
What’s New in Python
Release 2.7.15rc1

A. M. Kuchling

April 14, 2018

Python Software Foundation
Email: docs@python.org

Contents

1 The Future for Python 2.x 2

2 Changes to the Handling of Deprecation Warnings 3

3 Python 3.1 Features 3

4 PEP 372: Adding an Ordered Dictionary to collections 4

5 PEP 378: Format Specifier for Thousands Separator 5

6 PEP 389: The argparse Module for Parsing Command Lines 6

7 PEP 391: Dictionary-Based Configuration For Logging 7

8 PEP 3106: Dictionary Views 9

9 PEP 3137: The memoryview Object 10

10 Other Language Changes 11
10.1 Interpreter Changes . 14
10.2 Optimizations . 14

11 New and Improved Modules 15
11.1 New module: importlib . 23
11.2 New module: sysconfig . 24
11.3 ttk: Themed Widgets for Tk . 24
11.4 Updated module: unittest . 24
11.5 Updated module: ElementTree 1.3 . 27

12 Build and C API Changes 28
12.1 Capsules . 30
12.2 Port-Specific Changes: Windows . 30
12.3 Port-Specific Changes: Mac OS X . 31
12.4 Port-Specific Changes: FreeBSD . 31

13 Other Changes and Fixes 31

14 Porting to Python 2.7 31

15 New Features Added to Python 2.7 Maintenance Releases 33
15.1 Two new environment variables for debug mode . 33
15.2 PEP 434: IDLE Enhancement Exception for All Branches . 33
15.3 PEP 466: Network Security Enhancements for Python 2.7 . 34
15.4 PEP 477: Backport ensurepip (PEP 453) to Python 2.7 . 34

Bootstrapping pip By Default . 34
Documentation Changes . 35

15.5 PEP 476: Enabling certificate verification by default for stdlib http clients 35
15.6 PEP 493: HTTPS verification migration tools for Python 2.7 35

16 Acknowledgements 36

Index 37

Author A.M. Kuchling (amk at amk.ca)

This article explains the new features in Python 2.7. Python 2.7 was released on July 3, 2010.

Numeric handling has been improved in many ways, for both floating-point numbers and for the Decimal
class. There are some useful additions to the standard library, such as a greatly enhanced unittest module,
the argparse module for parsing command-line options, convenient OrderedDict and Counter classes in the
collections module, and many other improvements.

Python 2.7 is planned to be the last of the 2.x releases, so we worked on making it a good release for the
long term. To help with porting to Python 3, several new features from the Python 3.x series have been
included in 2.7.

This article doesn’t attempt to provide a complete specification of the new features, but instead provides
a convenient overview. For full details, you should refer to the documentation for Python 2.7 at https:
//docs.python.org. If you want to understand the rationale for the design and implementation, refer to the
PEP for a particular new feature or the issue on https://bugs.python.org in which a change was discussed.
Whenever possible, “What’s New in Python” links to the bug/patch item for each change.

1 The Future for Python 2.x

Python 2.7 is the last major release in the 2.x series, as the Python maintainers have shifted the focus of
their new feature development efforts to the Python 3.x series. This means that while Python 2 continues to
receive bug fixes, and to be updated to build correctly on new hardware and versions of supported operated
systems, there will be no new full feature releases for the language or standard library.

However, while there is a large common subset between Python 2.7 and Python 3, and many of the changes
involved in migrating to that common subset, or directly to Python 3, can be safely automated, some other
changes (notably those associated with Unicode handling) may require careful consideration, and preferably
robust automated regression test suites, to migrate effectively.

This means that Python 2.7 will remain in place for a long time, providing a stable and supported base
platform for production systems that have not yet been ported to Python 3. The full expected lifecycle of
the Python 2.7 series is detailed in PEP 373.

Some key consequences of the long-term significance of 2.7 are:

https://docs.python.org
https://docs.python.org
https://bugs.python.org
https://www.python.org/dev/peps/pep-0373

• As noted above, the 2.7 release has a much longer period of maintenance when compared to earlier
2.x versions. Python 2.7 is currently expected to remain supported by the core development team
(receiving security updates and other bug fixes) until at least 2020 (10 years after its initial release,
compared to the more typical support period of 18–24 months).

• As the Python 2.7 standard library ages, making effective use of the Python Package Index (either
directly or via a redistributor) becomes more important for Python 2 users. In addition to a wide
variety of third party packages for various tasks, the available packages include backports of new
modules and features from the Python 3 standard library that are compatible with Python 2, as well
as various tools and libraries that can make it easier to migrate to Python 3. The Python Packaging
User Guide provides guidance on downloading and installing software from the Python Package Index.

• While the preferred approach to enhancing Python 2 is now the publication of new packages on the
Python Package Index, this approach doesn’t necessarily work in all cases, especially those related
to network security. In exceptional cases that cannot be handled adequately by publishing new or
updated packages on PyPI, the Python Enhancement Proposal process may be used to make the
case for adding new features directly to the Python 2 standard library. Any such additions, and the
maintenance releases where they were added, will be noted in the New Features Added to Python 2.7
Maintenance Releases section below.

For projects wishing to migrate from Python 2 to Python 3, or for library and framework developers wishing
to support users on both Python 2 and Python 3, there are a variety of tools and guides available to help
decide on a suitable approach and manage some of the technical details involved. The recommended starting
point is the pyporting-howto HOWTO guide.

2 Changes to the Handling of Deprecation Warnings

For Python 2.7, a policy decision was made to silence warnings only of interest to developers by default.
DeprecationWarning and its descendants are now ignored unless otherwise requested, preventing users from
seeing warnings triggered by an application. This change was also made in the branch that became Python
3.2. (Discussed on stdlib-sig and carried out in bpo-7319.)

In previous releases, DeprecationWarning messages were enabled by default, providing Python developers
with a clear indication of where their code may break in a future major version of Python.

However, there are increasingly many users of Python-based applications who are not directly involved in
the development of those applications. DeprecationWarning messages are irrelevant to such users, making
them worry about an application that’s actually working correctly and burdening application developers
with responding to these concerns.

You can re-enable display of DeprecationWarning messages by running Python with the -Wdefault (short
form: -Wd) switch, or by setting the PYTHONWARNINGS environment variable to "default" (or "d")
before running Python. Python code can also re-enable them by calling warnings.simplefilter('default').

The unittest module also automatically reenables deprecation warnings when running tests.

3 Python 3.1 Features

Much as Python 2.6 incorporated features from Python 3.0, version 2.7 incorporates some of the new features
in Python 3.1. The 2.x series continues to provide tools for migrating to the 3.x series.

A partial list of 3.1 features that were backported to 2.7:

• The syntax for set literals ({1,2,3} is a mutable set).

• Dictionary and set comprehensions ({i: i*2 for i in range(3)}).

https://packaging.python.org
https://packaging.python.org
https://bugs.python.org/issue7319

• Multiple context managers in a single with statement.

• A new version of the io library, rewritten in C for performance.

• The ordered-dictionary type described in PEP 372: Adding an Ordered Dictionary to collections.

• The new "," format specifier described in PEP 378: Format Specifier for Thousands Separator.

• The memoryview object.

• A small subset of the importlib module, described below.

• The repr() of a float x is shorter in many cases: it’s now based on the shortest decimal string that’s
guaranteed to round back to x. As in previous versions of Python, it’s guaranteed that float(repr(x))
recovers x.

• Float-to-string and string-to-float conversions are correctly rounded. The round() function is also now
correctly rounded.

• The PyCapsule type, used to provide a C API for extension modules.

• The PyLong_AsLongAndOverflow() C API function.

Other new Python3-mode warnings include:

• operator.isCallable() and operator.sequenceIncludes(), which are not supported in 3.x, now trigger
warnings.

• The -3 switch now automatically enables the -Qwarn switch that causes warnings about using classic
division with integers and long integers.

4 PEP 372: Adding an Ordered Dictionary to collections

Regular Python dictionaries iterate over key/value pairs in arbitrary order. Over the years, a number of
authors have written alternative implementations that remember the order that the keys were originally
inserted. Based on the experiences from those implementations, 2.7 introduces a new OrderedDict class in
the collections module.

The OrderedDict API provides the same interface as regular dictionaries but iterates over keys and values
in a guaranteed order depending on when a key was first inserted:

>>> from collections import OrderedDict
>>> d = OrderedDict([('first', 1),
... ('second', 2),
... ('third', 3)])
>>> d.items()
[('first', 1), ('second', 2), ('third', 3)]

If a new entry overwrites an existing entry, the original insertion position is left unchanged:

>>> d['second'] = 4
>>> d.items()
[('first', 1), ('second', 4), ('third', 3)]

Deleting an entry and reinserting it will move it to the end:

>>> del d['second']
>>> d['second'] = 5
>>> d.items()
[('first', 1), ('third', 3), ('second', 5)]

The popitem() method has an optional last argument that defaults to True. If last is true, the most recently
added key is returned and removed; if it’s false, the oldest key is selected:

>>> od = OrderedDict([(x,0) for x in range(20)])
>>> od.popitem()
(19, 0)
>>> od.popitem()
(18, 0)
>>> od.popitem(last=False)
(0, 0)
>>> od.popitem(last=False)
(1, 0)

Comparing two ordered dictionaries checks both the keys and values, and requires that the insertion order
was the same:

>>> od1 = OrderedDict([('first', 1),
... ('second', 2),
... ('third', 3)])
>>> od2 = OrderedDict([('third', 3),
... ('first', 1),
... ('second', 2)])
>>> od1 == od2
False
>>> # Move 'third' key to the end
>>> del od2['third']; od2['third'] = 3
>>> od1 == od2
True

Comparing an OrderedDict with a regular dictionary ignores the insertion order and just compares the keys
and values.

How does the OrderedDict work? It maintains a doubly-linked list of keys, appending new keys to the list
as they’re inserted. A secondary dictionary maps keys to their corresponding list node, so deletion doesn’t
have to traverse the entire linked list and therefore remains O(1).

The standard library now supports use of ordered dictionaries in several modules.

• The ConfigParser module uses them by default, meaning that configuration files can now be read,
modified, and then written back in their original order.

• The _asdict() method for collections.namedtuple() now returns an ordered dictionary with the values
appearing in the same order as the underlying tuple indices.

• The json module’s JSONDecoder class constructor was extended with an object_pairs_hook parameter
to allow OrderedDict instances to be built by the decoder. Support was also added for third-party
tools like PyYAML.

See also:

PEP 372 - Adding an ordered dictionary to collections PEP written by Armin Ronacher and Raymond Het-
tinger; implemented by Raymond Hettinger.

5 PEP 378: Format Specifier for Thousands Separator

To make program output more readable, it can be useful to add separators to large numbers, rendering them
as 18,446,744,073,709,551,616 instead of 18446744073709551616.

http://pyyaml.org/
https://www.python.org/dev/peps/pep-0372

The fully general solution for doing this is the locale module, which can use different separators (”,” in North
America, ”.” in Europe) and different grouping sizes, but locale is complicated to use and unsuitable for
multi-threaded applications where different threads are producing output for different locales.

Therefore, a simple comma-grouping mechanism has been added to the mini-language used by the str.
format() method. When formatting a floating-point number, simply include a comma between the width
and the precision:

>>> '{:20,.2f}'.format(18446744073709551616.0)
'18,446,744,073,709,551,616.00'

When formatting an integer, include the comma after the width:

>>> '{:20,d}'.format(18446744073709551616)
'18,446,744,073,709,551,616'

This mechanism is not adaptable at all; commas are always used as the separator and the grouping is always
into three-digit groups. The comma-formatting mechanism isn’t as general as the locale module, but it’s
easier to use.

See also:

PEP 378 - Format Specifier for Thousands Separator PEP written by Raymond Hettinger; implemented by
Eric Smith.

6 PEP 389: The argparse Module for Parsing Command Lines

The argparse module for parsing command-line arguments was added as a more powerful replacement for
the optparse module.

This means Python now supports three different modules for parsing command-line arguments: getopt, opt-
parse, and argparse. The getopt module closely resembles the C library’s getopt() function, so it remains
useful if you’re writing a Python prototype that will eventually be rewritten in C. optparse becomes re-
dundant, but there are no plans to remove it because there are many scripts still using it, and there’s no
automated way to update these scripts. (Making the argparse API consistent with optparse‘s interface was
discussed but rejected as too messy and difficult.)

In short, if you’re writing a new script and don’t need to worry about compatibility with earlier versions of
Python, use argparse instead of optparse.

Here’s an example:

import argparse

parser = argparse.ArgumentParser(description='Command-line example.')

Add optional switches
parser.add_argument('-v', action='store_true', dest='is_verbose',

help='produce verbose output')
parser.add_argument('-o', action='store', dest='output',

metavar='FILE',
help='direct output to FILE instead of stdout')

parser.add_argument('-C', action='store', type=int, dest='context',
metavar='NUM', default=0,
help='display NUM lines of added context')

Allow any number of additional arguments.

https://www.python.org/dev/peps/pep-0378

parser.add_argument(nargs='*', action='store', dest='inputs',
help='input filenames (default is stdin)')

args = parser.parse_args()
print args.__dict__

Unless you override it, -h and --help switches are automatically added, and produce neatly formatted output:

-> ./python.exe argparse-example.py --help
usage: argparse-example.py [-h] [-v] [-o FILE] [-C NUM] [inputs [inputs ...]]

