
Using Python
Release 3.1

Guido van Rossum
Fred L. Drake, Jr., editor

June 26, 2009

Python Software Foundation
Email: docs@python.org





CONTENTS

1 Command line and environment 3
1.1 Command line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Using Python on Unix platforms 9
2.1 Getting and installing the latest version of Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Building Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Python-related paths and files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Using Python on Windows 13
3.1 Installing Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Alternative bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Configuring Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Additional modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Compiling Python on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Other resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Using Python on a Macintosh 19
4.1 Getting and Installing MacPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 The IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Installing Additional Python Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 GUI Programming on the Mac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Distributing Python Applications on the Mac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 Application Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.7 Other Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A Glossary 23

B About these documents 29
B.1 Contributors to the Python Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

C History and License 31
C.1 History of the software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
C.2 Terms and conditions for accessing or otherwise using Python . . . . . . . . . . . . . . . . . . . . . 32
C.3 Licenses and Acknowledgements for Incorporated Software . . . . . . . . . . . . . . . . . . . . . . 35

D Copyright 43

i



Index 45

ii



Using Python, Release 3.1

This part of the documentation is devoted to general information on the setup of the Python environment on different
platform, the invocation of the interpreter and things that make working with Python easier.

CONTENTS 1



Using Python, Release 3.1

2 CONTENTS



CHAPTER

ONE

COMMAND LINE AND ENVIRONMENT

The CPython interpreter scans the command line and the environment for various settings.

Note: Other implementations’ command line schemes may differ. See Alternate Implementations (in The Python
Language Reference) for further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

python [-bdEiOsStuUvxX?] [-c command | -m module-name | script | - ] [args]

The most common use case is, of course, a simple invocation of a script:

python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:

• When called with standard input connected to a tty device, it prompts for commands and executes them until an
EOF (an end-of-file character, you can produce that with Ctrl-D on UNIX or Ctrl-Z, Enter on Windows) is read.

• When called with a file name argument or with a file as standard input, it reads and executes a script from that
file.

• When called with a directory name argument, it reads and executes an appropriately named script from that
directory.

• When called with -c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

• When called with -m module-name, the given module is located on the Python module path and executed as
a script.

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end up in
sys.argv – note that the first element, subscript zero (sys.argv[0]), is a string reflecting the program’s source.

3



Using Python, Release 3.1

-c <command>
Execute the Python code in command. command can be one ore more statements separated by newlines, with
significant leading whitespace as in normal module code.

If this option is given, the first element of sys.argv will be "-c" and the current directory will be added to
the start of sys.path (allowing modules in that directory to be imported as top level modules).

-m <module-name>
Search sys.path for the named module and execute its contents as the __main__ module.

Since the argument is a module name, you must not give a file extension (.py). The module-name should be
a valid Python module name, but the implementation may not always enforce this (e.g. it may allow you to use
a name that includes a hyphen).

Package names are also permitted. When a package name is supplied instead of a normal module, the interpreter
will execute <pkg>.__main__ as the main module. This behaviour is deliberately similar to the handling of
directories and zipfiles that are passed to the interpreter as the script argument.

Note: This option cannot be used with builtin modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source file
is not available.

If this option is given, the first element of sys.argv will be the full path to the module file. As with the -c
option, the current directory will be added to the start of sys.path.

Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -mtimeit -s ’setup here’ ’benchmarked code here’
python -mtimeit -h # for details

See Also:
runpy.run_module() Equivalent functionality directly available to Python code

PEP 338 – Executing modules as scripts

Changed in version 3.1: Supply the package name to run a __main__ submodule.

-
Read commands from standard input (sys.stdin). If standard input is a terminal, -i is implied.

If this option is given, the first element of sys.argv will be "-" and the current directory will be added to the
start of sys.path.

<script>
Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring to
either a Python file, a directory containing a __main__.py file, or a zipfile containing a __main__.py file.

If this option is given, the first element of sys.argv will be the script name as given on the command line.

If the script name refers directly to a Python file, the directory containing that file is added to the start of
sys.path, and the file is executed as the __main__ module.

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
__main__.py file in that location is executed as the __main__ module.

If no interface option is given, -i is implied, sys.argv[0] is an empty string ("") and the current directory will
be added to the start of sys.path.

See Also:

Invoking the Interpreter (in Python Tutorial)

4 Chapter 1. Command line and environment

http://www.python.org/dev/peps/pep-0338


Using Python, Release 3.1

1.1.2 Generic options

-?
-h
-help

Print a short description of all command line options.

-V
-version

Print the Python version number and exit. Example output could be:

Python 3.0

1.1.3 Miscellaneous options

-b
Issue a warning when comparing str and bytes. Issue an error when the option is given twice (-bb).

-B
If given, Python won’t try to write .pyc or .pyo files on the import of source modules. See also PYTHON-
DONTWRITEBYTECODE.

-d
Turn on parser debugging output (for wizards only, depending on compilation options). See also PYTHONDE-
BUG.

-E
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

-i
When a script is passed as first argument or the -c option is used, enter interactive mode after executing the
script or the command, even when sys.stdin does not appear to be a terminal. The PYTHONSTARTUP
file is not read.

This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

-O
Turn on basic optimizations. This changes the filename extension for compiled (bytecode) files from .pyc to
.pyo. See also PYTHONOPTIMIZE.

-OO
Discard docstrings in addition to the -O optimizations.

-s
Don’t add user site directory to sys.path

See Also:
PEP 370 – Per user site-packages directory

-S
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.

-u
Force stdin, stdout and stderr to be totally unbuffered. On systems where it matters, also put stdin, stdout and
stderr in binary mode.

