
Installing Python Modules
Release 2.7.6

Guido van Rossum
Fred L. Drake, Jr., editor

November 10, 2013

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
1.1 Best case: trivial installation . 3
1.2 The new standard: Distutils . 3

2 Standard Build and Install 5
2.1 Platform variations . 5
2.2 Splitting the job up . 5
2.3 How building works . 6
2.4 How installation works . 6

3 Alternate Installation 9
3.1 Alternate installation: the user scheme . 9
3.2 Alternate installation: the home scheme . 10
3.3 Alternate installation: Unix (the prefix scheme) . 10
3.4 Alternate installation: Windows (the prefix scheme) . 11

4 Custom Installation 13
4.1 Modifying Python’s Search Path . 15

5 Distutils Configuration Files 17
5.1 Location and names of config files . 17
5.2 Syntax of config files . 18

6 Building Extensions: Tips and Tricks 19
6.1 Tweaking compiler/linker flags . 19
6.2 Using non-Microsoft compilers on Windows . 20

A Glossary 23

B About these documents 31
B.1 Contributors to the Python Documentation . 31

C History and License 33
C.1 History of the software . 33
C.2 Terms and conditions for accessing or otherwise using Python . 34
C.3 Licenses and Acknowledgements for Incorporated Software . 36

D Copyright 49

Index 51

i

ii

Installing Python Modules, Release 2.7.6

Author Greg Ward

Abstract

This document describes the Python Distribution Utilities (“Distutils”) from the end-user’s point-of-view, de-
scribing how to extend the capabilities of a standard Python installation by building and installing third-party
Python modules and extensions.

CONTENTS 1

Installing Python Modules, Release 2.7.6

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Although Python’s extensive standard library covers many programming needs, there often comes a time when you
need to add some new functionality to your Python installation in the form of third-party modules. This might be
necessary to support your own programming, or to support an application that you want to use and that happens to be
written in Python.

In the past, there has been little support for adding third-party modules to an existing Python installation. With the
introduction of the Python Distribution Utilities (Distutils for short) in Python 2.0, this changed.

This document is aimed primarily at the people who need to install third-party Python modules: end-users and system
administrators who just need to get some Python application running, and existing Python programmers who want to
add some new goodies to their toolbox. You don’t need to know Python to read this document; there will be some brief
forays into using Python’s interactive mode to explore your installation, but that’s it. If you’re looking for information
on how to distribute your own Python modules so that others may use them, see the distutils-index manual.

1.1 Best case: trivial installation

In the best case, someone will have prepared a special version of the module distribution you want to install that is
targeted specifically at your platform and is installed just like any other software on your platform. For example,
the module developer might make an executable installer available for Windows users, an RPM package for users of
RPM-based Linux systems (Red Hat, SuSE, Mandrake, and many others), a Debian package for users of Debian-based
Linux systems, and so forth.

In that case, you would download the installer appropriate to your platform and do the obvious thing with it: run it if
it’s an executable installer, rpm --install it if it’s an RPM, etc. You don’t need to run Python or a setup script,
you don’t need to compile anything—you might not even need to read any instructions (although it’s always a good
idea to do so anyway).

Of course, things will not always be that easy. You might be interested in a module distribution that doesn’t have
an easy-to-use installer for your platform. In that case, you’ll have to start with the source distribution released by
the module’s author/maintainer. Installing from a source distribution is not too hard, as long as the modules are
packaged in the standard way. The bulk of this document is about building and installing modules from standard
source distributions.

1.2 The new standard: Distutils

If you download a module source distribution, you can tell pretty quickly if it was packaged and distributed in the
standard way, i.e. using the Distutils. First, the distribution’s name and version number will be featured prominently
in the name of the downloaded archive, e.g. foo-1.0.tar.gz or widget-0.9.7.zip. Next, the archive will
unpack into a similarly-named directory: foo-1.0 or widget-0.9.7. Additionally, the distribution will contain a

3

Installing Python Modules, Release 2.7.6

setup script setup.py, and a file named README.txt or possibly just README, which should explain that building
and installing the module distribution is a simple matter of running one command from a terminal:

python setup.py install

For Windows, this command should be run from a command prompt window (Start → Accessories):

setup.py install

If all these things are true, then you already know how to build and install the modules you’ve just downloaded: Run
the command above. Unless you need to install things in a non-standard way or customize the build process, you don’t
really need this manual. Or rather, the above command is everything you need to get out of this manual.

4 Chapter 1. Introduction

CHAPTER

TWO

STANDARD BUILD AND INSTALL

As described in section The new standard: Distutils, building and installing a module distribution using the Distutils
is usually one simple command to run from a terminal:

python setup.py install

2.1 Platform variations

You should always run the setup command from the distribution root directory, i.e. the top-level subdirectory that
the module source distribution unpacks into. For example, if you’ve just downloaded a module source distribution
foo-1.0.tar.gz onto a Unix system, the normal thing to do is:

gunzip -c foo-1.0.tar.gz | tar xf - # unpacks into directory foo-1.0
cd foo-1.0
python setup.py install

On Windows, you’d probably download foo-1.0.zip. If you downloaded the archive file to C:\Temp, then it
would unpack into C:\Temp\foo-1.0; you can use either a archive manipulator with a graphical user interface
(such as WinZip) or a command-line tool (such as unzip or pkunzip) to unpack the archive. Then, open a command
prompt window and run:

cd c:\Temp\foo-1.0
python setup.py install

2.2 Splitting the job up

Running setup.py install builds and installs all modules in one run. If you prefer to work incrementally—
especially useful if you want to customize the build process, or if things are going wrong—you can use the setup script
to do one thing at a time. This is particularly helpful when the build and install will be done by different users—for
example, you might want to build a module distribution and hand it off to a system administrator for installation (or
do it yourself, with super-user privileges).

For example, you can build everything in one step, and then install everything in a second step, by invoking the setup
script twice:

python setup.py build
python setup.py install

If you do this, you will notice that running the install command first runs the build command, which—in this case—
quickly notices that it has nothing to do, since everything in the build directory is up-to-date.