Command-line example.

positional arguments:
inputs input filenames (default is stdin)

optional arguments:
-h, --help show this help message and exit
-v produce verbose output
-o FILE direct output to FILE instead of stdout
-C NUM display NUM lines of added context

As with optparse, the command-line switches and arguments are returned as an object with attributes named
by the dest parameters:

-> ./python.exe argparse-example.py -v
{'output': None,
'is_verbose': True,
'context': 0,
'inputs': []}

-> ./python.exe argparse-example.py -v -o /tmp/output -C 4 file1 file2
{'output': '/tmp/output',
'is_verbose': True,
'context': 4,
'inputs': ['file1', 'file2']}

argparse has much fancier validation than optparse; you can specify an exact number of arguments as an
integer, 0 or more arguments by passing '*', 1 or more by passing '+', or an optional argument with '?'.
A top-level parser can contain sub-parsers to define subcommands that have different sets of switches, as in
svn commit, svn checkout, etc. You can specify an argument’s type as FileType, which will automatically
open files for you and understands that '-' means standard input or output.

See also:

argparse documentation The documentation page of the argparse module.

argparse-from-optparse Part of the Python documentation, describing how to convert code that uses opt-
parse.

PEP 389 - argparse - New Command Line Parsing Module PEP written and implemented by Steven
Bethard.

7 PEP 391: Dictionary-Based Configuration For Logging

The logging module is very flexible; applications can define a tree of logging subsystems, and each logger in
this tree can filter out certain messages, format them differently, and direct messages to a varying number

https://www.python.org/dev/peps/pep-0389

of handlers.

All this flexibility can require a lot of configuration. You can write Python statements to create objects
and set their properties, but a complex set-up requires verbose but boring code. logging also supports a
fileConfig() function that parses a file, but the file format doesn’t support configuring filters, and it’s messier
to generate programmatically.

Python 2.7 adds a dictConfig() function that uses a dictionary to configure logging. There are many ways
to produce a dictionary from different sources: construct one with code; parse a file containing JSON; or use
a YAML parsing library if one is installed. For more information see logging-config-api.

The following example configures two loggers, the root logger and a logger named “network”. Messages sent
to the root logger will be sent to the system log using the syslog protocol, and messages to the “network”
logger will be written to a network.log file that will be rotated once the log reaches 1MB.

import logging
import logging.config

configdict = {
'version': 1, # Configuration schema in use; must be 1 for now
'formatters': {

'standard': {
'format': ('%(asctime)s %(name)-15s '

'%(levelname)-8s %(message)s')}},

'handlers': {'netlog': {'backupCount': 10,
'class': 'logging.handlers.RotatingFileHandler',
'filename': '/logs/network.log',
'formatter': 'standard',
'level': 'INFO',
'maxBytes': 1000000},

'syslog': {'class': 'logging.handlers.SysLogHandler',
'formatter': 'standard',
'level': 'ERROR'}},

Specify all the subordinate loggers
'loggers': {

'network': {
'handlers': ['netlog']

}
},
Specify properties of the root logger
'root': {

'handlers': ['syslog']
},
}

Set up configuration
logging.config.dictConfig(configdict)

As an example, log two error messages
logger = logging.getLogger('/')
logger.error('Database not found')

netlogger = logging.getLogger('network')
netlogger.error('Connection failed')

Three smaller enhancements to the logging module, all implemented by Vinay Sajip, are:

• The SysLogHandler class now supports syslogging over TCP. The constructor has a socktype parameter

giving the type of socket to use, either socket.SOCK_DGRAM for UDP or socket.SOCK_STREAM
for TCP. The default protocol remains UDP.

• Logger instances gained a getChild() method that retrieves a descendant logger using a relative
path. For example, once you retrieve a logger by doing log = getLogger('app'), calling log.
getChild('network.listen') is equivalent to getLogger('app.network.listen').

• The LoggerAdapter class gained an isEnabledFor() method that takes a level and returns whether the
underlying logger would process a message of that level of importance.

See also:

PEP 391 - Dictionary-Based Configuration For Logging PEP written and implemented by Vinay Sajip.

8 PEP 3106: Dictionary Views

The dictionary methods keys(), values(), and items() are different in Python 3.x. They return an object
called a view instead of a fully materialized list.

It’s not possible to change the return values of keys(), values(), and items() in Python 2.7 because too much
code would break. Instead the 3.x versions were added under the new names viewkeys(), viewvalues(), and
viewitems().

>>> d = dict((i*10, chr(65+i)) for i in range(26))
>>> d
{0: 'A', 130: 'N', 10: 'B', 140: 'O', 20: ..., 250: 'Z'}
>>> d.viewkeys()
dict_keys([0, 130, 10, 140, 20, 150, 30, ..., 250])

Views can be iterated over, but the key and item views also behave like sets. The & operator performs
intersection, and | performs a union:

>>> d1 = dict((i*10, chr(65+i)) for i in range(26))
>>> d2 = dict((i**.5, i) for i in range(1000))
>>> d1.viewkeys() & d2.viewkeys()
set([0.0, 10.0, 20.0, 30.0])
>>> d1.viewkeys() | range(0, 30)
set([0, 1, 130, 3, 4, 5, 6, ..., 120, 250])

The view keeps track of the dictionary and its contents change as the dictionary is modified:

>>> vk = d.viewkeys()
>>> vk
dict_keys([0, 130, 10, ..., 250])
>>> d[260] = '&'
>>> vk
dict_keys([0, 130, 260, 10, ..., 250])

However, note that you can’t add or remove keys while you’re iterating over the view:

>>> for k in vk:
... d[k*2] = k
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

RuntimeError: dictionary changed size during iteration

https://www.python.org/dev/peps/pep-0391

You can use the view methods in Python 2.x code, and the 2to3 converter will change them to the standard
keys(), values(), and items() methods.

See also:

PEP 3106 - Revamping dict.keys(), .values() and .items() PEP written by Guido van Rossum. Backported
to 2.7 by Alexandre Vassalotti; bpo-1967.

9 PEP 3137: The memoryview Object

The memoryview object provides a view of another object’s memory content that matches the bytes type’s
interface.

>>> import string
>>> m = memoryview(string.letters)
>>> m
<memory at 0x37f850>
>>> len(m) # Returns length of underlying object
52
>>> m[0], m[25], m[26] # Indexing returns one byte
('a', 'z', 'A')
>>> m2 = m[0:26] # Slicing returns another memoryview
>>> m2
<memory at 0x37f080>

The content of the view can be converted to a string of bytes or a list of integers:

>>> m2.tobytes()
'abcdefghijklmnopqrstuvwxyz'
>>> m2.tolist()
[97, 98, 99, 100, 101, 102, 103, ... 121, 122]
>>>

memoryview objects allow modifying the underlying object if it’s a mutable object.

>>> m2[0] = 75
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot modify read-only memory
>>> b = bytearray(string.letters) # Creating a mutable object
>>> b
bytearray(b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ')
>>> mb = memoryview(b)
>>> mb[0] = '*' # Assign to view, changing the bytearray.
>>> b[0:5] # The bytearray has been changed.
bytearray(b'*bcde')
>>>

See also:

PEP 3137 - Immutable Bytes and Mutable Buffer PEP written by Guido van Rossum. Implemented by
Travis Oliphant, Antoine Pitrou and others. Backported to 2.7 by Antoine Pitrou; bpo-2396.

https://www.python.org/dev/peps/pep-3106
https://bugs.python.org/issue1967
https://www.python.org/dev/peps/pep-3137
https://bugs.python.org/issue2396

10 Other Language Changes

Some smaller changes made to the core Python language are:

• The syntax for set literals has been backported from Python 3.x. Curly brackets are used to sur-
round the contents of the resulting mutable set; set literals are distinguished from dictionaries by not
containing colons and values. {} continues to represent an empty dictionary; use set() for an empty
set.

>>> {1, 2, 3, 4, 5}
set([1, 2, 3, 4, 5])
>>> set() # empty set
set([])
>>> {} # empty dict
{}

Backported by Alexandre Vassalotti; bpo-2335.

• Dictionary and set comprehensions are another feature backported from 3.x, generalizing list/generator
comprehensions to use the literal syntax for sets and dictionaries.

>>> {x: x*x for x in range(6)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
>>> {('a'*x) for x in range(6)}
set(['', 'a', 'aa', 'aaa', 'aaaa', 'aaaaa'])

Backported by Alexandre Vassalotti; bpo-2333.

• The with statement can now use multiple context managers in one statement. Context managers are
processed from left to right and each one is treated as beginning a new with statement. This means
that:

with A() as a, B() as b:
... suite of statements ...

is equivalent to:

with A() as a:
with B() as b:

... suite of statements ...

The contextlib.nested() function provides a very similar function, so it’s no longer necessary and has
been deprecated.

(Proposed in https://codereview.appspot.com/53094; implemented by Georg Brandl.)

• Conversions between floating-point numbers and strings are now correctly rounded on most platforms.
These conversions occur in many different places: str() on floats and complex numbers; the float and
complex constructors; numeric formatting; serializing and deserializing floats and complex numbers
using the marshal, pickle and json modules; parsing of float and imaginary literals in Python code; and
Decimal-to-float conversion.

Related to this, the repr() of a floating-point number x now returns a result based on the shortest
decimal string that’s guaranteed to round back to x under correct rounding (with round-half-to-even
rounding mode). Previously it gave a string based on rounding x to 17 decimal digits.

The rounding library responsible for this improvement works on Windows and on Unix platforms using
the gcc, icc, or suncc compilers. There may be a small number of platforms where correct operation
of this code cannot be guaranteed, so the code is not used on such systems. You can find out which

https://bugs.python.org/issue2335
https://bugs.python.org/issue2333
https://codereview.appspot.com/53094

code is being used by checking sys.float_repr_style, which will be short if the new code is in use and
legacy if it isn’t.

Implemented by Eric Smith and Mark Dickinson, using David Gay’s dtoa.c library; bpo-7117.

• Conversions from long integers and regular integers to floating point now round differently, returning
the floating-point number closest to the number. This doesn’t matter for small integers that can
be converted exactly, but for large numbers that will unavoidably lose precision, Python 2.7 now
approximates more closely. For example, Python 2.6 computed the following:

>>> n = 295147905179352891391
>>> float(n)
2.9514790517935283e+20
>>> n - long(float(n))
65535L

Python 2.7’s floating-point result is larger, but much closer to the true value:

>>> n = 295147905179352891391
>>> float(n)
2.9514790517935289e+20
>>> n - long(float(n))
-1L

(Implemented by Mark Dickinson; bpo-3166.)

Integer division is also more accurate in its rounding behaviours. (Also implemented by Mark Dickin-
son; bpo-1811.)

• Implicit coercion for complex numbers has been removed; the interpreter will no longer ever attempt
to call a __coerce__() method on complex objects. (Removed by Meador Inge and Mark Dickinson;
bpo-5211.)

• The str.format() method now supports automatic numbering of the replacement fields. This makes
using str.format() more closely resemble using %s formatting:

>>> '{}:{}:{}'.format(2009, 04, 'Sunday')
'2009:4:Sunday'
>>> '{}:{}:{day}'.format(2009, 4, day='Sunday')
'2009:4:Sunday'

The auto-numbering takes the fields from left to right, so the first {...} specifier will use the first
argument to str.format(), the next specifier will use the next argument, and so on. You can’t mix
auto-numbering and explicit numbering – either number all of your specifier fields or none of them –
but you can mix auto-numbering and named fields, as in the second example above. (Contributed by
Eric Smith; bpo-5237.)

Complex numbers now correctly support usage with format(), and default to being right-aligned.
Specifying a precision or comma-separation applies to both the real and imaginary parts of the number,
but a specified field width and alignment is applied to the whole of the resulting 1.5+3j output.
(Contributed by Eric Smith; bpo-1588 and bpo-7988.)

The ‘F’ format code now always formats its output using uppercase characters, so it will now produce
‘INF’ and ‘NAN’. (Contributed by Eric Smith; bpo-3382.)

A low-level change: the object.__format__() method now triggers a PendingDeprecationWarning if
it’s passed a format string, because the __format__() method for object converts the object to a
string representation and formats that. Previously the method silently applied the format string to
the string representation, but that could hide mistakes in Python code. If you’re supplying formatting

https://bugs.python.org/issue7117
https://bugs.python.org/issue3166
https://bugs.python.org/issue1811
https://bugs.python.org/issue5211
https://bugs.python.org/issue5237
https://bugs.python.org/issue1588
https://bugs.python.org/issue7988
https://bugs.python.org/issue3382

information such as an alignment or precision, presumably you’re expecting the formatting to be
applied in some object-specific way. (Fixed by Eric Smith; bpo-7994.)

