions now select an appropriate metaclass for the newly created type:
- PyType_FromSpec ()
— PyType_FromSpecWithBases ()
— PyType_FromModuleAndSpec ()

Creating classes whose metaclass overrides tp_new is deprecated, and in Python 3.14+ it will be disallowed.
Note that these functions ignore tp_new of the metaclass, possibly allowing incomplete initialization.

Note that PyType_FromMetaclass () (added in Python 3.12) already disallows creating classes whose meta-
class overrides tp_new (__new__ () in Python).

Since tp_new overrides almost everything PyType_From* functions do, the two are incompatible with each
other. The existing behavior — ignoring the metaclass for several steps of type creation - is unsafe in general,
since (meta)classes assume that tp_new was called. There is no simple general workaround. One of the
following may work for you:

- If you control the metaclass, avoid using tp_new in it:
+ If initialization can be skipped, it can be done in tp_init instead.

» If the metaclass doesn’t need to be instantiated from Python, set its tp_new to NULL using the
Py TPFLAGS_DISALLOW_INSTANTIATION flag. This makes it acceptable for PyType_ From*
functions.

- Avoid pyType_From* functions: if you don’t need C-specific features (slots or setting the instance size),
create types by calling the metaclass.

— If you know the tp_new can be skipped safely, filter the deprecation warning out using warnings.
catch_warnings () from Python.

PyOS_InputHook and PyOS_ReadlineFunctionPointer are no longer called in subinterpreters. This is
because clients generally rely on process-wide global state (since these callbacks have no way of recovering
extension module state).

This also avoids situations where extensions may find themselves running in a subinterpreter that they don’t
support (or haven’t yet been loaded in). See gh-104668 for more info.

PyLongObject has had its internals changed for better performance. Although the internals of PyLongOb—
ject are private, they are used by some extension modules. The internal fields should no longer be accessed
directly, instead the API functions beginning PyLong_. .. should be used instead. Two new unstable API
functions are provided for efficient access to the value of PyLongObjects which fit into a single machine
word:

— PyUnstable_Long_IsCompact ()
— PyUnstable_Long_CompactValue ()

Custom allocators, set via PyMem_SetAllocator (), are now required to be thread-safe, regardless of mem-
ory domain. Allocators that don’t have their own state, including “hooks”, are not affected. If your custom
allocator is not already thread-safe and you need guidance then please create a new GitHub issue and CC
@ericsnowcurrently.

34

https://github.com/python/cpython/issues/98393
https://github.com/python/cpython/issues/98724
https://github.com/python/cpython/issues/101578
https://github.com/python/cpython/issues/104668

14.3 Deprecated

 In accordance with PEP 699, the ma_version_tag field in PyDictObject is deprecated for extension
modules. Accessing this field will generate a compiler warning at compile time. This field will be removed in
Python 3.14. (Contributed by Ramvikrams and Kumar Aditya in gh-101193. PEP by Ken Jin.)

« Deprecate global configuration variable:

Py_DebugFlag: use PyConfig.parser_debug

Py_VerboseFlag: use PyConfig.verbose

Py_QuietFlag: use PyConfig.quiet

Py_InteractiveFlag: use PyConfig.interactive

Py_InspectFlag: use PyConfig.inspect

Py_OptimizeFlag: use PyConfig.optimization_ level

Py_NoSiteFlag: use PyConfig.site_import

Py_BytesWarningFlag: use PyConfig.bytes_warning

Py_FrozenFlag: use PyConfig.pathconfig_warnings

Py_IgnoreEnvironmentFlag: use PyConfig.use_environment
Py_DontWriteBytecodeFlag: use PyConfig.write_bytecode
Py_NoUserSiteDirectory: use PyConfig.user_site_directory
Py_UnbufferedStdioFlag: use PyConfig.buffered_ stdio
Py_HashRandomizationFlag: use PyConfig.use_hash_seed and PyConfig.hash_seed
Py_IsolatedFlag: use PyConfig.isolated