5

Installing Python Modules, Release 2.7.6

You may not need this ability to break things down often if all you do is install modules downloaded off the ‘net, but
it’s very handy for more advanced tasks. If you get into distributing your own Python modules and extensions, you’ll
run lots of individual Distutils commands on their own.

2.3 How building works

As implied above, the build command is responsible for putting the files to install into a build directory. By default,
this is build under the distribution root; if you’re excessively concerned with speed, or want to keep the source tree
pristine, you can change the build directory with the --build-base option. For example:

python setup.py build --build-base=/path/to/pybuild/foo-1.0

(Or you could do this permanently with a directive in your system or personal Distutils configuration file; see section
Distutils Configuration Files.) Normally, this isn’t necessary.

The default layout for the build tree is as follows:

--- build/ --- lib/
or
--- build/ --- lib.<plat>/

temp.<plat>/

where <plat> expands to a brief description of the current OS/hardware platform and Python version. The first form,
with just a lib directory, is used for “pure module distributions”—that is, module distributions that include only pure
Python modules. If a module distribution contains any extensions (modules written in C/C++), then the second form,
with two <plat> directories, is used. In that case, the temp.plat directory holds temporary files generated by the
compile/link process that don’t actually get installed. In either case, the lib (or lib.plat) directory contains all
Python modules (pure Python and extensions) that will be installed.

In the future, more directories will be added to handle Python scripts, documentation, binary executables, and whatever
else is needed to handle the job of installing Python modules and applications.

2.4 How installation works

After the build command runs (whether you run it explicitly, or the install command does it for you), the work of the
install command is relatively simple: all it has to do is copy everything under build/lib (or build/lib.plat)
to your chosen installation directory.

If you don’t choose an installation directory—i.e., if you just run setup.py install—then the install command
installs to the standard location for third-party Python modules. This location varies by platform and by how you
built/installed Python itself. On Unix (and Mac OS X, which is also Unix-based), it also depends on whether the
module distribution being installed is pure Python or contains extensions (“non-pure”):

Platform Standard installation location Default value Notes
Unix (pure) prefix/lib/pythonX.Y/site-packages /usr/local/lib/pythonX.Y/site-packages (1)
Unix (non-pure) exec-prefix/lib/pythonX.Y/site-packages /usr/local/lib/pythonX.Y/site-packages (1)
Windows prefix\Lib\site-packages C:\PythonXY\Lib\site-packages (2)

Notes:

1. Most Linux distributions include Python as a standard part of the system, so prefix and exec-prefix are
usually both /usr on Linux. If you build Python yourself on Linux (or any Unix-like system), the default
prefix and exec-prefix are /usr/local.

2. The default installation directory on Windows was C:\Program Files\Python under Python 1.6a1, 1.5.2,
and earlier.

6 Chapter 2. Standard Build and Install

Installing Python Modules, Release 2.7.6

prefix and exec-prefix stand for the directories that Python is installed to, and where it finds its libraries at
run-time. They are always the same under Windows, and very often the same under Unix and Mac OS X. You can
find out what your Python installation uses for prefix and exec-prefix by running Python in interactive mode
and typing a few simple commands. Under Unix, just type python at the shell prompt. Under Windows, choose
Start → Programs → Python X.Y → Python (command line). Once the interpreter is started, you type Python code at
the prompt. For example, on my Linux system, I type the three Python statements shown below, and get the output as
shown, to find out my prefix and exec-prefix:

Python 2.4 (#26, Aug 7 2004, 17:19:02)
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.prefix
’/usr’
>>> sys.exec_prefix
’/usr’

A few other placeholders are used in this document: X.Y stands for the version of Python, for example 2.7;
distname will be replaced by the name of the module distribution being installed. Dots and capitalization are
important in the paths; for example, a value that uses python2.7 on UNIX will typically use Python27 on Win-
dows.

If you don’t want to install modules to the standard location, or if you don’t have permission to write there, then you
need to read about alternate installations in section Alternate Installation. If you want to customize your installation
directories more heavily, see section Custom Installation on custom installations.

2.4. How installation works 7

Installing Python Modules, Release 2.7.6

8 Chapter 2. Standard Build and Install

CHAPTER

THREE

ALTERNATE INSTALLATION

Often, it is necessary or desirable to install modules to a location other than the standard location for third-party Python
modules. For example, on a Unix system you might not have permission to write to the standard third-party module
directory. Or you might wish to try out a module before making it a standard part of your local Python installation.
This is especially true when upgrading a distribution already present: you want to make sure your existing base of
scripts still works with the new version before actually upgrading.

The Distutils install command is designed to make installing module distributions to an alternate location simple and
painless. The basic idea is that you supply a base directory for the installation, and the install command picks a set of
directories (called an installation scheme) under this base directory in which to install files. The details differ across
platforms, so read whichever of the following sections applies to you.

Note that the various alternate installation schemes are mutually exclusive: you can pass --user, or --home, or
--prefix and --exec-prefix, or --install-base and --install-platbase, but you can’t mix from
these groups.

3.1 Alternate installation: the user scheme

This scheme is designed to be the most convenient solution for users that don’t have write permission to the global
site-packages directory or don’t want to install into it. It is enabled with a simple option:

python setup.py install --user

Files will be installed into subdirectories of site.USER_BASE (written as userbase hereafter). This scheme
installs pure Python modules and extension modules in the same location (also known as site.USER_SITE). Here
are the values for UNIX, including Mac OS X:

Type of file Installation directory
modules userbase/lib/pythonX.Y/site-packages
scripts userbase/bin
data userbase
C headers userbase/include/pythonX.Y/distname

And here are the values used on Windows:

Type of file Installation directory
modules userbase\PythonXY\site-packages
scripts userbase\Scripts
data userbase
C headers userbase\PythonXY\Include\distname

The advantage of using this scheme compared to the other ones described below is that the user site-packages directory
is under normal conditions always included in sys.path (see site for more information), which means that there

9

Installing Python Modules, Release 2.7.6

is no additional step to perform after running the setup.py script to finalize the installation.