Note that there is internal buffering in file.readlines() and File Objects (in The Python Library Refer-
ence) (for line in sys.stdin) which is not influenced by this option. To work around this, you will
want to use file.readline() inside a while 1: loop.

1.1. Command line 5

http://www.python.org/dev/peps/pep-0370


Using Python, Release 3.1

See also PYTHONUNBUFFERED.

-v
Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. When given twice (-vv), print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit. See also PYTHONVERBOSE.

-W arg
Warning control. Python’s warning machinery by default prints warning messages to sys.stderr. A typical
warning message has the following form:

file:line: category: message

By default, each warning is printed once for each source line where it occurs. This option controls how often
warnings are printed.

Multiple -W options may be given; when a warning matches more than one option, the action for the last
matching option is performed. Invalid -W options are ignored (though, a warning message is printed about
invalid options when the first warning is issued).

Warnings can also be controlled from within a Python program using the warnings module.

The simplest form of argument is one of the following action strings (or a unique abbreviation):

ignore Ignore all warnings.

default Explicitly request the default behavior (printing each warning once per source line).

all Print a warning each time it occurs (this may generate many messages if a warning is triggered repeatedly
for the same source line, such as inside a loop).

module Print each warning only the first time it occurs in each module.

once Print each warning only the first time it occurs in the program.

error Raise an exception instead of printing a warning message.

The full form of argument is:

action:message:category:module:line

Here, action is as explained above but only applies to messages that match the remaining fields. Empty fields
match all values; trailing empty fields may be omitted. The message field matches the start of the warning
message printed; this match is case-insensitive. The category field matches the warning category. This must be
a class name; the match test whether the actual warning category of the message is a subclass of the specified
warning category. The full class name must be given. The module field matches the (fully-qualified) module
name; this match is case-sensitive. The line field matches the line number, where zero matches all line numbers
and is thus equivalent to an omitted line number.

See Also:
warnings – the warnings module

PEP 230 – Warning framework

-x
Skip the first line of the source, allowing use of non-Unix forms of #!cmd. This is intended for a DOS specific
hack only.

Note: The line numbers in error messages will be off by one.

6 Chapter 1. Command line and environment

http://www.python.org/dev/peps/pep-0230


Using Python, Release 3.1

1.2 Environment variables

These environment variables influence Python’s behavior.

PYTHONHOME
Change the location of the standard Python libraries. By default, the libraries are searched in
prefix/lib/pythonversion and exec_prefix/lib/pythonversion, where prefix and
exec_prefix are installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefix and exec_prefix. To
specify different values for these, set PYTHONHOME to prefix:exec_prefix.

PYTHONPATH
Augment the default search path for module files. The format is the same as the shell’s PATH: one or more
directory pathnames separated by os.pathsep (e.g. colons on Unix or semicolons on Windows). Non-
existent directories are silently ignored.

In addition to normal directories, individual PYTHONPATH entries may refer to zipfiles containing pure
Python modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.

The default search path is installation dependent, but generally begins with prefix/lib/pythonversion
(see PYTHONHOME above). It is always appended to PYTHONPATH.

An additional directory will be inserted in the search path in front of PYTHONPATH as described above
under Interface options. The search path can be manipulated from within a Python program as the variable
sys.path.

PYTHONSTARTUP
If this is the name of a readable file, the Python commands in that file are executed before the first prompt is
displayed in interactive mode. The file is executed in the same namespace where interactive commands are
executed so that objects defined or imported in it can be used without qualification in the interactive session.
You can also change the prompts sys.ps1 and sys.ps2 in this file.

PYTHONY2K
Set this to a non-empty string to cause the time module to require dates specified as strings to include 4-digit
years, otherwise 2-digit years are converted based on rules described in the time module documentation.

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the -O option. If set to an integer, it is equivalent
to specifying -O multiple times.

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the -d option. If set to an integer, it is equivalent
to specifying -d multiple times.

PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the -i option.

This variable can also be modified by Python code using os.environ to force inspect mode on program
termination.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the -u option.

PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the -v option. If set to an integer, it is equivalent
to specifying -v multiple times.

PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows.

PYTHONDONTWRITEBYTECODE
If this is set, Python won’t try to write .pyc or .pyo files on the import of source modules.

1.2. Environment variables 7



Using Python, Release 3.1

PYTHONIOENCODING
Overrides the encoding used for stdin/stdout/stderr, in the syntax encodingname:errorhandler. The
:errorhandler part is optional and has the same meaning as in str.encode().

For stderr, the :errorhandler part is ignored; the handler will always be ’backslashreplace’.

PYTHONNOUSERSITE
If this is set, Python won’t add the user site directory to sys.path

See Also:
PEP 370 – Per user site-packages directory

PYTHONUSERBASE
Sets the base directory for the user site directory

See Also:
PEP 370 – Per user site-packages directory

PYTHONEXECUTABLE
If this environment variable is set, sys.argv[0] will be set to its value instead of the value got through the C
runtime. Only works on Mac OS X.

1.2.1 Debug-mode variables

Setting these variables only has an effect in a debug build of Python, that is, if Python was configured with the
--with-pydebug build option.

PYTHONTHREADDEBUG
If set, Python will print threading debug info.

PYTHONDUMPREFS
If set, Python will dump objects and reference counts still alive after shutting down the interpreter.

PYTHONMALLOCSTATS
If set, Python will print memory allocation statistics every time a new object arena is created, and on shutdown.