Py_LegacyWindowsFSEncodingFlag: use PyPreConfig.legacy_windows_fs_encoding
Py_LegacyWindowsStdioFlag: use PyConfig.legacy_windows_stdio
Py_FileSystemDefaultEncoding: use PyConfig.filesystem_encoding
Py_HasFileSystemDefaultEncoding: use PyConfig.filesystem_encoding
Py_FileSystemDefaultEncodeErrors: use PyConfig.filesystem _errors

Py_UTF8Mode: use PyPreConfig.utf8_mode (see Py_Prelnitialize())

The Py_InitializeFromConfig () API should be used with PyConfig instead. (Contributed by Victor
Stinner in gh-77782.)

o Creating immutable types with mutable bases is deprecated and will be disabled in Python 3.14. (gh-
95388)

e The structmember.h header is deprecated, though it continues to be available and there are no plans to
remove it.

Its contents are now available just by including Python.h, with a Py prefix added if it was missing:

PyMemberDef, PyMember_GetOne () and PyMember_SetOne ()
Type macros like Py_T_INT, Py_T_DOUBLE, etc. (previously T_INT, T_DOUBLE, etc.)

The flags Py_READONLY (previously READONLY) and Py_AUDIT_READ (previously all uppercase)

Several items are not exposed from Python.h:

T_OBJECT (use Py_T_OBJECT_EX)
T_NONE (previously undocumented, and pretty quirky)

The macro WRITE_RESTRICTED which does nothing.

35

https://peps.python.org/pep-0699/
https://github.com/python/cpython/issues/101193
https://github.com/python/cpython/issues/77782
https://github.com/python/cpython/issues/95388
https://github.com/python/cpython/issues/95388

— The macros RESTRICTED and READ_RESTRICTED, equivalents of Py_AUDIT_READ.

- In some configurations, <stddef .h> is not included from Python.h. It should be included manually
when using of fsetof ().

The deprecated header continues to provide its original contents under the original names. Your old code can
stay unchanged, unless the extra include and non-namespaced macros bother you greatly.

(Contributed in gh-47146 by Petr Viktorin, based on earlier work by Alexander Belopolsky and Matthias
Braun.)

e PyErr _Fetch() and PyErr_ Restore () are deprecated. Use PyErr_GetRaisedException () and Py-
Err_SetRaisedException () instead. (Contributed by Mark Shannon in gh-101578.)

e PyErr_Display () isdeprecated. Use PyErr_DisplayException () instead. (Contributed by Irit Katriel
in gh-102755).

e PyErr ChainExceptions is deprecated. Use PyErr_ ChainExceptionsl instead. (Contributed by
Irit Katriel in gh-102192.)

o Using PyType_FromSpec (), PyType_FromSpecWithBases () or PyType_FromModuleAndSpec () to
create a class whose metaclass overrides tp_new is deprecated. Call the metaclass instead.

Pending Removal in Python 3.14
e The ma_version_tagfield in PyDictObject for extension modules (PEP 699; gh-101193).
o Creating immutable types with mutable bases (gh-95388).
« Functions to configure Python’s initialization, deprecated in Python 3.11:

- PySys_SetArgvEx (): Set PyConfig.argv instead.

PySys_SetArgv (): Set PyConfig.argv instead.

Py_SetProgramName (): Set PyConfig.program_name instead.
- Py_SetPythonHome (): Set PyConfig.home instead.
The Py_InitializeFromConfig () API should be used with PyConfig instead.
« Global configuration variables:

- Py_DebugFlag: Use PyConfig.parser_debug instead.

Py_VerboseFlag: Use PyConfig.verbose instead.

- Py_QuietFlag: Use PyConfig.quiet instead.

- Py_InteractiveFlag: Use PyConfig.interactive instead.

- Py_InspectFlag: Use PyConfig.inspect instead.

- Py_OptimizeFlag: Use PyConfig.optimization_level instead.

- Py_NoSiteFlag: Use PyConfig.site_import instead.