The build_ext command also has a --user option to add userbase/include to the compiler search path for
header files and userbase/lib to the compiler search path for libraries as well as to the runtime search path for
shared C libraries (rpath).

3.2 Alternate installation: the home scheme

The idea behind the “home scheme” is that you build and maintain a personal stash of Python modules. This scheme’s
name is derived from the idea of a “home” directory on Unix, since it’s not unusual for a Unix user to make their home
directory have a layout similar to /usr/ or /usr/local/. This scheme can be used by anyone, regardless of the
operating system they are installing for.

Installing a new module distribution is as simple as

python setup.py install --home=<dir>

where you can supply any directory you like for the --home option. On Unix, lazy typists can just type a tilde (~);
the install command will expand this to your home directory:

python setup.py install --home=~

To make Python find the distributions installed with this scheme, you may have to modify Python’s search path or edit
sitecustomize (see site) to call site.addsitedir() or edit sys.path.

The --home option defines the installation base directory. Files are installed to the following directories under the
installation base as follows:

Type of file Installation directory
modules home/lib/python
scripts home/bin
data home
C headers home/include/python/distname

(Mentally replace slashes with backslashes if you’re on Windows.) Changed in version 2.4: The --home option used
to be supported only on Unix.

3.3 Alternate installation: Unix (the prefix scheme)

The “prefix scheme” is useful when you wish to use one Python installation to perform the build/install (i.e., to run the
setup script), but install modules into the third-party module directory of a different Python installation (or something
that looks like a different Python installation). If this sounds a trifle unusual, it is—that’s why the user and home
schemes come before. However, there are at least two known cases where the prefix scheme will be useful.

First, consider that many Linux distributions put Python in /usr, rather than the more traditional /usr/local.
This is entirely appropriate, since in those cases Python is part of “the system” rather than a local add-on. However, if
you are installing Python modules from source, you probably want them to go in /usr/local/lib/python2.X
rather than /usr/lib/python2.X. This can be done with

/usr/bin/python setup.py install --prefix=/usr/local

Another possibility is a network filesystem where the name used to write to a remote directory is different from
the name used to read it: for example, the Python interpreter accessed as /usr/local/bin/python might
search for modules in /usr/local/lib/python2.X, but those modules would have to be installed to, say,
/mnt/@server/export/lib/python2.X. This could be done with

/usr/local/bin/python setup.py install --prefix=/mnt/@server/export

10 Chapter 3. Alternate Installation

Installing Python Modules, Release 2.7.6

In either case, the --prefix option defines the installation base, and the --exec-prefix option defines the
platform-specific installation base, which is used for platform-specific files. (Currently, this just means non-pure
module distributions, but could be expanded to C libraries, binary executables, etc.) If --exec-prefix is not
supplied, it defaults to --prefix. Files are installed as follows:

Type of file Installation directory
Python modules prefix/lib/pythonX.Y/site-packages
extension modules exec-prefix/lib/pythonX.Y/site-packages
scripts prefix/bin
data prefix
C headers prefix/include/pythonX.Y/distname

There is no requirement that --prefix or --exec-prefix actually point to an alternate Python installation; if
the directories listed above do not already exist, they are created at installation time.

Incidentally, the real reason the prefix scheme is important is simply that a standard Unix installation uses the
prefix scheme, but with --prefix and --exec-prefix supplied by Python itself as sys.prefix and
sys.exec_prefix. Thus, you might think you’ll never use the prefix scheme, but every time you run python
setup.py install without any other options, you’re using it.

Note that installing extensions to an alternate Python installation has no effect on how those extensions are built: in
particular, the Python header files (Python.h and friends) installed with the Python interpreter used to run the setup
script will be used in compiling extensions. It is your responsibility to ensure that the interpreter used to run extensions
installed in this way is compatible with the interpreter used to build them. The best way to do this is to ensure that
the two interpreters are the same version of Python (possibly different builds, or possibly copies of the same build).
(Of course, if your --prefix and --exec-prefix don’t even point to an alternate Python installation, this is
immaterial.)

3.4 Alternate installation: Windows (the prefix scheme)

Windows has no concept of a user’s home directory, and since the standard Python installation under Windows is
simpler than under Unix, the --prefix option has traditionally been used to install additional packages in separate
locations on Windows.

python setup.py install --prefix="\Temp\Python"

to install modules to the \Temp\Python directory on the current drive.

The installation base is defined by the --prefix option; the --exec-prefix option is not supported under
Windows, which means that pure Python modules and extension modules are installed into the same location. Files
are installed as follows:

Type of file Installation directory
modules prefix\Lib\site-packages
scripts prefix\Scripts
data prefix
C headers prefix\Include\distname

3.4. Alternate installation: Windows (the prefix scheme) 11

Installing Python Modules, Release 2.7.6

12 Chapter 3. Alternate Installation

CHAPTER

FOUR

CUSTOM INSTALLATION

Sometimes, the alternate installation schemes described in section Alternate Installation just don’t do what you want.
You might want to tweak just one or two directories while keeping everything under the same base directory, or you
might want to completely redefine the installation scheme. In either case, you’re creating a custom installation scheme.

To create a custom installation scheme, you start with one of the alternate schemes and override some of the installation
directories used for the various types of files, using these options:

Type of file Override option
Python modules --install-purelib
extension modules --install-platlib
all modules --install-lib
scripts --install-scripts
data --install-data
C headers --install-headers

These override options can be relative, absolute, or explicitly defined in terms of one of the installation base directories.
(There are two installation base directories, and they are normally the same— they only differ when you use the Unix
“prefix scheme” and supply different --prefix and --exec-prefix options; using --install-lib will
override values computed or given for --install-purelib and --install-platlib, and is recommended
for schemes that don’t make a difference between Python and extension modules.)