8 Chapter 1. Command line and environment

http://www.python.org/dev/peps/pep-0370
http://www.python.org/dev/peps/pep-0370


CHAPTER

TWO

USING PYTHON ON UNIX PLATFORMS

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there are
certain features you might want to use that are not available on your distro’s package. You can easily compile the latest
version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages
for your own distro. Have a look at the following links:

See Also:

http://www.linux.com/articles/60383 for Debian users

http://linuxmafia.com/pub/linux/suse-linux-internals/chapter35.html for OpenSuse users

http://docs.fedoraproject.org/drafts/rpm-guide-en/ch-creating-rpms.html for Fedora users

http://www.slackbook.org/html/package-management-making-packages.html for Slackware users

2.1.2 On FreeBSD and OpenBSD

• FreeBSD users, to add the package use:

pkg_add -r python

• OpenBSD users use:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your architecture here>/python-<version>.tgz

For example i386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

2.1.3 On OpenSolaris

To install the newest Python versions on OpenSolaris, install blastwave (http://www.blastwave.org/howto.html) and
type “pkg_get -i python” at the prompt.

9

http://www.linux.com/articles/60383
http://linuxmafia.com/pub/linux/suse-linux-internals/chapter35.html
http://docs.fedoraproject.org/drafts/rpm-guide-en/ch-creating-rpms.html
http://www.slackbook.org/html/package-management-making-packages.html
http://www.blastwave.org/howto.html


Using Python, Release 3.1

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh checkout.

The build process consists the usual

./configure
make
make install

invocations. Configuration options and caveats for specific Unix platforms are extensively documented in the README
file in the root of the Python source tree.

Warning: make install can overwrite or masquerade the python binary. make altinstall is there-
fore recommended instead of make install since it only installs exec_prefix/bin/pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix (${prefix}) and exec_prefix
(${exec_prefix}) are installation-dependent and should be interpreted as for GNU software; they may be the
same.

For example, on most Linux systems, the default for both is /usr.

File/directory Meaning
exec_prefix/bin/python Recommended location of the interpreter.
prefix/lib/pythonversion,
exec_prefix/lib/pythonversion

Recommended locations of the directories containing the standard
modules.

prefix/include/pythonversion,
exec_prefix/include/pythonversion

Recommended locations of the directories containing the include
files needed for developing Python extensions and embedding the
interpreter.

~/.pythonrc.py User-specific initialization file loaded by the user module; not used
by default or by most applications.

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is usually

#!/usr/bin/env python

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python as the interpreter path.

To use shell commands in your python scripts, look at the subprocess module.

10 Chapter 2. Using Python on Unix platforms

http://python.org/download/source/
http://www.python.org/dev/faq/#how-do-i-get-a-checkout-of-the-repository-read-only-and-read-write


Using Python, Release 3.1

2.5 Editors

Vim and Emacs are excellent editors which support Python very well. For more information on how to code in python
in these editors, look at:

• http://www.vim.org/scripts/script.php?script_id=790

• http://sourceforge.net/projects/python-mode

Geany is an excellent IDE with support for a lot of languages. For more information, read: http://geany.uvena.de/

Komodo edit is another extremely good IDE. It also has support for a lot of languages. For more information, read:
http://www.activestate.com/store/productdetail.aspx?prdGuid=20f4ed15-6684-4118-a78b-d37ff4058c5f

2.5. Editors 11

http://www.vim.org/scripts/script.php?script_id=790
http://sourceforge.net/projects/python-mode
http://geany.uvena.de/
http://www.activestate.com/store/productdetail.aspx?prdGuid=20f4ed15-6684-4118-a78b-d37ff4058c5f


Using Python, Release 3.1

12 Chapter 2. Using Python on Unix platforms



CHAPTER

THREE

USING PYTHON ON WINDOWS

This document aims to give an overview of Windows-specific behaviour you should know about when using Python
on Microsoft Windows.

3.1 Installing Python

Unlike most Unix systems and services, Windows does not require Python natively and thus does not pre-install a
version of Python. However, the CPython team has compiled Windows installers (MSI packages) with every release
for many years.

With ongoing development of Python, some platforms that used to be supported earlier are no longer supported (due
to the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

• Up to 2.5, Python was still compatible with Windows 95, 98 and ME (but already raised a deprecation warning
on installation). For Python 2.6 (and all following releases), this support was dropped and new releases are just
expected to work on the Windows NT family.

• Windows CE is still supported.

• The Cygwin installer offers to install the Python interpreter as well; it is located under “Interpreters.” (cf.
Cygwin package source, Maintainer releases)

See Python for Windows (and DOS) for detailed information about platforms with precompiled installers.

See Also:

Python on XP “7 Minutes to “Hello World!”” by Richard Dooling, 2006

Installing on Windows in “Dive into Python: Python from novice to pro” by Mark Pilgrim, 2004, ISBN 1-59059-
356-1

For Windows users in “Installing Python” in “A Byte of Python” by Swaroop C H, 2003

3.2 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The fol-
lowing is a list of popular versions and their key features:

ActivePython Installer with multi-platform compatibility, documentation, PyWin32

13

http://www.python.org/download/releases/
http://www.python.org/dev/peps/pep-0011
http://pythonce.sourceforge.net/
http://cygwin.com/
http://cygwin.com/packages/python
ftp://ftp.uni-erlangen.de/pub/pc/gnuwin32/cygwin/mirrors/cygnus/release/python
http://www.tishler.net/jason/software/python/
http://www.python.org/download/windows/
http://www.richarddooling.com/index.php/2006/03/14/python-on-xp-7-minutes-to-hello-world/
http://diveintopython.org/installing_python/windows.html
http://diveintopython.org/index.html
http://swaroopch.com/text/Byte_of_Python:Installing_Python#For_Windows_users
http://www.byteofpython.info
http://www.activestate.com/Products/activepython/


Using Python, Release 3.1

Python Enthought Edition Popular modules (such as PyWin32) with their respective documentation, tool suite for
building extensible python applications

Notice that these packages are likely to install older versions of Python.