- Py_BytesWarningFlag: Use PyConfig.bytes_warning instead.

- Py_FrozenFlag: Use PyConfig.pathconfig_warnings instead.

- Py_IgnoreEnvironmentFlag: Use PyConfig.use_environment instead.
- Py_DontWriteBytecodeFlag: Use PyConfig.write_bytecode instead.
- Py_NoUserSiteDirectory: Use PyConfig.user_site_directory instead.
- Py_UnbufferedStdioFlag: Use PyConfig.buffered_stdio instead.

- Py_HashRandomizationFlag: Use PyConfig.use_hash_seed and PyConfig.hash_seed in-
stead.

- Py_IsolatedFlag: Use PyConfig.isolated instead.

36

https://github.com/python/cpython/issues/47146
https://github.com/python/cpython/issues/101578
https://github.com/python/cpython/issues/102755
https://github.com/python/cpython/issues/102192
https://peps.python.org/pep-0699/
https://github.com/python/cpython/issues/101193
https://github.com/python/cpython/issues/95388

- Py_LegacyWindowsFSEncodingFlag: Use PyPreConfig.legacy_windows_fs_encoding in-
stead.

- Py_LegacyWindowsStdioFlag: Use PyConfig.legacy_windows_stdio instead.
- Py_FileSystemDefaultEncoding: Use PyConfig.filesystem_encoding instead.
- Py_HasFileSystemDefaultEncoding: Use PyConfig.filesystem_encoding instead.

- Py_FileSystemDefaultEncodeErrors: Use PyConfig.filesystem_errors instead.

Py_UTF8Mode: Use PyPreConfig.ut f8_mode instead. (see Py_PrelInitialize())

The Py_InitializeFromConfig () API should be used with PyConfig instead.

Pending Removal in Python 3.15
o The bundled copy of libmpdecimal.
e The PyImport_ImportModuleNoBlock (): Use PyImport_ImportModule () instead.
e PyWeakref_GetObject () and PyWeakref_ GET_OBJECT (): Use PyWeakref_GetRef () instead.
e Py_UNICODE type and the Py_UNICODE_WIDE macro: Use wchar_t instead.
« Python initialization functions:
- PySys_ResetWarnOptions (): Clear sys.warnoptions and warnings.filters instead.
- Py_GetExecPrefix(): Get sys.exec_prefix instead.
- Py_GetPath (): Get sys.path instead.
- Py_GetPrefix(): Get sys.prefix instead.
- Py_GetProgramFullPath(): Get sys.executable instead.
- Py_GetProgramName (): Get sys.executable instead.

- Py_GetPythonHome (): Get PyConfig.home or the PYTHONHOME environment variable instead.

Pending Removal in Future Versions

The following APIs are deprecated and will be removed, although there is currently no date scheduled for their
removal.

e Py TPFLAGS_HAVE_FINALIZE: Unneeded since Python 3.8.

e PyErr_Fetch(): Use PyErr_GetRaisedException () instead.

e PyErr_NormalizeException(): Use PyErr_GetRaisedException () instead.
e PyErr_Restore (): Use PyErr_SetRaisedException () instead.

e PyModule_GetFilename (): Use PyModule_GetFilenameObject () instead.

e PyOS_AfterFork (): Use PyOS_AfterFork_Child () instead.

e PySlice_GetIndicesEx(): Use PySlice_Unpack () and PySlice_AdjustIndices () instead.
e PyUnicode_AsDecodedObject (): Use PyCodec_Decode () instead.

e PyUnicode_AsDecodedUnicode (): Use PyCodec_Decode () instead.

e PyUnicode_AsEncodedObject (): Use PyCodec_Encode () instead.

e PyUnicode_AsEncodedUnicode (): Use PyCodec_Encode () instead.

e PyUnicode_ READY (): Unneeded since Python 3.12

e PyErr_Display (): Use PyErr_DisplayException () instead.

e PyErr_ChainExceptions(): Use _PyErr_ChainExceptions1 () instead.

e PyBytesObject.ob_shash member: call PyObject_Hash () instead.