• The int() and long() types gained a bit_length method that returns the number of bits necessary to
represent its argument in binary:

>>> n = 37
>>> bin(n)
'0b100101'
>>> n.bit_length()
6
>>> n = 2**123-1
>>> n.bit_length()
123
>>> (n+1).bit_length()
124

(Contributed by Fredrik Johansson and Victor Stinner; bpo-3439.)

• The import statement will no longer try an absolute import if a relative import (e.g. from .os import
sep) fails. This fixes a bug, but could possibly break certain import statements that were only working
by accident. (Fixed by Meador Inge; bpo-7902.)

• It’s now possible for a subclass of the built-in unicode type to override the __unicode__() method.
(Implemented by Victor Stinner; bpo-1583863.)

• The bytearray type’s translate() method now accepts None as its first argument. (Fixed by Georg
Brandl; bpo-4759.)

• When using @classmethod and @staticmethod to wrap methods as class or static methods, the wrapper
object now exposes the wrapped function as their __func__ attribute. (Contributed by Amaury
Forgeot d’Arc, after a suggestion by George Sakkis; bpo-5982.)

• When a restricted set of attributes were set using __slots__, deleting an unset attribute would not
raise AttributeError as you would expect. Fixed by Benjamin Peterson; bpo-7604.)

• Two new encodings are now supported: “cp720”, used primarily for Arabic text; and “cp858”, a variant
of CP 850 that adds the euro symbol. (CP720 contributed by Alexander Belchenko and Amaury
Forgeot d’Arc in bpo-1616979; CP858 contributed by Tim Hatch in bpo-8016.)

• The file object will now set the filename attribute on the IOError exception when trying to open a
directory on POSIX platforms (noted by Jan Kaliszewski; bpo-4764), and now explicitly checks for and
forbids writing to read-only file objects instead of trusting the C library to catch and report the error
(fixed by Stefan Krah; bpo-5677).

• The Python tokenizer now translates line endings itself, so the compile() built-in function now accepts
code using any line-ending convention. Additionally, it no longer requires that the code end in a
newline.

• Extra parentheses in function definitions are illegal in Python 3.x, meaning that you get a syntax error
from def f((x)): pass. In Python3-warning mode, Python 2.7 will now warn about this odd usage.
(Noted by James Lingard; bpo-7362.)

• It’s now possible to create weak references to old-style class objects. New-style classes were always
weak-referenceable. (Fixed by Antoine Pitrou; bpo-8268.)

• When a module object is garbage-collected, the module’s dictionary is now only cleared if no one else
is holding a reference to the dictionary (bpo-7140).

https://bugs.python.org/issue7994
https://bugs.python.org/issue3439
https://bugs.python.org/issue7902
https://bugs.python.org/issue1583863
https://bugs.python.org/issue4759
https://bugs.python.org/issue5982
https://bugs.python.org/issue7604
https://bugs.python.org/issue1616979
https://bugs.python.org/issue8016
https://bugs.python.org/issue4764
https://bugs.python.org/issue5677
https://bugs.python.org/issue7362
https://bugs.python.org/issue8268
https://bugs.python.org/issue7140

10.1 Interpreter Changes

A new environment variable, PYTHONWARNINGS, allows controlling warnings. It should be set to a
string containing warning settings, equivalent to those used with the -W switch, separated by commas.
(Contributed by Brian Curtin; bpo-7301.)

For example, the following setting will print warnings every time they occur, but turn warnings from the
Cookie module into an error. (The exact syntax for setting an environment variable varies across operating
systems and shells.)

export PYTHONWARNINGS=all,error:::Cookie:0

10.2 Optimizations

Several performance enhancements have been added:

• A new opcode was added to perform the initial setup for with statements, looking up the __enter__()
and __exit__() methods. (Contributed by Benjamin Peterson.)

• The garbage collector now performs better for one common usage pattern: when many objects are being
allocated without deallocating any of them. This would previously take quadratic time for garbage
collection, but now the number of full garbage collections is reduced as the number of objects on the
heap grows. The new logic only performs a full garbage collection pass when the middle generation
has been collected 10 times and when the number of survivor objects from the middle generation
exceeds 10% of the number of objects in the oldest generation. (Suggested by Martin von Löwis and
implemented by Antoine Pitrou; bpo-4074.)

• The garbage collector tries to avoid tracking simple containers which can’t be part of a cycle. In
Python 2.7, this is now true for tuples and dicts containing atomic types (such as ints, strings, etc.).
Transitively, a dict containing tuples of atomic types won’t be tracked either. This helps reduce the
cost of each garbage collection by decreasing the number of objects to be considered and traversed by
the collector. (Contributed by Antoine Pitrou; bpo-4688.)

• Long integers are now stored internally either in base 2**15 or in base 2**30, the base being determined
at build time. Previously, they were always stored in base 2**15. Using base 2**30 gives significant
performance improvements on 64-bit machines, but benchmark results on 32-bit machines have been
mixed. Therefore, the default is to use base 2**30 on 64-bit machines and base 2**15 on 32-bit
machines; on Unix, there’s a new configure option --enable-big-digits that can be used to override this
default.

Apart from the performance improvements this change should be invisible to end users, with one
exception: for testing and debugging purposes there’s a new structseq sys.long_info that provides
information about the internal format, giving the number of bits per digit and the size in bytes of the
C type used to store each digit:

>>> import sys
>>> sys.long_info
sys.long_info(bits_per_digit=30, sizeof_digit=4)

(Contributed by Mark Dickinson; bpo-4258.)

Another set of changes made long objects a few bytes smaller: 2 bytes smaller on 32-bit systems and
6 bytes on 64-bit. (Contributed by Mark Dickinson; bpo-5260.)

• The division algorithm for long integers has been made faster by tightening the inner loop, doing
shifts instead of multiplications, and fixing an unnecessary extra iteration. Various benchmarks show
speedups of between 50% and 150% for long integer divisions and modulo operations. (Contributed by

https://bugs.python.org/issue7301
https://bugs.python.org/issue4074
https://bugs.python.org/issue4688
https://bugs.python.org/issue4258
https://bugs.python.org/issue5260

Mark Dickinson; bpo-5512.) Bitwise operations are also significantly faster (initial patch by Gregory
Smith; bpo-1087418).

• The implementation of % checks for the left-side operand being a Python string and special-cases it;
this results in a 1–3% performance increase for applications that frequently use % with strings, such
as templating libraries. (Implemented by Collin Winter; bpo-5176.)

• List comprehensions with an if condition are compiled into faster bytecode. (Patch by Antoine Pitrou,
back-ported to 2.7 by Jeffrey Yasskin; bpo-4715.)

• Converting an integer or long integer to a decimal string was made faster by special-casing base 10
instead of using a generalized conversion function that supports arbitrary bases. (Patch by Gawain
Bolton; bpo-6713.)

• The split(), replace(), rindex(), rpartition(), and rsplit() methods of string-like types (strings, Unicode
strings, and bytearray objects) now use a fast reverse-search algorithm instead of a character-by-
character scan. This is sometimes faster by a factor of 10. (Added by Florent Xicluna; bpo-7462 and
bpo-7622.)

• The pickle and cPickle modules now automatically intern the strings used for attribute names, reducing
memory usage of the objects resulting from unpickling. (Contributed by Jake McGuire; bpo-5084.)

• The cPickle module now special-cases dictionaries, nearly halving the time required to pickle them.
(Contributed by Collin Winter; bpo-5670.)

11 New and Improved Modules

As in every release, Python’s standard library received a number of enhancements and bug fixes. Here’s a
partial list of the most notable changes, sorted alphabetically by module name. Consult the Misc/NEWS
file in the source tree for a more complete list of changes, or look through the Subversion logs for all the
details.

• The bdb module’s base debugging class Bdb gained a feature for skipping modules. The constructor
now takes an iterable containing glob-style patterns such as django.*; the debugger will not step into
stack frames from a module that matches one of these patterns. (Contributed by Maru Newby after a
suggestion by Senthil Kumaran; bpo-5142.)

• The binascii module now supports the buffer API, so it can be used with memoryview instances and
other similar buffer objects. (Backported from 3.x by Florent Xicluna; bpo-7703.)

• Updated module: the bsddb module has been updated from 4.7.2devel9 to version 4.8.4 of the pybsddb
package. The new version features better Python 3.x compatibility, various bug fixes, and adds several
new BerkeleyDB flags and methods. (Updated by Jesús Cea Avión; bpo-8156. The pybsddb changelog
can be read at http://hg.jcea.es/pybsddb/file/tip/ChangeLog.)

• The bz2 module’s BZ2File now supports the context management protocol, so you can write with
bz2.BZ2File(...) as f:. (Contributed by Hagen Fürstenau; bpo-3860.)

• New class: the Counter class in the collections module is useful for tallying data. Counter instances
behave mostly like dictionaries but return zero for missing keys instead of raising a KeyError:

>>> from collections import Counter
>>> c = Counter()
>>> for letter in 'here is a sample of english text':
... c[letter] += 1
...
>>> c
Counter({' ': 6, 'e': 5, 's': 3, 'a': 2, 'i': 2, 'h': 2,

https://bugs.python.org/issue5512
https://bugs.python.org/issue1087418
https://bugs.python.org/issue5176
https://bugs.python.org/issue4715
https://bugs.python.org/issue6713
https://bugs.python.org/issue7462
https://bugs.python.org/issue7622
https://bugs.python.org/issue5084
https://bugs.python.org/issue5670
https://bugs.python.org/issue5142
https://bugs.python.org/issue7703
https://www.jcea.es/programacion/pybsddb.htm
https://www.jcea.es/programacion/pybsddb.htm
https://bugs.python.org/issue8156
http://hg.jcea.es/pybsddb/file/tip/ChangeLog
https://bugs.python.org/issue3860

'l': 2, 't': 2, 'g': 1, 'f': 1, 'm': 1, 'o': 1, 'n': 1,
'p': 1, 'r': 1, 'x': 1})
>>> c['e']
5
>>> c['z']
0

There are three additional Counter methods. most_common() returns the N most common elements
and their counts. elements() returns an iterator over the contained elements, repeating each element
as many times as its count. subtract() takes an iterable and subtracts one for each element instead of
adding; if the argument is a dictionary or another Counter, the counts are subtracted.

>>> c.most_common(5)
[(' ', 6), ('e', 5), ('s', 3), ('a', 2), ('i', 2)]
>>> c.elements() ->
'a', 'a', ' ', ' ', ' ', ' ', ' ', ' ',
'e', 'e', 'e', 'e', 'e', 'g', 'f', 'i', 'i',
'h', 'h', 'm', 'l', 'l', 'o', 'n', 'p', 's',
's', 's', 'r', 't', 't', 'x'

>>> c['e']
5
>>> c.subtract('very heavy on the letter e')
>>> c['e'] # Count is now lower
-1

Contributed by Raymond Hettinger; bpo-1696199.

New class: OrderedDict is described in the earlier section PEP 372: Adding an Ordered Dictionary to
collections.

New method: The deque data type now has a count() method that returns the number of contained
elements equal to the supplied argument x, and a reverse() method that reverses the elements of the
deque in-place. deque also exposes its maximum length as the read-only maxlen attribute. (Both
features added by Raymond Hettinger.)

The namedtuple class now has an optional rename parameter. If rename is true, field names that are
invalid because they’ve been repeated or aren’t legal Python identifiers will be renamed to legal names
that are derived from the field’s position within the list of fields:

>>> from collections import namedtuple
>>> T = namedtuple('T', ['field1', '$illegal', 'for', 'field2'], rename=True)
>>> T._fields
('field1', '_1', '_2', 'field2')

(Added by Raymond Hettinger; bpo-1818.)

Finally, the Mapping abstract base class now returns NotImplemented if a mapping is compared to
another type that isn’t a Mapping. (Fixed by Daniel Stutzbach; bpo-8729.)

• Constructors for the parsing classes in the ConfigParser module now take an allow_no_value param-
eter, defaulting to false; if true, options without values will be allowed. For example:

>>> import ConfigParser, StringIO
>>> sample_config = """
... [mysqld]
... user = mysql
... pid-file = /var/run/mysqld/mysqld.pid
... skip-bdb
... """

https://bugs.python.org/issue1696199
https://bugs.python.org/issue1818
https://bugs.python.org/issue8729

>>> config = ConfigParser.RawConfigParser(allow_no_value=True)
>>> config.readfp(StringIO.StringIO(sample_config))
>>> config.get('mysqld', 'user')
'mysql'
>>> print config.get('mysqld', 'skip-bdb')
None
>>> print config.get('mysqld', 'unknown')
Traceback (most recent call last):
...

NoOptionError: No option 'unknown' in section: 'mysqld'

(Contributed by Mats Kindahl; bpo-7005.)

• Deprecated function: contextlib.nested(), which allows handling more than one context manager with a
single with statement, has been deprecated, because the with statement now supports multiple context
managers.

• The cookielib module now ignores cookies that have an invalid version field, one that doesn’t contain
an integer value. (Fixed by John J. Lee; bpo-3924.)