3.3 Configuring Python

In order to run Python flawlessly, you might have to change certain environment settings in Windows.

3.3.1 Excursus: Setting environment variables

Windows has a built-in dialog for changing environment variables (following guide applies to XP classical view):
Right-click the icon for your machine (usually located on your Desktop and called “My Computer”) and choose
Properties there. Then, open the Advanced tab and click the Environment Variables button.

In short, your path is:

My Computer→ Properties→ Advanced→ Environment Variables

In this dialog, you can add or modify User and System variables. To change System variables, you need non-restricted
access to your machine (i.e. Administrator rights).

Another way of adding variables to your environment is using the set command:

set PYTHONPATH=%PYTHONPATH%;C:\My_python_lib

To make this setting permanent, you could add the corresponding command line to your autoexec.bat. msconfig
is a graphical interface to this file.

Viewing environment variables can also be done more straight-forward: The command prompt will expand strings
wrapped into percent signs automatically:

echo %PATH%

Consult set /? for details on this behaviour.

See Also:

http://support.microsoft.com/kb/100843 Environment variables in Windows NT

http://support.microsoft.com/kb/310519 How To Manage Environment Variables in Windows XP

http://www.chem.gla.ac.uk/~louis/software/faq/q1.html Setting Environment variables, Louis J. Farrugia

3.3.2 Finding the Python executable

Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python in
the DOS prompt. To make this work, you need to set your %PATH% environment variable to include the directory
of your Python distribution, delimited by a semicolon from other entries. An example variable could look like this
(assuming the first two entries are Windows’ default):

C:\WINDOWS\system32;C:\WINDOWS;C:\Python25

Typing python on your command prompt will now fire up the Python interpreter. Thus, you can also execute your
scripts with command line options, see Command line documentation.

14 Chapter 3. Using Python on Windows

http://code.enthought.com/enthon/
http://support.microsoft.com/kb/100843
http://support.microsoft.com/kb/310519
http://www.chem.gla.ac.uk/~{}louis/software/faq/q1.html


Using Python, Release 3.1

3.3.3 Finding modules

Python usually stores its library (and thereby your site-packages folder) in the installation directory. So, if you had
installed Python to C:\Python\, the default library would reside in C:\Python\Lib\ and third-party modules
should be stored in C:\Python\Lib\site-packages\.

You can add folders to your search path to make Python’s import mechanism search in these directories as well. Use
PYTHONPATH, as described in Environment variables, to modify sys.path. On Windows, paths are separated by
semicolons, though, to distinguish them from drive identifiers (C:\ etc.).

Modifying the module search path can also be done through the Windows registry: Edit
HKEY_LOCAL_MACHINE\SOFTWARE\Python\PythonCore\version\PythonPath\, as described
above for the environment variable %PYTHONPATH%. A convenient registry editor is regedit (start it by typing
“regedit” into Start→ Run).

3.3.4 Executing scripts

Python scripts (files with the extension .py) will be executed by python.exe by default. This executable opens a
terminal, which stays open even if the program uses a GUI. If you do not want this to happen, use the extension .pyw
which will cause the script to be executed by pythonw.exe by default (both executables are located in the top-level of
your Python installation directory). This suppresses the terminal window on startup.

You can also make all .py scripts execute with pythonw.exe, setting this through the usual facilities, for example
(might require administrative rights):

1. Launch a command prompt.

2. Associate the correct file group with .py scripts:

assoc .py=Python.File

3. Redirect all Python files to the new executable:

ftype Python.File=C:\Path\to\pythonw.exe "%1" %*

3.4 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique to Windows. A couple
of modules, both in the standard library and external, and snippets exist to use these features.

The Windows-specific standard modules are documented in MS Windows Specific Services (in The Python Library
Reference).

3.4.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support. This
includes utilities for:

• Component Object Model (COM)

• Win32 API calls

• Registry

• Event log

3.4. Additional modules 15

http://python.net/crew/mhammond/win32/
http://www.microsoft.com/com/


Using Python, Release 3.1

• Microsoft Foundation Classes (MFC) user interfaces

PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in debugger.

See Also:

Win32 How Do I...? by Tim Golden

Python and COM by David and Paul Boddie

3.4.2 Py2exe

Py2exe is a distutils extension (see Extending Distutils (in Distributing Python Modules)) which wraps Python
scripts into executable Windows programs (*.exe files). When you have done this, you can distribute your applica-
tion without requiring your users to install Python.

3.4.3 WConio

Since Python’s advanced terminal handling layer, curses, is restricted to Unix-like systems, there is a library exclu-
sive to Windows as well: Windows Console I/O for Python.

WConio is a wrapper for Turbo-C’s CONIO.H, used to create text user interfaces.

3.5 Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh checkout.

For Microsoft Visual C++, which is the compiler with which official Python releases are built, the source tree contains
solutions/project files. View the readme.txt in their respective directories:

Directory MSVC version Visual Studio version
PC/VC6/ 6.0 97
PC/VS7.1/ 7.1 2003
PC/VS8.0/ 8.0 2005
PCbuild/ 9.0 2008

Note that not all of these build directories are fully supported. Read the release notes to see which compiler version
the official releases for your version are built with.

Check PC/readme.txt for general information on the build process.

For extension modules, consult Building C and C++ Extensions on Windows (in Extending and Embedding Python).