37

e PyDictObject.ma_version_tag member.

o Thread Local Storage (TLS) API:
- PyThread_create_key (): Use PyThread_tss_alloc () instead.
- PyThread_delete_key (): Use PyThread_tss_free () instead.
— PyThread_set_key_value (): Use PyThread_tss_set () instead.

- PyThread_get_key_value (): Use PyThread_tss_get () instead.

PyThread_delete_key value (): Use PyThread_tss_delete () instead.

- PyThread_ReInitTLS (): Unneeded since Python 3.7.

14.4 Removed

o Remove the token.h header file. There was never any public tokenizer C API. The token.h header file was
only designed to be used by Python internals. (Contributed by Victor Stinner in gh-92651.)

« Legacy Unicode APIs have been removed. See PEP 623 for detail.

— PyUnicode_WCHAR_KIND

PyUnicode_AS_UNICODE ()

— PyUnicode_AsUnicode ()

— PyUnicode_AsUnicodeAndSize ()
— PyUnicode_AS_DATA()

— PyUnicode_FromUnicode ()

— PyUnicode_GET_SIZE ()

— PyUnicode_GetSize ()

— PyUnicode_GET_DATA_SIZE ()

* Remove the PyUnicode_InternImmortal () function macro. (Contributed by Victor Stinner in gh-85858.)

15 Notable changes in 3.12.4

15.1 ipaddress

e Fixed is_global and is_private behavior in IPv4Address, IPv6Address, IPv4Network and
IPv6Network.

16 Notable changes in 3.12.5

16.1 email
« Headers with embedded newlines are now quoted on output.

The generator will now refuse to serialize (write) headers that are improperly folded or delimited, such that
they would be parsed as multiple headers or joined with adjacent data. If you need to turn this safety feature
off, set verify_generated_headers. (Contributed by Bas Bloemsaat and Petr Viktorin in gh-121650.)

17 Notable changes in 3.12.6

17.1 email

e email.utils.getaddresses() and email.utils.parseaddr () now return ('', '') 2-tuples in
more situations where invalid email addresses are encountered, instead of potentially inaccurate values. An

38

https://github.com/python/cpython/issues/92651
https://peps.python.org/pep-0623/
https://github.com/python/cpython/issues/85858
https://github.com/python/cpython/issues/121650

optional strict parameter was added to these two functions: use st rict=False to get the old behavior, accept-
ing malformed inputs. getattr (email.utils, 'supports_strict_parsing', False) can be used
to check if the strict paramater is available. (Contributed by Thomas Dwyer and Victor Stinner for gh-102988
to improve the CVE-2023-27043 fix.)

18 Notable changes in 3.12.8

18.1 sys

» The previously undocumented special function sys.getobjects (), which only exists in specialized builds
of Python, may now return objects from other interpreters than the one it’s called in.

19 Notable changes in 3.12.10

19.1 os.path

o The strict parameter to os.path.realpath () accepts a new value, os.path.ALLOW_MISSING. If used,
errors other than FileNotFoundError will be re-raised; the resulting path can be missing but it will be free
of symlinks. (Contributed by Petr Viktorin for CVE 2025-4517.)

19.2 tarfile

e data_filter () now normalizes symbolic link targets in order to avoid path traversal attacks. (Contributed
by Petr Viktorin in gh-127987 and CVE 2025-4138.)

e extractall () now skips fixing up directory attributes when a directory was removed or replaced by another
kind of file. (Contributed by Petr Viktorin in gh-127987 and CVE 2024-12718.)

e extract () and extractall () now (re-)apply the extraction filter when substituting a link (hard or sym-
bolic) with a copy of another archive member, and when fixing up directory attributes. The former raises a
new exception, LinkFallbackError. (Contributed by Petr Viktorin for CVE 2025-4330 and CVE 2024-
12718.)

e extract () and extractall () no longer extract rejected members when errorlevel () is zero. (Con-
tributed by Matt Prodani and Petr Viktorin in gh-112887 and CVE 2025-4435.)