• The copy module’s deepcopy() function will now correctly copy bound instance methods. (Implemented
by Robert Collins; bpo-1515.)

• The ctypes module now always converts None to a C NULL pointer for arguments declared as pointers.
(Changed by Thomas Heller; bpo-4606.) The underlying libffi library has been updated to version 3.0.9,
containing various fixes for different platforms. (Updated by Matthias Klose; bpo-8142.)

• New method: the datetime module’s timedelta class gained a total_seconds() method that returns the
number of seconds in the duration. (Contributed by Brian Quinlan; bpo-5788.)

• New method: the Decimal class gained a from_float() class method that performs an exact conver-
sion of a floating-point number to a Decimal. This exact conversion strives for the closest decimal
approximation to the floating-point representation’s value; the resulting decimal value will there-
fore still include the inaccuracy, if any. For example, Decimal.from_float(0.1) returns Decimal('0.
1000000000000000055511151231257827021181583404541015625'). (Implemented by Raymond Het-
tinger; bpo-4796.)

Comparing instances of Decimal with floating-point numbers now produces sensible results based on
the numeric values of the operands. Previously such comparisons would fall back to Python’s default
rules for comparing objects, which produced arbitrary results based on their type. Note that you still
cannot combine Decimal and floating-point in other operations such as addition, since you should be
explicitly choosing how to convert between float and Decimal. (Fixed by Mark Dickinson; bpo-2531.)

The constructor for Decimal now accepts floating-point numbers (added by Raymond Hettinger; bpo-
8257) and non-European Unicode characters such as Arabic-Indic digits (contributed by Mark Dickin-
son; bpo-6595).

Most of the methods of the Context class now accept integers as well as Decimal instances; the only
exceptions are the canonical() and is_canonical() methods. (Patch by Juan José Conti; bpo-7633.)

When using Decimal instances with a string’s format() method, the default alignment was previously
left-alignment. This has been changed to right-alignment, which is more sensible for numeric types.
(Changed by Mark Dickinson; bpo-6857.)

Comparisons involving a signaling NaN value (or sNAN) now signal InvalidOperation instead of silently
returning a true or false value depending on the comparison operator. Quiet NaN values (or NaN) are
now hashable. (Fixed by Mark Dickinson; bpo-7279.)

• The difflib module now produces output that is more compatible with modern diff/patch tools through
one small change, using a tab character instead of spaces as a separator in the header giving the filename.

https://bugs.python.org/issue7005
https://bugs.python.org/issue3924
https://bugs.python.org/issue1515
https://bugs.python.org/issue4606
https://sourceware.org/libffi/
https://bugs.python.org/issue8142
https://bugs.python.org/issue5788
https://bugs.python.org/issue4796
https://bugs.python.org/issue2531
https://bugs.python.org/issue8257
https://bugs.python.org/issue8257
https://bugs.python.org/issue6595
https://bugs.python.org/issue7633
https://bugs.python.org/issue6857
https://bugs.python.org/issue7279

(Fixed by Anatoly Techtonik; bpo-7585.)

• The Distutils sdist command now always regenerates the MANIFEST file, since even if the MANIFEST.
in or setup.py files haven’t been modified, the user might have created some new files that should be
included. (Fixed by Tarek Ziadé; bpo-8688.)

The upload command now longer tries to change CR end-of-line characters to CRLF. This fixes a
corruption issue with sdists that ended with a byte equivalent to CR. (Contributed by Bo Bayles in
bpo-32304.)

• The doctest module’s IGNORE_EXCEPTION_DETAIL flag will now ignore the name of the module
containing the exception being tested. (Patch by Lennart Regebro; bpo-7490.)

• The email module’s Message class will now accept a Unicode-valued payload, automatically converting
the payload to the encoding specified by output_charset. (Added by R. David Murray; bpo-1368247.)

• The Fraction class now accepts a single float or Decimal instance, or two rational numbers, as arguments
to its constructor. (Implemented by Mark Dickinson; rationals added in bpo-5812, and float/decimal
in bpo-8294.)

Ordering comparisons (<, <=, >, >=) between fractions and complex numbers now raise a TypeError.
This fixes an oversight, making the Fraction match the other numeric types.

• New class: FTP_TLS in the ftplib module provides secure FTP connections using TLS encapsulation
of authentication as well as subsequent control and data transfers. (Contributed by Giampaolo Rodola;
bpo-2054.)

The storbinary() method for binary uploads can now restart uploads thanks to an added rest parameter
(patch by Pablo Mouzo; bpo-6845.)

• New class decorator: total_ordering() in the functools module takes a class that defines an __eq__()
method and one of __lt__(), __le__(), __gt__(), or __ge__(), and generates the missing
comparison methods. Since the __cmp__() method is being deprecated in Python 3.x, this decorator
makes it easier to define ordered classes. (Added by Raymond Hettinger; bpo-5479.)

New function: cmp_to_key() will take an old-style comparison function that expects two arguments
and return a new callable that can be used as the key parameter to functions such as sorted(), min()
and max(), etc. The primary intended use is to help with making code compatible with Python 3.x.
(Added by Raymond Hettinger.)

• New function: the gc module’s is_tracked() returns true if a given instance is tracked by the garbage
collector, false otherwise. (Contributed by Antoine Pitrou; bpo-4688.)

• The gzip module’s GzipFile now supports the context management protocol, so you can write with
gzip.GzipFile(...) as f: (contributed by Hagen Fürstenau; bpo-3860), and it now implements the io.
BufferedIOBase ABC, so you can wrap it with io.BufferedReader for faster processing (contributed by
Nir Aides; bpo-7471). It’s also now possible to override the modification time recorded in a gzipped file
by providing an optional timestamp to the constructor. (Contributed by Jacques Frechet; bpo-4272.)

Files in gzip format can be padded with trailing zero bytes; the gzip module will now consume these
trailing bytes. (Fixed by Tadek Pietraszek and Brian Curtin; bpo-2846.)

• New attribute: the hashlib module now has an algorithms attribute containing a tuple naming the sup-
ported algorithms. In Python 2.7, hashlib.algorithms contains ('md5', 'sha1', 'sha224', 'sha256',
'sha384', 'sha512'). (Contributed by Carl Chenet; bpo-7418.)

• The default HTTPResponse class used by the httplib module now supports buffering, resulting in much
faster reading of HTTP responses. (Contributed by Kristján Valur Jónsson; bpo-4879.)

The HTTPConnection and HTTPSConnection classes now support a source_address parameter, a
(host, port) 2-tuple giving the source address that will be used for the connection. (Contributed by
Eldon Ziegler; bpo-3972.)

https://bugs.python.org/issue7585
https://bugs.python.org/issue8688
https://bugs.python.org/issue32304
https://bugs.python.org/issue7490
https://bugs.python.org/issue1368247
https://bugs.python.org/issue5812
https://bugs.python.org/issue8294
https://bugs.python.org/issue2054
https://bugs.python.org/issue6845
https://bugs.python.org/issue5479
https://bugs.python.org/issue4688
https://bugs.python.org/issue3860
https://bugs.python.org/issue7471
https://bugs.python.org/issue4272
https://bugs.python.org/issue2846
https://bugs.python.org/issue7418
https://bugs.python.org/issue4879
https://bugs.python.org/issue3972

• The ihooks module now supports relative imports. Note that ihooks is an older module for customizing
imports, superseded by the imputil module added in Python 2.0. (Relative import support added by
Neil Schemenauer.)

• The imaplib module now supports IPv6 addresses. (Contributed by Derek Morr; bpo-1655.)

• New function: the inspect module’s getcallargs() takes a callable and its positional and keyword ar-
guments, and figures out which of the callable’s parameters will receive each argument, returning a
dictionary mapping argument names to their values. For example:

>>> from inspect import getcallargs
>>> def f(a, b=1, *pos, **named):
... pass
>>> getcallargs(f, 1, 2, 3)
{'a': 1, 'b': 2, 'pos': (3,), 'named': {}}
>>> getcallargs(f, a=2, x=4)
{'a': 2, 'b': 1, 'pos': (), 'named': {'x': 4}}
>>> getcallargs(f)
Traceback (most recent call last):
...
TypeError: f() takes at least 1 argument (0 given)

Contributed by George Sakkis; bpo-3135.

• Updated module: The io library has been upgraded to the version shipped with Python 3.1. For 3.1,
the I/O library was entirely rewritten in C and is 2 to 20 times faster depending on the task being
performed. The original Python version was renamed to the _pyio module.

One minor resulting change: the io.TextIOBase class now has an errors attribute giving the error
setting used for encoding and decoding errors (one of 'strict', 'replace', 'ignore').

The io.FileIO class now raises an OSError when passed an invalid file descriptor. (Implemented by
Benjamin Peterson; bpo-4991.) The truncate() method now preserves the file position; previously it
would change the file position to the end of the new file. (Fixed by Pascal Chambon; bpo-6939.)

• New function: itertools.compress(data, selectors) takes two iterators. Elements of data are returned if
the corresponding value in selectors is true:

itertools.compress('ABCDEF', [1,0,1,0,1,1]) =>
A, C, E, F

New function: itertools.combinations_with_replacement(iter, r) returns all the possible r-length com-
binations of elements from the iterable iter. Unlike combinations(), individual elements can be repeated
in the generated combinations:

itertools.combinations_with_replacement('abc', 2) =>
('a', 'a'), ('a', 'b'), ('a', 'c'),
('b', 'b'), ('b', 'c'), ('c', 'c')

Note that elements are treated as unique depending on their position in the input, not their actual
values.

The itertools.count() function now has a step argument that allows incrementing by values other than
1. count() also now allows keyword arguments, and using non-integer values such as floats or Decimal
instances. (Implemented by Raymond Hettinger; bpo-5032.)

itertools.combinations() and itertools.product() previously raised ValueError for values of r larger than
the input iterable. This was deemed a specification error, so they now return an empty iterator. (Fixed
by Raymond Hettinger; bpo-4816.)

https://bugs.python.org/issue1655
https://bugs.python.org/issue3135
https://bugs.python.org/issue4991
https://bugs.python.org/issue6939
https://bugs.python.org/issue5032
https://bugs.python.org/issue4816

• Updated module: The json module was upgraded to version 2.0.9 of the simplejson package, which
includes a C extension that makes encoding and decoding faster. (Contributed by Bob Ippolito; bpo-
4136.)

To support the new collections.OrderedDict type, json.load() now has an optional object_pairs_hook
parameter that will be called with any object literal that decodes to a list of pairs. (Contributed by
Raymond Hettinger; bpo-5381.)

• The mailbox module’s Maildir class now records the timestamp on the directories it reads, and only re-
reads them if the modification time has subsequently changed. This improves performance by avoiding
unneeded directory scans. (Fixed by A.M. Kuchling and Antoine Pitrou; bpo-1607951, bpo-6896.)

• New functions: the math module gained erf() and erfc() for the error function and the complementary
error function, expm1() which computes e**x - 1 with more precision than using exp() and subtracting
1, gamma() for the Gamma function, and lgamma() for the natural log of the Gamma function.
(Contributed by Mark Dickinson and nirinA raseliarison; bpo-3366.)

• The multiprocessing module’s Manager* classes can now be passed a callable that will be called when-
ever a subprocess is started, along with a set of arguments that will be passed to the callable. (Con-
tributed by lekma; bpo-5585.)

The Pool class, which controls a pool of worker processes, now has an optional maxtasksperchild
parameter. Worker processes will perform the specified number of tasks and then exit, causing the
Pool to start a new worker. This is useful if tasks may leak memory or other resources, or if some tasks
will cause the worker to become very large. (Contributed by Charles Cazabon; bpo-6963.)

• The nntplib module now supports IPv6 addresses. (Contributed by Derek Morr; bpo-1664.)

• New functions: the os module wraps the following POSIX system calls: getresgid() and getresuid(),
which return the real, effective, and saved GIDs and UIDs; setresgid() and setresuid(), which set real,
effective, and saved GIDs and UIDs to new values; initgroups(), which initialize the group access list for
the current process. (GID/UID functions contributed by Travis H.; bpo-6508. Support for initgroups
added by Jean-Paul Calderone; bpo-7333.)

The os.fork() function now re-initializes the import lock in the child process; this fixes problems on
Solaris when fork() is called from a thread. (Fixed by Zsolt Cserna; bpo-7242.)

• In the os.path module, the normpath() and abspath() functions now preserve Unicode; if their input
path is a Unicode string, the return value is also a Unicode string. (normpath() fixed by Matt Giuca
in bpo-5827; abspath() fixed by Ezio Melotti in bpo-3426.)

• The pydoc module now has help for the various symbols that Python uses. You can now do help('<<')
or help('@'), for example. (Contributed by David Laban; bpo-4739.)

• The re module’s split(), sub(), and subn() now accept an optional flags argument, for consistency with
the other functions in the module. (Added by Gregory P. Smith.)