See Also:

Python + Windows + distutils + SWIG + gcc MinGW or “Creating Python extensions in C/C++ with SWIG and
compiling them with MinGW gcc under Windows” or “Installing Python extension with distutils and without
Microsoft Visual C++” by Sébastien Sauvage, 2003

MingW – Python extensions by Trent Apted et al, 2007

3.6 Other resources

See Also:

16 Chapter 3. Using Python on Windows

http://msdn.microsoft.com/library/en-us/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://web.archive.org/web/20060524042422/http://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
http://www.boddie.org.uk/python/COM.html
http://www.py2exe.org/
http://newcenturycomputers.net/projects/wconio.html
http://python.org/download/source/
http://www.python.org/dev/faq/#how-do-i-get-a-checkout-of-the-repository-read-only-and-read-write
http://sebsauvage.net/python/mingw.html
http://www.mingw.org/MinGWiki/index.php/Python%20extensions


Using Python, Release 3.1

Python Programming On Win32 “Help for Windows Programmers” by Mark Hammond and Andy Robinson,
O’Reilly Media, 2000, ISBN 1-56592-621-8

A Python for Windows Tutorial by Amanda Birmingham, 2004

3.6. Other resources 17

http://www.oreilly.com/catalog/pythonwin32/
http://www.imladris.com/Scripts/PythonForWindows.html


Using Python, Release 3.1

18 Chapter 3. Using Python on Windows



CHAPTER

FOUR

USING PYTHON ON A MACINTOSH

Author Bob Savage <bobsavage@mac.com>

Python on a Macintosh running Mac OS X is in principle very similar to Python on any other Unix platform, but there
are a number of additional features such as the IDE and the Package Manager that are worth pointing out.

4.1 Getting and Installing MacPython

Mac OS X 10.5 comes with Python 2.5.1 pre-installed by Apple. If you wish, you are invited to install the most recent
version of Python from the Python website (http://www.python.org). A current “universal binary” build of Python,
which runs natively on the Mac’s new Intel and legacy PPC CPU’s, is available there.

What you get after installing is a number of things:

• A MacPython 2.5 folder in your Applications folder. In here you find IDLE, the development envi-
ronment that is a standard part of official Python distributions; PythonLauncher, which handles double-clicking
Python scripts from the Finder; and the “Build Applet” tool, which allows you to package Python scripts as
standalone applications on your system.

• A framework /Library/Frameworks/Python.framework, which includes the Python executable and
libraries. The installer adds this location to your shell path. To uninstall MacPython, you can simply remove
these three things. A symlink to the Python executable is placed in /usr/local/bin/.

The Apple-provided build of Python is installed in /System/Library/Frameworks/Python.framework
and /usr/bin/python, respectively. You should never modify or delete these, as they are Apple-controlled and
are used by Apple- or third-party software. Remember that if you choose to install a newer Python version from
python.org, you will have two different but functional Python installations on your computer, so it will be important
that your paths and usages are consistent with what you want to do.

IDLE includes a help menu that allows you to access Python documentation. If you are completely new to Python you
should start reading the tutorial introduction in that document.

If you are familiar with Python on other Unix platforms you should read the section on running Python scripts from
the Unix shell.

4.1.1 How to run a Python script

Your best way to get started with Python on Mac OS X is through the IDLE integrated development environment, see
section The IDE and use the Help menu when the IDE is running.

19

mailto:bobsavage@mac.com
http://www.python.org


Using Python, Release 3.1

If you want to run Python scripts from the Terminal window command line or from the Finder you first
need an editor to create your script. Mac OS X comes with a number of standard Unix command line edi-
tors, vim and emacs among them. If you want a more Mac-like editor, BBEdit or TextWrangler from Bare
Bones Software (see http://www.barebones.com/products/bbedit/index.shtml) are good choices, as is TextMate (see
http://macromates.com/). Other editors include Gvim (http://macvim.org) and Aquamacs (http://aquamacs.org).

To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell search
path.

To run your script from the Finder you have two options:

• Drag it to PythonLauncher

• Select PythonLauncher as the default application to open your script (or any .py script) through the finder Info
window and double-click it. PythonLauncher has various preferences to control how your script is launched.
Option-dragging allows you to change these for one invocation, or use its Preferences menu to change things
globally.

4.1.2 Running scripts with a GUI

With older versions of Python, there is one Mac OS X quirk that you need to be aware of: programs that talk to the
Aqua window manager (in other words, anything that has a GUI) need to be run in a special way. Use pythonw instead
of python to start such scripts.

With Python 2.5, you can use either python or pythonw.

4.1.3 Configuration

Python on OS X honors all standard Unix environment variables such as PYTHONPATH, but setting these variables
for programs started from the Finder is non-standard as the Finder does not read your .profile or .cshrc at
startup. You need to create a file ~ /.MacOSX/environment.plist. See Apple’s Technical Document QA1067
for details.

For more information on installation Python packages in MacPython, see section Installing Additional Python Pack-
ages.

4.2 The IDE

MacPython ships with the standard IDLE development environment. A good introduction to using IDLE can be found
at http://hkn.eecs.berkeley.edu/ dyoo/python/idle_intro/index.html.

4.3 Installing Additional Python Packages

There are several methods to install additional Python packages:

• http://pythonmac.org/packages/ contains selected compiled packages for Python 2.5, 2.4, and 2.3.

• Packages can be installed via the standard Python distutils mode (python setup.py install).

• Many packages can also be installed via the setuptools extension.

20 Chapter 4. Using Python on a Macintosh

http://www.barebones.com/products/bbedit/index.shtml
http://macromates.com/
http://macvim.org
http://aquamacs.org
http://hkn.eecs.berkeley.edu/
http://pythonmac.org/packages/


Using Python, Release 3.1

4.4 GUI Programming on the Mac

There are several options for building GUI applications on the Mac with Python.

PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is the foundation of most modern Mac
development. Information on PyObjC is available from http://pyobjc.sourceforge.net.