For example, say you’re installing a module distribution to your home directory under Unix—but you want
scripts to go in ~/scripts rather than ~/bin. As you might expect, you can override this directory with the
--install-scripts option; in this case, it makes most sense to supply a relative path, which will be interpreted
relative to the installation base directory (your home directory, in this case):

python setup.py install --home=~ --install-scripts=scripts

Another Unix example: suppose your Python installation was built and installed with a prefix of
/usr/local/python, so under a standard installation scripts will wind up in /usr/local/python/bin.
If you want them in /usr/local/bin instead, you would supply this absolute directory for the
--install-scripts option:

python setup.py install --install-scripts=/usr/local/bin

(This performs an installation using the “prefix scheme,” where the prefix is whatever your Python interpreter was
installed with— /usr/local/python in this case.)

If you maintain Python on Windows, you might want third-party modules to live in a subdirectory of prefix, rather
than right in prefix itself. This is almost as easy as customizing the script installation directory —you just have to
remember that there are two types of modules to worry about, Python and extension modules, which can conveniently
be both controlled by one option:

python setup.py install --install-lib=Site

13

Installing Python Modules, Release 2.7.6

The specified installation directory is relative to prefix. Of course, you also have to ensure that this directory is in
Python’s module search path, such as by putting a .pth file in a site directory (see site). See section Modifying
Python’s Search Path to find out how to modify Python’s search path.

If you want to define an entire installation scheme, you just have to supply all of the installation directory options. The
recommended way to do this is to supply relative paths; for example, if you want to maintain all Python module-related
files under python in your home directory, and you want a separate directory for each platform that you use your
home directory from, you might define the following installation scheme:

python setup.py install --home=~ \
--install-purelib=python/lib \
--install-platlib=python/lib.$PLAT \
--install-scripts=python/scripts
--install-data=python/data

or, equivalently,

python setup.py install --home=~/python \
--install-purelib=lib \
--install-platlib=’lib.$PLAT’ \
--install-scripts=scripts
--install-data=data

$PLAT is not (necessarily) an environment variable—it will be expanded by the Distutils as it parses your command
line options, just as it does when parsing your configuration file(s).

Obviously, specifying the entire installation scheme every time you install a new module distribution would be very
tedious. Thus, you can put these options into your Distutils config file (see section Distutils Configuration Files):

[install]
install-base=$HOME
install-purelib=python/lib
install-platlib=python/lib.$PLAT
install-scripts=python/scripts
install-data=python/data

or, equivalently,

[install]
install-base=$HOME/python
install-purelib=lib
install-platlib=lib.$PLAT
install-scripts=scripts
install-data=data

Note that these two are not equivalent if you supply a different installation base directory when you run the setup
script. For example,

python setup.py install --install-base=/tmp

would install pure modules to /tmp/python/lib in the first case, and to /tmp/lib in the second case. (For the
second case, you probably want to supply an installation base of /tmp/python.)

You probably noticed the use of $HOME and $PLAT in the sample configuration file input. These are Distutils configu-
ration variables, which bear a strong resemblance to environment variables. In fact, you can use environment variables
in config files on platforms that have such a notion but the Distutils additionally define a few extra variables that may
not be in your environment, such as $PLAT. (And of course, on systems that don’t have environment variables, such
as Mac OS 9, the configuration variables supplied by the Distutils are the only ones you can use.) See section Distutils
Configuration Files for details.

14 Chapter 4. Custom Installation

Installing Python Modules, Release 2.7.6

4.1 Modifying Python’s Search Path

When the Python interpreter executes an import statement, it searches for both Python code and extension modules
along a search path. A default value for the path is configured into the Python binary when the interpreter is built. You
can determine the path by importing the sys module and printing the value of sys.path.

$ python
Python 2.2 (#11, Oct 3 2002, 13:31:27)
[GCC 2.96 20000731 (Red Hat Linux 7.3 2.96-112)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.path
[’’, ’/usr/local/lib/python2.3’, ’/usr/local/lib/python2.3/plat-linux2’,
’/usr/local/lib/python2.3/lib-tk’, ’/usr/local/lib/python2.3/lib-dynload’,
’/usr/local/lib/python2.3/site-packages’]

>>>

The null string in sys.path represents the current working directory.

The expected convention for locally installed packages is to put them in the .../site-packages/ directory, but
you may want to install Python modules into some arbitrary directory. For example, your site may have a conven-
tion of keeping all software related to the web server under /www. Add-on Python modules might then belong in
/www/python, and in order to import them, this directory must be added to sys.path. There are several different
ways to add the directory.

The most convenient way is to add a path configuration file to a directory that’s already on Python’s path, usually to the
.../site-packages/ directory. Path configuration files have an extension of .pth, and each line must contain
a single path that will be appended to sys.path. (Because the new paths are appended to sys.path, modules in
the added directories will not override standard modules. This means you can’t use this mechanism for installing fixed
versions of standard modules.)

Paths can be absolute or relative, in which case they’re relative to the directory containing the .pth file. See the
documentation of the site module for more information.

A slightly less convenient way is to edit the site.py file in Python’s standard library, and modify sys.path.
site.py is automatically imported when the Python interpreter is executed, unless the -S switch is supplied to
suppress this behaviour. So you could simply edit site.py and add two lines to it:

import sys
sys.path.append(’/www/python/’)

However, if you reinstall the same major version of Python (perhaps when upgrading from 2.2 to 2.2.2, for example)
site.py will be overwritten by the stock version. You’d have to remember that it was modified and save a copy
before doing the installation.

There are two environment variables that can modify sys.path.

PYTHONHOME sets an alternate value for the prefix of the Python installation. For example, if PYTHONHOME
is set to /www/python, the search path will be set to [”, ’/www/python/lib/pythonX.Y/’,
’/www/python/lib/pythonX.Y/plat-linux2’, ...].

The PYTHONPATH variable can be set to a list of paths that will be added to the beginning of sys.path. For
example, if PYTHONPATH is set to /www/python:/opt/py, the search path will begin with [’/www/python’,
’/opt/py’]. (Note that directories must exist in order to be added to sys.path; the site module removes paths
that don’t exist.)

Finally, sys.path is just a regular Python list, so any Python application can modify it by adding or removing
entries.