• New function: run_path() in the runpy module will execute the code at a provided path argument.
path can be the path of a Python source file (example.py), a compiled bytecode file (example.pyc), a
directory (./package/), or a zip archive (example.zip). If a directory or zip path is provided, it will be
added to the front of sys.path and the module __main__ will be imported. It’s expected that the
directory or zip contains a __main__.py; if it doesn’t, some other __main__.py might be imported
from a location later in sys.path. This makes more of the machinery of runpy available to scripts
that want to mimic the way Python’s command line processes an explicit path name. (Added by Nick
Coghlan; bpo-6816.)

• New function: in the shutil module, make_archive() takes a filename, archive type (zip or tar-format),
and a directory path, and creates an archive containing the directory’s contents. (Added by Tarek
Ziadé.)

https://bugs.python.org/issue4136
https://bugs.python.org/issue4136
https://bugs.python.org/issue5381
https://bugs.python.org/issue1607951
https://bugs.python.org/issue6896
https://bugs.python.org/issue3366
https://bugs.python.org/issue5585
https://bugs.python.org/issue6963
https://bugs.python.org/issue1664
https://bugs.python.org/issue6508
https://bugs.python.org/issue7333
https://bugs.python.org/issue7242
https://bugs.python.org/issue5827
https://bugs.python.org/issue3426
https://bugs.python.org/issue4739
https://bugs.python.org/issue6816

shutil‘s copyfile() and copytree() functions now raise a SpecialFileError exception when asked to copy
a named pipe. Previously the code would treat named pipes like a regular file by opening them for
reading, and this would block indefinitely. (Fixed by Antoine Pitrou; bpo-3002.)

• The signal module no longer re-installs the signal handler unless this is truly necessary, which fixes a
bug that could make it impossible to catch the EINTR signal robustly. (Fixed by Charles-Francois
Natali; bpo-8354.)

• New functions: in the site module, three new functions return various site- and user-specific paths. get-
sitepackages() returns a list containing all global site-packages directories, getusersitepackages() returns
the path of the user’s site-packages directory, and getuserbase() returns the value of the USER_BASE
environment variable, giving the path to a directory that can be used to store data. (Contributed by
Tarek Ziadé; bpo-6693.)

The site module now reports exceptions occurring when the sitecustomize module is imported, and will
no longer catch and swallow the KeyboardInterrupt exception. (Fixed by Victor Stinner; bpo-3137.)

• The create_connection() function gained a source_address parameter, a (host, port) 2-tuple giving
the source address that will be used for the connection. (Contributed by Eldon Ziegler; bpo-3972.)

The recv_into() and recvfrom_into() methods will now write into objects that support the buffer API,
most usefully the bytearray and memoryview objects. (Implemented by Antoine Pitrou; bpo-8104.)

• The SocketServer module’s TCPServer class now supports socket timeouts and disabling the Nagle
algorithm. The disable_nagle_algorithm class attribute defaults to False; if overridden to be true,
new request connections will have the TCP_NODELAY option set to prevent buffering many small
sends into a single TCP packet. The timeout class attribute can hold a timeout in seconds that will be
applied to the request socket; if no request is received within that time, handle_timeout() will be called
and handle_request() will return. (Contributed by Kristján Valur Jónsson; bpo-6192 and bpo-6267.)

• Updated module: the sqlite3 module has been updated to version 2.6.0 of the pysqlite package. Version
2.6.0 includes a number of bugfixes, and adds the ability to load SQLite extensions from shared libraries.
Call the enable_load_extension(True) method to enable extensions, and then call load_extension()
to load a particular shared library. (Updated by Gerhard Häring.)

• The ssl module’s SSLSocket objects now support the buffer API, which fixed a test suite failure (fix by
Antoine Pitrou; bpo-7133) and automatically set OpenSSL’s SSL_MODE_AUTO_RETRY, which
will prevent an error code being returned from recv() operations that trigger an SSL renegotiation (fix
by Antoine Pitrou; bpo-8222).

The ssl.wrap_socket() constructor function now takes a ciphers argument that’s a string listing the en-
cryption algorithms to be allowed; the format of the string is described in the OpenSSL documentation.
(Added by Antoine Pitrou; bpo-8322.)

Another change makes the extension load all of OpenSSL’s ciphers and digest algorithms so that
they’re all available. Some SSL certificates couldn’t be verified, reporting an “unknown algorithm”
error. (Reported by Beda Kosata, and fixed by Antoine Pitrou; bpo-8484.)

The version of OpenSSL being used is now available as the module attributes ssl.OPENSSL_VERSION
(a string), ssl.OPENSSL_VERSION_INFO (a 5-tuple), and ssl.OPENSSL_VERSION_NUMBER
(an integer). (Added by Antoine Pitrou; bpo-8321.)

• The struct module will no longer silently ignore overflow errors when a value is too large for a particular
integer format code (one of bBhHiIlLqQ); it now always raises a struct.error exception. (Changed by
Mark Dickinson; bpo-1523.) The pack() function will also attempt to use __index__() to convert
and pack non-integers before trying the __int__() method or reporting an error. (Changed by Mark
Dickinson; bpo-8300.)

• New function: the subprocess module’s check_output() runs a command with a specified set of argu-
ments and returns the command’s output as a string when the command runs without error, or raises

https://bugs.python.org/issue3002
https://bugs.python.org/issue8354
https://bugs.python.org/issue6693
https://bugs.python.org/issue3137
https://bugs.python.org/issue3972
https://bugs.python.org/issue8104
https://bugs.python.org/issue6192
https://bugs.python.org/issue6267
https://github.com/ghaering/pysqlite
https://bugs.python.org/issue7133
https://bugs.python.org/issue8222
https://www.openssl.org/docs/apps/ciphers.html#CIPHER-LIST-FORMAT
https://bugs.python.org/issue8322
https://bugs.python.org/issue8484
https://bugs.python.org/issue8321
https://bugs.python.org/issue1523
https://bugs.python.org/issue8300

a CalledProcessError exception otherwise.

>>> subprocess.check_output(['df', '-h', '.'])
'Filesystem Size Used Avail Capacity Mounted on\n
/dev/disk0s2 52G 49G 3.0G 94% /\n'

>>> subprocess.check_output(['df', '-h', '/bogus'])
...

subprocess.CalledProcessError: Command '['df', '-h', '/bogus']' returned non-zero exit status 1

(Contributed by Gregory P. Smith.)

The subprocess module will now retry its internal system calls on receiving an EINTR signal. (Reported
by several people; final patch by Gregory P. Smith in bpo-1068268.)

• New function: is_declared_global() in the symtable module returns true for variables that are explicitly
declared to be global, false for ones that are implicitly global. (Contributed by Jeremy Hylton.)

• The syslog module will now use the value of sys.argv[0] as the identifier instead of the previous default
value of 'python'. (Changed by Sean Reifschneider; bpo-8451.)

• The sys.version_info value is now a named tuple, with attributes named major, minor, micro, release-
level, and serial. (Contributed by Ross Light; bpo-4285.)

sys.getwindowsversion() also returns a named tuple, with attributes named major, minor, build,
platform, service_pack, service_pack_major, service_pack_minor, suite_mask, and product_type.
(Contributed by Brian Curtin; bpo-7766.)

• The tarfile module’s default error handling has changed, to no longer suppress fatal errors. The default
error level was previously 0, which meant that errors would only result in a message being written to
the debug log, but because the debug log is not activated by default, these errors go unnoticed. The
default error level is now 1, which raises an exception if there’s an error. (Changed by Lars Gustäbel;
bpo-7357.)

tarfile now supports filtering the TarInfo objects being added to a tar file. When you call add(), you
may supply an optional filter argument that’s a callable. The filter callable will be passed the TarInfo
for every file being added, and can modify and return it. If the callable returns None, the file will
be excluded from the resulting archive. This is more powerful than the existing exclude argument,
which has therefore been deprecated. (Added by Lars Gustäbel; bpo-6856.) The TarFile class also now
supports the context management protocol. (Added by Lars Gustäbel; bpo-7232.)

• The wait() method of the threading.Event class now returns the internal flag on exit. This means the
method will usually return true because wait() is supposed to block until the internal flag becomes
true. The return value will only be false if a timeout was provided and the operation timed out.
(Contributed by Tim Lesher; bpo-1674032.)

• The Unicode database provided by the unicodedata module is now used internally to determine which
characters are numeric, whitespace, or represent line breaks. The database also includes information
from the Unihan.txt data file (patch by Anders Chrigström and Amaury Forgeot d’Arc; bpo-1571184)
and has been updated to version 5.2.0 (updated by Florent Xicluna; bpo-8024).

• The urlparse module’s urlsplit() now handles unknown URL schemes in a fashion compliant with RFC
3986: if the URL is of the form "<something>://...", the text before the :// is treated as the scheme,
even if it’s a made-up scheme that the module doesn’t know about. This change may break code that
worked around the old behaviour. For example, Python 2.6.4 or 2.5 will return the following:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', '', '//host/filename?query', '', '')

https://bugs.python.org/issue1068268
https://bugs.python.org/issue8451
https://bugs.python.org/issue4285
https://bugs.python.org/issue7766
https://bugs.python.org/issue7357
https://bugs.python.org/issue6856
https://bugs.python.org/issue7232
https://bugs.python.org/issue1674032
https://bugs.python.org/issue1571184
https://bugs.python.org/issue8024
https://tools.ietf.org/html/rfc3986.html
https://tools.ietf.org/html/rfc3986.html

Python 2.7 (and Python 2.6.5) will return:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', 'host', '/filename?query', '', '')

(Python 2.7 actually produces slightly different output, since it returns a named tuple instead of a
standard tuple.)

The urlparse module also supports IPv6 literal addresses as defined by RFC 2732 (contributed by
Senthil Kumaran; bpo-2987).

>>> urlparse.urlparse('http://[1080::8:800:200C:417A]/foo')
ParseResult(scheme='http', netloc='[1080::8:800:200C:417A]',

path='/foo', params='', query='', fragment='')

• New class: the WeakSet class in the weakref module is a set that only holds weak references to
its elements; elements will be removed once there are no references pointing to them. (Originally
implemented in Python 3.x by Raymond Hettinger, and backported to 2.7 by Michael Foord.)

• The ElementTree library, xml.etree, no longer escapes ampersands and angle brackets when outputting
an XML processing instruction (which looks like <?xml-stylesheet href="#style1"?>) or comment
(which looks like <!-- comment -->). (Patch by Neil Muller; bpo-2746.)

• The XML-RPC client and server, provided by the xmlrpclib and SimpleXMLRPCServer modules, have
improved performance by supporting HTTP/1.1 keep-alive and by optionally using gzip encoding to
compress the XML being exchanged. The gzip compression is controlled by the encode_threshold
attribute of SimpleXMLRPCRequestHandler, which contains a size in bytes; responses larger than
this will be compressed. (Contributed by Kristján Valur Jónsson; bpo-6267.)

• The zipfile module’s ZipFile now supports the context management protocol, so you can write with
zipfile.ZipFile(...) as f:. (Contributed by Brian Curtin; bpo-5511.)

zipfile now also supports archiving empty directories and extracts them correctly. (Fixed by Kuba
Wieczorek; bpo-4710.) Reading files out of an archive is faster, and interleaving read() and readline()
now works correctly. (Contributed by Nir Aides; bpo-7610.)

The is_zipfile() function now accepts a file object, in addition to the path names accepted in earlier
versions. (Contributed by Gabriel Genellina; bpo-4756.)

The writestr() method now has an optional compress_type parameter that lets you override the default
compression method specified in the ZipFile constructor. (Contributed by Ronald Oussoren; bpo-6003.)

11.1 New module: importlib

Python 3.1 includes the importlib package, a re-implementation of the logic underlying Python’s import
statement. importlib is useful for implementors of Python interpreters and to users who wish to write new
importers that can participate in the import process. Python 2.7 doesn’t contain the complete importlib
package, but instead has a tiny subset that contains a single function, import_module().

import_module(name, package=None) imports a module. name is a string containing the module or pack-
age’s name. It’s possible to do relative imports by providing a string that begins with a . character, such as
..utils.errors. For relative imports, the package argument must be provided and is the name of the package
that will be used as the anchor for the relative import. import_module() both inserts the imported module
into sys.modules and returns the module object.

Here are some examples:

https://tools.ietf.org/html/rfc2732.html
https://bugs.python.org/issue2987
https://bugs.python.org/issue2746
https://bugs.python.org/issue6267
https://bugs.python.org/issue5511
https://bugs.python.org/issue4710
https://bugs.python.org/issue7610
https://bugs.python.org/issue4756
https://bugs.python.org/issue6003

>>> from importlib import import_module
>>> anydbm = import_module('anydbm') # Standard absolute import
>>> anydbm
<module 'anydbm' from '/p/python/Lib/anydbm.py'>
>>> # Relative import
>>> file_util = import_module('..file_util', 'distutils.command')
>>> file_util
<module 'distutils.file_util' from '/python/Lib/distutils/file_util.pyc'>

importlib was implemented by Brett Cannon and introduced in Python 3.1.

11.2 New module: sysconfig

The sysconfig module has been pulled out of the Distutils package, becoming a new top-level module in
its own right. sysconfig provides functions for getting information about Python’s build process: compiler
switches, installation paths, the platform name, and whether Python is running from its source directory.