The standard Python GUI toolkit is Tkinter, based on the cross-platform Tk toolkit (http://www.tcl.tk). An Aqua-
native version of Tk is bundled with OS X by Apple, and the latest version can be downloaded and installed from
http://www.activestate.com; it can also be built from source.

wxPython is another popular cross-platform GUI toolkit that runs natively on Mac OS X. Packages and documentation
are available from http://www.wxpython.org.

PyQt is another popular cross-platform GUI toolkit that runs natively on Mac OS X. More information can be found
at http://www.riverbankcomputing.co.uk/pyqt/.

4.5 Distributing Python Applications on the Mac

The “Build Applet” tool that is placed in the MacPython 2.5 folder is fine for packaging small Python scripts on your
own machine to run as a standard Mac application. This tool, however, is not robust enough to distribute Python
applications to other users.

The standard tool for deploying standalone Python applications on the Mac is py2app. More information on installing
and using py2app can be found at http://undefined.org/python/#py2app.

4.6 Application Scripting

Python can also be used to script other Mac applications via Apple’s Open Scripting Architecture (OSA); see
http://appscript.sourceforge.net. Appscript is a high-level, user-friendly Apple event bridge that allows you to con-
trol scriptable Mac OS X applications using ordinary Python scripts. Appscript makes Python a serious alternative to
Apple’s own AppleScript language for automating your Mac. A related package, PyOSA, is an OSA language compo-
nent for the Python scripting language, allowing Python code to be executed by any OSA-enabled application (Script
Editor, Mail, iTunes, etc.). PyOSA makes Python a full peer to AppleScript.

4.7 Other Resources

The MacPython mailing list is an excellent support resource for Python users and developers on the Mac:

http://www.python.org/community/sigs/current/pythonmac-sig/

Another useful resource is the MacPython wiki:

http://wiki.python.org/moin/MacPython

4.4. GUI Programming on the Mac 21

http://pyobjc.sourceforge.net
http://www.tcl.tk
http://www.activestate.com
http://www.wxpython.org
http://www.riverbankcomputing.co.uk/pyqt/
http://undefined.org/python/#py2app
http://appscript.sourceforge.net
http://www.python.org/community/sigs/current/pythonmac-sig/
http://wiki.python.org/moin/MacPython


Using Python, Release 3.1

22 Chapter 4. Using Python on a Macintosh



APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed inter-
actively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within a
pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3 - Automated Python 2 to 3 code translation (in The Python Library Refer-
ence).

abstract base class Abstract Base Classes (abbreviated ABCs) complement duck-typing by providing a way to define
interfaces when other techniques like hasattr() would be clumsy. Python comes with many builtin ABCs
for data structures (in the collections module), numbers (in the numbers module), and streams (in the io
module). You can create your own ABC with the abc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A function
or method may have both positional arguments and keyword arguments in its definition. Positional and keyword
arguments may be variable-length: * accepts or passes (if in the function definition or call) several positional
arguments in a list, while ** does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if
an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the inter-
preter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is faster the second
time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which oper-
ate on instances of the class.

coercion The implicit conversion of an instance of one type to another during an operation which involves two argu-
ments of the same type. For example, int(3.15) converts the floating point number to the integer 3, but in
3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same type
before they can be added or it will raise a TypeError. Without coercion, all arguments of even compatible
types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just
3+4.5.

23

http://www.python.org/~{}guido/


Using Python, Release 3.1

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often written i in mathematics or j in engineering. Python has builtin support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get
access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__()
and __exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language. The term “CPython” is used in con-
texts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions (in The Python Language Reference) and class definitions (in The Python Language Reference) for
more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors’ methods, see Implementing Descriptors (in The Python Language
Reference).

dictionary An associative array, where arbitrary keys are mapped to values. The use of dict closely resembles that
for list, but the keys can be any object with a __hash__() function, not just integers. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or attribute
signature rather than by explicit relationship to some type object (“If it looks like a duck and quacks like a duck,
it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its
flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance().
(Note, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common
to many other languages such as C.

24 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343


Using Python, Release 3.1

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as if. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

finder An object that tries to find the loader for a module. It must implement a method named find_module().
See PEP 302 for details and importlib.abc.Finder for an abstract base class.

floor division Mathematical division discarding any remainder. The floor division operator is //. For example, the
expression 11//4 evaluates to 2 in contrast to the 2.75 returned by float true division.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also argument and method.

__future__ A pseudo module which programmers can use to enable new language features which are not compatible
with the current interpreter.

By importing the __future__ module and evaluating its variables, you can see when a new feature was first
added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to
the caller using a yield statement instead of a return statement. Generator functions often contain one or
more for or while loops which yield elements back to the caller. The function execution is stopped at the
yield keyword (returning the result) and is resumed there when the next element is requested by calling the
__next__() method of the returned iterator.

generator expression An expression that returns a generator. It looks like a normal expression followed by a for
expression defining a loop variable, range, and an optional if expression. The combined expression generates
values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

global interpreter lock The lock used by Python threads to assure that only one thread executes in the CPython
virtual machine at a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter
to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much finer
granularity), but so far none have been successful because performance suffered in the common single-processor
case.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() method). Hashable objects which
compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

25

http://www.python.org/dev/peps/pep-0302


Using Python, Release 3.1

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal,
and their hash value is their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python. Good for beginners, it also serves as clear example code for those
wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable A container object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict and file and objects of any
classes you define with an __iter__() or __getitem__() method. Iterables can be used in a for loop
and in many other places where a sequence is needed (zip(), map(), ...). When an iterable object is passed
as an argument to the builtin function iter(), it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() (or passing it to
the builtin function) next() method return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further
calls to its next() method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places
where other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A
container object (such as a list) produces a fresh new iterator each time you pass it to the iter() function
or use it in a for loop. Attempting this with an iterator will just return the same exhausted iterator object used
in the previous iteration pass, making it appear like an empty container.