4.1. Modifying Python’s Search Path 15

Installing Python Modules, Release 2.7.6

16 Chapter 4. Custom Installation

CHAPTER

FIVE

DISTUTILS CONFIGURATION FILES

As mentioned above, you can use Distutils configuration files to record personal or site preferences for any Distutils
options. That is, any option to any command can be stored in one of two or three (depending on your platform)
configuration files, which will be consulted before the command-line is parsed. This means that configuration files
will override default values, and the command-line will in turn override configuration files. Furthermore, if multiple
configuration files apply, values from “earlier” files are overridden by “later” files.

5.1 Location and names of config files

The names and locations of the configuration files vary slightly across platforms. On Unix and Mac OS X, the three
configuration files (in the order they are processed) are:

Type of file Location and filename Notes
system prefix/lib/pythonver/distutils/distutils.cfg (1)
personal $HOME/.pydistutils.cfg (2)
local setup.cfg (3)

And on Windows, the configuration files are:

Type of file Location and filename Notes
system prefix\Lib\distutils\distutils.cfg (4)
personal %HOME%\pydistutils.cfg (5)
local setup.cfg (3)

On all platforms, the “personal” file can be temporarily disabled by passing the –no-user-cfg option.

Notes:

1. Strictly speaking, the system-wide configuration file lives in the directory where the Distutils are installed;
under Python 1.6 and later on Unix, this is as shown. For Python 1.5.2, the Distutils will normally be installed
to prefix/lib/python1.5/site-packages/distutils, so the system configuration file should be
put there under Python 1.5.2.

2. On Unix, if the HOME environment variable is not defined, the user’s home directory will be determined with
the getpwuid() function from the standard pwd module. This is done by the os.path.expanduser()
function used by Distutils.

3. I.e., in the current directory (usually the location of the setup script).

4. (See also note (1).) Under Python 1.6 and later, Python’s default “installation prefix” is C:\Python,
so the system configuration file is normally C:\Python\Lib\distutils\distutils.cfg.
Under Python 1.5.2, the default prefix was C:\Program Files\Python, and the Distutils
were not part of the standard library—so the system configuration file would be C:\Program
Files\Python\distutils\distutils.cfg in a standard Python 1.5.2 installation under Windows.

17

Installing Python Modules, Release 2.7.6

5. On Windows, if the HOME environment variable is not defined,

USERPROFILE then HOMEDRIVE and HOMEPATH will be tried. This is done by the
os.path.expanduser() function used by Distutils.

5.2 Syntax of config files

The Distutils configuration files all have the same syntax. The config files are grouped into sections. There is one
section for each Distutils command, plus a global section for global options that affect every command. Each
section consists of one option per line, specified as option=value.

For example, the following is a complete config file that just forces all commands to run quietly by default:

[global]
verbose=0

If this is installed as the system config file, it will affect all processing of any Python module distribution by any user
on the current system. If it is installed as your personal config file (on systems that support them), it will affect only
module distributions processed by you. And if it is used as the setup.cfg for a particular module distribution, it
affects only that distribution.

You could override the default “build base” directory and make the build* commands always forcibly rebuild all files
with the following:

[build]
build-base=blib
force=1

which corresponds to the command-line arguments

python setup.py build --build-base=blib --force

except that including the build command on the command-line means that command will be run. Including a particular
command in config files has no such implication; it only means that if the command is run, the options in the config
file will apply. (Or if other commands that derive values from it are run, they will use the values in the config file.)

You can find out the complete list of options for any command using the --help option, e.g.:

python setup.py build --help

and you can find out the complete list of global options by using --help without a command:

python setup.py --help

See also the “Reference” section of the “Distributing Python Modules” manual.

18 Chapter 5. Distutils Configuration Files

CHAPTER

SIX

BUILDING EXTENSIONS: TIPS AND
TRICKS

Whenever possible, the Distutils try to use the configuration information made available by the Python interpreter used
to run the setup.py script. For example, the same compiler and linker flags used to compile Python will also be
used for compiling extensions. Usually this will work well, but in complicated situations this might be inappropriate.
This section discusses how to override the usual Distutils behaviour.

6.1 Tweaking compiler/linker flags

Compiling a Python extension written in C or C++ will sometimes require specifying custom flags for the compiler
and linker in order to use a particular library or produce a special kind of object code. This is especially true if the
extension hasn’t been tested on your platform, or if you’re trying to cross-compile Python.

In the most general case, the extension author might have foreseen that compiling the extensions would be complicated,
and provided a Setup file for you to edit. This will likely only be done if the module distribution contains many
separate extension modules, or if they often require elaborate sets of compiler flags in order to work.

A Setup file, if present, is parsed in order to get a list of extensions to build. Each line in a Setup describes a single
module. Lines have the following structure:

module ... [sourcefile ...] [cpparg ...] [library ...]

Let’s examine each of the fields in turn.

• module is the name of the extension module to be built, and should be a valid Python identifier. You can’t just
change this in order to rename a module (edits to the source code would also be needed), so this should be left
alone.

• sourcefile is anything that’s likely to be a source code file, at least judging by the filename. Filenames ending
in .c are assumed to be written in C, filenames ending in .C, .cc, and .c++ are assumed to be C++, and
filenames ending in .m or .mm are assumed to be in Objective C.

• cpparg is an argument for the C preprocessor, and is anything starting with -I, -D, -U or -C.

• library is anything ending in .a or beginning with -l or -L.

If a particular platform requires a special library on your platform, you can add it by editing the Setup file and
running python setup.py build. For example, if the module defined by the line

foo foomodule.c

must be linked with the math library libm.a on your platform, simply add -lm to the line:

foo foomodule.c -lm

19

Installing Python Modules, Release 2.7.6

Arbitrary switches intended for the compiler or the linker can be supplied with the -Xcompiler arg and -Xlinker
arg options:

foo foomodule.c -Xcompiler -o32 -Xlinker -shared -lm

The next option after -Xcompiler and -Xlinker will be appended to the proper command line, so in the above
example the compiler will be passed the -o32 option, and the linker will be passed -shared. If a compiler option
requires an argument, you’ll have to supply multiple -Xcompiler options; for example, to pass -x c++ the Setup
file would have to contain -Xcompiler -x -Xcompiler c++.