39

https://github.com/python/cpython/issues/102988
https://www.cve.org/CVERecord?id=CVE-2025-4517
https://github.com/python/cpython/issues/127987
https://www.cve.org/CVERecord?id=CVE-2025-4138
https://github.com/python/cpython/issues/127987
https://www.cve.org/CVERecord?id=CVE-2024-12718
https://www.cve.org/CVERecord?id=CVE-2025-4330
https://www.cve.org/CVERecord?id=CVE-2024-12718
https://www.cve.org/CVERecord?id=CVE-2024-12718
https://github.com/python/cpython/issues/112887
https://www.cve.org/CVERecord?id=CVE-2025-4435

Index
C

Common Vulnerabilities and Exposures
CVE 2024-4030, 12, 14
CVE 2024-12718, 39
CVE 2025-4138, 39
CVE 2025-4330, 39
CVE 2025-4435, 39
CVE 2025-4517, 39
Common Weakness Enumeration
CWE 295,28

E

environment variable
PYTHONHOME, 37
PYTHONPERFSUPPORT, 10

P

Python Enhancement Proposals

PEP 249,13

PEP 451,29

PEP 484,4,8,9

PEP 523, 31

PEP 554, 7

PEP 572, 10

PEP 594, 19, 25,27

PEP 617,606

PEP 623,4, 16,38

PEP 626, 19,22

PEP 632,4,25

PEP 0632#migration-advice, 4

PEP 644,26

PEP 669,7

PEP 678, 10

PEP 683, 32

PEP 684,7,33

PEP 688,7

PEP 692,9

PEP 693,3

PEP 695,4,5,17

PEP 697,31

PEP 698,9

PEP 699, 35, 36

PEP 701, 5,6, 14, 16, 30

PEP 706, 10

PEP 709,7,8, 16
PYTHONHOME, 37
PYTHONPERFSUPPORT, 10

	Summary – Release highlights
	New Features
	PEP 695: Type Parameter Syntax
	PEP 701: Syntactic formalization of f-strings
	PEP 684: A Per-Interpreter GIL
	PEP 669: Low impact monitoring for CPython
	PEP 688: Making the buffer protocol accessible in Python
	PEP 709: Comprehension inlining
	Improved Error Messages

	New Features Related to Type Hints
	PEP 692: Using TypedDict for more precise **kwargs typing
	PEP 698: Override Decorator for Static Typing

	Other Language Changes
	New Modules
	Improved Modules
	array
	asyncio
	calendar
	csv
	dis
	fractions
	importlib.resources
	inspect
	itertools
	math
	os
	os.path
	pathlib
	platform
	pdb
	random
	shutil
	sqlite3
	statistics
	sys
	tempfile
	threading
	tkinter
	tokenize
	types
	typing
	unicodedata
	unittest
	uuid

	Optimizations
	CPython bytecode changes
	Demos and Tools
	Deprecated
	Pending Removal in Python 3.13
	Pending Removal in Python 3.14
	Pending Removal in Python 3.15
	Pending Removal in Python 3.16
	Pending Removal in Future Versions

	Removed
	asynchat and asyncore
	configparser
	distutils
	ensurepip
	enum
	ftplib
	gzip
	hashlib
	importlib
	imp
	io
	locale
	smtpd
	sqlite3
	ssl
	unittest
	webbrowser
	xml.etree.ElementTree
	zipimport
	Others

	Porting to Python 3.12
	Changes in the Python API

	Build Changes
	C API Changes
	New Features
	Porting to Python 3.12
	Deprecated
	Pending Removal in Python 3.14
	Pending Removal in Python 3.15
	Pending Removal in Future Versions

	Removed

	Notable changes in 3.12.4
	ipaddress

	Notable changes in 3.12.5
	email

	Notable changes in 3.12.6
	email

	Notable changes in 3.12.8
	sys

	Notable changes in 3.12.10
	os.path
	tarfile

	Index