More information can be found in Iterator Types (in The Python Library Reference).

keyword argument Arguments which are preceded with a variable_name= in the call. The variable name des-
ignates the local name in the function to which the value is assigned. ** is used to accept or pass a dictionary
of keyword arguments. See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is lambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements are O(1).

26 Appendix A. Glossary



Using Python, Release 3.1

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of
strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all
elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

mapping A container object (such as dict) which supports arbitrary key lookups using the special method
__getitem__().

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in Customizing class creation (in The Python Language Reference).

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and nested
scope.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,
time.localtime() returns a tuple-like object where the year is accessible either with an index such as
t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple(). The latter approach automatically provides extra features such as a self-
documenting representation like Employee(name=’jones’, title=’programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and builtin namespaces as well as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions builtins.open() and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed() or itertools.izip()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

positional argument The arguments assigned to local names inside a function or method, determined by the order
in which they were given in the call. * is used to either accept multiple positional arguments (when in the
definition), or pass several arguments as a list to a function. See argument.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something
in the distant future.) This is also abbreviated “Py3k”.

27

http://www.python.org/dev/peps/pep-0302


Using Python, Release 3.1

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return
the reference count for a particular object.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a len() method that returns the length of the sequence. Some built-in sequence types are
list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(), but
is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (sub-
script) notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
Special method names (in The Python Language Reference).

statement A statement is part of a suite (a “block” of code). A statement is either an expression or a one of several
constructs with a keyword, such as if, while or for.

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

view The objects returned from dict.keys(), dict.values(), and dict.items() are called dictionary
views. They are lazy sequences that will see changes in the underlying dictionary. To force the dictionary view
to become a full list use list(dictview). See Dictionary view objects (in The Python Library Reference).

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by
the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

28 Appendix A. Glossary



APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

Development of the documentation and its toolchain takes place on the docs@python.org mailing list. We’re always
looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

See Reporting Bugs in Python for information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably not complete
– if you feel that you or anyone else should be on this list, please let us know (send email to docs@python.org), and
we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesús Cea Avión, Manuel Balsera, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter,
Alexander Belopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg
Brandl, Keith Briggs, Ian Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario,
Mike Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter
Deutsch, Robert Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson,
Carey Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Hernán Martínez Foffani, Stefan Franke, Jim Fulton, Peter
Funk, Lele Gaifax, Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan Giddy, Matt
Giuca, Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond, Har-
ald Hanche-Olsen, Manus Hand, Gerhard Häring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas Heller, Bern-
hard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hoffleit, Steve Holden,
Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson, Eric Huss, Jeremy Hyl-
ton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas de Jonge, Andreas Jung,
Robert Kern, Jim Kerr, Jan Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel Kozan, Andrew M. Kuch-
ling, Dave Kuhlman, Erno Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph Lefkowitz, Robert Lehmann,
Marc-André Lemburg, Ross Light, Ulf A. Lindgren, Everett Lipman, Mirko Liss, Martin von Löwis, Fredrik Lundh,
Jeff MacDonald, John Machin, Andrew MacIntyre, Vladimir Marangozov, Vincent Marchetti, Laura Matson, Daniel
May, Rebecca McCreary, Doug Mennella, Paolo Milani, Skip Montanaro, Paul Moore, Ross Moore, Sjoerd Mullender,
Dale Nagata, Ng Pheng Siong, Koray Oner, Tomas Oppelstrup, Denis S. Otkidach, Zooko O’Whielacronx, Shriphani

29

http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org


Using Python, Release 3.1

Palakodety, William Park, Joonas Paalasmaa, Harri Pasanen, Bo Peng, Tim Peters, Benjamin Peterson, Christopher
Petrilli, Justin D. Pettit, Chris Phoenix, François Pinard, Paul Prescod, Eric S. Raymond, Edward K. Ream, Terry
J. Reedy, Sean Reifschneider, Bernhard Reiter, Armin Rigo, Wes Rishel, Armin Ronacher, Jim Roskind, Guido van
Rossum, Donald Wallace Rouse II, Mark Russell, Nick Russo, Chris Ryland, Constantina S., Hugh Sasse, Bob Savage,
Scott Schram, Neil Schemenauer, Barry Scott, Joakim Sernbrant, Justin Sheehy, Charlie Shepherd, Michael Simcich,
Ionel Simionescu, Michael Sloan, Gregory P. Smith, Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo,
Frank Stajano, Anthony Starks, Greg Stein, Peter Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim
Tittsler, David Turner, Ville Vainio, Martijn Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster,
Glyn Webster, Bob Weiner, Eddy Welbourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin
Winter, Blake Winton, Dan Wolfe, Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan
Zamazal, Cheng Zhang, Trent Nelson, Michael Foord.

It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

30 Appendix B. About these documents



APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see http://www.python.org/psf/) was formed,
a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

31

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/


Using Python, Release 3.1

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes
2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
2.4.4 2.4.3 2006 PSF yes
2.5 2.4 2006 PSF yes
2.5.1 2.5 2007 PSF yes
2.6 2.5 2008 PSF yes
2.6.1 2.6 2008 PSF yes
3.0 2.6 2008 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 3.1

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 3.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 3.1 alone or in any derivative version, provided, however, that PSF’s
License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2009 Python Software Foundation;
All Rights Reserved” are retained in Python 3.1 alone or in any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 3.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 3.1.