Compiler flags can also be supplied through setting the CFLAGS environment variable. If set, the contents of CFLAGS
will be added to the compiler flags specified in the Setup file.

6.2 Using non-Microsoft compilers on Windows

6.2.1 Borland/CodeGear C++

This subsection describes the necessary steps to use Distutils with the Borland C++ compiler version 5.5. First you
have to know that Borland’s object file format (OMF) is different from the format used by the Python version you can
download from the Python or ActiveState Web site. (Python is built with Microsoft Visual C++, which uses COFF as
the object file format.) For this reason you have to convert Python’s library python25.lib into the Borland format.
You can do this as follows:

coff2omf python25.lib python25_bcpp.lib

The coff2omf program comes with the Borland compiler. The file python25.lib is in the Libs directory of
your Python installation. If your extension uses other libraries (zlib, ...) you have to convert them too.

The converted files have to reside in the same directories as the normal libraries.

How does Distutils manage to use these libraries with their changed names? If the extension needs a library (eg. foo)
Distutils checks first if it finds a library with suffix _bcpp (eg. foo_bcpp.lib) and then uses this library. In the
case it doesn’t find such a special library it uses the default name (foo.lib.) 1

To let Distutils compile your extension with Borland C++ you now have to type:

python setup.py build --compiler=bcpp

If you want to use the Borland C++ compiler as the default, you could specify this in your personal or system-wide
configuration file for Distutils (see section Distutils Configuration Files.)

See Also:

C++Builder Compiler Information about the free C++ compiler from Borland, including links to the download
pages.

Creating Python Extensions Using Borland’s Free Compiler Document describing how to use Borland’s free
command-line C++ compiler to build Python.

6.2.2 GNU C / Cygwin / MinGW

This section describes the necessary steps to use Distutils with the GNU C/C++ compilers in their Cygwin and MinGW
distributions. 2 For a Python interpreter that was built with Cygwin, everything should work without any of these
following steps.

1 This also means you could replace all existing COFF-libraries with OMF-libraries of the same name.
2 Check http://sources.redhat.com/cygwin/ and http://www.mingw.org/ for more information

20 Chapter 6. Building Extensions: Tips and Tricks

http://www.codegear.com/downloads/free/cppbuilder
http://www.cyberus.ca/~g_will/pyExtenDL.shtml
http://sources.redhat.com/cygwin/
http://www.mingw.org/

Installing Python Modules, Release 2.7.6

Not all extensions can be built with MinGW or Cygwin, but many can. Extensions most likely to not work are those
that use C++ or depend on Microsoft Visual C extensions.

To let Distutils compile your extension with Cygwin you have to type:

python setup.py build --compiler=cygwin

and for Cygwin in no-cygwin mode 3 or for MinGW type:

python setup.py build --compiler=mingw32

If you want to use any of these options/compilers as default, you should consider writing it in your personal or system-
wide configuration file for Distutils (see section Distutils Configuration Files.)

Older Versions of Python and MinGW

The following instructions only apply if you’re using a version of Python inferior to 2.4.1 with a MinGW inferior to
3.0.0 (with binutils-2.13.90-20030111-1).

These compilers require some special libraries. This task is more complex than for Borland’s C++, because there is
no program to convert the library. First you have to create a list of symbols which the Python DLL exports. (You can
find a good program for this task at http://sourceforge.net/projects/mingw/files/MinGW/Extension/pexports/).

pexports python25.dll >python25.def

The location of an installed python25.dll will depend on the installation options and the version and language of
Windows. In a “just for me” installation, it will appear in the root of the installation directory. In a shared installation,
it will be located in the system directory.

Then you can create from these information an import library for gcc.

/cygwin/bin/dlltool --dllname python25.dll --def python25.def --output-lib libpython25.a

The resulting library has to be placed in the same directory as python25.lib. (Should be the libs directory under
your Python installation directory.)

If your extension uses other libraries (zlib,...) you might have to convert them too. The converted files have to reside
in the same directories as the normal libraries do.

See Also:

Building Python modules on MS Windows platform with MinGW Information about building the required li-
braries for the MinGW environment.

3 Then you have no POSIX emulation available, but you also don’t need cygwin1.dll.

6.2. Using non-Microsoft compilers on Windows 21

http://sourceforge.net/projects/mingw/files/MinGW/Extension/pexports/
http://www.zope.org/Members/als/tips/win32_mingw_modules

Installing Python Modules, Release 2.7.6

22 Chapter 6. Building Extensions: Tips and Tricks

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within a
pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when
other techniques like hasattr() would be clumsy or subtly wrong (for example with magic methods).
ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance() and issubclass(); see the abc module documentation. Python comes with many
built-in ABCs for data structures (in the collections module), numbers (in the numbers module), and
streams (in the io module). You can create your own ABCs with the abc module.

argument A value passed to a function (or method) when calling the function. There are two types of arguments:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following
calls to complex():

complex(real=3, imag=5)
complex(**{’real’: 3, ’imag’: 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry and the FAQ question on the difference between arguments and parame-
ters.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if
an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

23

http://www.python.org/~guido/

Installing Python Modules, Release 2.7.6

bytes-like object An object that supports the buffer protocol, like str, bytearray or memoryview. Bytes-like
objects can be used for various operations that expect binary data, such as compression, saving to a binary file
or sending over a socket. Some operations need the binary data to be mutable, in which case not all bytes-like
objects can apply.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is
faster the second time (recompilation from source to bytecode can be avoided). This “intermediate language” is
said to run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that
bytecodes are not expected to work between different Python virtual machines, nor to be stable between Python
releases.