Some of the functions in the module are:

• get_config_var() returns variables from Python’s Makefile and the pyconfig.h file.

• get_config_vars() returns a dictionary containing all of the configuration variables.

• get_path() returns the configured path for a particular type of module: the standard library, site-
specific modules, platform-specific modules, etc.

• is_python_build() returns true if you’re running a binary from a Python source tree, and false other-
wise.

Consult the sysconfig documentation for more details and for a complete list of functions.

The Distutils package and sysconfig are now maintained by Tarek Ziadé, who has also started a Distutils2
package (source repository at https://hg.python.org/distutils2/) for developing a next-generation version of
Distutils.

11.3 ttk: Themed Widgets for Tk

Tcl/Tk 8.5 includes a set of themed widgets that re-implement basic Tk widgets but have a more customizable
appearance and can therefore more closely resemble the native platform’s widgets. This widget set was
originally called Tile, but was renamed to Ttk (for “themed Tk”) on being added to Tcl/Tck release 8.5.

To learn more, read the ttk module documentation. You may also wish to read the Tcl/Tk manual page
describing the Ttk theme engine, available at https://www.tcl.tk/man/tcl8.5/TkCmd/ttk_intro.htm. Some
screenshots of the Python/Ttk code in use are at http://code.google.com/p/python-ttk/wiki/Screenshots.

The ttk module was written by Guilherme Polo and added in bpo-2983. An alternate version called Tile.py,
written by Martin Franklin and maintained by Kevin Walzer, was proposed for inclusion in bpo-2618, but
the authors argued that Guilherme Polo’s work was more comprehensive.

11.4 Updated module: unittest

The unittest module was greatly enhanced; many new features were added. Most of these features were
implemented by Michael Foord, unless otherwise noted. The enhanced version of the module is downloadable
separately for use with Python versions 2.4 to 2.6, packaged as the unittest2 package, from https://pypi.
python.org/pypi/unittest2.

https://hg.python.org/distutils2/
https://www.tcl.tk/man/tcl8.5/TkCmd/ttk_intro.htm
http://code.google.com/p/python-ttk/wiki/Screenshots
https://bugs.python.org/issue2983
https://bugs.python.org/issue2618
https://pypi.python.org/pypi/unittest2
https://pypi.python.org/pypi/unittest2

When used from the command line, the module can automatically discover tests. It’s not as fancy as py.test
or nose, but provides a simple way to run tests kept within a set of package directories. For example, the
following command will search the test/ subdirectory for any importable test files named test*.py:

python -m unittest discover -s test

Consult the unittest module documentation for more details. (Developed in bpo-6001.)

The main() function supports some other new options:

• -b or --buffer will buffer the standard output and standard error streams during each test. If the test
passes, any resulting output will be discarded; on failure, the buffered output will be displayed.

• -c or --catch will cause the control-C interrupt to be handled more gracefully. Instead of interrupting
the test process immediately, the currently running test will be completed and then the partial results
up to the interruption will be reported. If you’re impatient, a second press of control-C will cause an
immediate interruption.

This control-C handler tries to avoid causing problems when the code being tested or the tests being
run have defined a signal handler of their own, by noticing that a signal handler was already set and
calling it. If this doesn’t work for you, there’s a removeHandler() decorator that can be used to mark
tests that should have the control-C handling disabled.

• -f or --failfast makes test execution stop immediately when a test fails instead of continuing to execute
further tests. (Suggested by Cliff Dyer and implemented by Michael Foord; bpo-8074.)

The progress messages now show ‘x’ for expected failures and ‘u’ for unexpected successes when run in
verbose mode. (Contributed by Benjamin Peterson.)

Test cases can raise the SkipTest exception to skip a test (bpo-1034053).

The error messages for assertEqual(), assertTrue(), and assertFalse() failures now provide more information.
If you set the longMessage attribute of your TestCase classes to true, both the standard error message and
any additional message you provide will be printed for failures. (Added by Michael Foord; bpo-5663.)

The assertRaises() method now returns a context handler when called without providing a callable object
to run. For example, you can write this:

with self.assertRaises(KeyError):
{}['foo']

(Implemented by Antoine Pitrou; bpo-4444.)

Module- and class-level setup and teardown fixtures are now supported. Modules can contain setUpModule()
and tearDownModule() functions. Classes can have setUpClass() and tearDownClass() methods that must
be defined as class methods (using @classmethod or equivalent). These functions and methods are invoked
when the test runner switches to a test case in a different module or class.

The methods addCleanup() and doCleanups() were added. addCleanup() lets you add cleanup functions
that will be called unconditionally (after setUp() if setUp() fails, otherwise after tearDown()). This allows
for much simpler resource allocation and deallocation during tests (bpo-5679).

A number of new methods were added that provide more specialized tests. Many of these methods were
written by Google engineers for use in their test suites; Gregory P. Smith, Michael Foord, and GvR worked
on merging them into Python’s version of unittest.

• assertIsNone() and assertIsNotNone() take one expression and verify that the result is or is not None.

• assertIs() and assertIsNot() take two values and check whether the two values evaluate to the same
object or not. (Added by Michael Foord; bpo-2578.)

http://pytest.org
http://code.google.com/p/python-nose/
https://bugs.python.org/issue6001
https://bugs.python.org/issue8074
https://bugs.python.org/issue1034053
https://bugs.python.org/issue5663
https://bugs.python.org/issue4444
https://bugs.python.org/issue5679
https://bugs.python.org/issue2578

• assertIsInstance() and assertNotIsInstance() check whether the resulting object is an instance of a
particular class, or of one of a tuple of classes. (Added by Georg Brandl; bpo-7031.)

• assertGreater(), assertGreaterEqual(), assertLess(), and assertLessEqual() compare two quantities.

• assertMultiLineEqual() compares two strings, and if they’re not equal, displays a helpful comparison
that highlights the differences in the two strings. This comparison is now used by default when Unicode
strings are compared with assertEqual().

• assertRegexpMatches() and assertNotRegexpMatches() checks whether the first argument is a string
matching or not matching the regular expression provided as the second argument (bpo-8038).

• assertRaisesRegexp() checks whether a particular exception is raised, and then also checks that the
string representation of the exception matches the provided regular expression.

• assertIn() and assertNotIn() tests whether first is or is not in second.

• assertItemsEqual() tests whether two provided sequences contain the same elements.

• assertSetEqual() compares whether two sets are equal, and only reports the differences between the
sets in case of error.

• Similarly, assertListEqual() and assertTupleEqual() compare the specified types and explain any dif-
ferences without necessarily printing their full values; these methods are now used by default when
comparing lists and tuples using assertEqual(). More generally, assertSequenceEqual() compares two
sequences and can optionally check whether both sequences are of a particular type.

• assertDictEqual() compares two dictionaries and reports the differences; it’s now used by default when
you compare two dictionaries using assertEqual(). assertDictContainsSubset() checks whether all of
the key/value pairs in first are found in second.

• assertAlmostEqual() and assertNotAlmostEqual() test whether first and second are approximately
equal. This method can either round their difference to an optionally-specified number of places (the
default is 7) and compare it to zero, or require the difference to be smaller than a supplied delta value.

• loadTestsFromName() properly honors the suiteClass attribute of the TestLoader. (Fixed by Mark
Roddy; bpo-6866.)

• A new hook lets you extend the assertEqual() method to handle new data types. The addTypeEquali-
tyFunc() method takes a type object and a function. The function will be used when both of the objects
being compared are of the specified type. This function should compare the two objects and raise an
exception if they don’t match; it’s a good idea for the function to provide additional information about
why the two objects aren’t matching, much as the new sequence comparison methods do.

unittest.main() now takes an optional exit argument. If false, main() doesn’t call sys.exit(), allowing main()
to be used from the interactive interpreter. (Contributed by J. Pablo Fernández; bpo-3379.)

TestResult has new startTestRun() and stopTestRun() methods that are called immediately before and after
a test run. (Contributed by Robert Collins; bpo-5728.)

With all these changes, the unittest.py was becoming awkwardly large, so the module was turned into a
package and the code split into several files (by Benjamin Peterson). This doesn’t affect how the module is
imported or used.

See also:

http://www.voidspace.org.uk/python/articles/unittest2.shtml Describes the new features, how to use them,
and the rationale for various design decisions. (By Michael Foord.)

https://bugs.python.org/issue7031
https://bugs.python.org/issue8038
https://bugs.python.org/issue6866
https://bugs.python.org/issue3379
https://bugs.python.org/issue5728
http://www.voidspace.org.uk/python/articles/unittest2.shtml

11.5 Updated module: ElementTree 1.3

The version of the ElementTree library included with Python was updated to version 1.3. Some of the new
features are:

• The various parsing functions now take a parser keyword argument giving an XMLParser instance that
will be used. This makes it possible to override the file’s internal encoding:

p = ET.XMLParser(encoding='utf-8')
t = ET.XML("""<root/>""", parser=p)

Errors in parsing XML now raise a ParseError exception, whose instances have a position attribute
containing a (line, column) tuple giving the location of the problem.

• ElementTree’s code for converting trees to a string has been significantly reworked, making it roughly
twice as fast in many cases. The ElementTree.write() and Element.write() methods now have a method
parameter that can be “xml” (the default), “html”, or “text”. HTML mode will output empty elements
as <empty></empty> instead of <empty/>, and text mode will skip over elements and only output
the text chunks. If you set the tag attribute of an element to None but leave its children in place,
the element will be omitted when the tree is written out, so you don’t need to do more extensive
rearrangement to remove a single element.

Namespace handling has also been improved. All xmlns:<whatever> declarations are now output
on the root element, not scattered throughout the resulting XML. You can set the default names-
pace for a tree by setting the default_namespace attribute and can register new prefixes with regis-
ter_namespace(). In XML mode, you can use the true/false xml_declaration parameter to suppress
the XML declaration.

• New Element method: extend() appends the items from a sequence to the element’s children. Elements
themselves behave like sequences, so it’s easy to move children from one element to another:

from xml.etree import ElementTree as ET

t = ET.XML("""<list>
<item>1</item> <item>2</item> <item>3</item>

</list>""")
new = ET.XML('<root/>')
new.extend(t)

Outputs <root><item>1</item>...</root>
print ET.tostring(new)

• New Element method: iter() yields the children of the element as a generator. It’s also possible to
write for child in elem: to loop over an element’s children. The existing method getiterator() is now
deprecated, as is getchildren() which constructs and returns a list of children.

• New Element method: itertext() yields all chunks of text that are descendants of the element. For
example:

t = ET.XML("""<list>
<item>1</item> <item>2</item> <item>3</item>

</list>""")

Outputs ['\n ', '1', ' ', '2', ' ', '3', '\n']
print list(t.itertext())

• Deprecated: using an element as a Boolean (i.e., if elem:) would return true if the element had any
children, or false if there were no children. This behaviour is confusing – None is false, but so is a

childless element? – so it will now trigger a FutureWarning. In your code, you should be explicit: write
len(elem) != 0 if you’re interested in the number of children, or elem is not None.

Fredrik Lundh develops ElementTree and produced the 1.3 version; you can read his article describing
1.3 at http://effbot.org/zone/elementtree-13-intro.htm. Florent Xicluna updated the version included with
Python, after discussions on python-dev and in bpo-6472.)

12 Build and C API Changes

Changes to Python’s build process and to the C API include:

• The latest release of the GNU Debugger, GDB 7, can be scripted using Python. When you begin
debugging an executable program P, GDB will look for a file named P-gdb.py and automatically
read it. Dave Malcolm contributed a python-gdb.py that adds a number of commands useful when
debugging Python itself. For example, py-up and py-down go up or down one Python stack frame,
which usually corresponds to several C stack frames. py-print prints the value of a Python variable,
and py-bt prints the Python stack trace. (Added as a result of bpo-8032.)

• If you use the .gdbinit file provided with Python, the “pyo” macro in the 2.7 version now works
correctly when the thread being debugged doesn’t hold the GIL; the macro now acquires it before
printing. (Contributed by Victor Stinner; bpo-3632.)

• Py_AddPendingCall() is now thread-safe, letting any worker thread submit notifications to the main
Python thread. This is particularly useful for asynchronous IO operations. (Contributed by Kristján
Valur Jónsson; bpo-4293.)

• New function: PyCode_NewEmpty() creates an empty code object; only the filename, function name,
and first line number are required. This is useful for extension modules that are attempting to construct
a more useful traceback stack. Previously such extensions needed to call PyCode_New(), which had
many more arguments. (Added by Jeffrey Yasskin.)

• New function: PyErr_NewExceptionWithDoc() creates a new exception class, just as the existing
PyErr_NewException() does, but takes an extra char * argument containing the docstring for the new
exception class. (Added by ‘lekma’ on the Python bug tracker; bpo-7033.)

• New function: PyFrame_GetLineNumber() takes a frame object and returns the line number that the
frame is currently executing. Previously code would need to get the index of the bytecode instruction
currently executing, and then look up the line number corresponding to that address. (Added by
Jeffrey Yasskin.)