32 Appendix C. History and License



Using Python, Release 3.1

4. PSF is making Python 3.1 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 3.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.1 FOR ANY IN-
CIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 3.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 3.1, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 BEOPEN PYTHON OPEN SOURCE LICENSE
AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

C.2. Terms and conditions for accessing or otherwise using Python 33

http://www.pythonlabs.com/logos.html


Using Python, Release 3.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 Copyright © 1991 - 1995, Stichting
Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT

34 Appendix C. History and License

http://hdl.handle.net/1895.22/1013


Using Python, Release 3.1

SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 35

http://www.math.keio.ac.jp/


Using Python, Release 3.1

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

---------------------------------------------------------------------
/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |

36 Appendix C. History and License

http://www.wide.ad.jp/


Using Python, Release 3.1

| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /
---------------------------------------------------------------------

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 37



Using Python, Release 3.1

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.6 Profiling

The profile and pstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the software
to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

38 Appendix C. History and License



Using Python, Release 3.1

C.3.7 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 39



Using Python, Release 3.1

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3.9 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be

40 Appendix C. History and License



Using Python, Release 3.1

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/****************************************************************
*
* The author of this software is David M. Gay.

*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice

C.3. Licenses and Acknowledgements for Incorporated Software 41

http://www.netlib.org/fp/


Using Python, Release 3.1

* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*
***************************************************************/

42 Appendix C. History and License



APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2008 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

43



Using Python, Release 3.1

44 Appendix D. Copyright



INDEX

Symbols
–help

command line option, 5
–version

command line option, 5
-B

command line option, 5
-E

command line option, 5
-O

command line option, 5
-OO

command line option, 5
-S

command line option, 5
-V

command line option, 5
-W arg

command line option, 6
-b

command line option, 5
-c <command>

command line option, 3
-d

command line option, 5
-h

command line option, 5
-i

command line option, 5
-m <module-name>

command line option, 4
-s

command line option, 5
-u

command line option, 5
-v

command line option, 6
-x

command line option, 6
..., 23
%PATH%, 14

%PYTHONPATH%, 15
__future__, 25
__slots__, 28
>>>, 23
2to3, 23

A
abstract base class, 23
argument, 23
attribute, 23

B
BDFL, 23
bytecode, 23

C
class, 23
coercion, 23
command line option

–help, 5
–version, 5
-B, 5
-E, 5
-O, 5
-OO, 5
-S, 5
-V, 5
-W arg, 6
-b, 5
-c <command>, 3
-d, 5
-h, 5
-i, 5
-m <module-name>, 4
-s, 5
-u, 5
-v, 6
-x, 6

complex number, 23
context manager, 24
CPython, 24

45



Using Python, Release 3.1

D
decorator, 24
descriptor, 24
dictionary, 24
docstring, 24
duck-typing, 24

E
EAFP, 24
environment variable

%PATH%, 14
%PYTHONPATH%, 15
exec_prefix, 10
PATH, 7, 10
prefix, 10
PYTHON*, 5
PYTHONCASEOK, 7
PYTHONDEBUG, 5, 7
PYTHONDONTWRITEBYTECODE, 5, 7
PYTHONDUMPREFS, 8
PYTHONEXECUTABLE, 8
PYTHONHOME, 5, 7
PYTHONINSPECT, 5, 7
PYTHONIOENCODING, 8
PYTHONMALLOCSTATS, 8
PYTHONNOUSERSITE, 8
PYTHONOPTIMIZE, 5, 7
PYTHONPATH, 5, 7, 15, 20
PYTHONSTARTUP, 5, 7
PYTHONTHREADDEBUG, 8
PYTHONUNBUFFERED, 6, 7
PYTHONUSERBASE, 8
PYTHONVERBOSE, 6, 7
PYTHONY2K, 7

exec_prefix, 10
expression, 24
extension module, 25

F
finder, 25
floor division, 25
function, 25

G
garbage collection, 25
generator, 25
generator expression, 25
GIL, 25
global interpreter lock, 25

H
hashable, 25

I
IDLE, 26
immutable, 26
importer, 26
interactive, 26
interpreted, 26
iterable, 26
iterator, 26

K
keyword argument, 26

L
lambda, 26
LBYL, 26
list, 26
list comprehension, 26
loader, 27

M
mapping, 27
metaclass, 27
method, 27
mutable, 27

N
named tuple, 27
namespace, 27
nested scope, 27
new-style class, 27

O
object, 27

P
PATH, 7, 10
positional argument, 27
prefix, 10
Python 3000, 27
Python Enhancement Proposals

PEP 11, 13
PEP 230, 6
PEP 302, 25, 27
PEP 338, 4
PEP 343, 24
PEP 370, 5, 8

PYTHON*, 5
PYTHONDEBUG, 5
PYTHONDONTWRITEBYTECODE, 5
PYTHONHOME, 5, 7
Pythonic, 27
PYTHONINSPECT, 5
PYTHONOPTIMIZE, 5

46 Index



Using Python, Release 3.1

PYTHONPATH, 5, 7, 15, 20
PYTHONSTARTUP, 5
PYTHONUNBUFFERED, 6
PYTHONVERBOSE, 6

R
reference count, 28

S
sequence, 28
slice, 28
special method, 28
statement, 28

T
triple-quoted string, 28
type, 28

V
view, 28
virtual machine, 28

Z
Zen of Python, 28

Index 47


	Command line and environment
	Command line
	Environment variables

	Using Python on Unix platforms
	Getting and installing the latest version of Python
	Building Python
	Python-related paths and files
	Miscellaneous
	Editors

	Using Python on Windows
	Installing Python
	Alternative bundles
	Configuring Python
	Additional modules
	Compiling Python on Windows
	Other resources

	Using Python on a Macintosh
	Getting and Installing MacPython
	The IDE
	Installing Additional Python Packages
	GUI Programming on the Mac
	Distributing Python Applications on the Mac
	Application Scripting
	Other Resources

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