A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed
in Python 3.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3,
but in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same
type before they can be added or it will raise a TypeError. Coercion between two operands can be performed
with the coerce built-in function; thus, 3+4.5 is equivalent to calling operator.add(*coerce(3,
4.5)) and results in operator.add(3.0, 4.5). Without coercion, all arguments of even compatible
types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just
3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often written i in mathematics or j in engineering. Python has built-in support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get
access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__()
and __exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

24 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343
http://python.org

Installing Python Modules, Release 2.7.6

descriptor Any new-style object which defines the methods __get__(), __set__(), or __delete__().
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but
if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep
understanding of Python because they are the basis for many features including functions, methods, properties,
class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must
be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility
by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note,
however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as print or if. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()
function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module. It must implement a method named find_module().
See PEP 302 for details.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note
that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also parameter, method, and the function section.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the module in which
it is executed had enabled true division by executing:

25

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0238

Installing Python Modules, Release 2.7.6

from __future__ import division

the expression 11/4 would evaluate to 2.75. By importing the __future__ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series a values usable in a for-loop or that can be retrieved one at a time with the
next() function. Each yield temporarily suspends processing, remembering the location execution state
(including local variables and pending try-statements). When the generator resumes, it picks-up where it left-off
(in contrast to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for
expression defining a loop variable, range, and an optional if expression. The combined expression generates
values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes
Python bytecode at a time. This simplifies the CPython implementation by making the object model (including
critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter
makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by
multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity)
have not been successful because performance suffered in the common single-processor case. It is believed
that overcoming this performance issue would make the implementation much more complicated and therefore
costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an __eq__() or __cmp__()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal
(except with themselves), and their hash value is their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently eval-
uates to 2 in contrast to the 2.75 returned by float division. Also called floor division. When dividing two

26 Appendix A. Glossary

Installing Python Modules, Release 2.7.6

integers the outcome will always be another integer (having the floor function applied to it). However, if one of
the operands is another numeric type (such as a float), the result will be coerced (see coercion) to a common
type. For example, an integer divided by a float will result in a float value, possibly with a decimal fraction.
Integer division can be forced by using the // operator instead of the / operator. See also __future__.

importing The process by which Python code in one module is made available to Python code in another module.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types
(such as list, str, and tuple) and some non-sequence types like dict and file and objects of any classes
you define with an __iter__() or __getitem__() method. Iterables can be used in a for loop and in
many other places where a sequence is needed (zip(), map(), ...). When an iterable object is passed as an
argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one pass
over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s next() method return successive
items in the stream. When no more data are available a StopIteration exception is raised instead. At this
point, the iterator object is exhausted and any further calls to its next() method just raise StopIteration
again. Iterators are required to have an __iter__() method that returns the iterator object itself so every
iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception
is code which attempts multiple iteration passes. A container object (such as a list) produces a fresh new
iterator each time you pass it to the iter() function or use it in a for loop. Attempting this with an iterator
will just return the same exhausted iterator object used in the previous iteration pass, making it appear like an
empty container.

More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.nsmallest(), heapq.nlargest(), and
itertools.groupby().

There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a lambda expression
such as lambda r: (r[0], r[2]). Also, the operator module provides three key function construc-
tors: attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples
of how to create and use key functions.

keyword argument See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is lambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

27

Installing Python Modules, Release 2.7.6

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the look-
ing” and “the leaping”. For example, the code, if key in mapping: return mapping[key] can
fail if another thread removes key from mapping after the test, but before the lookup. This issue can be solved
with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of
strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all
elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details.

mapping A container object that supports arbitrary key lookups and implements the methods spec-
ified in the Mapping or MutableMapping abstract base classes. Examples include dict,
collections.defaultdict, collections.OrderedDict and collections.Counter.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and nested
scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing
arbitrary Python objects. Modules are loaded into Python by the process of importing.

See also package.

MRO See method resolution order.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,
time.localtime() returns a tuple-like object where the year is accessible either with an index such as
t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple(). The latter approach automatically provides extra features such as a self-
documenting representation like Employee(name=’jones’, title=’programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support mod-
ularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed() or itertools.izip()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

28 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0302
http://www.python.org/download/releases/2.3/mro/

Installing Python Modules, Release 2.7.6

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style class Any class which inherits from object. This includes all built-in types like list and dict.
Only new-style classes can use Python’s newer, versatile features like __slots__, descriptors, properties, and
__getattribute__().

More information can be found in newstyle.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with an __path__ attribute.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, argu-
ments) that the function can accept. There are four types of parameters:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no syntax for
defining positional-only parameters. However, some built-in functions have positional-only parameters
(e.g. abs()).

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional argu-
ments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
and the function section.

positional argument See argument.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something
in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

29

Installing Python Modules, Release 2.7.6

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return
the reference count for a particular object.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a len() method that returns the length of the sequence. Some built-in sequence types are
list, str, tuple, and unicode. Note that dict also supports __getitem__() and __len__(), but
is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation,
[] with colons between numbers when several are given, such as in variable_name[1:3:5]. The
bracket (subscript) notation uses slice objects internally (or in older versions, __getslice__() and
__setslice__()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple in that
elements can either be accessed either by index or as an attribute. However, they do not have any of the named
tuple methods like _make() or _asdict(). Examples of struct sequences include sys.float_info and
the return value of os.stat().

triple-quoted string A string which is bound by three instances of either a quotation mark (”) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a
line: the Unix end-of-line convention ’\n’, the Windows convention ’\r\n’, and the old Macintosh conven-
tion ’\r’. See PEP 278 and PEP 3116, as well as str.splitlines() for an additional use.

view The objects returned from dict.viewkeys(), dict.viewvalues(), and dict.viewitems() are
called dictionary views. They are lazy sequences that will see changes in the underlying dictionary. To force the
dictionary view to become a full list use list(dictview). See dict-views.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

30 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0278
http://www.python.org/dev/peps/pep-3116

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

Development of the documentation and its toolchain takes place on the docs@python.org mailing list. We’re always
looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

See reporting-bugs for information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation.
See Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

31

http://docutils.sf.net/rst.html
http://sphinx.pocoo.org/
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
http://hg.python.org/cpython/file/2.7/Misc/ACKS

Installing Python Modules, Release 2.7.6

32 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see http://www.python.org/psf/) was formed,
a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

33

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

Installing Python Modules, Release 2.7.6

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.7.6

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 2.7.6 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.7.6 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2013 Python Software
Foundation; All Rights Reserved” are retained in Python 2.7.6 alone or in any derivative version prepared by
Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.7.6 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.7.6.