• New functions: PyLong_AsLongAndOverflow() and PyLong_AsLongLongAndOverflow() approxi-
mates a Python long integer as a C long or long long. If the number is too large to fit into the
output type, an overflow flag is set and returned to the caller. (Contributed by Case Van Horsen;
bpo-7528 and bpo-7767.)

• New function: stemming from the rewrite of string-to-float conversion, a new
PyOS_string_to_double() function was added. The old PyOS_ascii_strtod() and
PyOS_ascii_atof() functions are now deprecated.

• New function: PySys_SetArgvEx() sets the value of sys.argv and can optionally update sys.path
to include the directory containing the script named by sys.argv[0] depending on the value of an
updatepath parameter.

This function was added to close a security hole for applications that embed Python. The old function,
PySys_SetArgv(), would always update sys.path, and sometimes it would add the current directory.
This meant that, if you ran an application embedding Python in a directory controlled by someone
else, attackers could put a Trojan-horse module in the directory (say, a file named os.py) that your
application would then import and run.

http://effbot.org/zone/elementtree-13-intro.htm
https://bugs.python.org/issue6472
https://sourceware.org/gdb/current/onlinedocs/gdb/Python.html
https://bugs.python.org/issue8032
https://bugs.python.org/issue3632
https://bugs.python.org/issue4293
https://bugs.python.org/issue7033
https://bugs.python.org/issue7528
https://bugs.python.org/issue7767

If you maintain a C/C++ application that embeds Python, check whether you’re calling
PySys_SetArgv() and carefully consider whether the application should be using PySys_SetArgvEx()
with updatepath set to false.

Security issue reported as CVE-2008-5983; discussed in bpo-5753, and fixed by Antoine Pitrou.

• New macros: the Python header files now define the following macros: Py_ISALNUM, Py_ISALPHA,
Py_ISDIGIT, Py_ISLOWER, Py_ISSPACE, Py_ISUPPER, Py_ISXDIGIT, Py_TOLOWER, and
Py_TOUPPER. All of these functions are analogous to the C standard macros for classifying charac-
ters, but ignore the current locale setting, because in several places Python needs to analyze characters
in a locale-independent way. (Added by Eric Smith; bpo-5793.)

• Removed function: PyEval_CallObject is now only available as a macro. A function version was being
kept around to preserve ABI linking compatibility, but that was in 1997; it can certainly be deleted by
now. (Removed by Antoine Pitrou; bpo-8276.)

• New format codes: the PyFormat_FromString(), PyFormat_FromStringV(), and PyErr_Format()
functions now accept %lld and %llu format codes for displaying C’s long long types. (Contributed by
Mark Dickinson; bpo-7228.)

• The complicated interaction between threads and process forking has been changed. Previously, the
child process created by os.fork() might fail because the child is created with only a single thread
running, the thread performing the os.fork(). If other threads were holding a lock, such as Python’s
import lock, when the fork was performed, the lock would still be marked as “held” in the new process.
But in the child process nothing would ever release the lock, since the other threads weren’t replicated,
and the child process would no longer be able to perform imports.

Python 2.7 acquires the import lock before performing an os.fork(), and will also clean up any locks
created using the threading module. C extension modules that have internal locks, or that call fork()
themselves, will not benefit from this clean-up.

(Fixed by Thomas Wouters; bpo-1590864.)

• The Py_Finalize() function now calls the internal threading._shutdown() function; this prevents some
exceptions from being raised when an interpreter shuts down. (Patch by Adam Olsen; bpo-1722344.)

• When using the PyMemberDef structure to define attributes of a type, Python will no longer let you
try to delete or set a T_STRING_INPLACE attribute.

• Global symbols defined by the ctypes module are now prefixed with Py, or with _ctypes. (Implemented
by Thomas Heller; bpo-3102.)

• New configure option: the --with-system-expat switch allows building the pyexpat module to use the
system Expat library. (Contributed by Arfrever Frehtes Taifersar Arahesis; bpo-7609.)

• New configure option: the --with-valgrind option will now disable the pymalloc allocator, which is
difficult for the Valgrind memory-error detector to analyze correctly. Valgrind will therefore be better
at detecting memory leaks and overruns. (Contributed by James Henstridge; bpo-2422.)

• New configure option: you can now supply an empty string to --with-dbmliborder= in order to disable
all of the various DBM modules. (Added by Arfrever Frehtes Taifersar Arahesis; bpo-6491.)

• The configure script now checks for floating-point rounding bugs on certain 32-bit Intel chips and
defines a X87_DOUBLE_ROUNDING preprocessor definition. No code currently uses this definition,
but it’s available if anyone wishes to use it. (Added by Mark Dickinson; bpo-2937.)

configure also now sets a LDCXXSHAREDMakefile variable for supporting C++ linking. (Contributed
by Arfrever Frehtes Taifersar Arahesis; bpo-1222585.)

• The build process now creates the necessary files for pkg-config support. (Contributed by Clinton Roy;
bpo-3585.)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983
https://bugs.python.org/issue5753
https://bugs.python.org/issue5793
https://bugs.python.org/issue8276
https://bugs.python.org/issue7228
https://bugs.python.org/issue1590864
https://bugs.python.org/issue1722344
https://bugs.python.org/issue3102
https://bugs.python.org/issue7609
https://bugs.python.org/issue2422
https://bugs.python.org/issue6491
https://bugs.python.org/issue2937
https://bugs.python.org/issue1222585
https://bugs.python.org/issue3585

• The build process now supports Subversion 1.7. (Contributed by Arfrever Frehtes Taifersar Arahesis;
bpo-6094.)

12.1 Capsules

Python 3.1 adds a new C datatype, PyCapsule, for providing a C API to an extension module. A capsule
is essentially the holder of a C void * pointer, and is made available as a module attribute; for example, the
socket module’s API is exposed as socket.CAPI, and unicodedata exposes ucnhash_CAPI. Other extensions
can import the module, access its dictionary to get the capsule object, and then get the void * pointer, which
will usually point to an array of pointers to the module’s various API functions.

There is an existing data type already used for this, PyCObject, but it doesn’t provide type safety. Evil
code written in pure Python could cause a segmentation fault by taking a PyCObject from module A and
somehow substituting it for the PyCObject in module B. Capsules know their own name, and getting the
pointer requires providing the name:

void *vtable;

if (!PyCapsule_IsValid(capsule, "mymodule.CAPI") {
PyErr_SetString(PyExc_ValueError, "argument type invalid");
return NULL;

}

vtable = PyCapsule_GetPointer(capsule, "mymodule.CAPI");

You are assured that vtable points to whatever you’re expecting. If a different capsule was passed in,
PyCapsule_IsValid() would detect the mismatched name and return false. Refer to using-capsules for more
information on using these objects.

Python 2.7 now uses capsules internally to provide various extension-module APIs, but the PyCOb-
ject_AsVoidPtr() was modified to handle capsules, preserving compile-time compatibility with the COb-
ject interface. Use of PyCObject_AsVoidPtr() will signal a PendingDeprecationWarning, which is silent by
default.

Implemented in Python 3.1 and backported to 2.7 by Larry Hastings; discussed in bpo-5630.

12.2 Port-Specific Changes: Windows

• The msvcrt module now contains some constants from the crtassem.h header
file: CRT_ASSEMBLY_VERSION, VC_ASSEMBLY_PUBLICKEYTOKEN, and LI-
BRARIES_ASSEMBLY_NAME_PREFIX. (Contributed by David Cournapeau; bpo-4365.)

• The _winreg module for accessing the registry now implements the CreateKeyEx() and DeleteKeyEx()
functions, extended versions of previously-supported functions that take several extra arguments. The
DisableReflectionKey(), EnableReflectionKey(), and QueryReflectionKey() were also tested and docu-
mented. (Implemented by Brian Curtin: bpo-7347.)

• The new _beginthreadex() API is used to start threads, and the native thread-local storage functions
are now used. (Contributed by Kristján Valur Jónsson; bpo-3582.)

• The os.kill() function now works on Windows. The signal value can be the constants
CTRL_C_EVENT, CTRL_BREAK_EVENT, or any integer. The first two constants will send
Control-C and Control-Break keystroke events to subprocesses; any other value will use the Termi-
nateProcess() API. (Contributed by Miki Tebeka; bpo-1220212.)

• The os.listdir() function now correctly fails for an empty path. (Fixed by Hirokazu Yamamoto; bpo-
5913.)

https://bugs.python.org/issue6094
https://bugs.python.org/issue5630
https://bugs.python.org/issue4365
https://bugs.python.org/issue7347
https://bugs.python.org/issue3582
https://bugs.python.org/issue1220212
https://bugs.python.org/issue5913
https://bugs.python.org/issue5913

• The mimelib module will now read the MIME database from the Windows registry when initializing.
(Patch by Gabriel Genellina; bpo-4969.)

12.3 Port-Specific Changes: Mac OS X

• The path /Library/Python/2.7/site-packages is now appended to sys.path, in order to share added
packages between the system installation and a user-installed copy of the same version. (Changed by
Ronald Oussoren; bpo-4865.)

Changed in version 2.7.13: As of 2.7.13, this change was removed. /Library/Python/2.7/
site-packages, the site-packages directory used by the Apple-supplied system Python 2.7 is no
longer appended to sys.path for user-installed Pythons such as from the python.org installers.
As of macOS 10.12, Apple changed how the system site-packages directory is configured,
which could cause installation of pip components, like setuptools, to fail. Packages installed
for the system Python will no longer be shared with user-installed Pythons. (bpo-28440)

12.4 Port-Specific Changes: FreeBSD

• FreeBSD 7.1’s SO_SETFIB constant, used with getsockopt()/setsockopt() to select an alternate rout-
ing table, is now available in the socket module. (Added by Kyle VanderBeek; bpo-8235.)

13 Other Changes and Fixes

• Two benchmark scripts, iobench and ccbench, were added to the Tools directory. iobench measures
the speed of the built-in file I/O objects returned by open() while performing various operations, and
ccbench is a concurrency benchmark that tries to measure computing throughput, thread switching
latency, and IO processing bandwidth when performing several tasks using a varying number of threads.

• The Tools/i18n/msgfmt.py script now understands plural forms in .po files. (Fixed by Martin von
Löwis; bpo-5464.)

• When importing a module from a .pyc or .pyo file with an existing .py counterpart, the co_filename
attributes of the resulting code objects are overwritten when the original filename is obsolete. This
can happen if the file has been renamed, moved, or is accessed through different paths. (Patch by Ziga
Seilnacht and Jean-Paul Calderone; bpo-1180193.)

• The regrtest.py script now takes a --randseed= switch that takes an integer that will be used as the
random seed for the -r option that executes tests in random order. The -r option also reports the seed
that was used (Added by Collin Winter.)

• Another regrtest.py switch is -j, which takes an integer specifying how many tests run in parallel. This
allows reducing the total runtime on multi-core machines. This option is compatible with several other
options, including the -R switch which is known to produce long runtimes. (Added by Antoine Pitrou,
bpo-6152.) This can also be used with a new -F switch that runs selected tests in a loop until they
fail. (Added by Antoine Pitrou; bpo-7312.)

• When executed as a script, the py_compile.py module now accepts '-' as an argument, which will read
standard input for the list of filenames to be compiled. (Contributed by Piotr Ożarowski; bpo-8233.)

14 Porting to Python 2.7

This section lists previously described changes and other bugfixes that may require changes to your code:

https://bugs.python.org/issue4969
https://bugs.python.org/issue4865
https://bugs.python.org/issue28440
https://bugs.python.org/issue8235
https://bugs.python.org/issue5464
https://bugs.python.org/issue1180193
https://bugs.python.org/issue6152
https://bugs.python.org/issue7312
https://bugs.python.org/issue8233

• The range() function processes its arguments more consistently; it will now call __int__() on non-
float, non-integer arguments that are supplied to it. (Fixed by Alexander Belopolsky; bpo-1533.)

• The string format() method changed the default precision used for floating-point and complex numbers
from 6 decimal places to 12, which matches the precision used by str(). (Changed by Eric Smith; bpo-
5920.)

• Because of an optimization for the with statement, the special methods __enter__() and __exit__()
must belong to the object’s type, and cannot be directly attached to the object’s instance. This affects
new-style classes (derived from object) and C extension types. (bpo-6101.)

• Due to a bug in Python 2.6, the exc_value parameter to __exit__() methods was often the string
representation of the exception, not an instance. This was fixed in 2.7, so exc_value will be an instance
as expected. (Fixed by Florent Xicluna; bpo-7853.)

• When a restricted set of attributes were set using __slots__, deleting an unset attribute would not
raise AttributeError as you would expect. Fixed by Benjamin Peterson; bpo-7604.)

In the standard library:

• Operations with datetime instances that resulted in a year falling outside the supported range didn’t al-
ways raise OverflowError. Such errors are now checked more carefully and will now raise the exception.
(Reported by Mark Leander, patch by Anand B. Pillai and Alexander Belopolsky; bpo-7150.)

• When using Decimal instances with a string’s format() method, the default alignment was previously
left-alignment. This has been changed to right-alignment, which might change the output of your
programs. (Changed by Mark Dickinson; bpo-6857.)