4. PSF is making Python 2.7.6 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.7.6 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.6 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.6, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.7.6, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

34 Appendix C. History and License

Installing Python Modules, Release 2.7.6

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant

C.2. Terms and conditions for accessing or otherwise using Python 35

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

Installing Python Modules, Release 2.7.6

permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-
mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

36 Appendix C. History and License

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Installing Python Modules, Release 2.7.6

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 37

http://www.wide.ad.jp/

Installing Python Modules, Release 2.7.6

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

38 Appendix C. History and License

Installing Python Modules, Release 2.7.6

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR

C.3. Licenses and Acknowledgements for Incorporated Software 39

Installing Python Modules, Release 2.7.6

CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

40 Appendix C. History and License

Installing Python Modules, Release 2.7.6

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in

C.3. Licenses and Acknowledgements for Incorporated Software 41

Installing Python Modules, Release 2.7.6

all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

42 Appendix C. History and License

Installing Python Modules, Release 2.7.6

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.

*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice

* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows installers for Python include a copy of the OpenSSL libraries, so we
include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL

C.3. Licenses and Acknowledgements for Incorporated Software 43

http://www.netlib.org/fp/

Installing Python Modules, Release 2.7.6

please contact openssl-core@openssl.org.

OpenSSL License

/* ==

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*
* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*
* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*
* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact

* openssl-core@openssl.org.

*
* 5. Products derived from this software may not be called "OpenSSL"

* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*
* 6. Redistributions of any form whatsoever must retain the following

* acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

* ==

*
* This product includes cryptographic software written by Eric Young

44 Appendix C. History and License

Installing Python Modules, Release 2.7.6

* (eay@cryptsoft.com). This product includes software written by Tim

* Hudson (tjh@cryptsoft.com).

*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*
* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

*
* This library is free for commercial and non-commercial use as long as

* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation

* included with this distribution is covered by the same copyright terms

* except that the holder is Tim Hudson (tjh@cryptsoft.com).

*
* Copyright remains Eric Young’s, and as such any Copyright notices in

* the code are not to be removed.

* If this package is used in a product, Eric Young should be given attribution

* as the author of the parts of the library used.

* This can be in the form of a textual message at program startup or

* in documentation (online or textual) provided with the package.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word ’cryptographic’ can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4. If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:

* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

C.3. Licenses and Acknowledgements for Incorporated Software 45

Installing Python Modules, Release 2.7.6

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*
* The licence and distribution terms for any publically available version or

* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘‘Software’’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

46 Appendix C. History and License

Installing Python Modules, Release 2.7.6

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenses and Acknowledgements for Incorporated Software 47

Installing Python Modules, Release 2.7.6

48 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2013 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

49

Installing Python Modules, Release 2.7.6

50 Appendix D. Copyright

INDEX

Symbols
..., 23
__future__, 25
__slots__, 30
>>>, 23
2to3, 23

A
abstract base class, 23
argument, 23
attribute, 23

B
BDFL, 23
bytecode, 24
bytes-like object, 23

C
CFLAGS, 20
class, 24
classic class, 24
coercion, 24
complex number, 24
context manager, 24
CPython, 24

D
decorator, 24
descriptor, 24
dictionary, 25
docstring, 25
duck-typing, 25

E
EAFP, 25
environment variable

CFLAGS, 20
HOME, 17, 18
HOMEDRIVE, 18
HOMEPATH, 18
PYTHONHOME, 15

PYTHONPATH, 15
USERPROFILE, 18

expression, 25
extension module, 25

F
file object, 25
file-like object, 25
finder, 25
floor division, 25
function, 25

G
garbage collection, 26
generator, 26
generator expression, 26
GIL, 26
global interpreter lock, 26

H
hashable, 26
HOME, 17, 18
HOMEDRIVE, 18
HOMEPATH, 18

I
IDLE, 26
immutable, 26
importer, 27
importing, 27
integer division, 26
interactive, 27
interpreted, 27
iterable, 27
iterator, 27

K
key function, 27
keyword argument, 27

L
lambda, 27

51

Installing Python Modules, Release 2.7.6

LBYL, 27
list, 28
list comprehension, 28
loader, 28

M
mapping, 28
metaclass, 28
method, 28
method resolution order, 28
module, 28
MRO, 28
mutable, 28

N
named tuple, 28
namespace, 28
nested scope, 28
new-style class, 29

O
object, 29

P
package, 29
parameter, 29
positional argument, 29
Python 3000, 29
Python Enhancement Proposals

PEP 238, 25
PEP 278, 30
PEP 302, 25, 28
PEP 3116, 30
PEP 343, 24

PYTHONHOME, 15
Pythonic, 29
PYTHONPATH, 15

R
reference count, 29

S
sequence, 30
slice, 30
special method, 30
statement, 30
struct sequence, 30

T
triple-quoted string, 30
type, 30

U
universal newlines, 30

USERPROFILE, 18

V
view, 30
virtual machine, 30

Z
Zen of Python, 30

52 Index

	Introduction
	Best case: trivial installation
	The new standard: Distutils

	Standard Build and Install
	Platform variations
	Splitting the job up
	How building works
	How installation works

	Alternate Installation
	Alternate installation: the user scheme
	Alternate installation: the home scheme
	Alternate installation: Unix (the prefix scheme)
	Alternate installation: Windows (the prefix scheme)

	Custom Installation
	Modifying Python's Search Path

	Distutils Configuration Files
	Location and names of config files
	Syntax of config files

	Building Extensions: Tips and Tricks
	Tweaking compiler/linker flags
	Using non-Microsoft compilers on Windows

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