Comparisons involving a signaling NaN value (or sNAN) now signal InvalidOperation instead of silently
returning a true or false value depending on the comparison operator. Quiet NaN values (or NaN) are
now hashable. (Fixed by Mark Dickinson; bpo-7279.)

• The ElementTree library, xml.etree, no longer escapes ampersands and angle brackets when outputting
an XML processing instruction (which looks like <?xml-stylesheet href=”#style1”?>) or comment
(which looks like <!– comment –>). (Patch by Neil Muller; bpo-2746.)

• The readline() method of StringIO objects now does nothing when a negative length is requested, as
other file-like objects do. (bpo-7348).

• The syslog module will now use the value of sys.argv[0] as the identifier instead of the previous default
value of 'python'. (Changed by Sean Reifschneider; bpo-8451.)

• The tarfile module’s default error handling has changed, to no longer suppress fatal errors. The default
error level was previously 0, which meant that errors would only result in a message being written to
the debug log, but because the debug log is not activated by default, these errors go unnoticed. The
default error level is now 1, which raises an exception if there’s an error. (Changed by Lars Gustäbel;
bpo-7357.)

• The urlparse module’s urlsplit() now handles unknown URL schemes in a fashion compliant with RFC
3986: if the URL is of the form "<something>://...", the text before the :// is treated as the scheme,
even if it’s a made-up scheme that the module doesn’t know about. This change may break code that
worked around the old behaviour. For example, Python 2.6.4 or 2.5 will return the following:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', '', '//host/filename?query', '', '')

Python 2.7 (and Python 2.6.5) will return:

https://bugs.python.org/issue1533
https://bugs.python.org/issue5920
https://bugs.python.org/issue5920
https://bugs.python.org/issue6101
https://bugs.python.org/issue7853
https://bugs.python.org/issue7604
https://bugs.python.org/issue7150
https://bugs.python.org/issue6857
https://bugs.python.org/issue7279
https://bugs.python.org/issue2746
https://bugs.python.org/issue7348
https://bugs.python.org/issue8451
https://bugs.python.org/issue7357
https://tools.ietf.org/html/rfc3986.html
https://tools.ietf.org/html/rfc3986.html

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', 'host', '/filename?query', '', '')

(Python 2.7 actually produces slightly different output, since it returns a named tuple instead of a
standard tuple.)

For C extensions:

• C extensions that use integer format codes with the PyArg_Parse* family of functions will now raise
a TypeError exception instead of triggering a DeprecationWarning (bpo-5080).

• Use the new PyOS_string_to_double() function instead of the old PyOS_ascii_strtod() and
PyOS_ascii_atof() functions, which are now deprecated.

For applications that embed Python:

• The PySys_SetArgvEx() function was added, letting applications close a security hole when the exist-
ing PySys_SetArgv() function was used. Check whether you’re calling PySys_SetArgv() and carefully
consider whether the application should be using PySys_SetArgvEx() with updatepath set to false.

15 New Features Added to Python 2.7 Maintenance Releases

New features may be added to Python 2.7 maintenance releases when the situation genuinely calls for it.
Any such additions must go through the Python Enhancement Proposal process, and make a compelling
case for why they can’t be adequately addressed by either adding the new feature solely to Python 3, or else
by publishing it on the Python Package Index.

In addition to the specific proposals listed below, there is a general exemption allowing new -3 warnings to
be added in any Python 2.7 maintenance release.

15.1 Two new environment variables for debug mode

In debug mode, the [xxx refs] statistic is not written by default, the PYTHONSHOWREFCOUNT environ-
ment variable now must also be set. (Contributed by Victor Stinner; bpo-31733.)

When Python is compiled with COUNT_ALLOC defined, allocation counts are no longer dumped by default
anymore: the PYTHONSHOWALLOCCOUNT environment variable must now also be set. Moreover,
allocation counts are now dumped into stderr, rather than stdout. (Contributed by Victor Stinner; bpo-
31692.)

New in version 2.7.15.

15.2 PEP 434: IDLE Enhancement Exception for All Branches

PEP 434 describes a general exemption for changes made to the IDLE development environment shipped
along with Python. This exemption makes it possible for the IDLE developers to provide a more consistent
user experience across all supported versions of Python 2 and 3.

For details of any IDLE changes, refer to the NEWS file for the specific release.

https://bugs.python.org/issue5080
https://bugs.python.org/issue31733
https://bugs.python.org/issue31692
https://bugs.python.org/issue31692
https://www.python.org/dev/peps/pep-0434

15.3 PEP 466: Network Security Enhancements for Python 2.7

PEP 466 describes a number of network security enhancement proposals that have been approved for inclusion
in Python 2.7 maintenance releases, with the first of those changes appearing in the Python 2.7.7 release.

PEP 466 related features added in Python 2.7.7:

• hmac.compare_digest() was backported from Python 3 to make a timing attack resistant comparison
operation available to Python 2 applications. (Contributed by Alex Gaynor; bpo-21306.)

• OpenSSL 1.0.1g was upgraded in the official Windows installers published on python.org. (Contributed
by Zachary Ware; bpo-21462.)

PEP 466 related features added in Python 2.7.8:

• hashlib.pbkdf2_hmac() was backported from Python 3 to make a hashing algorithm suitable for secure
password storage broadly available to Python 2 applications. (Contributed by Alex Gaynor; bpo-
21304.)

• OpenSSL 1.0.1h was upgraded for the official Windows installers published on python.org. (contributed
by Zachary Ware in bpo-21671 for CVE-2014-0224)

PEP 466 related features added in Python 2.7.9:

• Most of Python 3.4’s ssl module was backported. This means ssl now supports Server Name Indication,
TLS1.x settings, access to the platform certificate store, the SSLContext class, and other features.
(Contributed by Alex Gaynor and David Reid; bpo-21308.)

Refer to the “Version added: 2.7.9” notes in the module documentation for specific details.

• os.urandom() was changed to cache a file descriptor to /dev/urandom instead of reopening /dev/
urandom on every call. (Contributed by Alex Gaynor; bpo-21305.)

• hashlib.algorithms_guaranteed and hashlib.algorithms_available were backported from Python 3 to
make it easier for Python 2 applications to select the strongest available hash algorithm. (Contributed
by Alex Gaynor in bpo-21307)

15.4 PEP 477: Backport ensurepip (PEP 453) to Python 2.7

PEP 477 approves the inclusion of the PEP 453 ensurepip module and the improved documentation that
was enabled by it in the Python 2.7 maintenance releases, appearing first in the Python 2.7.9 release.

Bootstrapping pip By Default

The new ensurepip module (defined in PEP 453) provides a standard cross-platform mechanism to bootstrap
the pip installer into Python installations. The version of pip included with Python 2.7.9 is pip 1.5.6, and
future 2.7.x maintenance releases will update the bundled version to the latest version of pip that is available
at the time of creating the release candidate.

By default, the commands pip, pipX and pipX.Y will be installed on all platforms (where X.Y stands for
the version of the Python installation), along with the pip Python package and its dependencies.

For CPython source builds on POSIX systems, the make install and make altinstall commands do not
bootstrap pip by default. This behaviour can be controlled through configure options, and overridden
through Makefile options.

On Windows and Mac OS X, the CPython installers now default to installing pip along with CPython itself
(users may opt out of installing it during the installation process). Window users will need to opt in to the

https://www.python.org/dev/peps/pep-0466
https://www.python.org/dev/peps/pep-0466
https://bugs.python.org/issue21306
https://bugs.python.org/issue21462
https://www.python.org/dev/peps/pep-0466
https://bugs.python.org/issue21304
https://bugs.python.org/issue21304
https://bugs.python.org/issue21671
https://www.python.org/dev/peps/pep-0466
https://bugs.python.org/issue21308
https://bugs.python.org/issue21305
https://bugs.python.org/issue21307
https://www.python.org/dev/peps/pep-0477
https://www.python.org/dev/peps/pep-0453
https://www.python.org/dev/peps/pep-0453

automatic PATH modifications to have pip available from the command line by default, otherwise it can still
be accessed through the Python launcher for Windows as py -m pip.

As discussed in the PEP, platform packagers may choose not to install these commands by default, as long
as, when invoked, they provide clear and simple directions on how to install them on that platform (usually
using the system package manager).

Documentation Changes

As part of this change, the installing-index and distributing-index sections of the documentation have been
completely redesigned as short getting started and FAQ documents. Most packaging documentation has
now been moved out to the Python Packaging Authority maintained Python Packaging User Guide and the
documentation of the individual projects.

However, as this migration is currently still incomplete, the legacy versions of those guides remaining available
as install-index and distutils-index.

See also:

PEP 453 – Explicit bootstrapping of pip in Python installations PEP written by Donald Stufft and Nick
Coghlan, implemented by Donald Stufft, Nick Coghlan, Martin von Löwis and Ned Deily.

15.5 PEP 476: Enabling certificate verification by default for stdlib http clients

PEP 476 updated httplib and modules which use it, such as urllib2 and xmlrpclib, to now verify that
the server presents a certificate which is signed by a Certificate Authority in the platform trust store and
whose hostname matches the hostname being requested by default, significantly improving security for many
applications. This change was made in the Python 2.7.9 release.

For applications which require the old previous behavior, they can pass an alternate context:

import urllib2
import ssl

This disables all verification
context = ssl._create_unverified_context()

This allows using a specific certificate for the host, which doesn't need
to be in the trust store
context = ssl.create_default_context(cafile="/path/to/file.crt")

urllib2.urlopen("https://invalid-cert", context=context)

15.6 PEP 493: HTTPS verification migration tools for Python 2.7

PEP 493 provides additional migration tools to support a more incremental infrastructure upgrade process
for environments containing applications and services relying on the historically permissive processing of
server certificates when establishing client HTTPS connections. These additions were made in the Python
2.7.12 release.

These tools are intended for use in cases where affected applications and services can’t be modified to
explicitly pass a more permissive SSL context when establishing the connection.

For applications and services which can’t be modified at all, the new PYTHONHTTPSVERIFY environment
variable may be set to 0 to revert an entire Python process back to the default permissive behaviour of Python
2.7.8 and earlier.

https://www.python.org/dev/peps/pep-0477/#disabling-ensurepip-by-downstream-distributors
http://packaging.python.org
https://www.python.org/dev/peps/pep-0453
https://www.python.org/dev/peps/pep-0476
https://www.python.org/dev/peps/pep-0493

For cases where the connection establishment code can’t be modified, but the overall application can be, the
new ssl._https_verify_certificates() function can be used to adjust the default behaviour at runtime.

16 Acknowledgements

The author would like to thank the following people for offering suggestions, corrections and assistance with
various drafts of this article: Nick Coghlan, Philip Jenvey, Ryan Lovett, R. David Murray, Hugh Secker-
Walker.

Index

E
environment variable

LDCXXSHARED, 29
PYTHONSHOWALLOCCOUNT, 33
PYTHONSHOWREFCOUNT, 33
PYTHONWARNINGS, 3, 14
USER_BASE, 21

L
LDCXXSHARED, 29

P
Python Enhancement Proposals

PEP 3106, 10
PEP 3137, 10
PEP 372, 5
PEP 373, 2
PEP 378, 6
PEP 389, 7
PEP 391, 9
PEP 434, 33
PEP 453, 34, 35
PEP 466, 34
PEP 476, 35
PEP 477, 34
PEP 493, 35

PYTHONSHOWALLOCCOUNT, 33
PYTHONSHOWREFCOUNT, 33
PYTHONWARNINGS, 3, 14

R
RFC

RFC 2732, 23
RFC 3986, 22, 32

U
USER_BASE, 21

37

	The Future for Python 2.x
	Changes to the Handling of Deprecation Warnings
	Python 3.1 Features
	PEP 372: Adding an Ordered Dictionary to collections
	PEP 378: Format Specifier for Thousands Separator
	PEP 389: The argparse Module for Parsing Command Lines
	PEP 391: Dictionary-Based Configuration For Logging
	PEP 3106: Dictionary Views
	PEP 3137: The memoryview Object
	Other Language Changes
	Interpreter Changes
	Optimizations

	New and Improved Modules
	New module: importlib
	New module: sysconfig
	ttk: Themed Widgets for Tk
	Updated module: unittest
	Updated module: ElementTree 1.3

	Build and C API Changes
	Capsules
	Port-Specific Changes: Windows
	Port-Specific Changes: Mac OS X
	Port-Specific Changes: FreeBSD

	Other Changes and Fixes
	Porting to Python 2.7
	New Features Added to Python 2.7 Maintenance Releases
	Two new environment variables for debug mode
	PEP 434: IDLE Enhancement Exception for All Branches
	PEP 466: Network Security Enhancements for Python 2.7
	PEP 477: Backport ensurepip (PEP 453) to Python 2.7
	Bootstrapping pip By Default
	Documentation Changes

	PEP 476: Enabling certificate verification by default for stdlib http clients
	PEP 493: HTTPS verification migration tools for Python 2.7

	Acknowledgements
	Index

